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ABSTRACT

A method is developed wh1ch allows us to

study the evolutxon of rotatlng stars well beyond
fthe maln sequence stage We con51der four different
~cases:of redistribution of.angular momentum 1n an
evolvxng star. Evolutlcnary sequences for a 7M
star, rotatlng accordlng to these dlfferent cases
were computed from the ZALS to the double shell
source stage.' Each sequence was begun wlth a
;(typical)fequatorial rotational.velocity Of.210 km/sec.
On the maiu sequence, the effects of rotation are

of minor 1mportance HoWever as the core contracts
durlng later stages,'lmporfant effects arise in

all phy51ca11y plau51ble cases. . The outer reglons

of the cores approach crltlcal veloc1t1es and develop
-unstable angular velocity distributions. The effects
of these instabilities'should,'significantly alter .

‘the subsequent ‘evolution.
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I. INTRonucfxoxi;"

Iﬂ the past‘tweﬁty yehré, asfohishing progress
-haé been made toward understanding stellar
evolutioﬁ;' In spite oflan eriormous nuﬁbef of

Jstﬁdies,pf:sphefical médéls; ﬁbwevér,'reiatively
little attention has been paid to the role of .
rétation.:'Basic511y,’there,are twé réasonsufor
fhé'négléct of rdtétioh in‘ﬁost previous iﬁvesti-
gations: first, droépiné_tﬁe'aésﬁmpéion 0oi spherical
Symmetry leads tn a.substanti&l increase in the.
numerical-compiexify of the équétions of'étéilaf
étructure'an&,.sécéndj sphericaliy-symmetric (non-
‘fdtating) models have been véry successfui in .
_expléining-tﬁe relevant observational data (the
mass-luminosity‘relationsbip, H-R diagfams-of |
élustérs; etc.). . | .

The problem'bf numericai~complexity can be?
_reduced-somewhat by using éoordinate'systé@s‘
defined_in'terms of equipotential.surfaces. This
wiil be discussed further iniSthion II.' The
:sucéess of spperical stellar evolution théory can

be undefstqod:by considering the stages of

3
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-evolution to which most observational tests apply,
- i.e.; the main sequence'(MS) and early post-MS

stages. calculat1ons of rotat1ng MS  stars, fqr’

example, show that the effects of rotatlon on”

fthe internal structure of such stars are very:

small unless the’ 1nter10rs are rotatlng much moreb
rapldly than the surface layers (see, e. £., Sackmann

vand Anand 1970 Bodenhelmnr 1971) B Because of

the lon? duratlon of the MS stage it is reasonable '

to expect that various dissipation mechanisms

(such as large scale circulation currehts) will .

reduce any rapid core rotaticn built up during.

'l'contractlon to the MS, so rotation‘will nctApiay

a 51gn1f1cant role durlng the MS and early post-MS

stages,

" The situeticp;is-very uifferent for the later
stages of evolutiori° Con51der the ratlo of the
centrifugal force; Fc’ due to rotation to the -
force, Fg s
plane. = As sucuessive fuels are exhausted and the .

due to gravity in ‘the equatorial

core contracts, Fc/Fg will increase in inverse

proporfiou-td the'radius'of the core, if anguiar

momentum” is conserved within the core. Redistribution

4

. . "
..



of angular momentum throughout the star is inhibited

by the.shdrt,time Séales for the evolution and by

large radial gradienté in the mean molecular weight,

which choke off large scale.cifculation currents. -

Sackmann and Weidemann (1972) and Maeder (1974)

have shown . that rdtatiog_shouid play a major role.

in.thé evolutioh'subsequent-to core helium exhaustion

and Sofia (1971) has shown that the rotation rate

ional collapse of = star.

-may be the central baraﬁeter_in the final gravitat-

Aside from calculations of dif¥<rentially

rotating white_dwaffs, which we will not consider

since they are not evolutionary sequences, we

are

aware 6onn1y two investigations in which models '

were calculated well beyond the MS with the effects

of rotation included.Kippenhahn, Meyer-Hofmeister, -

and Thomas (1969, subsequently referred to as

-folloWed_the‘evoiution of a QMQ star from the

age main sequence (ZAMS) to the end of heiium

burning in the core. Two sequences of models

KMT)

zero-

were

computed, corresponding to two prescriptions.of

how 1'(M_ ), the angular velocity as.a function

of

the mass coordinate, evolves with time. Meyer-

O .
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_demeisfer_(1972) computed séqﬁences for 5; 6, and
_fgug'stars-throﬁgh the samé stages of evplutioﬁ_but
;using'oniy'one of the prescriptions fof-m(Mr)‘uéed._
_by‘KMT. >In both investigatiéﬁs, spheyigal'symmetry' '
.Qéé:aésumed'ahd the efféctsAbf'rotafioniQefé R
~approximated By'taking_the radial cbmponént'of thé
céntfifugallforce (aVeraged over a séheré) into
acdohnt inAtﬁe'hyéfoétatic equilibrium equatidﬁ;a
As_wili’bé disqussed in SeqtioanI,xthiS proQides V
only a rough estimate of the effects of rotation:

on the evolution. | |

It appears, tﬁerefore, that_considérable-work

remains to be done on the role of rotation in'thé
}posthS stdges of e?olufion. This is the*firét |
‘of a series ofvpapers_in'which we will'SYSfema£{Caily'
explore the effects of rotdtiqn on these stages.. |
In this paper, we will cpncentfatelon tﬁe}cémpﬁta{ibnai 
techniques andldescribe fhe results of some sample-
calculétions on the eVélution'éf a 7 star
from the ZAMS‘to the double shell éourcé sfage,
using.several différent‘prescriptions fof.the
evolution of »(M).  In Section II, we outline

the method We.use to'inélude the_effééfé of

6
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rotatlon Comparlsons w1tn other methods andl"
numer1ca1 tests are descrlbed in Sectlon III
'-The startxng models and the prescrlptlons for”
ew(Mr)'axe specified in Section IV. . The results of
Athe evolutioﬁary calculatidns are presented in":f
Section v and discussed in Section. VI. HA“detdiled.
;descrlpt1on of the evaluation of the total potent1a1

is g1ven 1n appendlces.

_II. THE EQUATIONS FOR ROTATING éTARS_V
There are four ways ‘in. whlch rotatlon may
feffect the equatlons of stellar structure

1) centrifugal’forces'reduce the effective .Ii

gr#vitybat eny pointﬁndtlonithe'akis ef

rotatIon.”vTﬁis must be taken directly into
 account in the eqUetion of hydrostaticvequil~._‘

Ibriﬁﬁiwﬂ"‘" ‘ | ’

(2)- because the eenfrifugal'force is net,'ie
'general; parellel to. the force-of gravity}"
.equipotential surfeces-hre-no lohger séhe?es
and'the.spherieal relationships'betweeh the
redies,'enclosed volﬁme; and surface area of
an equipotentiaI>SUfface cannet_be:used; .

s bae kY e e
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This affects all of the equations except the

equation for adiabatic convective equilibrium..

abecaﬁse,tﬁe radiative fluk'varies with the

;oCal(effective gfaﬁity“(the von Zeipel effect);
the raeiatiee*fluxvié;eof-censtent on‘an"
equlpotentlal surface \This enters direefly.
1nto the radlatzve equ111br1um equatlon andl
nay affect ‘the stab111ty to convectlon by

changlng the radlﬁf-ve temperqture grad1ent

rotaflon mav 1nn1b1t certaln modes of convectlve

:jmotlons and thus, d1rect1y affect the crlterloni'

for convect1ve stablllty (cf Rander571942,

VCOWlng_lQJJ). _In addition, not ell>éngular
fmomeqtum‘dis{ributions>nfe stebie'and'this

= .can leéad te.cenvection in regions_yhieh_a;e
vstabie to purely fﬁermai eedvecfion (cf.

