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COMPUTATION OF THE TRANSONIC
PERTURBATION FLOW FIELDS AROUND
TWO- AND THREE-DIMENSIONAL
OSCILLATING WINGS

W.H. Weatherill, F.E. Ehlers, and J.D. Sebastian

The Boeing Company

1.0 SUMMARY

The problem of generating unsteady transonic air forces for use in flutter analyses remains a
significant problem. One of the most promising procedures for solving this problem is re-
ported by Ehlers in reference 1. It consists of a finite difference solution for the differential
equation of the unsteady velocity potential. The differential equation is linear and includes
coefficients that vary with respect to space, being a function of the steady flow velocity
potential. ’

The differential equation, together with the boundary conditions, is derived in detail by
Ehlers in reference 1. Ehlers also presents a finite difference solution scheme based on that -
used by Murman and Cole (ref. 2) and Krupp and Murman (ref. 3) for the solution of steady
transonic flow. The work of reference 1 resulted in the development of the method, a pilot
program for two-dimensional flow, and the calculation of several examples including both
the flat-plate and NACA 64A006 airfoil. The work of this report is a direct extension of the
earlier work and includes an investigation of solution parameters in order to reduce the com--
puter resources needed to produce converged results; an extension of the two-dimensional
examples of reference 1;the development of a pilot three-dimensional program; and an
analysis of the dependence on frequency of the convergence of the solution scheme.

The main results of the study are as follows:

a) The number of iterations to solution convergence is sensitive to the value of overre-
laxation and underrelaxation factors.

b) There is an upper limit on frequency, depending on Mach number and size of mesh
region, above which the relaxation procedure will not converge.

¢) Row line relaxation is more efficient than column relaxation except at combinations
of Mach number and frequency for which convergence is marginal.

d) The direct solution is fast and efficient for problems with a small number of grid points.
However, the storage requirements are large and incore versions are impractical for
realistically sized problems, even for cases in which the flow is all subsonic. The direct
solution may provide a means for avoiding or getting around the frequency limitation
problem discussed in b) above.



e)

g)

A number of two-dimensional examples were calculated at Mach numbers of 0.85 and

" 0.9 and included flat-plate and NACA 64 A006 airfoils. For the flat-plate cases, the

finite difference results compare favorably with results from linear theory using the
program of Rowe et al. (refs. 4 and 5). Correlation of the airfoil results with the ex-
perimental data of Tijdeman and Schippers (ref. 6) is about the same as Ehlers found in
reference 1. In addition, two Freon calculations were made at M = 0.9.

No advantage was found in using convergence acceleration methods based on the
Aitken-Shanks delta-square process.

A pilot three-dimensional program was developed for rectangular wings. Pressure dif-
ference coefficients are presented for an aspect ratio 5 planform in harmonic pitch.
Results for a flat-plate configuration compare well with corresponding results from
linear theory. Results for a NACA 64A006 configuration appear reasonable, although
there are no experimental data available for correlation purposes.



2.0 INTRODUCTION

An initial attempt to apply finite difference procedures in the solution of the unsteady tran-
sonic flow problem is described by Ehlers in reference 1. This report is a sequel to that work,
and includes the investigation of solution parameters in order to reduce computer resources
required to obtain useful results, an extension of the two-dimensional examples of reference
1, and development of a pilot three-dimensional program.

Shortly after the publication of reference 1, Traci et al. (ref. 7) published a paper describing
a second solution to the unsteady transonic problem using finite differences. They, however,
obtained a different differential equation and boundary conditions by retaining only the
first-order time derivative term of the differential equation. The finite difference solution
procedure appears essentially the same as that used in reference 1.

The purpose of this continuing investigation is to provide a practical analytical procedure
for predicting the aerodynamic forces for flutter analyses. The examples of reference 1
showed relatively good correlation with linear analytical results and experimental results.
However, the amount of computer resources required to generate the results were large
enough to make the procedure impractical for flutter calculations. This particular problem is
significantly reduced with the use of high values of the overrelaxation factor (ORF) and
sequential refinement of the finite difference mesh, as will be discussed in section 5.2.

In the present work, the unsteady transonic flow is analyzed by solving for a scaled per-
turbation velocity potential, p. The velocity components of the flow, corresponding to the
physical coordinates Xo» Yo» Z, are

=, (1+ v=u w=1u
w=u, (146, ) o 9y, 0 ¥z,

where u,, is the freestream velocity and ¢ is the perturbation velocity potential. The scaled
potential, ¢, is related to the full potential, ¢, by the relation

¢ =€y

where € is assumed to be a small quantity defined in terms of the airfoil thickness ratio.
The differential equation for the velocity potential in unsteady transonic flow as derived by
Ehlers is

- 7. (7
{x e, 1o, +9, O, Qiele e,

¢))
+ [wzle - (7—1)iw¢0xx] ¢, =0

Where
steady velocity potential

S
i

6
I

unsteady velocity potential
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_ Mach number

reduced frequency

i o=V

€
I

¥ = specific heat ratio

€ = (§/M)?” where § is the thickness ratio or measure of camber
and angle of attack

K = (1 -M?)/M?%e

X,y,Z are the scaled coordinates x = x4,y = Uyg, Z = MZy, Where Xq, Vo, Zg

are the physical coordinates and u = §1/3 M?/3

Equation (1) may be rewritten as

[u\Plx - (2iw/e)\Pl]X +solyy *e, , tan =0 2)

and this will be the form used throughout the report. For two-dimensional flows, equation
(2) is rewritten as

[uwlx - (210)/6)501])( -leyy +qp, =0 3)

The wing shape as a function of time is written

z, = 6f(x,y,t) (4)

and the linearized boundary condition for the total velocity potential, ¥, is

‘pz = fx(x’Y3t) + ft(x9Yst) (5)
For two-dimensional flow, the z is replaced by y, and f = f(x,t).

Equations (2) and (3) are rewritten as finite difference equations and solutions are obtained
using relaxation procedures. The finite difference equations together with far-field boundary
conditions for three-dimensional flow are presented in appendices A and B.

An important development during the course of the program was the encountering of dif-
ficulties in obtaining solution convergence—{first for row relaxation, and then for certain
combinations of Mach number and frequency. This led to analytical investigations of the
relaxation procedures used that are discussed in section 4.0 and described in detail in ap-
pendices C through E.



Empirical investigations of the relaxation procedures are presented in section 5.0 with two-
dimensional examples presented in section 6.0.

Finally, section 7.0 describes the three-dimensional pilot program together with some
examples. :






3.0 SYMBOLS AND ABBREVIATIONS

a,b coefficients for y, z differences corresponding to second derivatives,

with appropriate subscripts (eq. A3); also length of sides of region
for finite difference solution

ADI alternating-direction-implicit iteration scheme

b semichord of wing |

BSOR block successive overrelaxation

c,d coefficients for x difference corresponding to second derivative
(eq. A3)

c height of side of region for finite difference

Cs, s Cs,» ds,» ds, | equation (A13) in appendix A

Ck,» €k, » Cky» Cky equation (A27) in appendix A

¢y,dy,c5,ds coefficients for second-order accurate difference corresponding to
first derivative (eq. A3)

ACy jump in pressure coefficient

E coefficients in difference equations with appropriate subscripts; also
used as unknown error in Von Neumann analysis

ERROR see equation (19)

f(x,y,t) instantaneous wing shape defined by zy = § f(x,y,t)
f(x,t) instantaneous airfoil shape defined by y, = 8 f(x,t)
fo undisturbed wing or airfoil shape

f unsteady contribution to wing or airfoil shape

Fjj see equation (A6)

h Ze, + 17 %k

ijk X,y ,z subscripts for points in the mesh

i V-1
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imax»> Jmax> Kmax -

iy
Iw

m

Ny, Ny, N;
ORF

P(x,y)

RlsRO

Sy

Sz

URF

X iridex for first mesh point behind hinge

maximum number of x,y,z mesh planes respectively

X index for trailing edge

integrai defined by equation (B2)

y _mesﬂ li-ne just below airfoil (two-dimensional configuration)
(1-M?)M?*e

z mesh plane below wing (three-dimensional configuration)
superscripts denoting lower or upper boundary on Fij ;also used to
denote lower and upper triangular matrices resulting from matrix de-

composition (sec. 5.3.2)

subscript used on mesh point indices to denote points adjacent to
and below the airfoil or wing

freestream Mach number

number of iteration

number of mesh increments in x,y,z directions
overrelaxation factor

iyt iwy, acceleration (or pressure) potential
wile - iw(y-1)¥Poxx

overrelaxation factor

variable defined for equations (A18)

variables defined in equation (B4)

semispan of wing

Oy +2 = Yim +1)/h

Y = Yip -1)/

K-@+Dvoy

underrelaxation factor



Xo> Yo Zo

X,y,Z

P )
Xy Y1, Zy
XY,z

XQ, Xt

Yo

%1

physical coordinates

scaled coordinates (xo, 4Yo, uz(;) for t};e three-dimensional problel;\;
the scaled coordinates for the two-dimensional problem are x and y,
with x again being the direction of fluid flow
variables of integration |
coordinates defined in equation (A18) h
coordinates of leading and trailing edges
coordinate of control surface hingeliné |

Xj = Xj-1

Xj-1 - Xj-2

coordinate of wing tip

Vi - M

parameters in equation (C18)

ratio of specific heats for air

jump in ¢, at plane of wing or vortex wake:
(8/M) 273

thickness ratio or measure of camber and angle of attack

X2 = Xj
ximax - ximax'1
wM/(1 - M?)

Scale factor on yg and z,, u=8'"3M?/3 " . IR
unscaled perturbation velocity potential

steady scaled perturbation velocity po_tential_

unsteady scaled perturbation velocity potential

wake integral defined in equation (A24)

acceleration or pressure potential

9



A®B

fundamental source solution of integral equation for evaluation of
far-field boundary conditions

angular reduced ffequency (semichord times frequency divided by the
the freestream velocity)

critical reduced frequency (sec. 4.2)

Kronecker product of matrices A and B (see sec. D.1.3 in app. D)

10



4.0 ANALYTICAL EVALUATION OF THE CONVERGENCE
OF THE RELAXATION TECHNIQUES USED FOR
THE UNSTEADY TRANSONIC FLOW PROBLEM

During the course of the program, a considerable effort has been made to analyze and im-
prove upon the relaxation procedures used to solve the finite difference equations. At

first this was done to ensure the convergence of the mixed-flow problem using row relax-
ation. It was found that a straightforward implementation of this scheme, in direct analogy
to the column relaxation scheme, was divergent for the mixed-flow problem. Following the
recommendations of Jameson (refs. 8 and 9), an analysis was made in which successive itera-
tions were treated as a pseudotime variation. This analysis showed the need for the addition
of time-like difference terms in the program. A summary of this work is given in section 4.1
and a detailed discussion is presented in appendix C.

The next problem was encountered in attempting to complete some of the numerical
examples. In particular it was found that, for a given Mach number, there was an upper limit
on the reduced frequency at which the relaxation solution converged. At higher values of
frequency, the solution was found to diverge. This behavior was found to be essentially
independent of the type of relaxation scheme (i.e., row or column), the mesh spacings, the
relaxation factor, and whether the differential equation was purely elliptic (flat-plate con-
figuration) or of mixed elliptic and hyperbolic type (airfoil section configuration). A matrix
analysis of a simplified version of the problem revealed that there is indeed an expected
frequency limitation on convergence, and this may be recognized by noting the similarity
between the unsteady differential equation and the Helmholtz (or reduced wave) equation.
This analysis is summarized in section 4.2 and a detailed account presented in appendix D..

Finally, a third means of analyzing relaxation procedures is the Von Neumann stability
criterion. The application of this analysis method to the pertinent relaxation process gen-
erally concurs with the findings of the preceding two analyses. The details of this analysis
are presented in appendix E and summarized in section 4.3.

4.1 A TIME-LIKE CHARACTERISTICS ANALYSIS

Jameson treats the difference between two consecutively iterated values of the velocity
potential as a time derivative, namely:

| ae @
@D ) _ A ot
e 6)

where the superscripts denote the iteration number and the subscript i, j denotes the finite
difference point. When this expression is substituted into the difference equation and all
terms are expanded in a Taylor’s series about the central point, a differential equation
results that contains not only the terms of the original differential equation but also addi-
tional time derivatives. A study of variation with time of the solutions to this differential
equation with arbitrary initial conditions will reveal some insight into how the iteration
method will converge.

11



For flows that are subcritical, the simple straightforward difference equation developed by
Murman and Cole (ref. 2) will converge whether column solution or row solution of the
difference equations are used in the relaxation procedure. Column relaxation will also work
for mixed flow, but row relaxation will diverge unless time-like difference terms are added.
The time-like differential equations for both column and row relaxation are derived in
appendix C. At elliptic points, row relaxation for sweeping toward the airfoil (y < 0) leads
to the differential equation (C 15), i.e.

(2w, g + + [2 + b,
(wplx)x e g Ty qe, +At - 225 -—(a;+ b)) Py

At @
() =0
Ayj) “ryt
where ij = Yj+1-Y-1 and r is the overrelaxation parameter. The differential
equation is expressed in canonical form by introducing a new timer = t + AAyt_
]
Thus
. 2(a; . bs)
2iw . 1t+7)
T T Yy +qe, - At [r— 2aj]<plr
2 (8)
_(_éi._) 1) =0
Ayj lrg

This equation is hyperbolic in the time and hence initial value problems are properly posed.
For supersonic points, u < 0 and ¥, T terms have the same sign rendering the equation
hyperbolic in y. Since supersonic points experience only upstream influences, the equation
must be made hyperbolic with respect to the variable x. This is achieved by adding differ-
ence terms of the form yielding time derivatives ¥, and ¢, and choosing their coef-
ficients so that the resulting coefficient of the ¥, ;, term is positive. The method was em-
ployed by Jameson for the steady-state equation for the velocity potential and was found to
be successful for the linear unsteady differential equation for harmonic motion discussed in
this document. The inclusion of these additional terms does not affect the final solution
since these terms become negligible when the solution is converged.

Introducing the time derivative terms into the difference equations for column relaxation

at elliptic points leads to the following time-like differential equation for sweeping in the

increasing x direction:
2iw

0

- + +qy, -2ua, ¥ - 2(ue, -iwoa,) ¥
(o, ) @, w,yy 9%, 1 P, 2 )%,

9

X

where o, , «y, and o are given in equation (C8). With the new time variable, 7 = t + o X,
the equation takes the canonical form

we, ) 2Ly tw  +aqy -2, -iwe)e, -ux, ¢ =0 (10)
X X € X yy T

12



Since for elliptic or subsonic points, u > 0, this equation is hyperbolic in time. At hyper-
bolic points, backward differences are used for the x derivatives and the resulting differen-
tial equation contains no ¥, .. term but takes the form (eq. C11)

iw : At -1
- 22 + - ——
(usalx)x 2— w,x cplyy +q¥, -2u Ax B, +Ax2)( = )“’:t

(11)

o Ay D 1 -
T2 b (Axlfol+AX2)‘p‘t—O

where Ax; = xj -~ Xxj-1and AXx; = Xj.1 - Xj.2.

Since u is negative, this equation is parabolic in time, but hyperbolic with respect to x. To
have damping at supersonic points, equation (11) indicates that r must be less than 1, and
hence underrelaxation must be used at supersonic points.

4.2 A MATRIX CONVERGENCE ANALYSIS

The observed frequency-dependent limitation on the convergence of the overrelaxation
method may be analyzed according to a system matrix approach. In outline, the method
proceeds as follows: first, simplifying assumptions are made that replace the original

problem with that of solving
1 2iw W’

‘Plxx+-i¢lyy-?¢lx+-éfkpl =0 (12)
over a rectangle of sides a, ¢ and with ¢, being prescribed on the sides. Then the region and
differential equation are discretized using a uniform mesh and central differences, respect-
ively, leading to_a system of linear difference equations. This system is written in matrix
form as A¥Y, = R, where ¥, is the vector of unknown values of ¥, at the interior mesh
points and R is a vector containing the boundary values. The elements of A are known
functions of the reduced frequency, w. A theorem is invoked that states that under certain
mild assumptions, the line or block overrelaxation scheme used in the program will converge
if, and only if, all the eigenvalues of A are positive;i.e., A is positive definite. To apply the
theorem, the eigenvalues of A, which are, of course, also functions of w, are determined;
then the value of w for which the smallest eigenvalue becomes zero is found. We call this
value the ““critical frequency” denoted by w¢r, since by virtue of the theorem, it is the
value of w below which relaxation will converge and above which it will diverge.

