

A NON-GAUSSIAN MODEL OF CONTINUOUS

ATMOSPHERIC TURBULENCE FOR USE
IN AIRCRAFT DESIGN
LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, N. M.
Paul M. Reeves, Robert G. Joppa, and Victor M. Ganzer

Prepared by
UNIVERSITY OF WASHINGTON
Seattle, Wash.
for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1976

[^0]
TABLE OF CONTENTS

'PAGE
LIST OF FIGURES v
LIST OF TABLES ix
SYMBOLS AND NOTATION x
SUMMARY 1
INTRODUCTION 2
Discrete Models 2
Continuous or Power Spectral Models 5
Gaussian power spectral models 6
Gaussian patch model 12
Associated Current Research 15
The Non-Gaussian Model 17
Outline of Report 19
REVIEW OF THE GAUSSIAN MODEL 21
Power Spectral Density of the Turbulence Model 22
Probability Distribution of the Gust Velocity 24
Level Crossing Frequency of the Gust Velocity 25
Distribution of Velocity Increments 30
Probability Distribution of Vehicle Response 32
Leve1 Crossing Frequency of the Vehicle Response 33
Physical Interpretation of the Gaussian Model 33
VALIDITY OF THE GAUSSIAN MODEL 35
Gust Velocity Distributions Estimated from Single Samples 35
Gust Velocity Distributions Estimated from Many Samples 37

PAGE

Leve1 Crossing Frequencies Estimated from Many Samples 38
Patch Sizes Implied by the Gaussian Patch Model 39
Distribution of Gust Velocity Increments 41
Summary 42
FORMULATION OF A NON-GAUSSIAN TURBULENCE MODEL 43
The K_{0} Model 43
The Non-Gaussian Model 46
ANALYSIS OF THE NON-GAUSSIAN MODEL 49
Derivation of Transfer Functions 49
Probability Distribution 57
Level Crossing Frequency 62
Level crossing frequency of the longitudinal component 64
Level crossing frequency of lateral and vertical components 75
Increment Distribution 81
Summary 86
VALIDITY OF THE NON-GAUSSIAN MODEL 88
Experimental Data 88
Goodness-of-Fit-Criteria 89
Generation of Model Data 94
Results 94
Summary 96
CALCULATION OF NON-GAUSSIAN RESPONSE STATISTICS 106
Standard Solution Techniques 107
Power spectral density 108
Response distribution and level crossing frequency 108
P.AGE
Decomposition of Response 111
Approximate Solution for Response Probability
Distribution Function 112
Approximate Solution for Response Level Crossing Frequency 125
Response to Multiple Inputs 129
Summary 130
NUMERICAL EXAMPLE 132
Problem Statement 132
Model of the Vehicle 133
Turbulence Model Parameters 134
Response Power Spectral Density 134
Response Distribution Function 135
Response Level Crossing Frequency 138
CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 140
Principal Conclusions 140
Suggestions for Further Research 142
Improved data fitting procedures 142
Relationship of the non-gaussian model to meteorological parameters 143
Improved mathematical development 143
Extensions of the model 144
REFERENCES 147
APPENDIX A 155
APPENDIX B 235

LIST OF FIGURES

FIGURE PAGE
1 Comparison of von Karman and Dryden power spectral densities 22
2 Probability density and distrubution functions of the gaussian turbulence model 24
3 Normalized level crossing frequency
of the gaussian turbulence model 28
4 Physical interpretation of a single component of the gaussian turbulence model and the response of a vehicle to this model 33
5 Comparison of the gaussian turbulence model with gust velocity distributions estimated from single turbulence time histories 36
6 Experimentally measured cumulative gust velocity distributions of atmospheric turbulence compared with those of the gaussian model 377 Experimentally measured cumulative probability ofexceedance distributions of atmospheric turbulence
compared with those of the gaussian model 38
8 Patch sizes implied by the gaussian patch model of atmospheric turbulence 40
9 Comparison of experimentally measured gust velocity distributions (top) with corresponding gust velocity increment distributions (bottom) 41

10 The derivative of an atmospheric turbulence sample
compared with derivative samples from several
turbulence models 44
11 Product of independent gaussian processes which has been suggested as a model of patchy turbulence 44
12 Probability density and distribution functions of the K_{0} turbulence model compared with those of the gaussian model 45
13 Physical interpretation of a single component of the non-gaussian turbulence model 46
14 Typical probability distributions attainable usingthe non-gaussian turbulence model 4715 Probability density and distribution functions of thenon-gaussian turbulence model for various values ofthe parameter R. 61
16turbulence model longitudinal component for variousvalues of the parameter R_{u}74
17 Level crossing frequencies of the non-gaussian turbulence model lateral and vertical components for various values of the parameter R 80
18Comparison of a typical non-gaussian model u-gustcomponent probability distribution with that of thecorresponding increment distribution 84
19 Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{\max }$ best fit criterion . 97
20 Various LO-LOCAT data plotted on both logarithmicand linear scales compared with the gaussian model and thenon-gaussian model selected according to the $\varepsilon_{\text {log }}$ best
fit criterion 101
21 Block diagram of the turbulence model - vehicle system which is to be analyzed in order to determine vehicle response statistics 107
22 Turbulence model - vehicle system with the vehicle response decomposed into gaussian and non-gaussian parts . . 112
23 Power spectral density of band limited gaussian white noise 114
24 Truncated impulse response function 115
25
Power spectral density of the altitude error 135
26
Adjoint eigenfunctions and eigenvalues of the altitude error 136
27 Probability density and distribution functions of the altitude error in response to both gaussian and non-gaussian turbulence models 137
28 Adjoint eigenfunctions and eigenvalues of the altitude error time derivative 138
. 29 Level crossing frequency of the altitude error in response to both gaussian and non-gaussian turbulence models . 139

LIST OF TABLES

TABLE PAGE
1 Transfer functions of the non-gaussian model 55
2 Description of data categories used in this report 90
3 Goodness-of-fit criteria for various LO-LOCAT
data categories 95
4 Values of the turbulence model parameter R which
produce best fits of the experimental data 105
5 Number of non-zero terms of Gram - Charlier expansionrequired to represent density funcions of the non-gaussianmodel to various accuracies over the range of zero to sixstandard deviations . 110

In the following list, the subscript x will denote letter subscripts, n will denote integer subscripts, and specific numerical subscripts will be denoted by i followed by a list of possible values.

Symbols

a	random function of time
A_{n}	random variable
\bar{A}	random vector (Eq. (180)
\tilde{A}	covariance of \bar{A} (Eq. 182)
b	random function of time
B_{n}	random variable
\bar{B}	random vector (Eq. 181)
\tilde{B}	covariance of \bar{B} (Eq. 183)
c	random function of time
C	correlation function
C_{n}	random variable
\tilde{C}	matrix
d	random function of time
D_{i}	$i=1,2,3$. constants
D_{n}	random variable
e	random function of time
$E\{\bullet\}$	expected value operator
f	frequency
F	cumulative probability of exceedance or cumulative probability distribution (Eqs. 139, 140, 141)

9	random function of time
$h(\cdot)$	random function of time
$h(\cdot, \cdot)$	kernel function (Eq. 147)
h_{x}	impulse response function
H_{x}	transfer function
i	$\sqrt{-1}$
j	integer index
k	random function of time
k_{x}	constant
K_{0}	modified Bessel function of second type and order zero
L_{x}	scale length
m	integer index
M	upper limit of index m
n	integer index
N	upper limit of index n
N_{i}	$i=1,2,3,4,5$. constants
N_{x}	level crossing frequency, number of crossings with positive slope per unit distance (Eq. 81)
\hat{N}_{x}	special case of level crossing frequency (Eq. 109)
$p_{x_{1}, x_{2}}$	joint probability density function of the random variables x_{1}, x_{2}, \ldots
\hat{p}_{x}	standardized probability density function (Eq. 31)
$\hat{p}_{x_{1}}, x_{2}$	special case of joint density function (Eq. 108)
P_{x}	probability distribution function (Eq. 10)
P_{x}^{C}	cumulative gust velocity distribution function (Eq. 11)
q	integral function (Eqs. 149, 150)

r	response time history
R_{x}	probability distribution parameter of the turbulence
	model (Fig. 13)
s	Laplace transform variable
t	time
t_{c}	truncation time limit (Fig. 24)
u	longitudinal gust velocity
U	mean true airspeed of aircraft
v	lateral gust velocity
ω	vertical gust velocity
x	variable
\bar{x}	vector of variables
y	variable
\bar{y}	vector of variables
z	variable
α	variable
$\alpha(\cdot)$	function of correlation Eq. (28)
β	variable
${ }^{\gamma} x$	wavelength representing viscosity effect (Eqs. 82, 83,
	$84,113,114)$
δ	variable
Δ_{x}	increment of x (Eq. 22)
$\varepsilon_{\text {ise }}$	goodness-of-fit criterion (Eq. 139)
${ }^{\varepsilon} 1 \mathrm{log}$	goodness-of-fit criterion (Eq. 141)
$\varepsilon_{\text {max }}$	goodness-of-fit criterion (Eq. 140)

ACKNOWLEDGMENT

The authors wish to express their sincere appreciation for the advice given by Professor J. Vagners of the Department of Aeronautics and Astronautics, Professor R. D. Martin of the Department of Electrical Engineering, and Professor J. A. Businger of the Department of Atmospheric Sciences and Geophysics.

The support of this research by the National Aeronautics and Space Administration under NASA Grant number NGR-48-002-085; and the assistance of the NASA Technical Officer for this grant, Mr. R. L. Kurkowski of NASA Ames Research Center, is also gratefully acknowledged.

This report considers the problem of modeling continuous atmospheric turbulence for the purposes of aircraft design. The discussion is limited to the representation of turbulence by three stationary, independent stochastic processes which are physically interpreted as the longitudinal, 1ateral, and vertical gust components at the vehicle center of gravity.

The gaussian model now in wide.use is reviewed. A comparison of this model with experimental data shows that it underestimates the number of high velocity gusts which occur in the atmosphere. Furthermore, it cannot reproduce observed velocity increment distributions.

A class of non-gaussian processes is proposed as a turbulence model. Though previous publications have described the application of this model to flight simulator work, this report analyzes the model in greater detail, and is the first publication to apply it to analytical calculations. A comparison with experimental turbulence data is presented, and it is concluded that the non-gaussian model is superior to the gaussian model for the purposes of representing high velocity gusts. However, in the form presented, the new model does not improve upon the gaussian model in so far as the modeling of velocity increments is concerned.

The problem of applying the non-gaussian model to the calculation of vehicle response statistics is investigated. The specific statistics of interest in this report are the response power spectral density, probability distribution, and level crossing frequency. The first of these is easily handled by well known methods. The calculation of the second and third quantities, however, requires the development of an eigenfunction eigenvalue expansion technique. A numerical example is presented and a number of computer programs useful for studying the model are included.

The effects of atmospheric turbulence have been a continuing concern to the aircraft designer since the earliest days of powered flight. Typical turbulence related problems which must be solved during the design of any aircraft are:

1) determination of ultimate structural strength required to sustain peak loads induced by turbulence
2) effects of turbulence on the fatigue life of the structure
3) performance of control systems in turbulence
4) handling and ride qualities in turbulence.

In an effort to provide the designer with some practical means of solving these and other problems, a number of statistical models of turbulence have been developed over the years. These models attempt to describe, in terms of as few parameters as possible, those characteristics of turbulence which are most important for various aspects of the design problem. Several of the most widely used of these models will be described below. In general they fall into two complementary classes, discrete and continuous, both of which are in use at the present time.

Discrete Models

Historically, the discrete model of turbulence was the first to be developed beginning with the work of Rhode and Lundquist in 1931 (Ref. 1). This model was intended to describe only the extreme gusts encountered by an aircraft over its operational lifetime. Because of its emphasis on extreme gusts, the discrete model is typically used to estimate ultimate strength requirements. As its name implies, the discrete model treats
turbulence as a series of isolated gusts. The principal assumptions used in deriving the discrete model are (Ref, 2, 3):

1) For purposes of aircraft design, atmospheric turbulence can be modeled as a collection of isolated gusts randomly distributed along the flight path of the aircraft.
2) These gusts have random magnitudes but fixed shape.
3) The aircraft is a deterministic linear system with sufficient damping that each encounter with one of these discrete gusts results in a single significant response peak.

Typical responses which may be studied by means of the discrete model are peak structural loads imposed by turbulence, extreme vertical accelerations of the aircraft, etc. Two discrete gust shapes which have been employed in the past are a ramp 30.48 meters (100 feet) in length used in the United Kingdom (Ref. 4) and a one-minus-cosine shape used in the United States (Ref. 5).

Since the gust shape is fixed and the vehicle is assumed to respond in a well damped linear manner, the relationship between gust magnitude and the peak value of response for a given aircraft is simply a constant of proportionality depending upon the flight condition (i.e., airspeed, gross weight, altitude, etc.) at the time of gust encounter. Thus, by recording response peaks and corresponding flight conditions, one can compute the magnitude of the discrete gust which caused each peak. These magnitudes, known as "equivalent gust velocities," have been extensively measured for various types of aircraft based on recordings of vertical accelerations by counting accelerometers. Statistics on the frequency of their occurrence have been compiled by many authors (e.g., Ref. 6).

The discrete model can be used to predict the responses of a proposed aircraft design by the following method (Ref. 7). First, using the experimentally determined distribution of equivalent gust velocities and the dynamic characteristics of the proposed vehicle, work backward through the procedure described above to obtain the distribution of vertical accelerations for the vehicle. Then assume a factor of proportionality relating these accelerations to the response magnitude, and finally convert the distribution of accelerations into the required response distribution.

Even though much data is available on the distribution of equivalent gusts, the discrete model is not satisfactory for all aspects of the aircraft design problem. For example, its application in areas such as structural fatigue, control system performance, ride qualities, or even extreme responses which involve lightly damped modes is highly questionable. The reason for this is that the assumptions on which the model is based are seldom realized in practice. In most instances turbulence does not occur as discrete gusts but as a continuous random disturbance. Furthermore, the conversion from measured responses to equivalent gust velocities neglects most of the dynamic characteristics of the vehicle, particularly the structural modes which tend to be lightly damped. As a result, success in calculating the response statistics of a proposed aircraft by means of the discrete gust model depends largely upon the proposed aircraft having very nearly the same response characteristics as the vehicle with which the original data were collected. Although this fortuitous circumstance may exist in some cases, it cannot always be assumed. Thus, although the necessity of evaluating the responses of a proposed aircraft to discrete gusts is still recognized as an important part of the design procedure (Ref. 8), the use of the discrete model to calculate most response
statistics has largely given way in recent years to the use of turbulence models which attempt to take both the dynamic characteristics of the vehicle and the continuous nature of turbulence into consideration. These are known as "power spectral density," "power spectral," or (perhaps more correctly) "continuous" models. It is this type of model which is of primary interest in the present report.

Continuous or Power Spectral Models

As will be seen shortly, the underlying idea of this type of model is that atmospheric turbulence can be represented by a continuous stochastic process which acts as a disturbing influence on the vehicle. The name "power spectral" has frequently been associated with these models because their development originated from studies of the power spectral density of atmospheric turbulence (Ref. 9). In actuality, these models involve not only the power spectral density of turbulence, but also an assumed probabilistic structure which is consistent with the power spectrum. Hence, to call them "power spectral" models is to stress one aspect and neglect the other. Thus, although long usage has firmly established the name "power spectral" (and indeed the name will often be used in this report), the reader should be aware that power spectral models incorporate not only a power spectrum but also a probability structure.

Because a turbulence model will be of little value to aircraft design if it cannot be used to predict vehicle responses, the type of stochastic process employed in the model must be one for which it is possible to calculate these responses with a minimum of difficulty. Because of this constraint, it is usually assumed that turbulence can be represented by a gaussian process. In this report, continuous models which incorporate
this assumption will be referred to as continuous gaussian models or gaussian power spectral models.

Gaussian Power Spectral Models

As mentioned above, power spectral models represent turbulence as a continuous disturbance. The aircraft is imagined to fly through large regions of turbulent air. (The adjective "large" is used here to mean that the time required for the aircraft to pass through one of these regions is very much greater than the response time constants of the vehicle.) It is usually assumed that within each region the turbulence is homogeneous and stationary, and is characterized by intensity and scale length parameters. More formally stated, the principal assumptions made in applying this type of model in its most simple form are (Refs. $3,10):$

1) Each encounter of an aircraft with continous atmospheric turbulence can be modeled as a deterministic linear system (the aircraft) perturbed by three independent, stationary stochastic processes. These processes represent the longitudinal, lateral, and vertical gust components occuring at the vehicle center of gravity as it moves through the gust field.
2) The power spectral density of each random process belongs to a family of spectral shapes characterized by two parameters, the gust velocity standard deviation (σ) and the gust scale length (L). The scale length is a deterministic function of altitude and the standard deviation is a random variable which changes for each encounter of
the aircraft with a turbulent region of air. Within each turbulent region σ is assumed constant. Both L and σ may take on different values for each of the three gust components.
3) Each of the three gust components is a gaussian process.

The assumptions of the gaussian model make it possible to calculate the statistics of any vehicle response for each region of turbulence as functions of the parameters L and σ of that region. The statistical quantities of most frequent interest are:

1) Power spectral density -- a description of the magnitude of the Fourier components present in the response.
2) Probability distribution -- a description of the probability that a given response magnitude is exceeded.
3) Level crossing frequency -- the expected number of times per unit distance of flight that a given level or response magnitude is exceeded.

Specific methods by which these quantities can be calculated will be discussed in a later part of this report; for the present it will merely be noted that the assumptions of vehicle linearity and the gaussian nature of turbulence permit their evaluation with a minimum of difficulty. These results will, as noted above, be dependent upon the assumed values of L and σ along with the characteristics of the vehicle dynamics. Another way to express this dependence is to say that the response statistics are "conditioned" on these parameters, Note that under the assumptions of the model only one of these parameters, σ, is random.

The response statistics which are to be expected over the lifetime of the vehicle for a given flight condition (i.e., fixed altitude and
vehicle dynamics) can be computed by means of the gaussian power spectral model if the distribution of the random variable σ is known. Distributions of σ have been estimated based on extensive measurements of atmospheric turbulence. However, these distributions are not usually known for all altitudes of interest. Also, data presented in reference 11 shows that the scale length of turbulence is actually a random variable even at a fixed altitude; and the importance of neglecting this effect is not known. Furthermore, as will be discussed in later sections of this report, there is much evidence that atmospheric turbulence is not a gaussian process. As a result, the gaussian power spectral model is not entirely suitable for calculating lifetime statistics in a purely formal probabilistic manner. The procedures used for this purpose typically combine many of the ideas of the gaussian power spectral model with the response statistics of existing aircraft in a method not unlike that used with the discrete model (e.g., Ref. 12).

The power spectral model is used primarily to evaluate response statistics for selected flight conditions in continuous turbulence. For this application both the scale length and standard deviation of the turbulence as well as the vehicle characteristics are fixed at values representative of flight conditions which could reasonably be expected to occur in service. Thus the aircraft is imagined to be flying through an infinitely large region of stationary, homogeneous turbulence. The response statistics calculated for this case are then examined to determine whether or not the design is satisfactory. This approach is especially useful for control, handling, and ride qualities studies; and is the type of application for which the turbulence model developed in this report is intended.

For this restricted usage, sufficient data are available to develop a much more realistic model, and the three assumptions made above bear reconsideration. The first assumption stated that atmospheric turbulence could be represented by three independent, stationary stochastic processes. Physically, this is equivalent to requiring that: 1) the turbulence is stationary and homogeneous; and 2) the dimensions of the vehicle are much smaller than the scale lengths of the three gust components. These two conditions are, of course, not always satisfied and much research has been devoted to relaxing them. References 13 through 16, for example, describe how the power spectral model can be extended to account for such effects as the spatial distribution of the gust velocity field over the surface of the aircraft, correlation of the gust components, and the nonstationarity of the turbulence. Generalizations of this type will not be considered in this report because of the increased complication they would introduce. The reader should, however, be aware that such improvements are possible. For the simplified model described in this report the first assumption of the gaussian power spectral model will be considered valid.

The second assumption of the power spectral model concerned the specification of a family of power spectral densities for each gust component which depended upon only two parameters, L and σ. This assumption has been investigated at low altitude (Ref. 11) and found to be valid if both L and σ could be chosen freely for each sample. Representative values of the scale lengths to be used in the model can be expressed as a deterministic function of altitude by simply selecting the mean L measured at each altitude. The power spectral shapes usually assumed are those
proposed by von Karman (Ref. 17) or Dyrden (Ref, 18). Thus at low altitudes it is possible to satisfy the second assumption,

At high altitudes the validity of this assumption is not so certain, the problem being made more difficult by a lack of data. Those results available (e.g., Refs. 19, 20) show that spectra often behave like $\Omega^{-5 / 3}$ over the full range of wavelengths measured, (Ω denotes spatial frequency in radians per meter.) This would indicate that scale lengths are either very long or nonexistant at these altitudes. In practice this difficulty might be overcome while retaining the validity of the second assumption by using the von Karman or Dryden spectra and merely choosing a value of L longer than the longest wavelength to which the vehicle in question will respond. The standard deviation could be selected so that the power spectral density is properly scaled in the range of wavelengths to which the vehicle does respond.

The second assumption of the power spectral model is thus valid at low altitudes, but becomes more questionable as altitude increases. The lack of a scale length at high altitudes may perhaps be overcome by choosing a very long scale length as described above, or the treatment of high altitude turbulence as a self-similar process in the manner to be described below may be another solution.

The third assumption of the power spectral model, that turbulence is a gaussian process, is known to be incorrect (Refs. 21, 22). Since this fact is of central interest in this report, it will be discussed in some detail.

The non-gaussian nature of atmospheric turbulence makes itself apparent in two ways which are of importance to aircraft design. Compared to a gaussian process, turbulence is characterized by:

1) an increased number of high velocity gusts
2) an increased number of large gust velocity increments.

These two effects will be discussed separately even though they are obviously somewhat related.

High gust velocities are of importance to aircraft because it is this type of disturbance which tends to produce significant rigid body motions of the vehicle. These large gusts displace the vehicle from its equilibrium flight path, disconcerting the passengers and requiring the pilot to take corrective control action. As mentioned above, experimental data indicates that the gaussian turbulence model significantly underestimates the frequency of occurrence of these high gust velocities.

Reference 23 reports the examination of a large number of turbulence samples, each recorded at low altitude over a flight path distance of approximately 37 kilometers. The average number of velocity peaks in each sample was found to be 495 , while the magnitude of the highest peak in each sample was consistently found to be greater than five times the standard deviation of the sample. This frequency of occurrence of such high gust velocities is several orders of magnitude greater than predicted by the gaussian assumption. Furthermore, peak gust velocity cumulative probabilities of exceedance observed in atmospheric turbulence (Refs. 11, 24) behave like $\exp (-x)$ rather than $\exp \left(-x^{2}\right)$ as predicted by the gaussian assumption. This again indicates a serious underestimation of high velocity gusts by the gaussian model.

The second non-gaussian characteristic of atmospheric turbulence which is important to aircraft design is the occurrence of a greater number of large gust increments than predicted by the gaussian model. The increment of a process $u(t)$ is defined to be a running difference of the form
$u(t)-(t-\tau)$, where τ is the constant time lag of the increment. Increments of $u(t)$ are necessarily gaussian if u itself is gaussian. Note that' a large increment is not necessarily associated with high values of $u(t)$, only large changes of value. Large velocity increments, especially with short time lags, are of importance in causing loads on the aircraft structure because they contain high frequency components which tend to excite the elastic modes of the vehicle while having a minimal effect on its gross motions. Published evidence (Refs. 22, 25, 26) indicates that the gaussian model underestimates these large increments.

Gaussian Patch Model

The data described above which indicate that atmospheric turbulence is non-gaussian are typically composed of time histories recorded over a flight path distance of more than 30 or 40 kilometers. The apparently non-gaussian characteristics of these data which have been discussed above are sometimes explained within the framework of stationary gaussian processes by introducing a slightly modified form of the gaussian power spectral model known as the "quasi gaussian" or "gaussian patch" model (Ref. 21). The central idea of this model is that long, apparently non-gaussian samples of turbulence can be divided into a number of shorter gaussian segments with different intensities. The assumptions on which this model is based are the same as those of the conventional gaussian model described above, except that now each encounter of the aircraft with a large region of turbulence is imagined to be a number of encounters with smaller, independent patches of stationary, homogeneous turbulence. Though these patches are smaller than the turbulent region
which they make up, they are nevertheless still assumed to be large in the sense that the vehicle response can be assumed stationary within each patch, and transient effects between patches can be neglected. The scale length of the turbulence in all patches is assumed to be the same, but the intensity is allowed to vary randomly from patch to patch. This random intensity is usually restricted to only two discrete values (Ref. 27), although more values can be admitted if required.

Because of the above mentioned assumptions, the order in which the vehicle encounters patches of differing intensities is immaterial, and all nonstationary effects can be neglected insofar as vehicle responses are concerned. Thus the response of an aircraft flying through a large region of turbulence is assumed divisible into a number of shorter, independent time histories, each of which is stationary and gaussian. The intensity of each of these shorter response time histories corresponds to one of the two discrete values of turbulence intensity which are allowed.

Under the assumptions of the gaussian patch model, measurements of the gust velocity and response standard deviations based on time averages over very large turbulent regions are invalid because the assumption of stationarity (and therefore ergodicity) is incorrect for time histories involving more than a single patch. For example, the turbulence intensity estimated by time averaging would be a weighted average of the true intensities which were encountered. Given that the patch model is correct, it is possible to estimate the true patch intensities by a simple curve fitting technique based on measured level crossing frequencies (Ref, 27).

The important result of assuming the gaussian patch model to be correct is that probability distributions and level crossing frequencies
measured in large (30 km or larger) regions of turbulence will not appear gaussian because they will be based on samples from gaussian processes with differing intensities. If the gaussian patch model could be shown to correctly explain the non-gaussian characteristics of atmospheric turbulence it would greatly simplify the aircraft design problem because the conventional gaussian model described previously could still be used to model encounters with single patches of turbulence, and encounters with multiple patches could be described in terms of ensembles of stationary, independent gaussian processes. Thus the gaussian patch model would allow the apparently non-gaussian characteristics of atmospheric turbulence to be modeled without recourse to a non-gaussian turbulence model. Furthermore, responses of vehicles to the model could be expressed as collections of stationary gaussian processes and would therefore not require a nonstationary analysis.

Unfortunately, evidence indicates that the assumptions of the patch model are incorrect. Reference 27, for example, has examined the patch length implied by this model, and concluded that the most intense patches are only two or three kilometers in length. Because these patches are so short, the assumption of stationary vehicle responses becomes very questionable. This problem will be discussed in greater detail in a later section of this report.

It will also be shown later in this report that, if the assumptions of either the gaussian or the gaussian patch models are correct, then the standardized density function of the turbulence increments must be identical to that of the turbulence itself and independent of the time lag (at least for small time lags). However, references 22, 25, and 26 present data obtained at altitudes from sea level to 18,000 meters
(60,000 feet) showing that this is not the case, particularly at low altitudes. Thus it appears that neither the gaussian model nor the gaussian patch model can account for the frequent occurrence of large velocity increments in atmospheric turbulence.

To summarize the above comments, it appears that the first assumption of the gaussian power spectral model, regarding the representation of turbulence as a three component stochastic process, has been heavily researched and many improvements have been made. These possible improvements will not be considered in this report because of the increased complication they would introduce. The second assumption, regarding the use of a family of power spectral densities dependent only on the variables L and σ appears to be valid at low altitudes and can very probably be used at high altitudes for the purposes of modeling flight through turbulence. The third assumption, concerning the representation of atmospheric turbulence as a gaussian process, is not correct; and attempts to remedy the situation by introduction of the gaussian patch model do not appear to be justified.

Thus research on the subject of a non-gaussian turbulence model is a promising area in which to make a significant improvement in aircraft design procedures. The remainder of this report will concentrate on this aspect of turbulence modeling.

Associated Current Research

The only other current work in this area to the author's knowledge is that due to Jones (Refs. 3,28) who is developing a model of turbulence based on the concept of turbulence as a self-similar process in the sense of Mandelbrot (Refs. 29, 30, 31). A process $u(t)$ is self-similar
if it has the property that transformations of the form $h^{k} u(h t)$ (for any value of h and some fixed value of k) do not change its statistical properties.

Two important implications of self-similarity from the standpoint of turbulence modeling are:

1) a self-similar process has an intermittent structure.
2) the power spectral density of a self-similar process must behave like Ω^{-v} for all Ω, where v is related to the constant k of the self-similar transformation.

The first of these is an observed characteristic of atmospheric turbulence (e.g., Ref. 32) and is a very desirable property of a turbulence model. The second characteristic is not true of low altitude turbulence but, as described above, is easier to justify at high altitudes where measurements of power spectra have indicated just such behavior.

In reference 28 , Jones has suggested a discrete model of turbulence which employs both random magnitudes and random lengths of the assumed gust shape. These two variables are related so that the level crossing frequency exhibits a distribution of the form $\exp (-x) \sqrt{x}$, which is reasonably consistant with observed level crossing data. This discrete model is proposed as a means of investigating the well-damped modes of the vehicle response.

Jones also discusses the possibility of a power spectral model of atmospheric turbulence which utilizes the idea of self-similarity. This model is essentially the gaussian patch model discussed above, but the self-similarity assumption is used to derive a relationship between patch length and patch intensity such that the extreme gust velocities of the model exhibit a level crossing frequency of the form $\exp (-x) / \sqrt{x}$.

Again this form is consistent with observed data. Jones proposes the self-similar power spectral model as a means of investigating lightly damped modes of the aircraft response.

The Non-Gaussian Model

The turbulence model proposed in this report, unlike that of Jones, will consider all modes of the aircraft response simultaneously, and will apply to turbulence with finite scale lengths. The principal purpose is to provide a non-gaussian turbulence model for use in representing typical encounters of aircraft with continuous atmospheric turbulence.

The research reported here is an extension of that published in references 33 and 34 , which have described the development and application of a "patchy" non-gaussian turbulence model for use in flight simulators. The contribution of the present report is the further analysis of this model and the development of analytical techniques for applying it to vehicle response studies.

Since the present problem is more difficult than that discussed in references 33 and 34 , the model treated in this report has been simplified to consider only the three gust components acting at the vehicle center of gravity. Reference 34 indicates at least one technique which can be used to expand this model so as to include the effects of gusts distributed over the surface of the vehicle.

The non-gaussian model proposed here differs from the gaussian power spectral model described previously in that it assumes atmospheric turbulence to be modeled by a certain class of stochastic processes which are, in general, non-gaussian. Since this class contains gaussian processes as a subclass, it follows that the proposed model is not
entirely distinct from the gaussian model, but can be viewed as a generalization which includes the gaussian model as a special case. (The name "non-gaussian" applied to this model is perhaps too general since the model is restricted to only a subclass of all non-gaussian processes. However, this name is conveniently short; and within this report there is no danger of confusion.)

The principal assumptions of the non-gaussian model as it is described here are (compare with those of the gaussian model above):

1) Each encounter of an aircraft with continuous atmospheric turbulence can be modeled as a deterministic linear system (the aircraft) perturbed by three independent, statistically stationary stochastic processes. These processes represent the longitudinal, lateral, and vertical gust components at the vehicle center of gravity as it moves through the gust field.
2) The power spectral density of each random process belongs to a family of spectral shapes characterized by two parameters, the gust velocity standard deviation (σ), and the gust scale length (L). The scale length is a deterministic function of altitude and σ is a random variable which changes for each encounter of the aircraft with a turbulent region of air. Within each turbulence region σ is assumed constant. Both L and σ may take on different values for each of the three gust components.
3) Each of the three gust components is a non-gaussian process of the form $u(t)=a(t) b(t)+c(t)$, where a, b, and c are independent, stationary gaussian processes.

The probability structure of the proposed model is implicit in the third assumption.

Outline of Report

The remainder of this work is divided into eight sections and an appendix. The principal topics treated in each section are:

Review of the Gaussian Model. Equations describing the gaussian power spectral model and its applications to vehicle response calculations are reviewed. This section also defines several statistical quantities which are used throughout the remainder of the report.

Validity of the Gaussian Model. This section shows that the assumption of a gaussian process is inconsistant with measured turbulence data.

Formulation of the Non-gaussian Model. The general ideas leading to the non-gaussian model proposed in this report are presented.

Analysis of the Non-gaussian Mode1. The specific form of the turbulence model is developed along with expressions for the power spectral density, probability distribution, and level crossing frequency of the model. The increment distribution of the model is also discussed.

Validity of the Non-Gaussian Model. This section presents probability distributions and level crossing statistics obtained for various low altitude flight conditions, and compares these with statistics predicted by the gaussian and non-gaussian models.

Calculation of Non-Gaussian Response Statistics. Methods for calculating the power spectral density, distribution function, and level crossing frequencies of aircraft responses to the non-gaussian turbulence model are developed.

Numerical Example. An example is presented showing the calculation of power spectral density, distribution function, and level crossing frequencies of the altitude error allowed by a simple autopilot.

Conclusions and Suggestions for Further Research. A brief summary of results is presented along with descriptions of a number of areas in which additional research is needed if the model described here is to become a useful tool for aircraft design.

Appendix A: Computer Programs. Listings and sample cases are presented for a number of computer programs used in working with the nongaussian turbulence model.

