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Abstract

Population models for dependence between two angular measurements
and for dependence between an angular and a linear observation are proposed,
The method of canonical ¢orrelations first leads to new population and sample
measures of dependence in this latter situation. An example relating wind
direction to the level of a pollutant is given. Next, applied to pairs bf angular
measurements, the method yields previously proposed sample measures in some

special cases and a new sample measure in general.
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1. Introduction

This investigation centers on the problem of correlation, or dependence,
for circular random variables. Although several nonparametric sample measures
of dependence have already been proposed for angular observations, there
seems to be no literature that treats models for correlation between a circular
random variable and a linear random variable, Here we introduce a measure of
dependence between circular and linear observations and a similar measure for
dependence between two sets of angular observations based on the method of
canonical correlation. The asymptotic distribution of the measures is discussed.
Some population models are introduced to illustrate the proposed methods.
These are among the first population models for random vectors taking values
on a cylinder or on a torus and should prove useful in future studies dealing

with other population correlation measures.

2. Canonical Correlation Applied to a Random Variable on the Circle and a 5

Random Variable on tha Line

An interesting problem is determining a measure of dependence between t
9, a random variable taking values on the unit circle, and X, a random
variable taking values on the line. We introduce X' = (cos. 8, sin 6) to
represent 0 as a unit vector. We now wish to determine g suchthat a' Y
and X have | maximum correlation.

We define the covariance matrix of (¥' X)' by

A
var (cos 8) cov (cos 0, sin 8) | cov(cos 3, X)! | I, (B,
| i

P

x = cov (cos 6, sin 0) var {sin @) cov {sin €, X) 5 =

o e

cov (cos é; bl " cov (sin 8, X) " var (X) E.IZ s
: !




Let g bhe a fixed vector and b be a constant, After imposing the conditions
that 2' T, 8 =1, p? o? = 1, the maximum correlation is given by the largest

solution of the determinantal equation (c.f. Anderson (1958), Chapter 12)

' -\ I p>

= o (2)
1 Za -

Since the correlation p{a’'Y,X) is scale invariant, we can, instead, uniquely
determine a and b by imposing the restrictions that @' a = 1 and b2 = 1.
The maximum correlation subject to these constraints is the same as that
obtained by using the usual constraints. We are thus finding the maximum
p [cos(0 - a), X] over all angles a. The angular-linear correlation PAL is thus

defined by

= max pl[cos(8-a), X ] {3)
a

PAL

In order to make statistical inferences concerning p ALy We may either
use results related to a specific model such as maximum likelihood estimation
theory or else large sample approximations based on the estimated covariance
matrix . As is usual with applications of the canonical correlation method as a
descriptive measure, one does not need to assume any specific population
form but only use the sample covariance matrix given below by (4). The large
sample approximations will enable us to determine confidence bounds for pAL
as well as test for independence.

We consider a random sample (ei,xi) where Gi is taken from a distri-
bution on the circle and Xi is taken from a distribution on the line. Consider

the rerrzs.2ntation ;{i = (cos 0i , 8in Oi)l’ i=1...,n.
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Let C==< = cos 8, §=% Z sin9,, X == = X.. The sample
| . LT R n ooyl

covariance matrix for 'Z'i = (}Li . Xi)‘. i=1 ..., n, is given by

[}
/ L zcos e -T)° Lx(cose - TXstno,-8) | $E(cose-TuX-X) }
i a
L - -3 1 _&2 I _T v
= Z (cos 91 C)(sin8,-8) i S(sind -9 : ~Z(sin @ - 5)(X;~X) |
————————— ﬂl-———-—--—-——---———--n—-——--—-——-——-—-——---———.—--n-—-—----——-------——-'."
L s(cos 0, -T) (X, - X) L5 (sine, - SHX.-X) b Lsx - %2 /
n i i n i i | n i
]
s s : 5 \ {
/ 1 {11 : 12}
=1 %21 S22 | S23 = e domeee | (4)
___________ dll] ) 'S
s o I g ! 21 | 22!
31 32 ) 733 '
Then the sample angular-linear correlation AL, is the largest
solution to
XS
B 11 512
=0 (5)
/\
51 -X 8,5,

We wish to determine the asymptotic distribution of AL *

o— n —— — Py ]
Now Vi 8= = Z (& -®@rg) - VR -p)& )

n
Zl Z‘i , K= B,Z,i . The first term of ~Nn Sn is asymptotically
1=

normal according to the central limit theorem, and the last term goes to zero by
the weak law of large numbers. Consequently N1 (Sn ~ T} converges to a normal

{ atriln : . : - y 0 ] v
distribution with mean 0 . Set I-'n = (Tl, TZ’ ceey, '16) equal to (s11 :322‘3332512.5131522,

Wt s
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and g = (611:522,0'33912%3623) . By looking at the appropriate entries of S

and T, we see Nn (L,-2) = N0, B) where B = E(UUY-cg' and

. 2
U = [(cos 8 - £cos 8)®, (sin 8 - Esin o2, (%) - &),

{cos el - E cos 01) (sin 61 - Esin Bl), (cos Bl - Ecos el)(xl-le),
{sin Bl - Esin 91) (xl- Exl) ]