Exact and approximate formulas for w; derived in this way are given in appendix D. Here

we give only the approximate formula, which is
1/2

2
I-M |1 1
Wer =T 7|+ — (13)
o M [a Kc ]

where a and c are the width and height of the mesh region. This completes the outline of the
analysis, the goal of which was to find a formula for w¢; to explain the frequency limita-
tion. We now turn to validation of the formula.
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A comparison of the critical frequency predicted from the analysis of the simplified prob-
lem with various computational observations is given in figure 1. The solution region in all
cases was defined as the rectangle x = -2.65 to 2.75;y = -6.25 to 6.25. The approximate
prediction formula given by equation (13) was used since the number of mesh points em-
ployed (at least 25 x 20) was sufficiently large in each direction so that the difference be-
tween w¢r from the exact and approximate formulas is less than 1%.

With regard to the computational observation points, those indicating convergence corres-
pond to the largest frequency for which convergence was obtained at the given Mach num-
ber. In the two airfoil cases, the convergence was marginal and resulted only after substan-
tial experimentation with the values of the under- and overrelaxation factors, at supersonic
and subsonic points, respectively. In the case of the flat plate, additional computations were
performed at slightly higher frequencies; actual divergence of error measure was observed,
as indicated in figure 1.

Further validation of the results of the matrix analysis was obtained as follows. It is an im-
mediate inference from equation (13) that a decrease in the dimensions of the solution
region implies an increase in the frequency for which convergence of overrelaxation can be
obtained. As a test of this inference, and hence of equation (13), the dimensions of the
solution region were reduced from 5.4 to 2.8 in the x -direction and 12.5 to 6.0 in the z-
direction. For these dimensions and M = 0.9, the critical frequency predicted by equation
(13) is 0.254. Flat-plate computations were performed for w = 0.25 and w = 0.30, with
the result that convergence was observed in the former case and divergence occurred in the
latter case.

The existence and general location of a critical frequency, dependent on Mach number and
predicted by the analysis of the simplified problem, are in good agreement with the com-
putational results from the full problem. Prediction of the exact location of the critical
frequency is not to be expected since, of the five assumptions made in the formulation of
the simplified problem in appendix D, all in the airfoil case and b through d in the flatplate
case are violated in the actual computational scheme. The results strongly indicate that
the cause of the frequency limitation in the full problem is the same as that in the simplified
problem: the failure of the system matrix to remain positive definite.

It should be noted that the conclusions of this section so far are relevant to relaxation
solutions. For a direct solution where A is formed from the complete set of simultaneous
albegraic equations and the solution is obtained by matrix inversion, the matrix A need only
be nonsingular rather than positive definite for solutions to exist. Thus use of a direct solu-
tion procedure may well lead to solutions at reduced frequencies above w¢r. However, since
the far-field must be updated as the velocity potential distribution changes, the matrix form
is more nearly Api (n) = Ry, (n- ]), where ¢, (1) and 7 (n- 1) are the vectors of values of
the unknown velocity potential and the values determined in the preceding solution,
respectively. This iterative form resulting from the calculation of the far-field boundary
conditions imposes the additional condition for solution convergence that the effective
eigenvalues of the matrix product A-TR must be less than one in modulus.
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4.3 A VON NEUMANN STABILITY ANALYSIS

A third means of examining the convergence of a differencing method is the Von Neumann
analysis of error propagation. Let Ex ¢ be the error at the k, £ grid point; then for a uniform
x and a uniform y mesh the errors may be expressed in the form

P=+kpjax 4= +8ax o 2mi (k _ _Z)
p—=X+2q
Ey= 22 2 Apq® (14)

P=Kmax a=-Tqax

where a and c are the width and height of the mesh region. Since the difference equation
is linear, only a single term need be analyzed.

A solution of the difference equation of the form

o (M _ gle 21rl< Ax Ay)
1
ke

where n is the order of iteration, has the appropriate initial value consistent with equation
(14). In order for errors to decrease with increasing n, g must have a magnitude less than

one. In appendix E, the equations of column relaxation, row relaxation, and an AD]I (alter-
nating direction implicit) method were analyzed. The condition gl < lin all cases reduced to
the same inequality limiting the range of frequency, namely:

1 M [l-cos 0, l-cosaz]

P 429 Gng < 2

Ax + 7

ax KAy (15)

where 8, = 27rpAa—x and 0, = 2mq—- Ay
This relation shows that the range of frequency is increasingly limited as the Mach number

approaches 1.

In the hopes of obtaining better convergence for the higher reduced frequency problem, an
ADI (alternating direction implicit) method was tried. In the flat-plate case, we consider for
the time-dependent equation for two-dimensions

3y iw W'
Tt.= lexx +¢1yy -—e—wlx +T¢l (16)
A uniform mesh is swept through using a row solution of the difference equation
+1 + + +
v?,(,'f ) . wl(f) K( p(nt]) N?}_ 1) (n 1)) )
ij i lit]j ij 'iwlj/ o w ‘p(n+l)
At sz € lil an

(n) (n) , (n)
iw( (n+1) (n+1) (Wluﬂ -2¢; t
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and then through the mesh by a column solution of the difference equation

¢1(?+2) ) ‘p1(2+1) K(W(nﬂ) _2¢(n+l-) + ¢(n+l)> \

ij 1i+1j tij 'ij ‘P(n+2)
At sz € lij
(18)
(n+1) (nt+1) . (nt1)
-2 +
iw ( @+ | o+ , ("’ g1 Py T
TTENTH il - 2

Ay

Applying the Von Neumann stability analysis to the preceding two equations yields the
same inequalities as found for conventional row and column relaxation. This'indicates that
the ADI method yields no improvement in the convergence for higher frequencies. The ADI

method was coded and tried but failed to converge. Lack of time has prevented an adequate
investigation of this failure.
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5.0 SOLUTION PROCEDURE INVESTIGATION

An empirical investigation was conducted of the finite difference solution procedure to
determine the effect of varying solution parameters and techniques and in minimizing solu-
tion computer resources. The investigation included:

®  Relaxation factors

®  Grid point distribution and spacing

® Extent of mesh area

®  Sequential refinement with respect to Mach number, reduced frequency, and number
of mesh points

® Row relaxation

L] Direct solution

®  (Convergence acceleration

The results of these investigations are summarized in this section and detailed in appendix F.
5.1 SOLUTION CONVERGENCE CRITERIA

For this report, solution convergence was determined by monitoring the ERROR, which is
defined as maximum value of all i, j, k of

(n) _ _(n-1)
Yiijk Y ik
r

19)

where g, fj"k’ is the unsteady velocity potential for the nth iteration, ‘pn(l:,; ") is the corres-
ponding potential for the preceding iteration, and r is the relaxation factor. The solution

wus considered converged when ERROR = 1075. In some cases, particularly for finer
meshes and pitch mode, convergence was considered complete when ERROR < 1074,

The maximum residual was considered to have greater potential as an indication of sclution
convergence than ERROR. The residual is a measure of the degree to which a solution (here,
a set of velocity potentials) satisfies the finite difference equations. The iteration may be

~\n -1~ . . . s
written in general matrix form as Ap; ~ = Ry, . The residual at the ith point is thus

the summation 2 (Aij - Rij ¥, i Preliminary attempts to calculate the residual resulted in
J

values several orders of magnitude larger than the corresponding ERROR. Multiplying
through by an area associated with each mesh point reduced the difference between the two
values to some two orders of magnitude. However, the precise relationship between ERROR
and the maximum residual is not yet entirely clear and thus further investigation is required
before the residual can be used as a convergence criterion.
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In the discussion on relaxation factors it will be noted the value of ERROR may be reduced
rapidly by reducing the value of r. However, the resulting pressures were inconsistent with

the minimal level of ERROR that had been reached with a single value of r. This again indicated
that some form of residual measure might provide a more realistic insight into convergence.

5.2 SOLUTION PARAMETERS

§.2.1 RELAXATION FACTORS

In the iteration solution procedure used for this report a relaxation factor was applied to
the velocity potential using the following replacement formula

() _ _, (0 . D)
Y- T g T A0 A 20)

where wf'.};z D is the velocity potential form the previous iteration at point (i,j,k), and

n . _ . . .
?1 ik on the right-hand side is the result of the current iteration. The factor r is the relaxation

factor and is set to some value between 0 and 2. The procedure here was to use overrelaxation
(1.0 <r < 2.0) for points at which the steady flow was subsonic and the unsteady differential
cquation was clliptic, and to use underrelaxation (0 <r < 1) for points at which the steady
flow was supersonic and the differential equation was hyperbolic.

The characteristics of convergence for overrelaxation will be discussed with figures 2 and 3.
These sketches show ERROR versus number of iterations. It is convenient to plot the ERROR
in terms of log scale and the number of iterations as a conventional linear scale. It is noted that
a straight difference of successive potential values includes the relaxation factor as a multiplier.
Thus, we divided r out in calculating ERROR to provide a “normalized” measure of the error.
For small ORF’s (overrclaxation factors) these curves were made up of two nearly linear
portions; for the initial iterations the convergence was rapid, resulting in a steep slope during
the carly iterations and a very shallow slope for the later iterations. As the ORF was raised,

the slope of the initial iterations became less, while that of the later iterations increased. This
trend continued as ORF was raised until the convergence during the initial iterations eventually
became mildly unstable, but still converged well. Finally, when ORF was too high, convergence
became quite unstable and the slope of ERROR versus number of iterations decreased sharply.

An ORF should be selected, if possible, so that the convergence criteria is attained within
the number of iterations for which the steep initial slope holds.

Another interesting characteristic (fig. 3) is that if the ORF is changed during a solution
calculation, there is an immediate change in the ERROR versus number of iterations curve.
If the ORF is lowered, there is a significant drop in the ERROR curve. However, after the
drop, the line levels out at a slope less than the slope for the higher ORF. It is possible, of
course, to take advantage of this phenomenon to achieve a specific ERROR value for which
convergence has been defined. However, we encountered inconsistent results where the con-
vergence ERROR had been set as low as 107, and thus caution is advised in making use

of this characteristic.
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The selection of the optimum overrelaxation factor was dependent on:
(a) The number of mesh points

(b) Level at which the convergence criteria was set

(c) Relaxation procedure (row, column, etc.)

(d) Solution sequence (start at upstream boundary, trailing edge, etc.)
(e) Frequency for a given Mach number

Values of the relaxation factor ranged from 1.9 down to 1.4 depending on the particular
example. Item (c), the variation with frequency, appeared to be involved with the frequency
limitation problem and is not discussed in appendix F. However, for a given Mach number
and as the frequency was increased into the range of marginal stability, the value of the op-
timum relaxation factor decreased.

Generally, the coarser the mesh, the longer the initial slope lasted, and thus the smaller the
optimum ORF. In this sense, the optimum ORF was dependent on the level at which the
convergence criteria was set.

The pattern of the variation of optimmum ORF with relaxation procedure and solution
sequence was not explicitly defined within the limited number of examples run. Some -
illustrations of the variations encountered are presented in section F.1.1 of the appendix.

The use of complex ORF’s does not improve the solution convergence characteristics. This
was first demonstrated empirically and later shown with the Von Neuman stability analysis
presented in appendix E.

The selection of ORF is best done by trial and error since it is a function of so many vari-
ables. We would recommend as large an ORF as possible and we have had considerable suc-
cess with ORF’s of 1.85 and 1.9, as shown in the appendix.

The solution convergence was not generally as sensitive to the underrelaxation factor as to
the overrelaxation factor, although one case is cited in appendix F when the solution
diverged for aun URF of 1.0 and converged rapidly for an URF of 0.7.

5.2.2 GRID DISTRIBUTION AND SPACING

The examples of grid distribution and spacing showed that the representation of the
pressures in the neighborhood of the flow singularities was significantly improved by cluster-
ing the points about the singularities and increasing the number of grid points.

For the first case, the mesh-area dimensions were fixed and the total number of points held
nearly constant. The mesh points were spaced such that the ratio of sizes of adjacent intervals
was A, where A could be varied between 2/3 and 3/2. The smallest intervals (for A > 1.0)

were centered about the known flow singularities; i.e. at the wing leading edge and the con-
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trol surface hingeline in the flow direction and at the airfoil centeriine in the crossflow
direction. Successively improved representations of the leading-edge singularity in the
pressure distribution was obtained as A changed from 1.05 to 1.25 to 1.4. At the hingeline,
the pressure distribution changed significantly between A = 1.05 and 1.25 and minimally
between XA = 1.25 and 1 4.

For the second case, the mesh area dimensions and the point spacing factor, A, were held
fixed, and the number of mesh points varied. A significant improvement in the pressure
representations was obtained in going from a mesh of 25 x 16 to a mesh of 34 x 28. The
change in pressure distribution in going from a 34 x 28 to a 42 x 30 mesh was minimal.

5.2.3 EXTENT OF MESH

The effect of varying the extent of the finite difference mesh was investigated by altering
the location of the upper and lower mesh boundaries. Solutions were obtained for the
boundaries at Yo )05 = +9,4+18.5, and +29.6 (in physical coordinates) while the number
of mesh points was held fixed. The pressure distributions and the velocity potential were
compared. There was surprisingly little variation in the pressure distributions for the three
cases. However, the distribution foryg ,,x= 19 was slightly smaller in amplitude than the
other two, which in turn were essentially the same. The velocity potential showed much
more difference between the three cases, a difference not reflected in the pressure distribu-
tions. The best representation of the leading edge singularity in pressure was with Yo max =
+9, the calculation apparently benefiting from the compression of points in the crossflow
direction.

5.2.4 SEQUENTIAL REFINEMENT

In starting a new analysis, a set of zeros is often used as the initial values for the velocity
potential distribution. The question is whether solution convergence for the desired set of
parameters may be most economically achieved by calculating the velocity potential for
intermediate values of the parameters, and using the resulting potentials as the initial dis-
tributions for the final calculation. This process of sequential refinement was applied in
terms of Mach number, reduced frequency, and the number of mesh points.

The example presented in section F.1.4 of the appendix shows relatively little difference in
the number of iterations to convergence, whether the initial velocity potential distribution
is set to zero or taken from a corresponding problem with a relative small difference in Mach
number or reduced frequency. The conclusion is that if potential distributions exist for
intermediate values of Mach number and frequency, it would be worthwhile to use them.
However. it would not be worthwhile to calculate them as an intermediate step in calculat-
ing the potential distributions for the desired values of Mach number and reduced
frequency.

Sequential refinement with respect to the number of mesh points does appear worthwhile.
Here, the velocity potential distribution is calculated for a relatively coarse grid. Then, the
potential distribution is interpolated to a finer mesh and the resulting distribution used as
initial values for another iteration sequence. An example is given in section F.1.4 of the

appendix where the number of iterations for the refined grid is cut in half using the results
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from a coarse grid. The actual savings is a function of the relative number of points of the
coarse mesh with respect to the fine mesh and the number of iterations required to obtain
a converged solution for the coarse mesh relative to the number required for the fine mesh.

5.3 SOLUTION PROCESS
5.3.1 ROW RELAXATION

The finite difference equations as presented in reference 1 were written for column relaxa-
tion where the solution is for a line of points parallel to the z -axis in three-dimensional
flow (or the y -axis in two-dimensional flow) and extending from the lower boundary to the
upper boundary. By rearranging terms, the equations may be rewritten for row relaxation
where the solution is for a line of points extending from the upstream boundary to the
downstream boundary. For subsonic flow, the resulting row formulation provides relatively
rapid solution convergence. However, for mixed flow, additional terms must be included

in the finite difference equation to obtain convergence. These terms, resulting from a time-
like analysis of the finite difference equation, are derived in appendix C. The application of
these terms is discussed in section F.2.1 of appendix F.

Examples of solution convergence using both row and column procedures, and using several
solution sequences (i.e., the order in which the rows and columns are solved) are also presented
in section F.2.1. Generally, row relaxation was found to be significantly more efficient than
column relaxation for both subsonic and mixed flow. The only exceptions to this were for
values of Mach number and frequency for which relaxation solutions were marginally stable.
Here, although neither procedure was particularly rapid, column relaxation provided solution
convergence for values of reduced frequency at which the row procedure had started to
diverge.