.»W351utynsk1 1946)

The f1rst three etfects can be 1ncorpoxated

into. the equatlons of stellay'structure in a -

fairly direct manner, if the total (gravitational

plus rotational) potential, %, is conservative.

[ RN S SN -
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The_formulatidn we use has beeﬁfderived by Kippenhahn

-and Thomas (1970) and we will subseduently refer

8
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' to thisiformulation as the KT method. Because .
the form iu.whicﬁlWe use the‘eQuations is slightly
different from that of Kippenhahn and Thomas and -
in order to clarify how the effects of rotation
are takea lato'acceuut;~ue rederiue.fhe ecuaticus
_here, | I
The Spherlcal surfaces normally used 1n stellar
'models are replaced by equ1potent1a1 surfaces.
The.area of such a surface is denoted by SW nd -
the volume enclosed by the surface by VW' 'Ou'-
such a surface, the pressure. P,'the'temperature,
fT, and-the.density,_p, are constant,'if the‘tctal
_ pctential is conservative. The:Lagrangian coordinate,
._:Mr3 is réplaced'by M, the masS'interior'to the
'_equ1potent1a1 surface and the spat1a1 var1able r,
1s replaced by'ra; the radlus of a. sphere enclosxng
a volume V,, i.e.,

Y
' 4r: 3 ., B o R ‘
.V‘Jl = 3 r'5: ° ' ’ ' (1)
For any quantity f, wbich;is not'constant'over_an

equipotential surface, a mean value is defined

by
T- é%; j' ‘f'dj,_f: L - (@)
'  § = const ' '
9
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_equation is not altered by rotation:

{

S S

, . .
SO oy
e,

where dz is an eiementvof-the surface § = constant.

Thevlocal effeétive gravity is defined by
. g=adyfan (3) -
where ‘dn is the distance between the surfaces

¢_=Qconstént and y +.dy = constant. Because of

the definition of T, the form of the mass continuity -

aM, = p3V, = 4n. 1 “ par, @
or .
- ar,/3M, = 1/4ur “p. o 7 (5)

From equation (2),

3Vm_= 1 . dndy = 3 w'j

R Je = const. - Yy = const.
©(dn/dy)ds = g7 S, 3y N O

" and combining this with equation (4) gives~

ey = (svv/;gif}jav$_= (avwléle 3M /o

;aMm/gfl S 0. - o '(7)'

b

- Equation (7) can be combined with the general form

of the equation of hydrostatic equilibrium,

Bp/aw = -, _ ' L (8)

- to give

10
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where .  v}j}
4oy - } . . . )
= e — ' - Qo)

Because equatlon (1) preserves the spherxcal
relatlonshlp between rad1us and volume the energy"

conservatlon-equatlon reta;ns its non-rotating

- form, i.e., .

= € = ~-;‘-3—.f“'- P -éTL oo : (11) .

whefé_LQ is theé rate of energy flow past the surface

g = COnstént"g is the (huclear-neutrino) ehefgy'

generatlon rate per unlt mass, E is the 1nterra1

‘ energy per unit mass and t is tlme The local

flux of erergy transported by radlatlon is |
. : 3. _ 3 v

e __ dacT® ST gacT® aT
F_ ain- el v Bl B+ CAR €

where a, c, and » have thelr usual mean1ngs

USLng equatlon (7) 1n equatlon (12) gives
3

F?"fﬁc}“g SgT 4

.Iﬁtegrating the_flux over an equipotential surface

11
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, gives,'with equation (2),

3 — 2 : :
. _4acT” TTT ST
Ly = eT S B - - a9

. Using equation (9), we rewrite equation (14) as

.a'ln'Tl;. 34 P ‘Lﬁ T -(155-
3 In P IGiacG ?*'“;'f; o .
where ' ‘
o 4oy 2 2 . . . i,‘ S
. = o e 1 e ’ .
tp= (gt ) 2 S ae
j g g

In the present formulation, we neglect the,fourth
effect of rotation on the equations (s=e above)

and use the Schwarzschild criterion for convection.

Theh
3 In T _ B v : £ : o
STIRP T ™M [ Yadr Yraa 20 0 UD
p .
where v -and Vraa are the_normal-(spheriqal)

ad

adiabatic and radiative gradients. We note that

equation (11) is an approximation in that expansion

" and contraction will not, in general, maintain a-

conservative potéﬁtial (cf. Kippenhahn and
Mollenhoff 1974). As a result, the last two terms
inﬁequation (11) will not be constant over én 4
equipotential surface. .We assume that this effect' 

iz
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Swill’ ee compensated by large scale c1rcu1at10n
(urrents A51de flom thxs aoprox1mat10n and theng
_ neglect of the d1rect etfect of rotatlon on
con"ect1on, ‘no other apprOxlmatlons ‘have been
:made in. transformlng the spberlcal equat1ons to
'equatlons w1th rotatlon ,
Before descrxblng the evaluatlon of the
.potent1alyla few comments on the above equatlcns
are in order. Thevfirsf three effects of rotation,
‘descfibedvéf'the:beginning of fhis seetieﬂt_are |
contained in: the fac*of f Q the'interprefation
of rﬂ thzough equatlon (1) and the evaluatlon of
Sw and Vk and the factor f R respect1ve1) As

the rate of rotatlon goes to zero, fp ~ 1, fr - 1,

and r, ~ T so the equations reduce te their spherical
E : : : SR S :

_VCOUnee;petts. 'The ratio /1, enters intq'the
radiat;ve equilibfium eqﬁation because we-evaluate
3 ln-T/a ln.P"= (a 1n T/\M )/(\ 1n P/AM ) iather:

- than Y 1ln T/\M- The app10x1mat10n used by KMT -
and meyer-Hofmelster (1972) is roughly equivalent’
to cons1der;ng only the factor f§ in equatlon (9).
'Ih‘genetal,'fp deviates.fyem unity by a muehilarger

amount than does fTﬁ so this would appear to be a

.'13
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'thevpoiéntial>and the Iactors fp and f

‘cohsiétent ieQel of abproxihation. However, tﬁe
' ratio fT/fp &‘1/fp,;Which mustvabpéar in the

: criterioh_for convection [see eqﬁation.(17)])
;dev;ates from unity:by'an amouny.pombarablé_

" to ;heldéﬁiqtioé-Of fp and'this}Should bewfaken

' into account at the level of'apprOXimafiQn'uséd

by KMT and Meyer-Hofmeister.
A detailed description of the.evaluation of

T

is given
in the-Appendices; ABasiéally,vthe pdtential is

divided into three parts: 4y, the spherically

‘ 'symmetrié_paft_of the gravifatioﬁalfpotentiali

Bl
'

- due to rotation, and y,, the cylindrically symmetric

part of the gravitational potential due to distortion

of the figure of the star. The évaluation of the
first two parts is trivial. Tgé"third part is
evaluated, at a gi?en pbint, a§ if that pdint
were 6n the surface of a.bolytropngotating with
consfant @ and With the'samé rétio of mean
inferior density to central density as displayed

by the model at the point in question.. The .