A
Writing (5) in terms of En and solving for 7\2 = rAi , we obtain
2 2
2 T1T6 + T2T5 - 2T4T5T6

AL = > (6)
T, (T, T, - T2)

Next we define an) = rAf where PA}E is defined by

ag(1) - r I
(6). Then letting ¢ = T T=g we have Nn (g(;r_,n) - pAL) - N(0,¢'Bg)

(c.f. Anderson (1958), p. 76) and by taking the square root transformation,

we have ~Nn (\fg(;l‘ln) - pAL) L N(o0, p;zL ¢' Bg). We thus obtain

Nn (ray = Ppr)
AL AL e N(o, 1)
2
ve(L )}
where v(T ) = v(T) I?_ = ¢'Bg ngz lz (c.f. C.R. Rao (1973),
[ p— n ferd

p 387). Based on the asymptotic normality, a 100{1-2)% confidence interval

is given by L

V(T )z veT )z

fa, = = n__a/fe P <+ - o) a/2
Va mt Tt T

hj=

where z, /2 is the upper % point of a standard normal distribution,
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AnE xample

The wind direction and ozone concentration were observed at a weather

station in Milwaukee at 4 day Intervals from April 18 to June 29, 1975, at 6 a.m.

Wind direction
in degrees 327,

Ozone

Concentration 28, 0,

Wind direction

in degrees 281,
Ozone
concentration 31.5

Wind direction

in degrees 11.5,
Qzone
Concentration 52.6

The correlation between X and o

.49 < PAL

90. 9,

85.2

88,2, 305, 344, 270, 66.8 20,5,

80.5 4,66, 45,9, 12.7, 72.5, 56.6

204, 86.4, 33s, 18,1, 56,7, 6,03

*

20.0, 72.5, 16,06, 45.9, 32.6, 56.6

84, 4.

55.

P

is TAp = - 72 with a 75% confidence bound

< .96 and $% bound .32 < Par, < 1. 00. The angle ¢ of

maximum r (cos(6-a),X) = TAlL is 740.




3, A Population Model for Line anc the Circle

We now consider (98,X) having the partly wrapped bivariate normal
distribution as described in Appendix 3. We let Y = (cos 6 sin 0)' . By

using the moments (A.12) and elementary trigonometric identities, the co-

variance matrix (1) becomes 2
a
SR ~op o) -3
/,/ Hl-e ) {1-e cos Zpi) -Hl-e He sin 2y, ~-e 5 PTIT, sin i)
/ o
[ o
Ez1 ~-Hl-e Ye sin Zpl Hi-e M)l+e cos Zp.l) e 7 pryT, COs 1y
2 2
L a
\ -e 2 PO, sin Hy e 2 PTyT, COS iy 0'2
The determinantal equation (2) reduces to
2 2 2
- 2 - '
A 1, 2N\ 1 12
--z-(l-e )0'2["'2‘;"‘(1-5 ) -e pG’l] =0.
This has roots \ = 0, + ——=——— . The maximumrootis p,, = ~—"—.
N'sinh urf 'vjsinh crlz

Consideration of p[X, cos(6- a)], where a is a constant, leads to

-N2 sin (pl-a) Py €
[ 2 —7

-0 -0

Ni-e 'y(l-e !

Iq
N v

p{X, cos (6-a)} =

cos 2(};1- a))

-LEL'

P
These are satisfied by o = H + % if p >0 and a = My = %H p < 0. We thus

For this to equal PAL » W€ need both cos Z(ul-a) = -1 and sin (p.l"a)- = -
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obtain max p [cos(8~a},X] = (p [cos(ﬂ-ui-%),}{]
a !

Ep [cos(ﬂ-ul+ %),X]

p{sin(o-p.l),}{] if p>o0

-p [sin (o-pl),x] if p<0

The maximum correlation is obtained by centering the 0 variable and then rotating

by an additional n/2 .

4. Some Previous Measures for Dependence of Angular Obsgervations

The existing literature deals exclusively with nonparametric sample
measures of dependence. Epp, Tukey, and Watson (197]) proposed a permu~
tation test for pairs of directional observations., Let ('&l , _SL[). Cae, Q(ﬂ, *{vn) be

a sample of pairs of unit vectors. Then they suggest that a suitable test

n n
statistic is L= Z &i Y. , or equivalently, Z cos 0, where 0, is the angle
j=p 71 =1 ‘ .

between ' and Y. Approximations for the permutation distribution are given for

both statistics.
Downs, Liebman, and McKay (1967), Downs (1974), and Stephens (1372)

devrelop methods of measuring the rotational correlation. Let Ep X)X L)

be a sample of pairs of unit vectors. It is desired to determine the extent to

which each X, is a constant rotation of X, That is, whether each = HX,

4

where H is an orthogorel matrix with determinant one. To do this, they find the
A

orthogonal matrix H which minimizes

n
- 5 - ' -
f = = (Y, - HX)' (¥, - HX )

or, equivalently, that H which maximizes

X' Y (7)

MS

r¥ = {H

i=1

where the minimum and maximum are taken over all orthogonal matrices H.

