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1 .O SUMMARY 

The problem  of  generating  unsteady  transonic air forces  for use in flutter analyses  remains  a 
significant  problem. One  of  the  most promising procedures  for solving this  problem is re- 
ported  by Ehlers in reference 1 .  It  consists of  a  finite  difference  solution  for  the  differential 
equation  of  the  unsteady velocity  potential. The differential  equation is linear  and  includes 
coefficients that vary with  respect to space, being a  function of the  steady flow  velocity 
potential. 

The differential  equation,  together with the  boundary  conditions, is derived in detail by 
Ehlers  in  reference 1.  Ehlers  also  presents  a finite  difference  solution  scheme based on  that. 
used by Murman  and  Cole  (ref. 2) and  Krupp and  Murman  (ref. 3) for the solution  of  steady 
transonic  flow.  The  work of reference 1 resulted in the development  of  the  method,  a  pilot 
program for  twodimensional  flow,  and  the  calculation  of several examples  including both 
the flat-plate  and NACA 64A006 airfoil. The work of this  report is a  direct  extension of the 
earlier  work  and  includes  an  investigation  of solution  parameters in order  to  reduce  the com- 
puter resources  needed to  produce converged results;  an  extension of the  twodimensional 
examples of reference 1 ; the development of a  pilot threedimensional  program; and an 
analysis  of the  dependence  on  frequency of the convergence of  the solution  scheme. 

The main results of  the  study  are as  follows: 

The  number  of  iterations  to  solution convergence is sensitive to  the value of overre- 
laxation  and  underrelaxation  factors. 

There is an  upper limit on frequency,  depending  on Mach number and size of mesh 
region,  above  which the relaxation  procedure will not converge. 

. .  

Row line relaxation is  .more  efficient than column  relaxation  except at  combinations 
of Mach number  and  frequency  for  which convergence is marginal. 

The  direct  solution is fast  and  efficient for problems  with  a small number  of grid points. 
However, the storage  requirements  are large and  incore versions are  impractical  for 
realistically sized problems, even for cases in which the flow is all  subsonic.  The  direct 
solution  may provide  a  means for avoiding or  getting  around  the  frequency  limitation 
problem discussed in b) above. 



e) A number  of  twodimensional  examples  were  calculated  at Mach numbers  of 0.85 and 
’ 0.9 and  included  flat-plate  and NACA 64A006 airfoils. For the  flat-plate cases, the 

finite difference  results  compare  favorably  with  results  from  linear  theory using the 
program of  Rowe  et  al. (refs. 4 and 5). Coirelation of the  airfoil  results  with  the ex- 
perimental  data  of  Tijdeman  and  Schippers  (ref. 6) is about  the same  as  Ehlers  found  in 
reference I .  In  addition,  two  Freon  calculations  were  made  at M = 0.9. 

No advantage was found  in using convergence  acceleration  methods based on  the 
AitkenShanks  delta-square process. 

A  pilot  three-dimensional  program  was  developed for  rectangular wings. Pressure dif- 
ference  coefficients  are  presented  for  an  aspect  ratio 5 planform in harmonic  pitch. 
Results  for  a  flat-plate  configuration  compare well with  corresponding  results  from 
linear  theory.  Results  for  a NACA 64A006 configuration  appear  reasonable,  although 
there  are  no  experimental  data available for  correlation  purposes. 
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2.0 INTRODUCTION 

An  initial attempt to apply  finite  difference  procedures in the solution of  the unsteady  tran- 
sonic  flow  problem is  described by Ehlers  in  reference 1. This  report is  a  sequel to  that work, 
and  includes the investigation of solution  parameters  in  order to reduce  computer  resources 
required to  obtain useful  results, an extension  of  the  twodimensional  examples  of  reference 
1, and  development  of a  pilot  threedimensional program. 

Shortly  after  the  publication  of  reference 1, Traci  et al.  (ref. 7) published a  paper  describing 
a  second solution to the unsteady  transonic  problem using finite differences.  They, however, 
obtained a different  differential  equation  and  boundary  conditions  by  retaining  only  the 
firstader  t ime derivative term  of  the differential  equation. The finite  difference  solution 
procedure  appears essentially the same as  that used in reference 1. 

The  purpose  of  this  continuing investigation  is to provide  a  practical  analytical  procedure 
for predicting the  aerodynamic  forces  for  flutter analyses. The examples  of reference  1 
showed  relatively  good  correlation with  linear  analytical  results  and  experimental  results. 
However, the  amount,  of  computer  resources  required t o  generate the results  were large 
enough to  make  the  procedure  impractical  for  flutter calculations.  This  particular  problem  is 
significantly  reduced  with the use of high values of  the overrelaxation  factor (ORF) and 
sequential  refinement of the  finite  difference mesh,  as will be discussed in section 5.2. 

In the present work,  the unsteady  transonic  flow is analyzed by solving for  a scaled per- 
turbation velocity potential, cp. The velocity components  of  the flow,  corresponding to the 
physical  coordinates xo,  yo, zo are 

= uo (1  +@x 1 v = uo @yo 
0 

w = u  @ 
O zo 

where uo is the freestream  velocity  and 4 is the  perturbation velocity  potential.  The scaled 
potential, cp, is  related to  the full potential, @, by the relation 

where E is assumed to  be a  small quantity defined in terms  of  the airfoil  thickness  ratio. 
The differential  equation  for the velocity potential in unsteady  transonic flow  as  derived by 
Ehlers  is 

Where 
So = steady  velocity potential 

VI = unsteady  velocity potential 
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M = Mach number 

o = reduced  frequency 
. .  

7 = specific heat  ratio 

e = (S/M)'" where 6 is the thickness  ratio or  measure  of  camber 
and  angle of  attack 

K = (1 -M2)/M2e 

x,y,z are  the scaled coordinates  x = xo, y = pyo , z = pz, , where x. , yo , zo 

are the physical coordinates  and p = 6 I l 3  M213 

Equation (1) may be rewritten as 

and  this will be  the form used throughout  the  report.  For  two-dimensional flows, equation 
(2) is rewritten  as 

The wing shape  as  a  function  of  time is written 

and the linearized boundary  condition  for  the  total velocity potential, 9 , is 

For twodimensional flow, the zo is replaced by  yo and f = f(x,t). 

Equations (2) and (3) are  rewritten as finite  difference  equations  and  solutions  are  obtained 
using relaxation  procedures. The  finite  difference  equations  together  with far-field boundary 
conditions  for  threedimensional flow are presented in appendices A and B. 

An important  development  during the course  of  the program was the encountering of dif- 
ficulties in obtaining  solution  convergence-first  for  row  relaxation,  and  then  for  certain 
combinations  of Mach number  and  frequency.  This led to analytical  investigations of  the 
relaxation  procedures used that  are discussed in  section 4.0 and  described in detail in ap- 
pendices C through E. 

4 



Empirical investigations of the  relaxation procedures are presented in section 5.0 with  two- 
dimensional examples presented in section 6.0. 

Finally,  section 7.0 describes the threedimensional  pilot program together  with  some 
examples. 
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3.0 SYMBOLS AND ABBREVIATIONS 

a,  b coefficients  for  y, z differences  corresponding to second derivatives, 
with  appropriate  subscripts (eq. A3); also  length of sides of region 
for  finite  difference  solution 

AD1 altematingdirection-implicit iteration  scheme 

b semichord of wing 

BSOR block  successive overrelaxation 

coefficients  for x difference  corresponding t o  second  derivative 
(es. A3) 

C height of side  of  region  for  finite  difference 

CSI 9 cs, 9 ds, 9 4, equation (AI 3) in appendix A 

* cP 
E 

ERROR 

equation (A27) in appendix A 

coefficients  for  second-order  accurate  difference  corresponding  to 
first derivative (eq. A3) 

jump in pressure  coefficient 

coefficients  in  difference  equations  with  appropriate  subscripts; also 
used as  unknown  error  in  Von  Neumann  analysis 

see  equation ( I  9) 

instantaneous wing shape  defmed  by z, = S f(x,y,t) 

instantaneous  airfoil  shape  defined  by yo = S f(x,t) 

undisturbed wing or airfoil  shape 

unsteady  contribution  to wing or airfoil  shape 

see  equation (A6) 

'km + 1 -'km 

x,y,z subscripts  for  points in the mesh 

fi 
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ia x  index  for  first mesh point behind  hinge 

i,,, jmax, kmax  maximum  number  of  x,y,z mesh  planes  respectively 
. . , .  , 

il x index  for trai.ling edge 

I, . integral  defined by  equation (B2) 

. .  

jm 

K 

km 

LET 

m 

y  mesh  line  just  below  airfoil  (twodimensional  configuration) 

(1 - M2)/M2 E 

z mesh  plane  below  wing  (three-dimensional  configuration) 

superscripts  denoting  lower or  upper  boundary on Fd ; also used to 
denote lower  and  upper  triangular  matrices  resulting  from  matrix  de- 
composition (sec. 5.3.2) 

subscript used on mesh point  indices to  denote  points  adjacent to 
and  below the airfoil or wing 

freestream Mach number 

number  of  iteration 

number  of mesh increments  in  x,y,z  directions 

overrelaxation  factor 

q1 x + imp,  acceleration  (or  pressure)  potential 

overrelaxation  factor 

variable  defined for  equations (A1 8) 

variables  defined in equation (B4) 

semispan of wing 
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physical  coordinates 

scaled coordinates (xo, pyo , pq,)  for the  threedimensional  problem; 
the scaled  coordinates  for the  twodimensional  problem a p  x and y, 
with  x again  being the  direction of fluid flow 

variables of integration 

I .  

. .  

coordinates  defined  in  equation (AI 8) 

coordinates of leading  and  trailing  edges 

coordinate  of  control  surface  hingeline 

coordinate of wing tip 

di"zF 
Yt 

P 

parameters in equation  (C18) P I  9 P 2  

ratio of specific  heats for air Y 

jump in at plane of wing or  vortex  wake. 1 .  . .  
i :. 

E 

thickness  ratio or measure of camber  and  angle  of  attack 6 

X. 
'max 'imax- 1 

- 

wM/(l - M 2 )  

Scale  factor  on  yo  and zO, p = 61f3 M z f 3  '. !. 

unscaled  perturbation  velocity  potential . Q 

steady  scaled  perturbation  velocity  potential 90 

unsteady  scaled  perturbation  velocity  potential 91 

wake  integral  defined in equation  (A24) 

, .. : acceleration or pressure  potential : 

9 

X 



" 

w 

fundamental  source  solution  of  integral  equation  for  evaluation of 
far-field boundary  conditions 

angular  reduced frequency (semichord  times frequency divided by  the 
the freestream  .velocity) 

critical  reduced frequency (sec. 4.2) 

Kronecker  product of matrices A and B (see sec. D. 1.3 in app. D) 
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4.0 ANALYTICAL EVALUATION OF THE CONVERGENCE 
OF THE RELAXATION TECHNIQUES USED FOR 
THE  UNSTEADY  TRANSONIC FLOW  PROBLEM 

During the course of  the program,  a  considerable  effort has been madeto analyze  and  im- 
prove upon  the  relaxation  procedures used to  solve the  finjte  difference  equations.  At 
first this was done  to ensure the convergence of  the mixed-flow problem using row  relax- 
ation.  It was found  that a  straightforward  implementation of  this  scheme, in direct  analogy 
to the column  relaxation  scheme, was divergent for  the mixed-flow problem.  Following the 
recommendations  of  Jameson (refs. 8 and 9), an analysis was made in which successive itera- 
tions were  treated  as  a  pseudotime  variation.  This  analysis  showed the need for  the  addition 
of time-like  difference  terms in the program. A summary  of  this  work is given in section 4.1 
and a  detailed  discussion is presented  in appendix C. 

The  next problem was encountered in attempting to  complete  some  of  the numerical 
examples. In particular  it was found  that,  for a given Mach number,  there was an  upper limit 
on the reduced  frequency  at  which the relaxation  solution  converged.  At  higher values of 
frequency,  the  solution was found t o  diverge. This  behavior was found to be essentially 
independent  of  the  type  of  relaxation  scheme (i.e., row or  column), the mesh  spacings, the 
relaxation  factor,  and  whether the differential  equation was purely  elliptic  (flat-plate con- 
figuration) or of mixed elliptic  and  hyperbolic  type  (airfoil  section  configuration).  A  matrix 
analysis of a simplified version of  the problem revealed that  there is indeed  an  expected 
frequency  limitation on convergence,  and this may be recognized by noting the similarity 
between the unsteady  differential  equation  and the Helmholtz  (or  reduced wave) equation. 
This analysis is summarized in section 4.2 and a  detailed  account  presented in appendix D.. 

Finally,  a  third  means  of  analyzing  relaxation  procedures is the Von  Neumann  stability 
criterion. The application  of  this analysis method  to  the  pertinent  relaxation process gen- 
erally  concurs  with the findings of  the preceding two analyses. The  details of  this analysis 
are  presented in appendix E and  summarized in section 4.3. 

4.1 A  TIME-LIKE  CHARACTERISTICS ANALYSIS 

Jameson  treats  the  difference  between  two consecutively  iterated values of the velocity 
potential  as a time derivative,  namely: 

where the superscripts denote  the  iteration  number  and  the  subscript  i, j denotes  the  finite 
difference  point. When this  expression is substituted  into  the  difference  equation and  all 
terms  are  expanded  in a  Taylor's  series about  the central  point, a  differential  equation 
results that  contains  not  only  the  terms  of  the original  differential  equation but also  addi- 
tional  time derivatives. A study of variation  with  time of the solutions to  this  differential 
equation  with  arbitrary  initial  conditions will reveal some  insight into how the  iteration 
method will converge. 
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For flows that are subcritical, the simple  straightforward  difference  equation  developed  by 
Murman  and  Cole  (ref. 2) will converge whether  column  solution o r  row  solution of  the 
difference  equations  are used in the  relaxation  procedure.  Column  relaxation will also  work 
for mixed flow,  but  row  relaxation will diverge unless time-like  difference  terms  are  added. 
The time-like  differential  equations for  both column  and  row  relaxation are derived  in 
appendix C. At  elliptic  points,  row  relaxation  for sweeping  toward the airfoil (y < 0) leads 
to the differential  equation  (C 1 3 ,  i.e. 

(UP, x)x - 7 2 i o  
@I x + Vl yy +qV, + At - F a  

- 2($)CPIyt = 0 

where  Ayj = Yj + 1 - Yj - 1 and  r  is the overrelaxation  parameter. 'The differential 

equation is expressed in canonical  form by  introducing  a new time r = t + - At 
AYj Y. 

Thus 

2 

-&) VIrr  = O 

This  equation is  hyperbolic in the  time  and  hence  initial value problems  are  properly  posed. 
For supersonic  points, u < 0 and PI rr terms have the same sign rendering the  equation 
hyperbolic in y. Since  supersonic  points  experience  only  upstream  influences, the  equation 
must be made  hyperbolic  with  respect to  the variable x.  This is achieved by  adding  differ- 
ence  terms  of  the  form yielding time derivatives CPl xt  and Pl and  choosing their coef- 
ficients so that  the resulting  coefficient of  the PI TT term is positive. The method was em- 
ployed by  Jameson  for  the  steady-state  equation  for  the velocity potential and was found  to 
be successful for  the linear  unsteady  differential  equation  for  harmonic  motion discussed in 
this  document.  The inclusion of  these  additional  terms  does  not  affect the final  solution 
since  these terms  become negligible when the  solution is converged. 

Introducing the  time derivative  terms into  the  difference  equations  for  column  relaxation 
at  elliptic  points  leads to  the following  time-like  differential equation  for sweeping in the 
increasing x  direction: 

2 i o  
(UCP, 1 -E CP, x + CP, + q q, - 2ua, CPl - 2(ua2 - i o a , )  CP, = 0 x x  .Y Y xt  t (9) 

where a1 , a 2 ,  and a, are given in equation (C8). With the new time variable, r = t + a, x, 
the  equation  takes  the canonical  form 
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Since for elliptic or  subsonic  points,  u > 0, this  equation is  hyperbolic in time.  At  hyper- 
bolic  points,  backward  differences  are used for  the x  derivatives  and the resulting  differen- 
tial  equation  contains  no ‘Pl 77 term  but  takes  the  form (eq. C11) 

+2iwAt E (Kt 1  Axl +Ax2)‘1t 1 = o  

Since u is negative, this  equation is  parabolic in time,  but  hyperbolic  with  respect t o  x. To 
have damping at supersonic  points,  equation (1 I )  indicates that r  must be less than  1,  and 
hence  underrelaxation  must  be used at supersonic  points. 

