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ABSTRACT

A method is developed which allows us to

study the evolution of rotating stars well beyond

the main sequence stage. We consider four different

cases of redistribution of angular momentum in an

evolving star. Evolutionary sequences for a 7M

star, rotating according to these different cases,

were computed from the ZAMS to the double shell

source stage. Each sequence was begun with a

(typical) equatorial rotational velocity of 210 km/sec,

On the main sequence, the effects of rotation are

of minor importance., However, as the core contracts

during later stages, important effects arise in

all physically plausible cases. The outer regions

of the cores approach critical velocities and develop

unstable angular velocity distributions. The effects

of these instabilities should significantly alter

the subsequent evolution.



I. INTRODUCTION

In the past twenty years, astonishing progress

has been made toward understanding stellar

evolution. In spite of an enormous number of

studies of spherical models, however, relatively

little attention has been paid to the role of

rotation. Basically, there are two reasons for

the neglect of rotation in most previous investi-

gations: first, dropping the assumption oi spherical

symmetry leads to a substantial increase in the

numerical complexity of the equations of stellar

structure and. second, spherically-symmetric (non-

rotating) models have been very successful in

explaining the relevant observational data (the

mass-luminosity relationship, H-R diagrams of

clusters , etc.').'.

The problem of numerical complexity can be

reduced somewhat by using coordinate systems

defined in terms of equipotential surfaces. This

will be discussed further in Section II. The

success of spherical stellar evolution theory can

be understood by considering the stages of

3



evolution to which most observational tests apply,

i.e., the main sequence (MS) and early post-MS

stages. Calculations of rotating MS stars, for

example, show that the effects of rotation on

the internal structure of such stars are very

small, unless the interiors are rotating much more

rapidly than the surface layers (see, e.g., Sackraann

and Anand 1970, Bodenhei"»r 1971). Because of

the long duration of the MS stage, it is reasonable

to expect that various dissipation mechanisms

(such as large scale circulation currents) will

reduce any rapid core rotation built up during

contraction to the MS, so rotation will not play

a significant role during the MS and early post-MS

stages.

The situation J.s very different for the later

stages of evolution„ Consider the ratio of the

centrifugal force, F , due to rotation to the

force, F , due to gravity in the equatorial
O . "•

plane. As successive fuels are exhausted and the

core contracts, F /F will increase in inverse
. '- *- fc»

proportion to the radius of the core, if anguiar

momentum is conserved within the core. Redistribution
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of angular momentum throughout the star is inhibited

by the short time scales for the evolution and by

large radial gradients in the mean molecular weight,

which choke off large scale circulation currents.

Sackmann and Weidemann (1972) and Maeder (1974)

have shown that rotation should play a major role

in the evolution subsequent to core helium exhaustion

and Sofia (1971) has shown that the rotation rate

may be the central parameter in the final gravitat-

ional collapse of T. star.

Aside from calculations of differentially

rotating white dwarfs, which we will not consider

since they are not evolutionary sequences , we are

aware of only two investigations in which models

were calculated well beyond the MS with the effects

of rotation included. Kippenhahn, Meyer-Hofmeister,

and Thomas (1969, subsequently referred to as KMT)

followed the evolution of a 9M star from the zero-o
age main sequence (ZAMS) to the end of helium

burning in the core. Two sequences of models were

computed, corresponding to two prescriptions of

how u(M ), the angular velocity as a function of

the mass coordinate, evolves with time. Meyer-

: • '5-"- ' . . - •



Hofmeister (1972) computed sequences for 5, 6, and

9M stars through the same stages of evolution but

using only one of the prescriptions for uj(Mr) used

by KMT. In both investigations, spherical symmetry

was assumed and the effects of rotation were

approximated by taking the radial component of the

centrifugal force (averaged over a sphere) into

account in the hydrostatic equilibrium equation.

As will be discussed in Section II, this provides

only a rough estimate of the effects of rotation

on the evolution.

It appears, therefore, that considerable work

remains to be done on the role of rotation in the

post-MS stages of evolution. This is the first

of a series of papers in which we will systematically

explore the effects of rotation on these stages.

In this paper, we will concentrate on the computational

techniques and describe the results of some sample

calculations on the evolution of a 7M0 star

from the ZAMS to the double shell source stage,

using several different prescriptions for the

evolution of -ju(M ) „ In Section II, we outline

the method we use to include the.effects of

' • ' . ' • • 6 . . ; . . . • -



rotation. Comparisons with other methods and

numerical tests are described in Section III.

The starting models and the prescriptions for

w(M )• are specified in Section IV. The results of

the evolutionary calculations are presented in

Section V and discussed in Section VI. A detailed

description of the evaluation of the total potential

is given in appendices.

II. THE EQUATIONS FOR ROTATING STARS

There are four ways in which rotation may

effect the equations of stellar structure :

(1) centrifugal forces reduce the effective

gravity at any point.not on the axis of

rotation. This must be taken directly into

account in the equation of hydrostatic equil-

ibrium.

(2) because the centrifugal force is not, in

general, parallel to the force of gravity,

equipotential surfaces are no longer spheres

and the spherical relationships between the

radius, enclosed volume, and surface area of

an equipotential surface cannot be used.

.- - ' '"• • 7 . '.
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This affects all of the equations except the

equation for adiabatic convective equilibrium.

(3) because the radiative flux varies with the

local effective gravity (the von Zeipel effect),

the radiative flux is not constant on an

equipotential surface. This enters directly

into the radiative equilibrium equation and

may affect the stability to convection by

changing the radiative temperature gradient.