_distortion of the mass exterior to the equipotentiél

14

, the cylindrically symmetric potential directly .
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surface which contains the point'is iénored.? As

we will show in Section III, this brovides'aeveryf

godd approximaficn to the actual potentiel.
1'Equationsi(5),’(9),1(11).and (17) are

similar enough'to'fhe spherical equations that they

can eaS11y be 1ncorporated 1nto exlstlng stellar

evolut101 codes In our case we have used the

) Paczynsk1 code w1th modlflcatlons to the input

v_phy51cs as descrlbed by Endal (1975)

'III. COMPARISON TO OTHER METHODS AND
- NUMERICAL TESTS -
Several dxfferent methodb have been used ‘in

the past to 1uvest1gate the effects of retatlon.

Beforc describing the numerical tests of our

program, we will discuss the similarities and.

.'differeeces among the various methods. We will‘
:nOt inéiﬁde"ﬁérfurbdtidn fechniqdee eucﬁ'as those
'of Chandrasekhar (]953) and Sweet and Roy (1953)
_wh1ch have. only ‘been applled to polytropes or
_other highly 51mp11£}edl stellar models.

- Double-approximation method - This method has been

“used by_é number of investigators (Roxburgh,

_ Griffith, and Sweet 1965;: Feulkner; Rokburghﬂ and

15
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. The Stellar structufe equatichs’used,in the J

 Str1ttmatter 1968 Strlttmatter Robertson, and

’ Faulkner 1970 Sackmann and Anand 1970; Sackmann.
}970), each of whom have 1ntroduced m1nor modlflea— -

_tions. The method consxsts of d1v1d1ng the star
into’ two parts e.core_whlch,;s assumed to be |

' rotatlng slowly in coméariSOnfto the lecai criticai

1 velocity- and an envelope whlch contalns a negllglble

amount of maSS.' Flrst—order expans;ons in a

rotation»parameter are used in the core and the

Laplace equat1op is used for the pOtEHtlal in the

envelope (the mass of - the envelope does not

.convr1bute»to the.potentlal) For unlform rotation

this is a valid approxlmatlon but f01 dlfferentlal ’

rotatlon (rapldly rotatlng cores) the core’

approx1maC1on breaks down.

2 2

3 method - a detalled descrlptlon of the J

method has been glven by Papolo;zou and Whelan

(1973). It has also been used by.Whelan, Papo}diéou,

and Smith (1971), Whelan (1972}, and Moss (1973).
. o o
method are formally equivalent to those used in
the KT method so the only difference is in the
evaluation of the total potenfiai, #. In the J2

16
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methed, the-Roche approximation»has generally been’

.used. This. 1s equivalent to neglec+ ng the’

contribution of the quantlty ¢d dlscussed in
Seetion I The Roche approxlmatlon sbou1d break

down in reglons where the ratlo of mean irtovior

" density to-central density (p/pc) an» the ratlo

‘of angular velocity to critical angula:-velocity

(wﬁ”cf) are both significant compared to unity.

This will be the case for rapid &ifferentialfv

'rotatlon 1n the core.

SCF method - the self-con51stent -field (SCF)

method,>asvdescribed.by Ostriker>and Mark (1968);

is primarily a method for obtaining. accurate

. solutions of the total potentigl and hydrostatic.

B N N

equilibrium equations. The SCF method'was combined
w1fh fhe complete stellar structure equatlons by

Jeckson (1370 see also Mark 1968) Jackson's:

_method was applied to diffe;ehﬁially,rbtating stars

on the upper main sequence by Bodenheimer'(197l).

In this method the stellar structure equations

" are evaliuated on equipotential sﬁrfaces, as in the

KT and J2 methods.-'The primary difference is that
thelpotential equatien is solved much more

17
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accurately and the method is, as a result, very
" time—consuming. This makes it unsuitable for
" evolutionary.calculations but it remains a very

' bowerful method for testing more approximate

_techniques. -

bépaloizbu ahd'Whéién (1973) have made éxtensive
1Tcoﬁpéfisons of the results obtéinéd with th§ Qariéus'
'méthOds.(including_the‘KT method) for uniformly |
" rotating ZAMS models: "Except at*léw”masses P
M < IMQ); they find that all the“methods déscribgd »
'ﬁbuve'produce'essehtiaily the_saﬁe'results.‘ At
low hasses;fhe édmpafisons seem to be cdmblic#ted
';by diffe#ences in thé‘chemicalrcompo$ition and
convective mikihg lengths used in thévmodels;
". Since we will not be‘éomputing models of low

" mass Stars, we will not worry- about this problem.

ABoye_lMég;pyéMred&étion in the iumiﬁosity broduced
by uniformﬁrétation is‘confihed.to ;10% anﬁ this
redﬁction varies linearly with 2. ThiS'inaicates'
that uniform rotation may be considered asba small
' perfurbatidn'dn nonfrotatiﬁg models and, thereforé,
" does not cqnsfitute a very stringent test for
i_metﬁods which will be used when rotation introduces
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-large~Chéhges iﬁ'the-mOdels. 'Unfortpnatély, there

‘are very few calculations witk ‘which we can

.cémpare our fesults'for differentially rotating

' modeis.~

rotation using the SCF method. In

Bodenheimer (1971) has calculated ZAMS models

of 15, 30, and 60M_ stars with strong differential

“the_modéls'computed by Bodenheimer, the velocity

was constant on cylinders, whereas we have

specified constant angular velocities on equi-

'potential surfaces; so the resuits_obtained by

‘the two methods may ﬁot be direétly'comparable,

- However, Bodenheimer found that, to a good approx- o

of angular momentum but only on the total angular

imatioh, the effects of rotation on the central -
temperature (TC),_éentral density (pc); and

luminosity (L) do not depend on the distribhtioh

" momentum (J) of the models. If we confine ourselves

- to these parameters, the comparison may be'valid.

Figure 1 shows the variations of these parameters,

.for_a 30M, star, as a function of log J. The

SCF results are indicated by the symbols used
in Figure 5 of Bodenheimeg. "The different symbols

19
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"refer to different internal d;stributions,of the.
angular momentnm; The -results obtained'mith;our
,_method are indicated by dashed 11nes.' We’have

. specified that wﬁu . (at the equator) be constant

throughout'our.models, The values of w/is__

' as various values of log J are indicated at the

top of the figure. Up to w/u . = 0.8, the
‘differences between our modeIS'and'fhe_SCF-models.
"~ with tbe same value of J are generally comparable

to the scatter introduced by different angular

momentum d1$tr1but1ons in the SCF models. Beyond

w /w cr = 0. 8 we were not ‘able to produce converged

odels because of the large’ dlfferences between

tbe (non—rotatxng) Schwarzsch11d model used as an .