4.2 A MATRIX  CONVERGENCE ANALYSIS 

The observed frequency-dependent  limitation on  the convergence of  the overrelaxation 
method may be analyzed  according to  a  system  matrix  approach.  In  outline, the  method 
proceeds  as  follows:  first,  simplifying  assumptions  are  made that replace the original 
problem  with  that of solving 

1 
2 
0 

‘Ixx K l Y y  EK ‘Ix EK +-p - -  2iw + - p1 = 0 

over  a  rectangle of sides a, c  and with p1 being  prescribed on  the sides. Then  the region  and 
differential  equation  are  discretized using a  uniform  mesh  and  central  differences,  respect- 
ively, leadkg to_a system-of linear  difference  equations.  This  system is written in matrix 
form as API = R, where Pl is the vector  of  unknown values of PI at  the  interior mesh 
points and is a  vector  containing the  boundary values. The  elements  of A are  known 
functions of the reduced  frequency, w .  A theorem is invoked that  states  that  under certain 
mild assumptions, the line or block  overrelaxation  scheme used in the program will converge 
if,  and only  if, all the eigenvalues of  A  are  positive;  i.e.,  A is positive definite. To  apply  the 
theorem,  the eigenvalues of A, which are, of course, also functions  of w,  are  determined; 
then  the value of w for which the smallest eigenvalue becomes zero is found. We call this 
value the “critical frequency”  denoted  by  wcr, since by virtue of  the  theorem, it is the 
value of w below  which  relaxation will converge and above  which it will diverge. 

Exact  and  approximate  formulas  for  Ocr derived in this way  are given  in appendix D. Here 
we give only  the  approximate  formula,  which is 

where  a  and  c  are the  width  and height of  the mesh region. This  completes the  outline  of  the 
analysis, the goal of which was to  find  a  formula  for  wcr  to explain the  frequency limita- 
tion. We now turn to validation of the formula. 
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A comparison  of  the  critical  frequency  predicted  from  the analysis of the simplified prob- 
lem  with various computational  observations is given in figure 1 .  The  solution region in all 
cases  was  defined as  the rectangle  x = -2.65 to 2.75; y = -6.25 to 6.25. The  approximate 
prediction  formula given by  equation (1 3) was  used since the  number  of mesh points em- 
ployed  (at least 25 x 20) was sufficiently large in each  direction so that  the  difference be- 
tween wa from  the  exact  and  approximate  formulas is less than 1%. 

With regard to  the  computational observation  points,  those  indicating  convergence  corres- 
pond to  the largest frequency  for  which convergence was obtained  at  the given Mach  num- 
ber. In the  two airfoil cases, the convergence was  marginal and  resulted only  after  substan- 
tial  experimentation  with  the values of  the  under-  and  overrelaxation  factors,  at  supersonic 
and  subsonic  points,  respectively. In the case of the  flat  plate,  additional  computations were 
performed at slightly  higher frequencies;  actual divergence of  error measure was observed, 
as  indicated in figure 1. 

Further validation of  the results of  the  matrix analysis was obtained  as follows. It  is an  im- 
mediate  inference  from  equation ( 1  3)  that a decrease in the  dimensions  of  the  solution 
region  implies an increase in the  frequency  for  which convergence of overrelaxation  can  be 
obtained. As a  test  of  this  inference,  and  hence  of  equation ( 1  3), the dimensions of  the 
solution region  were  reduced from  5.4 to 2.8 in the x -direction  and 12.5 to  6.0 in the z- 
direction.  For  these  dimensions and M = 0.9, the critical frequency  predicted  by  equation 
(13) is 0.254. Flat-plate  computations were performed for o = 0.25 and o = 0.30, with 
the result that convergence was observed in the  former case and  divergence  occurred in the 
latter case. 

The  existence  and general  location of  a  critical  frequency,  dependent on Mach number  and 
predicted by  the analysis  of  the simplified problem,  are in good  agreement  with the  com- 
putational  results  from  the full problem.  Prediction  of  the  exact  location  of the critical 
frequency is not  to  be  expected  since,  of  the five assumptions  made in the  formulation  of 
the simplified  problem in  appendix D, all in the airfoil  case and  b through  d in the  flatplate 
case are  violated  in the  actual  computational scheme. The results  strongly  indicate  that 
the cause of  the  frequency  limitation in tlle ful l  problem is the same  as that in the simplified 
problem:  the  failure of the system  matrix  to  remain positive definite. 

It  should  be  noted  that  the  conclusions  of  this  section so far  are  relevant to relaxation 
solutions.  For  a  direct  solution  where A is formed  from  tlle  complete  set  of  simultaneous 
albegraic equations  and  the  solution is obtained by matrix inversion, the  matrix A need only 
be  nonsingular rather  than positive definite for solutions to exist.  Thus use of  a  direct  solu- 
tion  procedure  may well lead to  solutions  at reduced  frequencies  above  wcr.  However,  since 
the far-field must  be updated as the velocity  potential  distribution  changes, the  matrix  form 
is more nearly A@ (n) = Rp,  (n - I ) ,  where PI (n) and  Ipl (I1 - are  the vectors of values of 
the  unknown velocity potential  and  the values determined in the preceding solution, 
respectively. This iterative form resulting  from the  calculation  of  the far-field boundary 
conditions  imposes  the  additional  condition  for  solution convergence that  the effective 
eigenvalues of  the  matrix  product A-I R must  be less than  one in modulus. 
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Figure 1. - Comparison of Predicted Critical Frequency with Computational R w h s  
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4.3 A VON NEUMANN STABILITY ANALYSIS 

A third  means  of  examining  the,  convergence  of a  differencing  method is the  Von  Neumann 
analysis of  error  propagation.  Let  EkQ be the  error  at  the k, Q grid point;  then  for a uniform 
x and  a  uniform y mesh the errors  may  be expressed in the  form 

where  a  and c are  the  width  and height of  the mesh  region.  Since the difference  equation 
is linear, only a single term need be  analyzed. 

A solution  of  the  difference  equation  of  the  form 

where n is the  order  of  iteration, has the  appropriate  initial value consistent  with  equation 
(14). In order  for  errors  to decrease with increasing n, g must have a magnitude less than 
one. In appendix E, the  equations of column  relaxation,  row  relaxation,  and  an AD1 (alter- 
nating  direction  implicit)  method  were  analyzed. The  condition I gl < I in all cases reduced t o  
the same  inequality  limiting the range of  frequency,  namely: 

where 0 ,  = 2 ~ p -  and 8 ,  = 27rqT. 
'Ibis relation shows that  the range of  frequency is  increasingly  limited as  the Mach number 
approaches 1 .  

Ax AY 
Li 

I n  the  hopes ol' obtaining  better convergence for  the higher  reduced  frequency  problem, an 
AD1 (alternating  direction  implicit)  method was tried.  In  the  flat-plate case, we  consider  for 
the tirnc4epenclent  equation for  twodimensions 

A uniform mesh is swept through using a row  solution  of  the  difference equation 

At 
- 

Ax ' 
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and  then  through  the mesh by a  column  solution  of the difference  equation 

(n+2) (n+l)  (n+l) (n+l.)  (n+l q .. 
11 - (p‘ij 

- 2v, .. + q i .  2 
1J 

At 
+ -  0 &+2) 

Ax2 

Applying the Von  Neumann  stability  analysis to  the preceding two  equations yields the 
same  inequalities as  found  for  conventional  row  and  column  relaxation.  This’indicates  that 
the AD1 method  yields  no  improvement in the convergence for higher  frequencies. The AD1 
method was coded and  tried but failed to converge. Lack of time  has prevented an  adequate 
investigation of  this failure. 
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5 .O SOLUTION PROCEDURE INVESTIGATION 

An  empirical  investigation  was conducted  of  the  finite  difference  solution  procedure to 
determine  the  effect  of varying solution  parameters  and  techniques and in  minimizing  solu- 
tion  computer resources. The investigation  included: 

0 Relaxation  factors 

Grid  point  distribution  and spacing 

0 Extent  of mesh area 

0 Sequential  refinement  with  respect to Mach number,  reduced  frequency,  and  number 
of mesh points 

0 Row relaxation 

0 Direct solution 

0 Convergence  accelerdtion 

'I'he results of these  investigations are summarized in this  section  and  detailed in appendix F. 

5.1 SOLUTION CONVERGENCE  CRITERIA 

I'or this report,  solution convergence was determined  by  monitoring  the  ERROR,  which is 
del'incd as m a x i m u m  value of all i, j ,  k of 

r 

wllcrc 9,;;; is the unsteady  velocity potential  for  the  nth  iteration, q!n.- ') is the corres- 
ponding potcntial  for the preceding iteration,  and r is the relaxation  factor. The  solution 
was considered converged when ERROR = IO-'. In  some cases, particularly for  finer 
ineshes and pitch  mode, convergence was considered complete  when  ERROR < IO". 
The ~naxitnum residual was considered t o  have greater  potential  as  an  indication  of sc!ution 
convergence than  ERROR.  The residual  is  a  measure of  the degree t o  which  a solution  (here, 
a  set of velocity  potentials)  satisfies the  finite  difference  equations.  The  iteration  may  be 
written in general matrix  form  as  Aq, - Rq, 

A n )  - A n  4 )  . The residual at  the  ith  point is thus 
the  summation ?(Aij  - Rij)qj.  Preliminary  attempts t o  calculate the residual  resulted  in 

values several orders  of  magnitude larger than  the corresponding  ERROR.  Multiplying 
through by an area  associated with  each  mesh  point  reduced  the  difference  between  the  two 
values to  some  two  orders  of  magnitude. However, the precise  relationship  between  ERROR 
and the maximum  residual  is not  yet  entirely  clear  and  thus  further investigation is required 
before the residual can  be used as a  convergence  criterion. 

IJk 

J 
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In  the discussion on relaxation  factors it will be  noted  the value of ERROR may be reduced 
rapidly by reducing the value of  r. However, the resulting  pressures  were  inconsistent with 
the minimal level of ERROR that had  been  reached  with a  single  value of  r.  This again  indicated 
that  some  form  of residual  measure  might  provide  a more realistic insight into convergence. 

5.2 SOLUTION PARAMETERS 

5.2.1 RELAXATION FACTORS 

In the  iteration  solution  procedure used for  this  report a relaxation  factor was applied to 
the velocity potential using the following replacement  formula 

where A’& is the velocity potential  form  the previous iteration  at  point  (iJ,k),  and 
( n )  

“1 ijk 
factor  and is set to some value between 0 and 2. The  procedure  here was to use  overrelaxation 
( I .O < r < 2.0) for  points  at which the steady  flow was subsonic  and  the  unsteady  differential 
cclllati<)n was elliptic,  and to use underrelaxation (0 < r < 1 ) for  points  at which the  steady 
flow was supcrsonic  and  the  differential  equation was hyperbolic. 

on  thc right-hand  side is the result of the  current  iteration.  The  factor r is the  relaxation 

The characteristics of convergence for overrelaxation will be discussed with  figures 2 and 3.  
These  sketches  show ERROR versus number of iterations.  It is convenient to  plot the ERROR 
in tenns of log scale and  the  number  of  iterations as  a conventional  linear scale. It is noted  that 
a straight difference of successive potential values  includes  the  relaxation  factor  as a  multiplier. 
Thus, we divided r out in calculating ERROR to  provide  a  “normalized”  measure  of  the  error. 
For srnull ORF’s (overrclaxation  factors)  these  curves  were  made  up o f  two nearly  linear 
portions; for the initial iterations  the  convergence was rapid,  resulting in a steep  slope  during 
tllc curly iterations  and a very shallow  slope for the   Mer iterations. As the ORF was raised, 
the sJope,of the initial iterations  became less, while that  of  the  later  iterations increased.  This 
trcrld continued as ORF was raised until  the  convergence  during  the  initial  iterations  eveptually 
I u x m c :  mildly unstablc, but  still converged well. Finally,  when ORF was too high,  convergence 
became quite  unstabkand  the slope of ERROR versus number of iterations decreased  sharply. 

An ORF should be  selected, if possible, so that  the convergence  criteria  is  attained  within 
the  number of iterations for which the  steep initial slope holds. 

Another  interesting  characteristic (fig. 3) is that if the ORF is changed during a solution 
calculation,  there is an  immediate  change  in the ERROR versus number  of  iterations curve. 
If the ORF is lowered,  there is a  significant drop in the ERROR curve. However, after  the 
drop,  the line levels out  at a slope less than  the  slope  for  the higher ORF. It is  possible, of 
course, to  take advantage of this  phenomenon  to achieve  a  specific ERROR value for  which 
convergence  has been defined.  However, we  encountered  inconsistent  results  where the con- 
vergence ERROR had been  set  as  low  as  lo-’,  and  thus  caution  is advised in  making use 
of this characteristic. 
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Figure 2. -.Effect of Overrelaxation  Factor  on Convergence 

21 



.. . 

Iterations 

Frigure 3. - Effect of Changing the Overrelaxation  Factor  During Convergence 
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The selection of the  optimum overrelaxation  factor was dependent on: 

(a)  The  number of mesh points 

(b) Level at which the convergence  criteria was set 

(c) Relaxation  procedure  (row,  column, etc.) 

(d)  Solution  sequence  (start  at  upstream  boundary,  trailing edge,  etc.) 

(e)  Frequency for a given Mach number 

Values of  the relaxation  factor ranged from 1.9 down  to, 1.4 depending on the particular 
example.  Item  (c), the variation  with frequency,  appeared to  be involved with the frequency 
limitation  problem  and is not discussed in appendix F. However, for a given Mach number 
and as  the  frequency was increased into  the range of marginal stability,  the,value of the op- 
timum relaxation  factor  decreased. 

Generally,  the  coarser the mesh, the longer the initial  slope  lasted, and  thus  the smaller the 
optimum  ORF. In this sense, the  optimum  ORF was dependent on the level a t  which the 
convergence criteria was set. 

The  pattern of the variation of  optimum  ORF  with  relaxation  procedure  and  solution 
sequerlce was not  explicitly  defined  within the limited number of examples run. Some 
illustrations  of  the variations  encountered  are  presented in section F.1 . I  of  the  appendix. 

'rhc usc of' complex  ORF's  does  not improve the  solution convergence  characteristics. This 
was first demonstrated empirically  and later  shown  with the Von Neuman  stability analysis 
prcscntctl in appcndix E. 

Tlw  selection of' ORF is best done  by  trial  and  error since  it is a  function  of so many vari- 
ables. Wc would recommend as large an ORF as possible and  we have had considerable suc- 
cess with OKF's of 1.85 and 1.9, as  shown in the  appendix. 

The  solution  convergence was not  generally  as  sensitive to  the underrelaxation  factor  as to  
tile overrelaxation factor,  although  one case is cited in appendix F when the  solution 
diverged for an U R F  of I .O and converged rapidly  for  an URF of 0.7. 

5.2.2 GRID DISTRIBUTION AND SPACING 

The  examples  of grid distribution and  spacing  showed that  the  representation  of  the 
pressures in the  neighborhood of the flow  singularities was significantly  improved by cluster- 
ing the  points  about  the singularities  and  increasing the  number of grid points. 