Appendix B: Tabulated Functions. Tabulated values of the probability density, probability distribution, and level crossing frequency of the non-gaussian model are presented.

The gaussian model considered in this section is intended to represent large regions of homogeneous and stationary turbulence. The three principal assumptions on which it is based are:

1) Each encounter of the aircraft with continuous atmospheric turbulence can be modeled as a deterministic linear system (the aircraft) perturbed by three independent stationary stochastic process. These processes represent the longitudinal, lateral, and vertical gust components at the vehicle center of gravity as it moves through the gust field.
2) The power spectral density of each random process belongs to a family of spectral shapes characterized by two parameters, the gust velocity standard deviation (σ) and the gust scale length (L). The scale length is a deterministic function of altitude and the standard deviation is a random variable which changes from encounter to encounter.
3) Each of the three gust components is a gaussian process.

Also, the statistical quantities of major interest to aircraft design are:

1) power spectral density
2) probability distribution
3) level crossing frequency.

The purpose of this section is to familiarize the reader with the definitions and notation of this report as well as to acquaint him with the turbulence model which is now in wide use. The following discussion will show how the statistical quantities listed above may be calculated first
for the gaussian model itself and then for the response of a linear system to the model. In addition, a result concerning the distribution of gust velocity increments and a simply physical interpretation of the model will be presented.

Power Spectral Density of the Turbulence Model
Two forms of power spectral densities are presently in common use, those proposed by von Karman (Ref. 17) and those by Dryden (Ref. 18). These spectra are compared in figure 1 below. The von Karman spectra (Eqs. 1, 2, and 3) are known to provide a more accurate representation of measured turbulence spectra because they properly model the $\Omega^{-5 / 3}$ behavior observed at high frequencies (Refs, 11, 35). However, the fractional exponents present mathematical difficulties which are avoided by use of the Dryden spectra (Eqs. 4, 5, and 6). The Dryden spectra will be assumed in this report.

Figure 1.--Comparison of von Karman and Dryden power spectral densities. The Dryden spectra are assumed in this report.

$$
\begin{gather*}
\Phi_{u u}(\Omega)=\frac{L_{u} \sigma_{u}{ }^{2}}{\pi} \frac{1}{\left[1+\left(1.339 L_{u} \Omega\right)^{2}\right]^{5 / 6}} \tag{1}\\
\Phi_{v v}(\Omega)=\frac{L_{v} \sigma_{v}{ }^{2}}{2 \pi} \frac{\left[1+\frac{8}{3}\left(1.339 L_{v} \Omega\right)^{2}\right]}{\left[1+\left(1.339 L_{v} \Omega\right)^{2}\right]^{11 / 6}} \tag{2}\\
\Phi_{u v}(\Omega)=\frac{L_{w} \sigma_{w}{ }^{2}}{2 \pi} \frac{\left[1+\frac{8}{3}\left(1.339 L_{w} \Omega\right)^{2}\right]}{\left[1+\left(1.339 L_{w} \Omega\right)^{2}\right]^{11 / 6}} \tag{3}\\
\Phi_{u u}(\Omega)=\frac{L_{u} \sigma_{u}{ }^{2}}{\pi} \frac{1}{\left[1+\left(L_{u} \Omega\right)^{2}\right]} \tag{4}\\
\Phi_{v v}(\Omega)=\frac{L_{v} \sigma_{v}{ }^{2}}{2 \pi} \frac{\left[1+3\left(L_{v} \Omega\right)^{2}\right]}{\left[1+\left(L_{v} \Omega\right)^{2}\right]^{2}} \tag{5}\\
\Phi_{u v}(\Omega)=\frac{L_{w} \sigma_{w}{ }^{2}}{2 \pi} \frac{\left[1+3\left(L_{w} \Omega\right)^{2}\right]}{\left[1+\left(L_{w} \Omega\right)^{2}\right]^{2}} \tag{6}
\end{gather*}
$$

The reader should be aware that these are "two sided" spectra defined for both positive and negative values of Ω. The standard deviation of each gust component is given by an expression of the form

$$
\begin{equation*}
\sigma^{2}=\int_{-\infty}^{\infty} \Phi(\Omega) d \Omega \tag{7}
\end{equation*}
$$

Probability Distribution of the Gust Velocity
The model discussed here is gaussian by definition, thus each component has a conditional probability density function of the form

$$
\begin{equation*}
p(x \mid \sigma)=\frac{1}{\sigma(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right] \tag{8}
\end{equation*}
$$

The notation $(\cdot \mid \sigma)$ is used here to indicate the dependence or "conditioning". of the density function upon σ. In general, the σ in equation 8 corresponds to the σ^{\prime} s appearing in equations 4 through 6 above, and is different for each gust component. Figure 2-a below shows a graph of this density function for positive valaes of x.

An equivalent description of the gust velocity probability distribution is given by the distribution function. The distribution function is related to the density function by integration.

$$
\begin{equation*}
P(x \mid \sigma)=\int_{-\infty}^{x} p(y \mid \sigma) d y \tag{9}
\end{equation*}
$$

Figure 2-b shows the gaussian distribution function plotted on a probability scale. Note that it is a straight line on this scale.

Figure 2.--Probability density and distribution functions of the gaussian turbulence model.

It will be of interest later to determine the distribution which would be obtained by combining data from a number of samples of the gaussian turbulence mode1. Note that the density function, equation 8, depends only on the standard deviation of the gust velocity. Thus, if the probability distribution of σ is known, the average or unconditional density function of the gust velocity can be found by integration

$$
\begin{equation*}
p(x)=\int_{0}^{\infty} p(x \mid y) p_{\sigma}(y) d y \tag{10}
\end{equation*}
$$

It should be noted that $p(x)$ is not a gaussian density.
In order to conform to conventional usage, the gust velocity distribution function for a number of data samples will be expressed as a complementary distribution of the absolute value of the gust velocity

$$
\begin{equation*}
P^{c}(x)=1-\int_{-x}^{x} p(y) d y \tag{11}
\end{equation*}
$$

$P^{f}(x)$ is the probability that the absolute value of the gust velocity is greater than x, and will be referred to as the cumulative gust velocity distribution in this report. The reader should be aware that P^{c} decreases monotonically even though the term "cumulative" is used to describe it.

Level Crossing Frequency of the Gust Velocity
The level crossing frequency of a gaussian process is given by the well known result due to Rice (Ref. 36). Rice's equation (divided by 20 to give the expected number of crossings with positive slope per unit distance of flight) applied to the longitudinal gust component gives the following expression for the conditional level crossing frequency.

$$
\begin{equation*}
N_{u}\left(x \mid \sigma_{u}, \sigma_{\dot{u}}, U\right)=\frac{\sigma_{\dot{u}}}{2 \pi \sigma_{u} U} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma_{u}}\right)^{2}\right] \tag{12}
\end{equation*}
$$

The quantity $\sigma_{\dot{u}}$ in this equation denotes the standard deviation of the first derivative of the u-gust time history, and U is the mean true airspeed of the aircraft. Similar equations apply to the lateral and vertical components of the model.

A problem arises in the application of equation 12 to the turbulence model described here because $\sigma_{\dot{u}}$ does not exist for a process with the Dryden power spectral density (Eq. 4), nor will the analogous standard deviations exist for the other components of the model. The reason for this is clear when the relationship between $\sigma_{\dot{u}}$ and the power spectral density of u is considered. The theory of continuous stochastic processes (Ref. 37) requires that

$$
\begin{equation*}
\sigma_{u}{ }^{2}=U^{2} \int_{0}^{\infty} \Omega^{2} \Phi_{u u}(\Omega) d \Omega \tag{13}
\end{equation*}
$$

But the u-gust spectrum (and for that matter the lateral and vertical gust spectra) behaves like Ω^{-2} for large values of Ω. Therefore, the integral in equation 13 does not converge and $\sigma_{\dot{u}}$ does not exist. This result stems from the fact that the model has not accounted for viscous dissipation, which causes the true power spectrum of turbulence to decay more rapidly for wavelengths shorter than about one centimeter. These extremely short wavelengths are of no importance when vehicle responses are being calculated, and are justifiably neglected when the model is used for this purpose. However, in the next section of this report it
will be of interest to compare the level crossings of the model to those measured experimentally, and it is important to show that a level crossing frequency can be defined for the model without altering its characteristics as far as response calculations are concerned.

In practice this problem is sometimes overcome by truncating the power spectral densities at some convenient frequency. Another method is the addition of high frequency poles to the spectral forms as shown in equation 14 for the u-gust spectrum.

$$
\begin{equation*}
\Phi_{u u}(\Omega)=\frac{\sigma_{u}{ }^{2}}{\pi} \frac{\left(L_{u}+\gamma_{u}\right)}{\left[1+\left(L_{u} \Omega\right)^{2}\right]\left[1+\left(\gamma_{u} \Omega\right)^{2}\right]} \tag{14}
\end{equation*}
$$

These poles can be physically interpreted as representing the effects of viscous dissipation, and γ_{u} can be thought of as representing the wavelength at which this dissipation becomes important. As will be seen shortly, however, the precise value chosen for γ_{u} will not be important for the purposes of this report.

Using equation 14 for $\Phi_{u u}$ allows one to compute the standard deviations required in Rice's equation. In particular,

$$
\begin{equation*}
\sigma_{\dot{u}}=U \sigma_{u}\left(\gamma_{u} L_{U}\right)^{-1 / 2} \tag{15}
\end{equation*}
$$

Substitution of this result into equation 12 gives the following result for N_{u}.

$$
\begin{equation*}
N_{u}\left(x \mid \sigma_{u}, L_{u}, \gamma_{u}\right)=\frac{1}{2 \pi\left(\gamma_{u} L_{u}\right)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma_{u}}\right)^{2}\right] \tag{16}
\end{equation*}
$$

Note that the zero crossing frequency is given by

$$
\begin{equation*}
N_{u}\left(0 \mid \sigma_{u}, L_{u}, \gamma_{u}\right)=(2 \pi)^{-1}\left(\gamma_{u} L_{u}\right)^{-1 / 2} \tag{17}
\end{equation*}
$$

Thus the value of γ_{u} may be thought of as determining the zero crossing frequency of the u-gust component, and could be chosen so as to match equation 17 to some measured value.

The addition of high frequency poles to the vertical and lateral gust spectra in a manner similar to that of equation 14 will result in level crossing frequencies which differ from equation 16 by only a constant of proportionality.

$$
\begin{equation*}
N_{v}(x \mid \sigma, L, \gamma)=N_{w}(x \mid \sigma, L, \gamma)=(3 / 2)^{1 / 2} N_{u}(x \mid \sigma, L, \gamma) \tag{18}
\end{equation*}
$$

Figure 3 shows a typical graph of level crossing frequencies for the gaussian model.

Figure 3.--Normalized level crossing frequency of the gaussian turbulence model.

It will be of interest later in this report to compute the level crossing frequencies which would be obtained by combining data from a large number of turbulence encounters. These theoretical results can
then be compared with experimentally measured data to determine the validity of the gaussian model. In past analyses of this type (e.g., Ref, 23) it is common to assume that the zero crossing frequency is constant for all data samples. That is,

$$
\begin{equation*}
N_{u}(0)=N_{u}\left(0 \mid \sigma_{u}, L_{u}, \gamma_{u}\right) \tag{19}
\end{equation*}
$$

for all values of σ_{u}, L_{u}, and γ_{u}. Thus the level crossing frequency for a large number of data samples is

$$
\begin{equation*}
N_{u}(x)=N_{u}(0) \int_{0}^{\infty} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right] p_{\sigma_{u}}(\sigma) d \sigma \tag{20}
\end{equation*}
$$

These level crossing curves are typically normalized with respect to $N_{u}(0)$ in order to obtain what is termed the normalized level crossing frequency or, perhaps more commonly, the cumulative probability of exceedance.

$$
\begin{equation*}
\frac{N_{u}(x)}{N_{u}(0)}=\int_{0}^{\infty} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right] p_{\sigma_{u}}(\sigma) d \sigma \tag{21}
\end{equation*}
$$

Note that this result depends only upon the density function of σ_{u}. Equation 21 was obtained from equation 16 by assuming that $N_{u}(0 \mid \cdot, \cdot, \cdot)$ was a constant for all data samples. However, it is readily verified (and will be proved later in this report, Eq. 111, 112) that precisely the same conclusion will be reached if it is only required that σ_{u} be a random variable independent of both L_{u} and σ_{u}. In this event σ_{u} acts only as a scale factor of the process and can have no influence on the frequency with which it changes sign. Thus $N_{u}(0 \mid \cdot, \cdot, \cdot)$ need not be a constant, but only a random variable independent of σ_{u}.

Expressions completely analogous to equation 21 can be obtained for the vertical and lateral gust components. Note that these results depend only upon the standard deviation of the gusts. In particular, the value of γ has no effect on the normalized level crossing frequency.

Distribution of Velocity Increments

Consider now the velocity increments of the gaussian turbulence model. Since identical results will be obtained for all three components, only the longitudinal gusts will be considered here. Define the u-gust increment to be

$$
\begin{equation*}
\Delta_{u}(t)=u(t)-u(t-\tau) \tag{22}
\end{equation*}
$$

Since Δ_{u} is a linear transformation of a gaussian process, it must be gaussian. The mean and variance are readily calculated from equation 22.

$$
\begin{gather*}
E\left\{\Delta_{u}\right\}=0 \tag{23}\\
E\left\{\Delta_{u}{ }^{2}\right\}=\sigma_{\Delta}^{2}=2\left[\sigma_{u}{ }^{2}-c_{u u}(\tau)\right] \tag{24}
\end{gather*}
$$

where $C_{u u}$ is the autocorrelation function of u. Thus the probability density of Δ_{u} is given by

$$
\begin{equation*}
p_{\Delta}\left(x \mid \sigma_{\Delta}\right)=\frac{1}{\sigma_{\Delta}(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma_{\Delta}}\right)^{2}\right] \tag{25}
\end{equation*}
$$

and the average density of Δ_{u} computed from a number of samples of the gaussian model with differing intensities would be

$$
\begin{equation*}
p_{\Delta}(x)=\int_{0}^{\infty} \frac{1}{\sigma_{\Delta}(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right] p_{\sigma_{\Delta}}(\sigma) d \sigma \tag{26}
\end{equation*}
$$

A relationship will now be derived relating the average density of Δ_{u} to the average density of u itself. First write σ_{Δ} in the form

$$
\begin{equation*}
\sigma_{\Delta}=\cdot \sigma_{u} \alpha(\tau) \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{2}(\tau)=2\left[1-\frac{c_{u u}(\tau)}{\sigma_{u}{ }^{2}}\right] \tag{28}
\end{equation*}
$$

Then the probability density of σ_{Δ} is related to the density of σ_{u} by

$$
\begin{equation*}
p_{\sigma_{\Delta}}(\sigma)=\frac{1}{\alpha(\tau)} p_{\sigma_{u}}\left[\frac{\sigma}{\alpha(\tau)}\right] \tag{29}
\end{equation*}
$$

Introduce the change of variable $\sigma^{\rho}=\sigma / \alpha(\tau)$, substitute equations 27 and 29 into equation 26 , and compare the resulting expression with equation 10 to obtain

$$
\begin{equation*}
p_{\Delta}(x)=\frac{1}{\alpha(\tau)} p_{u}\left[\frac{x}{\alpha(\tau)}\right] \tag{30}
\end{equation*}
$$

Now define the standardized density function to be

$$
\begin{equation*}
\hat{p}(x)=\sigma p(\sigma x) \tag{31}
\end{equation*}
$$

and note that the average standard deviation of Δ_{u} is related to the average standard deviation of σ_{u} by

$$
\begin{equation*}
E\left\{\sigma_{\Delta}\right\}=\alpha(\tau) E\left\{\sigma_{u}\right\} \tag{32}
\end{equation*}
$$

It then follows from equations 30,31 , and 32 that

$$
\begin{equation*}
\hat{p}_{\Delta}(x)=\hat{p}_{u}(x) . \tag{33}
\end{equation*}
$$

Equation 33 implies that the standardized density function of Δ_{u} is identical to that of u itself, and this result is independent of both the time lag τ and the distribution of σ_{u}.

Power Spectral Density of Vehicle Response

The power spectral density of some response $r(t)$ of a stable linear vehicle to a single component of the gaussian turbulence model is given by the well known relationship (Ref. 38) written here for the longitudinal gust component in terms of the spatial frequency Ω.

$$
\begin{equation*}
\Phi_{r p}(\Omega)=|H(i U \Omega)|^{2} \Phi_{u u}(\Omega) \tag{34}
\end{equation*}
$$

where $H(s)$ is the transfer function relation the response $r(t)$ to the input $u(t)$. Similar expressions hold for the other components of the turbulence model.

Probability Distribution of Vehicle Response

A linear response to a gaussian input is necessarily gaussian, thus the density function of any vehicle response $r(t)$ is given by

$$
\begin{equation*}
p_{r}(x)=\frac{1}{\sigma_{r}(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma_{p}}\right)^{2}\right] \tag{35}
\end{equation*}
$$

where σ_{r} is obtained from the power spectral density, equation 34 , in a manner similar to equation 7 . The distribution function of the response is given by an expression analogous to equation 9.

Level Crossing Frequency of the Vehicie Response

Since the vehicle response is necessarily gaussian, the level crossing frequency must be given by equation 12. In the case of a stable aircraft, the parameter γ introduced in the above discussion of the gust velocity level crossings need not be used because the vehicle will act as a low pass filter and the derivative of the response will always exist. The level crossing frequency of a vehicle response $r(t)$ to the u-gust component of the turbulence model is thus given by

$$
\begin{equation*}
N_{r}\left(x \mid \sigma_{r}, \sigma_{\dot{r}}\right)=\frac{\sigma_{\dot{r}}}{2 \pi \sigma_{r}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma_{r}}\right)^{2}\right], \tag{36}
\end{equation*}
$$

here σ_{r} and σ_{p} are determined from the power spectral density of the response (Eq. 34) by means of equations 7 and 13 respectively. Entirely analogous relationships hold for the lateral and vertical components of the model.

Physical Interpretation of the Gaussian Model

Each component of the gaussian turbulence model can be interpreted as wide band gaussian white noise passed through a linear filter as shown in figure 4.

Figure 4.--Physical interpretation of a single component of the gaussian turbulence model and the response of a vehicle to this model.

The white noise source is assumed to generate gaussian noise with a power spectral density of unity over the range of frequencies passed by the shaping filter and the vehicle transfer function. That is,

$$
\begin{equation*}
\Phi_{n n}(\Omega)=1.0 \tag{37}
\end{equation*}
$$

The shaping filter transfer function is determined by means of equation 34 and the required turbulence power spectral densities discussed at the beginning of this section (Eqs. 4, 5, or 6).

The gaussian turbulence model described in the previous section will now be compared with some experimentally measured gust statistics. It will be shown that neither the gaussian nor the gaussian patch turbulence model is able to reproduce these statistics.

Specific results to be presented are:

1) comparison of the gaussian probability distribution with gust velocity distributions estimated from single time histories of atmospheric turbulence
2) comparison of gust velocity distributions predicted by the gaussian model with distributions estimated from a large number of independent time histories
3) comparison of cumulative probability of exceedance distributions predicted by the gaussian model with distributions estimated from a large number of independent data samples
4) discussion of patch sizes implied by the gaussian patch model
5) comparison of measured velocity increment probability distributions with distributions predicted by the gaussian patch model.

Gust Velocity Distributions Estimated from Single Samples
Figure 5, originally published by Dutton (Ref. 21), presents estimated gust velocity distributions from two independent sources. In each case the gaussian distribution is indicated by a solid line. The curves

Figure 5.--Comparison of the gaussian turbulence model with gust velocity distributions estimated from single turbulence time histories.
on the left show three samples of the vertical gust component measured by G. K. Mather of the Canadian National Aeronautical Establishment (Ref. 39). These data were obtained at an altitude of approximately 9,000 meters (30,000 feet) over the Sierra Nevada mountains. The graphs on the right of figure 5 are from a single sample of severe turbulence encountered at an altitude of 18,000 meters $(60,000$ feet) during Project HI-CAT (Ref. 40, run number 264-16) sponsored by the United States Air Force. The numbers 1, 2, and 3 denote the vertical, lateral, and longitudinal gust components
respectively. The data of figure 5 clearly depart from the gaussian distribution at both small and large gust velocities,

It must be pointed out that these results alone do not disprove the hypothesis that atmospheric turbulence can be modeled as a locally gaussian process. Another possible explanation of the behavior illustrated in the figure is that the time histories from which the data were derived contained patches with differing intensities. This interpretation would agree with the gaussian patch model discussed in the introduction of this report. Further remarks regarding this model will be found in the fourth and fifth parts of this section.

Gust Velocity Distributions Estimated from Many Samples

Figure 6 presents two vertical gust velocity cumulative distributions obtained during the United States Air Force sponsored Project LO-LOCAT (Ref. 11). The data on the left were obtained during 5,000

Figure 6.--Experimentally measured cumulative gust velocity distributions of atmospheric turbulence compared with those of the gaussian model.
kilometers (3,122 miles) of flight over high mountains at an average altitude of 230 meters (750 feet) above the surface in a neutrally stable atmosphere (data category 123000). The data on the right were collected during 2,000 kilometers (1,248 miles) of flight over plains at an altitude of 230 meters (750 feet) in neutrally stable conditions (data category 423000). In both cases the distribution predicted by the gaussian model has been calculated using equation 11 and the measured probability distributions of the standard deviations for each data category presented in reference 11. Note that in both cases the cumulative distribution estimated using the assumption of a gaussian process underestimates the occurrence of high gust velocities by substantial factors. Again, it should be pointed out that the apparently non-gaussian behavior of the data shown in figure 6 could be explained by the gaussian patch model.

Level Crossing Frequencies Estimated from Many Samples
Figure 7 presents two cumulative probability of exceedance distributions obtained during the LO-LOCAT project (Ref. 11). These data were

Figure 7.--Experimentally measured cumulative probability of exceedance distributions of atmospheric turbulence compared with those of the gaussian model.
derived from the same time histories which produced the data of figure 6, and a more detailed discussion of the test conditions will be found in the text describing that figure. The data on the left are from data category 123000 and those on the right are from category 423000. The distribution based on the gaussian model was derived using equation 21 and the distributions of gust velocity standard deviation presented in reference 11. Again the results based on the stationary gaussian turbulence model significantly underestimate the occurrences of high gust velocities.

Patch Sizes Implied by the Gaussian Patch Model

Figures 5, 6, and 7 have shown typical experimental observations which indicate that the stationary gaussian model underestimates the occurrences of high gust velocities. This apparently non-gaussian behavior can still be explained in terms of stationary gaussian processes by means of the gaussian patch model which was described in the introduction of this report.

If this model is a valid representation of atmospheric turbulence, the stationary gaussian model will provide a good representation of each turbulent patch and therefore will be a good model for aircraft design work. There is, however, evidence which indicates that the gaussian patch model is not valid.

A study of the patch size implied by the gaussian patch model carried out by Gould and MacPherson (Ref. 27) found that the more intense (and therefore the more important) patches are so small as to require a nonstationary analysis for vehicle response calculations. Figure 8 shows the relationship between patch size and intensity taken from reference 27. Intensity is measured in terms of vertical acceleration rms $g^{\prime} s$ of
the test aircraft. Note that patch size decreases rapidly with increasing intensity, and that the most intense patches are only two to three kilometers in length. An aircraft cruising at $200 \mathrm{~m} / \mathrm{sec}$ true airspeed would pass through one of these patches in only 10 to 15 seconds. This interval is easily of the same order of magnitude as the significant response time constants of most vehicles, and encounters with such short disturbances would necessarily require a nonstationary analysis. It is also quite possible that the state of the vehicle at the time of initial entry into such short patches may have a significant effect on the response statistics, a result which would greatly complicate the analysis because the independence of patches could no longer be assumed.

Figure 8.--Patch sizes implied by the gaussian patch model of atmospheric turbulence.

Thus, even though the gaussian patch model can explain the results shown in figures 5, 6, and 7, figure 8 indicates that the assumption of large patch sizes required to justify a stationary analysis of vehicle
responses is not valid. In addition to these results, the distribution of gust velocity increments provides further evidence that the gaussian patch model is invalid.

Distribution of Gust Velocity Increments

Figure 9, taken from reference 24 , shows comparisons of gust velocity probability densities with corresponding velocity increment density functions. The solid line in each graph is the gaussian distribution and the dashed lines indicate the limits of the original data which can be found in reference 24. Each graph is based on several time histories which were chosen for their stationary character. In all cases the density functions have been standardized as defined in equation 31. The data on the left of the figure were obtained during the HI-CAT program (Ref. 40). The center graphs show data collected during flight through severe storm turbulence (Ref. 41). The data on the right were obtained at low altitude during the Barbados Oceanographic and Meteorological Experiment (Ref. 42). In

Figure 9.--Comparison of experimentally measured gust velocity distributions (top) with corresponding gust velocity increment distributions (bottom).
each case it is readily apparent that the increment distribution is not only non-gaussian but also quite different from the corresponding velocity distribution.

In the preceding section of this report (Eq. 33) it was shown that, if turbulence could be described as a collection of stationary gaussian patches, the standardized densities of the gust velocity and its increments were necessarily identical. Figure 9 clearly shows that this is not the case. Therefore, representation of atmospheric turbulence as a gaussian process is incorrect. Additional data presented in references 22 and 25 confirm this conclusion and also indicate that the gaussian model underestimates the occurrence of large gust increments.

Summary

This section has presented comparisons of the gaussian model with experimentally measured turbulence data from several independent sources. Examples of the gust velocity distributions and level crossing frequencies have indicated that the stationary gaussian model underestimates the occurrences of high gust velocities. The gaussian patch model, which could explain this behavior in terms of stationary gaussian processes, is not well suited to vehicle response calculations because it requires a nonstationary analysis of the most intense turbulence patches. It has also been shown that the distribution of velocity increments measured in turbulence is different from the distribution of velocity itself, a characteristic of turbulence which cannot be explained by the gaussian patch model. This last result constitutes a proof that neither the stationary gaussian nor the gaussian patch model is actually representative of the true structure of turbulence.

The preceding section has indicated that the gaussian turbulence model is not well suited for vehicle design work because it underestimates the occurrences of both high gust velocities and large gust increments. It is the purpose of this section to propose a non-gaussian turbulence model, and discuss the general line of reasoning leading to its formulation. Only a brief description will be presented here since a detailed analysis will be given in the following section.

The K_{0} Model

The ideas which led to the turbulence model proposed here originated with the work of reference 33 . The purpose of that report was to develop a "patchy" model of atmospheric turbulence for use with flight simulators. It is known that the gaussian model, generated by the system of figure 4, does not produce a realistic simulation of flight through turbulent air. Pilots complain of a lack of patchiness in the simulated turbulence (Ref. 43, 44). These patches are not associated with long term nonstationary changes of intensity in the sense of the gaussian patch model described previously, but are short bursts of activity which are sometimes only a few seconds in length.

No quantitative description of this type of patchiness has been given, but a qualitative measure can be obtained by observing the derivative of a turbulence time history. The top portion of figure 10 shows a comparison of derivatives from a sample of actual atmospheric turbulence and from the gaussian model. The gaussian time history was generated as shown in figure 4 and its power spectral density was chosen to match that of the actual turbulence as closely as possible. Observe that the
derivative of the true turbulence contains distinct bursts of activity which are totally lacking in the gaussian time history.
gaussian mode 1
true turbulence

$$
\begin{gathered}
\text { non-gaussian } \\
\text { model }(R=1.0)
\end{gathered}
$$

K_{0} model

Figure 10.--The derivative of an atmospheric turbulence sample compared with derivative samples from several turbulence models. Sample length for these data is approximately 11 kilometers.

Reference 33 has suggested a product of independent gaussian processes as shown in figure 11 as a model of patchy turbulence. One of the two processes, say $a(t)$, can be imagined to represent a continuous gaussian time history without patches while $b(t)$ represents a modulating or "patch inducing" function. Reference 33 shows that the filter transfer functions

Figure 11.--Product of independent gaussian processes which has been suggested as a model of patchy turbulence.
H_{a} and H_{b} can be chosen so that the simulated turbulence time history has the Dryden spectral forms (Eq. 4, 5, or 6). The probability density of the simulated turbulence is proportional to a modified Bessel function of the second type and order zero, K_{0}. For this reason the turbulence model represented by figure 11 is called the K_{0} model. Figure 12 presents the probability density and distribution of this model along with those of the gaussian model.

Figure 12.--Probability density and distribution functions of the K_{0} turbulence model compared with those of the gaussian model.

A comparison of figure 12 with figure 5 on page 36 shows that the K_{0} distribution departs from the gaussian distribution in a manner similar to that of actual turbulence. That is, the K_{0} model is characterized by more small and large gusts than the gaussian model. However, it appears to be more severely non-gaussian than indicated by the experimental data.

The patchy characteristics of the K_{0} model are shown at the bottom of figure 10. Note that they are much more severe than indicated by the true turbulence time history.

The Non-Gaussian Model

The fact that the K_{0} and gaussian models seem to "bracket" the characteristics of atmospheric turbulence led, in reference 34 , to the joining of these two models as shown in figure 13. For want of a better name this combination is called simply the non-gaussian turbulence model. It will be shown in the next section of this report that it is possible to choose the transfer functions H_{a}, H_{b}, and H_{c} of figure 13 so that the time histories $c(t)$ and $d(t)$ have identical power spectral densities of the Dryden form. When this choice is made the simulated turbulence will also have the Dryden spectral density, Furthermore, this result will be independent of the parameter R which appears in figure 13. Thus R does not affect the power spectral density of the non-gaussian model, it does however influence its probability distribution.

To see the reason for this, suppose that the value of R is set to zero. Then the simulated turbulence will consist entirely of the gaussian time history, $c(t)$. As R is allowed to increase, more and more of the K_{0} time history will be used. Finally, in the limit as the value of R
approaches infinity, the simulated turbulence will consist entirely of the K_{0} process. Thus the parameter R is a control on the probability distribution and a continuum of distributions between gaussian and K_{0} is available. Figure 14 shows the range of probability functions which can be obtained.

Figure 14.--Typical probability distributions attainable using the non-gaussian turbulence model.

As an indication of the patchy characteristics attainable using the non-gaussian model, figure 10 includes a sample of the derivative for the case R equal to unity. Note that it matches the characteristics of the true turbulence sample quite well.

Figure 13 is a physical interpretation of the non-gaussian model, and shows how it can be generated for numerical studies. The principal assumptions on which the model is based are the same as those of the gaussian model, except of course for the probability distribution. These assumptions are:

1) Each encounter of an aircraft with atmospheric turbulence can be modeled as a deterministic linear system (the aircraft) perturbed by three independent, stationary stochastic
processes. These processes represent the longitudinal, lateral, and vertical gust components at the vehicle center of gravity as it moves through the gust field.
2) The power spectral density of each random process belongs to a family of spectral shapes characterized by two parameters, the gust velocity standard deviation (σ), and the gust scale length (L). The scale length is a deterministic function of altitude and σ is a random variable which changes from encounter to encounter.
3) Each of the three gust components is a non-gaussian process of the form $u(t)=a(t) b(t)+c(t)$, where a, b, and c are independent, stationary gaussian processes.

The validity of the first two assumptions has been discussed in the introduction. The power spectral forms chosen for use in this report are those proposed by Dryden (Eq. 4, 5, 6). The third assumption is, of course, the central idea of the non-gaussian model. Its validity will be investigated in later sections of this report as the properties of the proposed model are compared with those of atmospheric turbulence.

It is the purpose of this section to derive suitable expressions for the transfer functions used in the non-gaussian model, and to analyze the model's statistical properties. Specific results to be obtained for each component of the model are:

1) transfer functions
2) probability distribution
3) level crossing frequency
4) increment distribution.

Figure 13 presents the physical interpretation which can be applied to each of the model's three components. The notation of this figure will be used throughout the following development. The problem of vehicle response calculations will not be considered here, but will be taken up in a later section of this report.

Derivation of Transfer Functions
Recall from the introduction of this report that the turbulence models described here are to have the Dryden power spectral densities (Eq. 4, 5, 6). It will now be shown that it is possible to choose the filter transfer functions H_{a}, H_{b}, and H_{c} of figure 13 so that each component of the non-gaussian model has the appropriate spectral form. The method to be followed is:

1) Fourier transform the Dryden spectra to obtain the corresponding correlation functions
2) derive a general expression relating the correlation function of the non-gaussian model to the filter transfer functions
3) assume specific forms for the transfer functions involving unspecified constants
4) show that the constants can be chosen so that the correlation function of the non-gaussian model has the required Dryden form for each component.