S ARG L A T S %12 e et e



Both Downs (1967) and Stephens (1973) give a method for obtaining H.
The first authors propose a rotational correlation coefficient which is

analogous to the usual sample correlation coefficient and is defined by

n‘ ~N A N
l‘;l(x,i-m H ¥, -X) | H
r= n - -~ A N A, A A L (8)
[iﬂl()s,-zs) mi-zs)fl (L~ -1

where ¥, and Y are unit vectors having the same direction as resultant

vectors of the sets {x*i} and {¥ i}’

n ”, , LY
respectively. Stephens proposes the measures r = X (Hxvi) {_,1 where H
i=1
n b ]
is the orthogonal matrix which ruximizes (7) and r, = = (H':zgi) X, where
i=l
H* is the orthogonal matrix with determinant one which maximizes (7).

Rothman (1971) adapts a test for independence based on the empirical
cumulative distribution function to a test of coordinate independence for a
sample on the torus. Mardia (1975) defines a correlation coefficient for
circular data based on the ranks of the observations. Rao and Puri (197))
propose a test for coordinate independence based on the number of cbservations

falling in half -circles. They derive the asymptotic distribution of the test

statistic and a computational form of this test in terms of the X and Y spacings .

5. Canonical Cbrrelétions Applied to Bivariate Circular Data.

Let 01 and 92 be two random variables which take values on the unit

circle. One may consider the representation

[ cos el\

Xl = Iiy L =

gt ! ~2 .
sin 91 | \ sin 62

Lo ()
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This provides a 1-i correspondence between each angle in the interval
{0,2 m) and the set of unit vectors . Based on the representation, the
objective of the cannonical correlation method is to find a and b  such
that a' ¥, and L'X, have maximum correlation,

Welet X' = (X, 352') and denote the covariance matrix of X by

/Var {cos 91) Cov (cos Bl, sin 91) i Covicos 01, Cos 92) Covi{cos 91, sin BZ) i
|
! |
Cov(sin®,,cos 8,} Var(sine,) I Cov(sin0,, cos8,}) Covi{sin8,, sin6,)
AN A A L . N S FANRRS VU
\ Cov(cos 92, cos Bl) Covicos 92, sinel) § Var{cos 62) Covicos 92, sin 92)
\. Cov(sin®,, cos 61) Cov(sin®,, sin6) i Cov({sin0,,cos0,) Var(sin®,)
5 : ) k
I S 3 \
= | wm——- d=-m-- {10)
S| E %22

Further, let a and b be constant vectors. We wish tofind a and D
which maximize the correlation between @' X, and b' X, . Generally the
maximizing combination is made unique by imposing the conditions that

2 %, & =1 and p'Z,, b =1 The maximum correlation is then given by the

largest root of the determinantal equation,

11 12
l = 0, (1)

! 21 -\ Z,,

,-)LE b

Since the correlation coefficient is scale invariant, we can instead

impose the restrictions on g, and b that @'a = b' b = L. Inthis case,



A and b can be represented by

; COS ah cos P
f i

2 =/ Yo L - : (12)
-~ sin u - sin P
Moreover, a'X, =cos (6,-¢), Db'X, =cos (0,~p), and the problem becomes
that of maximizing the correlation between cos {(0,-u) and cos(oz-ﬁ) over all
a,p ¢ [o, 27, Consequently, we define the angular canonical correlation between

Bl and 62 by

PA T  SUP p[cos(Gl-a), cos (92-43}]. (13)
a,Be [D, 2m)

This measure is obviously invariant under rotations of 01 and 82.

T.4:i% % the sample measures (7) and (8) discussed above, it is,
in general, necessary to rotate both coordinates in order to obtain the maximum
correlation. The necessity of the two rotations will be shown for the bivariate
wrapped normal model of Section 7. 2 and for the example of section 6. In
section 7.1, one rotation will be seen to be sufficient to obtain maximum
correlation for certain models with uniform marginals.

One important practical feature of using the methed of canonical correlation
to measure angular correlation is that it enables one to find the angular
correlation by using standard statistical programs for canonical correlations.

The angles o and 8 which give the maximum correlation can easily be found
from such programs by converting the coefficients for @ and b to unit vectors
and then finding the « and P which satisfy (i2).

We also consider the following heuristic justification for
the above method for determining angular correlation. Suppose one wishes to

find the functions f(el) and g(ez) which have the greatest correlation,



The Fourier expansions of f(Ol) and g(0 2) have the form

ob ol
#6)) - nz;o(a“ cos n+ b sinnd)), 9(0,) = rio {e, cos né, +d_ sinno,).

