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STQCHASTIC PROCESS AbPROXIMATION FOR RECURSIVE
ESTIMATION WITH GUARANTEED BOUND
ON THE ERROR COVARIANCE
Giuseppe Menga

Ames Research Center
ABSTRACT

A new approach is proposed for the design of approximate, fixed-order,
discrete time realizations of stochastic processes from the output covariance
#(i,j) over a finite time interval. No restrictive assumptions &re imposed
on the process; it can be nonstationary and lead to a high dimension realiza-
tion, Classes of fixed-order models are defined, having the joint covariance
matrix of the combined vector of the outputs in the interval of definition
greater or equal than the process covariance (the difference matrix is non-
negative definite). The design is achieved by minimizing, in one of those
classes, a measu~e of the approximation between the model and the process
evaluated by the trace of the difference of the respective covariance matrices.
The models belonging to these classes have the notable property that, under
the same measurement system and estimator structure, the output estimation .
error covariance matrix computed on the model is an upper bound of the corre-
sponding covariance on the real process.

"An application of the approach is illustrated by the modeling of readom
meteorelogical wind profiles from the statistical analysis of historical data.

I, INTRODUCTION

Given an m-vector-valued discrete-time process y(+) over a finite
interval [1,N], with a positive definite covariance R(i,j), we consider the
problem of computing a markovian representation, with output ym(i), which
statistically approximates y(i) in the interval 1 i £ N of the form

A(i) » x(i) + B(i) » w(i) ]

C(i) -« x(i) + D(i) - w(i)

x(i + 1) 1.1

It

ym(i)

where the dimensions of x(i), w(i), A(i), B(i), C(i), D(i)! are nxl, pxi,
nxm, nxp, mxm, mxp, respectively, and w(i) is a p-vector-valued independent

IThe matrices D(1) can also be assumed to equal zero.
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noise. The dimension p of w(+) and the order n of the model are chosen

by the designer, noting that the order of the model may be lower than the

exact minimal realization of the process. Neither stationarity nor the
hypothesis on the order of the minimal realization of the process is
postulated.

The model is used to design and evaluate linear recursive estimators of
the process cutput in the interval 1 £ i £ N - that is, the process output
will be observed through a linear measurement system with independent additive
noise, The measurement system and, in turn, the filter characteristics are
not actually specified. However, for the same arbitrary measurement system
and estimator, the output estimation error covariance matrix? computed on the
model from measurements in the interval 1, . . . , i (1 $1i $N) is required
to be greater than or equal to the equivalent estimation covariance on the
real process, that is, the difference matrix is nonnegative. The models with
this property are indicated here as "statistically guaranteed models'' of the
process.

General solutions of the exact or partial realization (specifically
minimal realization) problems exist for stationary processes with a lumped
representation (refs. 1-5). In contrast, dealing with nonstationary processes,
the literature commonly assumes that an analytic expression of the output
covariance is available in a separable form (refs. 6-9). This form also
implies a lumped realization.

Therefore, if only the numerical values of the covariance are given, the
computation of a separable form, when it exists, is preliminarily required.
This approach, though theoretically viable, does not work out the practical
difficulties encountered when the resulting realization is of high dimension
or of changing structure in time. Dealing with an experimental output covari-
ance which does not satisfy precise analytical assumptions, it may be necessary
to adopt a lower-order approximation in several practical applications. How-
ever it seems that no3d general results are available to the approximate
realization of an arbitrary process with a constrained-order model.

The approximation technique proposed here is to minimize in a class of
"guaranteed models" of fixed order n a measure of the approximation between
model and process evaluated by the trace of the difference between the respec-
tive covariance matrices (a partial minimization scheme is proposed in the
paper). It will be shown that guaranteed models are characterized by having
an output covariance matrix greater than or equal te the process covariance.
This property offers, among other advantages, the option to use the relatively
simple performance measure that we have proposed. It is evident that computa-
tional limitations exist if N is large and no restrictive assumptions are
taken for the process. It is shown, however, that the general approach can be

2The joint covariance matrix of the combined vector of filtering and
prediction output errors from i to N.