For  the first  case, the mesh-area dimensions were  fixed  and the  total  number of points held 
nearly constant.  The mesh points were  spaced such  that  the  ratio of sizes of adjacent  intervals 
was X, where X could  be  vaned  between 2/3 and 3/2. The smallest  intervals (for X > 1 .O) 
were  centered  about  the  known flow  singularities; i.e. at  the wing leading  edge  and the con- 
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trol strrfircc I~ingeline in the flow direction  and  at  the airfoil  centeriine in the crossflow 
tlircct ion. Successively improved  representations of  the  leadingedge  singularity in the 
prcssttre distrillLttion  was obtaincd  as X changed frorrl I .05 to I .25 to  I .4. At  the hingeline, 
thc presstlre distribution changed significantly between X = 1 .05 and I .25 and minimally 
hctwet'n h = 1.35  and I .4. 

For  the second  case, the ~ w s h  area  dimensions  and  the  point spacing factor, X,  were held 
fixed,  and the  number of mesh points varied. A significant  improvement in the pressure 
representations was obtained in going from a mesh of 25 x 16 to a mesh of 34 x 28. The 
changc i n  pressure distribution in going from a 34 x 28 to a 42 x 30 mesh was  minimal. 

5.2.3 EXTENT OF MESH 

The  effect  of varying the  extent  of  the  finite  difference  mesh was  investigated by  altering 
the location of  the  upper and  lower mesh boundaries.  Solutions  were  obtained  for the 
boundaries  at  yomax =+9,+18.5, and 229.6 (in physical  coordinates)  while the  number 
of mesh points was held fixed.  The pressure distributions  and  the velocity potential  were 
compared.  There was  surprisingly little variation in the pressure distributions  for  the  three 
cases. However, the  distribution  for  yamax= 29 was slightly  smaller i n  amplitude  than  the 
other  two. which in turn were  essentially the same. The velocity  potential  showed  much 
more  difference  between the  three cases, a  difference  not reflectecl  in the pressure  distribu- 
tions.  The best representation of the leading  edge  singularity in pressure was with YO max = 
+9. the calculation  apparently  benefiting  from the compression of points in the crossflow 
direction. 

5.2.4 SEQUENTIAL  REFINEMENT 

In starting  a new analysis. a set of zeros is often used as  the initial values for the velocity 
potential  distribution.  The  question is whether so!ution convergence  for  the desired set of 
parameters  may  be  most  economically achieved by calculating the velocity  potential  for 
intermediate values of the parameters,  and using the resulting  potentials  as the initial  dis- 
tributions  for  the final calculation.  This  process of sequential  refinement was applied in 
terms  of Mach number, reduced frequency,  and  the  number  of mesh points. 

The  example presented in section  F.1.4 of  the  appendix  shows relatively little  difference in 
the  number of iterations  to  convergence,  whether  the  initial velocity  potential  distribution 
is set to zero or taken  from  a  corresponding  problem  with  a relative small  difference in  Mach 
number or reduced frequency. 'The conclusion is that I f  pote~~tial  distributions exist for 
intermediate values o f  Mach number  and  frequency, it would  be  worthwhile to  use them. 
However. it would not be worthwhile to calculate then1 as  an  intermediate  step in calculat- 
ing the potential  distributions  for  the desired values of Mach 'number  and  reduced 
frequency. 

Sequential  refinement  with  respect to the  number of mesh points does  appear  worthwhile. 
Here, the velocity potential  distribution is  calculated for a relatively coarse grid.  Then,  the 
potential  distribution is interpolated to a  finer mesh and the resulting distributiqn used as 
initial values fur  another  iteration  sequence. An example is  given  in section F.1.4 of the 
;~ppcntlix  where  the n ~ ~ r n b e r  of' iterations  for  the refined grid is cut in half using the results 
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from a  coarse  grid. The  actual savings is  a function  of  the relative number  of  points  of  the 
coarse  mesh  with  respect to  the fine mesh and  the  number  of  iterations  required  to  obtain 
a converged solution  for  the coarse  mesh  relative to  the  number required for  the  fine mesh. 

5.3 SOLUTION PROCESS 

5.3.1 ROW RELAXATION 

The  finite  difference  equations as  presented in reference 1 were written  for  column relaxa- 
tion  where  the  solution is for a  line of  points parallel to   the  z -axis in three-dimensional 
flow (or the y  -axis  in twodimensional flow)  and  extending  from  the  lower  boundary to the 
upper  boundary. By rearranging terms,  the  equations  may  be  rewritten  for  row  relaxation 
where the  solution is for a line  of  points  extending  from  the  upstream  boundary  to  the 
downstream  boundary.  For  subsonic  flow, the resulting  row  formulation  provides relatively 
rapid solution convergence.  However, for mixed  flow, additional  terms  must  be  included 
in the  finite  difference  equation  to  obtain convergence.  These terms,  resulting  from a  time- 
like  analysis of  the  finite  difference  equation,  are derived  in appendix C. The  application  of 
these terms is discussed in section F.2.1 of appendix F. 

Examples of  solution convergence using both row  and  column  procedures,  and using several 
solution  sequences (i.e., the  order in which the  rows  and  columns  are  solved)  are  also  presented 
in section  F.2.1.  Generally,  row  relaxation was found to be significantly more  efficient  than 
column  relaxation  for  both  subsonic  and mixed  flow. The  only  exceptions  to  this were  for 
values of Mach number  and  frequency  for  which  relaxation  solutions  were marginally  stable. 
Here, although  neither  procedure was particularly  rapid,  column  relaxation  provided  solution 
convergence for values of  reduced  frequency  at  which  the  row  procedure  had  started t o  
diverge. 

Row  relaxation was implemented  in  three ways. The most  efficient  manner was to start  at 
the  upper  and  lower  boundaries  and  work  toward  the wing surface,  alternately  taking a  row 
from  the  top  section  and a row  from  the  bottom section. The alternatives of starting  at  the 
wing and  working out toward  the  upper  and  lower  boundaries  and of starting  at  the  lower 
boundary  and  simply  taking successive rows in working to  the  top  boundary were  also  tried. 
Column  relaxation was run  in  two ways. The  most  efficient  procedure proved t o  be the 
sequence that  started  at  the  trailing  edge  and  worked  toward  the  upstream'boundary,  then 
moved to   the column  just  aft  the  trailing  edge  and  worked to   the downstream  boundary. 
The  alternate  sequence  started  at  the  upstream  boundary  and moved by successive columns 
to the  downstream  boundary. 

5.3.2 DIRECT SOLUTION 

A version of  the pilot twodimensional program was written to provide  a direct solution  for 
the  interior velocity potential  distribution. By direct  solution, we mean  that  the  complete 
set of equations is solved all  at  once  rather  than in subsets, as  with  the  row or column relax- 
tion. For  the direct solution as implemented  here,  there  is still an  iterative  loop since the 
boundary  conditions are calculated using an existing set of velocity  potential  distributions 
(Le., the velocity potential  distribution  calculated in the preceding pass). The program for 
the  direct  solution was set up  only  for  the purely  subsonic flow. 
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The  direct  solution  program  has  been used on   the  standard  test  problem  of a  flat  plate  with 
oscillating quarterchord  control surface for grids of I7 x 10 and 25 x 16 mesh  points. I t  has 
also  been used for  the flat-plate  pitch case. The results  compare  almost  exactly  with the re- 
laxation  solutipns.  The  number  of  iterations  required  to  reach  convergence was less than 20 
for  all cases and  computing  time  appears  minimal. 

In general, the  direct  solution was found  to  be a  relatively  fast  and  efficient  solution pro- 
cedure  for  small  problems (coarse grids), but  storage  requirements  make it impractical for 
incore  solution of two-dimensional  problems  with  what  we  currently  feel to be realistic 
sized finite  difference grids. The  upper limit  would be of  the  order  of  some 700 mesh 
points. As noted  in a  preceding section,  current  studies  indicate  that  practical grids are  of 
the  order  of  1200 or more  points.  Also,  storage  requirements for  the mixed  flow  problem 
are even larger. Because of  its  speed,  however,  the  direct  solution  has provided  a very useful 
experimental tool  for testing  modifications to  the program. Use of  an  outpf-core  direct 
solution  method  has not  been  attempted,  but is one possible direction  for  ,further investiga- 
tion,  particularly  in light of   the  frequency  limitation  problem discussed in.section 4.2. 

5.3.3 CONVERGENCE ACCELERATION  METHODS 

The relatively  regular, uniform,  and  monotonic  behavior  of  the pressure difference  distribu- 
tions  with successive iterations  has suggested the use of convergence  acceleration  techniques. 
Also, these  procedures have been  successfully  applied in limited  examples of steady  transonic 
flows by Hafez and Cheng (ref. 10) and  Martin and  Lomax (ref. 11). Further, our studies 
have shown  relatively good  behavior of  both  the velocity potential  distribution  and the 
ERROR  with successive  iterations.  Despite the  optimism  with  which  this  stwiy was a p  
proached, the  results were not favorable. 

The Aitkin-Shanks nonlinear  transformation (a2 -process) was tried  first  and  applied to  the 
velocity potential  distribution.  Typically,  the  extrapolated velocity potential had  a large 
value of  ERROR.  Additional  iterations  resulted in a rapid drop in ERROR back to  the 
convergence path  that  the  solution was following  before extrapolation.  Although  little 
was lost by using the  extrapolation process, nothing was gained either. 

Since examination  of  the  extrapolated velocity potential showed it to be  inconsistent  with 
that which  would be estimated  by  eye, a  modified  form of  the  Aitkin-Shanks  transformation 
equation was introduced  in  order  to  constrain  the  shape of the  extrapolation.  This was  tried 
on  both  the velocity  potential  and  the pressure distributions  without showing an improve- 
ment in solution  convergence  over  straight  relaxation. 

Generally, the  results  of  these  studies have been  discouraging despite  the  fact  that  con- 
vergence appears to  be  monotonic  for  the pressure and  velocity  potential  distribution  as 
well as  ERROR.  Results have not been  improved  by  working with  solutions  with  the 
smoother  convergence  characteristics  obtained  by  either  reducing the overrelaxation  factor 
or using results  from higher numbers  of  iterations.  Finally,  the real  part of  the solution  ap- 
pears to  behave  much  better'than  the imaginary part,  indicating that convergence  accelera- 
tion  procedures  may well be much  more  promising for  the steady-flow  problem. 
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6.0 TWO-DIMENSIONAL EXAMPLES 

A series of  two-dimensional  examples  has  been computed in order  to  further explore the 
accuracy  and  characteristics of  the  finite difference  method  examined in this  report.  The 
most important result from  these  examples was the discovery that  solution convergence is 
limited as a  function  of Mach number  and  frequency.  This  particular  point is discussed in 
section 4.0. This  problem  has  reduced the  number  of  examples in terms  of  number  of dif- 
ferent  frequencies  examined.  The  examples  included both  the NACA 64A006 airfoil and a 
flat  plate (Le., a  section  of vanishing thickness). The  range  of Mach numbers was 0.85 to 
0.90 and the oscillatory  motion  included both section  pitch  and  quarter-chord  control 
,surface rotation. 

Generally, th-i  rate of  convergence  was very dependent on  the value of  the  relaxation  factor. 
This was particularly true  for elliptic  points  where an overrelaxation  factor was used.  Indeed, 
the selection  of  the  overrelaxation  factor is significant  enough so that it  ought  to  be  deter- 
mined for  each case separately. Mixed-flow solutions  appeared relatively less 'sensitive to  the 
underrelaxation  factor used with  hyperbolic  points. However, the case M = 0.9 and w = 0.06 
for the airfoil in pitch diverged with  an  URF  of 1 .O, whereas 0.7 led t o  rapid  convergence. 

The  sequential  refinement in terms  of mesh  size (the  number  of  points  rather  than  the  total 
mesh  area that was held constant) proved worthwhile,  whereas  refinement in terms of fre- 
quency did not.  The  solutions  presented  here were obtained using some 150 to  200 itera- 
tions of a  25  x  20 grid followed by some  200  iterations  of  a 42 x 30 grid. 

It was during the calculations  for  these  examples  that  the  limitations on  convergence in 
terms  of  frequency  and Mach number were encountered.  Since  the convergence  problem 
existed for  flat  plate as well as  the  airfoil  section,  the handling of  the shock  and the  attend- 
ant mixed flow was not  the cause. At first it  was assumed that  the difficulties  were due  to 
poor  selection  of ORF or  mesh  size, or  to some other parameter  of  the  solution  procedure. 
Thus considerable experimentation was done in an  effort  to  obtain  a significant  improve- 
ment in the  solution convergence.  This  included, besides ORF and mesh-size variations, 
various forms  of  column  as well as  row  relaxation,  the inclusion of a secondarder  approxi- 
mation to  the far  field,  and  variation in mesh-point  spacing. Sequential  refinement in terms 
of frequgncy  did  not  help.  In  addition,  a  considerable reshuffling of  terms  from  one side to  
the  other in t G e  finite  difference  equation  (eq. A l )  was tried.  Also, the program was modi- 
fied to solve the differential  equation  and  boundary  conditions used by Traci  et  al. in ref- 
erence 7. None of these  changes  provided the significant  improvement that we felt was 
necessary to  the problem. 
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As an  example,  consider the case of pitch  for  a flat  plate  with  a  harmonically  oscillating 
quarter-chord  control  surface  at M = 0.9. For a  25 x 20 mesh,  relatively  rapid  convergence 
was obtained  at  frequencies  up  through w = 0.1 2.  Although  difficulty was encountered, 
convergence was obtained  at w = 0.1 4 with  column  relaxation  working  considerably  better 
than row  relaxation.  However, at w = 0.1 6, solutions converged rapidly to   an ERROR of 

At w = 0.1 8, the  solution diverged (this  for  a  42 x 30 mesh; ORF = 1 .O under  row relaxa- 
tion). By dropping  the qq, , i term of equation (3) and  simplifying the  boundary  conditions. 

and then  the  solution curve flattens  out  to provide, at  best, very slow convergence. 
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the program was readily  modified to  approximate  the  solution  of  Traci et al.  (ref. 7). Here 
the  solution converged for w = 0.1 6, and  at w = 0.1 8 the convergence  became very slow 
again.  Finally  redu'ction of  the mesh  area,  as suggested by  the analyses discussed in section 
4.0, provides rapid sdution'convergence  at w = 0.1 8. 

The flat-plate  results  are  compared  directly  with  solutions  from the NASA linear  subsonic 
threedimensional  unsteady  aerodynamic program  (refs. 4 and 5) .  This program solves the 
pressuredownwash integral equation using assumed  pressure  modes.  Since the  steady 
transonic  flow past a  flat  plate is uniform, the finite  difference  results  should  match the 
subsonic  results  directly.  Figures  4  through 8 present the results for a  flat  plate  (section  of 
vanishing thickness)  in  pitch.  In all cases the correlation  between the  finite  difference 
program and the NASA program is good.The  finite  difference  method  appears to  underes- 
timate slightly the  amplitude  as calculated  with the NASA program.  Also, the degree of 
correlation  appears  independent of Mach number  and  frequency.  Solution convergence was 
considered to  be a  maximum  error  of  between  velocity  potentials  for successive 
iterations.  This  appears to  be  adequate  for  the  calculations involving the pitch  mode. 

Figures 9 and 10 show the  jump in pressure  coefficient  across  a  flat  plate  with  an  oscil- 
lating  quarter-chord  trailing-edge  control  surface.  Results  are  presented  for M = 0.9 and 
reduced  frequencies of  0.06 and 0.1 2. Again correlation  between the finite  difference  pro- 
grim and the NASA program  appears good. 

Calculations  for the NACA 64A006  airfoil  section  are  presented in figures 1  1 through 17. 
Results  for  pitch  motion  at M = 0.85 and  reduced frequency of 0.06  and  0.24  are  shown  in 
figures 1 1 and 12. In  figure 1 1 , results  for  three  different  mesh  grids  are  shown while the 
total mesh area is held constant.  First,  it is noted  that increasing the  number  of  points 
(perpendicular to  the flow)  improves the representation  of  the  leadingcdge singularity. 
Secondly,  the clustering of  points  about  the  shock,  which in this case is just  forward of 
midchord,  results  in  a  kind of singularity,  with the pressure going to  large positive numbers 
in front  of  the  shock  and reappearing from negative numbers  behind  the  shock.  For  this 
example  (in the 45-point  distribution),  points  are clustered about  the  3/4  chord, while in 
the 46-point  distribution,  the  points  are clustered about  x = -0 .1 , the  approximate  location 
of  the shock  center.  This  latter  phenomenon.is  illustrated in figure 12, which  presents the 
results  for  two flow-wise point  distributions.  There  are no  experimental or  other analytical 
data  for  correlation  with  these  pitch  motion results. 