(4) rotation may inhibit certain modes of convective

motions and, thus, directly affect the criterion

for convective stability (cf. Randers 1942,

Cowling 195J). In addition, not all angular

momentum distributions nre stable and this

./-can lead to convection in regions which are

stable to purely thermal convection (cf.

•Wasiutynski 1946).

The first three effects can be incorporated

into the equations of stellar structure in a

fairly direct manner, if the total (gravitational

plus rotational) potential, -ti , is conservative.

The formulation we use has been derived by Kippenhahn

and Thomas (1970) and we will subsequently refer

8



to this formulation as the KT method. Because

the form in which we use the equations is slightly

different from that of Kippenhahn and Thomas and

in order to clarify how the effects of rotation

are taken into account , we rederive the equations

here .

The spherical surfaces normally used in stellar

models are replaped by equipotential surfaces.

The area of such a surface is denoted by S. and
V .. '

the volume enclosed by the surface by V. . On

such a surface, the pressure, P, the temperature,

•T, and the density, p, are constant, if the total

potential is conservative * The Lagrangian coordinate,

M , is replaced by M. , the mass interior to the
. r - . • ' • . - • • ' * '
equipotential surface and the spatial variable, r,

is replaced by r, , the radius of a sphere enclosing

a volume V, , i.e. ,
' ' * '

For any quantity f , which is not constant over an

equipotential surface, a mean value is defined

by

T = j f "drj ,

const

(2)

QUALITY



where do is an element of the surface $ .« constant.

The local effective gravity is defined by

g = dij/dn (3)

where dn is the distance between the surfaces

\i| = constant and \</ -r.d^ = constant. Because of

the definition of r,, the form of the mass continuity

equation is not altered by rotation:

2
aM. = p3V. <= 4n.r.

or

'' ' • ' 2
3r, AM, = l/4ur, p.

. . $ . . $ • 9

From equation (2),

&V, = i dnd-7 = a -ji j
v v = const. "y = const,

(4)

(5)

(6)

and combining this with equation (4) gives

S -p .
A

(7)

Equation (7) can be combined with the general form

of the equation of hydrostatic equilibrium,

3P/S* = -p, . (8)

t o give . . ' . • ' .

10



(9)

where

fp- (10)

Because equation (1) preserves the spherical

relationship between radius and volume, the energy

conservation equation retains its non-rotating

form, i.e.,

(ID

where J,. is the rate of energy flow past the surface

9 = constant, r is the (nuclear-neutrino) energy

generation rate per unit mass, E is the internal

energy per unit mass, and t is time. The local

flux of energy transported by radiation is
,3

ix.p on

where a. c, and r. have their usual meanings.

givesUsing equation (7) in equation

T^ ——
(13)

Integrating the flux over an equipotential surface

11



gives , with equation (2)>

a. Q f+'i*4acT .- 9T (14)

Using equation (9), we rewrite equation (14) as

f,.
(15)rT In T

where

(16)

g

In the present formulation, we neglect the fourth

effect of rotation on the equations (s?e above)

and use the Schwarzschild criterion for convection.

Then '

.5 In T
* In P ad' vrad (17)

whei-e 7 .and v. • , are the normal (spherical)3d r3 Q _ .

adiabatic and radiative gradients. We note that,

equation (11) is an approximation in that expansion

and contraction will not, in general, maintain a

conservative potential (cf. Kippenhahn arid

Mollenhoff 1974). As a result, the last two terms

in equation (11) will not be constant over an

equipotential surface. We assume that this effect

12
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will be compensated by large scale circulation

curi-ents. Aside from this approximation and the

neglect of the direct1 ;ef feet of rotation on

convection, no other approximations have been

made in transforming the spherical equations to

equations with rotation. ;

Before describing the evaluation of the

potential, a few comments on the above equations

are in order. The first three effects of rotation,

described at the beginning of this section, are

contained in: the factor f , the interpretation

of r, through equation (1) and the evaluation of
V • , . . . . / • .

S, and V, , and the factor f,.,. respectively. As
i? . v . *

the rate of rotation goes to zero , f -. 1 , f T - 1 , •

and r. - r so the equations reduce to their spherical
¥ . . . • - . • - • ;

counterparts. The ratio fT/f enters into the

radiative equilibrium equation because we evaluate

9 In T/9 In P = (a In TAM. )/(.̂  In P/sM. ) , rather

than > In T/.̂ 15, . The approximation used by KMT
V

and Meyer-Hofmeister (1972) is roughly equivalent

to considering only the factor f in equation (9) .

In general, f deviates from unity by a much larger

amount than does f _ , so this would appear to be a

13



consistent level of approximation. However, the

ratio fT/f ~ 1/fn' wnicn must appear in the

criterion for convection [see equation (17)],

deviates from unity by an amount comparable

to the deviation of f_ and this should be taken

into account at the level of approximation used

by KMT and Meyer-Hofmeister.

A detailed description of the evaluation of

the potential and the lactors f and fT is given

in the Appendices. Basically, the potential is

divided into three parts: ijj , the sphericallys

symmetric part of the gravitational potential,

•j> , the cylindrically symmetric potential directly

due to rotation, and \jj ,, the cylindrically symmetric

part of the gravitational potential due to distortion

of the figure of the star. The evaluation of the

first two parts is trivial. The third part is

evaluated, at a given point, as if that point

were on the surface of a polytrope rotating with

constant &' and with the same ratio of mean

interior density to central density as displayed

by the model at the point in question. The

distortion of the mass exterior to the equipotential

14



surface which contains the point is ignored. As

we will show in Section III, this provides a very

good approximation to the actual potential.