3For an example of approximation of statjonary processes by ARMA models,
see reference 10. ' '

YA similar property in a léss general approximation approach was already
mentioned in reference 11.
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applied with simplifications to stationary processes with finite dimension
realization even if N is large.

The probabilistic model of vertical profile of atmospheric wind velocity
from statistics of historical records of wind measurements is a case of non-
stationary, high-order realization® process and it is presented here as an
example of the method. The model has been used in reference 12 to estimate
the onboard wind shear estimation from an airplane in descent flight,

II. GUARANTEED COVARIANCE ESTIMATION

Considrr the estimation at instant i (L £ i £ N), with a linear
estimator, of the present and future portion of the process y(j) (j =1, . . +»
N} from the present and past measurements operated on the process output through
a2 linear measurement system with additive independent noise. Referring to
past portions of the process output, define the combined vector

f(i) = [y'@, y'a -1, ...,y @] ¢ (2.1)

and the joint covariance matrix
R(i,1), . . ., R(1,1)

P(i) = . ' .

et
A
[
1A
=

(2.2)
ALi), « . ., R(LD)

with a similar notation defined for the model j‘M(i) and Py{i). The present
and future portion of the process is indicated as

G4 T @23

where €, is a matrix (N - i + 1Jm x Nm of the form
€, = [IN - i + 1)mi0] , (2.4)

and its estimate, by a linear estimator %A, is |

€t = K+ 2 | (2.5)

- The vector Z of dimension m = i is the present anu past noisy measurement of

%(N)

Z = C”#(N) + ¥ - (2.6)

5The high dimensionality of the realization is with respect to the total
number of samples N of the process. This makes impractical a recursive
estimation,

5The prime t+ indicates the transpose.
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The matrix ¢y[im x Nm] of full rank i - m is of the form

where T of dimension im x im accounts for a possible dynamical structure
of the measurement system. The vector V is a (i - m)-dimensional zero mean
independent measurement noise of covariance R. The output estimation error
covariance of the vectors (2.3), indicated by P(N,i), resulting from the
estimator X of Eq. (2.5) and the measurement system of Egs. (2.6-2.7} is

PIN,A) = (B2 - K * @) » PON) » (€3 - K » €)' + Ko R K" (2.5
With the above notations, the following theorem is proven.

Theorem 1: Given two processes of the form of (2.1) having covariance
matrices (2.2) of values Pj(N) and Pp{N), respectively, and for the same
arbitrary measurement system and estimator, as given in Eqs. (2.5) and (2.6),
a necessary and sufficient condition for the respective estimation covariance
matrices (2.8) to satisfy

Py(N,i) - Po(N,i) 2 0 1sSisN (2.9)
is
Py(N) -~ Po(N) 2 0 (2.10)

Proof: Sufficient condition is immediate consequence of the quadratic
form (2.11)

By(N,i) - Po(N,i) = A(N,i) = (€5 - K+ €1) » AN + (& -K + €)' (2.11)
where N

A(N)

P1(N) - Pa(N)

To prove the necessity part, expression (2.11) is rewritten as

¢é2

1

I

AN,i) = (I} <K - « AN} ¢ (E3IEL) - (2.12).

_ 1
of A(N) and it is rscalled that the rows of the matrix A are arbitrary.

span the full (N « m)-dimension space

Then it is observed that the rows of

As a result of theorem 2 it follows that any model realizatien (1.1)
having output covariance matrix Py(N) greater than or equal to the process
covariance P(N) generates, for the same arbitrary linear estimator and linear
measurement system with additive independent noise, an upper bound of theé
prgeesi estimation error covariance (Py(N,i) = P(N,i) 2z 0} in the interval
151N,




When the measurement characteristics become available, the Kalman filter
computed for the best” model in a class with the previous properties is a rea-
sonable choice for the process output estimation. Such a filter guarantees.
the minimum (with reference to the chosen model) upper bound of the covariance
of the estimation error, and it also prevents the divergence of the estimates,
It is well known that this phenomenon may occur when, because of model approxi-
mations, the calculated estimation covariance becomes unrealistically small
with respect to the real one on the process (ref. 14),