A  twodimensional  example was also calculated to  compare  the  change in pressure  distribu- 
tion  that results  from using the specific  heat ratio of Freon ( y  = 1 . I  35) instead of  that  for 
air (y = 1.4).  Figure 13 shows the steady-state  pressure  coefficient at M = 0.9 for  Freon  and 
air for  the NACA 64A006  airfoil.  The  shock in Freon is slightly  ahead of  the shock in air. 
Figure 14 shows the  jump in pressure coefficient  across the airfoil due  to  the  harmonic 
pitch  of  the airfoil  section  with  a  reduced frequency  of  0.06. 

The remaining  figures  (figs. 15 through  17) show pressure difference  coefficient  distribu- 
tions  for  oscillatory  quarter-chord  control  surface  motion.  The cases for figures 15 and I6 
are  calculated at M = 0.875,  and M = 0.9 for w = 0.06, and  are  shown  with the correspond- 
ing measured data  from Tijdeman  and  Schippers  (ref. 6). Solutions at M = 0.9 and w = 0.1 2 
were  marginally  convergent  and converged pressure distributions were not  obtained. Correla- 
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tion. is about  the  same as that  shown  by  Elders  (ref. 1 ) for  lower Mach numbers.  Thus Lhc 
essential features  of  the  experimental  data  are  reflected in the calculations while the ampli- 
tudes  from  the  two  sets of data do not match well. 

Finally.  figure I7 compares  results  from  Freon  and  air  calculations for the  control wrface 
case at M = 0.9 and o = 0.06. The  Freon  calculations  for  both the pitch  and  control surfacc 
motions  reflect  the slight  forward  shift of the  shock  shown in the steady  results  presented 
in  figure 13. Except in the regions of  the  shock  and hingeline, the  Freon  results  also  exhibit 
the slight increase in magnitude  over  the  air  results  shown in the  steady  results.  Surprisingly, 
the  magnitude  of  the pressure  coefficients in the neighborhood of  the shock  and  hingeline 
appear less for  Freon  than  for  air. 

Generally,  then,  the  results  of  this  section  are  consistent  with  the  results  presented by  Ehlers 
in  reference 1 .  The results  for  the  flat-plate  configuration  correlate well with  corresponding 
results from linear thcory for both  harmonic  pitch  and  quarterchord  control surface nlotion. 
In all cases, the linear theory  calculations  provide slightly  larger amplitudes  than  the  finite 
difference  calculations. For the airfoil,  the  correlation  between  the  finite  difference  theory 
and the  experimental  results  appeared  to  improve  with Mach number. However, the calcula- 
tions, as in reference 1 ,  continue  to  provide pressure  coefficient  magnitudes larger than  
lneasured values except  over  the  aft  portions  of  the  airfoil  for  the imaginary part. The 
correlation  between  theory  and  experiment  remains inconclusive, and  thediscrepencies may 
still be  attributed  to  unknown  problems associated with  either  the  theory or the  experiment. 
Finally,  the  set of twodimensional  examples  presented  here  are  limited in terms of fre- 
quency range due  to  the  phenomenon of frequency  limitation  discussed at  the beginning of. 
this  section,  and also in section 4.2 and  appendix D. 
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7.0 AN  INITIAL APPLICATION TO A RECTANGULAR WING 

7.1 INTRODUCTION 

A pilot computer  program has been developed for  computing  the  unsteady  transonic  aero- 
dynamic  flow  over a threedimensional  rectangular wing. The program is based on the 
finite  difference  equations  derived  by  Ehlers in reference 1 and  represents a direct  exten- 
sion of  the  twodimensional program discussed both in that  report  and  in  the preceding 
sections  of  this  report. 

A picture showing the geometrical setup  is  presented  in  figure 18. A rectangular,  untapered 
wing is shown  in  the z = 0 plane,  with  leading  edge at  x = -1 and trailing  edge at x = + I .  The 
wing tip is pt  yo = y,, and a partial  span  control  surface is included  with a  hingeline at 
x = X,, an ihboard  side  edge at yo = ya,  and an outboard side  edge at  yo = ys. The  steady- 
state velocity potential  distribution, qo , is calculated for a wing of  the same  planform but 
finite  thickness  and  evaluated at  the finite  difference  points  that span the mesh  space. The 
flow is assumed symmetric  with respect to  the x-z plane at  yo = 0, and thus  the  solution is 
carried out  only  over half the wing. The  program is arranged so that mesh points lie in the 
plane at  y = 0 and the  boundary  conditions  of 

results in ql (x,y,z) = ql (x,-y,z). This  condition is readily  included in the  finite  difference 
formulation. 

The  equations used in the pilot  program are given in appendix A. For  the  most  part,  the 
equations are directly  from  reference I .  However, the second  term in the expression  for  the 
velocity potential  includes  an  integral  in  the  flow  direction  with  an  upper  limit  of  infinity. 
This term  presents  special  problems in its evaluation.  Morino et al.(refs. 12  and 13) present 
two  evaluation  procedures;  a  third  is  proposed  here  in  hopes of  obtaining  improved 
efficiency. The  formulation is presented in detail  as  part  of  appendix B. Briefly, here, the 
wake  integral of  the  form 

is converted t o  a form  that  may  be evaluated using Laguerre  integration. As in the two- 
dimensional  case,  advantage is taken  of  the pressure function 

a q1 

ax  
- + iocp, 

5 1  



Figure 18. - Schematic of Mesh for  Three-Dimensional  Problem 



. . 
to evaluate far-field boundary  conditions  on  the  upstream  and  downstream mesh  boundaries:' 
Further,  this  expression is  used on  the upper,  lower,  and side boundaries  to  determine  the 
velocity potential  distribution on  the  boundary  once a  velocity potential has  been  deter- 
mined at  one  point  on each  flow-wise  set of  finite  difference  points.  Again, for conven- 
ience, the velocity potential  is evaluated on  the boundaries  only  at x -values equal to   the 
trailing  edge  (i.e., at  x = +l).  The pressure function in finite  difference  form  then  permits 
the calculation  of cp, for  diff&rdvalues  of x for  the  constant values of  z and  y. 

1 

Ehlers  in  reference 1 presents  an  alternative  derivation  for  swept  (but  untapered) wing plan- 
forms.  However, W. Schmidt (ref. 14) indicates  that  considerable success in the  steady-flow 
problem  has  been  obtained using a  straightforward  rectangular  finite  difference grid not 
necessarily aligned with  the wing planform.  This  particular  point  would have to  be investi- 
gated  with  respect to  the  unsteady  transonic  problem,  but  there is reason to expect  the 
pilot  program to   be  applicable'with relatively little  modification to planforms  other  than the 
unswept,  rectangular  planform for which it was developed. 

The  major  obstacle  to  performing  threedimensional  solutions using finite  difference 
techniques is the size of  the  complex velocity potential  matrix,  which must be stored 
between  iterations.  The  finite  difference  mesh  for  practical cases is estimated to  be  on  the 
order  of 45 x 30 x 20,  or some 81 000 words of  core  storage  for  the cpl and cpo matrices 
alone if the  problem is to  be stored  in the machine all at  once.  The  alternative is to  store 
these  matrices on  tape and to bring  in three  (or  more) planes at  once.  The  current pilot 
program is capable  of  both  modes  of  operation. 

Column  relaxation  has  been  selected  as the solution  procedure  because ( 1 )  column relaxa- 
tion  has proved  most  reliable for  combinations  of Mach number  and  frequency  where  the 
convergence is marginal,  and  (2) x-z planes require  only  three planes for  the  relaxation cal- 
culations  of  each  plane.  Note  that x-y planes have this same feature while y-z planes 
require  four  planes  because  of  the backward  differencing  of the x derivatives at  super- 
sonic  points. 

For  our CDC 6600, a mesh of 25 x 19 x 20 is about  the  maximum size for  an  incore  solu- 
tion.  The  25  x  20 grid in the x-z planes  appears small for practical  problems, based on  our 
experience  with  twodimensional  analyses.  The  problem size may  be increased  by going to 
an  outaf-core program.  Both the incore  and the out-of-core versions may be  run  online. 

7.2 RECTANGULAR WING EXAMPLES 

The  threedimensional program was  used to calculate the pressures  over an  aspect  ratio 5 
rectangular wing undergoing  harmonic  pitch.  Calculations  were  performed  for  both  a  flat- 
plate  and  a NACA 64A006  profile,  with  a Mach number  of 0.875 and  a  reduced  frequency 
of 0.06. A  mesh of 44 points in the x -direction, 16 points in the y direction, and  26  points 
in the z direction was used. The  extent of the  finite  difference  solution  area in  physical  co- 
ordinates was x =+3.80 (the chord  ran  from -1 .O to + I  .O), yo=+10.5  (the wing tips were at 

sec  of CPU time  for  each  iteration  and 8 to  9 sec  for  each far-field update.  This was for  a 
CDC 6600  computer using the KRONOS 2.1 operating  system.  The  number of iterations 
required for convergence  (in  this  case ERROR < was on  the  order of 180 when start- 
ing with  zeros for  the initial  velocity potential  field. 

- +5.0) , and  zo=+lO.O. The  computing  time  for  these  calculations  ran on  the  order  of 7 to 8 
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The flat-plate  ,results  are  presented in figure 19.  The chordwise distribution of the  jump 
in pressure  coefficient  is  prtsenteil  for' five spanwise  locations.  In  each case, the finite 
difference  results  are  matched wit'h results  from the NASA subsonic  program (refs. 4 and 
5). Correlation  between the results  from the  two  methods is good,  and  corresponds to  that  
experienced  with the two-dimensional  examples of section 6.0 and  reference 1. 

The steady-state pressure distribution  for a NACA 64006 profile  configuration  is  shown in 
figure 20. It was obtained  by using a program developed at NASA-Ames by Ballhaus and 
Bailey (ref. 15) with  the  mesh  arrangement modified  in the manner of  Schmidt, Rohlfs, 
and  Vanino  (ref.  14). The  corresponding  jump in the  unsteady pressure  coefficient is 
presented in figure 2 I for five spanwise  stations. 

The results  from  a  two-dimensional  calculation  are  included in figure  21a.  Comparison of  the 
two-  and  three-dimensional  results  reflect the anticipated  softening of shock effects  from  the 
three-dimensional  representation.  In  particular, the imaginary  part of  the pressure  coefficient 
shows no apparent  shock influences,  and  resembles  what would be  expected  for  the  elliptic 
problem.  Compare,  for  example,  the linear  three-dimensional solution  shown in figure  49a 
with the linear  two-dimensional  solution  shown in figure  4.  Here the ACp changes sign at a 
significantly more forward  chordwise  location for  the  threedimensional  example  than  for 
the two-dimensional  example.  Three-dimensional  experimental  data  are  needed  for  further 
confirmation of the analytical  program. 
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8.0 CONCLUSIONS 

Following the work  of  Ehlers  (ref. . l ) ,  this'report  has  further  explored  the  characteristics  of a 
finite  difference  solution to the  unsteady  transonic  flow  problem. Relatively  rapid solution 
convergence rates were obtained using  selected  values of  the overrelaxation  factor  together 
with  row line  relaxation.  Additional  examples were calculated for Mach numbers  from 0.8 to 
0.9. Correlation  of  flat-plate  results  with  corresponding  results  from  linear  subsonic  programs 
was good for  both  pitching  and  control  surface  motions.  Correlations  between analyses for a 
NACA 64A006 airfoil  and available experimental  data were about  the same at  the higher 
Mach numbers, as reported in the preceding  report  (ref. 1) for  the  lower Mach numbers. Also, 
a  pilot  program  for three-dimensional  flow  was  developed and applied to a  rectangular wing. 

Of significant concern was the  encountering  of  an  upper  limit  on  reduced  frequency, 
depending on Mach number  and mesh  region  dimensions,  above  which the relaxation 
procedure will not converge. The relaxation  procedure  has  been  analyzed  from several points 
of view, providing  an explanation  for  the lack of convergence under  certain circumstances. 

Boeing Commercial  Airplane  Company 
P.O. Box 3707 

Seattle, Washington 98124,  July  1975 
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APPENDIX A 

EQUATIONS FOR THREE-DIMENSIONAL FLQW 

and  at  points  where  the  steady  flow  is  supersonic, 

where 

E, = ci U(+$$jk - iwc, ./e 

E, = di Ui+’/jk - iwd, . / E  

I 

1- 
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. ,  

Equations (Al)  and  (A2)  are eiuations  (24)  and  (27)  from  reference 1. 

The  boundary  conditions  on  the  upper  and  lower wing surfaces  lead to the following 
equations  for  subsonic  flow  at  finite  difference  points  immediately below the wing, k = k, 

and  points  immediately  above the wing, k = k, +, 1 

where 

The (L) and (U) refer to upper  and  lower wing surfaces,  respectively. The  equations similar 
to (A4) and (A5)  at supersonic  points  can  be  written  down  analogously. 

The  total  harmonic  deflection of the wing is written  as 

zo = sf(x,p,t) = 6 { fo (x,y) + fl (x,y) e iwt)  (A71 

The  steady velocity potential, po is calculated  from the  steady  deflection shape, fo , while 
the unsteady  potential p1 , is,,calculated from  the  harmonic  mode  shape,  fl  (x,y). 

Over the wake, the  conditions  that  the trailing  vortex sheet  supports  no pressure, 
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results  in  a  term  being  added to the right-hand  side of equations (AI)  and (A2). For finite 
difference  points  just  below  the  wing  plane  (k = km),  the  additional  term  is. 

'km 

and for  points  just  above  the wing plane  (k = k,, + I )  the term is 

where 

A+ ij = ASl e -iw(xi - xi, + 1 1 
i, + lj 

and Aqlil+lj is the  jump in velocity  potential  at  the first point  aft of the wing trailing  edge at 
station  j  determined so as to  satisfy the  Kutta  condition  on  the  trailing edge. The  additions 
of equations (A9) and (A10) implicitly  satisfied  the  condition. The normal  velocity is 
continuous  across  the wake. 

The  finite  difference  equation  for  the  jump in 9, across  the wing to  the second  order in 
mesh size is 

= s, (U) @) = 
'l ijkm+ 1 - s, .. 

Ukm - (" ijkm+2  ijkm+l) 

(AI  2) 

where 
- 1 - 1 
- 4s1(s1 + 1) cs2 - 4s2(s, + 1) 

h(2s1 + 1) h(2s2 + 1)  
dsl 4(s, + 1) 

- - ds2 - - 4(s1 + 1) 

Two  integral  relations  are  used to  satisfy  the far-field boundary  conditions  on  the  outer 
boundaries of finite  difference  mesh.  The first for  the  velocity  potential is 
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and the second for  the  pressure  function is 

P(X, ,Y 1 ,z; 1 =, 91 ' + iwg, (A 16) 

X = + i w $  

X = [ i h , M - - ( l / R + i h , ) + i w ] $  
- 
X 
R 

(A 1 8) 

X ' = -%([;;. - i h , M - i o  (ih, + 
- m 

21 1 
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Equations  (A15)  and  (A17) have  been  simplified for  purposes  of  the  pilot  ,program. First, 
as  noted  in  the  two-dimensional  derivation 

and  thus  the  second  integral in the first  term of both  (A15)  and  (A17)  are  zero.  Second,  the 
third term, which  is  the  volume  integral  and  has  not  been  of  significance in the t w e  
dimensional  problem,  has  been  dropped.  Third,  since we are  interested  in  the  far-field,  we 
approximate x1 - x,' with x1  and  y1 - yl'  with  y1 so that  the  terms  of $ and  x  may  be  moved 
outside  the  integral sign. The evaluation  of the wake  integral  in  equation  (A15) is  discussed 
in detail in the  next  section.  The  equation  for  the  velocity  potential  on  the  far-field  (A15) 
for xI = 1.0 is 

Vl (X1  ,Y1,Z1) = 4n 1 $z,' i" i"y"i AVl dx,'dy,' + Vl 
W 

-Yt Xn(y,') 
(A201 

Where 

-Yt 

and 1, is  defined  in  the  next  section.  The  pressure  function (A9) becomes 

Equation  (A20) is used to  evaluate the velocity  potential  along  the  line  resulting  from  the 
intersection  of  the y-z plane  through  the  trailing  edge  of  the wing and the x-y and x-z planes 
bounding  the  finite  difference  volume.  Equation  (A1 6 )  is then  integrated  by the  trapezoidal 
rule to  determine values  ahead  of this  line  and  behind  this  line  on  the  upper,  lower,  and  side 
boundaries. For example,  on  the  lower  boundary when k = 1, for  points  ahead  of  the  trailing 
edge (x < 1 .O or i < il  ) 

72 



and  thb  equation  for  points  downstream  of  the  trailing edge (i, > i) is . 