Equations (5), (9), (11) and (17) are

similar enough to the spherical equations that they

can easily be incorporated into existing stellar

evolution codes. In our case, we have used the

Paczynski code with modifications to the input

physics as described by Endal (1975).

III. COMPARISON TO OTHER METHODS AND

NUMERICAL TESTS

Several different methods have been used in

the past to investigate the effects of rotation.

Before describing the numerical tests of our

program, we will discuss the similarities and

differences among the various methods. We will,

not include perturbation techniques such as those

of Chandrasekhar (1933) and Sweet and Roy (1953)

which have only been applied to polytropes or

other highly simplified stellar models.

Double-approximation method - This method has been

used by a number of investigators (Roxburgh,

Griffith, and Sweet 1965; Faulkner, Roxburgh, and

15



Strittmatter 1968; Strittmatter, Robertson, and

Faulkner 1970; Sackmann and Anand 1970; Sackmann

1970) , each of whom have introduced minor modifica-

tions. The method consists of dividing the star

into two parts: a core which is assumed to be

rotating slowly in comparison-to the local critical

velocity and an envelope which contains a negligible

amount of mass. First-order expansions in a

rotation parameter are used in the core and the

Laplace equation is used for the potential in the

envelope (the mass of the envelope does not

contribute to the potential). For uniform rotation,

this is a valid approximation but for differential

rotation (rapidly rotating cures) the core

approximation breaks down.

2 2J method - a detailed description of the J

method has been given by Papoloizou and Whelan

(1973). It has also been used by Whelan, Papoloizou,

and Smith (1971), Whelan (197?.), and Moss (1973).
- ' •' • ' 2

The stellar structure equations used in the J

method are formally equivalent to those used in

the KT method so the only difference is in the

evaluation of the total potential, £ . In the J2
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method, the Roche approximation has generally been

used. This is equivalent to neglecting the

contribution of the quantity ^ . discussed in

Section II. The Roche approximation should break

down in regions where the ratio of mean ir-'prior

density to central density (p"/p ) and the ratio

of angular velocity to critical angulai velocity

(uu/ii _) are both significant compared to unity.

This will be the case for rapid differential

rotation in the core.

SCF method - the self-consistent-field (SCF)

method , as described by Ostriker and Mark (1968),

is primarily a method for obtaining accurate

solutions of the total potential and hydrostatic

equilibrium equations. The SCF method was combined

with the complete stellar structure equations by

Jackson (1970, see also Mark 1968). Jackson's

method was applied to differentially rotating stars

on the upper main sequence by Bodenheimer (1971).

In this method the stellar structure equations

are evaluated on equipotential surfaces, as in the

2 'KT and J methods. The primary difference is that

the potential equation is solved much more

17



accurately and the method is, as a result, very

time-consuming. This makes it unsuitable for

evolutionary calculations but it remains a very

powerful method for testing more approximate

techniques.

Papaloizou and Whelan (1973) have made extensive

comparisons of the results obtained with the various

methods (including the KT method) for uniformly

rotating ZAMS models. Except at low masses —

• (M <; 1M̂ ). they find that all the methods described

above produce essentially the same results. At

low masses the comparisons seem to be complicated

by differences in the chemical composition and

convective mixing lengths used in the models .

Since we will not be computing models of low

mass stars, we will not worry about this problem.

Above 1M, the reduction in the luminosity produced

by uniform.rotation is confined to <10% and this

2 'reduction varies linearly with ;u . This indicates

that uniform rotation may be considered as a small

perturbation on non-rotating models and, therefore,

does not constitute a very stringent test for

methods which will be used when rotation introduces

18
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large changes in the models. Unfortunately, there

are very few calculations with which we can

compare our results for differentially rotating

models. \

Bodenheimer (1971) has calculated ZAMS models

of 15, 30, and SOM^ stars with strong differential

rotation using the SCF method . In

the models computed by Bodenheimer, the velocity

was constant on cylinders , whereas we have

specified constant angular velocities on equi-

potential surfaces, so the results obtained by

the two methods may not be directly comparable..

However, Bodenheimer found that, to a good approx-

imation, the effects of rotation on the central

temperature (T ), central density (p ), andc. c

luminosity (L) do not depend on the distribution

of angular momentum but only on the total angular

momentum (J) of the models. If we confine ourselves

to these parameters, the comparison may be valid.

Figure 1 shows the variations of these parameters,

for a 30M^ star, as a function of .log J. The

SCF results are indicated by the symbols used

in Figure 5 of Bodenheimer. The different symbols

19



refer to different internal distributions of the

angular momentum. The results obtained with our

method are indicated by dashed lines. We have

specified that w/m (at the equator) be constantcr

throughout our models. The values of u//u> -

as various values of log J are indicated at the

top of the figure. Up to w/cu = 0.8, thec r

differences between our models and the SCF models

with the same value of J are generally comparable

to the scatter introduced by different angular

momentum distributions in the SCF models. Beyond

uj/uj = 0.8, we were not able to produce converged

models because of the large differences between

the (non-rotating) Schwarzschild model used as an

initial guess and the rotating models to be

calculated by relaxation. We should emphasize

here that the convergence problem is due to a

poor initial guess, rather than to limitations of

our method. In the evolutionary sequences presented

in Section V, w/iu was as large as 0.99. Incr

these calculations, there were no problems with

convergence because the initial guesses were based

on extrapolations of models which were already

rapidly rotating.

20



IV. THE EVOLUTION OF A 7Mp..STAR: STARTING

MODELS AND ROTATION LAWS

In order to explore the effects of rotation

on the post-MS stages of evolution, five sequences

of models were computed for a 7M star: one

sequence for a non-rotating star (Case O) and

four sequences for rotating stars with different

assumptions about the redistribution of angular

momentum in an evolving star (Cases 1-4). For

each case , the sequence was begun on the ZAMS

with a chemical composition of X = 0.7, Z = 0.03.