The whole optimum filter, with reference to the entire model class, also
could be sought. However this problem requires the computaticn of the limit of
a sequence of models M; in the class having covariance

P(N) = PMi(N) £.. .5 PMO(N)

and this has not been considered here.
I1I. GUARANTEED MODEL REALIZATION

The computation of exact or part1a1 realizations on the form of (1.1)
from the output covariance &(i,j) is essentlally equivalent to thz algebraic
problem to find a decomposition for the covariance matrix

P(N) = T(N) « A(N) - T'(N) (3.1)

where P(N) has been defined in (2.2},
S(N-1) "I

A(N) = ~ (3.2)
‘§(0)J

is a symmetrical block diagonal matrix with §(i) g ¢ of dimension wmxm and
T(N) is a nonsingular causal transformation. If T(N)} is also casually
invertible then it is called the innovation representation of y(+) and the
independent process with covariance A the innovation process (ref. 15).
Recently, Akaike (refs. 16 and 17) gives of the realization problem an inter-
pretation in terms of canonieal regression analysis. His basic idea is adopted
here and two regression schemes, the second being the extension of the first,
are introduced to generate fixed-order realizations whose output covariance is
greater than or equal to the process covariance P({N) (2.2). The starting
point of the procedure is the observation that if yy(i) is the output at
instant i1 of a finite dimension model, then it can be expressed by

7The best model measured by the trace . (Py(N) - P(N}).
8Strictly inequality because of our assumptlon that P(N) positive definite.
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Yy - 1)

yy(3) = Ki-1 - . +u,  (i-1) (3.3)

yM(i . - I')

where K(i - 1) is of dimension m x r » m and r is a finite integer. The
residual vector (1 - 1), uncorrelated with the outputs prior to i - r,
may be in general correlated with (yy (i- 1), e e y (1 -r))'. With
respect to the notation proposed in the previcus sectlon (2.2) indicate with
P(i) and PM(1) the portions of covariance matrices of process and ﬂdel in the
intervat i, i -1, , ., ., 1 and with A(i} the difference mat:

PM(i) - P(i) = A(1) (3.4)

Introduce for the process covariance the partition

1103 - l)f Pia(i - 1)
PE) =|~ =~ ~- e e (3.5)
Pla(i - 1), P - 1)
where Py;(i - 1) =R(i,i) and Pyo(i ~ 1) = (R4, i - 1), . . . ,R(i,1)) are
of dimension mxmand mx (i - 1) » m. Choese the model order n = m » 7 znd
impose that the first s samples (yy(i - 1), . . . , yy(i -~ s)) correlate
with the residual. From expression %3.5) and related arguments, the model
output covariance Pp(i) can be decomposed in
I, VK@ - 1) SG- 1) IRG - D [Ind kG - D) '
Pt e e | e T 5.0
- 0 In@iE - 1) R'(1 - 1)| PM(i - 1j} 10 | Ind - 1)

where K(i - 1) and R(i - 1) are both matrices of dimension m x (1-1) »mand
are constrained, for all i: m(i - 1} 2 n to the form

KG - 1) = [KE - 1) 0] }
R(1 - 1) = [R@E - 1) 0].

(3.7)

The matrix K(i - 1)[m x n] has already been defined in Eq. (3.3), the matrix
R(i - 1)[m x ms], ms $ n accounts for the nonzero correlation terms of the
residual vector (1 - 1) in (3.3) with (yh(i - 1), . . . , y{i - 7))" and.
S(f - 1)[m x m] is tﬁe covariance of the re51gual Upes(i - 1).

9Constraining the model order to be a multiple of the number of outputs is
imposed for notation simplicity, but it is not strictly necessary.