1 ., . - 
~ The  application of equation  (A22) to  the upstream  and  downstream  boundaries  results  in 
, .  

the  following  equations:  on  the  upstream  boundary 
. >. , . .  . . .  

. .  . .  

and  for  th'e'downstream  boundary . 
. .  . .  

. *  

'I imaxjk = 'k3 VI lmax . -1jk + ck4 Pimaxjk 

where 

'k2 = 6,/(1 - i 0 6 , / 2 )  

, (A261 

Equations  (A25)  and  (A26)  may  be used to  substitute  for ijk and q, 'maxjk in  equations 
(AI) and  (A2). 
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APPENDIX B 

EVALUATION OF FAR-FIELD WAKE INTEGRAL 

The wake  integral of  concern, tpl w, is the second  term of equation (A15), i.e., 

where the partial  derivative is t o  be  evaluated at  zi = 0 and $ is defined  in  equation (A18). 
The  evaluation will be carried out  for  xI = 1 .O for  a  rectangular wing for which the trailing 
edge  is xt (y,') = 1 .O. Equation ( B l ) ,  after  taking  e iO.l.o into  the  xI ' integral,  becomes 

Let 1, be  the  inner, x,', integral 

setting p = x,' - 1 and  inserting  the  expression  for J/ from  equation (A 18) 
00 

0 

Taking the - outside  and  combining  the p exponentials, we obtain a 
a 2; 
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ior since 

Next, let 

When 

and as 

Further 

0 

P" u + *  

22 = &  [PZR: + M 2 ( p 2 + R ~ ) + 2 M R l p + p 2 ]  

which becomes, using 0 2  = 1 - M2 

?h 
= 1 [Ri + p z  + 2MRIp + M2pz] 

PRO 

and 

so 

a 'W = I 
az1 
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Now, let u = v + M/P so that 

The singularities of  the integrand  are  where 

1 + (v + M/P)z = 0 (B 15) 
or 

= - - k i  M 
P 

which  is  in the  left half of  the  complex plane. Thus  applying Cauchy's Theorem  to  the  contour 
integral 

i 
-i 7 (v + M/P) 
' AIPR, 

I = J e  
wC 

d V  ".(B 16) 
C 4 1  + (v + M/p)z 

where the  contour is shown in the following sketch ' Im (VI 
r 

Re (VI  

-ir 

Then, c = cI + cz + c3 and 

'WC IWC, 
- - + I w  + I '  = 0 

cz % (@,I71 
and 

As r-, then  integral I, +O. On  the  contour c2, v = r e-io, 0 < 8 < x / ? ,  and 
CZ 
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Thus 



aR0 Z; - 2 1  
or, noting that- = - and  taking 

1 RO 
the  limit as r+-, I, may be written as 

where 

Integrating by parts with 

SO 

from  which 
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W x, P R O  

0 
. . .  

00 

0 
Note  that while integrating  by  parts  increases  the  order  of  the  integrand, it reduces  the  number 
of numerical integrations  from 4 t o  2. 

.Anticipating  the  ultimate use of Gauss-Laguerre Quadrature,  the  following  transformation is 
made: 

so that 
W 

or 

- . '  

a 
1, = - - + i  i J\I (" 1 + --i- r)2 e -7 d r  

P P XIPRO 
0 

W 

where z1 ' is taken  to be 0 in the  evaluation of Ro 

Letting 

the  integral in (B32)  has  the  form 
oc 

f f(r) e -r d r  

0 

This  may  be  evaluated  approximately  as 

N 

i= 1 

where w1 and r 1  are  the weights and abcissas for Laguerre integration for a given N. 
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APPENDIX C 

TIME-LIKE CHARACTERISTICS OF THE RELAXATION  TECHNIQUE 

Following  Jameson  (refs. 8 and 91, we study  the  convergence  of  the  difference  methods by 
considering the  iteration  numbers  as  a  time-like variable. Thus  the  relation  between con- 
secutively  iterated  values at  an  arbitrary  point ij  is defined  in  terms  of a time  derivative by 

where  the  superscript  denotes  the  number  of  the  iterations. 

C. 1 COLUMN RELAXATION WITH INCREASING i , 

The  difference  equation for column  relaxation  at  subsonic  points  with  i  increasing is given for 
two dimensions  by  modifying  equation (Al);  namely 

. .  

where  the  superscript s denotes  the  value  obtained  from  the  solution  of  the  equations for the 
ith  column  and  n  and n-1 denote  updated  and  non-updated  values,  respectively. 

When  we apply  a  relaxation  parameter  r,  then we obtain  a  modified  value  of 9, according to 
the  formula 

Solving for p1 ij (SI 

Finally,  eliminating v!:il) by  means of equation  (C1)  leads  to 

p(!? = v(n) (r - 1 At ~ ( ~ 1 )  
1 1J 1 1J - (C4) 

F 1Jt 
To obtain  the  differential  equation  corresponding to   the difference  equation (C2), we introduce 
equations (C4) and (Cl)  into  equation(C2)  and  take  the  limit  as Ax and Ay go  to zero. We 
have 



Now 

Substituting  equation ( C 6 )  into  equation (C5), expanding u and p1 about  the  point ij, and 
then simplifying,  yields 

Since the real part of the  coefficient of lpl must be negative to producc damping,  then we 
I l l l lSt  llave 

I t  was suggested that complex  values  of the overrelaxation  parameter  might  be  useful in 
spccding convergence and a few  values  were  tried without success. We will investigate the 
cffect of a complex  value  of r on  the real part  as  the  coefficient of the c p I  which  provides 
clamping. In equation (C7), the  coefficient  of  the  first term becomes 
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where reir is the  complex  relaxation  factor.  The real part  of  the  coefficient  provides  the 
damping  and  must  be negative. 

( l + G ) c o s y - r  , 
r 

We see that  the imaginary component always  reduces the  amount  of damping.  Since  generally 

u/Axl > W / E  

the first q1 provides most of the  damping. With a  complex  relaxation  parameter, the term 
proportional to   2iuJe also may  contribute  to  the  damping.  The  coefficient  from  this  term 
becomes 

The real part is seen to  be 
2wa1 (I- 6; ) sin? 

e6 r 

This  term  provides  damping  when 

6 < 1 for which y < 0 

or when 
6 > 1 for which y must be > 0 

Since 7 is a  constant  and 6 takes  on values both  greater  and less than 1 ,  the  effect of the 
imaginary component of the overrelaxation  factor is to reduce  damping; and hence n o  
improvement in convergence  can be  expected  from  the use of complex values. The few  runs 
made  with  complex  relaxation factors  support  this  conclusion. 

For  convenience,  equation (C7) may  be  written 
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where I '\ At aI = AX]  +AX, 

Equation (C8) is hyperbolic in time  and  this is readily  seen  by  eliminating the 9, xt 
derivative by a  new time variable 

7 = t + a 1 x  

This leads to 

( U 9 l X ) X  - E 2 i o  
91 X + 9 1  yy + q 9 1  ucu: 9177 

i -2(ucu~ - iocu,) 9 1  = 0 

Since u is positive, the  coefficients  of 91 77 and 9I have the  correct signs for a damped wave 
equation. 

We now consider  hyperbolic  points. When the local flow is supersonic,  backward  differences 
for the x derivatives are used to eliminate  downstream influences. The  difference  equation 
from equation (A2) is given by 

Using equation (A3) for the  definition  of  the  coefficients  and  eliminating 9,''' by  equation 
(C4) yields the following  differential  equation; 

(C11) 
At i o  

-2 ['Ax, (Ax1 +Ax,)  --At e (&+ Ax, +Axz )](+)vlt=0 

This equation is of parabolic  type.  Since u < 0, we must have  r < 1 t o  have  damping.  Thus, at 
hyperbolic  points, we use an  underrelaxation  parameter. 
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Similar  results  are obtained  for  column  relaxation  with decreasing i (upstream).'In  place  of.. . \ 
equation  (C8), we obtain ~. \ 

\ 

, ,  

-2 (ua, - iwa,) V1 = 0 ' /  

where 

I .'.. " 

, .  
'. , . ;, 1 ! 

The  transformation T = t - a I x  yie1d.s a  hyperbolic  equation  of  the  same  form as (C9). For 
supersonic  points  sweeping in the  direction of decreasing  i, the  superscript (n) in equation 
(C10) is replaced by (n  - 1). The time-dependent  differential  equation  then in place of 
equation (C 1 1) is: 

I 

I (C13) 

E . ,~ . :  

' .  . 

Decreasing r serves to increase the damping in supersonic regions. . .  . .  t 

C.2 ROW RELAXATION 

For the smaller  frequencies, the use of row relaxation  improves  the  rate of convergence. 
This  may be  attributed  to  the coarse mesh in the  y  direction. For row  relaxation in the 
increasing j (or y)  direction,  equation  (C2)  for  elliptic  points  takes  the form 

(C'14) 

Substituting  equations  (CI)  and  (C4)  into  equation  (C14)  and  taking  the  limit as  Ay, Ax + 0 
yields 

iw 
(UP1 x!x - 2 F  VI x +Vlyy  +qVl  
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where 9 and bj are defined in equation (A3) and  Ayj = yj+ 1 - yj- 1. Since the  coefficient  of 
tpl must  be  negative,.this  would  appear t o  limit  the range of overrelaxation  factor to . ,_ 

The  transformation . .  

yields the  equation 

which is hyperbolic in 7 

For supersonic  points, we write in place of equation (C 10) for increasing j 

Substituting  equations (Cl )  and (C4) into  equation (C 17) yields 

( W l X ) X  - - p x  + 9 l y y  + qv, 
2 io 
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! I  
ind detennine BI and B2 to  eliminate  the vl it, p1 $t, rp1 t t e rns  and to  obtain I c o e f f i t  
of fi ft with the correct sign: Choosing r = t -(zj) y.-+ aI x we find t h a t  At 

/ 

Substitutinga, = #I (e) the  relation  for 7 ,  we obtain  the  following  differential  equation 
equation  for 9, . 

In order for the  coefficient of the qI 77 term to  be  positive, we must have 

p:  >-u 

PI 
(C20) 

The addition  of  the time-like differences caused the  relaxation  method  for mixed flows t o  
converge, whereas  the  difference  equation (C 17) caused the  iteration to  diverge. 
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APPENDIX  D 

MATRIX ANALYSIS OF RELAXATION TECHNIQUES 

As noted in the  text,  in  the  course  of'  the  solution  of  the  unsteady  transonic  problem using 
line  relaxation  (block successive overrelaxation, or BSOR), it was found  that convergence 
was obtained  only  for relatively  low  values  of w ,  the reduced  frequency.  In  this  appendix,  a 
derivation is given that provides the theoretical basis for  this empirical  observation. By 
simplification of  the basic boundary value problem  and use of a  theorem  on  the convergence 
of  relaxation  procedures,  the  conditions  are  determined  for which the system matrix ceases 
to  be positive  definite,  and  thus  for  which  a necessary condition  for convergence is violated. 
The  condition is  defined in terms of the dimensions of the solution  region,  the  transonic 
similarity  parameter K,  the Mach number,  and  the  reduced  frequency.  It is convenient to 
think in terms  of ;1 critical  reduced frequency,  wcr, below which the  solution  procedure 
converges and  above  which  it diverges. As shown  in  section  2.2  the  wcr,  as derived here, 
corresponds very closely with  those values encountered  during  the  running of sample  problems. 

The two-  and  three-dimensional  problems will be  developed  together. The mesh regions for a 
two-dimensional  problem is a  rectangle  with  sides of  lenths a  and c. The region for  the  three 
dimensional  problem is a  rectangular  parallelepiped  with the  additional spanwise  dimension 
of b. In order  to carry out  the convergence  analysis  and obtain an analytic  formula  for wcr, 
we make  the  following  simplifying  assumptions: 

0 The  steady-state  perturbation  potential, po, is constant; 

0 The far-field boundary values are  constant; 

0 The airfoil  and  wake  boundary conditions are omitted; 

0 The mesh spacings resulting  from the  discretization are  uniform in each  of  the  coordinate 
directions; 

0 The  relaxation  factor is the same for all points and for each iteration. 

These  assumptions,  particularly  the  third,  are  rather  strong;  nevertheless,  analysis of  the 
problem  resulting  from  these  simplifications is found to  yield results in generally  good 
qualitative  and  quantitative  agreement  with  experimental  observations,  indicating that  the 
essential  frequency-limiting  characteristics of  the problem have been  retained. 

In mathematical  terms,  the  effect  of  the  assumptions  is to  reduce the problem to the  solution 
of 

over  a  rectangle (or  the analogous  differential  equation  and region in three  dimensions)  with 
Dirichlet boundary  conditions,  and  it is this  problem to which we apply  the convergence 
analysis. I .  
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Following the  sections giving mathematical  background  and  details s f   the  region discretization, 
we give the analyses for  both  the  exact problem  above  and  a  modified  problem  resulting  from 
transformation  of  (Dl).  The  rather  complicated  formula  for ocr from  the  exact  problem is 
seen t o  reduce to the  much simpler  formula  for  wcr  from  the  modified  problem  as  hx "* 0. 

D.#l MATHEMATICAL BACKGROUND 

In  this  section we give a  brief  statement  of  various  mathematical  facts  that will be required  in 
i the  course  of  our analysis. .. - 

D. 1.1 MATRIX FORMULATION OF BSOR 

Our discussion is a  specialization of  that given in Varga (ref.  16),  and  the  convergence  theorem 
we state is an  immediate  consequence of the  one given there. 

Let  an n  x  n  Hermitian  matrix A be partitioned  for  some N, into  the  form 

A2 2 

A21 A22 

A =  [iIAN2 
where the diagonal blocks Aii, i = 1, . . ., N are  square  and  nonvoid.  Then  defining  the n  x n 
matrices D and F by 

D =  

A2 2 0 
0 

ANN 

9 F =  

- 
0 0  
A21 0 
A 3 1  A 3 2  

  AN^ 

0 

ANN- 

and  with F* as  the  complex  conjugate of F, so that A = D -F -F*,  then BSOR applied t o  
Aq = E, where (p and  are n  dimensional  vectors,  may  be  written $ 

(D-rF)i#m+l) = { r F * + ( l - r ) D }  qm) + r E  (D4) 
m = 0, 1,. . ., where  r is the overrelaxation  factor. The following  theorem gives necessary and 
sufficient  conditions  for  convergence  of  the  above  iteration. 

Theorem I.-If D is positive definite  and 0 < r < 2, then  the given iteration is convergent for 
all starting vectors$') if, and-only  if, A is positive  definite. 

Comments: I )  An  implication of  the  theorem is that  under  the given conditions  the eigen- 
values of  the  iteration  matrix (D- rF) - '   { rF*+( l - r )D)  
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will all be less than' 1 in modulus, a  well-known  necessary  and  sufficient  condition for 
convergence;  and 2) the  statement "aff . . . qf)*' does  not  limit  the  applicability of the 
theorem.  In  any  practical  pidblem  a  stationary  iteration  such  as (D4) must  converge  for 
every choice of startingvector to be,of use. 