The prescriptions for u(M() used in the various

cases are summarized in Table 1.

In all cases, the angular momentum was assumed

to be constant on equipotential surfaces , rather

than on cylinders . as in the models of Bodenheimer

(1971). This has already been discussed in Section

III and will be discussed further in Section VI.

Also, in conserving angular momentum, deformation

of the equipotential surfaces was ignored, i.e.,

the moment of inertia of a given mass shell was

assumed to be that of a thin spherical shell of

radius r,. Cases 1-3 were begun with solid body
. •J . . .

21
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rotation and u =8.8 x 10~5/sec. This corresponds

to the average x-otation rate for spectral type B5

main sequence stars, according to Abt and Hunter

(1962). Unlike the models computed by KMT and

Meyer-Hofmeister , our models are not rapid rotators

on the MS. The Case 4 sequence was begun with

solid body rotation at >M. = 8.8 x 10~ /sec in the

regions outside of the convective core. Within

the convective core, we set ;:• = min. [3.8 x 10~ /sec

(r /r) , 0;9 -jj ] , where r is the radius of thec c c r' c. w

convective core. .Limiting u; to 90% of ju • was

necessary to avoid the supei'critical velocities

•2
near the center implied by the .or = constant

prescription. This limit, on .y was also applied

to the convective regions of the evolving models

for Case 4. The extra angular momentum was

uniformly redistributed throughout the remainder

of the convective region whenever the limiting

velocity was reached.

The rotation laws chosen are not meant to

accurately reflect the effects of the various

angular momentum redistribution mechanisms

which may operate in an evolving star. Rather,

22



they are meant to bracket the set of physically

plausible rotation laws. Cases 1 and 3 represent

extremes in terms of complete redistribution of

angular momentum and no redistribution of angular

momentum, respectively. Case 2 represents an

intermediate (and more likely) possibility that,

while circulation currents redistribute.the .

angular momentum in chemically homogeneous radiative

regions/such currents are choked off in inhoraogeneous

regions by gradients in the mean molecular weight

(cf. Mestel 1953). In convective regions, the

high viscosity associated with turbulence may

lead to solid body rotation. Case 4 represents

ar. alternate possibility, namely that mass motions

in convective regions tend to equalize the specific

angular momentum .in such regions. This would be

the case if the circulation produced by convection . .

preserves the angular momentum of the convective

elements and has, to sowe extent, been borne out

by calculations (Taylor 1973, Weir 1975). Some

justification for limiting the angular velocity

to some fraction of the critical velocity is also

provided by these calculations, though the choice

23
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of 0.9 'j; for the limiting angular velocity is

entirely arbitrary. Actually, constant specific

' • ' • ' ' 2angular momentum implies that uu ~ = constant ,

where x" is the distance from the rotation axis.

However, within the restriction that ;o be constant

• •' ' 2 ' ' • 'on spherical surfaces ^r = constant is the closest

possible approximation.

V. THE EVOLUTION OF A 7MR'STAR: RESULTS

The Case 1 sequence was terminated during

helium burning in the core. At this point it

was clear that the effects of rotation on the

post-MS evolution are negligible if solid body

rotation throughout ths star is maintained during

these stages. Unless coupling mechanisms, such

as magnetic fields, which do not directly depend

on circulation currents are stronger than one

would normally expect , solid body rotation throughout

the star will probably not be maintained. In any

case, the numerous previous calculations for non-

rotating stars adequately describe the Case 1

evolution so Case 1 will not be discussed further.

Cases 2-4 were continued until critical velocities

were encountered at some point in the star. In

24



all three cases, this occurred after helium exhaustion

in the core and prior to carbon ignition.

Time Scales

One of the effects of rotation is to lengthen

the time scales for the evolution. Table 2 gives

the ages of the models at a number of stages for

Case 0 and Cases 2-4. Hydrogen and helium exhaustion

are defined to occur when the abundances of the

respective nuclei drop below the minimum abundance
_ 4 • ' - ' • ' : • • - '

(10 ) allowed for in the code. Helium ignition

is defined to occur at the first appearance of

a convective core due to helium burning. Some

helium burning, as evidenced by a slight decrease

in the helium abundance, generally occurs before

this but the first appearance of a convective

core provides a convenient point at which to

compare the models in the various sequences.

Subsequent to helium exhaustion, the hydrogen

burning shell is extinguished and the convective

envelope intrudes into the hydrogen exhausted

core, reducing the size of the.core. This

stage and the stage at which the maximum depth

of the convective envelope is reached and:the



hydrogen burning, shell reignited we're-chosen as .

two more points at which to compare the sequences.

Below the ages at each stage, the fenes required

to evolve from the previous stage are given.

Finally, for Cases 2-4, this time is compared to

the time required by the non-rotnting (Case 0)

models. In Case 4, critical velocities were

reached prior to the envelope intrusion stage.

Inspection of Table 2 shows that the time scales

for the evolution are not grossly affected by

rotation. Except for Case 4 , the increases in

the tine scales prior to helium exhaustion are

less than 5£, The 20% increase in the duration

of helium burning in Case 4 is"larger than the'

present uncertainty in the time scales for non-

rotating models but it is also strongly dependent

on the limiting angular velocity allowed in the

convective core.

Loops in the H-R Diagram

Figure 2 shows tnc trac'..s of the sequences

for Cases 2-4 in the H-R diagram. The points

at which the stages listed in Table 2 occur are

indicated by the letter symbols given in Table 2.