Row relaxation was implemented in three ways. The most efficient manner was to start at
the upper and lower boundaries and work toward the wing surface, alternately taking a row
from the top section and a row from the bottom section. The alternatives of starting at the
wing and working out toward the upper and lower boundaries and of starting at the lower
boundary and simply taking successive rows in working to the top boundary were also tried.
Column relaxation was run in two ways. The most efficient procedure proved to be the
sequence that started at the trailing edge and worked toward the upstream boundary, then
moved to the column just aft the trailing edge and worked to the downstream boundary.
The alternate sequence started at the upstream boundary and moved by successive columns
to the downstream boundary.

5.3.2 DIRECT SOLUTION

A version of the pilot two-dimensional program was written to provide a direct solution for
the interior velocity potential distribution. By direct solution, we mean that the complete
set of equations is solved all at once rather than in subsets, as with the row or column relax-
tion. For the direct solution as implemented here, there is still an iterative loop since the
boundary conditions are calculated using an existing set of velocity potential distributions
(i.e., the velocity potential distribution calculated in the preceding pass). The program for
the direct solution was set up only for the purely subsonic flow.
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The direct solution program has been used on the standard test problem of a flat plate with
oscillating quarter-chord control surface for grids of 17 x 10 and 25 x 16 mesh points. It has
also been used for the flat-plate pitch case. The results compare almost exactly with the re-
laxation solutions. The number of iterations required to reach convergence was less than 20
for all cases and computing time appears minimal.

In general, the direct solution was found to be a relatively fast and efficient solution pro-
cedure for small problems (coarse grids), but storage requirements make it impractical for
incore solution of two-dimensional problems with what we currently feel to be realistic
sized finite difference grids. The upper limit would be of the order of some 700 mesh
points. As noted in a preceding section, current studies indicate that practical grids are of
the order of 1200 or more points. Also, storage requirements for the mixed flow problem
are even larger. Because of its speed, however, the direct solution has provided a very useful
experimental tool for testing modifications to the program. Use of an out-of-core direct
solution method has not been attempted, but is one possible direction for further investiga-
tion, particularly in light of the frequency limitation problem discussed in section 4.2.

5.3.3 CONVERGENCE ACCELERATION METHODS

The relatively regular, uniform, and monotonic behavior of the pressure difference distribu-
tions with successive iterations has suggested the use of convergence acceleration techniques.
Also, these procedures have been successfully applied in limited examples of steady transonic
flows by Hafez and Cheng (ref. 10) and Martin and Lomax (ref. 11). Further, our studies
have shown relatively good behavior of both the velocity potential distribution and the
ERROR with successive iterations. Despite the optimism with which this stndy was ap-
proached, the results were not favorable.

The Aitkin-Shanks nonlinear transformation (8% -process) was tried first and applied to the
velocity potential distribution. Typically, the extrapolated velocity potential had a large
value of ERROR. Additional iterations resulted in a rapid drop in ERROR back to the
convergence path that the solution was following before extrapolation. Although little

was lost by using the extrapolation process, nothing was gained either.

Since examination of the extrapolated velocity potential showed it to be inconsistent with
that which would be estimated by eye, a modified form of the Aitkin-Shanks transformation
equation was introduced in order to constrain the shape of the extrapolation. This was tried
on both the velocity potential and the pressure distributions without showing an improve-
ment in solution convergence over straight relaxation.

Generally, the results of these studies have been discouraging despite the fact that con-
vergence appears to be monotonic for the pressure and velocity potential distribution as
well as ERROR. Results have not been improved by working with solutions with the
smoother convergence characteristics obtained by either reducing the overrelaxation factor
or using results from higher numbers of iterations. Finally, the real part of the solution ap-
pears to behave much better'than the imaginary part, indicating that convergence accelera-
tion procedures may well be much more promising for the steady-flow problem.
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6.0 TWO-DIMENSIONAL EXAMPLES

A series of two-dimensional examples has been computed in order to further explore the
accuracy and characteristics of the finite difference method examined in this report. The
most important result from these examples was the discovery that solution convergence is
limited as a function of Mach number and frequency. This particular point is discussed in
section 4.0. This problem has reduced the number of examples in terms of number of dif-
ferent frequencies examined. The examples included both the NACA 64A006 airfoil and a
flat plate (i.e., a section of vanishing thickness). The range of Mach numbers was 0.85 to
0.90 and the oscillatory motion included both section pitch and quarter-chord control
surface rotation.

L

Generally, the rate of convergence was very dependent on the value of the relaxation factor.
This was particularly true for elliptic points where an overrelaxation factor was used. Indeed,
the selection of the overrelaxation factor is significant enough so that it ought to be deter-
mined for each case separately. Mixed-flow sclutions appeared relatively less sensitive to the
underrelaxation factor used with hyperbolic points. However, the case M =0.9 and «w = 0.06
for the airfoil in pitch diverged with an URF of 1.0, whereas 0.7 led to rapid convergence.

The sequential refinement in terms of mesh size (the number of points rather than the total
mesh area that was held constant) proved worthwhile, whereas refinement in terms of fre-
qguency did not. The solutions presented here were obtained using some 150 to 200 itera-
tions of a 25 jx 20 grid followed by some 200 iterations of a 42 x 30 grid.

a2
It was during the calculations for these examples that the limitations on convergence in
terms of frequency and Mach number were encountered. Since the convergence problem
existed for flat plate as well as the airfoil section, the handling of the shock and the attend-
ant mixed flow was not the cause. At first it was assumed that the difficulties were due to
poor selection of ORF or mesh size, or to some other parameter of the solution procedure.
Thus considerable experimentation was done in an effort to obtain a significant improve-
ment in the solution convergence. This included, besides ORF and mesh-size variations,
various forms of column as well as row relaxation, the inclusion of a second-order approxi-
mation to the far field, and variation in mesh-point spacing. Sequential refinement in terms
of frequincy did not help. In addition, a considerable reshuffling of terms from one side to
the other in the finite difference equation (eq. Al) was tried. Also, the program was modi-
fied to solve the differential equation and boundary conditions used by Traci et al. in ref-
erence 7. None of these changes provided the significant improvement that we felt was
necessary to the problem.

As an example, consider the case of pitch for a flat plate with a harmonically oscillating
quarter-chord control surface at M = 0.9. For a 25 x 20 mesh, relatively rapid convergence
was obtained at frequencies up through ¢« = 0.12. Although difficulty was encountered,
convergence was obtained at w = 0.14 with column relaxation working considerably better
than row relaxation. However, at w =0.16, solutions converged rapidly to an ERROR of
1072 and then the solution curve flattens out to provide, at best, very slow convergence.
At w =0.18, the solution diverged (this for a 42 x 30 mesh; ORF = 1.0 under row relaxa-
tion). By dropping the gy, ,:term of equation (3) and simplifying the boundary conditions.
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the program was readily modified to approximate the solution of Traci et al. (ref. 7). Here
the solution converged for w =0.16, and at w = 0.18 the convergence became very slow

again. Finally reduction of the mesh area, as suggested by the analyses discussed in section
4, O provides rapid solution convergence at «w = 0.18.

The flat-plate results are compared directly with solutions from the NASA linear subsonic
thﬁee-dimensional unsteady aerodynamic program (refs. 4 and 5). This program solves the
pressure-downwash integral equation using assumed pressure modes. Since the steady
transonic flow past a flat plate is uniform, the finite difference results should match the
subsonic results directly. Figures 4 through 8 present the results for a flat plate (section of
vanishing thickness) in pitch. In all cases the correlation between the finite difference
program and the NASA program is good.The finite difference method appears to underes-
timate slightly the amplitude as calculated with the NASA program. Also, the degree of
correlation appears independent of Mach number and frequency. Solution convergence was
considered to be a maximum error of 107 between velocity potentials for successive
iterations. This appears to be adequate for the calculations involving the pitch mode.

Figures 9 and 10 show the jump in pressure coefficient across a flat plate with an oscil-
lating quarter-chord trailing-edge control surface. Results are presented for M =0.9 and
reduced frequencies of 0.06 and 0.12. Again correlation between the finite difference pro-
gr@m and the NASA program appears good.

Calculations for the NACA 64A006 airfoil section are presented in figures 11 through 17.
Results for pitch motion at M = 0.85 and reduced frequency of 0.06 and 0.24 are shown in
figures 11 and 12. In figure 11, results for three different mesh grids are shown while the
total mesh area is held constant. First, it is noted that increasing the number of points
{(perpendicular to the flow) improves the representation of the leading-edge singularity.
Secondly, the clustering of points about the shock, which in this case is just forward of
midchord, results in a kind of singularity, with the pressure going to large positive numbers
in front-of the shock and reappearing from negative numbers behind the shock. For this
example (in the 45-point distribution), points are clustered about the 3/4 chord, while in
the 46-point distribution, the points are clustered about x =-0.1, the approximate location
of the shock center. This latter phenomenon is illustrated in figure 12, which presents the
results for two flow-wise point distributions. There are no experimental or other analytical
data for correlation with these pitch motion results.

A two-dimensional example was also calculated to compare the change in pressure distribu-
tion that results from using the specific heat ratio of Freon (y = 1.135) instead of that for
air (y = 1.4). Figure 13 shows the steady-state pressure coefficient at M = 0.9 for Freon and
air for the NACA 64A006 airfoil. The shock in Freon is slightly ahead of the shock in air.
Figure 14 shows the jump in pressure coefficient across the airfoil due to the harmonic
pitch of the airfoil section with a reduced frequency of 0.06.

The remaining figures (figs. 15 through 17) show pressure difference coefficient distribu-
tions for oscillatory quarter-chord control surface motion. The cases for figures 15 and 16
are calculated at M =0.875,and M = 0.9 for w =0.06, and are shown with the correspond-
ing measured data from Tijdeman and Schippers (ref. 6). Solutions at M = 0.9 and w =0.12
were marginally convergent and converged pressure distributions were not obtained. Correla-
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tion. is about the same as that shown by Ehlers (ref. 1) for lower Mach numbers. Thus the
essential features of the experimental data are reflected in the calculations while the ampli-
tudes from the two sets of data do not match well.

Finally, figure 17 compares results from Freon and air calculations for the control surface
case at M =0.9 and w = 0.06. The Freon calculations for both the pitch and control surface
motions reflect the slight forward shift of the shock shown in the steady results presented
in figure 13. Except in the regions of the shock and hingeline, the Freon results also exhibit
the slight increase in magnitude over the air results shown in the steady results. Surprisingly,
the magnitude of the pressure coefficients in the neighborhood of the shock and hingeline
appear less for Freon than for air.

Generally, then, the results of this section are consistent with the results presented by Ehlers
in reference 1. The results for the flat-plate configuration correlate well with corresponding
results from linear theory for both harmonic pitch and quarter-chord control surface motion.
In all cases, the linear theory calculations provide slightly larger amplitudes than the finite
difference calculations. For the airfoil, the correlation between the finite difference theory
and the experimental results appeared to improve with Mach number. However, the calcula-
tions, as in reference 1, continue to provide pressure coefficient magnitudes larger than
measured values except over the aft portions of the airfoil for the imaginary part. The
correlation between theory and experiment remains inconclusive, and thediscrepencies may
still be attributed to unknown problems associated with either the theory or the experiment.
Finally, the set of two-dimensional examples presented here are limited in terms of fre-
quency range due to the phenomenon of frequency limitation discussed at the beginning of*
this section, and also in section 4.2 and appendix D.
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7.0 AN INITIAL APPLICATION TO A RECTANGULAR WING

7.1 INTRODUCTION

A pilot computer program has been developed for computing the unsteady transonic aero-
dynamic flow over a three-dimensional rectangular wing. The program is based on the
finite difference equations derived by Ehlers in reference 1 and represents a direct exten-
sion of the two-dimensional program discussed both in that report and in the preceding
sections of this report.

A picture showing the geometrical setup is presented in figure 18. A rectangular, untapered
wing is shown in the z = 0 plane, with leading edge at x = -1 and trailing edge at x =+1. The
wing tip isat y, =y, and a partial span control surface is included with a hingeline at

X = Xg, an inboard side edge at Yo = Y3, and an outboard side edge at y, = yg. The steady-
state velocity potential distribution, g, , is calculated for a wing of the same planform but
finite thickness and evaluated at the finite difference points that span the mesh space. The
flow is assumed symmetric with respect to the x-z plane at y, =0, and thus the solution is
carried out only over half the wing. The program is arranged so that mesh points lie in the
plane at y = 0 and the boundary conditions of

a3 B

3%

y=0

results in ¢, (X,y,2) = ¢, (x,~y,z). This condition is readily included in the finite difference
formulation.

The equations used in the pilot program are given in appendix A. For the most part, the
equations are directly from reference 1. However, the second term in the expression for the
velocity potential includes an integral in the flow direction with an upper limit of infinity.
This term presents special problems in its evaluation. Morino et al.(refs. 12 and 13) present
two evaluation procedures; a third is proposed here in hopes of obtaining improved
efficiency. The formulation is presented in detail as part of appendix B. Briefly, here, the
wake integral of the form

o0

azl

xt(yl)

is converted to a form that may be evaluated using Laguerre integration. As in the two-
dimensional case, advantage is taken of the pressure function
0 9

> Tt e
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Figure 18. — Schematic of Mesh for Three-Dimensional Problem



to evaluate far-field boundary conditions on the upstream and downstream mesh boundaries.”
Further, this expression is used on the upper, lower, and side boundaries to determine the
velocity potential distribution on the boundary once a velocity potential has been deter-
mined at one point on each flow-wise set of finite difference points. Again, for conven-
ience, the velocity potential is evaluated on the boundaries only at x -values equal to the
trailing edge (i.e., at x = +1). The pressure function in finite difference form then permits
the calculation of ¢, for différent/values of x for the constant valuesof zand y.

Ehlers in reference 1 presents an alternative derivation for swept (but untapered) wing plan-
forms. However, W. Schmidt (ref. 14) indicates that considerable success in the steady-flow
problem has been obtained using a straightforward rectangular finite difference grid not
necessarily aligned with the wing planform. This particular point would have to be investi-
gated with respect to the unsteady transonic problem, but there is reason to expect the

pilot program to be applicable with relatively little modification to planforms other than the
unswept, rectangular planform for which it was developed.

The major obstacle to performing three-dimensional solutions using finite difference
techniques is the size of the complex velocity potential matrix, which must be stored
between iterations. The finite difference mesh for practical cases is estimated to be on the
order of 45 x 30 x 20, or some 81 000 words of core storage for the 9, and o matrices
alone if the problem is to be stored in the machine all at once. The alternative is to store
these matrices on tape and to bring in three (or more) planes at once. The current pilot
program is capable of both modes of operation.

Column relaxation has been selected as the solution procedure because (1) column relaxa-
tion has proved most reliable for combinations of Mach number and frequency where the
convergence is marginal, and (2) x-z planes require only three planes for the relaxation cal-
culations of each plane. Note that x-y planes have this same feature while y-z planes
require four planes because of the backward differencing of the x derivatives at super-
sonic points.

For our CDC 6600, a mesh of 25 x 19 x 20 is about the maximum size for an incore solu-
tion. The 25 x 20 grid in the x-z planes appears small for practical problems, based on our
experience with two-dimensional analyses. The problem size may be increased by going to
an out-of-core program. Both the incore and the out-of-core versions may be run online.

7.2 RECTANGULAR WING EXAMPLES

The three-dimensional program was used to calculate the pressures over an aspect ratio 5
rectangular wing undergoing harmonic pitch. Calculations were performed for both a flat-
plate and a NACA 64A006 profile, with a Mach number of 0.875 and a reduced frequency
of 0.06. A mesh of 44 points in the x -direction, 16 points in the y -direction, and 26 points
in the z direction was used. The extent of the finite difference solution area in physical co-
ordinates was x =+3.80 (the chord ran from -1.0 to +1.0), y,=+10.5 (the wing tips were at
+5.0) ,and z,=+10.0. The computing time for these calculations ran on the order of 7 to 8
sec of CPU time for each iteration and 8 to 9 sec for each far-field update. This was for a
CDC 6600 computer using the KRONOS 2.1 operating system. The number of iterations
required for convergence (in this case ERROR < 107%) was on the order of 180 when start-
ing with zeros for the initial velocity potential field.
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The flat-plate results are presented in figure 19. The chordwise distribution of the jump

in pressure coefficient is presented for five spanwise locations. In each case, the finite
difference results are matched with results from the NASA subsonic program (refs. 4 and
5). Correlation between the results from the two methods is good, and corresponds to that
experienced with the two-dimensional examples of section 6.0 and reference 1.