The model covariance Py{N) is therefore completely defined by a sequence
of decompositions (3.6) or, in alternate form, with the introduction of a new
sequence of covariance matrices V(i)[mei x mei], by

1m+x(i-1)-§'(i-1)-§-1(1-1)}x(1-1)' 5(1-1): 0

R'(i-1)+871(i-1) :Im(i-l) 0 V@E-1)
'

Ip+K(i-1)+R' (@-1)+58-1G-1 k(-1
|

i
Rt (i-1)+8"1(i-1) {Im(i-1) (3.8)
and

VE - 1) =P, -1) - [R « 571« ﬁ](i_l)

where the matrices ﬁM(i - 1), ﬁ(i - 1), §(i - 1) are derived from {3.6) with
the following algorithm

§(i-1) :ﬁ(i-l) I l-K(i-1) Iyl-K(i-1)7

|
R (i-1)| Py(i-1) 0 |TIp(i-1) 0 |I,(i-1)

starfing from

ﬁM(N) = V(N) = Py(N), and [R' » §~1 0.

L] ﬁ =
Yoy
Note also that the matrices R(i) and Py(i) have structure
R(i) = [ﬁti)[m x ms]:O] ‘
{(3.10)

Qi) [m « (s-1) xm - (s-1)1l0
Py(i) = Py(i) - | — =~ —— — — — ———_

for certain matrices ﬁti) and Q(i).
With the above assumptions the following theorem is proven.
Theorem 2: The model representation with output covariance
PM(N) = T(N} = A(N) » T'(N) : {3.11)

where A(N) has been defined in (3.2) with §(i) given from (3.9) and the
transformation T(N)[N-m x Nem] given by



, m
TON) = [T o =d oo f - o ~
with t(i) of the form |
Ip + K(1) « R'(iy - §“1(i);K(i)
t(i) 2 — = = — = — i — - -
R'(1) » §71(4) [Ip * i
guarantees an upper bound of the process output covariance matrix:

Py(N) - P(N) 2 0
if the matrices S{i) defined in (3.6) are chosen as

S(0) = 4g(0) + P(1)
. 8(1) = Ag(d) + P1n(d) + [R() + K(i) - Py(i) - P12(i}] A~ (d)
¢ [R() + K(i) * Py(i) - P1p(i)]' - K(i) * R'(d)
- R(3) * K'(i) - K(i) « Py(i) * K'(i) v i, i=1, ..., Nl
(3.12)

for arbitrary symmetrical matrices AS(i)[m x m] satisfying

Asfi) >0, i=0...,N-2, AS(N - 1) 2 0.

Proof: Observe first that the representation (3.11) is nothing but the
recursive inclusions of expressions (3.8) and therefore equivalent and deduc-
able from (3.%). Then decompose Py(N) and P(N) according to (3.5) and (3.6)
(i = N). The result yields

[S+K-R'fR-K'+KPMK'](N_1):[R+K-PM](N_1) P11(N—1)!P12(N;i)
----- —— -~—~—-ﬂ-———-=Am)zO
[R¥K-Pyy] by 1 | Py(N-1) P12 (N-1)| P(N-1) 315)
Inequality (3.13) is satisfied if
Py(N - 1) = PON - 1) = A(N - 1) > 0 (3.14)

and

' .
| S+K=R'+R-K'+K-Py*K'-P1 1= [R4K-Py=P15] 4~ 1+ [ReK-Py-P1p] |\ ) = Ag(N-1) 2 0
(3.15)

Proceeding backward, inequality (3.14} is successively partitioned with use of
(3.6) and replaced by conditions of the form of (3.15) (the 2 is replaced by
>). This proves the theorem.
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It remains to show that (3.11) is also a causual representation of ypg(i)
for 1<i<N and it can be reduced to a model representation of the form
(1.1). This is easily accomplished, defining an m-valued-vector process
(x*{i +5s), x"(i1 +s -1}, . . ., x'(1))' with covariance matrix

T(i +s) » A(L +s) « T'(i + 5)
st +s-1)] ... AE+s) ... [t +s- 1] =V +s).