26



For comparison, the Case 0 track is shown with

dashed lines. Here again, the effects of

rotation are strongest for Case 4. There appears

to be three loops for this case. The first

(shortest) loop is probably due to a problem in

locating the outer boundary of the convective core.

An underestimate of the size of the convective core

leads to an overestimate of the decrease in the

helium abundance in the core. This decreases the

helium burning energy generation rate and causes

the sequence to swing to the right in the H-R

diagram, prematurely ending the loop. In subsequent

models, the core.grows larger again, the helium

abundance in the core increases, arid a larger loop

follows. The third (highest luminosity) loop

occurs during the early helium shell burning phase.

The evolution through these stages (for Case 4

only) was later recalculated using shorter tine - _

steps and a finer criterion for the size of the

convective core. In this calculation, the first

and second loops merged into a single loop resembling

the loop for the Case 0 sequence, though extending

to slightly higher effective temperatures. However,

27



the loop which occurs during the helium shell

burning phase still appeared, indicating that it

is real and that multiple loops can result from

rotation. - ... , .-.:-'. ... '. .

The results of KMT and Meyer-Hofmeister

also indicate that rotation can increase the size

and number of loops during these stages. One

of the differences between our sequences and those

of KMT and Meyer-Hofmeister is that their models

begin with critical velocities on the'ZAMS whereas

our ZAMS models are rotating about one-half as

fast (at the surface). With respect to redistribution

of the angular momentum, our Case 2 is equivalent

to the Case R of KMT. In Case cc of KMT and the

models of Meyer-Hofmeister, local conservation of

angular momentum is assumed in all radiative

regions and convective regions are treated as in

Case 2. Meyer-Hofmeister has emphasized that the

effects of rotation may be important for the

statistics of cepheids, specifically by lowering

the smallest mass for which loops crossing the

instability strip occur. This would presumably

shift the peak in the number vs. mass distribution

28



of cepheids to a lower mass. Meyer-Hofmeister

estimates that the peak will be shifted by about

one solar mass below the peak for non-^rotating

stars. There are, however, several points which

should be made in this regard. First, the loops

in the H-R diagram represent one of the more

uncertain features of stellar evolution theory,

even for non-rotating stars. As is discussed

by Meyer-Hofmeister, the number and length of the

loops are very sensitive to the handling of the

convective core boundary during hydrogen burning.

Thus, the effects (discussed in Section II) of

rotation on the criterion for convection should

be taken into account. This \vas not done at all

in the calculations of KMT andMeyer-Hoimeister

and only approximately (one of the effects)

in the present investigation. Second, our models,

which represent typical stars (rather than rapid

rotators), do not show significant effects of

rotation in the H-R diagram, except in Case 4. This

is admittedly an extreme (though possible) case.

Finally, it is likely that stars which begin their

evolution with near-critical velocities will lose

29



a considerable fraction of the angular momentum in

their envelopes "prior to helium burning. For

example, equatorial mass shedding during the Be

phase has been shown by Strit,tmatter . Robertson,

and Faulkner (1970) to be a very efficient means

of removing angular momentum. Kraft (1966)

has shown that the observed rotational velocities

of cepheids are consistent with the loss of a

considerable fraction of the MS angular momentum.

It appears , therefore , that furtner investigations

are required before any strong conclusions can

be reached about the effects of rotation on the

statistics of cepheids.

One further comment should be made about

Figure 2Vr, At point E, the giant branches of our

sequences show a pronounced bending to the right.

This is the point at which intrusion of the con-'

vective envelope into the hydrogen exhausted core

begins. This mixes material from the core into

the envelope and lowers the hydrogen abundance

there. To take this into account in the envelopes,

the opacities from the tables (which applied to

the ZAMS composition) were reduced as if the
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opacity was due to pure electron scattering in an

ionized medium. Since much of the mass in the

envelopes during this stage lies above the hydrogen

ionization zone, the effect of the reduction of the

hydrogen abundance in the envelope was overestimated

by this method.

Conditions at the Center

Figure 3 shows the paths of the sequences

for Cases 2-4 in the (log central density, log

.central.temperature)-plane. Again, the stages

referred to in Table 2 are indicated by capital

letters and the Case 0 sequence is shown by

dashed lines. Figures 4 through 6 show the

angular velocities (solid lines) of the inner most

mass zone as functions of the model numbers. The

dashed lines show..# A for the same zone. The

letters at the tops of the figures refer to the

evolutionary stages. The discontinuous nature of

the angular velocity curves for Cases 2 and 4 are

due to the finite zoning of the models. For

instance, after helium exhaustion (point D), the

helium exhausted core grows by finite increments

as the helium burning shell moves outward. Whenever,
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the helium abundance in a shell reaches zero and

that shell becomes part of the core (which is

rotating as a solid body), the shell's angular

momentum and moment of inertia are included

in computing the angular velocity of the core in

the next model. This causes a sudden drop in the

core angular velocity.

From Figure 3, it is apparent that, for Cases

2 and 3, rotation does nn-f- significantly affect

the central conditions until after helium exhaustion

(point D). For Case 4, however, there are

noticeable effects during both the hydrogen and

helium burning stages. Figure 6 shows that the

angular velocity of the inner shell is at the

limiting velocity during these stages and,

therefore , the magnitudes of these effects depend

on the chosen limiting velocity. After convection

in the core dies out and before the fuel is completely

exhausted, there is a short period when the core

rotates with local conservation of angular momentum

and with no limiting velocity. After the hydrogen

burning stage, the angular velocity reaches 99%

of y , during this period.
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After helium burning, rotation becomes more

and more important in all cases as the core contracts

and the angular velocity increases rapidly. In

general, rotation causes the temperature, at a

given density, to be lower in the rotating models

than in the non-rotating models. Thus, carbon

ignition will become very difficult to achieve

unless some mechanism couples the core to the envelope.