In general, the correlation function is related to the power spectral density through a Fourier transform of the form

$$
\begin{equation*}
C(\tau)=\int_{-\infty}^{\infty} \Phi(\Omega) \exp (i U \Omega \tau) d \Omega . \tag{38}
\end{equation*}
$$

Applying this transformation to the Dryden spectra, equations 4, 5, and 6 gives

$$
\begin{gather*}
C_{u u}(\tau)=\sigma_{u}^{2} \exp \left(-\frac{U}{L_{u}}|\tau|\right) \tag{39}\\
C_{v v}(\tau)=\sigma_{v}^{2}\left(1-\frac{U|\tau|}{2 L_{v}}\right) \exp \left(-\frac{U}{L_{v}}|\tau|\right) \tag{40}\\
c_{w w}(\tau)=\sigma_{w}^{2}\left(1-\frac{U|\tau|}{2 L_{w}}\right) \exp \left(-\frac{U}{L_{w}}|\tau|\right) \tag{41}
\end{gather*}
$$

These equations complete the first step of the transfer function derivation. A general expression for the correlation function of the simulated turbulence time history of figure 13 will now be derived. By definition, this correlation function is

$$
\begin{equation*}
C_{g g}(\tau)=E\{g(t) g(t+\tau)\} \tag{42}
\end{equation*}
$$

From figure $13, g(t)$ is

$$
\begin{equation*}
g(t)=a(t) b(t) R\left(1+R^{2}\right)^{-1 / 2}+c(t)\left(1+R^{2}\right)^{-1 / 2} . \tag{43}
\end{equation*}
$$

Since a, b, and c are independent, zero mean random processes, the correlation function of $g(t)$ can be written as

$$
\begin{equation*}
c_{g g}(\tau)=c_{a \alpha}(\tau) c_{b b}(\tau) R^{2}\left(1+R^{2}\right)^{-1}+c_{c c}(\tau)\left(1+R^{2}\right)^{-1} \tag{44}
\end{equation*}
$$

Now consider $\alpha(t)$ alone. It follows from the general relationship between the input and output power spectral densities of a linear system (Ref. 38) that the spectral density of a has the form

$$
\begin{equation*}
\Phi_{a a}(\Omega)=\left|H_{a}(i U \Omega)\right|^{2} \Phi_{\eta_{a} \eta_{a}}(\Omega) \tag{45}
\end{equation*}
$$

If it is assumed that the power spectral density of the process $n_{a}(t)$ is unity over the range of frequencies for which H_{a} is not essentially zero, then

$$
\begin{equation*}
\Phi_{a \alpha}(\Omega)=\left|H_{a}(i U \Omega)\right|^{2} \tag{46}
\end{equation*}
$$

The correlation function of $\alpha(t)$ can be found by Fourier transforming equation 46 as shown in equation 38.

$$
\begin{equation*}
C_{a a}(\tau)=\int_{-\infty}^{\infty}\left|H_{a}(i U \Omega)\right|^{2} \exp (i U \Omega \tau) d \Omega \tag{47}
\end{equation*}
$$

Similar results apply to $b(t)$ and $c(t)$ of figure 13. This result, along with equation 44 completes the second step of the transfer function derivation.

For the third step of the procedure, suppose that the following general forms are assumed for the transfer functions of the model.

$$
\begin{equation*}
H_{a}(s)=\frac{N_{1}}{1+D_{1} s} \tag{48}
\end{equation*}
$$

$$
\begin{align*}
& H_{b}(s)=\frac{N_{2}+N_{3} s}{\left(1+D_{2} s\right)^{2}} \tag{49}\\
& N_{c}(s)=\frac{N_{4}+N_{5} s}{\left(1+D_{3} s\right)^{2}} \tag{50}
\end{align*}
$$

These particular expressions have been chosen because they will lead to useful results. There is no reason why other general forms could not be chosen which might also give good results. (See the discussion of increment distributions in this section and suggestions for further research in a later section of this report.)

Transforming equations 48 through 50 as shown in equation 47 yields the following correlation functions.

$$
\begin{gather*}
C_{a a}(\tau)=\frac{N_{1}^{2}}{2 D_{1}} \exp \left(-\frac{|\tau|}{D_{1}}\right) \tag{51}\\
C_{b b}(\tau)=\left(\frac{N_{3}}{2 D_{2}}\right)^{2}\left\{|\tau|\left[\left(\frac{N_{2}}{N_{3}}\right)^{2}-\left(\frac{1}{D_{2}}\right)^{2}\right]+\left[\frac{1}{D_{2}}+D_{2}\left(\frac{N_{2}}{N_{3}}\right)^{2}\right]\right\} \exp \left(-\frac{|\tau|}{D_{2}}\right) \tag{52}\\
C_{c c}(\tau)=\left(\frac{N_{5}}{2 D_{3}}\right)^{2}\left\{|\tau|\left[\left(\frac{N_{4}}{N_{5}}\right)^{2}-\left(\frac{1}{D_{3}}\right)^{2}\right]+\left[\frac{1}{D_{3}}+D_{3}\left(\frac{N_{4}}{N_{5}}\right)^{2}\right]\right\} \exp \left(-\frac{|\tau|}{D_{3}}\right) \tag{53}
\end{gather*}
$$

Substitution of these results into equation 44 will give the general form of the correlation function of the non-gaussian model.

If now the following choices are made for the arbitrary constants in equations 51, 52, and 53

$$
\begin{array}{cc}
N_{1}=4 \sigma_{u} \frac{L_{u}}{U} & N_{2}=1.0
\end{array} N_{3}=\frac{2 L_{u}}{U}
$$

the resulting correlation functions of the model become

$$
\begin{equation*}
c_{c c}(\tau)=c_{d d}(\tau)=c_{g g}(\tau)=\sigma_{u}^{2} \exp \left(-\frac{U}{L_{u}}|\tau|\right) \tag{55}
\end{equation*}
$$

which is the form of the u-gust correlation function, equation 39. Note that not only $g(t)$ but also $c(t)$ and $d(t)$ have the u-gust correlation function. The following result, which will be useful later in this section, is obtained directly from equation 55 by setting τ equal to zero.

$$
\begin{equation*}
\sigma_{c}^{2}=\sigma_{d}^{2}=\sigma_{g}^{2}=\sigma_{u}^{2} \tag{56}
\end{equation*}
$$

If the constants of the filter transfer functions are chosen to be

$$
\begin{array}{cc}
N_{1}=\sigma_{v}(128)^{1 / 2}\left(\frac{L_{v}}{U}\right)^{2} \quad N_{2}=0.0 & N_{3}=1.0 \\
N_{4}=\sigma_{v}\left(\frac{L_{v}}{U}\right)^{1 / 2} \quad N_{5}=\sigma_{v}\left(\frac{3 L_{v}^{3}}{U^{3}}\right)^{1 / 2} & D_{1}=\frac{2 L_{v}}{U} \tag{57}\\
D_{2}=\frac{2 L v}{U} & D_{3}=\frac{L_{v}}{U}
\end{array}
$$

the resulting correlation functions are

$$
\begin{equation*}
C_{c c}(\tau)=C_{d d}(\tau)+C_{g g}(\tau)=\sigma_{v}{ }^{2}\left(1-\frac{U|\tau|}{2 L_{v}}\right) \exp \left(-\frac{U}{L_{v}}|\tau|\right) \tag{58}
\end{equation*}
$$

This is the desired form of the lateral gust correlation function, equation 40. Again, the time histories $c(t), d(t)$ and $g(t)$ all have the same correlation function and

$$
\begin{equation*}
\sigma_{c}^{2}=\sigma_{d}^{2}=\sigma_{g}^{2}=\sigma_{v}{ }^{2} \tag{59}
\end{equation*}
$$

Finally, if the constants are chosen to be

$$
\begin{array}{cc}
N_{1}=\sigma_{w}(128)^{1 / 2}\left(\frac{L_{w}}{U}\right)^{2} \quad N_{2}=0.0 & N_{3}=7.0 \\
N_{4}=\sigma_{w}\left(\frac{L_{w}}{U}\right)^{1 / 2} \quad N_{5}=\sigma_{w}\left(\frac{3 L_{w}^{3}}{U^{3}}\right)^{1 / 2} & D_{1}=\frac{2 L_{w}}{U} \tag{60}\\
D_{2}=\frac{2 L_{w}}{U} & D_{3}=\frac{L_{w}}{U}
\end{array}
$$

the correlation functions are

$$
\begin{equation*}
C_{c c}(\tau)=C_{d d}(\tau)=C_{g g}(\tau)=\sigma_{w}{ }^{2}\left(1-\frac{U|\tau|}{2 L_{w}}\right) \exp \left(-\frac{U}{L_{w}}|\tau|\right) . \tag{61}
\end{equation*}
$$

This result is the Dryden form of the vertical gust correlation function. Again note that $c(t), d(t)$ and $g(t)$ have the same correlation function, and therefore

$$
\begin{equation*}
\sigma_{c}^{2}=\sigma_{d}^{2}=\sigma_{g}^{2}=\sigma_{w}{ }^{2} \tag{62}
\end{equation*}
$$

This completes the derivation of transfer functions for the nongaussian model. The results are summarized in table 1.

Table 1.--Transfer functions of the non-gaussian model

$\begin{gathered} H_{a}(s) \\ \frac{4 \sigma_{u} \frac{L_{u}}{U}}{1+\frac{2 L_{u}}{U} s} \end{gathered}$	tudinal Comp $\begin{gathered} H_{b}(s) \\ \frac{1}{1+\frac{2 L}{U} s} \end{gathered}$	$\begin{gathered} {H_{c}(s)}^{\sigma_{u}\left(\frac{2 L}{U}\right)^{1 / 2}} \frac{L}{1+\frac{u}{U} s} \end{gathered}$
$\begin{gathered} H_{a}(s) \\ \frac{\sigma_{u}(128)^{1 / 2}\left(\frac{L_{v}}{U}\right)^{2}}{1+\frac{2 L}{U} s} \end{gathered}$	teral Compon $\begin{gathered} H_{b}(s) \\ \frac{s}{\left[1+\frac{2 L}{U} s\right]^{2}} \end{gathered}$	$\begin{gathered} H_{c}(s) \\ \frac{\sigma_{v}\left(\frac{L_{v}}{U}\right)^{1 / 2}\left[1+\sqrt{3} \frac{L_{v}}{U} s\right]}{\left[1+\frac{L}{U} s\right]^{2}} \end{gathered}$
$\begin{gathered} H_{a}(s) \\ \frac{\sigma_{w}(128)^{1 / 2}\left[\frac{L}{U}\right]^{2}}{1+\frac{2 L}{U} s} \end{gathered}$	rtical Compo $\begin{gathered} H_{b}(s) \\ \frac{s}{\left[1+\frac{2 L}{U} s\right]^{2}} \end{gathered}$	$\begin{gathered} {H_{c}(s)}_{\sigma_{w}\left(\frac{L_{w}}{U}\right]^{1 / 2}\left[1+\sqrt{3} \frac{L_{w}}{U} s\right]}^{\left[1+\frac{L_{w}}{U} s\right]^{2}} \end{gathered}$

Two additional features of the above derivation justify comment. First, the forms of the transfer functions assumed here have been selected so that the correlation functions of the model do not depend upon the parameter R. Thus R will not influence the power spectral density of the model. As was discussed in the preceding section, this is a very convenient result which allows R to act solely as a control on the model's probability distribution. However, it will become apparent presently that the particular choices made here will have undesirable effects in so far as the distribution of increments is concerned. Further comment on this subject will be found in the discussion of increment distributions to be found in this section, and also in the suggestions for further research in a later section of this report.

A second point concerning the above derivation is that the choice of parameters made in equation 54 is somewhat arbitrary. In particular, the quantities D_{1} and D_{2} could be chosen to be any pair of numbers satisfying the relationship

$$
\begin{equation*}
\frac{1}{D_{1}}+\frac{1}{D_{2}}=\frac{U}{L_{u}} \tag{63}
\end{equation*}
$$

This arbitrariness has been used in Reference 45 to define a "patchiness parameter" which can be included as an additional variable of the model. This complication is not considered in the present work, but is mentioned as an indication of the further generality which can be introduced into the non-gaussian model.

Probability Distribution

Attention is now turned to some aspects of the probabilistic structure of the non-gaussian model. The first topic to be discussed will be the model's probability distribution. The following remarks apply equally well to all three components of the proposed model; for the sake of definiteness, however, only the longitudinal gusts will be explicitly discussed.

Consider again the physical interpretation of the non-gaussian model presented in figure 13. The simulated turbulence time history is

$$
\begin{equation*}
g(t)=e(t)+h(t), \tag{64}
\end{equation*}
$$

where

$$
\begin{gather*}
e(t)=a(t) b(t) R\left(1+R^{2}\right)^{-1 / 2} \tag{65}\\
h(t)=c(t)\left(1+R^{2}\right)^{-1 / 2} . \tag{66}
\end{gather*}
$$

The time histories $a(t), b(t)$ and $c(t)$ are independent, zero mean, gaussian random processes. Thus each has a probability density of the form

$$
\begin{equation*}
p(x \mid \sigma)=\frac{1}{\sigma(2 \pi)^{1 / 2}} \exp \left[-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right] \tag{67}
\end{equation*}
$$

The steps to be followed in deriving an expression for the probability distribution of the non-gaussian model are:

1) derive an expression for the probability density of the product $a(t) b(t)$ appearing in equation 65
2) using the density function from step 1 , obtain an expression for the characteristic function of the first term of equation 64
3) find the characteristic function of the second term of equation 64
4) multiply the characteristic functions of steps 2 and 3 to obtain the characteristic function of the non-gaussian model
5) Fourier transform to obtain the density function of the non-gaussian model.

The first step is to find an expression for the probability density of the product $a(t) b(t)$. Since a and b are independent processes, it follows that the probability distribution function of their product is

$$
\begin{equation*}
P_{a b}\left(z \mid \sigma_{a}, \sigma_{b}\right)=\iint_{\xi} p_{a}\left(x \mid \sigma_{a}\right) p_{b}\left(y \mid \sigma_{b}\right) d x d y, \tag{68}
\end{equation*}
$$

where ξ denotes that region of the $x-y$ plane in which the condition $x y \leq z$ is satisfied. The density functions p_{a} and p_{b} are both of the gaussian form presented in equation 67. Substitution of equation 67 into equation 68 followed by differentiation with respect to z and finally integration gives the following result for the density function of $a(t) b(t)$.

$$
\begin{equation*}
p_{a b}\left(z \mid \sigma_{a}, \sigma_{b}\right)=\frac{1}{\pi \sigma_{a} \sigma_{b}} K_{0}\left(\frac{|z|}{\sigma_{a} \sigma_{b}}\right), \tag{69}
\end{equation*}
$$

where K_{0} is the modified Bessel function of the second type and order zero. Equation 69 completes the first step of the derivation.

Now note that $\sigma_{a} \sigma_{b}$ is the standard deviation of the product $a(t) b(t)$ and, according to the notation of figure 13 , this product is equivalent to $d(t)$. Also, equation 56 states that the standard deviation of $d(t)$ is equal to σ_{u} by virtue of the choice of transfer functions of the model.

Thus $\sigma_{a} \sigma_{b}$ is equal to σ_{u}, and equation 69 can be written

$$
\begin{equation*}
p_{a b}\left(z \mid \sigma_{u}\right)=\frac{1}{\pi \sigma_{u}} K_{0}\left(\frac{|z|}{\sigma_{u}}\right) \tag{70}
\end{equation*}
$$

The first term of equation 64 is, according to equation 65, the product of $a(t) b(t)$ scaled by the factor $\left(1+R^{2}\right)^{-1 / 2}$, so it follows immediately that

$$
\begin{equation*}
p_{e}\left(z \mid \sigma_{u}, R_{u}\right)=\frac{\left(1+R_{u}{ }^{2}\right)^{1 / 2}}{\pi R_{u} \sigma_{u}} K_{0}\left[\frac{|z|\left(1+R_{u}{ }^{2}\right)^{1 / 2}}{\pi R_{u} \sigma_{u}}\right] \tag{71}
\end{equation*}
$$

The characteristic function of $e(t)$ can be found by Fourier transforming equation 71.

$$
\begin{equation*}
\phi_{e}\left(f \mid \sigma_{u}, R_{u}\right)=\int_{-\infty}^{\infty} p_{e}\left(z \mid \sigma_{u}, R_{u}\right) \exp (i 2 \pi f z) d z \tag{72}
\end{equation*}
$$

The particular form of the Fourier transform employed in equation 72 was chosen for two reasons. First, it will lead to some simplification of the expressions to be derived presently. Secondly, and perhaps more importantly, a computer program implementing this transformation will be used for numerical studies later in this report.

Substitution of equation 71 into equation 72 and evaluation of the resulting integral gives

$$
\begin{equation*}
\phi_{e}\left(f \mid \sigma_{u}, R_{u}\right)=\left\{1+\left[2 \pi R_{u} \sigma_{u}\left(1+R_{u}{ }^{2}\right)^{-1 / 2} f\right]^{2}\right\}^{-1 / 2} \tag{73}
\end{equation*}
$$

Equation 73 completes the second step of the derivation.
Now consider the second term on the right hand side of equation 64. The process $h(t)$ is clearly gaussian because $c(t)$ is gaussian, and its
standard deviation is just that of $c(t)$ scaled by the factor $\left(1+R^{2}\right)^{-1 / 2}$. From equation 56 it is known that σ_{c} is identical to σ_{u}. Thus the probability density of $h(t)$ is

$$
\begin{equation*}
p_{h}\left(z \mid \sigma_{u}, R_{u}\right)=\frac{\left(1+R_{u}{ }^{2}\right)^{1 / 2}}{\sigma_{u}(2 \pi)^{1 / 2}} \exp \left[-\frac{\dot{z}^{2}\left(1+R_{u}{ }^{2}\right)}{2 \sigma_{u}{ }^{2}}\right] . \tag{74}
\end{equation*}
$$

The characteristic function of h is found by Fourier transforming p_{h} in the same manner as equation 72.

$$
\begin{equation*}
\phi_{h}\left(f \mid \sigma_{u}, R_{u}\right)=\exp \left\{-2\left[\pi \sigma_{u}\left(1+R_{u}{ }^{2}\right)^{-1 / 2} f\right]^{2}\right\} \tag{75}
\end{equation*}
$$

This result completes the third step of the derivation.
Since $e(t)$ and $h(t)$ are independent random processes, it follows that the characteristic function of their sum is given by the product of their respective characteristic functions. Thus, for the case of the u-gust component of the non-gaussian model

$$
\begin{equation*}
\phi_{g}\left(f \mid \sigma_{u}, R_{u}\right)=\left[1+\frac{\left(2 \pi \sigma_{u} R_{u} f\right)^{2}}{1+R_{u}{ }^{2}}\right]^{-1 / 2} \exp \left[-\frac{2\left(\pi \sigma_{u} f\right)^{2}}{1+R_{u}{ }^{2}}\right] . \tag{76}
\end{equation*}
$$

The characteristic functions of the vertical and lateral components of the model are obtained merely by replacing the subscript u of equation 76 with w and v respectively. This completes the fourth step of the derivation.

The probability density of the non-gaussian model can now be obtained by inverse Fourier transforming equation 76.

$$
\begin{equation*}
p_{g}\left(x \mid \sigma_{u}, R_{u}\right)=\int_{-\infty}^{\infty} \phi_{g}\left(f \mid \sigma_{u}, R_{u}\right) \exp (-i 2 \pi f x) d x \tag{77}
\end{equation*}
$$

Equation 77 is easily evaluated numerically by means of the fast Fourier transform program $F F T$ which will be found in the appendix of this report. Similar equations apply to each component of the model. The probability distribution function can be obtained directly from the density function of equation 77 by means of integration.

$$
\begin{equation*}
P_{g}\left(x \mid \sigma_{u}, R_{u}\right)=\int_{-\infty}^{x} p_{g}\left(y \mid \sigma_{u}, R_{u}\right) d y \tag{78}
\end{equation*}
$$

Figure 15 presents the density and distribution functions of the non-gaussian model for several values of the parameter R. Tabulated values of these functions will be found in tables B1 and B2 of Appendix B.

Figure 15.--Probability density and distribution functions of the non-gaussian turbulence model for various values of the parameter R.

In the next section of this report it will be of interest to compute the probability distributions which would be obtained by combining data from many samples of the non-gaussian model. It will be assumed that the parameter R is fixed, but σ will be allowed to vary randomly from sample to sample. If σ is distributed over the samples with the density function
p_{σ}, the probability density of the non-gaussian model based on all of the samples will be

$$
\begin{equation*}
p_{g}\left(x \mid R_{u}\right)=\int_{0}^{\infty} p_{g}\left(x \mid y, R_{u}\right) p_{\sigma}(y) d y \tag{79}
\end{equation*}
$$

and the cumulative gust velocity distribution of the model will be

$$
\begin{equation*}
P_{g}^{c}\left(x \mid R_{u}\right)=1-\int_{-\infty}^{\infty} p_{g}\left(y \mid R_{u}\right) d y \tag{80}
\end{equation*}
$$

Level Crossing Frequency

The level crossing frequency of the non-gaussian model will now be investigated. The basic relation used here will be the well known result of reference 36,

$$
\begin{equation*}
N_{g}\left(x_{1} \mid \sigma_{g}, \sigma_{\dot{g}}\right)=\frac{1}{U} \int_{0}^{\infty} x_{2} p_{g, \dot{g}}\left(x_{1}, x_{2} \mid \sigma_{g}, \sigma_{\dot{g}}\right) d x_{2} \tag{81}
\end{equation*}
$$

N_{g} is the number of crossings with positive slope of the level x_{1} per unit distance of flight. The function $p_{g, \dot{g}}\left(x_{1}, x_{2}\right)$ is the joint density of the turbulence time history and its first derivative.

Just as in the case of the gaussian model considered previously in this report, a problem arises in the application of this equation to the non-gaussian model because the first derivative of a stochastic process having one of the Dryden spectral densities does not exist. This difficulty can be overcome in a manner similar to that of the gaussian model by adding high frequency poles to the transfer functions of the non-gaussian model. These new poles can be looked upon as the effect of viscosity at very short wavelengths. It will be shown that, similar to the case of the gaussian model treated previously in this report, these poles have no
effect whatsoever on the probability distribution of the model, and act only as a scale factor of the level crossing frequency. Since vehicle responses virtually never involve such high frequencies, these poles need not be considered in response calculations.

The following discussion will at first be restricted to only the longitudinal gusts. The results will then be extended to the vertical and lateral components. The principal steps of the procedure are:

1) add high frequency poles to the transfer functions of the turbulence model
2) derive expressions for the standard deviation of the gust component and its first time derivative
3) examine the effect of these new poles on the spectral density of the model, showing that the spectra are still essentially the Dryden forms
4) use the results of step 2 to obtain an expression for the joint characteristic function of the gust component and its first derivative
5) inverse Fourier transform the joint characteristic function of step 4 to obtain the joint density of the gust time history and its first derivative
6) apply equation 81 to the joint density of step 5 to obtain the level crossing frequency of the nongaussian model
7) review the results of steps 4 through 6 in order to determine the dependence of the level crossing frequency upon the poles added to the transfer functions in step 1 and the parameters σ_{u}, L_{u},
U, and R_{u} which appear in the result,
8) determine a set of universal curves from which the level crossing frequency for any set of parameters can be found without resorting to the complete process described above.

Level Crossing Frequency of the Longitudinal Component

Recall the three linear filters used to generate the longitudinal gusts (table 1, page 55). The spectrum produced by these filters is the Dryden u-gust form, equation 4. As was pointed out in the discussion of equation 13 , this spectrum behaves $1 i k e \Omega^{-2}$ at high frequencies. There-. fore the first derivative of the u-gust random process is not defined. In order to overcome this problem high frequency poles are added to the transfer functions as shown in equations 82, 83, and 84.

$$
\begin{align*}
& H_{a}(s)=\frac{4 \sigma_{u}{ }^{2} k_{d} \frac{L_{u}}{U}}{\left(1+\frac{2 L_{u} s}{U}\right)\left(1+\frac{\gamma_{u} s}{U}\right)} \tag{82}\\
& H_{b}(s)=\frac{1}{\left(1+\frac{2 L_{u} s}{U}\right)\left(1+\frac{\gamma_{u} s}{U}\right)} \tag{83}\\
& H_{c}(s)=\frac{\sigma_{u} k_{c}\left(\frac{2 L_{u}}{U}\right)^{1 / 2}}{\left(1+\frac{L_{u} s}{U}\right)\left(1+\frac{\gamma_{u} s}{U}\right)} \tag{84}
\end{align*}
$$

The constants k_{c} and k_{d} are scaling factors which will be chosen so as
to correct the effects of γ_{u} on the standard deviation of $c(t)$ and $d(t)$. The power spectral density of $d(t)$ can be found by substituting first equation 82 and then 83 into equation 47, multiplying the results to obtain the correlation function of $d(t)$, and finally Fourier transforming to obtain the power spectral density. The result is

$$
\begin{equation*}
\Phi_{d d}(\Omega)=\frac{\left(k_{d} \sigma_{u}\right)^{2}}{\left[1-\left(\frac{\gamma_{u}}{2 L_{u}}\right)^{2}\right]^{2}}\left\{\frac{\dot{L} u}{\pi\left[1+\left(L_{u} \Omega\right)^{2}\right]}-\frac{\left[\frac{2 \gamma_{u}{ }^{2}}{\pi\left(2 L_{u}+\gamma_{u}\right)}\right]}{1+\left(\frac{2 \gamma_{u} L_{u}^{\Omega}}{2 L_{u}+\gamma_{u}}\right)^{2}}+\frac{\frac{\gamma_{u}{ }^{3}}{8 \pi L_{u}^{2}}}{1+\left(\frac{\gamma_{u}^{\Omega}}{2}\right)^{2}}\right\} \tag{85}
\end{equation*}
$$

The power spectral density of $c(t)$ is obtained by substituting equation 82 into equation 47 and Fourier transforming.

$$
\begin{equation*}
\Phi_{c c}(\Omega)=\frac{\left(k_{c} \sigma_{u}\right)^{2} L_{u}}{\pi\left[1+\left(L_{u} \Omega\right)^{2}\right]\left[1+\left(\gamma_{u} \Omega\right)^{2}\right]} \tag{86}
\end{equation*}
$$

The constants k_{c} and k_{d} are now chosen so that the standard deviations of both $c(t)$ and $d(t)$ are equal to σ_{u}.

$$
\begin{gather*}
k_{c}=\left(1+\frac{\gamma_{u}}{L_{u}}\right)^{1 / 2} \tag{87}\\
k_{d}=1+\frac{\gamma_{u}}{2 L_{u}} \tag{88}\\
\sigma_{c}=\sigma_{d}=\sigma_{u} \tag{89}
\end{gather*}
$$

It can also be verified that, with these values of k_{c} and k_{d}, the standard deviations of $\dot{c}(t)$ and $\dot{d}(t)$ are equal to

$$
\begin{equation*}
\sigma_{c}=\sigma_{\dot{d}}=U \sigma_{u}\left(\gamma_{u} L_{u}\right)^{-1 / 2} \tag{90}
\end{equation*}
$$

These results imply that the standard deviation of the non-gaussian model and its derivative are

$$
\begin{gather*}
\sigma_{g}=\sigma_{u} \tag{97}\\
\sigma_{g}=U \sigma_{u}\left(\gamma_{u} L_{u}\right)^{-1 / 2} \tag{92}
\end{gather*}
$$

Equations 89 through 92 complete the second step of the derivation.
The power spectral density of the model is

$$
\begin{equation*}
\Phi_{g g}(\Omega)=\Phi_{d d}(\Omega) R_{u}{ }^{2}\left(1+R_{u}{ }^{2}\right)^{-1}+\Phi_{c c}(\Omega)\left(1+R_{u}{ }^{2}\right)^{-1} \tag{93}
\end{equation*}
$$

Substitution of equations 85 and 86 into equation 93 gives an expression for $\Phi_{g g}$ which is far more complicated than the simple Dryden spectral density. However, on the assumption that γ_{u} is very much smaller than L_{u}, the power spectral density of the non-gaussian model becomes

$$
\begin{equation*}
\Phi_{g g}(\Omega)=\frac{\frac{\sigma_{u}{ }^{2} L_{u}}{\pi}\left(1+\frac{\gamma_{u}}{L_{u}}\right)}{\left[1+\left(L_{u} \Omega\right)^{2}\right]\left[1+\left(\gamma_{u} \Omega\right)^{2}\right]}+o\left\{\left(\frac{\gamma_{u}}{\bar{L}_{u}}\right)^{2}\right\} . \tag{94}
\end{equation*}
$$

Equation 94 is, to second order in γ_{u} / L_{u}, the Dryden form of the u-gust power spectral density with an additional high frequency pole. This is precisely the result required in order to insure the existance of $\dot{g}(t)$, and equation 94 completes the third step of the level crossing derivation.

Note that the standard deviations of $c(t)$ and $d(t)$ have not been altered by the addition of γ_{u}. Thus the probability distributions discussed earlier in this section remain unchanged.

The level crossing frequency of the non-gaussian model will now be developed using the modified transfer functions, equations 82,83 , and 84. Consider the joint characteristic function of $g(t)$ and its first derivative. By definition this is

$$
\begin{equation*}
\Phi_{g, \dot{g}}\left(f_{1}, f_{2}\right)=\dot{E}\left\{\exp \left[i 2 \pi f_{1} g(t)+i 2 \pi f_{2} \dot{g}(t)\right]\right\} \tag{95}
\end{equation*}
$$

In terms of the processes $a(t), b(t)$, and $c(t)$ used in the non-gaussian model, $g(t)$ and $\dot{g}(t)$ are

$$
\begin{gather*}
g(t)=a(t) b(t) R_{u}\left(1+R_{u}{ }^{2}\right)^{-1 / 2}+c(t)\left(1+R_{u}{ }^{2}\right)^{-1 / 2} \tag{96}\\
\dot{g}(t)=[\dot{a}(t) b(t)+a(t) \dot{b}(t)] R_{u}\left(1+R_{u}{ }^{2}\right)^{-1 / 2}+\dot{c}(t)\left(1+R_{u}{ }^{2}\right)^{-1 / 2} \tag{97}
\end{gather*}
$$

Substitution of these two expressions into equation 95 will give an expression for $\phi_{g, \dot{g}}$ in terms of $a, \dot{a}, b, \dot{b}, c$, and \dot{c}. If now the joint density of these random processes can be determined, the expected value appearing in equation 95 can be evaluated and the joint characteristic function found.

Note that the processes a, b, and c are zero mean, independent, and gaussian. Since the derivative of a gaussian process is always gaussian, it follows that \dot{a}, \dot{b}, and \dot{c} are zero mean, independent, and gaussian. Furthermore, since a random process and its first derivative are always uncorrelated, it follows from their gaussian nature that $a, \dot{a}, b, \dot{b}, c$, and \dot{c} are mutually independent. The joint density function of these processes can thus be written directly.

$$
\begin{align*}
& p_{a, \dot{a}, b, \dot{b}, c, \dot{c}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid \sigma_{a}, \sigma_{\dot{a}}, \sigma_{b}, \sigma_{b}, \sigma_{c}, \sigma_{\dot{c}}\right)= \\
& \frac{\exp \left\{-\frac{1}{2}\left[\left(\frac{x_{1}}{\sigma_{a}}\right)^{2}+\left(\frac{x_{2}}{\sigma_{\dot{a}}}\right)^{2}+\left(\frac{x_{3}}{\sigma_{b}}\right)^{2}+\left(\frac{x_{4}}{\sigma_{\dot{b}}}\right)^{2}+\left(\frac{x_{5}}{\sigma_{c}}\right)^{2}+\left(\frac{x_{6}}{\sigma_{\dot{c}}}\right)^{2}\right]\right\}}{(2 \pi)^{3} \sigma_{a} \sigma_{\dot{a}} \sigma_{b} \sigma_{b} \sigma_{c} \sigma_{\dot{c}}}
\end{align*}
$$

The standard deviations appearing in equation 98 can be found from the filter transfer functions, equations 82,83 , and 84.

$$
\begin{array}{ll}
\sigma_{a}=\frac{\sigma_{u}}{L_{u}}\left[\frac{U\left(2 L_{u}+\gamma_{u}\right)}{2}\right]^{1 / 2} & \sigma_{\dot{a}}=\frac{U \sigma_{u}}{2 L_{u}}\left[\frac{U\left(2 L_{u}+\gamma_{u}\right)}{\gamma_{u} L_{u}}\right]^{1 / 2} \\
\sigma_{b}=L_{u}\left[\frac{2}{U\left(2 L_{u}+\gamma_{u}\right)}\right]^{1 / 2} & \sigma_{\dot{b}}=\left[\frac{U L_{u}}{\gamma_{u}\left(2 L_{u}+\gamma_{u}\right\rangle}\right]^{1 / 2} \tag{99}\\
\sigma_{c}=\sigma_{u} & \sigma_{\dot{c}}=U \sigma_{u}\left(\gamma_{u} L_{u}\right)^{-1 / 2}
\end{array}
$$

Equations 96 through 99 can now be combined to evaluate the joint characteristic function of the non-gaussian model, equation 95.

$$
\begin{gathered}
\phi_{g, \dot{g}}\left(f_{1}, f_{2} \mid \sigma_{a}, \sigma_{\dot{a}}, \sigma_{b}, \sigma_{\dot{b}}, \sigma_{c}, \sigma_{c}^{\bullet}, R_{u}\right)= \\
\int_{-\infty}^{\infty}(6) \int_{-\infty}^{\infty} \exp \left\{i 2 \pi f_{1}\left[\frac{R_{u} x_{1} x_{3}+x_{5}}{\left(1+R_{u}{ }^{2}\right)^{1 / 2}}\right]+i 2 \pi f_{2}\left[\frac{R_{u}\left(x_{1} x_{4}+x_{2} x_{3}\right)+x_{6}}{\left(1+R_{u}{ }^{2}\right)^{1 / 2}}\right]\right\}, \\
p_{a, \dot{a}, b, \dot{b}, c, \dot{c}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid \sigma_{a}, \sigma_{\dot{a}}, \sigma_{b}, \sigma_{\dot{b}}, \sigma_{c}, \sigma_{\dot{c}}\right) d x_{1} \ldots d x_{6}
\end{gathered}
$$

This completes the fourth step of the derivation.