Ignoring second order and higher terms, we obtain
f(ﬁl) = a, + al cos 01 + bl sin 91 = a, + Al cos (gl_ 2) and
9(6,) =c  +c cos @, +d, sin 8, =c_ +A, cos (0, - p). Then
max p[f(0)),9(9,)] = max  pla  + A cos (0,-c), c_ + A, cos (8,~B)]

f, g a,. Al! o,y
CO’ Azﬂa

= max p [cos(0,~a), cos(8,-B}] = p,.
1 - 2 A
a, P
We note that our proposed measure of correlation can be considered as a
measure of rotational correlation. The following lemma shows that perfect

correlation cecurs if end onlv {f chne angle is a constant rotation of the cther

angle,
Lemma 5.1 If 61 and 62 are circular random variables whose distributions
have support [2. 21), then Pp = 1 = 02 = 91 + 6 (rod 2w), with probability

one , for some &.

e

Proof First assume that Pp = 1. Then tlere are some ao,f such that

plcos (8,-a), cos (62-13)] =1, and by the Cauchy - Schwartz inequali:y,

cos (Bz—f.':) =A cos (@l-a) + B with probability one for some constants A and B.
Since the support includes (91, 82) with Glan'd 92 both taking all values in {o, 2w},
the requirement that cos (92—;5) vary from -1to 4+l leadsto B =0, A =% L i
For A =1, cos (92-[3) = cos (Bl-a) and 92 -f = 91 - a {mod 2n), We take
&= p~a{mod 2n), For A =-1, 6 cos (92 - B) = -cos (el-a)' = £OS (61- a- 1),

and we take & =B - a - 7 (mod 2m).
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If 86, =6

2 1

12p, = max plcos (Bl- a), cos (Bz-p)] =

a,bB

+56 (mod 2 7) with probability one, then

max plcos(8,-a), cos(6,+8-p)]
a, B

Z p [cos 6j,cos 8,] =1,

Remark

We also note that a linear relationship between Bl and 62 does not
imply perfect correlation. In fact we car have 92 = 26I (mod 27) and Py = 0.
Let &, have the uniform distribution on [0, 2r) and 62 = 261 {mod 27). Then
it is easy to check that cov [co.s(ei- a), cos{zel-ﬁ)] =0 forall a,f and

hence, Pp = 0. However, independence clearly implies Pa * 0.

6. Inference from Sample Angular Correlations

In this section we outline a method o obtaining the large sample

distribution of the angular correlation coefficient, rp. This will grovide
an asymptotic method of finding confidence intervals for ra when thé under-
lying distribution i{s unknown. In the case where the family of underlying

distributions {s known, some statistic based on these distributions, such as the

maximum likelihood estimate of Pps should be used.

We . unsider a random sample '(ei’ ni), i =1,...,n, from a bivariate

circular distribution. Consider the representation

" cos Bi\' " COs ni.-? / Eig
rgi= ' . y ’yli:; ;, .\Z;iz !’ i-’!l!,,.’n'_
. sin © ©sin v o
.‘ i | L L
o n
Let 2. = 1; Z 2, be the sample mean vector. Then the sample covariance

matrix is

(14)



, %124 513 i
S P8 |
n 11 2! g s S 5
1 I = = [ ‘ © 1 S21 S22} 823 Sp4
= - Za - - L [ T - D e = - LI S
Sh T % i (2, b "%n) \g g S S < H S (15)
' L3 U e 5 3 7324 T33 T34
$ t
41 42} %43 544
We now define
Ln = 0515522, 533.544,512: 513, 514 523- 524, 534)
The determinantal equation (11} with Sij replacing EU becomes
4 ~ 2 _
Clh +C2h +C3 = 0 (16)

where Cl, C?_,C3can be viewed as functions of ln By expanding (11}
we obtain

(17)

"

2 2
Cy = (T)Ty= Tg') (T3T,- T1o)

C,

2 2 ,
T\T Tg *+ 2T\ TgToTyo ~ T T, To = 2T, T, T T o = 2T, T, T, 10,0

+

2 2
2T3T5T7Tq + 2.T4T5T6T8 - T2T4T6 + 2T2T6T7T10- '1’2'1‘3'1'7

The solution to (16) becomes A% = (- C, & J cZ-acC,y/c .

."\. . .
Thus, Ty = A, the largest root of {11), is given by



b

Set € =1011,955.953744:12:"13: 14, 723.%24.7 34}

i gt
f 3

ryo . -c,+ Nei-acc,
g = = AP .

I 2c, 1)

Using the same proof as in section 2 above, '\’T(Sn -Z) is
asymptotically normal with mean zero and the asymptotic covariance of the

(i, k)th entry and the (4, m)th entry given by

Eltzy-p Mz Mz w )z oo 0] - B[z X2y -n )] El(z)-e))e -u )]
where

2y =cosei, z,=sin@, 2, =cos n, 2z, =sinn, My = sz .