D. 1.2 EIGENVALUES OF A CERTAIN TRIDIACONAL MATRIX 

.The  eigenvalues of  the tridiagonal  matrix . .  

. L, b 
. 

are given in Bellman (ref. 17) by 

~ Q = a - 2 &  COS=, h L =  1, .  . ., n. 

(order  n) 

D. 1.3 KRONECKER (TENSOR)  PRODUCI' 

From  Bellman  (ref. 17) we  have the following: 

Definition.-Let A be an NI  dimensional  matrix  and B an N., dimensional  matrix. The 
Kronecker  product of A ahd B, written A@ B,.is the N I  ON., dimensional  matrix  given  by 

and I 

Theorem  2.-Let Xp, Q =. 1, .. . ., N, be  the eigenvalues of an  order N, matrix A, and  let 
.. 9, j = 1, . . ., N2 be the eigenvaIu,es of an  order N2 matrix B. Then  the  eigenvalues .of the - 

NI ON., order  matrix ,, , , 

. '  (INo@ A) + (B @ IN,) . .  . .  " 

where . .  I denotes  the  identity matrix of the given order,  are  given.by 
. .  A t + $  f w L = I ,  ..., N , a n d j = I  ,..., N2. 

Comment: If B is  tridiagonal,  ihen  the  matrix (IN., @ A) + (B @ IN> is  easily  seen t o  be 
block  tridiagonal,.which is the case  we will encounter. 
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D.2 REGION DISCRETIZATION AND MESH POINT ORDERING. 
. . ,  

D.2.1 TWO DIMENSIONS 

In two dimensions  the region  is  a  rectangle  in the x-y plane  with  sides  of  lengths a and c in 
the-x  and y diiections, respectively.  Taking the  lower  left  cornerpoint  as (xo, y o )  and. .. . 

choosing N, and N as  the  number  of mesh increments  in  the  indicated  directions,  the 
totality of mesh pomts is given by (xg, yj), where 

>. . , . .  

. . < '  

Y . .  

X ~ = X  +Qhx,  f = O , l , . .  . ,Nx, 
0 

Y j = Y o +  jhy, j = O , l , .  . .,Ny, 

with h, = a/Nx  and  hy = c/NY 

Of these,  points  with 2 = 0 o r  N,, or  j = 0 or Ny,  are bourzdary points; all other  are inferior 
points. Thus  the 

N, = (Nx - l)(Ny - 1) 

interior  points  are given by  equation (D6), but with  the ranges of f l  and j being  1 to Nx - 1 
and 1 to Ny - 1, respectively. 

Now to obtain a matrix  formulation  of  the  discretized  problem,  the  interior  points  must be 
ordered  as  a  one-dimensional  array. To be definite, we choose  column  ordering,  which is 
consistent  with  column  relaxation of the resulting system. A similar  analysis  may be  done for 
row ordering,  which is consistent  with  row  relaxation  and  leads to  precisely the  same  formulas 
for wcr,. The  column  ordering is  specified by having the j index vary most  rapidly  and Q 
index  least  rapidly. That is, by  the  mapping: 

for 

yNY 
YNy - 1 

(XQ, yj) -+ ps,  where S = j + (k? - l)(Ny - 1) 

Q =  1 , .  . ., N,- 1 a n d j  = 1 , .  . ., Ny- 1. 

Wa+ 
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D.2.2 THREE DIMENSIONS 

In  three  dimensions the region is  a  rectangular  parallelepiped  with  sides of lengths  a, b, and c 
in  the  x,  y,  and z directions,  respectively. The  discretization in the x and z directions is the 
same as  that given by  equation (D6). We will treat  the y  (spanwise) direction slightly 
differently  since we have a symmetry  condition in the x-z  plane. In particular,  taking y, = 0 
and YN = b/2,  the  totality  of mesh points is given by (XQ, yj, zk), 

Y 

where 
X Q = X ~  +Qhx,   Q=O,l ,  . . .  ,Nx,  

y j = ( j - l ) h y ,  j =  ( ) , I , .  . ., NY, 

and zk=z0  +kh, ,   k=0,1 , .  . . ,wz,  

with 

and 

h, = a/Nx,  hy = b/2(Ny-l), 

h, = c/Nz. 

Of these,  points  with Q = 0 or N,, j = 0 or  Ny,  or k = 0 or N, are boundary  points; all others 
are  interior  points.  Thus  the  interior  points  are given by  equation (D8) but with the ranges of 
f2, j ,  and  k being 1 to N,-1 , 1 to Ny-1, and 1 to Nz-1, respectively. 

The three-dimensional mesh point  ordering is a  direct  extension  of that used for  two 
dimensions. That is, the  interior mesh points are  sequenced  such that  the k  index varies most 
rapidly and. j index  least  rapidly. Thus  the ordering is given by  the  mapping 

S = k + ( Q -  l)(N,-1) + (j-l)(Nx-l)(Nz-l), 

for Q = 1 , .  . ., N,-l, j = 1 , .  . ., Ny-1, 

and k =  1 , .  . ., Nz-l. 

D.3 DERIVATION AND ANALYSIS OF THE SYSTEM MATRIX 

D.3.1 MODIFIED PROBLEM-HELMHOLTZ EQUATION 

Since  it will be  most  economical to derive the system  matrix for  the modified  and  exact 
problems at  the same time, we first  define  what we call the  modified  problem.  This  consists 
of the given region and the differential  equation  obtained  from  equation (Dl)  or its three- 
dimensional  analog by making the  transformation 

PI +$ e iWx/EK 
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I 1111 

When this is done we have the  equation 

in two dimensions  and the  equation 

K'xx + 'yy + 'zz + 

u 2  

E( 1 -M2) 
J / = O  

in three dimensions. We observe that  the first  derivative term is absent  in  these  equations-a 
consequence  of,  and  the  motivation  for,  the given transformation.  Further, we observe that 
except  for  the K coefficient,  which  may easily be  removed by scaling, (D10)  and (Dl  1) are 
the t w e  and three-dimensional versions, respectively, of  the well-known Helmholtz (or 
reduced wave) equation.  Thus  the  modified  problem is directly  analogous to the  mathematical 
formulation  of  the  problem of a finite  elastic  membrane  whose  amplitude is assumed t o  vary 
sinusoidally in time. 

D.3.2 TWO-DIMENSIONAL ANALYSIS 

Note  that  both  equations ( D l )  and (Dl  0) have the  fonn 

Q X X  + cPyy-2ic1 9 x  + c2 9 = 0 (Dl 2) 

where c1 = O / E ,  c2 = o2 / E  for  equation ( D l )  

and c, = 0, c2 = o2 for  equation ( ~ 1 0 )  
E( 1 -M2 ) 

From  this  fact i t  follows that  the system  matrices  from  the  discretizations of (Dl)  and (D10) 
have the  same  form, which  we  now  derive. 

At each of  the Ns interior  points  of  the mesh given by  equations (D6), we  discretize (Dl  2) by 
making the  substitutions 

K ~ X X  + ( ~ Q - I ,  j - ~ v Q ,  j + VQ+ 1, j )/x.' 
q y y - * ( ~ ~ ,  j-I -29a,j +Q, j+l) /h; 

.where h, = hx/ a. - 
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for Q = 1,. . ., Nx-I, and j = 1 , .  . ., Ny-l,  where 

-80 = 2fi: + 2/h$ - c Z ,  gl = l/h$ 

and gz = I/%; + ic,  /hx.  Here  terms for which the first subscript  becomes 0 or N,, or the 
second  becomes 0 or Ny, are  transferred to  the right-hand side. 

Using the  mapping given by  equation (D7), equation  (D14)  may  be  written  as 

S = 1,2, . . ., Ns, with  terms  being  transferred to  the right-hand  side  where  appropriate. 

Now  since  each  subscript is linear in S with  a  coefficient of 1, it  is  clear  that  (DI5)  represents 
a  fivediagonal  system  for  the  unknowns q l  , . . ., Letting7 be  a  vector  with  these 
components, (Dl 5 )  may  be  written  in  matrix  notation  as  AT= R, wherex  is the right-hand 
side  vector  and  A is the  NSorder  system  matrix given by 

ms 

where 

Go = 

and 

' I  
* 1 

GI Go J 

(order Ny.-l), 

GI = %z INy] - 
Now we  have the system  matrix;  it  remains to  apply  theorem 1 to  obtain an  analytic  fonn for 
wCr First, we identify  A  as given by (D16) as a matrix of the  form given by equation (D2) by 
rhaking the  identifications 

Ai+],  i = A*i, i+l = G I ,  i = 1 , .  . ., N-I; and 

Ag = 0 otherwise 
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Next we  check that D  is  positive  definite. From  the identification,  we  have that D as given 
in (D3) is 

D = diag (Go, Go, . . ., Go). 

Thus the eigenvalues of D are the same as  those  of Go , which from  (D17) and’ using (D5) ate 

I 

! .  ’ 

g,, -2g1 cosb, Q = 1 , . . ., Ny-I. 
NY 

The minimum eigenvalue occurs  when Q = 1 , so that  the  condition on D is satisfied  if,  and 
only if, 

g, -2g1 cos-> 0 7r 

NY 
or, using the  definitions  of go and  g, , if,  and  only  if, 

2 + 2 (I > c2 
h i  hf (Dl 8 )  

where  c2 =- for  the  exact  problem  and  c2 = for  the  transformed  problem. o2 a2 
E E( 1 - M 2 )  

Condition (D18) will be satisfied, as will be  apparent  (eq. D19) since the  frequency  for which 
A ceases to  be positive  definite is substantially  below that  for which condition (D 18) is 
violated. 

The eigenvalues of A are easily found  through  the use of the Kronecker  product.  Noting  first 
that A may be  written as 

where 

G2=I * I (order Nx - I ) ,  

we have using equation (DS) and  theorem 2 that  the eigenvalues of A are given by 

go -2g, cos& - 2 m c o s j ”  , 
NY NX 

where 

Q = 1 ,  . . . ,  N y - l a n d j = l  ,..., Nx-1. 
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The  minimum  eigenvalue  occurs  when L = j = 1 so that A is positive  definite  if,  and  only if, 

& -281 cos 1 - 2 & X  cos - > 0, I 

NY N X  

or using the  definitions  of , gl  and  g2 if,  and only  if 

Now we consider  the  two  cases  corresponding  to  the  two  different  choices  for  cl  and c2 .  

Case I.-For the  modified  problem,  c1 = 0 and c2 = so that A is positive  definite, 

and  hence,  by  theorem 1 , BSOR converges  if,  and  only  if, 
~ ( 1  - M 2 )  

Equation (D20) gives the  precise  value  for  wcr in the  transformed  problem. A more 
transparent  formula  may  be  obtained by using the first two  terms  of  each  cosine  series 
expansion  and  the  relations  hXNx=a,  h N = c so that  to  a very good  approximation  for 
reasonably  large N, and Ny. Y Y  

The  dependence  of  wcr  only  on  the  absolute  dimensions  of  the region  and not  on  the mesh 
size is notable,  and  has  been  previously  observed in another  context by Molberg and 
Reynolds  (ref. 18). 

Note:  In  going  from  equation (Dl  9) to  equation  (D20) we have used the  relation 
1 /€K=M2/(1  -Mz) (D22) 

Case 2.-For the  exact  problem,  c1 =- and  c2 = -, so that, making  these  substitutjbns w w 2  

in equation  (Dl 9), we have that BSOR converges  if,  and  only  if, 
E e 

(D23.j' 
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We note  that  this  inequality is satisfied for w = 0 and that  as w increases, the left-hand  side 
is strictly decreasing  while the right-hand  side is strictly  increasing, so that  there is a unique 
value at which the inequality just fails, namely wcr 

An  explicit  formula  for  wcr  may be derived from  (D23). When the > is replaced by  an  equal 
sign, (D23) may be transformed into a quadratic  equation  for  wcr, which is easily solved. 

When this is done  it is found  that  the  solution may be  written  as 

where 

and 

with 

Q1 =- 2 (I - COS $-) +% (1 - COS e) 
L -I 

1 

2  cos(n/N,) , 

We observe that as h, +. 0, Q3 +. 1 ,  so that  wCr+ wfi which is the same  as  equation 
(DZO), the  result  for  the  transformed  equation. 

M 

D.3.3 THREE-DIMENSIONAL ANALYSIS 

The three-dimensional  analysis is a  straightforward  extension  of that already  done  for  two 
dimensions.  First we note  that  the three-dimensional  analog of  equation (Dl )  is 

so that  both (Dl  1) and  (D25) have the  form 

where,  as  before 

~1 = 0, ~2 = w2 /e(  1 - M2 ) for  equation  (D  1 1 ) and 

c1 = U / € ,  c2 = w2/e for  equation  (D26). 
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At  each  of  the NS inferior points given by  equation  (D8) we discretize  (D26)  by  making  the 
substitutions 

Kqxx +('@-1, j,k  -%?,j,k + qQ+1 ,j,k)h:* 

qyy  -*PQ,j-l,k  -2qQ,j,k  '9,j+l,k)/h;, 

'+'zz~~P,j,k-l .'2'@,j,k +qQ,j,k+l)lh& (1x7) 

qx  -*@+lJ,k"&!-l  ,j,k)/2hx, and 

9 -* qQ,j,k. 

This  yields  the  system  of  difference  equations 
%(PQ,j-l,k  -g2qQ-1,jYk  -g,qQj,k-l + h q Q , j , k  

-glVfl,j,k+l -g:qg+l,j,k -g,qQ,j+l,k = 

f o r Q = l ,  ..., N x - 1 ;   j = l y . . . , N Y - l ;   a n d k = l ,  ..., Nz-1,whereg2isasbefore ,  
while now 

2 2 2  1 1 go =:+- +--c,, g, = - and g3 = -. lii h$ h i  h i  h; 

Here  terms  for  which  the  flrst  subscript  becomes 0 or Nx, or the second  becomes Ny, or the  third 
becomes 0 or N,, are  transferred  to  the  right-hand side. The IpQj-lk term,  for  which  the  second 
subscript  becomes 0, is handled  according to the  symmetry  condition: 

@!2,O,k = '4'11,2,k 

Using the  mapping given by  equation  (D9)  equation  (D28)  may  be  written 

where N, = Nz- 1, and N2 = (Nx-  l)(Nz- 1). 

Equation  (D29)  represent3  a  sevendiagonal  linear  system,  which  may  be  written,  as  before, 
as  AT= E, where a is the tight-hand'side vector  and  A is  the NS order  matrix given by 
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where G ,  = g,  IN^ and C,  is the  order N2 matrix given  by equations (D 16) and (Dl 7) with, 
however, the  redefinition  of g,, for  the  present  three-dimensional case. 

We have the system  matrix;  now  we  apply  theorem 1. With regard to  the hypothesis, we 
observe  that  the  modus  operandi is still'column  relaxation, so that  matrix D is still given by 

D = diag (Go,  Go, . . ., G o )  

and  thus,  following  the  previous  argument, D is positive  definite if, and  only  if, 
2 2 2  
Ti; h$ h i  
- + - +  - (1 - c0sq )>c2 ,  r 

which will hold for  the  frequencies  of  interest. 

The eigenvalues of A may  be  found, as before,  with  the aid of the  Kronecker  product. We 
note  that A may  be written  as 

where 

Now the eigenvalues  of GS are given by 

while those  of C, are  the  same  as  those  for  the  twedimensional A, with g,, redefined, 

Thus, applying  theorem  2,  the  eigenvalues of A are given by 

Q =  1 , .  . ., Nx-l; j = 1 , .  . ., Ny-1; and k =  1 , .  . ., Nz-l. 

The  minimum eigenvalue is clearly that  for which Q = j = k = 1. Thus using the  definitions  of 
, g, , g, , and g, , and  applying  theorem  1, we have that BSOR converges  if,  and  only  if, 

+L (1 - c o s < - >  c2/K, 
Kh; 
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which“is  the4hree-dimensional  extension  of  equation (Dl 9). 

Specialization of  equation  (D32)  for  the  two cases follows  directly  as  before. 