Then, from recursion (3.9) and (3.10), it is observed that the lowest i + m
portion of x(*) is statistically equivalent to the corresponding ypm(*)
process from 1 to i.19 A proper restriction of x(+) with a formal shift of
the index i of s steps on time is therefore the required realization. Note
also that the remaining components x(j), j=1+1, ..., i+ s are the
predictors of the future yy(*) from observations until i according to the
theory developed by Akaike (ref. 17).

The model realization is finally defined by the following matrices.
Thése are deducible from Eqs. (3.8) and (3.9).

- 11
K(i + a)
ALY =|-—-——— (3.16)
1\
10
I, + K+ Rr » §-1
B(i)[n xm] =}~-~- — = — ——=- (3.17)
Up(ﬁ' * g-lj i+a
C{H) = (035 + « - 05 I, 0) (3.18)
D(i) = Low(R' » §~1) (3.19)
i+a
cov{w(i)) = S + a) ' (3.20)
_ ﬁM.‘ii'-évl-ﬁEo
cov(xy) ={— ——~=—- — -, ~ (3.21)

0 o dl1+a

101¢ s = r, a noise vector has to be added to x(+). This originates
strictly a nonproper model realization (see eq. (3.19)). _

111n the case that s » m< n - m zeroc matrices complete K{i) for the
first values of 1,



where Up(+) and Low(+) are respectively operators which isolate the first

n - m and following m rows of the matrix (+). The dimension p of the
input process w(i) results here in p = m. The index a appearing in
(3.16)-(3,21) is a=1r -1 if s *m=n, and a=s if s *m <n - m; in
this case, the matrices D(i) are void,

Because of the generality of the assumptions, structures of the form of
(3.6) can represent with a finite value of r (and s) arbitrary linear lumped
systems. However they do not encompass the whole class of the finite realiza-
tions, and in fact, fovr a given model covariance the result may not be the
minimal realizetion. For stationary processes, analysis of this point has been
at the basis of the Ho's algorithm (ref. 1). For nonstationary processes, the
problem received a theoretical interpretation from canonical regression
analysis (ref. 17). Justified from the results of canonical regression analy-
sis, an extension of our previous result is given next.

The approach requires in this case to fix the model order n (dimension
of the space spanned by the projection of future outputs on the past outputs)
and the number r (m * r > n) of output samples having independent proje.-ion.
Then at each instant i with a nonsingular transformation an n-dimensional
basis, spanning the projection space is isolated from the whole m * r vector
of outputs (y&(i - 1), .. ., yy(i - r))'. Indicate this transformation with

(1) La() | o
L) s{-m =t - = L (3.22)

Ly(*})[me x> (me+r-n)], La(C)[mer xn].
The model covariance assumnes the following structure

Py(#) = L) - H(1) » L'(1) (3.23)
with

H(i)=-'--'1-——-T————— ' - (3.24)
0 | Hip(i) Pyl - 7)
Hyp()[m s v xmer], Hp()nx (1 -1)+m
The form (structure) of H(+) is explained from the fact that at every instant
i only n independent cumponents of the whole m ¢« r output samples space

correlate with the past.

Combining the transformation (3.23) with the previous decomposition (3.6)
results in

10



o :K(i-l) S(i-1) : R(i-1) In tK(i-l)

Py(i) = L) * HE) * L) =] —g-~~]:]=-— == - =] ]- = ==~
¢ jLa-1) LR G- 1 HG-D 0 | L(i-1)

(3.25)

The recursivity of (3.25) imposes the following constraint (3.26) (this is
derived by substituting (3.22) and (3.24} in (3.25) and developing the products)

[ - - Laaf, _
(kK + K+ Hi) » |- 1%, » Hy
22|! _ _
———————— LT T Tt k@ e (28
(Ly1itya) = Hyy o« o= Lz » Hy,
_ 22 i1

with matrices of dimensions

K()mxm-+z], RCImxm- )

. I .
Lll(]- - l) | le(l - 1)
i - 1)5L2(i Ny =fj— ———4 — - ——

R - 1) = K¢ - 1K - 1)
Lyp()[(m 7 -m) x (m=+r -mn)], Lya(«){(m « v - m) % n],
Lz;(*)[mx (m + r - n)], Lz2(*)[m x n],

Ki(¢)mx (m+r-m), Kp(+)[m x n].