X
Then Nn (I -g)~ N(0,B)
where B is a 10 x 10 matrix with entries corresponding to those given for the

asymptotic distribution of 8. Then N'n (rA— pA) o N(0,¢' B ¢) where

_ 89(l)

2 = (19}
5T,

| T =0

~n a4

One can straightforwardly determine ¢ by using (17), (18), and (19), and thus

obtain an asymptotic variance. To find confidence bounds, we let v(Z)=4'B ¢ .
Y

Then - > N(0,1) where v(8}=wv(¥)|y o . The above method was
v2(S) -

illustrated in more detail in section 2 dealing with the correlation between

X and o,

Example

The wind direction at 6 a. m. and 12 noon were measured each day at

a weather station in Milwaukee for 21 consecutive days. We wish to determine

‘whether the two wind directions are correlated.
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Wind Direction in Degrees

6a.m. 356, 97,2, 211, 232, 343, 292, 157, 302, 335 302, 324,

¥

noon 119, 162, 221, 259, 270, 28.8, 97.2, 292, 39.6, 313, 94.2,

6a.m. 324, 340, 157, 238, 254, 146, 232, 122, 329

noon 47, 108, 221, 270, 119, 248, 270, 45, 23.4

The direction of the resultarts are 286° at 6 a.m, and 33° at noon, We
obtain r, = . 5673, with .23 < Pa < ,90 as a 95% confidence bound for Pa
The angles « and P for maximum correlation are « = 26° and 8 = 589 |
Suppose instead we used a single rotation procedure as suggested
by Downs et al. (1967). Then, if we fix @, (noon readings), the maximum
correlation between cos (ei-a) and cos 92 is . 4479 for &« = -12°, This is.

substantially smaller than rp-

7. Canonical Correlation Applied to Some Bivariate Models on the Torus

Populétion models of bivariate c¢ircular random variables having de-

84. 6,

45,

pendence are indispensible for studying the various measures of correlation. To

partially fill a noticeable void in the literature, we introduce the following models.

7.1 Models with Uniform Marginals

In this section we will discuss the application of canonical correlation

to models with uniform marginals. Two possible models are given, the second

more general than the preceding model.

Suppose (8, 6,) follows a bivariate circular distribution whose density

is given by

1 K cos(Gl-BZ'- po)

f(el,BZ) =3 —"—'——4“10('&7 e | , 0. £8,,8

1 < 2w,

2

(20}
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where « >0 and 0 < Mo < 2rn are the parameters. This model can be obtained
by finding the distribution on the circle which maximizes the entropy,
2n 2n

- % i f(8,, 8,) log f(0}, 8,) d8;d0,, subject to the conditions

Elcos(0,-0,) } = Acos n_, E[sin(el- 8,)] = Asiny,

where A and ko are preassigned constants (c. f. Kagan, et al. (1973), p. 409).
In this model, the marginal distributions of B] and 82 are both uniform while
the difference of the angles, 6,-6,, has a von Mises distribution.

For this model, we now consider the representation given by (9),

and let = be defined by (10). By straightforward integration, we obtain

|
! % 0 E%ﬁ-cosu() -89 sinw
0 1 | Asinn, B cos
Zz cesemmemcccccccmcecmce—a e domr e e e

A.(é"i)-cosu. A%Q-sinpoi El 0
)

—A(-Z',Q—-sinpo —A%Lcospog 0 'Zl
I

where A(x) = Il(K)/IO(K) and Ip(K) is the modified Bessel function of the

th

first kind and of p " order. The determinantal equation (11) be~omes

(A% - A(u-);’*)2 = 0.

Hence, the maximum correlation between 2'X, and B'X, subject to
a'a=b'b =1 isgivenby A(x). Using the representation (12}, the population

first canonical correlation is given by Py = Max plcos (81-0-). cos { 82- BY ) = A(x).

o, B
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see this, we note that muitiplication of X, by arotation matrix H corresponds to

“]8=

el Ot b Bl

We now determine the rotations o and p for which the maximum is
attained. First of all, Covlcos(6,~a), cos (6,~P) ] = A%L cos{ a=B-p_) ,
and Var [cos (Bl-a-)] = Var [cos (6,-B)] = % Thus, p[cos(9,=e), cos(0,-p)]
= A{x) cos(af-p-uo) which is maximized for cos(a-ﬁ-po) =] or a-ﬁ-p.o = 0 (moa 27).
Hence, o-P =p (mod 27) maximizes p. Although ¢, B are not unique mod 2w,
one can be chosen arbitrarily and then the other will be fixed. This shows,
in addition, that mzx p[cos(Bl-a), cos 02] = rzag p[cos(Gl—c.), cos((%z-—ﬁ)]
= max p[cos Bl’ cos (02-{3)] for this model. We’thus need only rotate one of
the two angles to find the maximum correlation.

Next, consider estimating A(x) using a random sample (_01 1’82 i),
I L

{=1,...,n, from this distribution. The maximum likelihood estimate of Alk)

N = = - o '
(c.f. Mardia, p. 122) is given by A(x) =R where R = \)CZ L g2 ,
= _ 1_ n - _L n ) 1 i
C=3 z cos (Bl,i 92’ 1) and S = - ifl sin (61,i 62’ ). Iliis easyto
%
- 1 n _ _ !
show that R = iz=1 cos (91, i 92, i X,) where x_ is the solution of

C= Rcos x S =R sin ;Zo . That is, to estimate A(x), we rotate 81-62 by

o s
;c'o , the maximum likelihood estimate of Ko and find
=% 1 I - = ,
C == X (cos(@ -0 -x ). The use of R fortesting for independence
no 1, i 2,1 "o

is discussed and tables given by Mardia (1972), page 136 and page 300.