.inltlal guess and the lotatlng mcdels to be

‘calculated by. relaxatlon. We should emph351ze

-w:helo that the convergence problem is due to a
poor_in1t1a1'guess, rather than to llmltatlons ?fv

‘our method. In tbe-evolutionary'sequences presented

in Section V, m/mér was -as 1arge as 0. 99 In

these calculations, there were no. problems w1th

- convergence because the initial guesses were based -

~ on extrapolations of models which were already
rapidly‘rotatlng.
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IV. THE EVOLUTION OF A 7M_ STAR: STARTING
s  MODELS AND ROTATION LAWS ‘

In order to explore the effects of votat1on

on. the post—MS stages of evolutlon f1ve sequences
of models were computed for a 7M star:  one

‘sequence for a non—rotat1ng star (Lase O) and'.

four- sequences for rotatlng stars w1th d1fferent

:assumptlons about the red1str1butxon of angular
i_.momentum in an eyolv1ng star‘(Cases 1-4). For
':eacﬁ‘caSe :the Sequence was begun on the ZAMS

with a chemlcal comp051t1on of X = 0'7'_Z = 0.03.

-The prescrlptxons for u(M ) used in the various

.cases are summarxzed-ln Table 1.

‘In all cases, the-angular momentum was assumed

‘to be constant on equipotehtialisurfaces; rather

Athan on cyllndexs ‘as 'in the models of Bodenheimer

P

'Illfand,w111 be discussed further in Sectlon VI.

Also, in conserving angular momentum, deformation

of the equipotential Qurfaces was ignored i.e.,.

_:the moment of 1nertla of a glven mass shell was

assumed to be that of a thln sphervrical shell of

jrad;us T Cqses 1-3 were begun w1th solid body

21
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rotetion andou 8.8 x 107 5/sec "This COrresnonds
to the average 1otatlon rate for spectral type BS
ma1n ‘sequence. stars 'accord;ng to Abt and Hunter .
1 (1962) . Unllke' the models computed by KMT and |

. Meyer-Hofmelster, our models are not rapld rotators

on the MS. Tre Case 4 sequence was begun w1th

solid body rotation at w = 8. 8 x lO /sec in the
“reglons out51de of the cnnvectlve core W1th1n
the convectlve core, we set = = min, [8.8 x 10~ /sec‘

N (rcc/r)z, O;QImér},'where rcé.is tﬁe'radius~of the'
convective cofe' Limiting w to 90% of Bip was.
necessary to avo1o the supercrltlcal velocities
near the center implied by the @fz = constant
.prescniption. This limit on & was also apblied'
to the convective reéions'of the evolving models
for-Case 4. The extra angular momentum was
uniformly redlstrlbuted throughout the rema1nder
of the convectlve reg*on”whenever the l1m1txng-
veloc1ty was reached |

The rotatlon laws chosen are not meant to
accurately reflect the effects of the various
'angular momentum redistriSUtion mechanisms
which may operate in an evolvihg staf."Rather,

22
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. they are meant to bracket the set of physically

vplausible_rotafion laws. Cases 1 and 3 represcnt

extremes in terms of complete redistribution of

~ angular momentum and no,redistfibution of angular

. momentum, respectively. _Case 2 represents an -

intermediate (énd ﬁore:likeiy)'pOSSibility that,
Whiie cif&ulation‘curréntsvredistriﬁuteuﬁhé .

aﬁgulaf momentum in'chemiéallyﬂhomogenéoﬁsArédiétivet.
regions,:anE currénts‘are'chokedboff in ihhombgeneous
regibns by'gr#dients in_the mean.moiecdlér.wéiéhf

(cf. Mestel 1953). In convécﬁive regions, tﬁe |

high viscosity associated with tufbulénce may

lead to solid body rotation. Casc 4 represents

an aiternate possibility, namely'that mass mofiqns
in convective regions tend to equalize'thé specific
angular momentum in such regions. This would be

the case if the circulation produced by convection

preserves the angular momentum of .the convective

elements and has, to some extent, becen borne out

. by calculations (Taylor 1973, Weir 1975). Some

Justificaticn for limiting the'angulay velocity

to some fraction of the critical velocity is also

.providedvby_thesg calculations. though the choice .

23

ey o -



. e BN
SRPPRPUPRERPESIECR S S
[

._*of 0.9 er for”thellimiting angular velocity is

.. ment1re1y arb1trary Actually;-constant specifiém

~angular momentum 1mp11es that w 52 = constant,
where % is the d;stance-from the rotation axis.

‘However, within the restriction that . be constant .

'Qh-spherical'surfaces’mrg'=-c6nstanf is the cloSest_'

pcssible approximétion.

V. THE EVOLUTION OF A 7M_ STAR: - RESULTS

- “The Case 1 sequence was terminated during ....... . _

heiium"bUrningvih the core. _At this point it

was clear tﬁat the effects ot mofation on the
poSt;ys eyalution are“negiigible it solid body
'rotatibﬁ»thromghbuf'the.star is maintained durimg
,these stages " Unless coupllng mechanlsms suchm
as magqetxc fle]ds whlch do not dlrectlv depend

on c1rculat10n currents are stronger than one -

would normally expéct, sol1d body rotation throughout‘

the sfdr«w;ll brobnbly not bevma1nta1ned. In any
. ‘case, tme numerous rrevious calculations for non-
-1otat1ng stars adequately descrlbe the Case 1
evolutlou so Case 1 will not be dlscucsed fu1thex
Cases_¢—4 were continucd untll ;rltlcal velocities
were encounteted atmsome point‘in‘thé star. 'In

o o : . 0y . ,
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conmpare the models in the various seqhences.
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-allrthrée caSes; this oécufred after helium exhaustion

in the core and prior to carbon ignition.

Time Scales

One of the effects of rotation is to lengthen
the,timé1scaies'fof'the évolﬁtiOﬁQ"Téble 2 givéé 
vthe agegrof.the mbdélsfat.a number of stages for
Case O éhd Caéés 2F4. -Hydroéeﬁ and Heliuﬁ exhauStioﬁ
are defiﬁéd td occh wheh the}éb#ndénces of fhe'. |
respective,nﬁéiei drop below the minimum abundance
(107™%) allowed for in the code. Helium ignition
is defined to occur at fﬁe first appearaﬁcerof:

a cbnveétive,core due to heliumlburniﬁg."Sohéj 
ﬁelium,burnigg; as evidenced by a slight decrease .
in the-heliUm abundance, generally occurs before
this but the fiist.appedrance of'a_coqveCtive

core provides a convenient point'at“which to

Subseqﬁeht to heliuh exhaustion, the h&drogen
burning shell is'cxtinguishedxand the convective
envelope intrﬁdes into the hydrogen exhﬁusted
core, reducing the size of the core. This
stage and the stagevﬁt whichh the maximum depth‘
of—thé convective envelobe is reached and“the