Equation 100 can be integrated to give a closed form algebraic expression for the joint characteristic function of the non-gaussian u-gust component and its derivative. The joint density function required for the evaluation of the level crossing frequency can then be found, at least in principle, by means of the Fourier transformation

$$
\dot{p}_{g, \dot{g}}\left(x_{1}, x_{2} \mid \sigma_{a}, \sigma_{\dot{a}}, \sigma_{b}, \sigma_{b}, \sigma_{c}, \sigma_{c}, R_{u}\right)=
$$

$\int_{-\infty}^{\infty} \int_{g, \dot{g}}\left(f_{1}, f_{2} \mid \sigma_{a}, \sigma_{a}^{\bullet}, \sigma_{b}, \sigma_{\dot{b}}, \sigma_{a}, \sigma_{\dot{c}}, R_{u}\right) \exp \left(-i 2 \pi f_{1} x_{3}-2 \pi f_{2} x_{2}\right) d f_{1} d f_{2}$.

Evaluation of this expression would complete the fifth step of the derivation. Finally, the level crossing frequency can be found by means of equation 79.

In reality, of course, the series of integrations required to pass from equation 100 to the evaluation of the level crossing frequency are extremely tedious if not overwhelmingly difficult. Fortunately, a far more convenient means of solution is available through use of a digital computer and the appropriate numerical methods. Program LEVXNG, listed in the appendix of this report, is one means of performing these calculations. This program was, in fact, used to compute the level crossing results to be presented in this section.

Program LEVXNG permits the rapid calculation of N_{g} for any set of parameters $\sigma_{u}, L_{u}, U, R_{u}$, and γ_{u} which might be of interest. However, merely calculating results for various cases does not yield much useful information concerning the dependence of the solution on its parameters. Furthermore, every time any of the parameters is changed, it becomes necessary to repeat the entire calculation in order to obtain the new
level crossing frequencies. Thus it would clearly be quite useful to have some idea as to how a change of parameters will affect the resulting level crossings of the model. With this in mind, a set of universal curves depending only upon the parameter R_{u} will now be derived. It will be shown that the level crossing frequency for any choice of the parameters σ_{u}, L_{u}, U, and γ_{u} can be found from these curves.

It is possible to integrate equation 100 with respect to x_{5} and x_{6} with a minimum of difficulty. The results of these integrations can be factored from the remaining integrals and identified as the joint characteristic function of c and \dot{c}. Equation 100 can then be rewritten in the form shown in equation 102. (For the sake of simplicity and clarity, the explicit parameter dependence notation will be temporarily suspended.)

$$
\phi_{g, \dot{g}}\left(f_{1}, f_{2}\right)=\phi_{c,} \cdot\left(f_{1}, f_{2}\right) \int_{-\infty}^{\infty}(4) \int_{-\infty}^{\infty} \frac{\exp \left(\bar{x}^{T} \tilde{A} \bar{x}\right) d \bar{x}}{(2 \pi)^{2} \sigma_{a} \sigma_{\dot{a}} \sigma_{b} \sigma_{\dot{b}}}
$$

where

$$
\begin{gather*}
\phi_{g, \dot{g}}\left(f_{1}, f_{2}\right)=\exp \left[-\frac{2\left(\pi \sigma_{c} f_{1}\right)^{2}}{1+R_{u}^{2}}-\frac{2\left(\pi \sigma_{c} f_{2}\right)^{2}}{1+R_{u}^{2}}\right] \tag{102a}\\
\bar{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]^{T}
\end{gather*}
$$

$$
\left.\tilde{A}=\left[\begin{array}{cccc}
-\left(2 \sigma_{a}^{2}\right)^{-1} & 0 & i 2 \pi f_{1} R_{u}^{*} & i 2 \pi f_{2} R_{u}^{*} \\
0 & -\left(2 \sigma_{\dot{a}}^{2}\right)^{-1} & i 2 \pi f_{2} R_{u}^{*} & 0 \\
i 2 \pi f_{2} R_{u}^{*} & i 2 \pi f_{2} R_{u}^{*} & -\left(2 \sigma_{b}^{2}\right)^{-1} & 0 \\
i 2 \pi f_{2} R_{u}^{*} & 0 & 0 & -\left(2 \sigma_{b}^{2}\right)^{-1}
\end{array}\right]\right) \text { (102b) }
$$

Now suppose that a special case of the joint characteristic function is computed. Let all of the parameters with the exception of R_{u} be set to unity.

$$
\begin{equation*}
\sigma_{u}=L_{u}=U=\gamma_{u}=1.0 \tag{103}
\end{equation*}
$$

Denote this case by $\hat{\phi}_{g}, \dot{g}$. Note that $\hat{\phi}$ is a function only of f_{1}, f_{2}, and R_{u}.

Consider again equation 102 and introduce the following change of variables:

$$
\begin{array}{ll}
x_{1}^{\prime}=\frac{x_{1}}{\sigma_{a}}\left(\frac{3}{2}\right)^{1 / 2} & x_{2}^{\prime}=\frac{x_{2}}{\sigma_{\dot{a}}}\left(\frac{3}{4}\right)^{1 / 2} \\
x_{3}^{-}=\frac{x_{3}}{\sigma_{b}}\left(\frac{2}{3}\right)^{1 / 2} & x_{4}^{-}=\frac{x_{4}}{\sigma_{b}}\left(\frac{1}{3}\right)^{1 / 2} \tag{104}
\end{array}
$$

A comparison of this transformed expression with the special case $\hat{\phi}$, taking note of the equalities

$$
\begin{gather*}
\sigma_{a} \sigma_{b}=\sigma_{c} \\
\sigma_{a} \sigma_{b} 2^{1 / 2}=\sigma_{a} \sigma_{b} 2^{1 / 2}=\sigma_{c}
\end{gather*}
$$

of equation 99 , leads to the conclusion

$$
\begin{equation*}
\phi_{g, \dot{g}}\left(f_{1}, f_{2}\right)=\hat{\phi}_{g, \dot{g}}\left(f_{1} \sigma_{c}, f_{2} \sigma_{c}\right) \tag{106}
\end{equation*}
$$

The joint density function of g and \dot{g} is obtained by means of equation 101. Substitution of equation 106 for $\phi_{g, \dot{g}}$ in equation 101 and introduction of the variables

$$
\begin{align*}
& f_{1}^{\prime}=f_{1} \sigma_{c} \tag{107}\\
& f_{2}^{\prime}=f_{2} \sigma_{c}
\end{align*}
$$

gives

$$
\begin{equation*}
p_{g, \dot{g}}\left(x_{1}, x_{2}\right)=\frac{1}{\sigma_{c} \sigma_{c}} \hat{p}_{g, \dot{g}}\left(\frac{x_{1}}{\sigma_{c}}, \frac{x_{2}}{\sigma_{c}}\right) \tag{108}
\end{equation*}
$$

The notation $\hat{p}_{g, \dot{g}}$ is used to signify the joint density corresponding to the joint characteristic function $\hat{\phi}_{g, \dot{g}}$.

The level crossing frequency of the non-gaussian model can now be found by substituting equation 108 into equation 81 and performing the change of variable $x_{2}^{\prime}=x_{2} / \sigma_{c}$. The result is

$$
\begin{equation*}
N_{g}(x)=\frac{\sigma_{c}}{U \sigma_{c}} \hat{N}_{g}\left(\frac{x}{\sigma_{c}}\right) \tag{109}
\end{equation*}
$$

where \hat{N}_{g} is the level crossing frequency of the special case.
The explicit parameter notation can now be reinstated. Substitute for σ_{c} and σ_{c} from equation 99 and recall that the special case \hat{N}_{g} depends only on the parameter R_{u}. The final expression for N_{g} is

$$
\begin{equation*}
N_{g}\left(x \mid \sigma_{u}, L_{u}, R_{u}, \gamma_{u}\right)=\left(L_{u} \gamma_{u}\right)^{-1 / 2} \hat{N}_{g}\left(\left.\frac{x}{\sigma_{u}} \right\rvert\, R_{u}\right) \tag{110}
\end{equation*}
$$

Note the similarity of equation 110 to the level crossing frequency of the gaussian model, equation 16. Just as in equation 16, the crossing frequency is inversely proportional to the square root of γ_{u}. Thus γ_{u} can be interpreted as a control on the zero crossing frequency of the non-gaussian mode1, and could be chosen so as to match equation 110 to some observed data. For the purposes of the present report, however, the value of γ_{u} can be allowed to remain arbitrary.

Equation 110 implies that once the level crossing frequency of the special case has been computed for a given value of R_{u}, the result for any choice of σ_{u}, L_{u}, and γ_{u} can be found directly. Alternatively, the equation states that all u-gust level crossing frequencies of the nongaussian model can be reduced to a single function through the indicated scaling. In order to show that these results apply only to the u-gust component of the model, the subscript g will now be replaced by u.

The function $\hat{N}_{u}\left(x \mid R_{u}\right)$ has been computed using program LEVXNG which is described in Appendix A of this report. Figure 16 and table B3 (of Appendix B) present the results for several values of the parameter R_{u}.

Figure 16.--Level crossing frequencies of the non-gaussian turbulence model longitudinal component for various values of the parameter R_{u}.

In the next section it will be of interest to evaluate the cumulative probability of exceedance which would result from combining data from a number of samples of the non-gaussian model. As in the case of the gaussian model described previously, it will be assumed that the parameters σ_{u}, L_{u}, and γ_{u} vary randomily from sample to sample. The standard deviation, σ_{u}, will be assumed independent of L_{u} and γ_{u}; and the parameter R_{u} will be required to remain constant over all the samples.

Recall from the discussion of the gaussian model that the cumulative probability of exceedance is calculated by first finding the average level crossing frequency for all of the samples, then normalizing with respect to the average zero crossing frequency. In view of the above assumptions, the cumulative probability of exceedance of the u-gust component is

$$
\begin{equation*}
\frac{N_{u}\left(x \mid R_{u}\right)}{N_{u}\left(0 \mid R_{u}\right)}=\frac{\iiint_{u}\left(x \mid \sigma, L, R_{u}, \gamma\right) p_{\sigma_{u}}(\sigma) p_{L_{u}}, \gamma_{u}(L, \gamma) d \sigma d L d \gamma}{\iiint N_{u}\left(0 \mid \sigma, L, R_{u}, \gamma\right) p_{\sigma_{u}}(\sigma) p_{L_{u}}, \gamma_{u}(L, \gamma) d \sigma d L d \gamma}, \tag{111}
\end{equation*}
$$

where $p_{\sigma_{u}}$ and $p_{L_{u}}, \gamma_{u}$ are the probability density functions of σ_{u}, L_{u}, and γ_{u}. Equation 111 can be greatly simplified by substituting equation 110 for N_{u}. The result is

$$
\begin{equation*}
\frac{N_{u}\left(x \mid R_{u}\right)}{N_{u}\left(0 \mid R_{u}\right)}=\hat{N}_{u}\left(0 \mid R_{u}\right)^{-1} \int_{0}^{\infty} \hat{N}_{u}\left(\left.\frac{x}{\sigma} \right\rvert\, R_{u}\right) p_{\sigma_{u}}(\sigma) d \sigma \tag{112}
\end{equation*}
$$

Note that it is not necessary to know the distribution of either L_{u} or γ_{u} in order to evaluate equation 112 , a result analogous to that for the gaussian model (Eq. 21).

This completes the analysis of the longitudinal gust level crossings. The methods applied above will now be extended to the vertical and lateral gust components.

Level Crossing Frequency of Lateral and Vertical Components

The level crossings of the lateral gust component will now be considered. Since the vertical and lateral components of the non-gaussian model use linear filters of the same form, all results for the lateral gusts will apply directly to the vertical gusts.

Recall from table 1 the transfer functions to be used in generating the lateral gust component. The power spectral density produced by these filters is the Dryden v-gust form, equation 5, Just as in the u-gust case considered above, the derivative of a process with the Dryden spectrum is not defined. In order to avoid this problem, the spectrum is modified
through the addition of high frequency poles to the transfer functions.

$$
\begin{align*}
& H_{a}(s)=\frac{\sigma_{v}(128)^{1 / 2}\left(\frac{L_{v}}{U}\right)^{2} k_{d}}{\left(1+\frac{2 L_{v} s}{U}\right)\left(1+\frac{\gamma_{v}}{U}\right)} \tag{173}\\
& H_{b}(s)=\frac{s k_{d}^{2}}{\left(1+\frac{L_{v}^{s}}{U}\right)^{2}\left(1+\frac{\gamma_{v} s}{U}\right)} \tag{114}\\
& H_{c}(s)=\frac{\sigma_{v}\left(\frac{L_{v}}{U}\right)^{1 / 2} k_{c}\left(1+3^{1 / 2} \frac{L_{v} s}{U}\right)}{\left(1+\frac{L_{v} s}{U}\right)^{2}\left(1+\frac{v_{v}^{s}}{U}\right)} \tag{115}
\end{align*}
$$

Unlike the u-gust case, it is convenient to use two parameters, γ_{v} and v_{v}, rather than only one. The constants k_{c} and k_{d} are scaling factors which will be chosen so as to correct the effects of γ_{v} and ν_{v} on the standard deviations of $c(t)$ and $d(t)$.

The power spectral densities of c and d can be derived using the above transfer functions. The condition

$$
\begin{equation*}
\sigma_{c}^{2}=\sigma_{d}^{2}=\sigma_{v}^{2} \tag{116}
\end{equation*}
$$

is satisfied by choosing

$$
\begin{equation*}
k_{c}=\frac{1+\frac{\nu_{v}}{L_{v}}}{\left(1+\frac{\nu_{v}}{2 L_{v}}\right)^{1 / 2}} \tag{117}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{d}=\left(1+\frac{r_{v}}{2 L_{v}}\right)^{1 / 2} . \tag{118}
\end{equation*}
$$

The standard deviations of c and d can be made equal by choosing v_{v} to be a function of γ_{v}.

$$
\begin{equation*}
v_{v}=\frac{3 \gamma_{v} L_{v}-6 L_{v}{ }^{2}+6 L_{v}{ }^{2}\left(1+\frac{\gamma_{v}}{L_{v}}+\frac{7 \gamma_{v}{ }^{2}}{12 L_{v}}\right)^{1 / 2}}{6 L_{v}+\gamma_{v}} \tag{119}
\end{equation*}
$$

The resulting standard deviations are

$$
\begin{equation*}
\sigma_{c}^{2}=\sigma_{d}^{2}=\sigma_{v}^{2}\left(\frac{U}{2 L_{v}}\right)^{2}\left(\frac{6 L_{v}+\gamma_{v}}{\gamma_{v}}\right) . \tag{120}
\end{equation*}
$$

With the above choices of parameters, and assuming the condition $\gamma_{v} \ll L_{v}$, the power spectral density of the lateral gust component becomes

$$
\begin{equation*}
\Phi_{v v}(\Omega)=\frac{\sigma_{v}{ }^{2} L_{v}\left(1+\frac{3 \gamma_{v}}{2 L_{v}}\right)\left[1+3\left(L_{v} \Omega\right)^{2}\right]}{\pi\left[1+\left(L_{v} \Omega\right)^{2}\right]^{2}\left[1+\left(\gamma_{v} \Omega\right)^{2}\right]}+o\left\{\left(\frac{\gamma_{v}}{L_{v}}\right)^{2}\right\} . \tag{121}
\end{equation*}
$$

Now consider the level crossing frequency of the lateral component. Just as in the treatment of the longitudinal gust, an expression for the joint characteristic function of v and \dot{v} will be derived. This expression will be formally identical to equation 102, but in the present case the standard deviations are

$$
\left.\begin{array}{ll}
\sigma_{a}=2 \sigma_{v}\left(\frac{2 L_{v}}{U}\right)^{3 / 2} & \sigma_{a}=4 L_{v} \sigma_{v}\left(U \gamma_{v}\right)^{-1 / 2} \\
\sigma_{b}=\frac{1}{2}\left(\frac{U}{2 L_{v}}\right)^{3 / 2} & \sigma_{\dot{b}}=\left(\frac{U}{2 L_{v}}\right)^{5 / 2}\left(\frac{L_{v}}{\gamma_{v}}\right)^{1 / 2}\left(1+\frac{\gamma_{v}}{4 L_{v}}\right)^{1 / 2} \tag{122}\\
\sigma_{c}=\sigma_{v} & \sigma_{c}=\sigma_{v}\left(\frac{U}{2 L_{v}}\right)\left(\frac{6 L_{v}}{\gamma_{v}}\right)^{1 / 2}\left(1+\frac{\gamma_{v}}{6 L_{v}}\right)^{1 / 2}
\end{array}\right)
$$

Using equation 122 and computer program LEVXNG listed in the appendix, it is possible to calculate exact results for the level crossing frequency. However, a more convenient solution of the problem can be found by introducing an approximation for σ_{b} and σ_{c} of equation 122 which will allow the derivation of universal curves similar to those for the longitudinal case (Fig. 16). On the assumption that L_{v} is much larger than γ_{v}, the expressions for σ_{b} and σ_{c} of equation 122 become

$$
\begin{align*}
& \sigma_{\dot{b}} \doteq\left(\frac{U}{2 L_{v}}\right)^{5 / 2}\left(\frac{L_{v}}{\gamma_{v}}\right)^{1 / 2} \tag{123}\\
& \sigma_{c} \doteq \sigma_{v}\left(\frac{U}{2 L_{v}}\right)\left(\frac{6 L_{v}}{\gamma_{v}}\right)^{1 / 2}
\end{align*}
$$

Employing these approximate results and following the procedure described above for the longitudinal gust component, derive the joint characteristic function of the special case

$$
\begin{equation*}
\sigma_{v}=L_{v}=U=\gamma_{v}=1.0, \tag{124}
\end{equation*}
$$

and denote this result by $\hat{\phi}_{\nu, \dot{v}}$. Return to equation 102 and introduce the change of variables

$$
\begin{array}{ll}
x_{1}^{\prime}=\frac{x_{1}}{\sigma_{a}} 2^{5 / 2} & x_{2}^{\wedge}=\frac{x_{2}}{\sigma_{\dot{a}}^{\circ}} 4 \\
x_{3}^{\prime}=\frac{x_{3}}{\sigma_{b}} 2^{-5 / 2} & x_{4}^{\prime}=\frac{x_{4}}{\sigma_{b}^{\circ}} 2^{-5 / 2} . \tag{125}
\end{array}
$$

Comparison of this result with $\hat{\phi}_{v, i}$ gives

$$
\begin{equation*}
\phi_{v, v}\left(f_{1}, f_{2}\right)=\hat{\phi}_{v, \dot{v}}\left(f_{1} \sigma_{c}, f_{2} \sigma_{\dot{c}}\right) . \tag{126}
\end{equation*}
$$

Continuation of the same procedure used for the u-gust case leads to the final result

$$
\begin{equation*}
N_{v}\left(x \mid \sigma_{v}, L_{v}, R_{v}, \gamma_{v}\right)=\left(\frac{3}{2 L_{v} \gamma_{v}}\right)^{1 / 2} \hat{N}_{v}\left(\left.\frac{x}{\sigma_{v}} \right\rvert\, R_{v}\right), \tag{127}
\end{equation*}
$$

which is valid for $\gamma_{v} \ll L_{v}$. The level crossing frequency of the vertical gust component can be obtained by replacing the subscript v of equations 113 through 127 with the subecript w.

The special cases \hat{N}_{v} and \hat{N}_{w} have been computed by means of program LEVXNG. Figure 17 and table B4 (of Appendix B) present these results for several values of the parameter R.

A comparison of figures 16 and 17 reveals that the special cases appear to differ by only a constant of proportionality which depends weakly upon the parameter R. This suggests that a transformation exists such that the level crossing frequencies of all three components of the non-gaussian model can be expressed in terms of a single set of universal curves. This transformation is not derived here, but the possibility of its existence is mentioned as a point of interest.

Figure 17.--Level crossing frequencies of the non-gaussian turbulence model lateral and vertical components for various values of the parameter R.

In the next section of this report it will be necessary to calculate cumulative probability of exceedance curves for the vertical and lateral gust components. Following the procedure described previously for the longitudinal components gives

$$
\begin{equation*}
\frac{N_{v}\left(x \mid R_{v}\right)}{N_{v}\left(0 \mid R_{v}\right)}=\hat{N}_{v}\left(0 \mid R_{v}\right)^{-1} \int_{0}^{\infty} \hat{N}_{v}\left(\left.\frac{x}{\sigma} \right\rvert\, R_{v}\right) p_{\sigma_{v}}(\sigma) d \sigma \tag{128}
\end{equation*}
$$

Just as in the u-gust case, the distribution of L_{v} and γ_{v} need not be known in order to evaluate this expression. The result for the vertical gusts can be obtained by replacing the subscript v of this equation with the subscript w. Equation 128 completes the analysis of the level crossing frequencies of the non-gaussian model.

Increment Distribution

The probability distribution of the non-gaussian model's velocity increments will now be derived, The following remarks apply to all three components of the model; however, only the u-gust component will be explicitly treated.

Consider the increment of the longitudinal gust component.

$$
\begin{equation*}
\Delta_{u}(t \mid \tau)=u(t)-u(t-\tau) \tag{129}
\end{equation*}
$$

The parameter τ is a constant. According to figure 13, equation 129 can be rewritten as

$$
\begin{equation*}
\Delta_{u}(t \mid \tau)=\Delta_{\alpha b}(t \mid \tau)+\Delta_{c}(t \mid \tau) \tag{130}
\end{equation*}
$$

where

$$
\begin{gather*}
\Delta_{a b}(t \mid \tau)=[a(t) b(t)-a(t-\tau) b(t-\tau)] R_{u}\left(1+R_{u}^{2}\right)^{-1 / 2} \tag{131}\\
\Delta_{c}(t \mid \tau)=[c(t)-c(t-\tau)]\left(1+R_{u}^{2}\right)^{-1 / 2} \tag{132}
\end{gather*}
$$

The procedure to be followed in finding the probability distribution of Δ_{u} is

1) derive an expression for the characteristic function of Δ_{c}
2) derive an expression for the characteristic function of $\Delta_{\alpha b}$
3) multiply the results of steps 1 and 2 in order to obtain the characteristic function of Δ_{u}.
4) Fourier transform the result of step 3 to find the probability density of Δ_{u}.

Since Δ_{c} is a linear transformation of a gaussian process, it follows that it must also be gaussian. Its mean value ts zero and its standard deviation is given by

$$
\begin{equation*}
\sigma_{\Delta_{c}}^{2}=2\left[\sigma_{c}^{2}-C_{c d}(\tau)\right]\left(1+R_{u}^{2}\right)^{-1} \tag{133}
\end{equation*}
$$

where $C_{c c}$ is the correlation function of $c(t)$, equation 55. The characteristic function of Δ_{c} is thus

$$
\begin{gather*}
\phi_{\Delta_{c}}\left(f \mid \sigma_{u}, L_{u}, U, R_{u}, \tau\right)= \tag{134}\\
\exp \left\{-\left(2 \pi \sigma_{u} f\right)^{2}\left(1+R_{u}{ }^{2}\right)^{-1}\left[1-\exp \left(\frac{U}{L_{u}}|\tau|\right)\right]\right\}
\end{gather*}
$$

The characteristic function of $\Delta_{a b}$ is more difficult to evaluate. Since a and b are gaussian processes with zero means and correlation functions given by equations 51,52 , and $54, \phi_{\Delta_{a b}}$ can be written in the form

$$
\begin{aligned}
& \phi_{\Delta_{a b}}\left(f \mid \sigma_{u}, L_{u}, U, R_{u}, \tau\right)=\int_{-\infty}^{\infty}(4) \int \exp \left[\frac{i\left(\pi f R_{u} x_{1} x_{2}-x_{2} x_{4}\right)}{\left(\tau+R_{u}{ }^{2}\right)^{1 / 2}}\right] \\
& P_{a(t), a(t-\tau), b(t), b(t-\tau)}^{\left(x_{1}, x_{2}, x_{3}, x_{4} \mid \sigma_{u}, L_{u}, U, \tau\right) d x_{1} d x_{2} d x_{3} d x_{4}}
\end{aligned}
$$

where

$$
\begin{equation*}
p_{a(t), a(t-\tau), b(t), b(t-\tau)}\left(\bar{x} \mid \sigma_{u}, L_{u}, U, \tau\right)=\frac{\exp \left(-\frac{1}{2} \bar{x}^{T} A_{A}^{n}-1 \bar{x}\right)}{(2 \pi)^{2}[\operatorname{det}(\tilde{A})]} \tag{135a}
\end{equation*}
$$

$$
\begin{gather*}
\bar{x}=\left[x_{1} x_{2} x_{3} x_{4}\right]^{T} \\
\tilde{A}=\left[\begin{array}{ccc}
c_{a a}(0) & c_{a a}(\tau) & 0 \\
C_{a a}(\tau) & C_{a \alpha}(0) & 0 \\
0 & 0 & c_{b b}(0) \\
0 & c_{b b}(\tau) \\
0 & 0 & c_{b b}(\tau) \\
c_{b b}(0)
\end{array}\right] \tag{135b}\\
C_{a a}(\tau)=\sigma_{u}{ }^{2} 8 \frac{L_{u}}{U} \exp \left(-\frac{U}{2 L_{u}}|\tau|\right) \\
C_{b b}(\tau)=\frac{U}{8 L_{u}} \exp \left(-\frac{U}{2 L_{u}}|\tau|\right)
\end{gather*}
$$

The characteristic function of Δ_{u} is given by

$$
\begin{equation*}
\phi_{\Delta_{u}}\left(f \mid \sigma_{u}, L_{u}, U, R_{u}, \tau\right)=\phi_{\Delta_{a b}}\left(f \mid \sigma_{u}, L_{u}, U, R_{u}, \tau\right) \phi_{\Delta_{c}}\left(f \mid \sigma_{u}, L_{u}, U, R_{u}, \tau\right) \tag{136}
\end{equation*}
$$

The probability density of Δ_{u} can be found by Fourier transforming equation 136. A closed form solution of this problem has not been derived, however program INCPD listed in the appendix of this report can perform all required computations for a numerical solution of the problem.

Figure 18 presents density and distribution functions of the u-gust and its increment for a typical case. Comparison of the density functions of figure 18 with those of figure 9 on page 41 leads to the conclusion that the non-gaussian model does not properly model the velocity increment

84

Figure 18.--Comparison of a typical non-gaussial model u-gust component probability distribution with that of the corresponding increment distribution.
distribution of atmospheric turbulence. Additional data in the form of probability distribution functions presented in references 22 and 25 confirm this conclusion. The increments of actual turbulence are sharply more non-gaussian than the velocity, while the increments of the model are less non-gaussian than the velocity. As a result, the non-gaussian model underestimates the occurrences of large increments.

The reason for this can be seen by considering the gaussian and non-gaussian portions of both the velocity and velocity increment. The velocity of the model is the sum of two independent parts; the product $a(t) b(t)$ which has a K_{0} distribution (Fig, 12), and $c(t)$ which is gaussian. The relative intensity of these two parts can be shown to be [since $a(t) b(t)$ is equal to $d(t)$]

$$
\begin{equation*}
\frac{\sigma_{a b}}{\sigma_{c}}=R\left(\frac{C_{d d}(0)}{C_{c c}(0)}\right)^{1 / 2}=R . \tag{137}
\end{equation*}
$$

The probability density of the gust velocity can be found by convolving the K_{0} and gaussian densities to obtain a result which is, in general, non-gaussian. Similarly, the velocity increment of the model is the sum
of two independent parts; the increment Δ_{c} which is gaussian, and the increment $\Delta_{a b}$ which is non-gaussian, Just as above, the probability density functions of these two parts, and their relative intensities can be shown to be

$$
\begin{equation*}
\frac{\sigma_{\Delta_{a b}}}{\sigma_{\Delta_{c}}}=R \frac{\left[C_{d d}(0)-C_{d d}(\tau)\right]}{\left[C_{c c}(0)-C_{c c}(\tau)\right]}=R . \tag{138}
\end{equation*}
$$

However, the probability distribution of $\Delta_{a b}$ is not sharply non-gaussian like the K_{0} distribution. It is instead much smoother, tending to look like the exponential function, $\exp (-|x|)$. Because of this smoothness and because $\Delta_{a b}$ has the same intensity relative to Δ_{c} as has the product $a(t) b(t)$ relative to $c(t)$, it follows that when the density of $\Delta_{a b}$ is convolved with the gaussian density function, the result will be more nearly gaussian than the convolution of K_{0} with the gaussian density. Thus, as shown in figure 18, the distribution of Δ_{u} is more nearly gaussian than the distribution of u itself.

There are two ways in which the increment distribution can be made more strongly non-gaussian than the velocity distribution; increase the intensity of $\Delta_{a b}$ relative to Δ_{c} while holding the ratio $\sigma_{a b} / \sigma_{c}$ constant, or make the distribution of $\Delta_{a b}$ more non-gaussian than the K_{0} distribution. The second of these does not appear to be possible. The first, however, could be achieved by modifying $C_{c c}$ and $C_{d d}$ of equation 138 so that the ratio $\sigma_{\Delta_{a b}} / \sigma_{\Delta_{c}}$ is greater than R. This would require changing the transfer functions of the model, and would invalidate many of the results obtained so far. For this reason, the possibility of modifying the model so as to more accurately model the increment distribution of atmospheric turbulence will not be discussed in this report. Instead, this subject
will be suggested as a topic for further research.
Because the model in its present form does not properly reproduce the increment distributions of actual turbulence, its use should be restricted to those applications which require only the accurate modeling of the gust velocity distribution and level crossing frequency. These applications will typically involve responses of the rigid body modes of the aircraft which are not as excited by large increments with short time lags as are the structural modes.

Summary

This completes the statistical analysis of the proposed non-gaussian turbulence model. Before proceeding to the next section, a brief summary of this section is in order.

1) Equations 38 through 63 showed that the linear filters of the model could be chosen so as to produce the Dryden spectral densities. The results are contained in table 1 which summarizes the transfer functions for each of the three gust components.
2) Equations 64 through 80 were concerned with the probability distribution of the non-gaussian model. Figure 15 presents density and distribution functions attainable with the model.
3) Equations 81 through 128 derived the level crossing frequency of the mode1. The results of this derivation are presented in figures 16 and 17 , which show sets of universal curves from which the level crossing frequency of the model can be derived for any set of parameters.
4) The last part of this section, equations 129 through 138 has discussed the increment distribution of the nongaussian model. The results, presented in figure 18 for a typical case of the longitudinal gust component, show that the non-gaussian model in its present form does not properly model the increment distribution of atmospheric turbulence. The reason for this behavior has been discussed and a possible solution to this problem has been suggested as a topic for further research.

The results presented in the previous section have indicated that the probability distribution and level crossing frequency of the nongaussian model exhibit characteristics very similar to those of single samples of atmospheric turbulence. In this section it will be shown that the model also fits the cumulative probability distributions and cumulative probability of exceedance distributions measured in atmospheric turbulence. In addition, it will be shown that the non-gaussian model fits these data better than the gaussian model.

Experimental Data
The experimental data used here will be a portion of those obtained during the LO-LOCAT project sponsored by the United States Air Force (Ref. 11). Although these data are exclusively from low altitude flight, they were selected for use in this report for two reasons,

1) The large body of data collected during the LO-LOCAT program can be divided into categories on the basis of flight altitude, atmospheric stability, and terrain roughness while retaining a large number of samples in each category. This will permit comparison of the models with turbulence data obtained under quite restricted conditions without the necessity of using small data samples.
2) These data are readily available to anyone wishing to either verify the results presented in this report or extend them to a wider variety of cases.

The disadvantage associated with using only this low altitude data is that any conclusions which might be drawn from them cannot be
generalized to higher altitudes. Further work will be required in order to show the validity of the model at high altitudes.

All of the results presented in this section are based on vertical gusts. Computations for longitudinal and lateral gust components have indicated that the results presented here are representative of all three components.

The data categories used in this section are described in table 2. These particular categories were selected because they represent a wide range of terrain, altitude, and atmospheric stability conditions.
Goodness-of-Fit-Criteria

The object of this section is to compare both the gaussian and non-gaussian models with experimentally measured probability distributions and level crossing frequencies. Before any comparison can be made, however, it will be necessary to define some goodness-of-fit criterion. That is, some objective test which can be used as an indication of how well the theoretical curves of the turbulence models fit the measured data.

A problem arises in the application of standard statistical methods such as the chi-squared or Kolmogorov-Smirnov tests because they require that the experimental data be based on independent samples. Unfortunately, the data of reference 11 which are to be used here are not based entirely on independent samples. Hence these tests are not applicable.

There appears to be no easy solution to this problem. However, for the purposes of this report, it will be possible to avoid this difficulty by assuming that the data can be treated as essentially exact. Any possible differences between the true statistics and the measured

Table 2.--Description of data categories used in this report.