The above method coincides exactly with that suggested by Stevens (1973) ;

n n j
who proposed the sample measure r, = max = (H—}ii)' X"’i = max % cos ei
H rotations izl H i=l
where Bi is the angle between Hﬂ}-(»i and ii when ~}£i’ Xd are unit vectors. To

e 31t g st e s s rim B0 ks S

subtracting a constant o from el,i where £y = (cos Gl,i sin €, .)*, and

*

n n
max z (H)gi)' Ll = max = cos(el'. - ez . = @), Differentiating f
H rotation i=l o i=l o1 o1 :;‘
1



' ey
and setting equal to zero gives the maximum at o = xo , SO ;11- r, = A(x) for

this model.
Next we consider a more general model, still having uniform marginals,

with density of the form

- L -0~
g(elgoz) - 2t h(gl 92 }LO)' Of_ov 02 < .?.TT,

where Ko is a parameter and h(.) is a circular density; {.e., hi{x) >z 0 and
2m
j hix)dx = 1. If we let hix) = (2% ID(K) ) : exp [k cosx], 0 € x< 27,
o
this model reduces to (20).
2w . 2w
Let A= | cosx hix)dx, B-= { sinx hix) dx, and define X by
o) o)

{9) and T by (10). The covariance matrix £ becomes

1

=)
™ frs

! .
‘ Y
/ -12- 0 | slAcosp-Bsing) = LZ{A sin i + B cos )
{ 0 3 | (A sinp + B cos i) (A cos i - B sinp)
------------------------- I-----—_--—-—-—————-n-ﬂ--ﬂﬂﬂ----—‘———-—ﬂ
! ’: L ;
e I :

|

|

|

I

1

i

A
2

o

And equation (11}, for the canonical correlations, reduces to ()\2 - (A2 + BZ) Y =0.

L)

Hence, the maximum correlation for @' X,, b'X, subjectto &' 2,3 =k %, b =L
or equivalently subject to 8' g =b'b =1 is Pp = AZ + E':2 Next represent

@ and b, by (12). Then

p(_g'xd, b'X,)= p[cos(Ol- a), Cos(Bz-—ﬁ)] = A cos(o=B-p) + B sin (a=-B=-u).

" Comparing this with \/Aa + B2 , we obtain tan (a-f-u) = -E' Again a single
rotation of either 81 or 82 with the other assuming an arbitrary value is sufficient
to obtain the maximum correlation.

Remark It seems that the single rotation definition is closely tied to -

uniform marginals.
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we obtain the covariance matrix

[\ e
(b cos(pl+p2)+c COS(P-I"I-'-Z))

[+
Zy2 = )
L o ) |
\ se (b sin(p1+p.2)+ c sin(pl-p.z))
\
" -3
| 5 d(l-e COS 24}
|
£
EZZ =;
Ly .02
zd e sin 2[—12

i

1

7.2 The Wrapped Bivariate Normal Distribution
Let (6,, 8,) be a random vector with the wrapped bivariate normal

| -

'ie

1
5 e

le’ 52, and I be defined by (9) and (10) respectively,
trigonometric moments (A.10) and some elementary trigonometric identities,

1
2

1

2

o

%a (l+e

2
1

+622)

2, 2
(UI+UZ)

1
2

2

distribution. (See the appendix for a description of this distribution. ) Let
By using the

sin Zp.l

cos Zpl)

(b sin(|xl+p2)-c sin(;xl-pz))

(-b cos( Hyti, )+ e cos(uy=u,))

_Ué?
de sin 2;12 |
-(}'2
d (l+e cos 2p2)
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-2}

-0’12 —pO' lu'z pu‘l(J' 2 -0‘22
where a = l-e , b=e -, c=e -1, d=1l-e . {21
After some algebra, the equation given by (1) reduces to
2 2
2 mop O =g T oy 2
Fle ") e ) -e {cosh po|o,-1)7] X
2, 2p s2n (o)
[ U-e N1-e )-e sinh poyr.] = 0
whose solutions are
. - cosh p¢16L1 .- | sinh ptrlcrzt
17 2 -z 2 - J 5 5
2 sinh-—-z—l— sinh —= sinh @ sinh o,

The correlation Rl corresponds to rotating 61 by Iy and 62 by Ko that is

rotating both variables until they are centered at their means. The correlation

. I A ,
xz corresponds to rotating 91 by 61 by byt and 02 by byt it p is
positive and to rotating el by y _125 and 02 by By ™ -;-'- if p is negative,

Thus, N\, = p[cos(el- i), cos (8

|
7\2 = p[cos(@l-pl-—l—gi— -g'), cos(ez-pz-—\«g-'- % )1,

2-';12)] and, if p#0,

We now give a proposition concerning these correlations and discuss

some of their properties.

