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SUMMARY

A brief discussion on the scroll flow is presented.
Streamline pattern and velocity distribution in the guide
vanes are calculated. The blade surface temperature
distribution is also determined., The effects of the blade
shapes and the nozzle channel width on the velocity profiles
at inlet to the guide vanes are investigated.



INTRODUCTION

In recent years there have been considerable developments
in the study of small radial gas turbines to improve their per-
formance characteristics (References 1 through 3). Most of this
research work has been cohcentrated on turbine rotors, since
it was considered to have the main effect on turbine efficiency.
Recent experimental works have shown the need for new design
techniques in the turbine scroll and guide vanes in order to
improve the turbine performance.

At the present time the scroll designs are still based on
one dimensional flow calculations. Guide vane blades are merely
designed to give the required flow turning angle. The inlet
velocity distribution has been assumed to be uniform from one
guide vane to another. Such an assumption is not realistic:

a variation in the inlet velocity distribution exists and
depends mainly on the scroll and the guide vane blade effects.
The scroll effects on inlet velocity profiles are discussed
in this report, but no final solution is given. The analysis
presented here cdeals only vith the guide vane blade effects
on the variation in the inlet velocity profiles.

SCROLL EFFECT ON GUIDE VANE INLET VELOCITY VARIATIO!

The three dimensional flow behavior in the scroll affects
the nozzle inlet flow properties. A circumferential variation
in the flow properties and lateral velocity components result
from the secondary flow discharge effects in the scroll.

Boundary layer build-up on scroll side walls has a blocking
effect in the scroll passage. Consequently, each vane :. 1
have different inlet conditions, especially the inlet mass
flow and the inlet flow incidence.

The secondary flow in the scroll results from the non-
equilibrium between the pressure and the centrifugal forces
in the boundary layers on the scrcll side walls. Nonuniformities
in the flow properties at the scroll inlet also result in
secondary flow. This effect iz similar to the secondary flow
in cascade passages and pipe bends (References 4 and 5). The



secondary flow consists mainly of a pair of vortices, as shown
in Figure 1. Their strength increases along the scroll,
causing a circumferential variation in the flow parameters.
This is another factor that leads to different inlet flow
condition in each guide vane channel.

Additional weak vortices are created in the scroll
passage due to the flow discharge to the guide vanes. Such
vortices are similar to the corner vortices, buf are not
stationary. These vortices depend on the geometry of the
scroll and nozzle entrance arrangements. Two discharge
vortices are created when ths vane entrance is at the middle
of the scroll cross section. However, only one vortex is
induced when the vane entrance is at the scroll side, as
shown in Figure 2. Lateral velocity components will result at
the guide vane entrance due to the secondary flow and the
discharge effects in the scroll.

GUIDE VANE BLADE EFFECT ON INLET VELOCITY DISTRI&SUTION
AND FLOW CHARACTERISTICS IN THE NOZZLE

The flow in the stagnation regions is largely affected

by the vane blades leading edge geometry and by their setting.

This in turn strongly influences the flow at the vane channel

inlet. The effects of these geometry parameters, as well as

the passage depth shape in the axial direction on the inlet

velocity profile are considered in the present work. '
The mass flow distribution between the guide vane nozzles

is assumed to be known from the scroll data. The flow "

properties are taken to be uniform at the scroll exit, and the

variation in the flow properties occurs when the flow passes

through the nozzle entrance region. The nozzle entrance is

considered to be the part which connects the scroll exit with the

guide vane, i.e., the region between stations Z and 3 of

Figure 3. The entrance region radial length is usually about

half the guide vane blade radial chord. If we assume a uniform

flow away from the guided vane blades, Katsanis' program

(Reference 6) for calculating velocities on a blade-to-blade

stream surface of a turbomachine could be used to study the



flow field and determine the profiles at station 3., A brief
review of the analysis used in this computer program follows.
There are two useful techniqgues for calculating velocities
through radial cascades; namely the velocity gradient method
and the finite difference method. Advantages of both methods
are utilized in the analysis.
The stream function equation for the radial guide vane

cascades is given by

2 2
1 37x . 37x L lspax _ (Ll albp)y 3y
?aez+ar2 2% 30 30 (F*+6; 5 ) 3c = © (1)

where ¥ is8 a stream function which satisfies

3x _ bp 9y _ . be
3r W Wy ' e ) Wr {2)
where W is nozzle vane mass flow
Wr' Wa are velocity compcnents.

Finite difference techniques are used to solve the stream
function in the finite region ABCDEFGH as shown in Figure 4.
The flow at a radial distance &, from the guide vane blades,

is assumed to be uniform with a constant flow angle o, measured
from the radiel direction.