Category	Description
111000	Vertical gust data based on 5,700 kilometers (3,536 statute miles of flight at an altitude of 76 meters (250 feet) above the surface. All data collected during 109 flights over high mountains in very stable atmospheric conditions.
112000	Vertical gust data based on 7,350 kilometers $(4,577$ statute miles) of flight at an altitude of 76 meters (250 feet) above the surface. All data collected during 140 flights over high mountains in stable atmospheric conditions.
113000	Vertical gust data based on 6,800 kilometers $(4,226$ statute miles) of flight at an altitude of 76 meters (250 feet) above the surface. All data collected during 129 flights over high mountains in neutral atmospheric conditions.
121000	Vertical gust data based on 5,800 kilometers $(3,620$ statute miles) of flight at an altitude of 228 meters (750 feet) above the surface. All data collected during 112 flights over high mountains in very stable atmospheric conditions.
122000	Vertical gust data based on 7,800 kilometers $(4,840$ statute miles) of flight at an altitude of 228 meters (750 feet) above the surface. All data collected during 147 flights over high mountains in stable atmospheric conditions.
123000	Vertical gust data based on 5,000 kilometers $(3,122$ statute mites) of fiight at an a titude of 228 meters (750 feet) above the surface. All data collected during 95 flights over high mountains in neutral atmospheric conditions.
413000	Vertical gust data based on 2,900 kilometers (1,811 statute miles) of flight at an altitude of 76 meters (250 feet) above the surface. All data collected during 55 flights over plains in neutral atmospheric conditions.
414000	Vertical gust data based on 2,300 kilometers (1,446 statute miles) of flight at an altitude of 76 meters (250 feet) above the surface. All data collected during 44 flights over plains in unstable atmospheric conditions.

statistics will be ignored. This is a common approach to the analysis of turbulence data (e.g., Ref, 23). This assumption is acceptable in the present work for two reasons.

1) The purpose of this section is only to indicate to the reader that the non-gaussian model produces a better fit of the experimental data than the gaussian model. The results to be presented will show that in every case the gaussian model underestimates the occurrences of the high velocity gusts. Even though this error may or may not be judged statistically significant by one of the standard tests, it is clearly significant for the purposes of aircraft design if it occurs in every case tested. Thus it is contended that a rigorous statistical test of significance is not required for the purposes of this report.
2) As indicated in reference 11, the LO-LOCAT data used here (which were selected for the reasons presented previously in this section) contain some nonstationary effects. Run tests of both the mean and mean square indicated that approximately 30% of the LO-LOCAT turbulence samples could not be accepted as stationary at the 0.02 level of significance. Unfortunately, the models used in this report assume turbulence to be a stationary process. Thus the presence of nonstationary effects in the experimental data can be expected to have some effect on the results to be presented here, and the magnitude of this effect is unknown.

For these reasons, a more careful analysis of the data is not warranted at thịs time.

Since the experimental data are assumed to represent the true statistics of atmospheric turbulence, the problem reduces to one of simple curve fitting. Three goodness-of-fit criteria have been investigated in the research reported here. The first of these is the integral of the squared error,

$$
\begin{equation*}
\varepsilon_{i s e}(R)=\int_{0}^{x \max }\left|F_{d a t a}(x)-F_{\text {mode } i}(x \mid R)\right|^{2} d x \tag{139}
\end{equation*}
$$

where $x_{\max }$ is the highest gust velocity measured. The functions $F_{\text {data }}$ and $F_{\text {model }}$ denote either the cumulative probability of exceedance or the cumulative probability distribution of the data and the model respectively. Note that since the model distribution depends upon the parameter R, the error criterion also depends upon R. The best fit of the experimental data is chosen to be the turbulence model with the value of R which minimizes $\varepsilon_{i s e}$. Note that if setting R to zero minimizes $\varepsilon_{i s e}$ then the gaussian model is the best fit.

The second error criterion investigated was the maximum difference between the experimental data and the model.

$$
\begin{equation*}
\varepsilon_{\max }(R)={\underset{\sim}{\max }}_{0 \leq x \leq x_{\max }}\left|F_{d a t a}(x)-F_{\text {mode }}(x \mid R)\right| \tag{140}
\end{equation*}
$$

The quantities used in this equation are the same as those in equation 139. Again, the best fit of the data is chosen to be the model with that value of R which minimizes $\varepsilon_{\text {max }}$.

Application of both $\varepsilon_{i s e}$ and $\varepsilon_{\max }$ to a number of data samples revealed that both criteria produced essentially identical results. For this reason, and because it is a more difficult test to apply, $\varepsilon_{i s e}$ will not be used in the numerical calculations of this report.

The reader should note that both $\varepsilon_{i s e}$ and $\varepsilon_{\max }$ apply primarily at low gust velocities, where F is large, rather than at high gust velocities, where F is very small. Thus both criteria tend to ignore errors in modeling the occurrences of very high gust velocities and are therefore not ideally suited for determining the best fit of the data for the purposes of aircraft design.

A third criterion, which is more sensitive to the occurrences of high gust velocities, has been studied. This is the maximum absolute difference of logarithms.

$$
{ }^{\varepsilon} \log ^{(R)}=\stackrel{\max }{x} \begin{align*}
& 0 \leq x \leq x_{\max } \tag{141}
\end{align*}\left|\log _{10}\left[F^{F} d a t a(x)\right]-\log _{10}\left[F_{\text {modeZ }}(x \mid R)\right]\right| .
$$

This criterion seems to be quite sensitive to small errors at the high gust velocities and may therefore ignore more serious errors at lower gust velocities. It does however lead to a very good fit of the LO-LOCAT data, especially when plotted on logarithmic scales as is the usual practice.

The above discussion makes it apparent that the two error criteria, $\varepsilon_{\max }$ and $\varepsilon_{l o g}$, emphasize different aspects of the curve fitting problem. For this reason, both criteria will be used in the following tests.

The cumulative probability of exceedance and cumulative probability distribution of the non-gaussian model vertical component were generated according to equations 80 and 128 derived in the previous section of this report. The assumptions involved in these equations will be found in that section. The probability density of σ_{ω} for each case was obtained from distribution functions presented in reference 11.

It was also assumed that the parameter R of the model could be considered constant for each data category. Since these categories are defined by altitude, atmospheric stability, and terrain characteristics, this assumption is equivalent to requiring R to be in some sense determined by these factors. As R is merely a parameter which arises from the manner in which the non-gaussian model is physically interpreted (Fig. 13), there is no difficulty in assigning to it this functional dependence. The explicit form of the dependence is, of course, unknown.

Results were computed numerically for R values of $0.0,0.5,0.75$, $1.0,1.33$, and 2.0. The first of these ($R=0.0$) corresponds to the gaussian turbulence model. The five other cases correspond to the nongaussian model with varying degrees of non-gaussian behavior.

Results

Table 3 presents the computed error criteria $\varepsilon_{\max }$ and $\varepsilon_{10 g}$ for the various data categories and values of R. Error values for the cumulative probability of exceedance and cumulative probability distribution have been summed because the same value of R does not necessarily minimize a given error criterion for both functions simultaneously. In every case the non-gaussian model provides a better fit of the experimental data

Table 3.--Goodness-of-fit criteria for various LO-LOCAT data categories.

Category	Test	Turbulence Model Parameter					
		$R=0.0$ Gaussian	$R=0.5$	$R=0.76$	$R=1.0$	$R=1.33$	$R=2.0$
111000	$\varepsilon_{\text {max }}$	2.5E-1	2.3E-1	2.0E-1	1.6E-1	1.1E-1	$4.8 \mathrm{E}-2$
	$\varepsilon_{\text {log }}$	8.9E 0	4.5E 0	2.7E 0	1.6E 0	9.3E-1	$3.9 \mathrm{E}-1$
112000	$\varepsilon_{\max }$	1.7E-1	$1.6 \mathrm{E}-1$	1.3E-1	1.0E-1	6.0E-2	1.0E-1
	$\varepsilon_{\text {log }}$	5.1E 0	2.5E 0	1.2E 0	$4.3 \mathrm{E}-1$	2.8E-1	$5.8 \mathrm{E}-1$
113000	$\varepsilon_{\max }$	1.2E-1	1.0E-1	$6.9 \mathrm{E}-2$	2.5E-2	4.4E-2	1.4E-1
	${ }^{\varepsilon} \log$	3.0 E 0	1.4E 0	3.1E-1	5.0E-7	$9.8 \mathrm{E}-1$	1.4E 0
121000	$\varepsilon_{\text {max }}$	2.4E-1	2.2E-1	1.9E-1	1.5E-1	9.3E-2	3.1E-2
	${ }^{\varepsilon}$ log	8.0E 0	4.5 E 0	2.8E0	2.0 E 0	1.3E 0	$8.2 \mathrm{E}-1$
122000	$\varepsilon_{\text {max }}$	1.7E-1	1.5E-1	1.2E-1	8.0E-2	4.0E-2	8.4E-2
	${ }^{\varepsilon} \log$	3.8 E 0	2.3E 0	1.2E 0	$6.2 \mathrm{E}-1$	1.8E-1	4.0E-1
123000	$\varepsilon_{\text {max }}$	8.2E-2	$6.5 \mathrm{E}-2$	$3.6 \mathrm{E}-2$	4.1E-2	8.1E-2	1.7E-1
	$\varepsilon_{l o g}$	4.0E 0	2.1E 0	8.2E-1	$2.4 \mathrm{E}-1$	4,9E-1	8.9E-1
413000	$\varepsilon_{\text {max }}$	1.1E-1	9.2E-2	6.0E-2	6,6E-2	1.1E-1	1.9E-1
	${ }^{\varepsilon} \log$	4.0E 0	1.5E 0	1.8E-1	7.3E-1	1.3E 0	1,8E 0
414000	$\varepsilon_{\text {max }}$	4.7E-2	3.2E-2	2.3E-2	$6.1 \mathrm{E}-2$	1,2E-1	2.2E-1
	${ }^{\text {E }}$ Log	5.5 E 0	2.9E 0	1.5E 0	$7.2 \mathrm{E}-1$	$5,9 \mathrm{E}-1$	$8.4 \mathrm{E}-1$

than does the gaussian model, although the best value of R for a given data category depends upon the error criterion used. This is especially true for those data collected over plains. Note, however, (Table 3) that in every case it is possible to choose an R value which simultaneously reduces both criteria below their values for the gaussian model.

Figures 19 and 20 presented on the next several pages compare the experimental data with both the indicated best fit models of table 3 and the gaussian model. It will be noted that in every case the gaussian model underestimates the occurrences of high gust velocities. In general, these results and others not presented here indicate that the two criteria agree much better for the high mountain data than they do for the plains data.

Table 4 summarizes the values of R which yield the best fit of the data for each of the error criteria. These results seem to indicate that the parameter R of the turbulence model may be related to the terrain and stability parameters of the LO-LOCAT data categories. It appears that R increases with atmospheric stability and terrain roughness, but is relatively unaffected by altitude. This result, however, cannot be verified without a much more careful investigation using more data and applying a regression analysis in order to objectively analyze the dependence of R upon the data parameters.

1

Summary

This section has presented a comparison of the gaussian and nongaussian models with experimentally measured cumulative probability of exceedance and cumulative probability distributions of low altitude turbulence. Two simple error criteria have been used to select the best

Figure 19.--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{\max }$ best fit criterion.

Figure 19 (cont.)--Various L0-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{\max }$ best fit criterion.

Figure 19 (cont.)--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{\max }$ best fit criterion.

Figure 19 (cont.)--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{\max }$ best fit criterion.

Figure 20.--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{10 g}$ best fit criterion.

102

Figure 20 (cont.)--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{\log }$ best fit criterion.

LO-LOCAT data category 123000

Figure 20 (cont.)--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{l o g}$ best fit criterion.

Figure 20 (cont.)--Various LO-LOCAT data plotted on both logarithmic and linear scales compared with the gaussian model and the non-gaussian model selected according to the $\varepsilon_{10 g}$ best fit criterion.
values of the parameter R which fit the experimental data. Figures 19 and 20 present the resulting curves. Table 4 lists the values of R which minimize the error for each data category. These R values seem to exhibit a systematic increase with increasing atmospheric stability and terrain roughness. However, this result cannot be verified without a more careful analysis.

The results of this section indicate that the non-gaussian model is a better fit of experimental data than the gaussian model. The conclusion drawn is that the non-gaussian model is a better representation of atmospheric turbulence, at least as far as the modeling of distribution functions and level crossing frequencies for the purposes of aircraft design is concerned.

Table 4.--Values of the turbulence model parameter R which produce best fits of the experimental data.

Data Category	R which Minimizes $\varepsilon_{\text {max }}$	R which Minimizes $\varepsilon_{\text {Zog }}$
111000	2.0	2.0
112000	1.33	1.33
1213000	1.0	0.75
122000	2.0	2.0
413000	0.75	1.33
414000	0.75	1.0

CALCULATION OF NON-GAUSSIAN RESPONSE STATISTICS

The preceding sections of this report have discussed the non-gaussian model in detail and shown that its statistics are consistent with those of experimentally measured turbulence data. The proposed model is of little value, however, if it cannot be used to study vehicle responses to turbulence. The purpose of this section is to investigate some methods by which response statistics of linear vehicles can be found using the nongaussian model. The statistics of particular interest here are:

1) power spectral density
2) probability distribution
3) level crossing frequency.

The assumptions made regarding the nature of the turbulence are the same as those used in defining the non-gaussian model (page 47). The vehicles considered in this report will be required to satisfy the following conditions:

1) they must be stable linear systems
2) their transfer functions must have at least two more poles than zeros
3) their transfer functions must be rational
4) their transfer functions must have no multiple poles. Only the first and second of these conditions is absolutely necessary. The third and fourth conditions are required because they permit simplification of the computer programs which will be used in the next section of this report. These two conditions could therefore be removed by writing more general programs.

The following discussion will first center on some standard techniques by which the above mentioned statistics might be calculated for responses to single components of the non-gaussian model. It will be shown that these methods are not entirely suitable for finding probability distributions or level crossing frequencies. Attention will then be turned to an approximate method of computing these statistics from the eigenvalues and eigenfunctions of a certain unsymmetric kernet. The problem of responses caused by two or all three components of the nongaussian model will then be briefly discussed.

Standard Solution Techniques

Figure 21 shows the combined turbulence model-vehicle system which is to be analyzed. Note that this system is linear throughout with the exception of the single multiplication. It is this single nonlinearity which creates difficulties in response calculations. Now consider some standard techniques by which the three response statistics listed above might be computed.

Figure 21.--Block diagram of the turbulence modelvehicle system which is to be analyzed in order to determine vehicle response statistics.

Power Spectral Density

Since the vehicle is assumed to be a linear system, and since the power spectral density of the turbulence time history is assumed known (Eq. 4, 5, or 6), the power spectral density of the vehicle response can be found from the well known input - output spectral relationship for linear systems (Ref. 38).

$$
\begin{equation*}
\phi_{\varphi P}(\Omega)=|H(i U \Omega)|^{2} \Phi_{g g}(\Omega), \tag{142}
\end{equation*}
$$

where $H(s)$ is the transfer function relating the input $g(t)$ to the output $r(t)$. The calculation of response power spectral densities will therefore not present any difficulty, and will not be discussed further in this section.

Response Distribution and Level Crossing Frequency

The calculation of response distribution functions and level crossing frequencies provides somewhat more of a challenge than did the power spectral density discussed above. Two commonly used techniques are mentioned here as practical methods which may have application in some cases.

The first method discussed will be simutation. This is the direct approach to the problem of calculating response statistics, and may be the most convenient method of dealing with the non-gaussian model for many applications. Just as the name of this method suggests, the entire turbulence model - vehicle system is programmed on an analog or digital computer and the vehicle is "flown" through many miles of turbulence while its responses are recorded. After a sufficient amount of data have been collected, estimates are made of the response statistics.

The simulation method has both advantages and disadvantages. Among its advantages is the fact that it can be used to study both linear and nonlinear vehicles. It can also be applied to nonstationary problems such as the evaluation of control requirements during landing approaches. The disadvantage of this method is that it does not readily yield results concerning rare events such as encounters with very high velocity gusts. The computer time required to estimate these occurrences may be prohibitive.

The simulation approach to response calculations may thus be a very useful technique in some cases, but it is not a convenient method of estimating the occurrences of rare events. Thus it will probably not be satisfactory when information on the tails of the probability distribution or level crossing frequency is sought.

The second method of computing response statistics is the GramCharlier expansion. This is a technique for expanding probability density functions in an orthogonal series of Hermite polynomials. The method can be applied to both one-and two-dimensional density functions, and so could be used to obtain the density function of the response, as well as the joint density function of the response and its first derivative. The first of these is equivalent to the response distribution function, and the second can be used (through Eq. 81) to determine the response level crossing frequency. This method could, at least in principle, be used to obtain the response statistics which are of interest here.

Unfortunately, the Gram-Charlier technique cannot be applied in all cases because the coefficients of the expansion become very difficult to calculate if more than the first two or three terms are required.

Consequently, this method is only useful if a very minimal number of terms is needed. Since the first term of the expansion turns out to be the gaussian density function, it follows that the Gram-Charlier technique is useful only when the density function being expanded is very nearly gaussian. The method also becomes impractical if the tails of the distribution to be expanded do not decay as rapidly as those of the gaussian density function.

On the basis of preliminary analysis it appears that in many cases the non-gaussian turbulence model will produce response density functions which require an unreasonable number of terms to converge. Table 5 shows the number of terms required to expand the density function of the model itself for various values of the parameter R. The shape of these density functions can be inferred from figure 15 on page 61. These results make it clear that any distribution which differs from gaussian by more than a slight degree will not be suitable for analysis by the Gram-Charlier technique.

Table 5.--Number of non-zero terms of Gram-Charlier expansion required to represent density functions of the non-gaussian model to various accuracies over the range of zero to six standard deviations.

ACCURACY	MODEL PARAMETER R			
	.1	.15	.2	.25
$\pm 10 \%$	1	2	4	5
$\pm 20 \%$	1	1	3	5
$\pm 50 \%$	1	1	2	3

In the following parts of this section, an expansion method will be derived which works best in the case of a strongly non-gaussian response. This new method will thus compliment the Gram-Charlier expansion as a suitable technique for finding response statistics. Furthermore, unlike the Gram-Charlier technique, it can be shown that this expansion has the characteristic of approximating the tails of the distribution very well, even when only a few terms are used.

The Gram-Charlier method will not be discussed further in this report. However, references 24 and 46 provide good descriptions of the technique and its use in computing one- and two-dimensional density functions.

Decomposition of Response

The above remarks have considered two well known methods of dealing with system responses to non-gaussian inputs, and pointed to some of the shortcomings of each. A method will now be developed which specifically treats the response of linear systems to the non-gaussian turbulence model. Before beginning the derivation of this new method, however, some introductory remarks are in order.

Consider again the turbulence model - vehicle system of figure 21. Since the vehicle is assumed to be linear, the system can be redrawn as shown in figure 22. Note that the definition of $g(t)$ in this figure differs from that used previously. The process g is now gaussian because a gaussian process remains gaussian when passed through a linear filter. The process $k(t)$ on the other hand is the result of passing $d(t)$, which has a K_{o} probability density (Fig. 12), through a linear filter. In general, the distribution of $k(t)$ is unknown. The total vehicle response,

Figure 22.--Turbulence model - vehicle system with the vehicle response decomposed into gaussian and non-gaussian parts.
$r(t)$, is the sum of $g(t)$ and $k(t)$. Figure 22 has thus shown how the response of the vehicle can be decomposed into gaussian and non-gaussian parts.

Approximate Solution for Response Probability Distribution Function

Figure 22 has shown that the vehicle response can be written as a sum of independent gaussian and non-gaussian parts. This immediately suggests the possibility of finding the distribution function of the response from its characteristic function. The steps in this procedure are:

1) find the characteristic function of the gaussian portion of the response, ϕ_{g}
2) find the characteristic function of the non-gaussian portion of the response, ϕ_{k}
3) multiply ϕ_{g} and ϕ_{k} to obtain the characteristic function of the total response, ϕ_{r}
4) inverse Fourier transform ϕ_{r} to obtain the density function of the response, $p_{\boldsymbol{r}}$.
The explicit parameter dependence notation used in previous discussions of characteristic functions and probability distributions will not be used in this section in order to simplify notation. The reader should be aware, however, that the results obtained here depend upon the parameters of the turbulence model as well as the dynamic characteristics of the vehicle.

As the first step in determining the response distribution function, the characteristic function of the gaussian portion of the response will be found. Recall the definition of the characteristic function used in this report (Eq. 72). For the gaussian portion of the response, the result is

$$
\begin{equation*}
\phi_{g}(f)=\exp \left[-2\left(\pi \sigma_{e} f\right)^{2}\left(1+R^{2}\right)^{-1}\right] \tag{143}
\end{equation*}
$$

The standard deviation appearing in this expression, σ_{e}, can be found from the power spectral density of the response, equation 142. This completes the first step of the derivation.

Now consider the characteristic function of $k(t)$. Two very important assumptions will be made concerning this process. It is almost certain that neither of these assumptions is necessary in order to obtain the results presented here; however, their use will greatly simplify the derivation of these results.

1) It is assumed that negligible error will occur in the response statistics if the bandwidth of the white noise sources in figure 22 is fixed at some very high but finite limit as
shown in figure 23. By virtue of the second assumption regarding the vehicle transfer functions, only vehicles which act as low pass or band pass filters will be considered in this report. Furthermore, the filters used in the turbulence model itself (Table l) are either low pass or band pass, Consequently, even when the nonlinear nature of the system is taken into account, it is clear that it will always be possible to select a value of Ω_{c} (e.g., 10^{10} or 10^{100}) such that the variance of the response and its first derivative will not be significantly affected by further increase of the noise bandwidth. In view of this, it is reasonable to expect that the response probability distribution and level crossing frequency will also be unaffected by increases in bandwidth.

Figure 23.--Power spectral density of band limited gaussian white noise.
2) It is also assumed that the impulse response functions of the filters appearing in figure 22 can be truncated at some very large value of their argument, as shown in figure 24, without causing significant error in the vehicle response. This seems quite reasonable in view of the fact that the impulse response functions
of the vehicle and the turbulence model filters all decay exponentially, If this assumption were not true, it would follow that the response of the vehicle depended to a significant degree upon the infinite past. Thus the response could never reach a state of statistical equilibrium, and the assumption of stationarity which has been made throughout this report would not be valid.

Figure 24.--Truncated impulse response function.

Once these two assumptions have been made, the eigenvalue expansion of the response distribution function follows quickly from a certain theorem due to Schmidt which will be stated shortly.

Consider again figure 22. From linear system theory it follows that the response time history $k(t)$ can be written as the iterated integral
$k(t)=\frac{R}{\left(1+R^{2}\right)^{1 / 2}} \iint_{-\infty}^{\infty} \int_{v} h_{v}(\delta) h_{a}\left(\alpha^{\prime}\right) h_{b}\left(\beta^{\prime}\right) \eta_{a}\left(t-\delta-\alpha^{\prime}\right) \eta_{b}\left(t-\delta-\beta^{\prime}\right) d \alpha^{\prime} d \beta^{\prime} d \delta$.

Now, because of the first assumption above limiting the bandwidth of
η_{a} and η_{b}, it follows (Ref. 47, page 170) that these processes are continuous with probability one. The integrand of equation 144 is therefore integrable and, by Fubini's theorem (Ref. 48), the order of integration can be freely interchanged. Substitute the change of variables

$$
\begin{align*}
& \alpha=t-\alpha^{\wedge} \tag{145}\\
& \beta=t-\beta^{\wedge}
\end{align*}
$$

and integrate with respect to δ. The resulting expression for $k(t)$ is

$$
\begin{equation*}
k(t)=R\left(1+R^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} \eta_{a}(t-\alpha)\left\{\int_{-\infty}^{\infty} \eta_{b}(t-\beta) h(\alpha, \beta) d \beta\right\} d \alpha \tag{146}
\end{equation*}
$$

where the integration with respect to β is arbitrarily chosen to be performed first, and the kernel $h(\alpha, \beta)$ is given by

$$
\begin{equation*}
h(\alpha, \beta)=\int_{-\infty}^{\infty} h_{v}(\delta) h_{a}(\alpha-\delta) h_{b}(\beta-\delta) d \delta \tag{147}
\end{equation*}
$$

Note that for the vertical and lateral components of the turbulence model, the impulse response functions h_{a} and h_{b} are not identical, thus $h(\alpha, \beta)$ is not generally symmetric.

As a consequence of the second assumption above concerning truncation of the impulse response functions, $h(\alpha, \beta)$ is non-zero only if α and β satisfy the condition

$$
\begin{equation*}
0 \leq \alpha, \beta \leq t_{c}, \tag{148}
\end{equation*}
$$

where $t_{c} / 2$ is the truncation time defined in figure 24 . Because $h(\alpha, \beta)$ is zero whenever α or β does not satisfy equation 148 , it follows that finite 1 imits of integration can be used in equation 146.

Now consider Schmidt's theorem concerning integral equations with unsymmetric kernels (Ref. 49, 50). This theorem states that every function q having one of the two forms

$$
\begin{align*}
& q(\alpha)=\int_{\xi} h(\alpha, \beta) \eta(\beta) d \beta \tag{149}\\
& q(\beta)=\int_{\xi} h(\alpha, \beta) \eta(\alpha) d \alpha \tag{150}
\end{align*}
$$

where ξ is a finite interval, is the sum of its uniformly and absolutely convergent Fourier series with respect to the orthonormal system $\psi_{n}(\alpha)$ in the first case and with respect to the orthonormal system $\chi_{n}(\beta)$ in the second case. The functions ψ_{n} and χ_{n} are defined by the eigenfunction relationships

$$
\begin{align*}
& \lambda_{n}^{2} \psi_{n}(\alpha)=\iint_{\xi}\left\{\int_{\xi} h(\alpha, \delta) h(\beta, \delta) d \delta\right\} \psi_{n}(\beta) d \beta \quad n=1,2, \ldots \tag{151}\\
& \lambda_{n}^{2} \chi_{n}(\beta)=\iint_{\xi}\left\{\int_{\xi} h(\delta, \alpha) h(\delta, \beta) d \delta\right\} \chi_{n}(\alpha) d \alpha \quad n=1,2, \ldots ; \tag{152}
\end{align*}
$$

and are related to each other by the equations

$$
\begin{align*}
& \lambda_{n} \psi_{n}(\alpha)=\int_{\xi} h(\alpha, \beta) x_{n}(\beta) d \beta \quad n=1,2, \ldots \tag{153}\\
& \lambda_{n} x_{n}(\alpha)=\int_{\xi} h(\alpha, \beta) \psi_{n}(\alpha) d \alpha \quad n=1,2, \ldots \tag{154}
\end{align*}
$$

The two sets of functions $\psi_{n}(\alpha)$ and $\chi_{n}(\beta)$ are known as the adjoint eigenfunctions of the kernel $h(\alpha, \beta)$, and the constants λ_{n} are said to be the eigenvalues of the kernel.

Schmidt's theorem holds if the following conditions are satisfied:

1) the functions $h(\alpha, \beta)$ and $h(\alpha, \beta)^{2}$ are integrable
2) the integrals $\int h(\alpha, \beta)^{2} d \alpha$ and $\int h(\alpha, \beta)^{2} d \beta$ are bounded

3) the functions η and η^{2} are integrable,
All three of these conditions are satisfied for the inner integral of equation 146. The first and second conditions will always be satisfied by the well behaved linear systems of this report. The third condition is satisfied because of the bandlimited nature of the white noise functions (Ref. 47, page 170).

The set of eigenvalues λ_{n} is assumed to be ordered according to decreasing magnitude. It is also necessary that they satisfy Bessel's inequality,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}^{2} \leq \iint_{\xi} h(\alpha, \beta)^{2} d \alpha d \beta \tag{155}
\end{equation*}
$$

Schmidt's theorem will be applied to the inner integral of equation 146. Before doing so, however, it is useful to make the following observation. Note that equation 146 expresses k as a function of time. Since k is a stationary process however, its statistical properties cannot depend upon the time at which they are evaluated, Thus, for the purposes of calculating the probability distribution and level crossing frequency of $k(t)$, it must be permissible to fix t at any desired value. The value chosen in this report is zero. Therefore, upon taking equation 148 into account, equation 146 can be written

$$
\begin{equation*}
k(0)=R\left(1+R^{2}\right)^{-1 / 2} \int_{0}^{t} n_{a}(-\alpha)\left\{\int_{0}^{t} \eta_{b}^{c}(-\beta) \hbar(\alpha, \beta) d \beta\right\} d \alpha \tag{156}
\end{equation*}
$$

This is the equation to which Schmidt's theorem will be applied.
According to the theorem, the bracketed integral of equation 156 can be expressed as ansolutely and uniformly convergent series.

$$
\begin{equation*}
\int_{0}^{t_{c}^{c}} \eta_{b}(-\beta) h(\alpha, \beta) d \beta=\sum_{n=1}^{\infty} \psi_{n}(\alpha) \int_{0}^{t_{c}} \int_{0} h(\delta, \beta) n_{b}(-\beta) \psi_{n}(\delta) d \beta d \delta \tag{157}
\end{equation*}
$$

All functions are continuous on $\left[0, t_{c}\right]$, so the order of integration can be interchanged and integration with respect to δ carried out first. By equation 154, the result is

$$
\begin{equation*}
\int_{0}^{t} \eta_{b}(-\beta) h(\alpha, \beta) d \beta=\sum_{n=1}^{\infty} \lambda_{n} \psi_{n}(\alpha) \int_{0}^{t} \eta_{b}(-\beta) x_{n}(\beta) d \beta \tag{158}
\end{equation*}
$$

Equation 158 can be substituted into equation 156 and, because the series is absolutely and uniformly convergent, integration with respect to α can be carried out term by term. The result is

$$
\begin{equation*}
k(0)=R\left(1+R^{2}\right)^{-1 / 2} \sum_{n=1}^{\infty} \lambda_{n} A_{n} B_{n}, \tag{159}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{n}=\int_{0}^{t} \eta_{a}^{c}(-\alpha) \psi_{n}(\alpha) d \beta \tag{160}\\
& B_{n}=\int_{0}^{t} \eta_{b}(-\beta) x_{n}(\beta) d \beta \tag{161}
\end{align*}
$$

A_{n} and B_{n} are random variables with the following properties

1) A_{n} and B_{n} are normally distributed because they are linear transformations of gaussian processes.
2) The mean value of each A_{n} and B_{n} is zero.
3) All A_{n} are independent of all B_{n} because n_{α} is independent of n_{b}.
4) For all n and m the correlation of A_{n} with A_{m} and B_{n} with B_{m} is given by

$$
\begin{align*}
E\left\{A_{n} A_{m}\right\}= & \iint_{0}^{t_{c}} \psi_{n}(\alpha) \psi_{m}(\beta) C_{\eta_{a} \eta_{a}}(\alpha-\beta) d \alpha d \beta \tag{162}\\
E\left\{B_{n} B_{m}\right\}= & \iint_{0}^{c} x_{n}(\alpha) x_{m}(\beta) C_{\eta_{b} \eta_{b}}(\alpha-\beta) d \alpha d \beta \tag{163}
\end{align*}
$$

where $c_{\eta_{a} \eta_{a}}$ and $c_{\eta_{b} \eta_{b}}$ are the correlation functions of η_{a} and η_{b} respectively.

At this point a further approximation is introduced. Equation 159 expresses the non-gaussian portion of the vehicle response at an arbitrary instant ($t=0$) as an infinite summation of random variables. In order to apply this equation to the practical evaluation of the response density function, it is going to be necessary to evaluate the eigenvalues, λ_{n}. Clearly it is unreasonable to expect to be able to evaluate more than the first few of these. Consequently, if equation 159 is to be of any practical use, it will be necessary that only the first few terms of the series be significant. Results to be derived shortly will show that the variance of the random variables A_{n} and B_{n} is approximately unity,
and therefore the terms of equation 159 will decrease rapidly only if the eigenvalues decrease very rapidly. It will be assumed that this is the case.

Should this assumption prove invalid for some particular vehicle, it would follow that k could be represented by a summation of random variables with variances of comparable magnitude. These variables would be independent; and, though not identically distributed, it would not be unreasonable to expect that their sum would be nearly gaussian. In such a case the vehicle response would be almost gaussian, and the Graham-Charlier expansion mentioned earlier in this section would be a promising method of approach.

Under the assumption that only a few terms of the expansion are required to adequately represent k, equation 159 becomes

$$
\begin{equation*}
k(0)=R\left(1+R^{2}\right)^{-1 / 2} \sum_{n=1}^{N} \lambda_{n} A_{n} B_{n} . \tag{164}
\end{equation*}
$$

This assumption will also permit it to be shown that the random variables A_{n} and B_{n} can be considered independent and $(0,1)$ normal.

Consider the correlation of A_{n} with A_{m}, equation 162. The correlation function of η_{a} can be written as the Fourier transform of its power spectral density. Noting the form of $\Phi_{\eta_{a} \eta_{a}}$ shown in figure 22, and using the transformation presented in equation 38 , this relationship becomes

$$
\begin{equation*}
c_{n_{a} n_{a}}(\tau)=\int_{-\Omega_{c}}^{\Omega_{c}} \exp (i U \Omega \tau) d \Omega \tag{165}
\end{equation*}
$$

Substitution of this result into equation 162 and interchange of the order
of integration gives

$$
\begin{equation*}
E\left\{A_{n} A_{m}\right\}=\int_{-\Omega_{c}}^{\Omega}\left\{\int_{0}^{t} \psi_{n}(\alpha) \exp (i \cup \Omega \alpha) d \alpha\right\}\left\{\int_{0}^{t} \psi_{m}(\beta) \exp (-i U \Omega \beta) d \beta\right\} d \Omega \tag{166}
\end{equation*}
$$

where it is assumed that ψ_{n} and ψ_{m} are zero outside of the interval [$0, t_{c}$]. The bracketed terms of equation 166 can be identified as the Fourier transform of ψ_{n} and ψ_{m}.