The condition (3.26) is equivalent {up to a nonessential arbitrary
trancformation)

Ko(i - 1)
La@d) = 7= = =7 (3.27)
Lys(i - 1)
R+ K- Hy Lay Kp(i - 1)
PR R A = === e hppd - 1) (3.28)
(L11EL123 « Hyy L2z - L1a(i - 1)



hi2(i - 1)[n % n]
and l ,
H1a(i) = [ha( - 1)1Hp0 - D] (3.29)
With the fornal substitutions of

K+ Py« K|  with K-H-K'l,
1 1

and
, IL!I

with (”R- + R- . Hll) . | Ka * H12 (3.30)
La i

-

R+K-* Py

i
i

theorem 2 is extended to realizations of the form of (3.25). From the appendix,

where a recursion similar to (3.8) is derived for the general case, it appears

that the matrices t(i) in (3.11) are now '

. N
Ip #+ K« R' « §°lig o -1
t) sl m = e (3.31)

From the appendix, also, the model matrices can be computed and they result in

A1) = Ip (3.32)
B(i) [n><(m(r+1)-n)] = f(- Vlz'VmIn) (LI'L2) 1] P
r Im+K Rteg-1 X Im(r+1)-n

i e —

!
I
v f e —— | — et o e | ¢} e — e - -
' ~ 0= | = -1
(Ly 1: 12)°R"87L L)y Lo ViatVii
C(i) = lpo(i + 1 - 1) (3.34)

IIm(r-l- 1) -1n
D(ijfm x m{r + 1) - 0 = (LpyiLpy) * |R* » §-11—— — ———
i B

1+r 1
(3.35)

12



§i+r-1) | 0
coviw(i)) =j~------—--—-—-——— (3.36)

cov(x(l)) = [Féz A U B U | ' (3.37j

IV. PROCESS APPROXIMATION

_ Defined by the order n, the number m » s of the columns of the matrices
R(*) or the number of independent output samples r, classes of "guaranteed
models' are spanned by the choice of matrices K(+), R(¢), and Jg(+) 2z 0. The
proof of theorem 2 offers a constructive sequential algorithm to generate model
realizations. Models in these classes are general enough to encompass finite
realizations or, in the second case, minimal realizations to every linear casual
lumped process. Since we are interested here in the problem of the approximate
realization, a measure of the approximation between models in the class and the
process is defined by i

J = trace(Pu(N) - F(N)) {4.1)

The function J is, only for models in the class, an upper bound of the linear
operator's norm from the Euclidean space (N * m) into itself, and is zero when
Py(N) = P(N)

J 2 |PM(N) - p(x)H = A, (P (N) - P(N)) (4.2)

max

where JApax(*) is the maximum eigenvalue of the argument matrix., With the use
of the partitions (3.5), (3.6) and of the relation (3.14), the function J is
given in the form

Nl o
J = trace'[As(i)+[(R+K-P“-PIZJ-A'I-(R+K-P“-P12)']| +AS(0)] (4.3)
s h i
i=1
where Py(i) is generated from the recursion relationship given by (3.6) and
i-1(i) from the following:

[-aél-(R+K-PM-P12)-A 1

e M e met s AR e e e ek e mm = e s b Aum am mm mme  am e e e e e

. |
A1, KeD _D. ea=17 1A-1.a"-1 P o t.a=1, P . p-l .
| [-ag V(R+K PyP12)+a™"] IA +A7 1 (ReKePy-P12) "+ A" (R¥KePy-Py ) +4 Ly (4.4)

The model design is achieved by minimizing the approximation measure

* J*¥ = min J
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with respect to
R(i), i=1, N - 1; K(), i=1, N-1; Bg(i), 1 =0, N -1

with cow.straints
Agfi) >0, i=0,N-2, AN-1) 20,

A complete minimization of J is impractical, unless the value of N 1is
small, A partial optimization scheme is proposed, whicl: takes advantage of
the special sequential structure of the performance index, For an initial
guess of matrices, Ag(i) a sequential, term-by-term, optimization with respect
to K(i) and R(i)} is performed from i =1 to i =N - 1. Since the design
matrices appear as a quadratic form on each term of the performance index, an
analytic solution is available with use of the matrix gradient relations (ref.
18).12 Then the procedure is iterated minimizing with numerical search on

Ag(i).