Case 1.-For  the modified  problem we have that BSOR-converges  if, and’only if, o < o c r  
where 

2 
Khg 

+- (1 -cos- 

or,  for  Nx,  Ny,  and N,, reasonably large, 

?h 
wcr = Ir 

[a2  KbZ  Kc2 

Case 2.-For the  exact  problem we find,  proceeding  as in the two-dimensional case, that ocr 
is again given by equation  (D24)  with Qz and Q3 defined  as  following that  equation,  but 
with Q1 redefined  as 

Q1 = 2 2 (1 - c o s R )  +- 2 (1 - C O S  ‘IT ) + - 2 (1 - C O S X ) .  

hX Nx Kh; I 

Khg NZ (D35) 

Thus, as  before,  the result for  the  exact  problem  reduces  to  that  of  the  transformed  problem 
as h, + 0. 

D.3.4 SUMMARY 

In  summary,  the  predicted values for wcr resulting  from the analysis of the simplified 
problem  are given by  equations  (D21)  (approximate) and (D24)  (exact)  for  two dimensions, 
and by equations  (D34)  (approximate)  and  (D24)  and  (D35)  (exact)  for  three dimensions. 

101 





APPENDIX E 

1 IN NEUMANN  STABILITY  ANALYSIS 

One way of  investigating the  stability  of  a  differencing  system is to  study  the  propagation 
of  errors  through  the  mesh in the  iteration  process in a  manner derived  by Von  Neuman  (ref. 
19). Let EkB be  the  error  in q1 kg at  the  k, Q mesh  point.  Von  Neuman assumed that these 
errors may  be  expressed  in  the  form 

for  a  uniform  mesh.  Here  a  and  b  are x and y dimensions  of  the mesh.  Since there  are  the  same 
number of equations  as  unknowns,  the  system  of  equation (E l )  is determinate. For simplicity, 
we shall assume  a  flat  plate  with  a  uniform  mesh.  Then u3  = K and  the  difference  equation for 
the  column  relaxation  sweeping  in  the  direction  of  increasing i is 

Now 

and we obtain 

Since the  difference  equation is linear, we may  consider  a  single  component of equation 
(El)  and  find  the  solution  of  the  difference  equation  in  the  form 
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This has the initia! condition  in  the  form  of  equation (El ) .  The  iteration will converge if the 
magnitude of g is less than 1. Substituting  equation  (E4)  into  equation (E3) yields,  after 
.dividing out  the  common  factor, 

-GE (eie1 - g i i e l )  + 2g(cose2 - l)/r-Ay2 

where 0 = 2np- and 8,  = 27~ q-. Solving for g and simplifying,  yields Ax AY 
a C 

-A -(+) c 
I 

g =  A - c / r  

where 

A = a ,   + i b ,  =(z2 + Sx) e -io 

The  quantity C is always  positive if - <x. Since the  magnitude  of  g  must be less than 
one, we must have E Ax2 

o2 

1 2 

[al +? C]' + b: < (a, - 7 C )  + b2 

which simplifies to  

(+)c (2a1 - c) < 0 

Since ( - , )  C > 0 this  leads to  r 
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Considering the preceding  relation as  a’restriction on frequency, we express thehequality in 
the form 

1 - case, 1 - c o d 2  
u2’+!wsin0, Ax < 2Ke [ Ax2 + K.ay’] 

For  p = q = 1 the limit Ax, Ay + 0 yields 

w2 +-- 4w7r a <4Ke(> 7r2 ‘7r2 ) 
Kc2 

or for M near  the  sonic value 

since - - KE < 1. Note  that  this  limitation  depends  upon  the  outer  dimensions of the 
mesh region and is similar to  the result  from the  matrix  method. 

1 - M 2 -  
M2 

For now relaxation,  with increasing j, we have 

Eliminating cp (SI 
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'(E 13) 

Solving for g  yields 

where 

The  condition  then I g I < 1 becomes 

or 

which  is the  identical  condition  found for column  relaxation.' I _  

Since  complex  values  of O W  were  tried,  it is worthwhile to  find  the  effect  of  complex r on 
the  Von  Neumann test for  convergence.  Equation (E6) for g  becomes 
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and the  condition  that lgl< 1  becomes 

which simplifies to 

For small frequencies, the same  inequality  (eq.  E8)  holds if 

r < 2cos-y 

Otherwise lg I < 1  may  hold for large values of  frequency (for r > 2cos-y). 

Oswatitsch and  Singleton  (ref.  20)  replaced  the  actual  time  derivatives in the  Euler 
equations of fluid  flow  with  fictitious time derivatives to change the  equations  from  hyper- 
bolic in time to parabolic in order to  improve the convergence rate  for calculating  steady 
flows. In  the same  manner,  an artificial time derivative was added to  the unsteady  differential 
equation  for  harmonic  motion and  an AD1 (alternating-direction-implicit)  scheme was tried 
to solve the resulting equation.  For  the  flat  plate,  the  equation is 

The mesh was swept  through  by  row  relaxation and  alternately  by  column  relaxation. 
The  appropriate  difference  equation  for row  relaxation in uniform  mesh is given by 
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and for column  relaxation . .  

,. , . .  

Substituting  equation (E4)  .into equation (E16) and simplifying,  yields the following 
equation for g ' 

If p >az / E ,  then  g <1  requires 

o2 sine, < 2( 1 - cod,) 2K( 1 - cos0 , ) -+ - 
E €-Ax AY2 A X 2  

+ 

'(E16) 
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APPENDIX F 

SOLUTION PROCEDURE INVESTIGATION EXAMPLES 

F.l SOLUTION  PARAMETERS 

F.l.L RELAXATION FACTORS 

The  characteristics  of the variation in solution convergence with  relaxation  factor  magnitude 
are discussed in section 5.2.1. Some  examples to illustrate  these  characteristics  are  included 
in this  section. 

Generally, the coarser the  mesh,  the  longer  the  initial  convergence  slope  lasted,  and  thus  the 
smaller  the  optimum  overrelaxation  factor  (ORF),  as  shown in figure F1. Also, for  a given 
frequency, as Mach number  increased,  the  initial  slope  decreased,  as  shown in figure  F2. Foq 
a given Mach number,  this  slope  decreased as the  frequency increased. Generally,'as  the 
reduced  frequency was increased,  the  ORF  for  most  rapid  convergence was reduced.  As ' ' ' 

discussed later in this  section,  the size of  the  optimum  ORF is also dependent  on  the 
relaxation  procedure. 

. .  

Also shown  in  figure  F2  are  two  examples  of  the  effect on  the convergence rate  when  the 
ORF is  decreased  during  an analysis. The change  is  particularly  noticeable  for  the M = 0.80 
curve  when ORF is dropped to  1.4 from 1.85. . ,  

An example  of  the  effect  of  the  magnitude  of  the  underrelaxation  factor  (URF) is  given in 
figure F3,  and  consists  of  a NACA 64A006 airfoil in harmonic  pitch  at  a Mach number  of 
0.9 and  a  reduced  frequency  of 0.06. The  solution  for  the coarse, 25 x 20 grid aonverged 
relatively rapidly using an  ORF = 1.6 and URF = 1 .O. However, the  solution  for  the  finer 
42 x 30 grid diverged for  URF = 1.0,  but converged  rapidly for  URFz0.7.  Variation  of  URF 
in similar calculations  showed relatively little  change in convergence  rates as URF was varied 
between 0.7 and 0.3. 

As an  alternative to the  overrelaxation  factors used so far,  the  pilot program was rewritten  to 
accept  complex ORF's.  Since there is little  theoretical  background  for  the use of  complex 
relaxation  factors,  the  procedure was to  try several values to see what would happen. Here, 
only  the real part  of ORF was used in the  calculation  of  ERROR.  The  results  from using 
ORF's  of 1.6 kO.1 i and 1.7 k0.3i  are  shown in figures F4 and  F5.  Also  included  is  the 
corresponding  result  for  an all-real relaxation  factor  of I .85, which  appears to be  optimum 
for  this  particular case. The  ordinates  for  the figures are  ERROR  and  the  number of iterations. 
Although  these  calculations  were  not  carried  through to convergence,  experience  showed 
that  the  slope  of  this  curve  after  it  settled  down  (after  some 30 or 40 iterations) was  a valid 
indication  of  the  rate  convergence  of  the  solution.  Hence,  an  all-red ORF  of 1.85 appeared 
to be  distinctly  more  efficient  than  any  of  the  complex  factors.  ORF's  of 1.2 f 1.2i  were  also 
tried, but  ERROR diverged almost  immediately. 

The  alternative  possibility  of using different  overrelaxation  factors  for  the real and  imaginary 
parts  of  the  velocity  potential was  also  examined.  Figure F6 presents  results  for several 
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cases. p e  cases  were  run  with ORF = 1.85  used for  the real part  and  ORF = 1.3 and 1 .O for 
the 'maginary part;  then  with  ORF = 1.85  for  the  imaginary  part  and ORF 1.3 and  1 .O for 
the teal ,part. 

The  mdst  interesting  result  of  this  study is  shown in figure F7,  where  the  convergence of the 
real  and  imaginary  parts of the  ERROR  were  plotted  separately  versus  number  of  iterations. 
The periodicity  as well as  the  phasing  of  the real and  imaginary  parts  of  ERROR  was 
unexpected  and  seemed to be  significant.  It  perhaps  helps to explain why  convergence 
acceleration  procedures  such as those  discussed in section 5.3.3. were  unsuccessful. It would 
also seem to  indicate  that  the  complex ORF studies  described  above  should  be  more  successful. 

Finally,  reference  is  made to  appendixes C and E in which  analyses  were  made of the  relaxation 
solutions using  time-like  characteristics  and  the  Von  Neumann  stability  analysis. In both  cases 
the  addition  of  an  imaginary  term to  ORF decreased the  damping  and  thus  did  not  aid  in 
solution  convergence. 

F.1.2 GRID DISTRIBUTION AND SPACING 

In  this  section,  examples  are  presented  of  pressure  distributions in which  there  were  variations 
in the  spacing  of  adjacent  finite  difference  intervals  and in the  number  of  points  used  to 
represent the flow field. The  configuration used for  these  calculations was the  flat  plate  with 
a Mach number of 0.8 and  a  reduced  frequency  of 0.06. As would  be expected, in each  case 
the  representation of the'singularities in the  pressure  distribution was  improved  by  clustering 
the  points  about  the  singularities  and  by  increasing  the  number of points. 

A program  was  developed for calculating  the  mesh-point  locations  for  an  airfoil  with  a  control 
surface.  The  points  were  spaced  according to  the rule  that  adjacent  intervals  are X times  the 
length  of  adjacent  intervals  with 2/3 < h <3/2.  The  user  specified  the  scale  factor X in  each 
direction,  the  number  of  points  over  the wing surface (i.e., between x = -1.0 and  xa),  and  the 
number of points  in  the  vertical  direction.  In  the  vertical  direction,  points  were  placed 
symmetrically  about  y = 0 (the vertical  dimension in a two-dimensional  coordinate  system) 
with no  point  at  y = 0. Moving away  from  the y = 0 plane,  each  interval  was X times  the 
preceding  interval,  with  the  spacing  set so as to  put  points  on  the  upper and  lower  boundaries. 
The  horizontal  point  spacing was more  complicated,  with  points  at  the  upstream  and  down- 
stream  boundaries,  and  a  point  over  the  trailing  edge,  x = +1 .O. Then  points  were  equally 
spaced on either  side  of  the  leading  edge,  x = - 1 .O, and  the  control  surface  hingeline, x = x,. 
Also points  over  the wing (i.e., between  x = -1 .O and x = xa)  were  symmetrically  spaced  about 
Xa- 1 - 

2 '  If X's of  close t o  312 are  used,  the  finite  difference  points  are  clustered  about  the  flow 
singularities at the leading  edge  and  the  hingeline  in  the  flow  direction  and  about  the  airfoil 
in the vertical  direction. 

Examples  of  pressure  distributions  for several different mesh  spacings  are  shown in figures F8 
through F11. Throughout  the  example,  the  area  of mesh  grid was held  fixed  and the  total 
number  of  points  nearly  constant.  The  pressure  distributions for the  flat  plate  with  an 
oscillating  quarter-chord  control  surface  are  shown  in  figures F8 and F9. Corresponding 
pressure  distributions  for  the  flat  plate in pitch  are  shown  in  figures F 10 and F 1 1. In each 
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case, the improvement  in the representation of the singularity  as the  points were  clustered 
about  the singularities was very noticeable. 

A comparison  of pressure distributions resulting  when the  number  of mesh  points was varied 
is shown in figures F12  and  F13.  The  example is the  flat  plate  with  the oscillating quarter- 
chord  control surface. The  area  of  the mesh grid was constant  and  the  points were  placed 
according to the program  briefly  described  earlier.  These  results  are  essentially directly 
comparable to  the results  presented in figures 4 and 5 of  reference 1 for a much  finer grid. 
There was a  significant  improvement  in  correlation with  the  linear  solution as the  number of 
points increased. It is felt that  the  42 x 30 grid represented  a  good  compromise  between 
correlation  with  the  linear  result  and overall economy,  and  thus would make a satisfactory 
basis for  parameter  variation  calculations. 

F.1.3 EXTENT OF MESH 

An example of variations  in the  location  of  the  upper  and  lower  boundaries is presented  next. 
This  calculation was carried out  at M = 0.8 and w = 0.06  for a flat  plate  with a  harmonically 
oscillating  quarter-chord  control  surface. The  upper  and  lower  boundaries (i.e., y1 max) were 
set at k3.0, k6.25,  and  k10.0 in scaled coordinates.  This is equivalent to k8.99, k18.5,  and 
9 9 . 6  in physical coordinates  (i.e.,.4, 9, and I5 chord  lengths)  for  a 6% thick  airfoil a t  
M = 0.8. The  number  of mesh points was held constant  for  the  three analyses  using 42 points- 
flow-wise and 30 points in the crossflow direction.  Figures  F14  and  F15  show  the  distribution 
of the  jump in pressure  coefficient  across  the  section. The curves.for y ,  max = k6.25  and 
k 10.0 are  essentially the  same  except in the region of  the leading-edge singularity.  Here,  a 
better  representation of the singularity was obtained  from  the  smaller  y, max value, apparently 
because the  points in this case were more closely  spaced about  the wing section. The results 
at  y, max = k3.0 were  slightly  smaller in the  amplitude  for  both  the real and  imaginary  cases 
except in the region of the leading-edge singularity.  Again, the representation  of the leading- 
edge singularity  benefited  from the closer  vertical  spacing  of the  finite  difference  points. 

" 

Figures F 16 and F 17  show plots  of  the velocity potential  distribution  for  the  variations in 
y,  max discussed previously. The  plots  represent  the  variation in cp, (real  and  imaginary parts) 
in the vertical (crossflow)  direction. The graph  coordinates were  set to emphasize the behavior 
of the velocity potential in the vicinity  of the  outer  boundaries  rather  than  the region next to 
the wing. The p1 for  only  two  chordwise  points  are  shown,  but  these curves  are  typical of the 
remaining curves. The curves for  y, max of k6.25  and  k10.0 lie very close together, while the 
corresponding  curves for'y, max of k3.0 look  quite  different. Of course,  it is the  behavior  of 
q1 adjacent to the wing that is most  important,  for  this is where the pressure function is 
evaluated.  However, for  this case, the p1 distribution itself  appears to have  settled  down  by 
the  time y ,  max = k6.25. 

F.1.4 SEQUENTIAL  REFINEMENT 

As discussed in section  5.2.4,  sequential  refinement  may  be  applied in terms of number of 
grid points,  frequency, or  Mach number.  Although all three  forms were tried,  it is sequential 
refinement  with  respect to  mesh  spacing that held  promise  of  significant savings in  terms of 
.computer  resources.  Examples of sequential  refinement  with  respect to both Mach number 
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and  frequency is shown in figure F 18. Depicted  in  this  figure  is  the  convergence for  the case 
M = 0.9 and w = 0.12  for  three  different runs. For  the first, the initial  velocity potential 
distribution was zeros;  for  the  second,  the converged solution  for M = 0.85  and w = 0.12; 
and  for  the  third,  the converged solution  for M = 0.9 and w = 0.10. The difference in the 
number  of  iterations to convergence  between the  three  runs was 25  out  of  120, or about 22%, 
and  is not significant  unless the initial  converged case is in existence. That is, it would not  be 
worth  generating the first  solution in order to use it in the generation  of the second case. 