5
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vhydrdgeh burnipgvsheil reignited were cihosen as
‘two mbré pdints ét wﬁiéh fd compare the éequcnces.
..Below the ages. at.each stage, the'ﬁmés required
" to eyolve from the previéﬁésstage are givén;
Finéliy, for Cases_2—4;‘thié time is combafed_fo
the time'reAQLrgd by'fhg ndn;fotgting (Cﬁselo)
:models; 'in Case 4,'critica1 velocities were
reached priov tb_thé'énvclopekih?rusion'stage;
Inspection of Table 2 shows that the timc scales
'for the evolution are th'gfossly qffectéd by
rétation. 'Except for Case 4,,the_inéreases in
the time Séales prior to heliﬁm cxhaustioﬁ are .
Jess than 5%. The 20% increase in the duration
of;heliumvburningbin’Caéeld is'lnrger than the'
prescnt uncertainty in'tﬁe timé‘scalésvfér‘nbg; )
rofatipg'mﬁdels buf it is:aléo stroﬁgly dependghf
;On‘thé limiting angular véiocity allowed in the

¢onvective core.

1Lo§p$ in the H-R Diagvam
| :figure 2 shows -the traclis of the sequenceés
_ for Cases 2-4 in the H-R diagram.‘ The points
at"ﬁhich:the.stdges listed in Table 2 Qécﬁr_are‘
indicated by the letter s&mbo]s given iﬁ Table 2.
, 26 S



For comparison, the Case 0 track is shown with -
dashed lines. Here again, the effects of

rotation are strongest for Case 4. There appears

. to be three loops for this case. 'Theffirst

(shortest) loop is probably due to a problem in
locating the outer boundary of the convective core.
An undereétimate of the size of theeconvective core

leads to an overestimate of the decrease in the

~helium abundance in the core. This decreases the

helium barnlug energy generation rate and causes

the sequence tolswing to the right in the H-R

- diagram, premzturely ending the loop. In subsequent

models, the core. grows larger again, the helium'

abundance in‘the core i.ncreases, and a 1arger loop

fo]lows The third (hlghest 1um1n081ty) loop

occurs durlng the early helium shell burning phase.

The evolutlon throuvh tnese stages (for Case 4

only)_was later recalculated using shorter time _1ﬂ.¢_

steps uand a_fiher criterion for the size of the

convective éore. In this calculatibn;'the first

and second lpops merged into a single.loop resembling
the loop for the Case 0 sequence though extendlng

to sl1ght1y higher effectxve temperatures However,

27
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Jthefloop-which'occurs during.the helium-shéll
_burnlng ohase st111 appeared indibating-that"it»
5,15 real and that multlpxe 100ps can result from

' f rotat1on

The resultb of KMT and Meyer—Hoxmelster

.Aalso indicate that rotatlon can increase the 51ze }j'

v and_number of 1oops during these.stages.' One -

of the'différences between our sequenCes_and those'
of KMT and Meyer-Hofmeister is.that their models

begin with critical velocities on the ZAMS vhereas

' our-ZﬁMS modglsvare»rotdfing aboﬁt one-half as
fasf»(at the surface).-vWith’resbéct to rediéffibutiqn
>'ofﬁthe angular moméntum; our Case'zfis eqﬁiva1eh§:

. to‘tﬁe Case 8 of KMT. In CaSe a‘of.KMT and fhé:

'.modcls of \ var—qofmpister, local consexvatlon of

angulax momentum ‘is assumed in all rad1ﬁt1ve

'reglons and convect1ve reglons are treated 4s in

-Case 2,_ Meyel—Hofmelster has emph351zed that the

effects of rotation may bellmportant‘for the

s statistics of-cepheids specifically'by lowering.

thc smallest mass for which loops cr0551ng the.

"1nstab111t\ strlp occur. ThlS would presumably

. shlft'the peak in the number_Vb ‘mass dlstrlbutlon

28
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of cepheids to a lower mass . MeyerFHofmeister

estimates that the peak will. be shifted by abouf;

' one solar mass below the peak for non-rotating

stars. There'are hoWever' several p01nts which
should be made 1n thlS regard First, the loops

in the H-R dxagram represent one of'the more .- .

-uncertaln features of stellar evolut1on theory,

even for non-rotatlng stars As is dlscussed

rby Meyer—Hofme1ster the number,and length of the’

1oops are very sensitive to the handling of the

" convective corezs boundary during hydrogen burning.

Thus, the effects (discussed in Section II) of

rotation on the criterion for convection should

. be taken.ihto account. This was not- done at all

“in the calculaticns of KMT'and_Meyer—HoImeister‘

and only approximately (one of the effects)

‘in the présent investigation. Second, our mocdels,

which represent typical stars~(ratﬁer than rapid’

rotators), do not show significant effects of

rotation in the H-R diegram, except in Case 4: This

is admittedly an extreme (though possible) case.

Finally, it is likely that stars which begin their

~ evolution with near-critical velocities will lose

- 29
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a cons;derable fractlon of the angular momentum in

their envelopes prior to nellum burnlng. For

exanple equator1a1 mass shedding during the Be3

'phase has been shown by Strlttmattcr‘ nobertson

and Faulkner (1970) to be a XEEX eff1c1ent means B
of removing angular momentum. Kraft (1966)

has shownfthat'thélouéefved fotatlbualAvelocities
of cephelds are consistent with the 1oss of a

considerable fractlon ot the “b angulﬁl momentum,

It appears, therefore,,that further investigations

are requlred péfofe'any strong ébnclusions can-
be reacﬁcd mbuut thé'effects‘dfirdtution ouvthé.
sfatistics of cephelds; :

One further Comment»shouldlbe made about
F1wu1e z,ert p01nt E, the giant branches of our.

sequencus show a pronouuced bendlng to the 115ht

vective envelope into the hydrcgen exhausted core
- begins. This mixes material from the core into

" the envelope and lowers the hydrogen abundance

there. To tuke this into account -in the envelopes,

the opacities from the tables (which applied to

the ZAMS composition) were reduced as if the

30
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_opacity was due to pure eieetfon scattering . in an
ionized medium. Since much of the mass- in the
'envelopes during this stage lies above~the hydrogen-
;1oulzat10n zone, the‘affecf of the feduction of the

'.hydrogen abundance in the envelope was overest1mated

:by this method.

Conditions at the Center

Figure 3 shows .the paths of the seQuences L

for Cases 2-4 in the (log central density, log
_central temperature)-plane. Again, the stages .

referred to in Table 2’are'indicated:by'capital.'

leiters and(tne Case Q sequence is snown by
dashed lines. | Figuree 4/tthUgh 6 show {he
angular »eloc1t1es (solld llnes) of the inner most
mass zone as functlons of the model numbels "The

dashed lines ShOW-wﬂucr for the same zone. The

letters ﬂt the tops of the figuves refer to the

evoluflonary stages The discontinuous nature'of

the angular ve10c1ty curves. for Cases 2 and 4 are

" due to the finite zoning of the models. For

“instance, after helium exhaustion (pdint D) the

hellum exhausted core grows by fxnlte 1ncrements
as the hellum burn1ng shell moves outward. Whenever,

31
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"‘the helium abundance in a shell reaches zero and

. that shell beccmes part of the core (which is

rotatingAas.é solid body); the shell's angular

" momentum. and moment of inertia are included

in COmputing the dngular Veloéity of the core in

"the next model. This causes a sudden drdp in the

core angular velocity.