Inspection of the kernel defined in equation 147 will now show that $h(\alpha, \beta)$ is zero if either α or β is zero, but $h\left(t_{c}, \beta\right)$ and $h\left(\alpha, t_{c}\right)$ are not necessarily zero. It follows therefore from equation 151 that $\psi_{n}(0)$ is equal to zero, but $\psi_{n}\left(t_{e}\right)$ is not necessarily zero. Thus $\psi_{n}(\alpha)$ and $\psi_{m}(\beta)$ in equation 166 are continuous everywhere except possibly at the points α and β equal to t_{c}. At these points, ψ_{n} and ψ_{m} may exhibit a simple step discontinuity. The theory of Fourier transforms (Ref. 51) then requires that the absolute value of the Fourier transforms appearing in equation 166 must decrease at least as rapidly as Ω^{-1} for large Ω. The product of transforms must therefore decrease at least as rapidly as Ω^{-2}. Thus, for all possible combinations of the indices n and m bounded by N, it must be possible to choose a single, finite value of Ω_{c} such that $E\left\{A_{n} A_{m}\right\}$ differs arbitrarily little from equation 166 with Ω_{c} replaced by infinity Equation 166 therefore reduces to

$$
\begin{equation*}
E\left\{A_{n} A_{m}\right\} \doteq \int_{0}^{t} \psi_{n}(\alpha) \psi_{m}(\alpha) d \alpha \tag{167}
\end{equation*}
$$

Since the functions ψ_{n} and ψ_{n} are orthonormal, it follows that

$$
E\left\{A_{n} A_{m}\right\} \triangleq\left\{\begin{array}{lll}
1 & \text { if } & n=m \tag{168}\\
0 & \text { if } & n \neq m
\end{array}\right.
$$

A completely analogous result holds for equation 163.
Equation 168, along with the other properties of A_{n} and B_{n} listed previously, implies that the A_{n} and B_{n} or equation 164 can be assumed to be independent normal random variables with zero mean value and unit variance, It has been shown previously in this report that the product of independent gaussian random variables has a K_{0} probability distribution (Eq. 70). Hence, each term of equation 164 is a random variable with a density function of the form

$$
\begin{equation*}
p_{n}(x)=\frac{1}{\pi \sigma_{n}} K_{o}\left(\frac{|x|}{\sigma_{n}}\right) \quad n=1,2, \ldots, N, \tag{169}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{n}^{2}=E\left\{\left(R \lambda_{n} A_{n} B_{n}\right)^{2}\left(1+R^{2}\right)^{-1}\right\}=\left(R \lambda_{n}\right)^{2}\left(1+R^{2}\right)^{-1} \tag{170}
\end{equation*}
$$

The reader will now recall that the object of all this is to obtain an approximate expression for the characteristic function of the nongaussian portion of the vehicle response. It has just been shown that this response can be represented as a finite summation of independent random variables; therefore, the characteristic function in question must be given by a product of characteristic functions, one for each term of equation 164. It follows from equations 73,169 , and 170 that each term of this product is of the form

$$
\begin{equation*}
\phi_{n}(f)=\left[1+\left(2 \pi R \lambda_{n} f\right)^{2}\left(1+R^{2}\right)^{-1}\right]^{-1 / 2}, \tag{171}
\end{equation*}
$$

and the characteristic function of k is

$$
\begin{equation*}
\phi_{k}(f)=\prod_{n=1}^{N}\left[1+\left(2 \pi R \lambda_{n} f\right)^{2}\left(1+R^{2}\right)^{-1}\right]^{-1 / 2} . \tag{172}
\end{equation*}
$$

This completes the second step of the response density function derivation.

The characteristic function of the total vehicle response is now obtained by multiplying equations 143 and 172.

$$
\begin{equation*}
\phi_{r}(f)=\exp \left[-2\left(\pi \sigma_{e} f\right)^{2}\left(1+R^{2}\right)^{-1}\right] \prod_{n=1}^{N}\left[1+\left(2 \pi R \lambda_{n} f\right)^{2}\left(1+R^{2}\right)^{-1}\right]^{-1 / 2} \tag{173}
\end{equation*}
$$

This completes the third step of the derivation. The density function of r can now be found by numerically Fourier transforming equation 173. Program PDIST presented in Appendix A of this report performs this calculation.

Computer programs EIGU and EIGVW, which will also be found in Appendix A can be used to obtain the eigenfunctions and eigenvalues of the vehicle response to the longitudinal gust component and to the lateral and vertical gust components respectively. Note from equations 151 and 152 that, since the function $h(\alpha, \beta)$ is symmetric for the longitudinal gust case, the orthonormal sets ψ_{n} and x_{n} will be identical. Thus program EIGU computes only one set of eigenfunctions. The eigenvalues obtained from either EIGU or EIGVW can then be used in program PDIST to obtain the probability density and distribution function of the vehicle
response. The next section of this report will present a numerical example showing the application of these programs.

Approximate Solution for Response Level
 Crossing Frequency

Recall from equation 81 that the level crossing frequency of a stochastic process can be found from a knowledge of the joint distribution of the process and its derivative,

$$
\begin{equation*}
N_{r}(x)=\int_{0}^{\infty} \dot{x} p_{r, \dot{x}}(x, \dot{x}) d \dot{x} \tag{174}
\end{equation*}
$$

The reader should note that the explicit parameter dependence notation used in earlier sections of this report is not used here in order to simplify notation. The results presented here will, of course, depend upon the parameters of the turbulence model as well as the dynamic characteristics of the vehicle.

Previously in this section it was shown that the distribution function of the response could be approximated by means of a characteristic function approach. It will now be shown that the joint distribution of the response and its derivative can be approximated by an analogous procedure. The steps to be followed are:

1) obtain the joint characteristic function of the gaussian portion of the response and its derivative, $\phi_{g, \dot{g}}$
2) obtain the joint characteristic function of the non-gaussian portion of the response and its derivative, $\phi_{k, k}$
3) multiply these results to obtain the joint characteristic function of the complete response and its derivative, $\phi_{r,}, \dot{r}$
4) inverse Fourier transform to obtain the joint density of the response and its derivative, $p_{r, \dot{r}}$
5) apply equation 174 to obtain the level crossing frequency of the response, $N_{r}(x)$.

Refer to figure 22 and note that the derivative of the response can be obtained by merely replacing the vehicle transfer function $H_{v}(s)$ with $s H_{v}(s)$.

The joint characteristic function of the gaussian portion of the response and its derivative can be found immediately.

$$
\begin{equation*}
\phi_{g,} \cdot \dot{g}\left(f_{1}, f_{2}\right)=\exp \left\{-2\left(1+R^{2}\right)^{-1}\left[\left(\pi \sigma_{e} f_{1}\right)^{2}+\left(\pi \sigma_{e} f_{2}\right)^{2}\right]\right\} \tag{175}
\end{equation*}
$$

where the standard deviations can be obtained from the power spectral density of $e(t)$. This completes the first step of the derivation.

The joint characteristic function of k and k will now be approximated by extending the results obtained above for the characteristic function of k alone. By equation $164, k$ can be represented as a finite summation of random variables.

$$
\begin{equation*}
k(0)=R\left(1+R^{2}\right)^{-1 / 2} \sum_{n=1}^{N} \lambda_{n} A_{n} B_{n} \tag{176}
\end{equation*}
$$

It will now be assumed that a similar approximation applies to \dot{k},

$$
\begin{equation*}
\dot{k}(0)=R\left(1+R^{2}\right)^{-1 / 2} \sum_{m=1}^{M} \Lambda_{m} C_{m} D_{m}, \tag{177}
\end{equation*}
$$

where Λ_{m} are the eigenvalues of the kernel analogous to $h(\alpha, \beta)$ of equation 147; and C_{m}, D_{m} are $(0,1)$ normal, independent random variables. The adjoint eigenfunctions of the \dot{k} kernel are assumed to be $\Psi_{m}(\alpha)$ and $X_{m}(\beta)$. 'It is further assumed that the noise bandwidths, Ω_{c} of figure 23, and the impulse response truncation times, $t_{c} / 2$ of figures 24 , are identical for both k and \dot{k}.

Now even though all of the random variables A_{n} and B_{n} are mutually independent, and all of the random variables C_{m} and D_{m} are mutually independent, it is readily verified that the variables A_{n} are correlated with the variables C_{m} and likewise for the variables B_{n} and D_{m}. These correlations can be shown to be

$$
\begin{align*}
& E\left\{A_{n} C_{m}\right\}=\int_{0}^{t} \psi_{n}(\alpha) \Psi_{m}(\alpha) d \alpha \tag{178}\\
& E\left\{B_{n} D_{m}\right\}=\int_{0}^{t} e_{n}^{c} x_{n}(\beta) X_{m}(\beta) d \beta . \tag{179}
\end{align*}
$$

In order to derive an approximate expression for the joint characteristic function of k and \dot{k} it is convenient to introduce the following notation.

$$
\left.\begin{array}{l}
\bar{A}=\left[\begin{array}{lllll}
A_{1} A_{2} & \ldots A_{N} C_{1} C_{2} & \ldots & C_{M}
\end{array}\right]^{T} \\
\bar{B}=\left[B_{1} B_{2} \ldots B_{N} D_{1} D_{2} \ldots D_{M}\right. \tag{181}
\end{array}\right]^{T} .
$$

$$
\begin{align*}
& \tilde{A}=E\left\{\bar{A} \bar{A}^{T}\right\} \tag{182}\\
& \tilde{B}=E\left\{\bar{B} \bar{B}^{T}\right\} \tag{183}
\end{align*}
$$

Since the elements of \bar{A} are independent of those in \bar{B}, it follows that the joint density of all the random variables in both \bar{A} and \bar{B} is given by

$$
\begin{equation*}
p_{\bar{A}, \bar{B}}(\bar{x}, \bar{y})=p_{\bar{A}}(\bar{x}) p_{\bar{B}}(\bar{y}), \tag{184}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\bar{A}}(\bar{x})=\left[(2 \pi)^{\frac{M+N}{2}} \operatorname{det}(\tilde{A})\right]^{-1} \exp \left[-\bar{x}^{T}\left(\frac{1}{2} \tilde{A}^{-1}\right) \bar{x}\right], \tag{185}
\end{equation*}
$$

and a similar expression applies to $p_{\bar{B}}$. The joint characteristic function of k and \dot{k} is defined to be

$$
\begin{equation*}
\phi_{k, k}\left(f_{1}, f_{2}\right)=E\left\{\exp \left(i 2 \pi k f_{1}+i 2 \pi \dot{k} f_{2}\right)\right\} . \tag{186}
\end{equation*}
$$

Substitution for k and k from equations 176 and 177 gives

$$
\begin{equation*}
\phi_{k, k} \dot{k}^{\left(f_{1}, f_{2}\right)=E\left\{\exp \left(\bar{A}^{T} \tilde{C} \bar{B}\right)\right\}} \tag{187}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{c}=i 2 \pi R\left(1+R^{2}\right)^{-1 / 2}\left[\operatorname{diag}\left(f_{1} \lambda_{1}, \ldots, f_{1} \lambda_{N}, f_{2} \Lambda_{1}, \ldots, f_{2} \Lambda_{M}\right)\right] . \tag{188}
\end{equation*}
$$

The joint characteristic function $\phi_{k, j}$ can now be written in the integral form

$$
\begin{equation*}
\phi_{k,} \dot{k}\left(f_{1}, f_{2}\right)=\int_{-\infty}^{\infty}[2(M+N)] \int_{-\infty}^{\infty} \exp \left(\bar{x}^{T} \tilde{C} \bar{y}\right) p_{\bar{A}}(\bar{x}) p_{\bar{B}}(\bar{y}) d \bar{x} d \bar{y}, \tag{189}
\end{equation*}
$$

This expression can be integrated numerically to obtain the value of $\phi_{k . \dot{k}}$ for any choice of f_{1} and f_{2}. This completes the second step of the derivation.

The third, fourth, and fifth steps of the derivation are carried out by multiplying equations 175 and 189, applying a two-dimensional Fourier transform, and then integrating as indicated in equation 174. Program RLEVX, presented in Appendix A of this report performs all of the computations described here including the evaluation of the covariance matrices, equations 182 and 183. Use of this program in connection with the eigensolution programs EIGU and EIGVW as shown in the next section of this report thus provides an automated method of computing the level crossing frequency of a linear response to the non-gaussian turbulence model. This completes the discussion of the level crossing problem.

Response to Multiple Inputs

The above remarks have all dealt with the case of a single component of the turbulence model. Because the three components of the model are independent processes, however, these results can be easily extended to include the case of a vehicle disturbed simultaneously by two or all three gust components.

Recall that the three quantities of interest are the response power spectral density, distribution function, and level crossing frequency. The power spectral density of a linear response to several independent inputs is merely the sum of the spectral densities due to each input
alone. Equation 142 can therefore be used to calculate a power spectrum for the response to each gust component and the total response power spectrum found by summing.

The distribution function of the response to multiple inputs can be found through its characteristic function, Since the response to each gust component is an independent process, the characteristic function of the total response will merely be the product of the characteristic functions corresponding to each component. Thus equation 173 could be used to find the characteristic function of the response to each component of the turbulence model, and the characteristic function of the total response found by multiplying. This product could then be Fourier transformed to yield the required distribution function.

A similar argument applies to the determination of response level crossings, In this case it is the joint characteristic function of the total response and its derivative which are found by multiplying the joint characteristic functions corresponding to each gust component alone. The joint density of the response and its derivative are then obtained by Fourier transforming, and equation 174 is used to calculate the level crossing frequency.

Summary

This section has investigated the response of a linear vehicle to the proposed non-gaussian turbulence mode1. An expression for the power spectral density of the response has been presented (Eq. 142), and approximate numerical procedures have been suggested for computing the response distribution function (Eq, 143 through 173) and level crossing frequency (Eq. 174 through 189). Finally, the problem of calculating
response statistics induced by simultaneous gust components has been briefly discussed. In the next section of this report, the techniques developed above will be used to calculate the responses of an aircraft autopilot system to the non-gaussian model.

NUMERICAL EXAMPLE

The previous section of this report has derived techniques which can be used to calculate the power spectral density, probability distribution, and level crossing frequency of a linear response to the proposed nongaussian turbulence model. The purpose of this section is to illustrate the application of these techniques to a simple problem, and to compare the results with those obtained using the gaussian model. The computer programs mentioned will be found in Appendix A of this report.

Problem Statement

The aircraft to be studied is a STOL vehicle in cruising flight. Altitude is controled by a simple autopilot system using altitude error, its integral, and its derivative in a feedback loop driving the elevator so as to return the aircraft to the commanded altitude.

It is supposed that this aircraft - autopilot system is perturbed by the vertical component of the non-gaussian model, and it is desired to investigate the deviations from the commanded cruise altitude which the system experiences. The power spectral density, probability distribution, and level crossing frequency of the altitude error are to be calculated.

> Model of the Vehicle

As mentioned above, the aircraft considered here is a STOL vehicle in cruising flight. The commanded altitude is 305 meters (1,000 feet) above sea level, and the true airspeed in equilibrium flight is 76 meters per second (249.7 feet per second). The transfer function of the altitude error due to vertical gust disturbances for this particular
aircraft-autopilot system is

$$
\begin{equation*}
\frac{z}{w}(s)=\frac{40.92[s][s+(.0363 \pm, 2083 i)][s+2.912]}{[s+(.0443 \pm .0131 i)][s+(.3035 \pm .2908 i)][s+(2.112 \pm 2.404 i)]}, \tag{190}
\end{equation*}
$$

where the notation $[s+(a \pm i b)$] has been used to indicate complex conjugate pairs of poles or zeros. Note that this transfer function satisfies all of the conditions stated at the beginning of the previous section (page 106). The derivative of the altitude error is

$$
\begin{equation*}
\frac{\dot{z}}{w}(s)=s \frac{\tilde{Z}}{w}(s) \tag{191}
\end{equation*}
$$

In order to apply the computer programs presented in the appendix of this report, it will be necessary to express these two transfer functions in partial fraction form.

$$
\begin{align*}
& \frac{z}{w}(s)=\frac{[-1.946 \pm 5.538 i]}{[s+(.0443 \pm .0131 i)]}+\frac{[-4.016 \pm 8.026 i]}{[s+(.03035 \pm .2908 i)]} \\
& +\frac{[5.964 \mp 4.816 i]}{[s+(2.112 \pm 2.404 i)]} \tag{192}\\
& \frac{\dot{z}}{\omega}(s)=\frac{[.158 \mp .220 i]}{[s+(.0443 \pm .0131 i)]}+\frac{[3.552 \mp 1.268 i]}{[s+(.3035 \pm .2908 i)]}
\end{align*}
$$

$$
\begin{gather*}
+\frac{[5.964 \mp 4.816 i]}{[s+(2.112 \pm 2.404 i)]} \\
\frac{\dot{z}}{\omega}(s)=\frac{[.158 \mp .220 i]}{[s+(.0443 \pm .0131 i)]}+\frac{[3.552 \mp 1.268 i]}{[s+(.3035 \pm .2908 i)]} \\
+\frac{[24.18 \mp 4.164 i]}{[s+(2.112 \pm 2.404 i)]} \tag{193}
\end{gather*}
$$

Turbulence Model Parameters

The turbulence model used here is the vertical component of the non-gaussian model. The parameters of the model are chosen to be

$$
\begin{align*}
& L_{w}=142 \mathrm{~m}(465 \mathrm{ft}) \\
& \sigma_{w}=0.305 \mathrm{~m} / \mathrm{sec}(1 \mathrm{ft} / \mathrm{sec}) \tag{194}\\
& R_{w}-1.0 .
\end{align*}
$$

These parameters are typical of those which would be encountered at an altitude of 228 meters (750 feet) over plains in unstable atmospheric conditions. With this choice of σ_{w} and L_{w}, the power spectral density of the turbulence becomes

$$
\begin{equation*}
\Phi_{u w}(\Omega)=2.10 \frac{\left(1+60,500 \Omega^{2}\right)}{\left(1+20,200 \Omega^{2}\right)^{2}} . \tag{195}
\end{equation*}
$$

The probability density and distribution functions of the gust velocity will be found in figure 15 on page 61, and the normalized level crossing frequency is given in figure 17 on page 80.

Response Power Spectral Density

The power spectral density of the altitude error is obtained by substituting equations 190 and 195 into equation 142. Figure 25 presents the resulting spectrum for positive values of Ω. The complete spectrum is, of course, symmetric about the origin. The variance of the altitude error can be calculated by integrating the power spectral density as indicated in equation 7. The result is

$$
\begin{equation*}
\sigma_{r}^{2}=13.26(\mathrm{~m})^{2}\left[142.8(\mathrm{ft})^{2}\right] \tag{196}
\end{equation*}
$$

Note that the power spectral density and variance are independent of the turbulence model parameter R.

Figure 25.--Power spectral density of the altitude error.

Response Distribution Function

The probability distribution of the altitude error will now be calculated. This computation is in two parts,

1) use program EIGVW to compute the significant eigenvalues of the response
2) use these eigenvalues as input to program PDIST to obtain the response probability distribution function.

The first step of the procedure is the calculation of the altitude error eigensolutions. The transfer function of the system (Eq. 192) and the turbulence model parameters (Eq. 194), when used as input to program

EIGVW, result in the eigenvalues and adjoint eigenfunctions presented in figure 26. Note that program EIGVW cannot compute the eigenvalues without also computing the corresponding adjoint eigenfunctions.

Figure 26.--Adjoint eigenfunctions and eigenvalues of the altitude error.

The second step in computing the response distribution is the use of the eigenvalues of figure 26 as input to program PDIST. This program has computed the probability density and distribution functions presented in figure 27. (Although used as input to PDIST, the eigenvalues of the response were not actually used in computing the gaussian distribution.

In fact, the gaussian result is merely the well known nomal distribution which could be evaluated without the use of a computer

Figure 27.--Probability density and distribution functions of the altitude error in response to both gaussian and non-gaussian turbulence models.

Note that the non-gaussian model predicts that the occurrence of large altitude errors will occupy a much greater percentege of time than indicated by the gaussian mode1. For example, the computed values of the gaussian and non-gaussian distribution functions for a response magnitude of $3.5 \sigma_{r}$ are 0.99977 and 0.99860 respectively. These numbers imply that the absolute value of the altitude error predicted by the gaussian model will exceed $3.5 \sigma_{p}$ about 0.05% of the total flight time while the error predicted by the non-gaussian model will exceed this level about 0.28% of the time. These predictions differ by more than a factor of five.

Response Level Crossing Frequency

Consider now the level crossing frequency of the response. This calculation is in three parts,

1) compute the significant eigenvalues and eigenfunctions of the altitude error by means of program EIGVW
2) compute the significant eigenvalues and eigenfunctions of the altitude error derivative by means of program EIGVW
3) use the results of the first two steps as input to program RLEVX and obtain the level crossing frequency of the altitude error.

The eigensolutions of the altitude error have already been calculated, and are presented in figure 26 . The eigensolutions of the altitude error derivative can be calculated using equations 193 and 194 as input data to program EIGVW. The results are presented in figure 28.

Figure 28.--Adjoint eigenfunctions and eigenvalues of the altitude error time derivative.

All of these eigenvalues and eigenfunctions (Figs. 26 and 28) are now used with program RLEVX to compute the level crossing frequency curves presented in figure 29. It should be noted that the gaussian result

Figure 29.--Level crossing frequency of the
altitude error in response to both gaussian and non-gaussian turbulence models.
follows directly from Rice's equation (Eq. 12), and could have been obtained without use of a computer.

Note that the non-gaussian model predicts that large altitude errors will occur much more frequently than indicated by the gaussian model. For example, the crossing frequencies of the $4 \sigma_{r}$ response level predicted by the gaussian and non-gaussian models are 4.274×10^{-7} and 7.116×10^{-6} crossings per meter respectively. The gaussian value implies that the $4 \sigma_{r}$ level will be exceeded once every 2,340 kilometers, while the nongaussian value implies that this level will be exceeded once every 141 kilometers. These results differ by a factor of almost 17. Furthermore, the ratio of the two results increases rapidly with increasing response magnitude. At the $5 \sigma_{r}$ level they differ by a factor of well over 100 .

The previous sections of this report have developed a new model of atmospheric turbulence which is proposed for use in aircraft design work. In this section, the principal conclusions are summarized and some areas requiring further investigation are discussed.

Principal Conclusions

This report has reviewed the problem of modeling continuous atmospheric turbulence for the purposes of aircraft design. The model now in wide use; which assumes turbulence to be a homogeneous, stationary gaussian process with a specified power spectral density; has been discussed and its properties compared with experimentally measured characteristics of atmospheric turbulence. This comparison has shown that the gaussian model does not properly reproduce the number of high velocity gusts which are encountered in the atmosphere. Neither can it properly model the observed patchy character of turbulence or the experimentally measured distributions of velocity increments.

A modified form of the gaussian model, the gaussian patch model, has also been considered. This model is similar to the gaussian model, but assumes large regions of turbulence to be composed of independent patches which are homogeneous, stationary, and gaussian. The intensity of the turbulence varies randomly from patch to patch, but is assumed constant within each patch. The patch size is assumed to be sufficiently great that transient effects between patches can be neglected. It has been shown that this model cannot reproduce the distributions of velocity increments measured in turbulence. Furthermore, experimental measurement of patch sizes implied by this model has shown that the most intense
patches are so short (on the order of $2-3 \mathrm{~km}$) that in many cases the neglect of transient effects between patches cannot be justified.

A non-gaussian model of turbulence has been proposed. This model has been formulated from the idea of representing the patchy character of turbulence by a product of independent gaussian processes. The new model can be viewed as an extended or generalized form of the gaussian model, and the gaussian model is included as a special case.

The statistical properties of the proposed model have been derived and compared with some experimentally measured properties of low altitude atmospheric turbulence. The results have shown that the power spectral densities, probability distributions, and level crossing frequencies observed in the atmosphere can be modeled quite well. However, it has also been shown that this model, like the gaussian and gaussian patch models, does not reproduce the velocity increment distributions of turbulence. The reason for this difficulty has been discussed and a modification of the model has been suggested which may correct the problem. Until a solution is found, it is suggested that the proposed model (as well as the gaussian and gaussian patch models discussed above) is not a good representation of the high frequency components of turbulence. Hence, these models are probabily not suitable for studies of high frequency vehicle responses such as those involving structural modes.

Methods by which the non-gaussian model can be used to calculate vehicle response statistics have been investigated and techniques for computing the power spectral density, probability distribution, and level crossing frequency of linear responses to the model have been developed. These results have shown that the response power spectral density can be obtained by the usual methods of linear system theory, and therefore
calculated without difficulty. Evaluation of response probability distributions and level crossing frequencies, on the other hand, has required calculation of the eigenfunctions and eigenvalues of a certain kernel function which is, in general, unsymmetric. Computer programs presented in Appendix A of this report have been developed as a means of automating these calculations.

The altitude response statistics of a simple, linear, STOL aircraft-autopilot system subjected to the vertical component of the non-gaussian model have been calculated. The results have shown that, compared to the gaussian model, the non-gaussian model model may predict more than a hundredfold increase in the occurences of large response magnitudes.

Suggestions for Further Research

The turbulence model and application methods developed in this report can be considered as only the first step in producing a practical tool for use in aircraft design work. Additional research in several areas will be required if this goal is ever to be attained. The following is a list of several areas which the author believes to be topics of useful research regarding this turbulence model.

Improved Data Fitting Procedures

It has been shown that the LO-LOCAT data presented in this report can apparently be fit better by the non-gaussian turbulence model than by the currently used gaussian mode1. The results of Table 4, however, indicates that it is important to choose the correct goodness-of-fit criterion if satisfactory results are to be obtained. Thus some rational
prodedure for obtaining the best over-all fit of the data must be found. This procedure would have application not only to the non-gaussian turbulence model described here, but also to any other turbulence models which might be proposed in the future.

Relationship of the Non-gaussian Model to Meteorological Parameters

The proposed non-gaussian turbulence model contains a parameter which controls its probability distribution and level crossing frequency. Results presented previously in this report (Table 4) indicate that the value of this parameter which leads to the best fit of experimental turbulence data depends, at least partially, on variables such as atmospheric stability, surface roughness, and height above the surface. It should be possible to carry out a regression analysis to determine the relationship between these variables and the parameter. In order to be of practical value, this analysis will have to consider much more data than used in the present report.

Improved Mathematical Development

The results derived in this report have relied very heavily upon heuristic assumptions such as the use of band limited white noise and truncated impulse response functions. These assumptions can surely be relaxed in a rigorous treatment. Although increased rigor would not be expected to alter any of the results which have been presented, it would almost certainly lead to a better understanding of the non-gaussian model and a greater appreciation of its limitations.

An especially useful result of such an investigation might be a rapid procedure for obtaining approximate solutions for response statistics.

It is intuitively obvious, and easy to show from the deyelopment of equations 144 through 189, that the vehicle response statistics become identical to the statistics of the turbulence as the bandwidth of the vehicle transfer function becomes infinitely wide with respect to the bandwidth of the turbulence. On the other hand, as the vehicle bandwidth becomes indefinitely narrow with respect to that of the turbulence, the Gerschgorin Circle Theorem concerning upper bounds of eigenvalues (Ref. 49) requires that the non-gaussian portion of the vehicle response become the sum of an infinite number of independent, identically distributed random variables. Hence, the Central Limit Theorem (Ref. 37) requires that this response become gaussian, and therefore the total response of the vehicle will become gaussian. It would be extremely useful to develop a method for estimating (or at least bounding) response statistics for the case of intermediate bandwidth vehicles.

Extensions of the Model

Several possible improvements of the turbulence model proposed in this report merit further investigation.

1) Reference 45 has suggested the possibility of defining a patchiness parameter for the non-gaussian model. It would be interesting to see if this parameter could be related to meteorological variables of turbulence, and if this parameter has any significant effect upon response statistics.
2) Nothing in the mathematical development presented here has prohibited the use of linear filters with irrational transfer functions in the turbulence model. This
suggests the possibility of using such filters to obtain the yon Karman power spectral densities rather than the Dryden spectra assumed in the present report.
3) The present results are concerned only with a "point" model of turbulence, that is, the turbulence field is represented by three orthogonal gust components which are assumed to act at the vehicle center of gravity. Turbulence, however, is a distributed phenomenon; and for large aircraft it is important to take into account the distribution of the gust field over the surface of the vehicle. It appears that the spatial distribution representation used in reference 34 can, in principal, be incorporated into the non-gaussian model of this report without difficulty. This could be accomplished by adding an independent rolling gust component to the present model and using the vertical and lateral gust components of the present model in conjunction with an appropriate time delay to represent gusts occuring at the vehicle tail, Unfortunately, the computational procedures required to calculate vehicle responses to this model would become very unwieldy because it would be necessary to consider correlated inputs to the system rather than independent inputs as assumed in this report. Thus, either a different approach to the spatial distribution problem will have to be found, or the computational procedures will have to be greatly speeded.
4) It has been shown that the velocity increment distribution of the non-gaussian model do not match those observed in the atmosphere. As discussed previously in this report (page 84), it appears that this problem might be corrected by modifying the transfer functions used in the model.