Obviously, if no constraining assumptions are taken on the process, storage
requirement and computational time 1imit the maximum size of the interval
1, . . . , N. We note however that the proposed step-by-step optimization
requires the inversion of matrices of fixed dimension (n x n). The problem of
the growing dimensionality is found on the few multiplications and sums of
matrices required at each step to propagate Py(i) and A1¢i).

The possibility of extending previous results to an infinite time interval

is investigated in the next section for a stationary process with finite
dimension realization.

V. APPROXIMATION WITH STATIONARY MODEL

Introduce the partitions defined in (3.5} and {3.6) to the lowest (m + n)
(n = m e+ 1) portions of process and model covariance matrices. Constrain the
design model to be stationary. This implies that '

[S+KeR' +R*» K + K=+ Py -+ x']ir = UL(Py(T)) (5.1}

[R+ K« Pyll. = [UR(Py(x)){M] (5.2)

where UL(+), UR(*) are operators which rrspectively define the partitions of
the upoer left m x m and remaining m > m (r - 1) upper right portions of
the arguments and where M is an m x m design matrix. Extend the procedure
to i >m+ n, The conditions giver in (3.12) become

Py(r) - P(r) = 4(r) > 0 (5.3}

_12Note that in the case of models of the form (3.32-3.38) we adopted R(+),
and K(-) must also satisfy the conditions (3.28).
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UL(P) - By() = [(UR(P()I{M) - P1p(x)] * 8°1(x)

¢ [(UR(P,())iM) - P1p(r)]' = Ag(r) > 0
(5.4)
UL(Py) - Pra(d) - R + K » Py(i) - Pyp(i)] » 47!
* [R+ K » Py(i} - P1p(1)]" = Ag(i) > 0
(5.5)

Note that the index i has been dropped from the matrices independent on i.
It is evident from Eqs. (5.1-5.5) that de51gn parameters are A(r), M, and K
or R. However, the approximation measure is a function of the matrix A(r)
alone, as the design matrices affect only the values of A ( ).

J = tracel(n - 1) ¢« UL{A(X)) + A(r]] (5.6)

The performance indox is a function of A(r) alone. The other design matrices
effect only the values of Ag(*). Therefore, the design is achieved by seeking
for the m1n1mum trace matrix A(r), such that it is not, an empty set of values

of M and K or R which satisfy the sequence of constraints
Ag(1) > 0, r< is N-2, ag(N - 1) 2

‘Assume now to deal with stationary process having finite and stable
realization. Expression (5.5) can be written as UL(A) - V(i) = Ag(i) where
V(i) is given by

V(i) = UR(A(E + 1)) » A~1(i) - UR(A(L + 1))

The matrix A(i) if stable ensures the existence of "guardanteed model" and is
also a portion of the covariance of a stationary process with finite and stable
realication. In these conditions Faurre (ref. 2) shows that sequence of
matrices of the form V(i) are asymptotically convergent for increasing i.

lim V(i) = V(=)
i

Therefbre, a sequence of approx1mat1ons that are guaranteed on a finite interval
i, . . ., N for increasing N, converges asymptotically to a guaranteed
approximation in the infinite 1nterva1