The steady-state pressure distribution for a NACA 64006 profile configuration is shown in
figure 20. It was obtained by using a program developed at NASA-Ames by Balthaus and
Bailey (ref. 15) with the mesh arrangement modified in the manner of Schmidt, Rohlfs,
and Vanino (ref. 14). The corresponding jump in the unsteady pressure coefficient is
presented in figure 21 for five spanwise stations.

The results from a two-dimensional calculation are included in figure 21a. Comparison of the
two- and three-dimensional results reflect the anticipated softening of shock effects from the
three-dimensional representation. In particular, the imaginary part of the pressure coefficient
shows no apparent shock influences, and resembles what would be expected for the elliptic
problem. Compare, for example, the linear three-dimensional solution shown in figure 49a
with the linear two-dimensional solution shown in figure 4. Here the ACp changes sign at a
significantly more forward chordwise location for the three-dimensional example than for
the two-dimensional example. Three-dimensional experimental data are needed for further
confirmation of the analytical program.
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8.0 CONCLUSIONS

Following the work of Ehlers (ref. 1), this report has further explored the characteristics of a
finite difference solution to the unsteady transonic flow problem. Relatively rapid solution
convergence rates were obtained using selected values of the overrelaxation factor together
with row line relaxation. Additional examples were calculated for Mach numbers from 0.8 to
0.9. Correlation of flat-plate results with corresponding results from linear subsonic programs
was good for both pitching and control surface motions. Correlations between analyses for a
NACA 64A006 airfoil and available experimental data were about the same at the higher
Mach numbers, as reported in the preceding report (ref. 1) for the lower Mach numbers. Also,
a pilot program for three-dimensional flow was developed and applied to a rectangular wing.

Of significant concern was the encountering of an upper limit on reduced frequency,
depending on Mach number and mesh region dimensions, above which the relaxation
procedure will not converge. The relaxation procedure has been analyzed from several points
of view, providing an explanation for the lack of convergence under certain circumstances.

Boeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124, July 1975
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APPENDIX A
EQUATIONS FOR THREE-DIMENSIONAL FLOW

The finite difference equations for three-dimensional unsteady transonic flow are given by
Ehlers in reference 1. They are listed here for convenience. At interior points where the
steady flow is subsonic, we have

azkwlijk--l - (an+ij *ag +bzk +E +E, - qijk/z) w‘iik

(Al)
b = -E - - -
2 Pk POk "B P Y Pk Y Pk
and at points where the steady flow is supersonic,
azk ‘plijk-l ) (an + ij + azk + bZk - Ea - qijklz) ‘pl iik
(A2)
+b = (E, +E,) -E -ay - '
2 Piker - B B P TBaPon T2 Pk Y Yk
where '
a = 1 2, = , 1
2 (el - Dk - %) YT O YD OG5 (A3)

1 1 A
b b, =
2k (Zk4] - 2k-1) (1 - 2 Yi  O¢1 - Y5-D el -Yp)

El = Ci u!"‘%jk -i(«JCl i/G
E, = Cll ui+1/2jk - i(AJdl l/e
E, = ¢i1yj 1y jk - iwes jfe
s = dic 1Y 3njk - iwd; e

- 1
PTG D O D

c = (xi-xi <

= 1 Y

Uik = K - (7+])(‘p°i+1jk - ¥ iik)/(x“-‘ - x;)

vk = K - @D~ Do,y i Xic)
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d, =-d
. 2 Ii-1
Equations (A1) and (AZ) are eﬁuations 24) and (27) from reference 1.

The boundary conditions on the upper and lower wing surfaées lead to the following
equations for subsonic flow at finite difference points immediately below the wing, k = km

+by_] -+ azk + El + EZ - qukm/2) P

a, .. - (a,, o
ka Tl -ukm_l (aYJ m 1 l_]km
= 'El tpl i+1ik 'Ez ‘pl i-1ik -a_y_ ¢l ii-1k -b | . ;pl i1k I_hl bz ‘ F](jL) (A4)
1+1j m - -1k, Yj ._‘U- m yj | ij m km
and points immediately above the wing, k =k, +1
- + + E + E - . 2 + b
R ) it * Oz v P2
A5
=E E -y, ¢ by, ¥ +hy a £V 43
1k t1 2 Pridik 170 Pk k1 Yy Priprlk#1 T Sz gy T

where _
i =11 o, wp + i (1) iy

(A6)
F{O= ffg) i yp) + i 60 (x;, v

The (L) and (U) refer to upper and lower wing surfaces, respectively. The equations similar
to (A4) and (AS) at supersonic points can be written down analogously.
The total harmonic deflection of the wing is written as

z, = 8f(x,y,t) = & {fo x,y) + f, (xy) eiwt} (A7)

The steady velocity potential, g, is calculated from the steady deflection shape, f,, while
the unsteady potential ¢, , is calculated from the harmonic mode shape, f; (x,y).

Over the wake, the co'nditiox{s that the trailing vortex sheet su.pports no pressure,

Ay,

(A8)

ox

+ iwhyp, = 0
1_~ .
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results in a term being added to the right-hand side of equatlons (Al)and (A2) For fimte
difference points just below the wing plane (k = km), the additional term is

b, A% (A9)
and for points just above the wing plane (k =k, + 1) the term is
L P - (A10)
where '
by, = Aw,. e 0 X  4y)
i i, +lj (All)

and A‘Pli, +lj is the jump in velocity potential at the first point aft of the wing trailing edge at

station j determined so as to satisfy the Kutta condition on the trailing edge. The additions
of equations (A9) and (A 10) implicitly satisfied the condition. The normal velocity is
continuous across the wake.

The finite difference equation for the jump in v, across the wing to the second order in
mesh size is

_ U L) _ ] ]
A =@ "4 P+ ik “1(%jk_+2 ¥ ijkm+l)
(U) ¢5) (A12)
- - d_~ F3
c82(¢ ik ljk _1) ( s2 Vij )
where
I S ey =
1~ s (s, + D) $2 7 4s (s, + 1)
' (A13)
(2s, + 1) _ h(2s, +1)
dg = 4(s, + 1) ds2 = 4(s, +1)
5= (B2 )M 8= (P T2y )
(A14)

h =z 41 -%p

Two integral relations are used to satisfy the far-field boundary conditions on the outer
boundaries of finite difference mesh. The first for the velocity potential is :
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G (%Y, 2) = g [a¢ ¥z - Vi, Zl']dx’ dy,
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1 iwxy(y) , , -iwxy ,
+Z; f ¢ vt Apl t(yl )dyl f € ! lpzl' dxl
VYt xt(Yl')
1 ' . '
_— + ' - -1
+4"[{ (7 l)woxll ‘P]xl, wxl lw(7 )¢1 w¢0xll Xll Idv
. v _
and the second for the pressure function is
P(x,.y,2,) =9, vy
' 1
e x(y))
=1 ' - ' dy.’
=4 [ Ay, le XAy, Zl,] dx, dy,
Ve oo Xe(y))

+yt
1 . ’ , ’ ' '
.1 f e Xy )y O Wa ()0, Y520 dy,

-yt

1 . . '
+WI l(7+1)¢OXl, ‘PIXI, xxl' -10)(’7-1)¢l X¢0x1, Xl' ldV
v

Definingx = X -xl" y = Y 'y;, zZ= Z, - le and R =V_X;2 72 +72
¢ i\, (MX - R)

V(XxyzZ) = =

Vpr =2(1/R + i\ )
o = [ M - X (/R+iX)] ¥

X = wxl +iwy

b
[

[AM-FARN) +iw] ¥
X, = ]—Z,{.{[-;%’- -i}\lM-iw] (A, + l/R)-kfilR}dl
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Equations (A15) and (A17) have been simplified for purposes of the pilot program First,.
as noted in the two—dlmensmnal derivation

s (azl) 0 '  | (.A1_9)

and thus the second integral in the first term of both (A15) and (A17) are zero. Second, the
third term, which is the volume integral and has not been of significance in the two-
dimensional problem, has been dropped. Third, since we are interested in the far-field, we
approximate x, - x, with x, and y, -y, with y, so that the terms of ¥ and x may be moved
outside the integral sign. The evaluation of the wake integral in equation (A15) is discussed
in detail in the next section. The equation for the velocity potential on the far-field (A15)
forx, = 1.0is

vy xy,)
l 1 14
0 (x,,¥,52,) = v "DZI' f Ay dx dy, + ¢lw
Yoo Xy
(A20)
1 . . '
tI K fl(7+1)¢0x1, ‘exl' wxl' -iw (Y-, ‘W’oxl' xl,Idv
Where
1 Yt
e f A¢lt(y,') I,(v,,2,.5y,) dy/
(A21)
-yt
and I, is defined in the next section. The pressure function (A9) becomes
w
1 e x(y))
P(x,.y;.2,) = 7 Xz, Ay, dx/ dy/
v o Xp(y,)
+y, (A22)
1 i ' ' '
"7 Yz, f e 10X(y;) Ay, (v)) dy,
.yt

Equation (A20) is used to evaluate the velocity potential along the line resulting from the
intersection of the y-z plane through the trailing edge of the wing and the x-y and x-z planes
bounding the finite difference volume. Equation (A16) is then integrated by the trapezoidal
rule to determine values ahead of this line and behind this line on the upper, lower, and side
boundaries. For example, on the lower boundary when k = 1, for points ahead of the trailing
edge(x<1.00ri<i,)

- = . fw(x;-x4. 1) - iw(x-x4.1) i xl'l A23
Piain = P -1 [P(xl,yj,z )e i) + P(xj_p.¥52, )] (A23)
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and the equation for points downstream of the trailing edge (i, >i)is

R . ’ X: -x‘l
"'pl ijl = ‘Pl i—ljl € -lw(xi- xi'l ) + [P(Xi,yj,zl ) + P(xl‘l , Yj, zl ) (4] 'lw(Xi'Xi_l)] 1 2 r (A24)

“The application of equation (A22) to the hpstream and downstream boundaries results in
the following equations: on the upstream boundary

' | % l_]k = Ck1 '¢1 1k - k2 Pljk'.

| o (A25)
- and-for the dqwnstre’am boundary -
where _ .
Pk = B(x, ’yj’z_k)
and
Pimaxjk - P(ximax’yj’ zg)
_ 1+iws, /2 5. = xo x
k1l T~ T-iwd, /2 1= X2 =Xy
(A27)
k2 = &, /(1 -iwd,/2)
%3 = (1 -1, /2)/(1 +iwd,/2) 8, = X; -%; -
max 'max
Ck4 = 82/(1 +l(082/2)

Equations (A25) and (A26) may be used to substitute for 1 ik and o, . ik in equations
(A1) and (A2). Imax
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APPENDIX B

EVALUATION OF FAR-FIELD WAKE INTEGRAL

The wake integral of concern, p, W’ is the second term of equation (A15), i.e.,

+yt
O (X1,¥1521) = 4_:; / elth(y')A% t(YI,)dyl’
-yt
oo
- -iw ,alll ' ' ' '
el xl—a';;l(xl-xl’yl'yl’zl'zl )dx,
xt(YII)

(BD)

where the partial derivative is to be evaluated at z} = 0 and ¥ is defined in equation (A18).
The evaluation will be carried out for x, = 1.0 for a rectangular wing for which the trailing
edge is X (y,') = 1.0. Equation (B1), after taking e 10°1.0 jhto the x, ' integral, becomes

1y 2o
1 ' ' -i "nHo ] ' ’
% w(l,y,,z,) = ar / A‘P]{(Yl)dYI / e iw(x, 1)“3%I(1'x1,}'1')'|,ZI'ZI')Xm (B2)

-yt 1
Let I, be the inner, x ., integral
[= -]
-i . i) ’ ’ ’
Iy, = / e iw(x,-1) —lek,' (1-x,,y1°Y152, 2, )dx'
1

setting p = x,’ - 1 and inserting the expression for ¥ from equation (A18)

o0

i a e'ixl(Rl','Mp)
= iwp_9_
Iw / c azll Rl dp

0

with R, =Vp? + R} and R} =(y;y,)* + (z,%/)?

Taking the -a—az—, outside and combining the p exponentials, we obtain

1
M wl'k M I
( 1 )

oo .xl
W "~ 9z R,
0
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or since

- _' ' :  oM? .

T Mt M) M\®F T (B6)
— = =1
M wM/(1 - M?)

[= -] N A]

v =3 | R, P (B7)
0
Next, let
MRl +p
" T TBR, (B8)
When
MR, M
= 0 = ——— s
g “ =R, B
(B9)
and as p—> o u - oo
Further
73
VI+w =B_111? [621{02 + M?(p? +RZ)+ 2MR, p +p2]
(B10)
which becomes, using g = 1-M?
NI &
l1+u = K, [RO2 +p% +2MR,p +M2p2]
]
] (B11)
=—l [R2 + 2MR +M2 2]/2 —M
BRO 1 1P P . - BRO
and
R, +Mp  1T+u? '
%: L [Mp/R +]]=._l_. 1 TP _yltu (B12)
P ﬁRo ! Rl ﬁRO Rl
so
w . MBRo
ATy v
1 = == f e du (B13)
w 0z
’ ' M/ﬁ V] + u? .
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Now, let u = v + M/g so that

oo Ro
) A= (v + M/B)
I, =57 fe dv : (B14)
0

The singularities of the integrand are where

1+@w+M/B)? =0 (B15)
or
.‘P = - % + l
which is in the left half of the complex plane. Thus applying Cauchy’s Theorem to the contour
integral

| ABRy
'-i‘—‘f,—g(wM/ﬂ)

Lw =fe dv “(Bl6
¢ L VTrwMpy? N

where the contour is shown in the following sketch

 Im )
- Re (V)
Then,c=c; + ¢, +c3 and _
= <+ ; =
Iwc IWCI + Iwcz lwc3 0 (Bl7)
and
I _ lim d L = lim [_i __0 I . (B18)
W r>oo 9z/ €  r-eo | 93z, C2 09z, 'C3

As r—»oo, then integral I“’c =0. On the contourc;,»=r e'w, 0<0<n/,,and
2
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-ix Ry (v +M/B)/M dv
- [ e,

: (I +l%)2 +ip? v

N 7 -i MER, fcogo -i 28Ry rsin.o
= e i\ Ro f el M e M dé + 0(1/r)
0

A\, BR 2\, BR
f - l:; 2 rsind q ___n;%_o
I\V =f e do < f e dé
Ca )
' 0
A;BR, ]
= . ™ M -1 _,0
X\ BR, )
‘Thus, we have
,=-lim 9
w r->o0 azl Wc3
On ¢y, ¥ = in and dv = idn so that
7\ 3
(in' + M/B)
f e 4
V1 +(in +M/B)?
or lettingn =
¥ 16 % (M/B- in)
I, =i dn
Ve, g \/l+(M/ﬁ-in)‘
Thus
A BR
r M8 ——— (M/B- in)
alg, A=y (M/B-in) e aR,
oz - i f dn 9z,
0 VI +M/B-in)?
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.MBRy
r iy (M/B-in)
_MP I M/B-in) e dn, 3Ro
M N1+ M/B-im? azy
0 1+M/B-in) ]
BRe |
) r . '7\1 M n
A8 (3R, -iA\; Ry M/B-in) e
o g Vi MyB-in)?
_ dR, z) -z, .
or, noting thatm = —To— and taking
the limit as r—>oo, [, may be written as
MB (2 -z) MRooa
R T l
where
oo A BRo7
A r - M
I, = (M/B-in) e dn
o Vi+/B-in?
Integrating by parts with {
_ MiBR,
M n s
u=e and dv= (M/B - in) dn
V1 +(M/B-in)?
SO
A1 BR,
MBRy Ty -\[-———_—_T_;
du =- M ¢ dn and v=iV1 + (M/8-in)
from which
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(B26)

(B27)

(B28)



MﬁRon ' o
& e M \T+M/B-m)

w

R, MBRo  (B29)

i f\/l+(M/{3’-in)2 e M Tan
0 ‘ .
- oo MﬁRon
. AR -

='lﬁ+i 115 : f VI+M/B-in)? e M dn (B30)

0

Note that while integrating by parts increases the order of the integrand, it reduces the number
of numerical integrations from 4 to 2.