In view of the large gradient in the mean molecular

weight, across the hydrogen burning shell, it is

difficult to see how this coupling will occur.

(However, KM1 have suggested some possible mechanisms.)

The evolution of the angular velocity distribution

After hydrogen burning, the contractions

and expansions of various parts of the star plus

the assumed rotation laws produce strong differential

rotation. This is illustrated in Figures 7 to 9,

which show the angular velocities and ;;/;.> as

functions of the mass coordinate for Cases 2-4,

respectively. F-ach figure shows models at stages

A, C, and D and a raodel close to the end of the

sequence. A general feature of all the cases

is the spin-up of the core. Critical velocities
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were reached in each case soon after the last

model shown in the figures. The critical velocities

were reached, not at the center, but rather, at

the outer edge of the hydrogen exhausted (Case 3)

or helium exhausted (Cases 2 and 4) core. This

situation can be seen, for Cases 2 and 4, as a

direct result of imposing solid body rotation in

the chemically homogeneous core. For Case 3, the

occurrence of critical velocities at the -outer

edge of the core can be understood by considering

the structure of a nearly isothermal, degenerate

core. For a non-relativistic , degenerate core,

the density distribution is very similar to that

of a n = 1.5 polytrope (Chandrasekhar 1939). The

dr-nsity distribution in the convective core of

the ZAMS model can also be approximated by a n = 1.. 5

polytrope. For local conservation of angular

momentum, the evolution of the angular velocity

distribution is determined by the evolution of

the density distribution. Thus the angular

velocity distribution in the degenerate core of

the final model is very similar to that of the

ZAMS model, i.e., flat, though the value of the

angular velocity in the final model is almost
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four orders of magnitude larger. This nearly flat

distribution causes ID/UJ to increase outwardscr. • -

from the center.

In all of our rotation laws, we have ignored

the possibility that instabilities can overcome

gradients in the mean molecular weight (u-barriers)

F.owever, for large enough gradients in the angular

velocity and small enough gradients in the mean

molecular weight, instabilities can occur (cf.

Zahn 1974). In the region of transition from

the carbon-oxygen core to the helium-rich zone,

the gradient in the mean molecular weight is

fairly small and, in Cases 2 and 4, the gradients

in the angular velocity are very large. If we

had included such instabilities, redistribution of

the chemical composition, as well as the angular

momentum, would have occurred. The effect this

would have on the models is difficult to predict

without detailed calculations since the effect

would depend on the interaction of several factors:

the degree of mixing produced by the instability,

the effect of the mixing on the helium burning

shell, the timescale for re-establishing something

like solid body rotation in the core, etc.
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VI. DISCUSSION AND CONCLUSIONS

The formulation we have used for the stellar

structure equations assumes that the total potential

is conservative. Our rotation laws (constant .« on

equipotential surfaces) are not conservative,

except in regions with solid-body rotation, the

result cf such non-conservative rotation laws

will be that p and T are not strictly constant on

equipotential surfaces. Although we have not

explored in detail the effects this would l:ave

on the models, we may hope that any such effects

will be smoothed by circulation currents which

generally operate very efiiciently along equipotcntials

The numerical tests presented in Section III

indicate that our models agree well with models

employing conservative potentials. . -^

From the results^presented in Section V,

we may draw several conclusions about the role

of rotation in the evolution of a star leaving

the MS with an average rotation rate:

1. rotation does not severely affect the total

time scales for evolution because rotation
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does not become important until the later

stages , where the time scales are intrinsically

very short ;

2. The effects of rotation on the loops in the

H-R diagram are still very uncertain and

depend critically on the initial rotation rate

and the distribution of the angular momentum

with the star; and

3. unless some mechanism is capable of transporting

angular momentum across U-barriers, critical

velocities are reached prior to carbon

detonation, regardless of the rotation law

within chemically homogeneous regions.

It appears that secular instabilities of

the Goldreich-Schubert type may be able to overcome

the weak u-barrier at the outer edge of the carbon-

oxygen core and redistribute the angular momentum.

Since such instabilities will cause mixing of

helium into the carbon-oxygen core, further model

calculations are necessary to determine what

effects this will have on the evolution. Such

calculations will be the subject of the next paper

ip this series. If it turns out that it is

necessary to transport angular momentum across the
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strong a-barrier in the region of the hydrogen

burning shell , more extreme redistribution . . ••

mechanisms, such as those suggested by KMT, may

have to be explored. Of coure. the role of .

magnetic fields in these stages is still largely

an open question.

Although the results presented in this paper

are not complete enough to determine exactly

what the effects ox rotation are on the post

helium burning stages, it is clear that rotation

will play a dominant i-ole. The evolution of a

rotating star will be significantly different

from that indicated by models of non-rotating

stars. Aside from the significant effect of the

reduction of the effective gravity, rotationally-

induced mixing in regions which are stable to

purely thermal convection will change the size

arid chemical composition of the core and the

behavior of the shell sources. . This may tr.tally

alter the evolution in the subsequent stages.