VI. EXAMPLE

To illustrate this approach, a stochastic model of the horizontal mean wind
velocity, where altitude is taken as an independent parameter, is generated from
the statistical analysis of historical data. The model is designed for wind

shear prediction frcm onboard measurements of an aircraft on descent flight (ref. 123}.:
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The wind process is defined as a two-component random vector (southerly
and westerly) at intervals of 1 km of altitude from the ground to 10 km. Wind
profiles are measured fiom twice to four times a day by launching meterorologi-
cal balloons {rawinsonde)} from the major airports. Statistical analysis of
historical data for the areas of interest is available in the form of monthly
or seasonal mean vectors and covariance matrices (ref. 13). A second-order
regression scheme of the form of (3.6) with R(i) = 0 has been chosen to
approximate a posteriori covariance of the wind components from 1 to 10 km
conditioned to the ground measurements. Actually, the a posteriori covariance
of the wind aloft conditioned to the ground measurement has been considered.
The procedure proposed in section YV has been pursued constraining for simpli-
city the sequence Ag(i) to the form

8g{i) = b(i)
and optirizing with numerical search the vector
b= (b0, ..., bN-1)

. The process covariance matrix and the resulting model matrices are given in
Table 1. The normalized performance index resulted, after minimization, in

trace (Py(10) - P(10))/trace(P(10)) = 0.09
VII. CONCLUSIONS

A new approach has been proposed in this paper for the design of
approximate realizations of stochastic processes from output covariance
matrices in a finite interval., This approach does not require any restrictive
assumption on the process. 1t appears also especially convenient in the case
of raw experimental ccvariance.

The novelty of the approach is teo define, with simple sequential algorithm
elements in classes of fixed-order dynamic models whose output covariance matrix
bounds the process covariance in the interval of interest (the difference matrix
is not negative definite). The design is achieved by minimizing in a chosen
class a measure of the approximation between the model and the process. The
specific choice of the classes, which are general enough to encompass finite
realizations and minimal realizations of every linear process that admits
finite dimension realization, offers two advantages: (1) the possibility te
define a relatively simple performance measure (actually the trace of the dif-
ference between model and process covariance matrices has been chosen); and
(2) models belonging to these classes have the property that with the same out-
put filtering or prediction structure, the estimation error covariance computed
-on the model is an upper bound of the true estimation covariance on the process.
Apart from its intrinsic interest, when the model with such a guaranteed
statistic is required for the simulation of thé process, this property prevents
on estimation the phenomenon of divergence often encountered when approximate
models are used for the filter design (ref. 14). .
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The approach, which for arbitrary process is confined on a finite-time
interval, can furnish asymptotically convergent approximations for stationary
finite-order realization processes on an infinite interval.

Application is given to the modeling of mean wind randommess as a function
of altitude from statistical analysis of historical wind profiles.
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APPENDIX

As in_the previous case of Eq. (3.8), we define a sequence of covariance
matrices V(i), that for convenience is given here in the following transformed
form: V(i) = U@) - V(i) « U'(i), with

Sy 0 1%
V() =) 0}V, ~ Vi, * Vil Vial Hip
0! m, - - " Hoo {1,
LY i2 | Haz ||
1 I'o
(msr-n) !
U:i) = —_-'—— :;rl_
| Vio " Vip it g

iiXmer-n) xm=+r-n)], Via()[me+r-n)xnl, Vynxnl.

A recursion equivalent and deducible from (3.25) is

L) » @Y » V(1) U@ c L@ ST T T T T 7T T

TIn + K * R -é'l.lK-L'l'

: . _'.o g-1 I " ’
L v-i-8  Tngiond lios

and

we.v.uyl, =HfGE-1)- R +§1

i-1 ) R]fi'l)

where the matrices H(+), R(+), S(+) are derived from (3.25) with the following 4
algorithm .

— e — — i — e == e == 'fL‘(ﬁ-ﬁ"g-l'ﬁ)'L']

| | .
. 4 . t . 1
LeRgL-He Ll D iing-n dlia |

Ip! -k« L-17}




starting from

L(N) * H(N) « L'(N) = P (N) and [R' » §7!. ﬁ](N) = 0.
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TABLE I.—- WIND COVARIANCE — MODEL MATRICES

A Postoriari Covarlance Matrix of the Two Wind Components {Westerly ond Southerly] from 10 to 1 km of Altitude,
Zonditioned to the Ground Meaturements
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00 0.208E

02 0431E
00 0212
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02 0973
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