Proposition 7.1

then A\, > \

If oy =0, 27 M

if p%*l;hzzhl ifp=lor if p=0.
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o0f Assume p # 0, 2
2 ) L]
xf‘ {cosh ptrz-l)2 sinh2 0,2 {cosh ptrz-l)2 (eU -e \
)
e — = O §
xz sinh2 ptr2 4 o2 l"COShZ ptrz - c_r_z e? '
2 4 sinh”™ == ] - ——
2 \62 - 2 .
[, 22 2 2
cosh purz-l (eztr —l) cosh pc'z-l (ezm + 2¢” +l)
= 2 2 v = 2 2 z -
cosh po” +1 ‘/ecr —l) cosh po®+ 1 (920' —2e% 4

(cosh ptrz-l) {(cosh trz+l) cosh o2 cosh p0'2-l + (cosh ptrz-cosh o)

(cosh p0"2+1) {cosh 0'2- 1) cosh r? cosh pﬂ‘z-l + {(cosh o’ -cosh po’zl
2
2 2 M
If p <1, then cosh po” < cosh ¢° and 5 < 1y if p=1,
N
2
2 2 M
cosh po”™ = cosh ¢ and—zzl, If p =0, ?xlz)\z:O.
N
2

Proposition 7.1 states that if the variances are equal for both marginal

distributions, then Py = )LZ . Moreover, a numerical study indicates that

kz > ?\1 for all p when ) and o, are relatively close in value, and 7\1 > .\2

when one variance is very much larger than the other. In other words, in the

T e R T e R

usual cases where the marginal variances not too different,

Pp = ?\2 = pfcos( 91— T -g-), cos(ez-pz-%}] = p[sin(Bl-pl), si.nlez-p.z) 1.

a8 Pt by i

It can be shown that A, £1 and )\2 < 1 with 7\1 = A, =1 if and
onlyif p =1 and ﬂ‘1 = 0“2 . Thus, cos (01- a) and cos (62- B} can be perfectly
correlated only if the underlying bivariate normal distribution is perfectly correlated
ard has equal variances. In this case, 8) =06, +8& for some 5, which agrees

with an earlier lemma,

s 18 e i i e
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For general o« and B, the correlation between COS{Ol-u) and

cos(92~ﬂ) is given by

- -lz-(alz—%-u‘zz)
e [b cos( uy=atu,-B) + ¢ coslp =a=(u,-B))]
p[cos(Bl—a),COS(ez'ﬁ)] = p
/-l -0

Voallme ! cos 2lumu)) dil-e  ° cos 2(u,- B))

where a,b,c,d are defined by (2]). Consequently, Pa depends on both ¢ and

B, and the two rotations are necessary to maximize the correlation.
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Appendix
A.l. Wrapping on the Torus

A method of forming a circular distribution from a distribution on the
line is to wrap the distribution on the unit circle. That
is, if X isa random variable with ¢, d.f. Fi(x) and c.{. d¢(t), then a circula:
variable is determined from 0 = X (mod 2 7). With this transformation, 6 has
c.d. f.

ap

Fgle) = 2 (F(0+ 2rk) - F(2nk), 0 <0< 2n
k==

and characteristic function d:p = §p) (c.f. Mardia (1972), p. 53}
Analogously, one can torim a bivariate circular distribution by wrapping
a bivariate distribution, defined on the plane, on the unit torus, Let (Xl, Xz)

be a bivariate random vector from a distribution having c.d. f. Flg &) density

f(z,l,lgz), and characteristic function ¢(t1,t2). Let

B1 = Xl(mod 2n) , 02 = XZ(mod 2m) . {(A. 1)
Then E)1 and 62 are random variables on the circle, and (01, BZ) is a random

vector on the torus, Thec.d.f. of (Bl, 62) is

o0 o
F_Q_, (8,, 92);1,:00 k:Em [F (8, + 2mj, 8, +2wk)-F(2nj, 62+21rk)-l-‘(61+21'rj, 2nk)+F(27j, 2wk} ],

0 < Bl, 92 < 2n; and the density is given by
[ «) oD
f_g_(el’ez’ = % £ f (042m), 0,42vk), 0.5 8.0, < 27,

TR Bt d gt im e I8 ok e et B L gk - ey e e T R
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Lemma Al Thec.f. of(Ol,Oz) is d)p q° &(p, q) where p and q are

integers.
Proof
ip01+tq92 2w 27 ip01+iq02
(bp,q = Ble ) = Jo -_’O e f_g (ﬂl' 02) deldez
_ 12"'2“ ipf.4+iqoO ] a
= e s s £(0,42nj, 0,+27k) dé, do
o o - ] + 72 172
j=—00 k=z=on
- - JZ"JZ" PO+ 199, £(0,+27j, 0. +27k) d6, 40
= ¥ % e +2rj, 0,+2m ol
j:—m k==00 0 o) 1 2 1 2
%0 ©  2mj+l) 2n(k+l) 1pO+igl,
= = z e f(Ol,OZ)dﬁldez

j==w0 K== 27uj 2k

0 o ipel+iq92
= de, de, = "
l ] e f(6), 8,) 46, d6, = ¢(p, q)
Theorem A2.

¢p q determined at integer values of p and g is sufficient to determine
L]

the distribution of § .