REFERENCES

1. Rhode, R. V., and Lundquist, E. E.: Preliminary Study of Applied Load Factors in Bumpy Air. NACA TN 374, 1931.
2. Zbrozek, J. K.: Airaraft and Atmospheric Turbulence, Atmospheric Turbulence and Its Relation to Aircraft. London: Her Majesty's Stationery Office, 1963.
3. Jones, J. G.: A Unified Discrete Gust and Power Spectrum Treatment of Atmospheric TurbuZence. RAeS/CASI/AIAA International Conference on Atmospheric Turbulence, London, May 1971.
4. Zbrozek, J. K.: Atmospheric Gusts - Present State of the Art and Further Research. Journal of the Royal Aeronautical Society, Vol. 69, No. 649, pp. 27-45, January 1965.
5. Pratt, Kermit G., and Walker, W. G.: A Revised Gust-Load Formula and a Re-evaluation of V-G Data Taken on Civil Transport Airplanes from 1933 to 1950. NACA Report 1206, September 1953.
6. Bullen, N. I.: Gust Loads on Aircraft, Atmospheric Turbulence and Its Relation to Aircraft. London: Her Majesty's Stationery Office, 1963.
7. Burnham, J.: Aircraft Response to TurbuZent Air, Atmospheric Turbulence and Its Relation to Aircraft. London: Her Majesty's Stationery Office, 1963.
8. Chalk, C. R., et al.: Background Information and User Guide for MIL-F-8785B (ASG), Military Specification - Flying Qualities of Piloted Airplanes. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-69-72, 1969.
9. Clementson, Gerhardt C.: An Investigation of the Power Spectral Density of Atmospheric Turbulence. Ph.D. Thesis; Massachusetts Institute of Technology, 1950.
10. Press, Harry: Atmospheric Turbulence Environment with Special Reference to Continuous Turbulence. North Atlantic Treaty Organization AGARD Report 115, April - May, 1957.
11. Jones, J. W., et al.: Low Altitude Atmospheric Turbulence LO-LOCAT Phase III. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-70-10, 1970.
12. Houbolt, J. C., et al.: Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Responses. NASA TR-R-199, June 1964.
13. Eggleston, J. M., and Diederich, F. W.: Theoretical Calculation of the Rolling and Yawing Moments on a Wing in Random Turbulence. NACA Report 1321, 1957.
14. Skelton, G. B.: Investigation of the Effects of Gusts on V/STOL Craft in Transition and Hover. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-68-85, 1968.
15. Fujimori, Yoshinori, and Lin, Y. K.: Analysis of Flight Vehicle Response to Nonstationary Atmospheric Turbulence IncZuding Wing Bending Flexibility. AIAA 11th Aerospace Sciences Meeting, Paper No. AIAA 73-181, January 1973.
16. Eichenbaum, F. D.: Response of Aircraft to Three-Dimensional Random TurbuZence. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-72-28, 1972.
17. von Karman, T., and Howarth, L.: On the Statistical Theory of Isotropic TurbuZence. Proceedings, Royal Society of London, Series A, 164, 1938.
18. Dryden, H. L.: A Review of the Statistical Theory of Turbulence, Turbulence Classic Papers on Statistical Theory. New York: Interstate Publishers, Inc., 1961.
19. Mather, G. K.: Clear Air Turbulence Research Activities at the National Aeronautical Establishment, Clear Air Turbulence and Its Detection, ed. Yih-Ho Pao and Arnold Goldberg. New York: Plenum Press, 1969.
20. Crooks, W. M., et al.: Project HICAT an Investigation of High Altitude Clear Air TurbuZence. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-67-123, 1967.
21. Dutton, J. A.: Broadening Horizons in Prediction of the Effects of Atmospheric Turbutence on Aeronautical Systems. AIAA 5th Annual Meeting and Technical Display, Paper No. AIAA-68-1065, 1968.
22. Dutton, J. A. and Deaven, D. G.: Some Observed Properties of Atmospheric Turbulence, Statistical Models and Turbulence, Lecture Notes in Physics, Vol. 12, ed. M. Rosenblatt and C. Van Atta. New York: Springer-Verlag, 1972.
23. McClosky, J. W., et al.: Statistical Analysis of LO-CAT MurbuZence Data for Use in the Development of Revised Gust Cmiteria. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-71-29, 1971.
24. Dutton, J. A., and Thompson, G. J.: Probabilistic Determination of Aircraft Response to Turbulence at Low Altitudes. Air. Force Aeronautical Systems Division Technical Report ASD-TR-68-39, 1968.
25. Chen, Wen-Yuan: On the Application of Rice's Exceedance Statistics to Atmospheric Turbulence. AIAA 10th Aerospace Sciences Meeting, Paper No. AIAA 72-136, January 1972.
26. Dutton, J. A., and Deaven, D. G.: A Self Similar View of Atmospheric Turbulence, Radio Science, Vol. 4, No. 12, pp. 1341-1349, December 1969.
27. Gould, D. G., and MacPhereson, J. I.: A Suggested Method for Estimating Patch Length from I'urbulence Measurements Using Results from Low Altitude Flights by a T-33 Aircraft. NAE Aero. Report LR-562, National Research Council of Canada, August 1972.
28. Jones, J. G.: A Theory for Extreme Gust Loads on an Aircraft Based on the Representation of the Atmosphere as a Self-- Similar Intermittent Random Process. Royal Aeronautical Establishment Technical Report RAE-TR-68030, February 1968.
29. Mandelbrot, B.: Self-Similar Error Clusters in Communication Systems and the Concept of Conditional Stationamity. IEEE Transactions on Communication Technology, Vol. COM-13, No. 1, 1965.
30. Mandelbrot, B.: Some Noises with $1 / f$ Spectrum, A Bridge Between Direct Current and White Noise. IEEE Transactions on Information Theory, Vol. IT-13, No. 2, 1967.
31. Mandelbrot, B.: Sporadic Random Functions and Conditional Spectral Analysis; Self-Similar Examples and Limits. Proceedings 1965, 5th Berkeley Symposium on Mathematical Statistics and Probability, 1965.
32. Novikov, E. A., and Stewart, R. W.: The Intermittency of Turbulence and the Spectrum of Energy Dissipation Fluctuations, Akademiia Nauk SSSR, Izvestiia, Seriia Geofizicheskaia, March 1964.
33. Reeves, P. M.: A Non-Gaussian Turbulence Simulation. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-69-67, November 1969.
34. Reeves, P. M., Campbell, G. S., Ganzer, V. M., and Joppa, R. G.: Development and Application of a Non-Gaussian Atmospheric Turbulence Model for Use in Flight Simulators. NASA CR-2451.
35. Gault, J. D., and Gunter, D. E., Jr.: Atmospheric TurbuZence Considerations for Future Aircraft Designed to Operate at Low Altitudes. AIAA Aircraft Design for 1980 Operations, Paper No. AIAA 68-216, 1968.
36. Rice, S. 0.: Mathematical Analysis of Random Noise, Bell System Technical Journal, Vol. 23, pp. 282-332, 1944, and Vol. 24, pp. 46-156, 1945.
37. Papoulis, A.: Probability, Random Variables and Stochastic Processes. New York: McGraw-Hill Book Company, 1965.
38. Melsa, J. L., and Sage, A. P.: An Introduction to Probability and Stochastic Processes. Englewood Cliffs, New Jersey: Prentice-Hal1, Inc., 1973.
39. Mather, G. K.: Some Measurements of Mountain Waves and Mountain Wave Turbulence Made Using the NAE T-33 Turbulence Research Aircraft. DME/NAE Quarterly Bulletin, 1967 (2), National Research Council of Canada, Ottawa.
40. Crooks, W. M., et al.: Project HICAT - High Altitude Measurements and Meterological CorreZations. Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-68-12.
41. Rhyne, Richard H., and Steiner, Roy: Power Spectral Measurement of Atmospheric Turbulence in Severe Storms and CromuZus Clouds. NASA TN-D-2469, October 1964.
42. Van Atta, C. W., and Chen, W. Y.: Structure Functions of Turbulence in the Atmospheric Boundary Layer Over the Ocean, Journal of Fluid Mechanics, Vol. 44, Part 1 , pp. 145-159, 1970.
43. Hemsley, G. F. H.: Consideration of Air TurbuZence in Aircraft Design, Atmospheric Turbulence and Its Relation to Aircraft. London: Her Majesty's Stationery Office, 1963.
44. Tomlinson, B. N.: The SimuZation of Turbulence and Its Influence on the Pilot. RAeS/CASI/AIAA International Conference on Atmospheric Turbulence, London, May 1971.
45. Gerlach, 0. H., et al.: Progress in the Mathematical Modeling of Flight in Turbulence. North Atlantic Treaty Organization CP-140, AGARD Flight Mechanics Panel Symposium on Flight in Turbulence, Woburn Abbey, England, May 1973.
46. Deutsch, R.: Nonlinear Transformations of Random Processes. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1962.
47. Cramer, Harald, and Leadbetter, M. R.: Stationary and Related Stochastic Processes. New York: John Wiley and Sons, Inc., 1967.
48. Royden, H. L.: Real Analysis. New York: The Macmillan Company, 1963.
49. Korn, Granino A., and Korn, Theresa, M.: Mathematical Handbook for Scientists and Engineers. 2nd edition, New York: McGraw-Hill, Inc., 1968.
50. Pogorzelski, W.: Integral Equations and Their Applications, Vol. I, Parts 1, 2, and 3. International Series of Monographs in Pure and Applied Mathematics, Vol. 88. New York: Permagon Press, 1966.
51. Bracewell, Ron: The Fourier Transform and Its Application. New York: McGraw-Hill Book Company, 1965.

APPENDIX A

COMPUTER PROGRAMS

The purpose of this appendix is to present a number of computer programs which are of use in working with the non-gaussian model, and to give examples of their use. Programs to be presented are:

1. PDIST - a program to compute probability distributions of either the non-gaussian model or vehicle responses to the model
2. LEVXNG - a program to compute universal level crossing frequency curves for the non-gaussian model
3. INCPD - a program to compute probability distributions of the non-gaussian model velocity increments
4. EIGU - a program to compute eigenvalues and eigenfunctions of vehicle responses to the longitudinal component of the non-gaussian mode]
5. EIGVW - a program to compute eigenvalues and adjoint eigenfunctions of vehicle responses to the vertical or lateral components of the non-gaussian model
6. RLEVX - a program to compute level crossing frequency curves of vehicle responses to the non-gaussian model.

Listings of all programs and subroutines will be found at the end of this appendix. All coding is in FORTRAN language, version 2.3 for Control Data 6000 Series Computer Systems. Modifications required for compatibility with other systems should be slight.

The sample programs to be presented here were run on the University of Washington CDC- 6400 computer using the U of W version of the Control

Data RUN compiler, and the SCOPE 3.4 operating system. Storage requirements and execution times reflect this operating environment.

Numerous comment cards have been incorporated into each of the card decks presented here as an aid in understanding their operation. The input data required by each program is also described by comment cards.

Program PDIST

PDIST is a program which computes probability distributions for both the non-gaussian turbulence model and vehicle responses to the model. The example presented here calculates the probability distribution of the model for an R parameter value of 1.0 .

Card Decks

The following card decks were required to produce the sample calculation presented here:

PDIST
FFT
FFTRS

Input Data
The following five data cards were used in producing this example. The meaning and format of these cards are explained by comments in the listing of program PDIST.

Results

The above named card decks were compiled, loaded, and executed on the University of Washington CDC- 6400 computer system. Storage requirement including $1 / 0$ buffers and all system programs was $16,406_{8}$ words. Execution, including compilation and loading, required 3_{10} seconds of central processor time. The following output was generated.

```
TEST OF PDIST, PROBABILITY OISTRIBUTION OF NON-GAUSSIAN HODEL FOR R PARAM. = L.0
VARIANCE = 1.00000
NUMGER OF NON-GAUSSIAN EIGENVALUES = 1
EIGENVALUES ARE:
    1.02000000E+00
SIGMA RATIO OF TURBULENCE MODEL = 1.00000
SUM OF EIGENVALUES SQUARED = 1.0000000E+00
FOR VARIANCE OF 1.0000000E+00
NON-GAUSSIAN VARIANCE = 5.000COODE-01
gAUSSIAN VARIANCE INCLUDING COFREGTION FOR
NEGLECTEO EIGENVALUES = 5.000C00BE-01
FOR TOTAL VARIANCE OF UNITY
NON-GAUSSIAN VAFIANCE = 5.0000000E-01
GAUSSIAN VARIANCE INCLUDING CORREGTION FOR
NEGLECTED EIGENVALUES = 5.00000J0E-01
SOUARED EIGENVALUES SCALED TC EIVE GORREGT NON-GAUSSIAN
CONTRIEUTION TO UNIT YARIANCE&
    5.0000000EE-01
```

TEST OF POIST, PROQABILITY DISTRIBUTION OF NON-GAUSSIAN MDDEL FOR R PARAM. $=1.0$

$\begin{aligned} & \text { NORMALIZED } \\ & \text { VARIABLE } \\ & \text { X/SIGNA } X \end{aligned}$	stoized PROBABILITY DENSITY	OISTRIBUTION FUNCTION	UNNORHALIZED VARIABLE X	NONSTDIZEO PROBABILITY DENSITY
0.000	4.455E-61	5.00000E-01	0.	4.455E-01
- 050	4.447E-01	5.22<62E-01	5.000E-02	4.447E-01
. 100	4.423E-01	5.44445E- 81	1.000E-01	4.423E-01
. 150	4.384E-II	5. E6469E-01	1.500E-01	4.384E-01
.200	4.330E-01	5.88260E-01	2.000E-01	4.33 CE-01
.250	4.261E-01	E.09741E-01	2.500E-01	4.261E-01
- 300	4.178E-01	6.30644E-01	3.000E-01	$4.178 \mathrm{E}-41$
-350	4.083E-01	6.51503E-01	3.50GE-01	4.083E-01
. 400	3.976E-01	6.71E56E-01	4.000E-01	3.976E-01
. 450	$3.859 E-01$		4.50CE-01	3.859E-01
. 500	3.733E-01	7.10231E-01	5.000E-01	3.733E-01
-550	3.598E-01	7.28561E-01	5.50CE-01	3.598E-01
. 600	3.457E-01	7.46202E-01	6.000E-01	3.457E-01
. 650	3.311E-01	7.E3125E-01	6.500E-01	3.311E-01
.780	3.161E-01	7.793C6E-01	7.000E-01	3.161E-01
.750	3.008E-01	7.94730c-01	7.50GE-01	3.008E-61
- 809	2.854E-01	8.09387E-01	8.000E-01	$2.854 \mathrm{E}=01$
- 850	2.700E-51	8.23274E-01	8.500E-01	2.700E-01
- 900	2.547E-01	8. $36392 \mathrm{E}-01$	9.050E-C1	2.547E-01
. 950	2.396E-01	8.48749E-01	9.5すUE-01	2.396E-18
1.000	2. 248E-01	E.60357E-01	$1.000 E+00$	2.248E-01
1.050	2.103E-01	$8.71234 E-01$	$1.050 \mathrm{E}+00$	2.103E-01
1.100	1.963E-01	8.81399E-01	1. $100 E+00$	1.963E-01
1.150	$1.828 E-61$	8. ¢0E76E-01	1.15CE+00	1.828E-01
1.200	1.6995-01	8.99691E-01	1. $200 E+00$	1.699E-01
1. 250	$1.575 E-11$	9.07E72E-01	1.250E+00	1.575E-01
1.300	$1.457 \mathrm{E}-11$	C.15450E-01	1. $30 L E+00$	1.457E-01
1.350	1.346E-01	C. 22455 E -01	1.35 UE+00	1.346E-01
1.400	1.241E-01	9.28C19E-01	1.40 CE+00	1.241E-01
1.450	1.142E-D1	9. $34874 \mathrm{E}-01$	$1.45 E E+00$	1.142E-01
1. 500	1.050E-01	O. $40352 E-31$	$1.500 E+00$	1.050E-01
1.550	9.538E-02	G.45384E-01	$1.55 \mathrm{UE}+00$	9.638E-02
1.800	8.8385-12	9.50101E-01	$1.604 E+00$	8.838E-02
1.650	8.096E-02	9.54232E-01	1.650E+00	8.096E-02
1.700	7.410E-C2	9.58106E-01	1.700E+00	7-410E-02
1.750	6.777E-02	C.E1E5DE-01	$1.750 E+80$	6.777E-02
1.800	6.194E-02	9.64e91E-01	1.80LE+00	$6.294 \mathrm{E}-12$
1.850	5.659E-02	9.E7E52E-01	1.85LE+00	5.659E-02
1.900	5.168E-02	9.70557E-01	1.900E+00	5.168E-02
1.950	$4.7195-02$	c. $73027 \mathrm{E}-01$	1.950E+00	$4.719 \mathrm{E}-02$
2.000	4.309E-12	9.75283E-01	2.000E+ 00	4.309E-02
2.050	3.934E- 32	9.77342E-01	2.C50E+00	3.934E-02
2.100	3.592E-02	9.79223E-81	2.100E+00	3.592E-02
2.150	3.281E-02	9.80 8 - 3 E -01	2.15CE+00	3.281E-02
2.200	2.997E-02	9. $22508 \mathrm{E}-01$	2.200E+00	2.997E-02
2.250	2.739E-02	9.83C41E-01	2.250E+00	2.739E-02
2.300	2.50 3E-02	3. $25<50 E-01$	2.300E400	2.503E-02
2.350	2.289E-02	9. 26448 E -01	2.350E+00	2.289E-02
2.400	2.094E-02	9. $27543 E-01$	2.400E+00	2.094E-02
2.450	1.917E- 12	9.88545E-01	$2.450 \mathrm{E}+00$	$1.917 \mathrm{E}-\mathrm{C} 2$
2.500	1.756E-12	9.89463E-01	2.500E+00	1.756E-02

TEST OF PDIST, PRORABILITY OISTRIBUTION OF NON-GAUSSIAN MODEL FOR R PARAH. $=1.0$

NORMALIZED VARIABLE X/SIGMA X

STOIZEO PROBABILITY OENSITY

2.500	$1.756 E-02$
2.550	$1.608 E-02$
2.600	$1.474 E-02$
2.650	$1.352 E-02$
2.700	$1.241 E-02$
2.750	$1.139 E-02$
2.800	$1.046 E-02$
2.850	$9.612 E-03$
2.900	$8.836 E-03$
2.950	$8.126 E-03$
3.000	$7.476 E-03$
3.050	$6.881 E-03$
3.100	$6.335 E-03$
3.150	$5.835 E-03$
3.200	$5.375 E-03$
3.250	$4.954 E-93$
3.300	$4.567 E-03$
3.350	$4.211 E-03$
3.400	$3.884 E-03$
3.450	$3.583 E-03$
3.500	$3.306 E-03$
3.550	$3.052 E-03$
3.600	$2.817 E-03$
3.650	$2.601 E-03$
3.700	$2.402 E-03$
3.750	$2.219 E-03$
3.800	$2.050 E-03$
3.850	$1.894 E-03$
3.900	$1.75 E E-03$
3.950	$1.618 E-03$
4.000	$1.495 E-03$
4.050	$1.383 E-03$
4.100	$1.278 E-03$
4.150	$1.182 E-03$
4.200	$1.093 E-03$
4.250	$1.011 E-03$
4.300	$9.356 E-04$
4.350	$8.657 E-04$
4.400	$8.010 E-04$
4.450	$7.412 E-04$
4.500	$6.860 E-04$
4.550	$6.349 E-04$
4.600	$5.877 E-04$
4.650	$5.441 E-04$
4.700	$5.037 E-04$
4.750	$4.664 E-04$
4.800	$4.316 E-04$
4.850	$3.999 E-04$
4.990	$3.704 E-04$
4.950	$3.430 E-04$
5.000	$3.177 E-04$

OISTRIBUTION FUNCTION
9.89463E-01 9.90303E-11 E. E1073E-01 $^{\text {(}}$ 9. ©1779E-01 9. $52427 E-01$ 9.93022E-01 9. $93568 \mathrm{E}-01$ 9. C4069E-01 9.94530E-9 1 9. $94 C 54 E-01$ 9. $55344 \mathrm{E}-01$ 9. C5702E-01 9. 96033 E - 01 9.96337E-01 9. 96 E17E-01 9. $66875 \mathrm{E}-01$ 9. S7113E-01 9. ¢7332E-01 9. C7534E-01 C. C7721E-01 9. $97893 \mathrm{E}-01$ 9.98052E-01 9.98199E-01 9. C E334E-01 9.98459E-01 9.58574E-01 9. 98 E81E-01 9.58780E-01 9.98871E-01 9.98 C55E-01 9.99033E-D 1 9.99104E-01 9. C 9171E-01 9. 〔9232E-01 9. $99289 E-01$ O. C9342E-01 5.59291E-01 9. $99436 E-01$ 9. 59477E-01 9.99516E-01 9.99551E-01 9.c9534E-01 9.99615E-01 C. ¢9E43E-01 9.C9E69E-01 9.99694E-01 9.99716E-01 O. $\mathrm{c} 9737 \mathrm{E}-01$ 9. c9756E-01
9. $99774 \mathrm{E}-01$
9. ᄃ9791E-01

UNNORMALIZED VARIABLE X

2.500E+00	1.756E-02
2.550E+00	$1.608 \mathrm{E}-12$
2.690E+00	1.474E-02
2.650E+00	1.352E-02
2.7CDE+00	1.241E-02
2.754E+00	1.139E-02
2.800E+00	$1.046 \mathrm{E}-02$
2.850E+00	9.612E-03
2. 960 CE+00	8.836E-83
$2.950 E+00$	8.126E-03
$3.80 C E+00$	7.476E-03
3.050E+00	6.881E-03
$3.100 \mathrm{E}+00$	6.335E-03
$3.150 \mathrm{E}+00$	5.335E-03
$3.200 E+00$	5.375E-03
$3.25 L E+00$	$4.954 \mathrm{E}-03$
$3.300 E+00$	$4.567 \mathrm{E}-03$
$3.35 C E+00$	$4.211 E-03$
$3.400 \mathrm{E}+00$	3.884E-03
$3.450 E+00$	$3.583 \mathrm{E}-03$
$3.50 .3 \mathrm{E}+00$	3.306E-03
$3.550 \varepsilon+00$	3.052E-03
$3.600 \mathrm{E}+00$	2.817E-03
$3.650 E+00$	2.601E-03
$3.700 \mathrm{E}+00$	2.402E-03
3.750E+00	2.219E-03
$3.8045+00$	2.050E-03
3.850E+00	$1.894 \mathrm{E}-03$
$3.900 E+00$	$1.750 \mathrm{E}-03$
3.950 Et00	$1.618 \mathrm{E}-03$
$4.000 E+00$	$1.495 \mathrm{E}-03$
$4.05 C E+00$	$1.383 \mathrm{E}-03$
$4.10[E+10$	$1.278 \mathrm{E}-03$
$4.150 \mathrm{E}+00$	$1.182 \mathrm{E}-03$
$4.200 E+00$	1.09 IE-03
$4.2505+00$	$1.011 \mathrm{E}-03$
$4.300 E+00$	9.356E-04
$4.350{ }^{\text {E }}$ + 00	$8.657 \mathrm{E}-04$
$4.400 E+00$	B.010E-04
$4.450 E+00$	7.412E-04
$4.500 E+00$	6.B6E-04
$4.550 E+08$	$6.349 E-04$
$4.600 E+00$	$5.877 E-04$
$4.650 E+00$	5.441E-04
$4.700 E+00$	$5.037 \mathrm{E}-04$
4.754500	4.664E-04
$4.800 E+00$	4.318E-04
$4.850 E+00$	3.999E-04
$4.900 \mathrm{E}+00$	$3.704 \mathrm{E}-04$
$4.950 E+00$	3.430E-04
$5.000 E+00$	3.177E-0

NONSTOIZED PROBABILITY DENSITY
1.756E-02
$1.608 \mathrm{E}-12$
1.474E-02
1.352E-02
$1-139 E-02$
1.046E-02
9.612E-83
$8.126 E-03$
7.476E-03

121
$5.835 \mathrm{E}-03$
5.375E-03
$4.954 \mathrm{E}-03$
$4.211 \mathrm{E}-03$
$3.884 \mathrm{E}-03$
3.503E-03 3.052E-03 2.817E-03 を-2.219E-03 2.050E-03
1.894E-03 1.750E-03 1.618E $1.383 \mathrm{E}-03$ 1.278E-03 1.093E-03 1. $111 \mathrm{E}-03$ 9.356E-04 -657E 7.412E-04 6.B60E-04 -347E 5.441E-04 5.037E-04 4.634E-04 3.999E-04 $3.430 E-04$ 3.177E-04

TEST OF PDIST, PROBABIEITY OISTRIBUTION OF NON-GAUSSIAN HODEL FOR R PARAM. $=2.1$

DISTRIEUTION
FUNCTION
$9.99791 E-01$
$9 . c 9206 E-01$
$9 . c 9820 E-01$
$c . c 9833 E-01$
$9 . c 9845 E-01$
$9 . c 9857 E-01$
$9 . c 9267 E-01$
$9 . c 9277 E-01$
$0 . c 9836 E-01$
$0 . c 9894 E-01$
-.9e94E-01
9. C9C02E-01
9.c9co9e-01
9.99C15E-01
9.99c21E-01
9.99c27E-01
9. ©9932E-01
C. ¢0c37E-01
E. 59 942E-01
9.99546E-01
-. $99550 E-01$
9.99c54E-01
9.99557E-01
9.99c60E-01
9. $99563 \mathrm{E}-01$
9.59c66E-01
9.09968E-01
C. $99970 \mathrm{E}-01$
9.99973E-01
9. 99 974E-01
9. $59976 \mathrm{E}-01$
9. $99978 \mathrm{E}-01$
9. $99980 E-01$
9. $99581 \mathrm{E}-01$
9. $59532 E-01$
9.99584E-01
9.99585E-01
9. $99586 \mathrm{E}-01$
9.99987E-01
S. $59588 \mathrm{E}-01$
9. 〔9c89E-01
9. cgc90E-01
C. ©9c90E-01
9. $99591 E-01$
9.c9c92E-01
9.99092E-01 9.9.9c93E-01 9. c9c93E-01 c.99c94E-01 C. $90 c 94 E-01$
9. $99695 \mathrm{E}-01$
9.c9c95E-01

NONSTOIZED
PROBABILITY
DENSITY
3.177E-04 2.943E-04 2.727E-04 2.526E-04 2.340E-04 2.169E-04 2.009E-04 1.862E-04 1.726E-04 1.599E-04 1.482E-04 $1.374 \mathrm{E}-04$ $1.274 \mathrm{E}-04$ 1.181E-D4 1.095E-04 1.015E-04 9.409E-05
$8.724 E-05$
8.090E-05
7.501E-05
6.956E-05
6.451E-05
5.983E-05
5.549E-05
5.147E-05
4.774E-05
$4.428 \mathrm{E}-05$
4.107E-05
3.810E-05
3.535E-05
3.279E-05
3.042E-05
2. B23E-05
2.619E-05
2.430E-05
2.255E-05
2.092E-05
1.942E-05
1.802E-05
1.672E-05
1.552E-05
1.440E-05
1.337E-05
1.241E-05
1.151E-05
1.069E-05
9.920E-06
9.208E-06
8.548E-06
7.935E-06
7.366E-06

TEST OF PDIST, PROBABILITY DISTRIBUTION OF NONGGUSSIAN HODEL FOR R PARAM. $=1.1$

$\begin{aligned} & \text { NORMALIZED } \\ & \text { VARIABEE } \\ & \text { X/SIGMA X } \end{aligned}$	$\begin{gathered} \text { STOIZED } \\ \text { PROBABILITY } \\ \text { DENSITY } \end{gathered}$	DISTRIBUTION FUNCTION	UNNORMALIZED VARIABLE X	NONSTDIZED PROBABILITY DENSITY
7.500	7.366E-06	9. 59 c95E-01	7.500E+00	7.366E-06
7.550	6.838E-06	9.99c95E-01	7.550E+00	6.838E-06
7.600	6.348E-06	9. $99596 E-01$	$7.600 E+00$	6.348E-86
7.650	5.894E-06	9.e9c96E-11	$7.650 E+00$	5.894E-06
7.700	5.472E-06	9.99c96E-01	7.70CE+00	5.472E-06
7.750	5.880E-06	9. $99697 E-01$	$7.750 E+00$	5.080E-06
7.800	4.717E-06	9.c9c97E-01	7.800E+00	4.717E-06
7.850	$4.380 E-06$	9. ¢9¢97E-01	7.850E+80	4.38) 06
7.900	4.067E-06	c.cocole-01	7.90 [E +00	4.067E-06
7.950	3.776E-06	9.c9c97E-01	7.950E*00	3.776E-06
B. 000	3.506E-06	9. 99 c98E-01	$3.000 E+00$	3.506E-06
8.050	3.256E-06	9.99c98E-01	$8.050 \mathrm{E}+00$	3.256E-06
8.100	3.023E-06	9. $99098 \mathrm{E}-01$	$8.100 E+00$	3.023E-06
6.150	2.808E-06	9.c9cosE-D1	$8.150 E+00$	2.808E-06
8.200	2.607E-06	9. ¢9¢93E-01	$8.200 E+00$	2.607E-06
B. 250	2.421E-06	g. $59593 \mathrm{E}-\mathrm{B1}$	$8.250 E+00$	2.421E-06
5.300	2.249E-06	9.c9c98E-01	8.300E+00	2.249E-06
8. 350	2.088E-06	$9.99699 E-01$	$8.350 E+00$	2.088E-06
8.400	1.93 9E-06	9.09699E-01	$8.400 \mathrm{E}+00$	$1.939 \mathrm{E}-06$
8.450	1.801E-06	$9.99999 E-01$	8.450E+00	$1.801 \mathrm{E}-06$
3.500	$1.673 \mathrm{E}-06$	9. c9c99E-01	$8.500 E+00$	$1.673 \mathrm{E}-06$
8.550	$1.554 E-06$	9.99c99E-01	8.550E+00	1.554E-06
8.600	1.443E-06	G.esç9E-01	$8.600 E+00$	$1.443 E-06$
8.650	1.340E-96	9.99E99E-01	$3.650 E+80$	1.340E-06
8.700	1.245E-06	9.99c99E-01	$8.700 E+00$	$1.245 \mathrm{E}-06$
8.750	1.156E-06	9.99099E-01	8.756E+00	$1.156 \mathrm{E}-06$
8.800	1.074E-96	9.99¢99E-01	$8.800 E+00$	1.074E-06
6.850	9.9785-07	9.99599E-01	8.850E+00	$9.978 E-07$
8.900	9.269E-07	9.c9c99E-01	$8.900 E+00$	9.269E-07
8.950	8.61 CE-07	9. ¢9¢09E-01	8.95CE+00	8.610E-07
9.000	7.999E-07	9.99699E-01	$9.060 E+00$	7.999E-07
9.050	7.43 CE-07	9.c9c99E-01	$9.050 E+00$	$7.430 E-07$
9.100	6.90 E-07	1.00000E+00	$9.100 \mathrm{E}+00$	$6.903 \mathrm{E}-07$
9.150	6.413E-07	1.00000E+00	9.150E+00	6.413E-07
9.200	5.957E-07	1.60000E+00	$9.200 E+00$	5.957E-07
9.250	5.535E-07	$1.00000 E+00$	$9.250 E+00$	$5.535 \mathrm{E}-07$
9.300	5.142E-07	1.00600E+00	$9.360 E+00$	$5.142 \mathrm{E}-07$
9.350	$4.777 E-07$	1. $1000008+00$	$9.350 E+00$	4.777E-07
9.400	$4.438 E-07$	1.00000E+00	$9.400 E+00$	$4.438 \mathrm{E}-07$
9.450	$4.124 \mathrm{E}-07$	$1.00000 E+00$	$9.450 \mathrm{E}+00$	$4.124 \mathrm{E}-07$
9.500	3.831E-07	1. $60000 \mathrm{E}+00$	9.500E+00	3.831E-07
9.550	3.560E-07	$1.00000 E+00$	9.550E+00	3.560E-07
9.500	3.30 BE-07	$1.000005+00$	$9.600 E+00$	$3.308 E-07$
9.650	3.07 3E-07	$1.000005+00$	9.65LE+00	3.073E-07
9.700	2.856E-07	1.00c00E+00	$9.700 \mathrm{E}+00$	2.856E-07
9.750	2.653E-07	1. $30000 \mathrm{E}+00$	$9.75 C E+00$	$2.653 \mathrm{E}-07$
9.800	2.466E-07	1.00000E+00	$9.800 E+00$	2.466E-07
9.850	2.291E-07	1. $60 C 00 E+00$	9.850E+00	2.291E-07
9.900	2.129E-07	1.00000E+00	$9.900 E+00$	2.129E-07
9.950	1.978E-07	$1.00000 E+00$	9.950E+00	$1.978 \mathrm{E}-07$
10.000	$1.838 \mathrm{E}-\mathrm{C7}$	$1.00000 E+00$	$1.000 E+01$	$1.838 \mathrm{E}-07$

Program LEVXNG

LEVXNG is a program which computes universal level crossing frequency curves for the non-gaussian turbulence model. The example presented here shows the calculation of the u-gust curve for an R parameter value of 1.0 .

Card Decks

The following car- decks were required to produce the sampel calculation presented here:

LEVXNG
CF2
INVR
FFT

Input Data

Program LEVXNG is written so as to require no input data from punched cards. The functioning of the program is determined by DATA statements as described by comment cards in the deck listing.