.Anticipating the ultimate use of Gauss-Laguerre Quadrature, the following transformation is
made:

A 18R, M
TETM " % MTXER, T
so that - (B31)
i M M -
= -— + +{—-
Iy B i f\“ (ﬁ 1>\13R0 -r) et dr
or 0

s (B32)
where z, " is taken to be 0 in the evaluation of R,
Letting M >
= 2 - —_—
fr)= V@ + (M RS r)
the integral in (B32) has the form
o
f f(T) [ T dr (B33)
0
This may be evaluated approximately as
N
D wif(rp (B34)
i=1

where w; and 7, are the weights and abcissas for Laguerre integration for a given N.
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APPENDIX C

TIME-LIKE CHARACTERISTICS OF THE RELAXATION TECHNIQUE

Following Jameson (refs. 8 and 9), we study the convergence of the difference methods by
considering the iteration numbers as a time-like variable. Thus the relation between con-
secutively iterated values at an arbitrary point ij is defined in terms of a time derivative by

(n-1) _ ) -2 (n) ' o
ajj At (‘puj o X))
where the superscript denotes the number of the iterations. "
C.1 COLUMN RELAXATION WITH INCREASING i )

The difference equation for column relaxation at subsonic points with i irjcreasing is given for
two dimensions by modifying equation (A1); namely

1
201 l+1j (801(111.,.]]) ‘Pgslz 2dlul_l (‘pl(il) “¥1 1))
2 -

123, (wﬁ,)_, ) 2, (vﬁ} ¢,<1,>+1) ragel = 0

where the superscript s denotes the valiie obtained from the solution of the equations for the
ith column and n and n-1 denote updated and non-updated values, respectively.

When we apply a relaxation parameter r, then we obtain a modified value of ¢, according to
the formula

oY = rell +a-ndHD

Solving for ,pfsl}
‘Pﬁ} = (nrg fr- (- r)wl!:-'l)/r (C3)

Finally, eliminating ‘P?i]j-l) by means of equation (C1) leads to

¢£sl} Sogll]j) (r rl) At ¢(11) (C4)

To obtain the differential equation corresponding to the dlffercnce equation (C2), we introduce
equations (C4) and (C1) into equation(C2) and take the limit as Ax and Ay go to zero. We
have
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21w . '
(uy o1 )y - t eyy T Ay - At P1yy ( ) At-qy,

lim (n) (e (n) r-1\ (n)
+ l 0 ‘ 2Clul+11 At [‘Pl l+1]t %)wl l_] +2d u At( lut

(C5)
(
+21_w [c” (tp(llgljt ( )‘p('r‘;)t +d,l( )~P,I:J) ] At , =0
Now
C: = I = 1
E (g o X)) (Kigg - xp) (Bxy +8x,) Axy
(C6)

_ 1 _ 1
i (Xi+1 -xi_l)(xi-xi_l) (Axl +AX2)AX2

Substituting equation (C6) into equation (C5), expanding u and ¢, about the point ij, and
then simplifying, yields

2iw At
Worg - =g~ Px * Py * A% - KRG Yixt
2 (A L. e (],
- Ax, (AX, +AX2> r Ax, 1t (CN

Ax Ax
1 2 (r-1) 1] )
(Ax, +Ax2\ [ (Axl) + - T Ax, $rg 0(At, Ax, Ay)

Since the real part of the coefficient of p, ¢ must be negative to produce damping, then we
must have

LTS I
r r \Ax,/ )
or
1+Ax, \
r< Ax, [Ax, T

In practice, values of r in excess of this limitation have worked suc -esstully. For example,
with a spacing factorof 1.4, 1 + Ax,/Ax, =1.717 > 1 o vwoether the sweep
direction is in the direction ol increasing or decreasiniz v~ se o o Dos e steeesstully used
values of r up to 1.9. At elliptic points, we overrelax and hence ris restricted to values
between 1 and 2.

it was suggested that complex values of the overrelaxation parameter might be useful in
speeding convergence and a few values were tried without success. We will investigate the
cffect of a complex value of r on the real part as the coefficient of the ¢, t which provides
damping. In equation (C7), the coefficient of the first term becomes
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e 1Y (r-e'i'Y\Axl] _ [eh' r-e’i
-2ua,[ r r JAx, =-2ua, | =7 '8( r.']

where rel? is the complex relaxation factor. The real part of the coefficient provides the
damping and must be negative.
(1+6)cosy-r

T > 0

We see that the imaginary component always reduces the amount of damping. Since generally
u/Ax, > wfe

the first ¢, t provides most of the damping. With a complex relaxation parameter, the term
proportional to 2iwfe also may contribute to the damping. The coefficient from this term

becomes
2iwa -iy s ety
5 [Q?T)“sz (r F )]

2wa, (1-6%) siny

The real part is seen to be

edr

This term provides damping when
§ < 1 forwhich ¥y < 0

or when
6 > 1 for which v mustbe > 0

Since v is a constant and 6 takes on values both greater and less than 1, the effect of the
imaginary component of the overrelaxation factor is to reduce damping; and hence no
improvement in convergence can be expected from the use of complex values. The few runs
made with complex relaxation factors support this conclusion.
For convenience, equation (C7) may be written
2iw (C8)
(up )y - e Pix T Yryy Ta¥ - 2uay Pyt

-2u0l2 ‘Plt + 21(0&3 ‘plt = 0
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where !\

~ _ At
o =L @-pla
2 Ax, LT r  Ax,

Equation (C8) is hyperbolic in time and this is readily seen by eliminating the ¢, xt
derivative by a new time variable
T=t+ox
This leads to
' 2iw
(U )y - € Yi1x + Pryy Tav, - uay Cirr
9
2(uaz - iwaz)¥P . =0 @

Since u is positive, the coefficients of 9, . and p, . have the correct signs for a damped wave
equation.

We now consider hyperbolic points. When the local flow is supersonic, backward differences
for the x derivatives are used to eliminate downstream influences. The difference equation
from equation (A2) is given by

(s) _ Jn) (n) _,(n)
2cip W <%ﬁ - ni-lj)-zdi-lui-lj-<“’-i-1j ”ni-2j>

2iw , .
-% [c:i(ﬁp(:s% - ‘P(m]j) - dij (tp(.ni}]j - w?}?:,)] (C10)
+2a; (cpﬁsi}_, ] soﬁ})-zbj(«o(,si} ] w(,si} +1) +aj so(,si} =0

Using equation (A3) for the definition of the coefficients and eliminating wl(s) by equation
(C4) yields the following differential equation;
(u‘pl x)x - lleg ‘plx + ¢l Yy + q"al
At iw 1 1 r-1 _
-2 [qu, (Ax, +BAx,) € &t <Ax, +Axl +Ax2)] (T) “i11=0

“Ax, = Xi =Xj-1> Ax; =Xjq - Xjp

€1

where

This equation is of parabolic type. Since u < 0, we must have r < 1 to have damping. Thus, at
hyperbolic points, we use an underrelaxation parameter.
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Similar results are obtained for column reiaxation with decreasing i (upstream) In place of . )
equation (C8), we obtain ~ "

2iw ‘
(WP )y - = Prx t Pryy A%, + 2u0; Py b

-2 (uoy -iwas) =0

where

. ot iyt
The transformation 7 = t - a;x yields a hyperbolic equation of the same form as (C9). For
supersonic points sweeping in the direction of decreasing i, the superscript (n) in equation
(C10) is replaced by (n - 1). The time-dependent differential equation then in place of
equation (C11) is:

2iw
(usolx)x - T¢lx + ‘plyy +q‘pl
C13)
+2u At w’ —t 2 At( ‘ 0 (
AX, (Bx, T 5x;) Ax, AX, +Ax, )Pt T

Decreasing r serves to increase the damping in supersonic regions.
C.2 ROW RELAXATION
For the smaller frequencies, the use of row retaxation improves the rate of convergence.

This may be attributed to the coarse mesh in the y direction. For row relaxation in the
increasing j (or y) direction, equation (C2) for elliptic points takes the form

26§ Uit 1 (%(21 j *PESJ) -2djuy (*P l(il) ¢1(§-)1 J)
- 2“) c.li(‘P(lsl)ﬂJ - *P(ls,)J )+ d“(\"(nsg (151).11')] " (C14)

+2a; (¢(lr:1) tp(nsl)1> 2b. (wﬁi} soS'};L),)mu w(,sa =0

Substituting equations (C1) and (C4) into equation (C14) and taking the limit as Ay, Ax > 0
yields

iw
(u‘plx)_x ',.2'6_‘101)( +‘plyy t+qy,

+ At [2%-(%)(ai+bj)]¢.t -2(§;j)~p,yt =0 . ,_(C15‘[l)
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where 3 and bj are defined in equation (A3) and ij = yj'+1 - Yj-1- Since the coefficient of
@, ¢ must be negative, this would appear to limit the range of overrelaxation factor to ..

a: +b: .' y: -Yyi_
r< Ja- - 14 J'*'-l- ‘Jl
i iVl

At
r = t+<AyJ)

<2

The transformation

yields the equation

. iw . a: + b;
(U‘plx)x '2—;‘P1x + ¢|yy + qp, -At [2 J T J'2aj](plf v -
(C16)
'.( At/AYJ)Z 5011'7- =0
which is hyperbolic in 7.
For supersonic points, we write in place of equation (C10) for increasing j
(sy _ () (s) (s)
2y u ij (‘Plu Prje 1_]) - 2d; Ui-1j (‘p 1i-1j "% 11-”3)
iw (s) (s) ( (s) (s ) ' '
'2—[ C2i\¥1ij - ¥itlj )'dli-l ¥y - ¢11)-2 C17)
-1 i
o2 (4 -0 (o5 o)ty - o

Substituting equations (C1) and (C4) into equation (C17) yields
2iw

(o -4

+2a (1) o At - (Ay)w,yt 0

Since u < 0, this equation is hyperbolic with respect to y since the coefficients of p, . and
O xx tErms will both be negative and opposite to that of ¢, vy’ To render the x variable
time-like, we write the equation in the form

Solx +‘plyy tqy¢,

2iw
eyl —gAx v 9 tqy
1 X7 1 x lyy 1 (CIS)

At
ZKy—j [‘Plyt +Bivixy t B2 ‘Plt] =0
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and determine B; and 8, to climinate the w. xt’ ¢| yt, ¢. t terms and to obtain a coefﬁcient
of ¢, rr with the correct sign. Choosingr=1- ('K—) y-+ «, x we find that-

By (uy - 2iw/e)
Bz = 20 '

Substituting ar; = ﬁ, ( A—/u) the relation for 7, we obtain the following dnfferentlal equation
equation for ¢, .

2iw | Aty (B |
(uwlx)x - T‘plx + fryy +qy, "(Z'y-]) (—u+ l)‘Plfr =0

In order for the coefficient of the ¢, 7 term to be positive, we must have

B >-u
(C20)
By >Viul
In the light of equations (C17) through (C20), the differential equatnon to be differenced is
2i
(ule)x e _Lﬂv + 'plyy +q¢1
2lw/e) _
-2‘—' [V Y/ 'u [ﬂ xt T ¥ t] (C2l)
r-1 -
2aj (T) At Vit = 0
where c is a constant > 1. The difference relations for v, xt and ¢, ¢ are seen to be
-1
Atog, = ¢ - (%D
Btogy e = ey (WY - o5V - (D5 + 00H)) €22

-1 -1
iy (‘pglll-)lj 'pgx:-l _l) (lt:-)zj + 'P(lnl-zj)

The addition of the time-like differences caused the relaxation method for mixed flows to
converge, whereas the difference equation (C17) caused the iteration to diverge.
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APPENDIX D

MATRIX ANALYSIS OF RELAXATION TECHNIQUES

As noted in the text, in the course of the solution of the unsteady transonic problem using
line relaxation (block successive overrelaxation, or BSOR), it was found that convergence
was obtained only for relatively low values of w, the reduced frequency. In this appendix, a
derivation is given that provides the theoretical basis for this empirical observation. By
simplification of the basic boundary value problem and use of a theorem on the convergence
of relaxation procedures, the conditions are determined for which the system matrix ceases
to be positive definite, and thus for which a necessary condition for convergence is violated.
The condition is defined in terms of the dimensions of the solution region, the transonic
similarity parameter K, the Mach number, and the reduced frequency. It is convenient to
think in terms of a critical reduced frequency, w,, below which the solution procedure
converges and above which it diverges. As shown in section 2.2 the w,,, as derived here,
corresponds very closely with those values encountered during the running of sample problems.

The two- and three-dimensional problems will be developed together. The mesh regions for a
two-dimensional problem is a rectangle with sides of lenths a and c. The region for the three-
dimensional problem is a rectangular parallelepiped with the additional spanwise dimension
of b. In order to carry out the convergence analysis and obtain an analytic formula for Weps
we make the following simplifying assumptions:

L The steady-state perturbation potential, p,, is constant;

L The far-field boundary values are constant;

®  The airfoil and wake boundary conditions are omitted;

® The mesh spacings resulting from the discretization are uniform in each of the coordinate
directions;

L The relaxation factor is the same for all points and for each iteration.

These assumptions, particularly the third, are rather strong; nevertheless, analysis of the
problem resulting from these simplifications is found to yield results in generally good
qualitative and quantitative agreement with experimental observations, indicating that the

essential frequency-limiting characteristics of the problem have been retained.

In mathematical terms, the effect of the assumptions is to reduce the problem to the solution

of

2iw w?
K‘pl XX +‘plyy -— + —¢) = 0
€ X € (Dl)

over a rectangle (or the analogous differential equation and region in three dimensions) with
Dirichlet boundary conditions, and it is this problem to which we apply the convergenc
analysis. .
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Following the sections giving mathematical background and details of the region discretization,
we give the analyses for both the exact problem above and a modified problem resulting from
transformation of (D1). The ratiler complicated formula for Wer from the exact problem is

seen to reduce to the much simpler formula for w ., from the modified problem as h, - 0.
D.1 MATHEMATICAL BACKGROUND

In this section we give a brief statement of various mathematical facts that will be required in
the course of our analysis. -

D.1.1 MATRIX FORMULATION OF BSOR

Our discussion is a specialization of that given in Varga (ref. 16), and the convergence theorem
we state is an immediate consequence of the one given there.

Let an n x n Hermitian matrix A be partitioned for some N, into the form

r-'Al l Az 2 . . . Al N
A2 l A.2 2 . . . A2 N
A<l L @)
AN, AN, - : : ANNJ
where the diagonal blocks A;;,i= 1, ..., N are square and nonvoid. Then defining the n x n
ii :
matrices D and F by : .
[A,, 1 [0 © O]
A2 2 A2 1 O . O
. ( ) A;, A;, O O
D= . , F=-, 7 (D3)
; ANNJ (AN AN, - ANNL O

and with F* as the complex conjugate of F, so that A =D -F -F*, then BSOR applied to
Ap = R, where p and R are n dimensional vectors, may be written :

©-B) ™D = (tF*+(1-nD} g™ +R (D4)

m=0, 1,..., where r is the overrelaxation factor. The following theorem gives necessary and
sufficient conditions for convergence of the above iteration.

Theorem 1.—1f D is positive definite and 0 < r < 2, then the given iteration is convergent for
all starting vectors E‘(°) if, and only if, A is positive definite.

Comments: 1) An implication of the theorem is that under the given conditions the eigen-
values of the iteration matrix (D -1F)" {fF*+(1-1)D)
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will all be less than 1 in modulus, a well-known necessary and sufficient condition for

convergence; and 2) the statement “all , . ¢(° ) does not limit the applicability of the
theorem. In any practical problem a statlonary 1teratlon such as (D4) must converge for
every cholce of starting vector to be of use.

D.1.2 EIGENVALUES OF A CERTAIN TRIDIAGONAL MATRIX

The eigenvalues of the tridiagonal matrix
. , P "
' a b

[z o® # Cj

. (order n)
O' - C a b
T c a_j
are given in Bellman (ref. 17) by
L o _
Ag=a-2vVbc cos o5, g=1,..,n (D5)

D.1.3 KRONECKER (TENSOR) PRODUCT
From Bellman (ref. 17) we have the following:

Definition.—Let A be an N, dimensional matrix and B an N; dimensional matrix. The
Kronecker product of A and B, written A ® B, is the N, *N, dimensional matrix given by

Pa”B a,;B . . . I 3|NlB-
. a“B a"B . . . 31NIB {
and . . . . ‘
aN IB aleB . . aNINIB_j
Theorem 2.—Let )«2, 2=1,..., N; be the eigenvalues of an order N, matrix A, and let
..j=1,..., Ny be the elgenvalues of an order N, matrix B. Thcn the elgenvalues of the -

N, *N, order matnx
(N9 A)+(BOIy,)

where [ denotes the identity marix of the given order, are given by
Nty fore=1,... N",- andj=1,...,N;.