The  same is not  true  for sequential  refinement  with  respect to  the  number of  points while 
keeping the  tgtal  area  constant. Significant saving is not  automatic, however,  and several 
possibilities are  sketched  in  the  next  two figures. The first  figure (fig. F19) shows two possible 
convergence paths using a combination  of a  course grid with  a  fine  grid.  A  straightforward 
linear  interpolotation was used to obtain  the  initial values of p1 for  the  iteration  with  the . 

fine  mesh from  the last p1 distribution  of  the  course mesh. Note  that  there is  a sharp peak  in 
the convergence  curves at  the  time  the grids  are  switched. The  difference  between  the  ,two 
paths is the convergence  value  reached  for the coarse  mesh  before the  switch to  the fine  mesh 
is  made. The  computer cost  is  a  function  of the size and  number  of  iterations  performed  with 
each  mesh. For example, both  paths reach the value C of ERROR in the same number  of 
iterations.  Path B is  obviously more  efficient  than  path A since  a larger proportion  of  the 
iterations were made  with the coarse grid. We found  it advisable to carry the convergence  of 
the coarse  mesh  below that  of final  convergence  criterion. 

Another  problem  concerned  the  relative  coarseness  of the first grid to  the second grid in a 
sequential  refinement process. A second  sketch (fig. F20) shows two convergence paths  that 
differed  as  a  result of  different  coarse grids. The evaluation  of  the  total  cost  to convergence 
was more  complicated  than  the preceding  example.  Here the efficiency must  be  evaluated  by 
comparing the difference in cost  of I2 iterations  of  the  fine mesh  with the No. 2  coarse  mesh, 
with  difference  in  cost of I1  iterations  of No.  2  coarse  mesh  with No. 1  coarse  mesh. 

Thus  it is very  difficult to  put  quantitative  numbers  to  the  actual gain in computer efficiency 
using sequential  refinement. We were  satisfied  with the results  of using just  two meshes to  
obtain final  answers-a  25  x  20  mesh  followed by a 42 x 30 mesh -for  most  of  the  examples 
of  this  report. 

Figure F21  presents  the  solution convergence for an airfoil using a 46 x 30 mesh. The  upper 
curve  shows the convergence  starting  with  an  initial p1 distribution  of zero. The  lower curve 
shows the corresponding  convergence  starting  with  an  initial  distribution  from  a converged 
solution  for a 17 x 20 mesh. The values at  the  points  of  the coarse  mesh  were  linearly 
interpolated to provide  values at  the  points of the  fine mesh. The  two meshes  covered the 
same  area. The  point  to  be  made is that  the  solution curves tend t o  merge for a large number 
of  iterations  and  thus  the  advantage gained  by using sequential  refinement is lessened.  As  a 
side issue, the graph gives an  indication  of  the  effect  of varying the scalar  applied to the terms 
that  are  added to the finite  difference  equation to provide  for convergence in the mixed-flow 
problem  when  using  row  relaxation.  This  factor,  which  is called CONPXT and is described  in 
section  F.2.1, was set  at 5 and 10 for  this  particular case. Also, the graph  shows  the  effect of 
using an ORF of 1.6 rather  than 1.85 for  this  problem. 
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Figure F18. - Sequential  Refinement with Respect to Mach Number and  frequency 
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Figure F19. - Sequential  Refinement With One  Coarse  Mesh  and  One Fine Mesh 
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Figure F21. - Examples of Effect of Starting Velocity Potential on Solution Convergence 
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F.2 SOLUTION PKOCESS 

F.2.1 ROW RELAXATION 

Figures 1 2 2  and F23 present cxillnplcs or row  and column solutions I'or coI11pilrisoI1 purposes. 
Figure F22 colnparcs row  and column  solutions  for a 42 x 30 gFicl for ;I Ilat plate. I t  is 
Iwlicved that  the  solutions  are carried out, initially at  least,  with a nearly optimuln ORF. 
Figure F23 shows  corresponding  data  for a 17 x 10 grid. In each case, row  relaxation was 
significantly more  efficient. 

Convergence i n  tllc  airfoil case, i.e., for mixed flow, was obtained by adding  the fol!owing 
terms to the  finite  difference  equation. 
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Figure F22. - Convergence  Comparison of Row and  Column  Relaxation Procedures 
for  a 42 x 30 Mesh 
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Fbure F23. - Convergence  Comparison of Row and Column Relaxation Rocedures 
fora 7 7 x  70 Mesh 
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The values  of the velocity potential  with  superscripts (n) are  considered  “new”  values and 
are  considered’to  be  unknowns.  The values with  superscript ( 0 )  are considered“‘o1d” values 
that were calculated  in  the  preceding  iteration and go  on  the right-hand?side of  equations 
(Al )  and (A2). 

CONPXT and  CONE6  are  constants that may be varied from  run to nin;  Column  relaxation 
is convergent without  these  additional terms. A comparison  between  the  solutions  for  row 
and column  procedures (fig. F24) showed that row  relaxation  was.again the  most  efficient 
process. The values used for CONPXT  should be  of  the  order 2 to 10 and  for  the value of 
CONE6  should  be  of  the  order  of +O. 1. As with ORF and URF, optimum values of CONPXT 
and  CONE6  appeared to  vary from case to case and,  for maximum  efficiency,  should be 
determined  separately  for  each  calculation. 

There  are several ways of  running  column  relaxation  for  the two-dimensional case. The  two 
most logical sequences  appear to  be: ( 1)  starting  from the upstream  mesh boundary  and, 
taking  the  columns in succession, moving to the  downstream  boundary;  and (2) starting  at 
the section  trailing  edge  and  moving  forward,  column  by  column, to  the upstream  boundary 
and then  returning-to  the  first  column  aft  of  the trailing  edge  and moving, column  by  column, 
to the  downstream  boundary.  It is this  latter process that worked best and is referred to  as 
the “standard”  column  procedure.  The  former  sequence will be  referred to  as  simply.  ‘‘fvd- 
aft.” An example using this  latter  solution  sequence is shown in figure F25. From  this 
particular  example,  it  would  appear that fwd-aft is more  efficient  than the standard  sequence 
(see fig. F23). The fwd-aft  sequence  appears, in many cases, to  be nearly  as  efficient  as the 
standard  column, but we found  it generally to be less reliable. This was particularly true  for 
combinations of Mach number and frequency  that  led  to marginal solution  stability. Also, 
the fwd-aft  sequence utilized lower ORF’s, for several examples diverged when rerun  with 
ORF’s that ‘had been optimum  for  the  standard sequence. It is interesting to  note  that working 
the  solution  sequence  forward and aft  from  the  the trailing edge does not seem logical for 
mixed-flow  problems;  however, in practice,  it worked out very well. 

Similarly, there are other  sequences  for  row  solution besides the  “out-in”  sequence  described 
above. These  include,  for  example,  “in-out”  sequence  (i.e.,  starting  at  the wing surface  and 
working out, row by  row,  and  alternating top and bottom), and just  starting at  one  boundary 
(say the  lower  boundary)  and solving successive rows to  the  upper  boundary. A comparison 
of  row  in-out  with  row  out-in is given in figure F26. 

F.2.2 DIRECT SOLUTION 

A version of the pilot  program was also  developed to provide  direct  solution for  the  interior 
velocity potential  distribution.  This  concept was outlined by Ehlers  (ref. 1). Generally, the 
iterative  relaxation  for  the  unknowns  associated  with  the  interior  points was replaced by a 
solution o f t h e  complete  set  of  simultaneous  equations  at  one time. There was still  an 
iterative  loop  since  the  conditions on  the  outer  boundaries  of  the mesh area  were  a function 
of the  unknown velocity  potentials  adjacent to  the airfoil  surface. The modified  pilot  program 
was appropriate  only  for  problems  with  subsonic steady-flow fields. 

. . .. 
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Figure F24. - Convergence  Comparison of Row and  Column  Relaxation for  Mixed Flow 
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Figure F25. - Convergence  Comparison of Row and Column Relaxation (Forward - Aft) 
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The  matrix  equation  for  the  direct  solution  may  be  written  as 
i 

where [A] is matrix  of  complex  coefficients  of  order  equal  to  the  number of interior  points, 
{x) is column  matrix  of  unknown  velocity  potential,  and {K} is a  complex&olbmn  matrix 
introducing  the  conditions  on  the flow-field boundaries.  If the  number of mesd  points in the 
flow direction is imax  and  the  number in the  crossflow  direction is jmax,:then N, the  number 
of  interior  points  and  thus  the  order  of  equation (F2) is 

I .  I 

. .  

; 

N = (imax - 2) Umax - 2) ! '  

1 ,  

. I  

(F3) 

The  boundary values on  the mesh region are  dependent  on  the values of  the  velocity 
potential  on  the  wing  and  wake;  hence  equation (F2) may.be  written  as I. 

[AI {x) = {R(X)} ! 
i (F4) 

where [A] is a  constant  matrix  and {R} is a  complicated  nonlinear  vector valbed 
function  of {x}. The  solution is obtained  by  iteration.  That is, a {x(')} is chosep  and 
improved  approximations to {x} are  determined  from 

[A]  {X(n+l)} = { R(X ")} ! ''. i W L  
Note  that  for  each  fixed  n,  there is a  linear  equation  of  the  form of equation (F2),' and  that 
as n changes, only  the  right-hand  side  changes,  not [A] .  

The  most  efficient  direct  method  for  the  solution  of  a  linear  system [A] {x) = {R\ is  well 
known  to  be  the  Gaussian  elimination  algorithm.  The  form  of  this  algorithm  that is, 
particularly  suitable  for several systems  with  the  same  coefficient  matrix  but  with  different 
right-hand sides is LU decomposition. In this  scheme, [A] is decomposed, once and, for all. 
into  lower  and  upper  triangular  matrices [Ll and [VI, respectively,  such that [L] [W] = [A] .  
Then [AI {x} = {R} may  be  written  as [L]  [U] {x} = {R} and  the  solution  found  by 
solving, in turn, [L] {Y} = {R) and [U] {x) = (9).  Note  that  since [L] is lower  trialgular, 
solution of [L] {P} = {x} involves only  forward  substitution;  similarly,  since [U] islupper 
triangular,  solution of [VI {x} =,{u} involves only  backward  substitution.  Thus  soldtion  of 
[A] {x} = {K} is very  fast once  the  decomposition [A] = [ L] [ U] is performed. , 

The  main  obstacle to solving large systems  by  direct  methods is the large storage  requirement. 
This is not  due  to  the  space  required  for [L] and [Ul , since  these  may  replace [A] ad they 
are  calculated,  but  simply  the  storage  required  for [A] .  The  situation is improved so$e- 
what  when [A] is a  band  matrix  as  in  this  case,  but  for  a  sufficiently  fine  mesh, the storage 
required  may  still  exceed  core  capacity. To be more  precise,  when  the  coefficient  matrix is 
banded, it may  be  shown  that  the  band  structure  carries  over t o  [ L] and [VI. Thus it is not 
necessary to store all of [A]  ; in particular,  the 0's below the  far  subdiagonal  and  abpve  the 
far  superdiagonal  need not  be  stored.  (The 0's within  the  band  must  be  stored  since lthese . 

locations  are filled in the  course of the  decomposition.)  Hence  the  total  storage  required  for 
[A] is N [ 2(jmax - 2) + 1 1 .  In  addition to the  storage  for [A] we required  N  locatiqns for 
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{E) and N locations  for a  scratch  array used in the course of the decomposition. In sum, if 
the values were all real tlle total additional  storage  requirement, T, would be 

= N [2Umax - 2) + 31, 

but since the values are  complex,  we  have 

T = 2N [ 2(jmax - 2) + 31. 

We proceed to  put  (F7) in slightly different  form, in which the  dependence  on  the  number of 
interior  points is more  transparent. 

Let 

Then timax - 2)' = C(imax - 2) Gmax - 2) = CN 

which leads  to 

Hence, we see that  the  storage  requirement grows  essentially  as the  number of interior  points 
grows to  the  3/2 power,  for a fixed ratio  of mesh spacings. For a  mesh  of 27 x 18 (i.e., with 
imax = 27 and jmax = 18), T = 28 000 words,  which is within the  core  capacity of the 
CDC 6600. For a  mesh of 42 x 32, T = 15 1 200 words, which is beyond  the  core  capacity  of 
the CDC 6600. 

F.2.3 CONVERGENCE  ACCELERATION  METHODS 

The relatively regular, uniform,  and  monotonic behavior of  the pressure  difference  distributions 
with successive iterations suggested the use  of  convergence  acceleration  techniques. Also, these 
procedures were successfully  applied in limited  examples of steady  transonic  flows  by  Hafez 
and  Cheng  (ref. 13), and  Martin  and  Lomax  (ref.  14). Further,  our  studies showed  relatively 
good  behavior of both  the unsteady  velocity potential  distribution and the ERROR with 
successive iterations. 

A rather  straightforward  program  system was set  up whereby three successive velocity 
potential  distributions  (or pressure distributions)  could  be calculated  and saved. These  would 
be  for  the n-2m, n-m, and  n  iterations,  with  both n and m being set  by the user. A separate 
program is then used to  generate  a new distribution, which may be used as  a starting  point 
for a  new  sequence  of  iterations. 

The sample  problem used for all the calculations was that of a  two-dimensional flat  plate  with 
a harmonically  oscillating  control  surface at M = 0.8 and a  reduced  frequency of 0.06. A 
mesh  with 42  points in the streamwise direction  and 30 points  perpendicular to  the flow was 
used. It is estimated that convergence for  this case was reached in less than 400 iterations. 
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The first  convergence  acceleration  procedure used  was an  application’of  Aitken-Shanks 
nonlinear  transformation (62 process) to  the velocity  potential  distribution  (ref,  2 1). 

The results  were not encouraging.  A  typical  result  is  shown in figure F27  and  presents 
ERROR versus iteration.  Equation  (F11) was applied using the velocity  potential 
distributions  from  iterations 25, 50, and  75. The resulting  velocity  potential  distribution 
was used as a  starting  point  for  25  more  iterations.  The resulting ERROR’S are shown  by 
the triangle symbols. After  an initial  sharp perturbation,  the  ERROR fell back to  the level 
at which equation (F1 1) was applied,  and the convergence continued as if nothing  had 
happened. 

As a  second step,  equation  (F11) was used on  the pressure  distribution  rather  than  velocity 
potential  distribution. Since the  functional  iteration  solution process cannot be  restarted 
with the predicted  pressure  distribution, successive results were monitored to  see if they 
would converge. The process was to use increments of 25 (i.e., m = 25 in eq. F1 l), starting 
with  the  25th  iteration.  Thus pressure  distributions were obtained using equation (F1 1) with 
the  results  from  iterations  (25, 50, 75), (50, 75,  loo), etc.  Here again results were discouraging. 
The real part  of  the pressure behaved very well; the imaginary part had obvious  problems  up 
through  the  (1 00, 125,  150)  set.  Typical  results  are  presented in figures F28 and F29. 

Examination  of  both  the velocity potential and the pressures  as  calculated  with equation 
(F1 1) showed that  the  results were very sensitive to  the  input values when the values tended 
to  lie along  a  straight  line.  Under  these  circumstances, for  example,  three positive values, 
obviously  leading to  more positive values, may well result in a negative value when used  in 
equation (F1 1). To eliminate  this  problem,  the  equation was rewritten in the following  form: 

Then, a  lower  limit was set on  the value of the  denominator in the second  term to restrain 
the resulting extrapolation within  certain  limits.  An  example  of the use of equation  (F12) is 
shown in figure F30. The results  show no  improvement  over using just  straight  relaxation. 
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