Finally, we emphasize that the above considerations

apply to stars which leave the main sequence

with moderate rotational velocities, as well
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as stars which may be considered "rapid-rotators".
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APPENDIX A

APPROXIMATION FOR THE POTENTIAL AND

EVALUATION OF THE FACTORS f and ±T

We divide the total potential, y , into three

parts, as discussed in Section II. In view of the

high degree of central condensation of stars, we

assume that , at a point p on the surface w =

constant, only the mass enclosed by that surface

contributes to $•.. If the coordinates of the

point p are radius r and polar angle 9, the

components of the potential at. p can be written

as (cl. Kopal 1959) :

CM

2 ~ o (cos 2) " const.,

(A I)

(A2)

and

4;:G o

(A3)

where r is the radius oi' the equipotential surfaceo

at the angle ~ , defined such that P^(cos -'- ) = 0,

P,, is the second-order Logendre polynomial ,. and
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Y. is the axisymmetric tesseral harmonic relating

r to r on a given equipotential surface:

<ro> (A4)

Consistent with the approximation for ^ . mentioned

above, Y. is given by .
"

P2 (cos 9)

and

Y => O for j j< 2,

(A5a)

(A5b)

where 110 is the logarithmic derivative of Y0 with
' •

respect to rQ :

'2
(A6)

This quantity can be evaluated by integration of

Radau's equation (cf. Kopal 1959)

r 6 fi, (1, + 1) + T\ (Tl - 1) -.
j J. J

(A7)

with j = 2 and the boundary condition T]1(O) =• j - 2.
J

Using equation (A6) we can evaluate the derivative

in equation (A3) as follows:
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or,

r 4Y2o 2

••d (5 +
o

(A8)

At this point, we can write the total potential

a s • -"' '

' • ' . . . " ' '6 V
GM, 4ni, = —-—2" P (cos e)_ ir .̂.3 2, o j3r

1 2
-.«

const.,.

r P2 (cos 9)

2
dr.

(A9)
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where all the quantities within the integral are

to be evaluated at the point referred to by the

dummy-variable-of-integration.

If we define

"• •' ' ' ; '' 2^ 2 . . ' " . " • • . ' . . . .10 r c .

* .

then the equation of an equipotential surface is,

from equations (A4) and (A5), .

r •= r [1 - AP0 (cos 9)1- (All)
O ~ £t .

In order to-relate r to r., we evaluate the

volume integral from r = o to r given by equation

(A9). This gives

3V,

so, from equation (1)

A" -

ri U3 .2- 2 .3 -1/3
ro-[1 h 3 A "115 A 1 • '

(A12)

(A13)

In practice, one knows r, and wants to find r .

Since A is a function of r , this must be done by

an iterative procedure.

Since the local effective gravity is given by

an v (A14)

43



g can be found by differentiation of equation

(A7)« The integral in equation (AB) and its

derivatives must be evaluated numerically. Once

_ i •' - • - ' • -
g and g are known for a set of points on an

equipotential surface. S. ~g and S, g" can be

found from equation (2) by numerically integrating

over G .

In the procedure we have used. ~\\~ is not

evaluated by direct integration of equation (A7).

Instead, the ratio ~/.-/ is evaluated at the

point p and ?(„ is assigned the value appropriate

for the surface of a polytrope with the same value

of r)/p . T h e values of 1]^ (as a function of the

polytropic index) were taken from Kopal (1959)

and the values of p/p from Chandrasekhar (1939),

Test models computed with direct integration of

equation (A?) showed that this approximation has

no discernible effect on the models. At this

point, all the quantities needed in equations (10)

and (16) to evaluate f and .£„, are known.

44



APPENDIX B

IMPLEMENTATION IN THE STELLAR

EVOLUTION CODE

ENVELOPES

The Paczynski code uses a separate program

to calculate a grid of envelopes in the (log L,

log T ) - plane, where T is the temperature of

the outermost shell in the envelope (for a

complete description of this program, see

Paczynski 1969)„ These envelopes are then usod

to provide outer boundary conditions for the

interior (Henyey) program. Because the envelopes

are constructed before the interior structure is

known, the integral in equation (A9) cannot be

directly evaluated and the following approximation

is used. .

Let B denote the integral in equation (A9).

We evaluate B, for the envelope only, as if the

interior is a polytrope rotating as a solid body.

Then uj and T| ' are constant and can be taken outside
^ . •

of the integral. For a polytrope of index n,

p/O - QU, where q is the Lane-Emden functionc

(not to be confused with the angle 9).. If we
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introduce the variable § = (r0/R) e^, where R is

the radius of the polytrope and 5, is the first

zero of the Lane-Emden function, then

B
o

The interior mass in a polytrope obeys the equation

»>

(B2)

so

B = ̂ r-4 Z- 2 + -n_ J M-ae/BE.')
•& o

(B3)

Equating R with r and rewriting the above equation

as • . ' • -' " . • ' '• • •

B

Q
9
n .,4

(B4)T-ae/as^; . . - • • . - .
yields an equation which contains only quantities

related to polytropes on the right-hand-side.

The solutions of the Lane-Emden equation given

by Comrie (1932) were used to evaluate equation

(B4) for n =1.5, 2, 2.5,..., 5 and the results

put into the envelope program as a table. The

same procedure for interpolation in p~/p as used
• . - ' ' • " • C
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for finding "n:0 (see Appendix A) is then used to' £ ' - ' • • " . . •

find B/uu2r0
4.

This procedure requires that u and p; be
' ' • . . ' . - " . C

known beforehand, it is assumed that -ju is constant

throughout the envelope and the 2-dimensional

grid of envelopes if replaced by a 4-dimensional

grid in (log L, log TQ, ji, PC>. In practice,

the envelope program is used as a subroutine

• of the Henyey program which calls for new

envelopes whenever the models run out of the old .

grid. In this way, the grids can be kept small

without having to frequently stop the run to

calculate new envelopes.

INTERIORS

For the interior (Henyey) part of the

calculation, the equations in Appendix A are

used, with no further approximations..A flow

chart for the program is given in Figure BJ . ''~ "~

Two tests are employed for convergence of the

rotation factors f and fT; if either test is

passed, the model is assumed to be converged.