Comment: If B is tridiagonal, then the matrix (lN @A)+ (B ®IN ) is easily seen to be
block tridiagonal, which is the case we will encounter
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D.2 REGION DISCRETIZATION AND MESH POINT ORDERING . .
D.2.1 TWO DIMENSIONS

In two diin_er’nsi?hs the region is a rectangle in the x-y plane with sides of iengths aandc m '
the x and y directions, respectively. Taking the lower left cornerpoint as (xq, yo) and
choosmg N and N, as the number of mesh increments in the indicated dll'eCthl'lS, the ‘
totality of mesh points is given by (xg, yj), where

Xg =X +2h,, 2=0,1,...,N,,
. (D6)
¥j = Yot jhy, i=0,1,..., Ny,

with h, = a/N, and hy = c/Ny.

Of these, points with =0 or Ny, or j =0 or Ny, are boundary points; all other are interior

points. Thus the
Ny = (Ny - 1)(Ny- 1)

interior points are given by equation (D6), but with the ranges of £ and j being 1 to N, -1
and 1 to Ny - I, respectively.

Now to obtain a matrix formulation of the discretized problem, the interior points must be
ordered as a one-dimensional array. To be definite, we choose column ordering, which is
consistent with column relaxation of the resulting system. A similar analysis may be done for
row ordering, which is consistent with row relaxation and leads to precisely the same formulas
for w, . The column ordering is specified by having the j index vary most rapidly and ¢

index least rapidly. That is, by the mapping:

(xQ, yj)—> Ps: where S=j+(2- l)(Ny -1 (D7)
for
2=1,...,Ny-land]j =l,...,Ny-l.

- a N

f
YN t |
y y P2(Ny - 1) ¥
Ny -1 pNS
PN - 1A
Ny 1
C
v, P, PNy+1
v P1 pNy
h -t h :
Yy X Y
Yo
Xo X1 Xz XNy -1 XNy



' D.2.2 THREE DIMENSIONS

In three dimensions the region is a rectangular parallelepiped with sides of lengths a, b, and ¢
in the x, y, and z directions, respectively. The discretization in the x and z directions is the
same as that given by equation (D6). We will treat the y (spanwise) direction slightly
differently since we have a symmetry condition in the x-z plane. In particular, takingy, =0
and yNy = b/2, the totality of mesh points is given by (xg, Vi 23,

X = Xo +th, Q=0,1,...,Nx,

where .
¥j=G-Dhy, j=0,1,..., Ny, (D8)

and Zp =12, +khZ’ k=0,1,...,NZ,

with h, =a/N,, hy = b/2(Ny-1),

and h, = ¢/N,.

Of these, points with =0 or N,,j=0or Ny, or k =0 or N, are boundary points; all others
are interior points. Thus the interior points are given by equation (D8) but with the ranges of
2,j, and k being 1 to Ny-1, 1 to Ny-l, and 1 to N,-1, respectively.

The three-dimensional mesh point ordering is a direct extension of that used for two

dimensions. That is, the interior mesh points are sequenced such that the k index varies most
rapidly and j index least rapidly. Thus the ordering is given by the mapping

where (xg, ¥j» 2K) ~Pss
S=k+(2- )(N,-1) + G-D(N,-1)(N,-1),
for@=1,.. ,Ny-1,j=1... .,Ny-l,
and k=1,...,N,-L
D.3 ﬂERIVATION AND ANALYSIS OF THE SYSTEM MATRIX
D.3.1 MODIFIED PROBLEM-HELMHOLTZ EQUATION
Since it will be most economical to derive the system matrix for the modified and exact
problems at the same time, we first define what we call the modified problem. This consists

of the given region and the differential equation obtained from equation (D1) or its three-
dimensional analog by making the transformation

o) > U elwx/eK
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When this is done we have the equation

2
Ky, + +—9 __y=0
Vxxtdyy e(1-M?) v o (D10)
in two dimensions and the equation '
Kiyx + Vyy +Vggt —2— 9 =0
XX Yy 7z e(1-M?) _ .(Dl 1)

in three dimensions. We observe that the first derivative term is absent in these equations—a
consequence of, and the motivation for, the given transformation. Further, we observe that
except for the K coefficient, which may easily be removed by scaling, (D10) and (D11) are
the two- and three-dimensional versions, respectively, of the well-known Helmholtz (or
reduced wave) equation. Thus the modified problem is directly analogous to the mathematical
formulation of the problem of a finite elastic membrane whose amplitude is assumed to vary

sinusoidally in time.
D.3.2 TWO-DIMENSIONAL ANALYSIS

Note that both equations (D1) and (D10) have the form
Ktpxx+gpyy-2ic,xpx+cch =0 (D12)

where €1 = W/€, c; = w? /e for equation (D)

2
and ¢, =0,c, = —___ for equation (D10)
e(1-M?)

From this fact it follows that the system matrices from the discretizations of (D1) and (D10)
have the same form, which we now derive.

At each of the N, interior points of the mesh given by equations (D6), we discretize (D12) by
making the substitutions

Koxx _)(‘pQ-l,j 209, j +¢Q+l,j)/h)%
eyy = (#n, -1 20,5 * g, j+1) Iy

¢x > (%e+1, j 901, j)/2hy, and

g, (D13)
.where Tlx =h,/ VK.
This yields the system of difference equations
-B2PQ1,§ "81PR j-11Bo¥Q i “Bi1¥Q j+] 'gz*‘PQ+1’j = 0, (D14
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for¢=1,..,Ny-l,and j=1,..., Ny-l, where

8o =2/h} +2/hj -cs, &) = 1/h]

and g, = l/_ﬁ'; + ic, /hx. Here terms for which the first subscript becomes 0 or Ny, or the
second becomes 0 or Ny, are transferred to the right-hand side.

Us'ing the mapping given by equation (D7), equation (D14) may be written as

'SZ‘PS-(NY-I) -21¥s-1 T 8ovws
* (D15)
‘B195+1] '8:¢s+(Ny-1)=°’

S$=1,2,..., Ng, with terms being transferred to the right-hand side where appropriate.

Now éince each subscript is linear in S with a coefficient of 1, it is clear that (D15) represents
a five-diagonal system for the unknownsy,, .. .,oN S Letting P be a vector with these
components, (D15) may be written in matrix notation as Ay = R, where R is the right-hand
side vector and A is the NS order system matrix given by

G G 7
G, G 6 (O
) ) ) (D16)
A: . . .
O 6 6 ar
— Gl Go-l
where
~ —_
g0 B
£ B & O
Go = : : : (order Ny-l), (D17)
O 1 B &
| £ go_]
and
G,=-g2 lNy_l.

Now we have the system matrix; it remains to apply theorem 1 to obtain an analytic form for
W,y First, we identify A as given by (D16) as a matrix of the form given by equation (D2) by

making the identifications
N_'—"Nx-l;Aii=Go,i= 1, .oy N;
Ai+l,i =A*i’ i+1 =G1,i= 1,...,N-1;and

Aﬁ = 0 otherwise
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Next we check that D is positive deﬁmte From the 1dent1ﬁcat10n we have that D as glven o
in (D3) is
D= dlag (Go, Go, .. .. Gg).

Thus the eigenvalues of D are the same as those of Go , which from (D17) and’ using (DS) are
L _
gy -28, COS Ny’ g=1,..., Ny-l.
The rﬁinimum eigenvalue occurs when 2 = 1, so that the condition on D is satisfied if, and
only if, T
g -2g8; cos N—> 0
y

or, using the definitions of g, and g, , if, and only if,

-_—22 + 22 (l cos N—) >c,y .
hy hy y (D18)
w? w?
where ¢, =— for the exact problem and ¢, =————— for the transformed problem.
€ €(1-M?)

Condition (D18) will be satisfied, as will be apparent (eq. D19) since the frequency for which
A ceases to be positive definite is substantially below that for which condition (D18) is
violated.

The eigenvalues of A are easily found through the use of the Kronecker product. Noting first
that A may be written as '

(A= INX_1®GO) + (Gz®INy-1>

where _ . —
'22 -gz -2 O
G,= | : | . - . (order N, - 1),
O & O
- e O |

we have using equation (D5) and theorem 2 that the eigenvalues of A are given by
8o 281 cos -2Vg2 g5 CoS{” >
where

2=1,...,Ny-landj=1,.. N -1
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The minimum eigenvalue occurs when 2 = j =1 so that A is positive definite if, and only if,

8 -2g; cos = -24/8, gf cos < N >0,

or using the definitions of g4, g, and g, |f, and only 1f

C%h2 % 2 .
-2 1-§1 + X! cos—- )} +—=—{1-cos L >cy /K. (D19)
h, K2 N/ “kng Ny o

Now we consider the two cases corresponding to the two different choices for ¢, and c,.

.42
Case 1.—For the modified problem, ¢, =0 and ¢, = _(‘ld—M’_) so that A is positive definite,
e = £

and hence, by theorem 1, BSOR converges if, and only if,

. 2
s l-cosNL +—2 l-cos%—- >
\ hi X Kh} y eK(1-M?)

~

or if, and only if, w < w_ where

Y
1-M2 2 L 2 T
w,.. = Il -cos5 | + 1-cos— .
oo [h( “x) Kh§< ”v)] 2

Equation (D20) gives the precise value for w_ in the transformed problem. A more
transparent formula may be obtained by using the first two terms of each cosine series
expansion and the relations h,N, =3, hyNy = ¢ so that to a very good approximation for
reasonably large Nx and Ny.

A
w =ﬂ%l[__l_+__l_] .
a

cr 2 Ke? (D21)

The dependence of Wep only on the absolute dimensions of the region and not on the mesh

size is notable, and has been previously observed in another context by Moiberg and
Reynolds (ref. 18).

Note: In going from equation (D19_) to equation (D20) we have used the relation
1/eK = M?/(1 - M?) (D22)

2
Case 2.—For the exact problem, c, —? and ¢y = %— so that, making these substltutl,éns
in equation (D19), we have that BSOR converges if, and only if,

5 whl? .\ 2 2
;—— I-11+ e cosN; +h§, (1 cos Ny)>?l-(— ‘ (D23)
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We note that this inequality is satisfied for «» = 0 and that as w increases, the left-hand side
is strictly decreasing while the right-hand side is strictly i mcreasmg, so that there is a unique
value at which the inequality just fails, namely w,

An explicit formula for W may be derived from (D23). When the > is replaced by an equal
sign, (D23) may be transformed into a quadratic equation for w,, which is easily solved.

When this is done it is found that the solution may be written as

1-M?
we = Y5ENQ, Q, (D24)
where
2 2 T
Q== (1-cos +—=2_[1-cos —
l h? < Nx> Kh < Ny>
and
1-M? Q| %
QZ = 1- M2
with !
2cos(7r/Nx)

Q=

[‘ -2M? (sm SN )]+{Q1(1-M2)M2 h2 + [1 2M2 sin ‘) ] }

- 2
We observe that as hy =~ 0, Q; =1, so that w = U—M—I;'I—)\/ Q, which is the same as equation

(D20), the result for the transformed equation.
D.3.3 THREE-DIMENSIONAL ANALYSIS

The three-dimensional analysis is a straightforward extension of that already done for two
dimensions. First we note that the three-dimensional analog of equation (D1) is

2iw _
Ky, XX +‘p1yy T V14, '_‘plx +“—‘Pl =0, (D25)
so that both (D11) and (D25) have the form
Koyx +oyy +oz, 2icioy 90 =0, (D26)
where, as before
¢, =0, ¢, = w?/e(1-M?) for equation (D11) and
c; = wle, c; =w?/e for equation (D26).

98



At each of the NS interior points given by equation (D8) we discretize (D26) by making the
substitutions

Koxx "(V’Q-l ok 2P0k t e+l ,j,k)/T‘fv
eyy >(Pei-1k 202,ik *2,i+1 k)3,
22 (PR, k-1 200,k *+ g jk+1)/h (D27)
= (Po+1,5k ™ 2-1,,k)/2hx, and
$ =00 j k.

This yields the system of difference equations _
B3P0 j-1.k £2P0-1jk B1¥Ljk-1 tBo¥Q jk !

_ . (D28)
C1vQ jk+1 BaVR+1jk B3R j+1k = O

for@=1,..,N,-1;j=1,.. .,Ny-l; andk=1,...,N,-1, where g, is as before,
while now

2 2 2 1 1
g =——+ + C;,8 = ——andg; = .
h2 hZ b h2 h2

Here terms for which the first subscript becomes 0 or Ny, or the second becomes Ny, or the third
becomes O or N, are transferred to the right-hand side. The #gj-1k term, for which the second
subscript becomes 0, is handled according to the symmetry condition:

Y0k T ¥e,2k
Using the mapping given by equation (D9) equation (D28) may be written

“B3¥S-N, B2¥S-N, B1¥S-] *Bo¥s
(D29)

“B1¥S+1 'g:‘PS+N, “83¥S+N, =0,
forS=1,...,Ng,
where N; =N, -1, and N; = (Ny - 1)(N,-1).

Equatnon (D29) represents a seven-diagonal linear system, which may be written, as before,
as Ap= R, where R is the right-hand-side vector and A is the Ng order matrix given by

[G, 2G, ]
G3 G4 G3 O

(D30)

O "G, G, G
G, G._j
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where G, = =g, IN, and G, is the order N, matrix given by equations (D16) and (Dl7) wnth
however, the redefimtlon of go for the present three-dlmensmnal case.

We have the system matrix; now we apply theorem 1. With regard to the h):/pothesis, we
observe that the modus operandi is still column relaxation, so that matrix D is still given by
D = diag (Go, Go, - - -, Go)

and thus, following the previous argument, D is positive definite if, and only if,

2 2 2 ( 1r
—— + —+ -~ (1 -cos )>c2,
h: h;, h3 N, (D31)

which will hold for the frequencies of interest.

The eigenvalues of A may be found, as before, with the aid of the Kronecker product. We
note that A may be written as

A= (INy-l ® G4) + (Gs ® IN;)

where
[0 -2g, T
2 O - O
Gs= . . . (order Ny-l)
O € O -g
L g Ol

Now the cigenvalues of G5 are given by
) GYm . .
2g3cole,j 1,2,. Nyl,
while those of G, are the same as those for the two-dimensional A, with g, redefined,
Thus, applying theorem 2, the eigenvalues of A are given by
g0 28y cosﬁ—- 2vVe, g,' coOsS{— -2g3 cos %LIE , for
Ny

2=1,..., Ny ji=1,..., Ny-l; and k= l,...,Nz--l.

The minimum eigenvalue is clearly that for which £ = j = k = 1. Thus using the definitions of
20, 81, &2, and g5, and applying theorem 1, we have that BSOR converges if, and only if|

1
—2—-(- |:1-+C%h;‘]/2 cole-)+-—2— (1 - cos TN T 1))
2 2 Kh? g
h K X y y (D32)

(l cos—)> /K,
Kh
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which'is the three-dimensional extension of equation (D19).
Specialization of equation (D32) for the two cases follows directly as before.