From Figure 3; it isvapparent that, for Caéés

2 and 3, rotation does nnf'SignifipantIY'affect
‘the central conditions until after helium exhaustion ~

»(point'D)L' For Case 4, hdwever,'théfe are

noticeable-effeéts‘during both the hydrogen and
helium burning stages. Figure 6 shows that. the

angular velocify of the inner shell is at the

‘limiting velocity during these stages and),

therefbfe, the magnitudes of these éffects depend .

on the chosén limiting vélocity. After convection’

in the core dies out and before the fuel is éompletely

_exhauStéd, there is a short period when the core

rotates with local conservation of angular momentum

and with no limiting velocity. After the hydrogen

_ burning‘stage, the angular velocity reaches 99%

of vopr during this period.

32
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After hellum burnlng, rotatlon becomes more

'and more 1mportant 1n all cases as the core contlacts
p and the angular veloc1ty increases rapxdly In

. general), rotatlon causes the temperature at a

given denslty, to be lower'ln the rotating models . -

than_ih'the»non-rqtating_models; Thus, carbon

rignition Wiil beceme:very difficult'to achieve

- unless some mechanlsm couples the core to the envelope

In view of the ]arge gradlent in the mean molecular'

welghf arross the hvdrogen burnlng shell, it is

difficult to see how thls coupling will occur.

.(However, KMT have suggested some possible mechanisms.);

The evolution of the angular velocity distribution

Affef hydrogen burning, the contractions -

and expan51ons of various parts of the star plus

- the assumed rotatlon Ist produce strong dlfferentlal

rotation. . This is 111ustrated_1n blgures_7 t0'9,
which'show the angular velocities and-ﬁﬁﬂcr as .
functions of . the mass'cpordinate for Cases 2-4,

respectively. - Fach figure_shOWS‘models at stages

A, C, and D and a model close to the end of the

sequence. A general feature of all the cases
is the spin-up of the core. Critical velocities

33"
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were reached in each case soon after the last

medel shown in the Tigures. The critical veiocitiesv

were xeached not. at the center, but rather 'at
the outer edge of the hydrogen exhausted (Case 3)
Or he11um exhausted (Cases 2 and 4) core. This -

situztion can be seen, for Cases 2 and 4, es a

hdlrcct result of 1mposxng solld body rotatlon in

. the chemically homogeneous core. For Cese~3, the

occurrence 6f criticaiﬂvelecities at theCOuter
edge of the core can be understood by con51der1ng
the‘ tructure of a neefly isothermal, degenerate
cere. For a non-relafiviStic degenerate core ,
the den51ty distribution is very’ similar to ‘that

of a n =_1 5 polytrope (Chandrasekhar 1939) The

.density_dlstxlbutlon in the convective core of

‘the 7AMS model can also be: approx1mated by a n = 1.5

polytrope ror local conservatlon of angu]ar

-momentum, the evolutlon of the angular veloc1ty

dlbt)lbutlon is determzned by the evolutlon of

the den51ty distribution. Thus the angular

- velocity distribution in the degenerate core of

the final model is very simiiar to that of the

ZAMS model, i.e.. flat. though the value of the-

~angular velocity in the final model is‘aimost

34
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fdur bfders.of magn;tude larger.A This néérly flat
qistribgtion causes mAgcr to increase §ﬁ;wards_
iffom the cebter.' |
in all»of;our rotation laﬁs, we have ignored
'_vthe possibiiity that ipétabilities can overcéme

gradiéntslin»the'mean molecdlar weight-(u—barriers).

:Edwevgr, for.larée enough gradients ih the adgﬁlar

' velocity and'§ma11 enough gradiéntsiin the mean
‘molécular weight, instabilities can occur (éf.

" Zahn 1974)."1n?thC'region of transition from

the carbon;oxygen core to the helium-rich zone ,
the gradient in the mean molecular weightvis

' fdifly smailkand? inlCasés‘Z and 4, the gradiénts_
in the angular velocity are very large. 1f we‘
had included éth instabilities, redistribﬁtionlof
the éhemiCaL-comﬁosition, as well as the anguiar
momentum, wquiq have'ocpurred; The effect this’
‘would have on the models is difficult to predict
without detailed balculations since thé effect
would depend on the interaction of several factors:
,the'dégree of mixing produced by the instability,
the effect of the mixing on the helium burning
shell, the tihescéle fér fa-estéblishing something
like solid body rotation.in the core, etc.

- 35



VI, DISCUSSION AND CONCLUSIONS
X The'forﬁulatibﬁ Qe‘haVe;QSed.fqr}the sfeilar' 
 §tructufe.e§uati6ﬁs aséumés.thatAthe tofal bbtentiai
is conservative, OUr'fotation’laws (constant - on
 equipotenfia1Vsurfé§es) are'not éonéergative, .
except in régicns’With solid-bgd&,iotafién} The?
result cf such hod—éoﬂéﬁr&ative rdfdtidn laws
7&111 be tﬂat’p and T a}e:not-stfictly,constant'Qﬁ‘
'éduipotentiéi surfaces. Although we ha{é not’
explored in detail the(effecfs;ihis’woﬁld have:
~on_fhe models, we may hope thht'duy such éffecﬁs_
will be smoofhéd by.éirculation curfenté wﬁiéh
‘_generally oberatefvery efiicientlyialong equipéfcﬁtials:
The ﬁumerical tests bresented in‘Sectionbllll
indicaté that_cur'models"agree well>with models -

- employing cdnservative_potentials,

From the results presented in Section v, - - et

we may draw severai conciusions about the fo}c
‘of rotation in the evolution of a star ieaving
the NS with an average rotation rate: |
1. rotation does not seye;ely‘qifect the total

time scales for eﬁqlﬁtion because rotation

- 36




_oxygen core and redistribute th

does not become important_until'the’later
A stages, where the timé scales are intrinsically

véry shqft;

',2;:’The;effects'ofjrotation-op the loops. in the -

H-R diagram are still Qery uncertain and
depend critically on the initial rotatiQn'rate
‘and,the>distribution of the angular'momenfum_

- with the star; and

‘3. unless some mechanism is capable of transporting

angulir momentum'across u;bérriefs, critical
velocities are reached prior to carbon
detoﬁatioﬁ;:regéfdléss_of the rotatibn_lﬁw '
‘within chémic5l1y hombéenéoué regions.3;

It appears that secular instabilities of

" the Goldreich—Schubért'type_may be ?ble to overcome

‘the weak y-barrier at the outer edge of the carbon-

sy P m ae  rmvems vy .
anguaxay moménoum,.