Generally, TEST 2 is the determining factor. This

means that f and f_, have converged to th<2 point

where further changes will not affect the model

' - " . - • " ' ''.; '* ' ' 47 . • • '



beyond the tolerances set by the Henyey program,

i.e:, the model is self-consistent. TEST 1

was put in primarily to allow the program to be

used for non-rotating models without requiring

two passes through the Henyey program for each

model. For rotating models, two or three passes

through the rotation loop are usually sufficient,

though as many as ten iterations may be required

when the radius of the star is rapidly changing.
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TABLE 1*

PRESCRIPTIONS FOR uj(M.)

REGION CASE
1 2 3 4

radiative and
chemically
homogeneous

radiative and
cheraically
inhomogeneous

i
convective

........._•

u/' = 0
(non-rotating)

SB

SB

LC

SB

•

LC

SB

i

LC

\

CA

*Abbreviations :

SB - solid body rotation and overall conservation of

angular momentum;

LC - local conservation of angular momentum; and

2
*

•0.9 iu ) and overallCA - a'i* =• constant (but yj

conservation of angular momentum (see text).
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TABLE 2

EVOLUTION TIME SCALES*

STAGE SYMBOL

ZAMS A

H-exhaustion B
T (A-B)
T/7o

He-ignition C
T(B-C)
T/T«o

He-exhaustion D
T (C-D)
T/<ro

Envelope E
intrusion T (J>-E)

TAo

H-reignition F
T(E-F)
T/TO

CASE 0

0.0

32.861
32.861

.

35.392
2.531

• — — — • '

50.806
15.415

. • • •

51.767
0.961

• .• — -••

51.870
0.103

CASE 2

0.0

33.208
33.208

1.011

b5.803
2.594
1 .025

51,691
15.888
1.031

52.842
1.151
1,198

52.962 .
0 . 120
1.165

CASE 3

0.0

33.676
33.676
1.025

36.311
2.635
1.041.

52.233
15.922
1.033

53.506
1.273
1.325

53.645
1.139
1.350

CASE 4

0.0

33.706
33.706

1.026

36.475
2.769
1.094

55.049
18.573
1.205

T_ mm — 1

___ : '
:

*Time scales are in units of 10 years.
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FIG. 1

FIGURE CAPTIONS

- The effects of differential rotation on a

SOM^ ZAK5S model as predicted by the KT

method (dashed line) and by the SCF

calculations of Bodenheimer (1971, symbols).

The zero subscript refers to the non-

rotating model, which is compared to

rotating models with different values of

the total angular momentum (J) „ Fox* the KT

models, the angular velocity distribution was

spherical with constant '•»/•* -(in the equatorial

plane) throughout the star. Values of ,u cr

FIG. 2

FIG. 3

are given at the top. For the 3CF models,

the different symbols refer to different

angular velocity distributions and are the

same as used in Figure 5 of Bodenheimer (1971)..

- The H-R diagrams for Cases 2-4, The stages

referred to in Table 2 are indicated by

captial letters. The Case 0 track is

indicated by dashed lines.

- The paths, in .the (log o.,, log T )-planec c

for Cases 2-4, Stages are indicated by
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capital letters. The trajectory of the

Case 0 sequence is indicated by dashed

. • • •' . lines. - ', " " : ' . • • - . - '• -; ' • . . ' ' '"•..: ',.

FIG. 4 - The angular velocity at the inner most

mass zone as a function of MODEL NUMBER

for Case 2. The angular velocity in the

equatorial plane is shown by a solid line

and uj/v , by a dashed line. The numbers

are rounded to two decimal places.

FIG. 5 - Same as Figure 4, but for Case 3

FIG. 6 - Same as Figure 4, but for Case 4

FIG. 7 - The angular velocity distribution through-

out the models at four stages in the Case

2 sequence. The angular velocities are

indicated by solid lines and w/w^^' by
. - . . • • '. O A. " ' • - - "

dashed lines.

FIG. 8 - Same as Figure 7, but for Case 3

FIG, 9 - Same as Figure 8, but for Case 4

FIG. Bl - Flow chart for the rotating model program.
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ô j

. .•.'.

.*'"<''

u.u

•2.0

4 n

-6.0

-8.0

O n.u

-2.0

-4.0

•6 0

• • 8 0

mn
• • • ' • 0

i

-

V^__

L • • 'ii
1
\
"\
\

i
> ' . .

1^~1
1 ,
1

-i ;
\ ' /

h V '
v

-

t • .
0 1.0.

I I I I 1

, STAGE A

i

/.

^
I I 1 1 1

STAGE D

v""^ .
x^^

N .̂ .

*s

2.0 3.0 4.0 5.0 6.0 0

•:, . '

A

/ i

/ i
\

• •-i
K- A/Ii• /' i/ \ ./ '• / i/ i/ i/ 1

0 1.0

STAGE C
• '

_^*^^^

.

. ^ 1 — — r — " "1I T ' i i

END

• • • . ; '

V ' ~

V

• ^ . ,
" — -~ -^__

V^._

2.0 3.0 4.0 5.0 6.0 7

1 .U

0,8

n fi

0.4

0.2

o

O n "5
^v

3

0.8

0.6

04

02

00
0

Mr/Mo



TEST1

EXTRAPOLATE
TO NEW
MODEL

COMPUTE
NEW

ENVELOPES

1TER! = 0

TEST 2

IMPROVE
HENYEY
MODEL

H
E
N
Y
E
Y

P
R
O
G
R
A
M

_r: i