Case 1.—For the modified problem we have that BSOR -converges if, and 'ohly if, w < w¢r
where

_(I-Mz)[ 2 T 2 T
W.. = —— (1 -cos+—)+ 1-cos
ot M hXZ( Nx),-Kh;( 2(Ny-1))

2 7 \|% (D33)
+ Kh; (l - COSE)]

or, for Ny, Ny, and N, reasonably large,
)

_ (1-M21[1 1 1 ] '
=x —+ — +
r M a?  Kb* Kc? (D34)

b

Case 2.—For the exact problem we find, proceeding as in the two-dimensional case, that Wer
is again given by equation (D24) with Q, and Q; defined as following that equation, but
with Q, redefined as

Q, = é(l - cosﬁi)"‘é (1 - cos 2(}}2,—1)) * fo% (l ) COS—NW—Z)‘ (D35)

Thus, as before, the result for the exact problem reduces to that of the transformed problem
ash, —>0.
X

D.3.4 SUMMARY
In summary, the predicted values for W, resulting from the analysis of the simplified

problem are given by equations (D21) (approximate) and (D24) (exact) for two dimensions,
and by equations (D34) (approximate) and (D24) and (D35) (exact) for three dimensions.
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APPENDIX E

VON NEUMANN STABILITY ANALYSIS

One way of investigating the stability of a differencing system is to study the propagation
of errors through the mesh in the iteration process in a manner derived by Von Neuman (ref.
'19). Let Ey ¢ be the error in ¢, | ¢ at the k, £ mesh point. Von Neuman assumed that these
errors may be expressed in the form

=+k =42
_ P amax T max 2m(kp—+ Qq—l) (E1)
Epo= E qu

P=Kpax 9= %max

for a uniform mesh. Here a and b are x and y dimensions of the mesh. Since there are the same
number of equations as unknowns, the system of equation (E1) is determinate. For simplicity,
we shall assume a flat plate with a uniform mesh. Then u; = K and the difference equation for
‘the column relaxation sweeping in the direction of increasing i is

(n) (s) (n-l) 2_iw { (n-1) _(n) ‘
K(o‘l-lj 2¢llj 1+lj>/Ax GAX(¢‘i+1j w‘i-l.i) (E2)
(s (s) . (s) (S)..
[(pll]"'l ‘p‘u w‘u ]/ v

Now

(s) _ ¢(n) /r (%)‘p(n-l)

Sp‘u bj

and we 'obtain

K[¢(n) 11]/ +2(1 r (n-l) (nl)]/ X2

1i-1j 1jj 1i+1j
(n-1) _(n) (n) , (n) (n)
e (“’uﬂj ie i—lj) AN ]/rAy E3)
-0 (D), -1y, (1) '
——r— (wl ij+l 13 1_, l l_]' )/ y
(n)

¢ ..
w? lj _w? ¢1-1y (n-1)_
+2 S () 0

lu

Since the difference equation is linear, we may consider a single component of equation
(E1) and find the solution of the difference equation in the form

103

|5



. Ax A
2ri (kp— +32q—X .
M~ £ (ki rae’) (E4)

This has the initial condition in the form of equation (E1). The iteration will converge if the

magnitude of g is less than 1. Substituting equation (E4) into equation (E3) vields, after
-dividing out the common factor, .

: - i0
K[ge'“9 -% + ——2(1r D) 4o '] /A2

iw

o g
- A% (el ' ge” ') + 2g(cosh, - 1)/r-Ay? (ES)

() o, e 228 ()

Ax

= and 6, =27 q%. Solving for g and simplifying, yields

A- 1-r
g=———A_(Cfr )¢ (E6)

where 8, =2mp

where

K 1w -i6
sz €Ax €

A=al +ib] =<"— +

(E7)
- 27K +2(1 - cosd,) _w2

Ax? Ayz €

2
The quantity C is always positive if% < 2K2 . Since the magnitude of g must be less than
one, we must have Ax

1-r ]° 1.3\
[al+—r— c] +b§<(al -?c) +b?

which simplifies to

(2Dc (23, -€) <0

Since (2 =) C> 0 this leads to
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K cosf 2(1 - cosf,) 2
2 L+ ging, | <2K 4 2w (E8)
sz eAx ) sz Ayz €
Considering the preceding relation as a restriction on frequency, we express the mequahty in
the form
1 - cos@ 1 -cosf
w? +22inh, < 2Ke [ At K Ayz’] (E9)
For p =q = 1 the limit Ax, Ay = 0 yields
7 m?
4w1r <ake[T + X
a2 Kc?
or for M near the sonic value
M2
o<1 M l+-l—>a . (E10)
M? a?  Kc?

. 1
since

_ M2
L g Ke < 1. Note that this limitation depends upon the outer dimensions of the

M: . .
mesh region and is similar to the result from the matrix method.

For now relaxation, with increasing j, we have

(S) (s) (s) 2w ) _ (9
K< iy P +“’li+1j>/Ax ebx ("’1i+1j ‘p'i-u)

+[p(r_n;1) 20 4, ]/Ayz+w (s;_0

(El11)

lij+1 1 ‘1] 1

Eliminating cp(ls)

(n) (n) , (n) A2 fl-T (n-1) , (n-1) (nl)
K<‘p1i-lj w 1ij ‘p‘i+1j>/r Ax (r )K(‘pll-lj 28011_] 11+1 )/AX

iw (n) (n) (1-r (n-1) (n-1)
T eBx [(“°1i+1j""li-1j>/r ( T ><f"ri+1j*p1i-1j>]

(E12)
(n-1) (1)1 (M) 4 () :
[‘p tij+1 2(r> Y- %)¢‘J iAeY ]/Ay
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Substltutmg equation (E4) into. equatnon (ElZ) and snmphfymg, ynelds

zx[-l_(‘ )](cosa. - DiAx? +T (sm"n)[ ( )]

[z (L) g6 ]/A, S ,@3‘)

*"{[7‘ (1_;5)] =0

Solving for g yields
) 2K(cosf,-1) » — 1-r
_-el ’/A’+——-[w —wA—smal-i-—Tﬂ;—- Ay] -A-—5—C

102 1 2 2% . 2K(cosb,-1) 4 1
v+ p [ e g — - g ApC

where
10 i0 2K(1 - cos8,) .2 .
A= 2/A 2, A=¢ ?/Ay?; C-—-z- +-—-————-9e—--é272-’—xsm0,

Ay? Ax?
The condition then | gl <1 becomes

K(1-cosdy) 2 2

2 2 s p
2cosf, /Ay <Ay’ + o . T Ax sinf,
or |
w’ - 2K(1-cosf;) 2(1-cosfy)
— + Te° smo, < T +. & '

which is the identical condition found for column relaxation.’

Since complex values of ORF were tried, it is worthwhile to find the effect of complex r on
the Von Neumann test for convergence. Equation (E6) for g becomes

-i
e 7C

A-=
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and the condition that gl <1 becomes

(a yLoSY T C)2 + (b +_1C'siri ) ? < (a - 0287 C)2 +(b +___Csrin'y) :
r r

which simplifies to

(ﬁil—r)c (2a-C) <0

For small frequencies, the same inequality (eq. E8) holds if
r<<2cosy
Otherwise lgl < 1 may hold for large values of frequency (forr> 2c037).

Oswatitsch and Singleton (ref. 20) replaced the actual time derivatives in the Euler
equations of fluid flow with fictitious time derivatives to change the equations from hyper-
bolic in time to parabolic in order to improve the convergence rate for calculating steady
flows. In the same manner, an artificial time derivative was added to the unsteady differential
equation for harmonic motion and an ADI (alternating-direction-implicit) scheme was tried
to solve the resulting equation. For the flat plate, the equation is

99, 2iw w?
3t —lexx-e—wlx T TE % (E14)

The mesh was swept through by row relaxation and alternately by column relaxation.
The appropriate difference equation for row relaxation in uniform mesh is given by

() _n-1) (M) _ 5, My )
((p'u j ) [‘p 1+l ‘u ‘pll-l_]:l/Ax

.dw_r (n) _ (n)
e-Ax [‘pni+1j “”-li-lj]

(E15)
(n-l) (n-1) , (n-1)
[ 1ij+1 i .+'p1ul /Ay
w(n) =0
1
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and for column relaxation

(n) (n-1) (n-l) (n-1) . (nl) <2
11_] ‘u) 1+1_| ‘plu _|+1]/A

e [ @D ¢(n-1)
€8x | i1 11-11] | (E16)

- (n) (n- 13 2 (n)

+[“’lijﬂ iy e +1]/Ay

Substituting equatnon (E4) into equation (E16) and simplifying, yields the following
equation for g

u- 2K(1 - cosh, )/Ax? + 28 sind,

+20- cosf,) w?
Ay"’ €

g:

If u >w?/e, then g <l requires

w? . 2w . . 2L cosﬂz) 2K(1 - cosf, )
— ¥ o Ax sinf, < Ay A2 .
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APPENDIX F

“ SOLUTION PROCEDURE INVESTIGATION _EXAMPLES'

F.1 SOLUTION PARAMETERS
F.1.1 RELAXATION FACTORS '

The characteristics of the variation in solution convergence with relaxation factor magnitude
are discussed in section 5.2.1. Some examples to illustrate these characteristics are included
in this section. :

Generally, the coarser the mesh, the longer the initial convergence slope lasted, and thus the
smaller the optimum overrelaxation factor (ORF), as shown in figure F1. Also, for a given
frequency, as Mach number increased, the initial slope decreased, as shown in figure F2. For
a given Mach number, this slope decreased as the frequency increased. Generally, as the
reduced frequency was increased, the ORF for most rapid convergence was reduced. As
discussed later in this section, the size of the optimum OREF is also dependent on the
relaxation procedure.

Also shown in figure F2 are two examples of the effect on the convergence rate when the
OREF is decreased during an analysis. The change is particularly noticeable for the M = 0.80
curve when ORF is dropped to 1.4 from 1.85. .

An example of the effect of the magnitude of the underrelaxation factor (URF) is given in
figure F3, and consists of a NACA 64A006 airfoil in harmonic pitch at a Mach number of
0.9 and a reduced frequency of 0.06. The solution for the coarse, 25 x 20 grid converged
relatively rapidly using an ORF=1.6 and URF = 1.0. However, the solution for the finer

42 x 30 grid diverged for URF = 1.0, but converged rapidly for URF=0.7. Variation of URF
in similar calculations showed relatively little change in convergence rates as URF was varied
“between 0.7 and 0.3. '

As an alternative to the overrelaxation factors used so far, the pilot program was rewritten to
accept complex ORF’s. Since there is little theoretical background for the use of complex
relaxation factors, the procedure was to try several values to see what would happen. Here,
only the real part of ORF was used in the calculation of ERROR. The results from using
ORF’s of 1.6 £0.1i and 1.7 £0.3i are shown in figures F4 and F5. Also included is the
corresponding result for an all-real relaxation factor of 1.85, which appears to be optimum
for this particular case. The ordinates for the figures are ERROR and the number of iterations.
Although these calculations were not carried through to convergence, experience showed
that the slope of this curve after it settled down (after some 30 or 40 iterations) was a valid
indication of the rate convergence of the solution. Hence, an all-real ORF of 1.85 appeared
to be distinctly more efficient than any of the complex factors. ORF’s of 1.2 £1.2i were also
tried, but ERROR diverged almost immediately.

The alternative possibility of using different overrelaxation factors for the real and imaginary
parts of the velocity potential was also examined. Figure F6 presents results for several
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cases. The cases were run with ORF = 1.85 used for the real part and ORF = 1.3 and 1.0 for
the imaginary part; then with ORF = 1.85 for the imaginary part and ORF 1.3 and 1.0 for
the real part.

The most interesting result of this study is shown in figure F7, where the convergence of the
real and imaginary parts of the ERROR were plotted separately versus number of iterations.
The periodicity as well as the phasing of the real and imaginary parts of ERROR was
unexpected and seemed to be significant. It perhaps helps to explain why convergence
acceleration procedures such as those discussed in section 5.3.3. were unsuccessful. It would
also seem to indicate that the complex ORF studies described above should be more successful.

Finally, reference is made to appendixes C and E in which analyses were made of the relaxation
solutions using time-like characteristics and the Von Neumann stability analysis. In both cases
the addition of an imaginary term to ORF decreased the damping and thus did not aid in
solution convergence.

F.1.2 GRID DISTRIBUTION AND SPACING

In this section, examples are presented of pressure distributions in which there were variations
in the spacing of adjacent finite difference intervals and in the number of points used to
represent the flow field. The configuration used for these calculations was the flat plate with
a Mach number of 0.8 and a reduced frequency of 0.06. As would be expected, in each case
the representation of the singularities in the pressure distribution was improved by clustering
the points about the singularities and by increasing the number of points.

A program was developed for calculating the mesh-point locations for an airfoil with a control
surface. The points were spaced according to the rule that adjacent intervals are A times the
length of adjacent intervals with 2/3 < X <3/2. The user specified the scale factor A in each
direction, the number of points over the wing surface (i.e., between x =-1.0 and X4), and the
number of points in the vertical direction. In the vertical direction, points were placed
symmetrically about y = Q (the vertical dimension in a two-dimensional coordinate system)
with no point at y = 0. Moving away from the y = O plane, each interval was A times the
preceding interval, with the spacing set so as to put points on the upper and lower boundaries.
The horizontal point spacing was more complicated, with points at the upstréeam and down-
stream boundaries, and a point over the trailing edge, x = +1.0. Then points were equally
spaced on either side of the leading edge, x = -1.0, and the control surface hingeline, x = x,,.
Also points over the wing (i.e., between x =-1.0 and x = x,) were symmetrically spaced about

X
& __ If \’s of close to 3/2 are used, the finite difference points are clustered about the flow

singularities at the leading edge and the hingeline in the flow direction and about the airfoil
in the vertical direction.

Examples of pressure distributions for several different mesh spacings are shown in figures F8
through F11. Throughout the example, the area of mesh grid was held fixed and the total
number of points nearly constant. The pressure distributions for the flat plate with an
oscillating quarter-chord control surface are shown in figures F8 and F9. Corresponding
pressure distributions for the flat plate in pitch are shown in figures F10 and F11. In each
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case, the improvement in the representation of the singularity as the points were clustered
about the singularities was very noticeable.

A comparison of pressure distributions resulting when the number of mesh points was varied
is shown in figures F12 and F13. The example is the flat plate with the oscillating quarter-
chord control surface. The area of the mesh grid was constant and the points were placed
according to the program briefly described earlier. These results are essentially directly
comparable to the results presented in figures 4 and 5 of reference 1 for a much finer grid.
There was a significant improvement in correlation with the linear solution as the number of
points increased. It is felt that the 42 x 30 grid represented a good compromise between
correlation with the linear result and overall economy, and thus would make a satisfactory
basis for parameter variation calculations.

F.1.3 EXTENT OF MESH

An example of variations in the location of the upper and lower boundaries is pr’esented next.
This calculation was carried out at M = 0.8 and w = 0.06 for a flat plate with a harmonically
oscillating quarter-chord control surface. The upper and lower boundaries (i.e., ¥, %) Were
set at £3.0, £6.25, and +£10.0 in scaled coordinates. This is equivalent to £8.99, +18.5, and
+29.6 in physical coordinates (i.e., 4, 9, and 15 chord lengths) for a 6% thick airfoil at .
M = 0.8. The number of mesh points was held constant for the three analyses using 42 points”
flow-wise and 30 points in the crossflow direction. Figures F14 and F15 show the distribution
of the jump in pressure coefficient across the section. The curves for y, . = £6.25 and

£10.0 are essentially the same except in the region of the leading-edge singularity. Here, a
better representation of the singularity was obtained from the smaller y, ., value, apparently
because the points in this case were more closely spaced about the wing section. The results

at Y1 max = *3.0 were slightly smaller in the amplitude for both the real and imaginary cases
except in the region of the leading-edge singularity. Again, the representation of the leading-
edge singularity benefited from the closer vertical spacing of the finite difference points.

Figures F16 and F17 show plots of the velocity potential distribution for the variations in

Y1 may discussed previously. The plots represent the variation in ¢, (real and imaginary parts)
in the vertical (crossflow) direction. The graph coordinates were set to emphasize the behavior
of the velocity potential in the vicinity of the outer boundaries rather than the region next to
the wing. The ¢, for only two chordwise points are shown, but these curves are typical of the
remaining curves. The curves for y, max of £6.25 and +10.0 lie very close together, while the
corresponding curves for'y, .. of £3.0 look quite different. Of course, it is the behavior of
v, adjacent to the wing that is most important, for this is where the pressure function is
evaluated. However, for this case, the ¢, distribution itself appears to have settled down by
the time y, ;44 = £6.25.

F.1.4 SEQUENTIAL REFINEMENT

As discussed in section 5.2.4, sequential refinement may be applied in terms of number of
grid points, frequency, or Mach number. Although all three forms were tried, it is sequential
refinement with respect to mesh spacing that held promise of significant savings in terms of
computer resources. Examples of sequential refinement with respect to both Mach number
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and frequency is shown in figure F18. Depicted in this figure is the convergence for the case

- M=0.9 and w = 0.12 for three different runs. For the first, the initial velocity potential

distribution was zeros; for the second, the converged solution for M = 0.85 and w = 0.12;

and for the third, the converged solution for M = 0.9 and w = 0.10. The difference in the
number of iterations to convergence between the three runs was 25 out of 120, or about 22%,
and is not significant unless the initial converged case is in existence. That is, it would not be
worth generating the first solution in order to use it in the generation of the second case.