When the local velocities inside the region are supersonic,
then equation (1) is no longer elliptic and a different
technigue has to be used. For such a case, a different approach
is followed which is based on velocity gradient method. The
velocity gradient equations were derived in Reference 6, For

our radial cascade they can be written as follows:

W
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B = r tang 8 (5)

ar
and
W
8 = tan™t w—i (6)

In the first step of calculation, the mass flow through the
guided vane nozzle is reduced svfficiently so that the flow
is completely subsonic throughout the passage. The finite
difference solution is obtained as mentioned before. 1In the
second calculating step, the velocity distributiocn based on
the actual mass flow is obtained by means of the velocity
gradient equation (3) using the information obtained in the
first calculating step.

DESCRIPTION OF THE GUIDE VANE NOZZLE
DATA USED IN THE CALCULATIONS:

The cases precsented here are based on the following
inlet conditions:

Inlet total temperature, T, = 1110°K

Specific heat ratio, Y = 1.328

Speed of sound, a = 650 m/8

Gas constant, R = 287.4 J/Kg °K
Inlet average velocity, Vive = 4z m/8

Mass flow per one vane, 4 = 0.0106 Kg/s
Inlet total pressure, Py = 6.894 x 10° N/m2

Two radial guide vane configurations are shown in Figures
5 and 6. Figure 7 shows the mean camber line for the two blade
shapes under consideration. The coordinates of the two guide
vane blades are given in Tables 1 and 2. The five different



nozzle axial width configurations which are shown in Figure 8
were investigated, The input data for the program are given
in Table 3.

COMPUTER RESULTS AND DISCUSSIONS

The analytical results obtained for the two guide vane
blade configurations are presented in Figures 9 through 19,
The blade surface velocity dist-ibutions are shown in
Figures9 and 10. Both configurations result in the same
tendencies in velocity variations on the blade surfaces.

A large velocity gradient exists near the leading edge of the
blade concaved surface, for &onfiguration 2. This may be
attributed to its larger leading adge vadius. The streamline
patterns of the flow in the vane nozzles are shown in

Figures 11 and 12. Identical flow patterns are obtained in both
cases. The blade surface temperature distributions are
presented in Figures 13 and 14. The changes in the gas flow
temperature are small since the mass flow considered here is
less than the vane critical mass flow. It may be noted from
the velocity and the temperature distributions that the
differences in the flow parameters between the concave surface
and the convex surface are more pronounced for configuration
2 than for configuration 1. Consequently, configuration 1

is preferable for guide vanes of radial turbines. Figure 15
shows the circumferential variation in the velocity at the
guide vane leading edge for three different nozzle entrance
lengths. Very small differences are observed for the entrance
lengths between a half and one times the radial blade choxd.
Figure 16 shows the effect of the guide blade shape on the
velocity profile at the entrance between two successive blade
leading edges. The variation in the flow direction, a, for
the two blade configurations, is given in Figqure 17. The
variation of the radial and tangential velocity components

at the vane entrance are shown in Figares 18 and 19 for the
two blade configurations considered. It is noted that unlike



the radial component, the tangential velocity component has a
symmetric distribution between two successive blades. The
mass flow rate at the guide vane inlet varies considerably

in the circumferential direction. The tendency is such that
the mass flux is greater at the blade concave surface than
that at the convex surface.

From Figures 9 and 10, some features of the flow behavior
over a blade in a radial cascade can be observed. It is
noticed that the pressure is lower on the blade surface with
the concave shape, and higher on the convex surface. This
is the opposite of what is expected in an axial cascade where
the convex surface is the suction side and the concave surface
is the pressure side. This theoretical result was confirmed
experimentally in our laboratory for the blade curvature
settings similar to those investigated analytically. The
blade curvature setting is reversed, however, in recent guide
vane designs.

Figures 20 and 21 show the effect or the channel axial
width variation on the iiiiet velocity profiles. The channel
configurations were shown in Figure 8. It was found that by
changing the channel width in the entrance region, very
livtle change in the inlet profiles was noticed. On the
other hand, changing the channel width inside the blade
region resulted in considerable changes in the velocity
profiles, as can be seen in Figures 20 and 21.

CONCLUSIONS

The three-dimensional flow behavior existing in the
gcroll will effect the mass flow distribution through the
guide vanes. From this study, it is found that the blade
shape effects the inlet velocity profiles, causing a variation
in the flow mass flux at the guide vane inlet. The channel
width in the guide vane entrance region does not influence
the inlet velocity profiles.
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