(¢}

'_Sinéé such instabilitiesvwillwcause mixing of
:heliu@ into the carbon-oxygen core, fufther model

'calculations are necessary to. determine what

effects this will have on the evolut}oni Such
calculations.will be the subject of the next paper

in this series. If it turns out that it is

necessary to transport angular momentum across the

37
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,Stroﬁg w-barrier in the_regidh.of fhé‘hydrogen
‘burning ébell, more'extreme redisttibution

. mechanisms, such as those suggeSted by KMT, may
have to be-éxpldred. Of.coure,'the rqlé 6f L
magﬁetiC fie1ds in these sfages is still lafgély

an open question,

Although the results presented in this paper . .

are not complete enough tu determine exactly

' what'the'effects ofirotation are 6nvthe-post e

ﬁeliuh burning stages, it is_clear;that'rotatibn

T will pléy-é dominant rqlc; The:evolutidn of‘a
roi'.ating'.s't'a_"r will be sign;f'icantl_y‘ differe,nf
 from tﬁat'indicated By modeiS'of non-rotating'
stars.. Aside from the sigqificantbeffeci of the -
A réductidn'ﬁf the effective gravity,urotationally—'
binducéd mixing in regions whiqh are stable to
pﬁrely thermal convection will change the size
and chemical composition of thé_cofé and the
BehQQiof.df'thé'ﬁﬁell sdurces. _This mayvtﬁtally
alter.the'évolution in the Subse@uent stazes.
Finally,'we»emphdsize that the ébovgbconsidgratibqs
apply to stars which leave the main sequence

with moderate rotational'veiOcities, as well

38
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as stars which may be considered "rapid-rotators",
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. , APPENDIX A
_ APPROXIMATION FOR THE POTENTIAL AND

EVALUATION OF THE FACTORS £, and f,

:AWe divide the total potential, ¢, into-thfee

© parts, as discusééd in Section I1I1. In view of the

highldegree of central cbndensétion of stars,]wé
aésuﬁe'that, at a point p on the Surféce'@.=
constant, only the mass enclosed bf fhét sﬁffacé
contributes to $d;‘ If the coordinates of the
pbiné p arc radius i and pclar.ﬂpg' e'_the
components‘df the potentiél-at‘p can be written

us'(cf; deal 1959)

- CGM_ : _ p
R i o - (ab
1 2 2 N _ e
tp T T mal X P, (cos 2) + const.,  (A2)

‘and
o r
. .. 0 L -_4_'/ 4.3 .
¥ 4-G ] o A ‘{roJ °YJ)
. ——-————-———T 0 R = ‘\ : Vi
3=2 (23+1)r” ar’ g
arg, - S C(a3)

where rO is tho radivs ot the equxoote1t1a1 surface

at -the angle 30,-dgf1ned such that P?(cos %o) = 0,

P, is the second-order Legendre polynomial, and
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Yj_ls the axisymmetric tesseral harmonic relating

:‘r to r, on a given equipotential surface-

' r(ro, e) = r [1 +-Z‘Y (r , e)J : (A4)
Cons1stent with the approximation for wd menfioned
_above YJ is given by

Yy ==-%T9 '~5, L P, (cos e) (A5a)

and. - ' .
Yj = 0 for J 7 2 - _ o . (A5b)
where n2 is tbe logarithmlc derivatlve of Y, with
respect to T,

‘ r. 3 Y . : .

[s) 2 T

= . _ - (A6)
2 .4Y;;P'ro “ . . o 5

This quantity can be evaluated by integration of

Radau's equation (cf. Kopal 1959) o _ e

T og GA%‘(nJ + 1) + nje(nj -1) =

i+ 1 ‘ - - (A7)
with j = 2 and'thevbounda?y cendition nj(o) =3 - 2;
Using equation (A6) we can eyaluatevthe derivative
in equation (A3) as folloﬁs: |
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3 ro(r-o Y,)=5r

)

4 ro, 3y
o oTg

. v o o
. o Y2($+Y;_

or,

" At this point, we can write the total potential

5 + ﬂ""»
2 dr"

5 +.'l'12 o

¢ . .-
_ 6
41 ’ A o pI‘O 2

const.,. - - f: _ . (A9)
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where all the quantities within the . integral'are
“to be. evaluated at the p01nt referred to by the
dummy-varlable—of—1ntegrat1on.- '

If we def1ne~
2 2
w

scm- 2‘:‘ﬁgr—;7 R .._e"A¥°)"

then the equation of an equipotential surface is,
 from equétions:(A4)_énd (A5),

e e g e

r=rx, .[1', AP, (cos 9)1. . (a

In ordnr to rela" r0 to f&, we evaluate_the*
volume Lntegral from r = o to r given by equation A
(A9) - This glves

3

. _ 4n .2 _ 2 ,3 | S
v, =g 0[1+5_A2 -2 AT] . (A12)
- so, from equation (1) :
" ' ' 1/3 T :
: 3,2 2
'erf"?°;[1 ty AT - my A’ 1o Ay

. In practice, one knows r, and wants to find r
. . ¥ B

‘Since A is a functicn of r_, this must be done by

an iterative procedure.

Since the local effective gravity is given by

.Y /”\> 7Ly : 3
‘E an w~er t \r ae/ S ‘A*4?
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g can be found by differentiation of equation
(A7) . The infegrﬂ1 in'equation.(AB) andsits

‘derivatives must be cvaluated numerically. Once

- g and g—x'are'knOWn for a set of points.oﬂ;an_'
equipotentialwsurface,-Sy'E and S& g':~C#h“bé'

‘ found from equation (2) by numerically integrating

over 3.0 v T T T

" In the procedure we have used, i, is not

evaluated by direct integration of equaticn (A7),

Instead, the ratio ?/5c'is evaluafedrat the

‘point'b and‘ﬂ2 is aSsigned_the value appropriate

for the surface of a>poiytrope with the same value

of g/gé_;.The values of_n2 (as a function of the
polytropic index) were taken:from Kopal (1959) -
. and the values of Q/ﬁc>from Chandrasekhar (1939) .

Test models computed with direct integration of

equation (A7) showed that~fhis apprbximatibn'has
no discernible effect on the models. At this
point, all the quantities needed in equations (10)

and (16) to evaluaté'fb and £, are known.
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APPENDIX B

IMPLEMENTATION IN THE STELLAR
EVOLUTION CODE
 ENVELOPES.

JThélfaézfnski éode.ﬁsesla“éépér#te programA
to calculate a grid of-enveiépes in fhe'(log‘L)
vlég To,) - blahe, where To iS‘the'tehperat#re of
the outermost shell in thelethlOpé (for af
coﬁplete_déscription of this prbgram,'seei
'?aczjnski 1559)0 These envelopes afe'thentﬂSGd:
to providé outer.béundary‘éonditioné for the

) interior (Henyey) pfogfam. BecaUSe'thé.enveloées
4raré constructed before fhe~interior struétﬁfé is’
'khown, the integral in'equafiohi(AQ) gaﬁnot-ﬁe»
direcfly evaiuéted and the-folldwing approximation
 isAused. - | | ‘_ -
| Let B dénbte the intégral:in-eqﬁation (AQ).
We_evéluéte'B,~for the envelope'onlj,'aé'if the
infefior_is é'polytrope'rotafing aé a solid body.
:Then w and ﬂz‘aré constanfland-cgn be féken outside
of the integfal.l Fof_a polytrope of index'n,
plog = 5", wnere 3 is the Lane-Emden function
‘(not to bé confused with-the angle 3).. If we
: . ‘ . _ s . .