Proef

Define the family of functions

o o0 P! oy . .
u(Em=—= I I 4 o Phtial mipban oo ooy g
P 4t p==00 (Jz-00 P, q
If ¢p, q =1, (A.2) reduces to
o o0 . : .
L = = JlelHlal -tpe-tan | ooy iy o< p e (A. 2)
41 p=-00 gz==00

TR I
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0

where Cinp) = '%; z Pl Pl e'ip“ is tha2 p.d.f. of the wrapped Cauchy
p:—w

2n 2m ipl +ige,,

distribution (or is the Poisson karnel). Substituting | [ e “dF(8), 6,)=
o "o

¢p, q into (A. 2), vre obtain

) ) o0 '211 2T !‘(pe +qe ) . " _
a(Em === = oz [T T TV Zapo e, el PIH algmipt-ian

4n“  p=-w0 q=-®»'0 ‘o

o -ipl€-6))-ia(n-0,
—_ % b3 P‘ p‘ +l QI . 1 2} dp(el’

- 8)
o "o (41r2 p==%0 Qg==% ?
2m 2w
= [ Cle-opp) Cliroyie) dR(O), 0) B

The second equality follows by the dominated convergence theorem, and the
last equality holds by applying (A 3).

Using (A, 4) and applyirg Fubini's Theorem, we obtain

M 2 9 %2 2n 2%

Um [ | up(ﬁ,ﬂ)dédn=lim£ J jo J§ C(£-0:p)C(n-8,,;0) AF(8,, ©,) dE dn

p*l 0 o p—l o

2n 27 1 @y (A.5)

= lm | J J Clé-8pp)dE | Cim6,p)dn dF(0,6,) .
p~l ©o "o o (o}

A lemma concerning the Poisson kernel {c.f. Feller {1971), p.627) states that

a
{3 = . : .
lim [l d = T g (o) | (A 6)

The dominated convergence theorem and (A. 5) give

e AR G "

e TN X et M E T

J Y Y

e
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2m 2w

4 ,%
lim f “u (E,n) dEdn = | (0) I, ., (8,)dF(8,,6,)
P-*l'!a 0 P "o Jo %o, o) ]771 Ho, )] 2 %2
= P(a-l, az).

Hence, F(al, az) can be obtained by a limiting process from the up(g, n)

which depend only on ¢ .
P9

A. 2. The Wrapped Bivariate Normal Digtribution

Let (X,X)) be bivariate normal with mean vecter 11 and covariance

matrix ¥ where

0’
w2 .’ “1\ (A.7)

a—— e
lE
1§
e
=
o

P92

Define § by (A.1) so, according to Lemma A 1, the characteristic function of

8 is
b o= exp (- (p?cl+ 2papoe, + %))+ ilpp +auy)) (A. 8)
P, q 1'2 " * 2 1 2 i )
Since
ip91+ ig 92
‘bp, q°~ E(e ) = E co_s(pel+ qez) +1E sm(pel+q 92) (A. 9)
for any rando'm vector § , equating (A.9) and (A. 8), we obtain
2 2 2
Ecos (p8)+98,) = cos(pp +au,) exp{- -(p o)+ 2Pg pog, + q 0, )}
(A, 10)

2 2

1 2
E sin (p0)+q0,) = sin(pu,+au,) exp {-5(p"0 '+ .2pq po0, + g “z )}



Prcof Thec.f. is #(p,t) = E(e

A.3 A Model for (6,X})

One model for (8, X) can be formed from a bivariate normal distribution,
Let (Yl’ Yz) have mean vector u and covariance matrix & defined by (A.7).

let 6 = Yl( mod 27}, X = YZ' Then (8, X) has a distribution with the desired

support and having characteristic function

2 2 2

1 2 .
d:(_p,t) = expi~5(p"o +2ptpro, +q 0, ) +1i(p ul+tu2)} . (A.11)

The proofs that this is the desired c.f. and that it is necessary to determine
$(p, t} only for integer p and real t are entirely analogous to those presented
in section A.l, The moments E(X cos 8) and KX sin 8} c¢an be easily

determined from the c. f.

Lemma A3 If E|X| exists and is finite, then

1‘1’155-1)- = - E(X sin 0) + { E(X cos ).

t =0
p=1l

ip0 + itX ). Then

2 o0
3 3 =T ipo + itx
3t - Bt f e'P dF(8, x)

_ 8 _ipo +itx
=) J 5 e dF( 8, %)
o ‘-
2m o0 '
= [ [ ix !PT gpe ),
o - '

The interchange of differentiation and integration is justified by the fact

E | X1 < o and the dominated convergyence theorem.
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If (0, X) has c.f. given by (A. 1),
o
2

94(p, t) = e f{-p crltrz COS 1ty = K, sin pl) + i(pz cos pl-pvlﬂ'z sin pl)] .

Hence, the moments are given by :

it
2
E(XcosB)=¢e (}1.2 cos jy - PO, sin pl)
2
I ~ (A. 12)
E(X sin8) = e 2 (“2 sin p1+ Py, COS pl)

We note that the marginals of this distribution are the wrapped normal
with parameters 1y and crf and the normal distribution with parameters p,

and crg for @ and X respectively, This can be seen by considering t = 0

and p = 0 inthe c.f. ¢(p,t).
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