The same is not true for sequential refinement with respect to the number of points while
keeping the total area constant. Significant saving is not automatic, however, and several
possibilities are sketched in the next two figures. The first figure (fig. F19) shows two possible
convergence paths using a combination of a course grid with a fine grid. A straightforward

- linear interpolotation was used to-obtain the initial values of ¢, for the iteration with the

fine mesh from the last ¢, distribution of the course mesh. Note that there is a sharp peak in
the convergence curves at the time the grids are switched. The difference between the two
paths is the convergence value reached for the coarse mesh before the switch to the fine mesh
is made. The computer cost is a function of the size and number of iterations performed with
each mesh. For example, both paths reach the value C of ERROR in the same number of
iterations. Path B is obviously more efficient than path A since a larger proportion of the
iterations were made with the coarse grid. We found it advisable to carry the convergence of
the coarse mesh below that of final convergence criterion.

Another problem concerned the relative coarseness of the first grid to the second grid in a
sequential refinement process. A second sketch (fig. F20) shows two convergence paths that
differed as a result of different coarse grids. The evaluation of the total cost to convergence
was more complicated than the preceding example. Here the efficiency must be evaluated by
comparing the difference in cost of I, iterations of the fine mesh with the No. 2 coarse mesh,
with difference in cost of 1, iterations of No. 2 coarse mesh with No. 1 coarse mesh.

Thus it is very difficult to put quantitative numbers to the actual gain in computer efficiency
using sequential refinement. We were satisfied with the results of using just two meshes to
obtain final answers—a 25 x 20 mesh followed by a 42 x 30 mesh — for most of the examples
of this report.

Figure F21 presents the solution convergence for an airfoil using a 46 x 30 mesh. The upper
curve shows the convergence starting with an initial ¢, distribution of zero. The lower curve
shows the corresponding convergence starting with an initial distribution from a converged
solution for a 17 x 20 mesh. The values at the points of the coarse mesh were linearly
interpolated to provide values at the points of the fine mesh. The two meshes covered the
same area. The point to be made is that the solution curves tend to merge for a large number
of iterations and thus the advantage gained by using sequential refinement is lessened. As a
side issue, the graph gives an indication of the effect of varying the scalar applied to the terms
that are added to the finite difference equation to provide for convergence in the mixed-flow
problem when using row relaxation. This factor, which is called CONPXT and is described in
section F.2.1, was set at 5 and 10 for this particular case. Also, the graph shows the effect of
using an ORF of 1.6 rather than 1.85 for this problem.

129 .



1x 107"

Fiat plate with harmonically oscillating
quarter-chord control surface
M =09,w = 0.12
Mesh: 25 x 20
1x102 |~
1x103 |-
ERROR
1x 104
Initial distribution
¥V  Setto zero
0O Convergefj solution forM =
O Converged solution for M =
1x10° -
" | | | [ | |
1x10
* o 20 40 60 80 100 120 140

Number of iterations

Figure F18. — Sequential Refinement with Respect to Mach Number and Frequency

130



1€l

Log(ERROR)

Fine mesh — initial p; distribution of zeros

\ Sequential refinement using
1
{ : \ coarse and fine mesh
IR - — = ~PathA
1 ‘\ — — Path B
[
|
[ ]
\U |

«—— Coarse mesh—initial 2 distribution of zeros

Iterations

Figure F19. — Sequential Refinement With One Coarse Mesh and One Fine Mesh



cel

Fine mesh — initial ; distribution of zeros

Sequential refinement using
coarse and fine mesh

— — — Path B

Log{ERROR)

Y
Sw
-
-
e
-
Seao
-
-
~—ae

—
— e ——
— e —— —

Coarse mesh No. 1

|‘— I —"" Iy —’1 Iterations

Figure F20. — Sequential Refinement and the Effect of Coarseness of First Mesh



1x10°}

NACA 64A006 airfoil with harmonically oscillating
quarter-chord control surface
1x102 |
M = 0.85, w = 0.06
\
\a\ /— ORF = 1.6, URF = 0.9, CONPXT =5;
N¢ start with converged solution from 17 x 20
N
1x103 L
ORF = 1.85, URF = 0.9, CONPXT =5;
ERROR start with zero solution
4}
1x10 CONPXT = 10
ORF = 1.85, URF = 0.9, CONPXT =5; v
1 10_5 | start with converged solution from 17 x 20 .
X
1x 106 l ] 1 1 ] ]
0 40 80 120 160 200 240 280

Number of iterations

Figure F21. — Examples of Effect of Starting Velocity Potential on Solution Convergence

133



F.2 SOLUTION PROCESS
F.2.1 ROW RELAXATION

The finite difference equations presented by Ehlers in reference 1 are written for column
line relaxation. Rewriting these cquations for row line relaxation consisted of simply putting
the i+1, i-1, i-2 terms on the feft-hand side of the equations and moving the j+1, j-1 terms to
the right-hand side of the equation. This change was accomplished in the program by minor
DO loop changes and by rewriting the coefficient generator module. Although the mechanical
aspects of the change were relatively straightforward, questions did arise regarding the effect
on the solution convergence, a point made clear in discussions with Jameson. A general way
of analyzing the iterative solution of finite difference equations is discussed by Jameson in
references 8 and 9. Briefly the procedure is to treat the iterations steps as an artificial time
coordinate. This permits rewriting the finite difference equation as a differential cquation
including time, and the particular way the relaxation is performed is reflected in time-
dependent terms. Thus a relaxation procedure may be considered as a finite difference
cquation for a time-dependent equation and the behavior of the corresponding iterative
solution inferred from the resulting time-dependent equation. Both the subsonje (elliptic)
and supersonic (hyperbolic) forms of the two-dimensional equation were analyzed; the
details are included in appendix C. In summary, it was found that the clliptic form was
convergent in its original form, whereas the hyperbolic form required the addition of two
terms to achicve convergence. These terms are derived in the appendix and the following
discussion will concentrate on the result of using row relaxation.

Generally, row relaxation proved much more efficient than column relaxation. In addition,
the row process was most efficient starting at the upper and lower boundarics and working
in toward the wing surface, alternating the rows by taking one from the top section, one
from bottom section, then one from the top scction, ete. The one exception to this pattern
was for combinations of Mach number and frequency for which convergence was marginal
at best; then column relaxation proved superior to row rclaxation.

Figures 22 and F23 present examples of row and column solutions for comparison purposcs.
Figure F22 compares row and column solutions for a 42 x 30 grid lor a flat plate. It is
believed that the solutions are carried out, initially at least, with a necarly optimum ORF.
Figurc F23 shows corresponding data for a 17 x 10 grid. In each case, row relaxation was
significantly more efficient.

Convergence in the airfoil case, i.e., for mixed flow, was obtained by adding the following
terms to the finite difference equation.

(n) _ (n) (. (o) _ (o)
i+ 1 (‘”'i_i ”"'i-l.i) (‘o'i.i ""i-l.i)

2 SR

lui- +u

CONDPXT j
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(n) _ (o)
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The values of the velocity potential with superscripts (n) are considered “new” values and
are considered to be unknowns. The values with superscript (o) are considered’ “old” values
that were calculated in the preceding iteration and go on the right-hand side of equations
(A1) and (A2).

CONPXT and CONES are constants that may be varied from run to run. Column relaxation
is convergent without these additional terms. A comparison between the solutions for row
and column procedures (fig. F24) showed that row relaxation was again the most efficient
process. The values used for CONPXT should be of the order 2 to 10 and for the value of
CONES should be of the order of +0.1. As with ORF and URF, optimum values of CONPXT
and CONES6 appeared to vary from case to case and, for max1mum efflclency, should be
determined separately for each calculation. .

There are several ways of running column relaxation for the two-dimensional case. The two
most logical sequences appear to be: (1) starting from the upstream mesh boundary and,
taking the columns in succession, moving to the downstream boundary; and (2) starting at
the section trailing edge and moving forward, column by column, to the upstream boundary
and then returning to the first column aft of the trailing edge and moving, column by column,
to the downstream boundary. It is this latter process that worked best and is referred to as
the “standard” column procedure. The former sequence will be referred to as simply. “‘fwd-
aft.”” An example using this latter solution sequence is shown in figure F25. From this
particular example, it would appear that fwd-aft is more efficient than the standard sequence
(see fig. F23). The fwd-aft sequence appears, in many cases, to be nearly as efficient as the
standard column, but we found it generally to be less reliable. This was particularly true for
combinations of Mach number and frequency that led to marginal solution stability. Also,

the fwd-aft sequence utilized lower ORF’s, for several examples diverged when rerun with
ORF’s that had been optimum for the standard sequence. It is interesting to note that working
the solution sequence forward and aft from the the trailing edge does not seem logical for
mixed-flow problems; however, in practice, it worked out very well.

Similarly, there are other sequences for row solution besides the “out-in” sequence described
above. These include, for example, *“‘in-out” sequence (i.e., starting at the wing surface and
working out, row by row, and alternating top and bottom), and just starting at one boundary
(say the lower boundary) and solving successive rows to the upper boundary A comparison
of row in-out with row out-in is given in figure F26.

F.2.2 DIRECT SOLUTION

A version of the pilot program was also developed to provide direct solution for the interior
velocity potential distribution. This concept was outlined by Ehlers (ref. 1). Generally, the
iterative relaxation for the unknowns associated with the interior points was replaced by a
solution of the complete set of simultaneous equations at one time. There was still an
iterative loop since the conditions on the outer boundaries of the mesh area were a function
of the unknown velocity potentials adjacent to the airfoil surface. The modified pilot program
was appropriate only for problems with subsonic steady-flow fields.
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The matrix equation for the direct solution may be written as

[A] {X} = {R) : (F2)
where [A] is matrix of complex coefficients of order equal to the number of mterlor points,
{X} is column matrix of unknown velocity potential, and {R} is a complexicolbmn matrix
introducing the conditions on the flow-field boundaries. If the number of niesh points in the
flow direction is iax and the number in the crossflow direction is Jmax’ then N the number
of interior points and thus the order of equation (F2) is .

N=(ipax - 2) Gmax i

-2) o . (F3)
The boundary values on the mesh region are dependent on the values of the veioc1ty
potential on the wmg and wake; hence equation (F2) may-be wrltten as ¢

(Al {X} = {R(X)} \‘v,_ (F4)

where [A] is a constant matrix and {R} is a comphcated nonlinear vector valued
function of {X}. The solution is obtained by iteration. That is, a {X{)} is chosen and
improved approximations to {X} are determined from

[A] {X(*D} = (RX™)) sy

Note that for each fixed n, there is a linear equation of the form of equation (F 2), and that
as n changes, only the right-hand side changes, not [A].

The most efficient direct method for the solution of a linear system [A] (X} {Rs is well
known to be the Gaussian elimination algorithm. The form of this algorithm that is.
particularly suitable for several systems with the same coefficient matrix but with different
right-hand sides is LU decomposition. In this scheme, [A] is decomposed, once and for all,
into lower and upper triangular matrices [L] and [U], respectively, such that [L] [U] = [A].
Then [A] {X} = {R} may be written as [L] [U] {X} ={R} and the solution found by
solving, in turn, [L]{Y} = {R)} and [U]{X)} = {Y}. Note that since [L} is lower triangular,
solution of [L] {Y} ={R} involves only forward substitution: similarly, since [U] isupper
triangular, solution of [U] {X} ={Y} involves only backward substitution. Thus sohition of
[A1{X) = {R} is very fast once the decomposition [A] = [L] [U] is performed.

The main obstacle to solving large systems by direct methods is the large storage requirement.
This is not due to the space required for [L] and [U], since these may replace [A] ag they
are calculated, but simply the storage required for [A]. The situation is improved sorhe-

what when [A] is a band matrix as in this case, but for a sufficiently fine mesh, the storage
required may still exceed core capacity. To be more precise, when the coefficient matrix is
banded, it may be shown that the band structure carries over to [L] and [U]. Thus it is not
necessary to store all of {A] ; in particular, the 0’s below the far subdiagonal and above the
far superdiagonal need not be stored. (The 0’s within the band must be stored since these
locations are filled in the course of the decomposition.) Hence the total storage requlred for
[A] isN [20max 2) + 1}. In addition to the storage for {A] we required N locations for

'

{
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{R} and N locations for a scratch array used in the course of the decomposition. In sum, if
the values were all real the total additional storage requirement, T, would be

T=N* [2Gpay -2) + 11 +2N (F6)
=N+ [20ax -2+ 3], (F7)

but since the values are complex, we have
T=2N " [2(pax - 2 *+ 3] (F8)

We proceed to put (F7) in slightly different form, in which the dependence on the number of
interior points is more transparent.

Let C = Gimax - 2/(imax - 2)-
Then Grax - 2)* = Cligax - 2) Grmax - 2) =CN (F9)
which leads to

T=4JC - N¥? + 6N (F10)

Hence, we see that the storage requirement grows essentially as the number of interior points
grows to the 3/2 power, for a fixed ratio of mesh spacings. For a mesh of 27 x 18 (i.e., with
imax = 27 and j,, = 18), T = 28 000 words, which is within the core capacity of the

CDC 6600. For a mesh of 42 x 32, T= 151 200 words, which is beyond the core capacity of
the CDC 6600.

F.2.3 CONVERGENCE ACCELERATION METHODS

The relatively regular, uniform, and monotonic behavior of the pressure difference distributions
‘with successive iterations suggested the use of convergence acceleration techniques. Also, these
procedures were successfully applied in limited examples of steady transonic flows by Hafez
and Cheng (ref. 13), and Martin and Lomax (ref. 14). Further, our studies showed relatively
good behavior of both the unsteady velocity potential distribution and the ERROR with
successive iterations.

A rather straightforward program system was set up whereby three successive velocity
potential distributions (or pressure distributions) could be calculated and saved. These would
be for the n-2m, n-m, and n iterations, with both n and m being set by the user. A separate
program is then used to generate a new distribution, which may be used as a starting point
for a new sequence of iterations.

The sample problem used for all the calculations was that of a two-dimensional flat plate with
a harmonically oscillating control surface at M = 0.8 and a reduced frequency of 0.06. A
mesh with 42 points in the streamwise direction and 30 points perpendicular to the flow was
used. It is estimated that convergence for this case was reached in less than 400 iterations.
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The first convergence acceleration procedure used was an application of Aitken-Shanks
nonlinear transformation (82 process) to the velocity potential distribution (ref. 21).

(M (n2m) [ (n-m)\?
m*_ “1ij Pijj '(“’lij )

-
ij ¢£r;j) .2 (¢(lr1ijm)

(F11)

d (n-2m)

+ 1j
The results were not encouraging. A typical result is shown in figure F27 and presents
ERROR versus iteration. Equation (F11) was applied using the velocity potential
distributions from iterations 25, 50, and 75. The resulting velocity potential distribution

" was used as a starting point for 25 more iterations. The resulting ERROR’s are shown by

the triangle symbols. After an initial sharp perturbation, the ERROR fell back to the level
at which equation (F11) was applied, and the convergence continued as if nothing had
happened.

As a second step, equation (F11) was used on the pressure distribution rather than velocity
potential distribution. Since the functional iteration solution process cannot be restarted

with the predicted pressure distribution, successive results were monitored to see if they

would converge. The process was to use increments of 25 (i.e., m = 25 in eq. F11), starting
with the 25th iteration. Thus pressure distributions were obtained using equation (F11) with
the results from iterations (25, 50, 75), (50, 75, 100), etc. Here again results were discouraging.
The real part of the pressure behaved very well; the imaginary part had obvious problems up
through the (100, 125, 150) set. Typical results are presented in figures F28 and F29.

Examination of both the velocity potential and the pressures as calculated with equation
(F11) showed that the results were very sensitive to the input values when the values tended
to lie along a straight line. Under these circumstances, for example, three positive values,
obviously leading to more positive values, may well result in a negative value when used in
equation (F11). To eliminate this problem, the equation was rewritten in the following form:

m)*  (n) 1 _{.(n)  (n-m)

Yi5 = %5 T mIm (oom) (“’lij Prj ) (F12)
Prij g
m (-
o1 -wl‘}jm)

Then, a lower limit was set on the value of the denominator in the second term to restrain
the resulting extrapolation within certain limits. An example of the use of equation (F12) is
shown in figure F30. The results show no improvement over using just straight relaxation.
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Figure F27. — Example of Solution Convergence Using the Aitken-Shanks

Nonlinear Transformation
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Control Surface — M =0.8, w =0.06
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