...‘..r...‘-.
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RO,
e ey e i

1ntroduce the varlable g —-&-/R) gl, ‘where R is

" the rad1us of the polytrope and £y is the f1rst

‘zero of the Lane-Emden function then

» =w{n >7 5:22% jé g" "'6 dg.. .(’B1)>j

so

/R\45+“2 rg g et g""""(Bs)"
nE/ TEFTD X—ae/aa’) o '
25 R

._B=

Equating R with'ro and rewriting the above equation

. as

B . _.1 1 ° *-“2"{@1‘
2 4 T dm 3T F0,
W r° _ Sy 2 o
éh‘§’4 s S o o
ey 0 R

Ay‘el‘s an equation~which contains only quant1t1es

: related to polytropes on the rlght—hand 51de

'The_solutlons.of the Lane-Emden equatlon given

5y Comrie (1932) were.usedfto eﬁaluate'equation

-,(B4) for n = 1. 5 2, 2 5,..., 5 and the results

. put 1nto the envelope program as a table° The

same_prOCedure for 1nterpqlat10n in p/pd as'used
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for f1nd1ng e (see Appendix A) is then used to

.

2.4
0

"flﬂd B/@ r .-

ThlS procedure requlres that 0 and p’ be -

'known beforehand It is assumed that p 1is constant

throughout the envelope and the 2~d1mensiona1

v grld of envelopes if replaced by a. 4—dimensiona1

id in (log L 1og To; W, pc) - In practice,

.vthe envelope program is used as a subroutine

of the.Henyey'program wh1ch calls for new

envelopes whenever the models run out of the old

’ grid.igln'this‘way, the,grids can be kept small

without having‘to frequenfly-stOp the run to -
calculate new envelopesl
" INTERIORS

For the iuterior'(ﬂenyey),part of the’

vcalculation, the equations in'Appendix A are

;used with no further approx1mat10ns,_ A flow

chart for the program is given in Flgule Bl - ;”f*'

Two tests are employed for convergence of the

rotation factors_fp and fT’ 1f eicher test 1s

passed the model'is assumed to be converged

'Generally, TEST 2 is the determlnlng factor. This

means that f and fT have converged to the po1nt

_where further changes w111 not affect the model

47




bevond the toie:?nces'set:by the Henyey program,_

i.e:, the model is self-consistent. TEST 1

was put in primarily to allow theiprogram~tofbe5 o

»uséd for'non—rotafing modéls withpht'réquiring
two passes through the_ﬁényey brOgram for each
mddel.: F6r'fotating:mode1s,Vtwo dr_three péssés

A _thfough:the'rotation lopp are'usﬁaily.sufficient,_.
fhougﬁ'as many éé ten iterationé méy.bé r?quired |

~ when the radius of the star is rapidly changing.
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. TABLE 1%
. PRESCRIPTIONS FOR w(Mﬁ)'
REGION B CASE
: ' o . .1 2 '3 4
. radiative and | 7 1-sp |- - SB
chemically
homogeneous
" radiative and | w =0 - sB| Lc | LC| LC|
chenmically . (non-rotating): '
inhomogeneous " : :
- convective j' SB CA

. *Abbreviations: .

SB - solid body rotation and overall conservation of

angular momentum;

LC -~ local conservation of angular momentum; and

cA - wrz =_gon5tant (but w s 0.9 wcr) and‘over§11_

conservation -of angular momentum (see text).
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TABLE 2
"EVOLUTION TIME SCALES*
STAGE . SYMBOL ~CASE O CASE 2 CASE 3 - CASE 4
ZAMS A 0.0 0.0 0.0 - 0.0 .
‘H-exhaustion B " 32.861 33.208 | 33.676 33.706
S 7(A-B) . 32.861 °33.208 33.676 33.706
/1, _— 1.011 1,025 . 1.026
He-ignition C 35.392 ' 55.803 ~ 36.311 36.475
o 1 (B=C) 2.531  2.594 2,635  2.769
/7 m—— 1,025 1.04).  1.094
He-exhaustion D 50.806 51.691 . 52.233 = 55.049
» r(C-D) = 15,415 15.888 15,922 18.573
.T/".'o — 1.031 - 1.033 1.205
"Envelope E 51,767 52,842 53,506 —--
intrusion = (D-.E) 0.961 - 1.151 1.273  ——-
o 'r/'ro ——— 1.198 - 1,325 ——-
H-reignition ' F 51.870 52,962 . 53.645 ---
: + (E~F) 0.103 0.120 1,139 ---
. /g -—= '1.165 1.350  ——-
*Time scales are in units of 10° years. -
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" FIG, 1

FIG, 3

© s A

'FiGURF’cApTIONS'

- The offects of dlfferentlal rotation on a,

BOM ZAMS model as predlcted by the KT
method (dashed 11ne) and by the SCF
calculatxons of Bodcnhe1mex (1971’ svmbols),

The zero subscrlpt refels to. the non-

rotatlng modelv-whlch is compared to'

rotatlng models w1th dlffarent values of

the total angula; momentum (J) F01 the KT

'ﬁooels;'ti a:gula“ vcloc1t" distribution was

spher1(11 ‘with cons»ant n/ﬂ (1n the equator1a1
plane 1 throughout the star Values of u/¢ er
are given at the top. For ‘the SCF models

the different symbols refer to different

- angular velocity distributioné and are thel

‘Same* as used in Figure 5 of Bodenheimer (1971).

The H-R diagrams: for Cases 2-4, . The stages
referred to in Tab1e~2‘are‘indioated-by' ‘»I e
captiai'letters. The Case 0 track is

indicated by dashed lines.

- The paths in the (iog-gc, log Tci—planei

for Cases 2-4. Stages are indicated by
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’capital letters;' The-frajectdrylef%fhe

Case 0 sequence is 1ndicamed by dashed

11nes.'

: _The angular velocity at the inner most

' mass zone_as.a functlon of MODEL NUMBER

'h for Case 2. _The angular veloclty in the

- FIG. 4 -
FIG., 5 -
FIG. 6 -
FIG. 7 -

: OUtvthe models at‘four'stages5in nhe‘Case:'l

.equator1a1 plane 1s shown by a sol1d line

-and w,m"'by a das bed line.. The numbers

‘ .,;r _

.are rounded to two decimal places.-

'Same as F1gure 4, but fpr Case 3

Same as Figure 4, but for]Case.4

The angu1ar'veloeity'distribution,throughﬁ 12'

2 sequence.' The angular Velocitieéaare

1nd1cated bv solid lines and uAJ 'by'

‘7*dashed llnes.A

FIG, 8 -
FIG, 9 -

FIG. Bl ~

Same as Fxgure 7 but for Case 3

Same as Flgure 8 but for Case 4

Flow chart for the retatlng modelgprogram.
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