Results

The above named card decks were compiled, loaded, and executed on the University of Washington CDC-6400 computer system. Storage requirement including I/O buffers and all system programs was 40,5008 words. Execution, including compilation and loading, required 1910 seconds of central processor time. The following output was generated.

```
COVARIANCE HATRICIES OF FIRST AND SECONO
GAUSSIAN VECTORS ARE
    7.071E-01 0.
    0. 3.536E-01
    7.071E-91 0.
    0. 3.536E-01
FUNCTIONAL RELATIONSHIP MATRICIES FOR FIRST
AND SECONO TRANSFORM YARIAGLES ARE
    1.000E+00 0.
    0. O.
    0. 1.000E+00
    1.000E+00 0.
R PARAMETER = 1.000
DETERMINANTS OF COVARIANCE MAT&IGIES
DETA = 2.50000E-01
DETB = 2.50000E-01
X INCREMENTS: DX(1) = 3.0000000E-01 DX(2) = 3.0000000E-01
F INCREMENTS: DF(1) = 5.2083333E-02 DF(2) = 5.2083333E-02
```

FIRST ROH, FIRST COLUHN, ANO DIAGONAL OF
JOINT CHARACTERISTIC FUNCTION

$\begin{aligned} & 6.456 E-01 \\ & 1.415 \varepsilon-01 \end{aligned}$
$1.433 E-02$
6.700E-04
1.408E-05
1.305E-07
5.277E-10
9.534E-13
2.454E-11
9.2C9E-09
1.502E-06
1.075E-04
3.419E-03
4.949E-02
3.348E-01
9.485E-01
6.333E-01
1.165E-01
9.242E-03
3.446E-04
5.951E-06
4.659E-08
1.627E-10
2.579E-13
7.080E-12
3.049E-09
5.819E-07
4.992E-05
1.962E-03
3.608E-02
3.067E-01
9.482E-01
4.343E-01
2.569E-02
3.105E-04
7.476E-97
3.491E-10
3.106E-14
5.199E-19
1.723E-24
1.133E-21
1.567E-16
4.Li55E-12
1.986E-1)
1.867E-05
3.448E-03
1.291E-01
9.006E-D1

FIRST ROH，FIRST CCLUMN，AND DIAGONAL OF JOINT PROBABILITY DENSITY

1．889E－01 1．31CE－14 1．573E－01 6．195E－14 1．165E－01 3．267E－14

2．010E－01 0． $1.876 E-011.535 E-14$ 7．043E－02－1．121E－14 4．124E－02－E．940E－14 6．565E－03－2．791E－15 3．E15E－03 4．223E－14 6．955E－104－5．759E－16 9．190E－05－1．665E－16 1．324E－55－3．469E－17 2．005E－06－1．549E－17 3．209E－07－1．041E－17 9． $992 \mathrm{E}-080$ ． 3．209E－07 1．041E－17 5．016E－07 3．228E－14 2．005E－06 1．549E－17 3．202E－0E－4．956E－15 1．324E－05 3．469E－17 2．138E－05 8．330E－14 9．19CE－05 1．665E－16 1．508E－04 8．972E－15 6．G55E－04 5．759E－16 1．182E－03 4．116E－16 6．565E－03 2．791E－15 1．219E－0乏－5．151E－14 7．343E－02 1．121E－14

7．766E－02－1．188E－14
7．106E－03－3．124E－15 4．097E－04－4．996E－16 2．427E－05 0．
1．595E－06 5．551E－17 1．135E－07－1．578E－17 8．6C1E－09 0． 1．326E－090． 8．501E－090． 1．138E－07 1．578E－17 1．595E－06－5．551E－17 2．427E－350． 4．097E－04 4．996E－1E 7．196E－03 3．124E－15 7．766E－02 $1.188 \mathrm{E}-14$

2．010E－010． 3．097E－02－2．3n1E－14 1．163E－03－5．733E－15 6．193E－I5－9．759E－1E 3．747E－06－2．489E－16 2．408E－07－4．987E－17 1．612E－08－7．875E－18 1．2こ7E－09－7．66年－10 3．05EE－10 0． 1．227E－09 7．650E－18 1．612E－08 7．875E－18 2．408E－07 4．987E－17 3．747E－36 2．488E－1E 6．193E－05 9．759E－16 1．163E－03 5．733E－15 3．097E－02 2．301E－14 4．700E－02－2．896E－14 2．643E－02－9．276E－15 1．399E－02 4．908E－14 3． $523 E-03$ 3．880E－14 1．725E－03 1．035E－14 8．404E－04 6．580E－15 2．004E－04－7．192E－14 9．849E－05－6．581E－144．872E－05－1．049E－14 1．217E－0E－2．14日E－14 6．144E－G6－1．66UE－13 3．121E－06－8．840E－14 8．192E－07 5．382E－14 4．227E－07 2．695E－14 2．190E－07 4．252E－15 5．£37E－08 1．720E－14 3．10EE－D8 1．298E－14 1．630E－08－3．294E－14 4．599E－09 2．872E－14 2．559E－69－2．726E－14 1．605E－09 8．551E－15 1．605E－0 C－2．551E－15 2．559E－09 2．726E－14 4．599E－09－2．872E－14 1．E30E－0．8 2．294E－14 3．106E－08－1．298E－14 5．937E－08－1．720E－14 2．190E－07－4．252E－15 4．227E－57－2．695E－14 8．192E－07－5．382E－14 3．121E－DE 8．840E－14 6．144E－06 1．660E－13 1．217E－05 2．148E－14 4．872E－05 1．044E－14 9．849E－05 6．581E－14 2．004E－04 7．192E－14 8．404E－04－E．580E－15 1．725E－03－1．035E－14 3．523E－03－3．88 חE－14 1．399E－02－4．908E－14 2．E43E－02 9．276E－15 4．709E－02 8．896E－14 1．166E－01－2．267E－14 1．573E－01－6．195E－14 1．889E－01－1．310E－14

1．765E－01 2．591E－14 1．206E－01 8．954E－14 6．625E－02 2．759E－14 1．335E－0 5．471E－04－3．705E－15 2．618E－04－1．515E－15 1．268E－04－5．384E－16 3． $047 \mathrm{FE}-0 \mathrm{E}-\mathrm{c} .785 \mathrm{E}-16 \mathrm{1.509E-05-5.539E-16} \mathrm{\quad 7.5C1E-G6-2.129E-16}$ 1．878E－0E－9．795E－17 9．444E－07－4．08BE－17 4．7E3E－07－9．191E－17 1．220E－07－3．266E－17 6．198E－08 2．876E－17 3．156E－08 1．610E－17 6．27EE－09 2．700E－17 4．284E－09 4．009E－18 2．256E－09－3．290E－18 7．038E－10－3．888E－17 4．537E－1G－1．575E－17 3．380E－10－1．063E－17 3．3B0E－1C 1．063E－17 4．537E－10 1．575E－17 7．088E－10 3．868E－17
 3．15EE－0E－1．61GE－17 6．198E－68－2．876E－17 1．220E－07 3．266E－17 4．763E－07 $9.191 \mathrm{E}-17$ 9．444E－67 4．088E－17 1．878E－06 9．795E－17 7．501E－06 $2.129 \mathrm{E}-16$ 1．508E－05 $5.539 E-16 \quad 3.047 E-05$ 9．785E－16 1．268E－04 5．384E－16 2．E18E－04 1．515E－15 5．471E－04 3．705E－15 2．533E－03 3．073E－15 5．719E－03 1．307E－14 1．335E－02 5．181E－14 G．E25E－02－2．759E－14 1．206E－01－8．954E－14 1．765E－01－2．591E－14

LEVEL CROSSINGS
LEYEL CROSSING FREQUENCY OF THE NON-GAUSSIAN MODEL, $R=1.008$

OIMENSIOAAL LEVEL X	NON-DIMENSIONAL LEVEL X/SIGMA X	CROSSINGS PER UNIT TIME	CROSSINGS PER ZERO CROSSING
0.	0.	1.618E-01	1.000E+00
2.000E-01	2.000E-31	1.576E-01	9.741E-01
4.0 OOE-01	$4.000 \mathrm{E}-11$	1.459E-01	$9.014 \mathrm{E}-01$
6.000E-01	6.000E-91	1.285E-01	7.938E-01
8.009E-01	8.COOE-01	1.081E-11	6.677E-01
1.000E+00	1.0UDE+90	6.721E-02	5.389E-01
$1.2005+00$	$1.200 E+00$	6.796E-02	4.199E-01
$1.400 E+00$	1.40 CEOO	5.153E-02	3.184E-01
$1.6005+00$	2.60 CEF 00	3.831E-02	2.367E-01
1.800E+00	$1.800 \mathrm{E}+00$	2.815E-02	1.739E-01
2.000E+00	2.000E+00	2.057E-02	$1.271 E-01$
2.270E+08	2.200E+00	1.503E-02	9.290E-02
2.430E+00	$2.400 E+00$	1.102E-02	6.810E-02
2. $600 \mathrm{E}+00$	2. $600 E+00$	8.111E-03	5.012E-02
2. 208 SEOO	$2.800 E+00$	5.995E-03	3.704E-02
$3.000 E+00$	3. $000 \mathrm{OE}+00$	$4.446 \mathrm{E}-03$	2.747E-02
$3.200 E+00$	$3.200 E+00$	$3.307 \mathrm{E}-13$	2.044E-02
$3.400 E+00$	$3.400 E+00$	2.465E-03	1.523E-02
$3.650 E+00$	$3.600 \mathrm{E}+00$	1.841E-03	1.137Ē-02
3. $0005+00$	$3.800 E+00$	1.376E-03	$8.504 \mathrm{E}-03$
$4.000 E+00$	$4.000 E+00$	$1.030 \mathrm{E}-03$	6.364E-B3
$4.200 E+00$	$4.2008+00$	$7.714 \mathrm{E}-04$	4.767E-03
$4.400 \mathrm{E}+00$	$4.4005+00$	5.782E-04	3.573E-83
$4.6005+00$	$4.600 E+00$	$4.336 \mathrm{E}-04$	$2.679 E-03$
$4.800 E+00$	$4.800 E+00$	$3.2535-04$	2.010E-03
$5.000 E+00$	$5.0008+100$	2.442E-04	$1.509 \mathrm{E}-03$
$5.2005+80$	$5.20 C E+00$	1.833E-04	$1.133 E-03$
5.40 CE +00	$5.400 E+00$	1.377E-04	8.508E-04
$5.50 C E+10$	$5.600 \mathrm{E}+00$	$1.034 E-04$	6.392E-04
5. SCEE + 0	$5.200 E+00$	7.773E-05	4.803E-04
6.0CGE 80	$6.0005+00$	$5.842 E-05$	$3.610 \mathrm{E}-04$
$6.200 E+03$	$6.200 E+80$	4.392E-05	2.714E-04
$6.400 ¢+00$	$6.400 E+00$	3.302E-05	2.040E-04
$6.614 C E+00$	$5.60 G E+00$	2.483E-25	$1.534 \mathrm{E}-04$
$6.800 E+03$	6. 80 CEPOD	$1.86 \mathrm{BE}-05$	$1.154 \mathrm{E}-04$
7.000E+00	7.COOE + 00	1.405E-05	8.584E-05
$7.200 E+0 B$	$7.200 E+00$	$1.058 \mathrm{E}-05$	6.536E-05
7.4COE + 00	$7.400 E+00$	7.964E-06	4.921E-05
$7.600 E+08$	$7.6008+00$	6.001E-06	3.70 BE-05
$7.800 E+00$	7.8005+10	4.527E-06	2.797E-05
$8.000 E+00$	$8.000 E+00$	3.423E-06	2.115E-05

Program INCPD

INCPD is a program which computes velocity increment probability distributions of the non-gaussian turbulence mode1. The example given here shows the calculation of the u-gust increment distribution for a time lag of $0.1 I_{u} / U$ seconds. The correlation functions which were used in determining the input data are given in equations 51 through 54 of the report,

Card Decks

The following card decks were required to produce the sample calculation presented here:

INCPD
CF1
INVR
FFT
FFTRS

Input Data
The following nine data cards were used in producing this example. The meaning and format of these crards are explained by comments in the listing of program INCPD.

Results

The above named card decks were complied, loaded, and executed on the University of Washington CDC-6400 computer system. Storage requirement including I/O buffers and all system programs was $20,476_{8}$ words. Execution, including compilation and loading, required 5_{10} seconds of central processor time. The following output was generated.

```
EXAMPLE USE OF INCPD TO COMPUTE U-GUST INCREMENT DIST., TAU=.1*L/U, R=1., SU=1.
COVARIANCE MATRIX OF IST GAUSSIAN VECTOR
    1.00000 .95123
        .95123 1.00000
COVARTANCE MATRIX OF 2ND GAUSSIAN yECTOR
    1.00000 .95123
    .95123 1.00000
FUNCTIONAL RELATION MATRIX
    .50000 O.DCO&O
    0.00030 -.50000
STANDARO DEVIATION OF PROCESS = 3.778E-01
DETERMINANTS OF COVARIANCE MATRICIES
OETA = 9.51626E-02
DETB = 9.51626E-02
```

EXAMPLE USE OF INCPO TC COMPUTE U-GUST INCREMENT DIST., TAU=•1*L/U, R=1., SU=1.

$\begin{aligned} & \text { NORMALIZED } \\ & \text { VARIABLE } \\ & \text { X/SIGYA } \end{aligned}$	$\begin{aligned} & \text { STOIZED } \\ & \text { PROBABILITY } \\ & \text { DENSITY } \end{aligned}$	OISTRIBUTION FUNCTIOA
0.000	4.118E-01	$5.00000 \mathrm{E}-01$
. 050	4.112E-01	5.20579E-01
.100	4.095E-01	5.41100E-01
-150	$4.066 \mathrm{E}-31$	5. E1506E-01
. 203	4.027E-01	5.81742E-01
. 250	3.976E-01	E.01754E-01
. 300	3.916E-01	$6.21487 \mathrm{E}-01$
- 350	$3.845 E-31$	$6.40893 E-01$
. 400	3.766E-01	6.59924E-01
. 450	3.678E-01	E.78536E-01
. 500	3.582E-01	6. 56687 E -01
-550	3.479E-81	7.14341E-01
. 600	3.370E-01	7. $31465 \mathrm{E}-01$
. 650	3. $255 E-01$	7.48030E-01
. 700	3.136E-01	7.64010E-01
. 758	3.013E-31	7.79385E-01
. 800	2.898E-01	7. $54139 \mathrm{E}-01$
. 850	2.760E-31	8.C8259E-01
. 900	2.631E-01	8.21737E-01
. 950	2.502E-01	8.34569E-01
1.000	2.3735-01	2.46755E-01
1.050	2. $245 \mathrm{E}-01$	8.58298E-01
1.100	2.118E-01	$8.69203 E-01$
1.150	1.994E-01	8.79481E-01
1.200	$1.872 \mathrm{E}-81$	8.89144E-01
1.250	1.754E-31	8.c8207E-01
1.300	1.639E-01	9.06E86E-01
1.350	1.528E-01	9.14E01E-01
1.400	$1.421 E-72$	9.21C72E-01
1.450	1.319E-01	9.28820E-01
1.500	1.221E-31	9. 3 5169E-01
1.550	1.129E-01	9.41042E-01
1.600	1.041E-01	9.46463E-01
1.650	9.575E-02	9.51457E-01
1.700	8.793E-02	C.56046E-01
1.750	8.058E-02	¢.60257E-01
1.800	7.370E-02	9.64112E-01
1.850	6.729E-32	9. E7E35E-01
1.900	6.132E-02	9.70E48E-01
1.950	5.578E-02	9.73774E-01
2.000	5.066E-02	S.76433E-01
2.050	4.593E-02	9.78246 E - 11
2.100	$4.157 \mathrm{E}-02$	9.81032E-01
2.150	3.757E-02	9.83009E-01
2.200	3.391E-02	9.84795E-01
2.250	3.056E-32	9. $26405 \mathrm{E}-01$
2.300	2.750E-02	9.87855E-01
2.350	2.472E-02	C. 29160 E -01
2.400	2.219E-32	9.90331E-01
2.450	$1.9905-02$	$9.91383 \mathrm{E}-01$
2.500	1.782E-02	c.92325E-01

UNNORMALIZEO
VARIABLE
X

0.	2.885E+00
7.137E-03	2.881E400
1.427E-02	$2.869 \mathrm{E}+00$
2.141E-02	2.849E+00
2.855E-02	2.821E00
3.5E9E-02	2.786 E 00
4.282E-02	$2.743 E+00$
4.996E-02	$2.694 E+00$
5.710E-02	$2.638 \mathrm{E}+00$
6.423E-02	$2.576 \mathrm{E}+00$
7.137E-U2	$2.509 \mathrm{E}+00$
7.851モ-02	2.437E400
8.565E-02	2.361E+00
9.278E-02	2.280E+00
9.992E-02	$2.197 E+00$
1.071E-01	$2.111 \mathrm{E}+00$
1.142E-01	$2.023 \mathrm{E}+00$
1.213E-01	$1.934 \mathrm{E}+00$
$1.285 \mathrm{E}-01$	$1.843 \mathrm{E}+00$
1.356E-01	$1.753 \mathrm{E}+00$
$1.427 E-01$	$1.662 E+00$
1.499E-01	$1.572 \mathrm{E}+00$
1.57CE-01	$1.484 \mathrm{E}+00$
$1.642 \mathrm{E}-01$	$1.397 \mathrm{E}+00$
$1.713 E-01$	$1.311 \mathrm{E}+00$
1.784E-01	$1.228 \mathrm{E}+00$
1.086E-01	$1.148 \mathrm{E}+00$
1.927E-01	1.570E+00
1.998E-01	9.956E-01
2.07CE-01	9.240E-01
2.141E-01	8.557E-01
2.213E-01	7.907E-01
2.284E-01	7.290E-01
2.355E-01	6.708E-01
2.427E-01	6.160E-01
2.498E-01	5.645E-01
2.569E-01	5.163E-01
2.641E-01	4.714E-01
2.712E-01	4.296E-01
2.784E-01	$3.908 \mathrm{E}-01$
2.855E-01	3.549E-01
2.926E-01	3.217E-01
2.998E-01	2.912E-01
3.0695-01	2.632E-01
$3.140 \mathrm{E}=01$	2.375E-01
3.212E-01	2.141E-01
3.283E-01	1.927E-01
$3.354 \mathrm{E}-01$	$1.732 \mathrm{E}-01$
3.426E-01	1.555E-01
3.497E-01	$1.394 \mathrm{E}-01$
3.569E-01	1.249E-01

NONSTOIZED
PROBABILITY OENSITY
2.885E+00
2.881E400
2.849E•00
2.821E+00
2.786EV00 2. $694 \mathrm{E}+00$ $2.638 \mathrm{E}+00$ $2.576 \mathrm{E}+00$ 2. $437 \mathrm{E}+00$ $2.361 E+00$ 2.280E+00 2.111E+00 $2.023 E+00$ 1.934E700 1.753E+00 1.662E+00 $1.572 E+00$ 1.397E+00 $1.311 E+00$. $228 \mathrm{E}+00$ 1.148EE400 9.956E-01 -240E=01 7.907E-01 7.290E-01 6.708E-01 $5.645 \mathrm{E}-01$ 5.163E-01 ع-01 3.908E-01 3.549E-01 3.217E-01 2.632E-01 2.375E-01 1.927E-01 1.732E-01 1.394E-01 1.249E-01

EXAMPLE USE OF INGPO TO COMPUTE U-GUST INCREMENT DIST•, TAU=. 1*L/U, R=10, SU=1。

NOPMALIZED VARIA殾E X/SIGHA	STOIZED PROBABILITY DENSITY	OISTRIPUTION FUNCTION	UNNORMALIZED VARIABLE X	NONSTOIZED PROBABILITY OENSITY
5.000	4.341E-05	9. $99582 E-01$	7.137E-01	3.041E-64
5.050	3.841E-05	9.99584E-01	7.209E-01	2.691E-04
5.130	3.398E-05	¢.995B6E-01	7.280E-01	2. $381 E-04$
5.150	3.COTE-05	C. SOcBAE-01	7.351E-01	2.106E-04
5.200	2.660E-05	9. $99589 E-01$	7.423E-01	1.863E-04
5.250	2.353E-05	9. c9cgoE-01	7.494E-01	1.649E-04
5.300	2.082E-05	9.99991E-01	7.565E-01	1.459E-04
5.350	1.842E-05	C. ¢9 ¢ O2E-D1	7.637E-01	1.290E-04
5.400	1.630E-05	9.99593E-01	7.708E-01	1.142E-64
5.450	1.442E-05	9. ¢9¢94E-01	7.780E-01	1.010E-04
5.500	1.276E-05	9. ¢9¢95E-01	7.851E-01	8.937E-05
5.550	1.129E-05	9.c9c95c-01	7.922E-01	7.907E-05
5.600	9.985E-06	9.99696E-01	7.994E-01	6.995E-05
5.650	8.334E-96	9.99c96E-01	8.065E-01	6.189E-05
5. 700	7.816E-06	S. c9c97E-01	8.136E-01	5.475E-05
5.750	6.915E-06	9. ¢9¢97E-01	8.208E-01	4.844E-05
5.800	6.118E-06	¢. ¢9c98E-01	8.279E-01	4.286E-C5
5.850	5.413E-п6	9.c9c98E-01	3.351E-01	3.792E-05
5.900	4.789E-06	9. 9 99985-01	8.422E-01	3.355E-05
5.950	4.237E-06	c. c9c985-01	8.493E-01	2.968E-05
6.0010	3.748E-06	9. ¢9c98E-01	B. 565E-01	2.626E-05
6.050	3.316E-06	9. c9599E-01	8.636E-01	2.323E-05
6.100	2.934E-06	9. ¢0¢99E-01	8.707E-01	2.055E-05
6.150	2.596E-36	9. ¢9c99E-01	6.779E-01	1.818E-05
6.200	2.297E-06	C. ¢9¢¢9E-01	8.850E- 01	1.609E-05
6.250	2.032E-06	9. 59999501	8.921E-01	1.423E-05
6.300	1.798E-J6	c.c9c99E-01	8.993E-01	1.259E-05
6.350	1.59GE-06	O. $99599 E-01$	9.064E-01	1.114E-65
6.400	1.4C7E-06	g. 99 ¢99E-01	9.136E-01	9.857E-06
6.450	1.245E- 96	9.99599E-01	9.207E-01	8.721E-06
6.500	1.101E-06	$1.00000 E+00$	9.278E-01	7.716E-0E
6.550	9.744E-37	1. OOOCOE+ 00	9.350E-01	6.826E-06
6.600	8.621E-07	1. $\operatorname{COCOOE}+00$	9.421E-01	6.039E-06
6.650	7.627E-37	1.00000E+00	9.492E-01	5.343E-06
5.702	6.748E-07	1. OCCDOE + 00	9.564E-01	4.727E-06
6.750	5.97C5-37	1. COCOSE+DO	9.635E-01	4.182E-C6
6.800	5. $282 \mathrm{E}-07$	1.OOCOOE + O	9.707E-01	3.703E-06
6.850	4.673E-07	1.COOOOE+DO	9.778E-01	3.274E-06
6.900	4.134E-07	1. $C 0000 E+00$	9.849E-01	2.896E-06
6.950	3.6585-37	1.00000E+00	9.921E-01	2.563E-06
7.000	3. 236E-07	1.00000E+00	9.992E-01	2.267E-06
7.050	2.863E-07	1. DCCOOE+00	1.006E+00	2.006E-06
7.100	S. $533 \mathrm{E}-07$	1.00LCJE + 00	1. $113 E+00$	1.775E-06
7.150	2. 241E-67	1. COCOUE +0.	$1.021 E+00$	1.570E-06
7.200	1.983E-07	1. COOOUE+00	1.028E+00	1.389E-06
7.250	1.754E-67	1.COSOOE+00	1.035E+00	1.229E-06
7.300	1.552E-07	1. COCCOE+00	1.042E+00	1.087E-06
7.350	1.373E-07	1.000005+00	1.5.49E+00	9.619E-07
7.400	1.215E-07	1. 000000	1.C56E+00	8.511E-07
7.450	1.075E-37	1.00000E+00	$1.063 E+00$	7-530E-07
7.500	9.509E-08	1. $500005+00$	1.671E+00	6.662E-07

EXAMPLE USE OF INCPD TO COMPUTE U-GUST INCREMENY DIST•, TAU=•1FL/U, R=1•• SJ=1.

NOF NALIZED VARIABLE X/SIGHA	$\begin{gathered} \text { STVIZED } \\ \text { PROBABILITY } \\ \text { DENSITY } \end{gathered}$	DISTRIBUTION FUNCTION	UNNORMALIZED VARIABLE X	$\begin{gathered} \text { NONSTDIZEO } \\ \text { PROBABILITY } \\ \text { DENSITY } \end{gathered}$
2. 500	1.782E- 22	9. c2325E- 11	3.569E-01	1.249E-01
2.550	1.595E-02	9.93163E-B1	3.64EE-01	$1.117 \mathrm{E}-01$
2.600	1.425E-02	9. ¢3C22E-01	3.711E-01	9.986E-02
2.650	1.273E-02	9. S4596E-01	3.783E-01	8.918E-02
2.700	1.136E-02	9. 55198 E -01	3.854E-01	7.958.E-02
2.750	1.013E-02	g.c5735E-01	3.925E-01	7.095E-02
2.800	9.023E-C3	9. C6213E-01	3.997E-01	6.321E-02
2.850	8.033E-03	9. 56 E39E-01	4.068E-01	5.628E-02
2.900	7.147E-03	9.c7C18E-01	4.140E-01	5.007E-02
2.950	6.355E- 03	9.c7355E-01	4.211E-01	4.452E-02
3.000	5.648E-03	9. $97655 E-01$	4.282E-51	3.957E-02
3.C50	5.017E-03	O.C7C21E-01	4.354E-01	3.515E-02
3.100	4.455E-03	9.C8158E-01	4.425E-01	3.121E-02
3.150	3.954E-03	9. ¢8368E-01	4.496E-01	2.770E-02
3.200	3.507E-03	S. C8554E-01	4.568E-01	$2.457 \mathrm{E}-02$
3.250	3.111E-03	9.c8719E-01	4.639E-01	2.179E-02
3.360	2.758E-03	9. ¢8866E-01	4.711E-81	1.93?E-02
3.350	2.445E-03	9. ¢8¢96E-01	4.782E-01	1.713E-02
3.400	2.166E-03	9. $99111 E-01$	4.853E-01	1.518E-02
3.450	1.919E- 3	9. ¢9213E-01	4.925E-01	1.345E-02
3.500	1.70CE-03	9. 99303 E -01	4.996E-61	1.191E-02
3.550	1.5C6E-03	9. $59383 E-01$	5.C67E-01	1.055E-02
3.600	1.333E-03	C. C9454E-01	5.139E-01	9.341E-03
3.650	1.181E-73	9.99517E-01	5.210E-01	8.270E-03
3.700	1.045E-03	9. $59572 E-01$	5-282E-01	7.322E-03
3.750	9.251E-04	9.99E22E-01	5.353E-01	6.481E-03
3.800	8.189E-04	9. S9E65E-01	5.424E-01	5.737E-03
3.850	7.248E-04	9. $99704 \mathrm{E}-01$	5.496E-01	5.077E-03
3.900	6.414E-04	9. ¢9738E-01	5.567E-01	4.494E-03
3.950	5.677E-04	9. $59768 \mathrm{E}-01$	5.638E-01	3.977E-03
4.000	5.C23E-04	9. $99795 E-01$	5.72CE-01	3.519E-03
4.050	4.445E-04	9. $59818 \mathrm{E}-01$	5.781E-01	3.114E-03
4.100	3.933E-04	9. 59839E-01	5.852E-01	2.756E-03
4.150	3.48DE-04	9. $59858 \mathrm{E}-01$	5.924E-01	2.438E-03
4.209	3.980E-04	9. $99874 \mathrm{E}=01$	5.995E-31	2.157E-03
4.250	2.725E-04	9. cocrae-01	6.067c-01	1.909E-03
4.360	2.411E-04	9.99c02E-31	6.138E-01	1.689E-03
4.350	?.133E-04	9. $59513 E-01$	6.209E-01	1.494E-C3
4.400	1.887E-34	9. $59523 E-01$	6. 281E-01	1.322E-03
4.450	1.670E-04	9.99c32E-01	6.352E-01	1.170E-03
4.500	$1.477 E-04$	C. c9540E-01	6.423E-31	1.035E-03
4.550	$1.307 \mathrm{E}-04$	9.99947E-01	6.495E-01	9.157E-04
4.600	1.156E-04	9. $99553 \mathrm{E}-01$	6.566E-0.1	8.102E-04
4.650	1.023E-04	9. $59958 \mathrm{E}-01$	6.638E-01	7.168E-04
4.700	9.052E-05	9.99C63E-C1	6.709E-02	6.342E-04
4.750	8.009E-05	9.c9c67E-01	$6.7805-01$	5.611E-04
4.800	7.086E-05	9.99C71E-01	6.852E-01	4.964E-04
4.850	5. 269E-05	9. $99974 E-01$	6.923E-01	4.392E-04
4.000	5.546E-05	9.99¢77E-01	6.994E-01	3.886E-04
4.950	4.907E-85	c. $99980 E-11$	7.666E-01	$3.438 \mathrm{E}-04$
5.000	4.341E- 5	9.99C82E-01	7.137E-01	3.041E-04

EXAMPLE USE OF INCPD TO CONPUTE U-GUST INCPEMENT OIST•, TAU=. 1*i/U, R=1*, SJ=1.

NORMALIZED VARIA日LE X/SIGMA X	$\begin{aligned} & \text { STOIZED } \\ & \text { PROBABILITY } \\ & \text { DENSITY } \end{aligned}$	DISTRIAUTION FUNCTION	UNNORMALIZED VARIABLE X	NONSTOIZED PROBABILITY DENSITY
7.500	9.5c9E-08	1.00000E400	1.071E+00	6.662E-07
7.550	8.413E-98	1. $00000 E+00$	$1.0785+00$	5.894E-07
7.600	7.443E-08	$1.00000 E+00$	1.085E+00	5. $214 \mathrm{E}-07$
7.650	6.565 5 -0	$1.000005+00$	1.092E+00	4.613E-07
7.700	5.826E-08	1. $00000 \mathrm{E}+00$	1.099E+20	4.081E-07
7.750	5.154E-08	$1.000035+00$	1.106E+00	3.611E-07
7.800	4.560E-08	$1.00000 E+00$	$1.113 E+00$	3.195E-07
7.850	4.E35E-08	1. $000005+C 0$	1.121E+00	2.826E-07
7.900	3.570E-78	1.CJCODE + OO	1.128E-00	2.501E-07
7.950	3.158E-08	$1.30000 E+00$	$1.135 E+0.0$	2.212E-07
$8 . C O B$	2.794E-08	1. $00000 E+00$	$1.142 \mathrm{E}+\mathrm{ab}$	1.957E-07
3. 850	2.472E-08	1-COCODE+00	1.149E+00	1.732E-07
8.100	2.187E-08	1.00COOE+00	1.156E+00	1.532E-07
8.150	1.935E- ${ }^{\text {c }}$	1. $00 C O E+00$	$1.163 E+00$	1.356E-07
3.200	1.712E-08	1. $000005+00$	1.170E+00	1.199E-07
8.250	1.515E-08	1. $600500 E+00$	$1.178 \mathrm{E}+00$	1.061E-07
8.300	1.340E-88	1. $00000 E+C 0$	1.185E+00	9.387E-08
8.350	1.185E-98	1.COOJOE+00	1.192E+00	8.305E-08
8.400	1.049E-08	1. COOCOE +00	1.199E400	7.348E-0 0
8.450	9.279E-J9	1. $00 C O D E+00$	$1.206 E+00$	6.501E-08
6.500	8.210E-09	1.OUCGJE + DO	1. $213 \mathrm{E}+00$	5.751E-Ct
8.550	7.263E-19	$1.000005+00$	1. $220 \mathrm{E}+00$	5.088E-08
8.600	5.426E-09	1. $100 \mathrm{CDOE}+00$	1.228E+00	4-502E-08
8.650	5.635E-09	$1.30000 \mathrm{E}+00$	$1.235 E+00$	3.983E-08
0.700	5.030E-09	1. $000005+00$	1.242E+00	3.524E-08
8.750	4.45CE-09	1. $\operatorname{COCOOE}+00$	1. $2495+00$	3.118E-08
8.800	3.937E-09	$1.00005 E+00$	1. $2565+00$	2.758E-08
8.850	3.433E-39	1.00COOE + 00	1. $263 \mathrm{E}+00$	2.440E-08
8. 900	3.082E-09	$1.00 C O O E+00$	1.27CE+00	2.159E-08
8.950	2.727E-09	$1.03 C O O E+D O$	1. $278 \mathrm{E}+00$	1.910E-08
9. 100	2.4125-09	$1.80 C O S E+00$	1.285E+00	1.690E-00
9.C50	2.134E-09	$1.00 C C O E+00$	1. $292 \mathrm{E}+00$	1.495E-08
9.150	1.888E-09	1. $00600 E+00$	1.299E+00	1.323E-08
9.150	1.671E-39	1. $\operatorname{coccos}+00$	1.3C6E+00	1.170E-00
9.200	1.478E-09	1.00CODE+ 80	1.313E+00	1.035E-08
9.250	1.3C BE-E9	1.00CDUE+00	1.32CE+00	9.160E-09
9.300	1.157E-09	1.60003E+00	$1.328 E+00$	8.104E-09
9.350	1.023E-09	1. COCCOE + 00	1. $335 E+00$	7.170F-09
9.400	9.055E-10	$1.090005+00$	1.342E+00	6.343E-09
9.450	8.011E-10	$1.00000 E+00$	1.349E+00	5.612E-29
9.500	7.088E-10	1. OQCOOE 00	1.356E+00	4.966E-09
9.550	6. $270 \mathrm{E}-10$	$1.80 C O O E+00$	1.363E+0i	4.393E-09
9.600	5.54 EE-10	1. $\operatorname{COCOOE}+00$	1.37CE+ 50	3.887E-09
9.650	$4.9385=10$	1. 00000 O +00	1.377E + 00	3.438E-09
9.700	$4.343 E-10$	1. $0 \subset C O O E+00$	1.385E+00	3.042E-0 c
9.750	3. 84 1E-10	1. OOCDOE + OD	1. $392 \mathrm{E}+00$	2.691E-09
9.800	3.398E-10	1. $00000 E+00$	1.399E+00	2.381E-09
9.850	3.007E-10	$1.000008+00$	1.406E+03	2.107E-09
9.900	2.660E-10	1. $C O C O O E+00$	$1.413 E+00$	1.864E-09
9.950	2.353E-10	1. $00000 \mathrm{E}+00$	$1.420 E+00$	$1.648 \mathrm{E}-09$
13.000	2.083E-10	1.COCOOE + 80	$1.427 E+05$	1.459E-09

Program EIGU

EIGU is a program which computes eigenvalues and eigenfunctions of linear system responses to the longitudinal component of the non-gaussian turbulence model. The example presented here shows the calculation of the first eigensolution for a system having the transfer function

$$
\begin{equation*}
H(s)=\frac{1+i}{s-(1+i)}+\frac{1-i}{s-(1-i)} . \tag{Al}
\end{equation*}
$$

The parameters of the problem are:

$$
\begin{align*}
& \sigma_{u}=.3048(\mathrm{~m} / \mathrm{sec}) \\
& L_{u}=200 .(\mathrm{m}) \tag{A2}\\
& U=100 .(\mathrm{m} / \mathrm{sec})
\end{align*}
$$

Card Decks

The following card decks were required to produce the sample calculation presented here:

EIGU
attached subroutines.
(All of the decks required by program EIGU have been given the identification tag EIGU and will be found listed consecutively with program EIGU at the end of this appendix.)

Input Data

The following five data cards were used to produce the example presented here. The meaning and format of these cards is described by comments in program EIGU.

Resülts

The above named card decks were compiled, loaded, and executed on the University of Washington CDC-6400 computer system. Storage requirement including $1 / 0$ buffers and all system programs was 17,6648 words. Execution, including dompilation and loading, required 11_{10} seconds of central processor time. The following printer output was generated.

```
GEGIN ITERATION FOR EIGENVALUE AND EIGENFUNCTION NO. 1
TURBULENCE PARAMETERS:
STD. OEV. = .305 MTAS = 100.000 SCALE LENGTH = 200.000
VEHICLE PARAMETERS:
    COEFFICIENTS
        POLES
    1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
SYSTEM RESPONSE VARIANCE = 3.144411E-B1
```

ITERATION	NO.	1.	ESTIMATED			1	P	
ON	NO	2	ESTIMATED	EIGENVALUE	IS	2.3169420E-01.	CDEVP	$1.054 E+00$
N	NO	3	ESTIMATED	EIGENVAL	IS	5.5995409E-01	Devp	1.417E +10
ITERATION	NO.	4	ESTIMATED	EIGENVALUE	IS	5.6586583E-01	TDEVP	1.056E-02
ITERATION	NO	5	ESTIMATED	EIGENVALUE	IS	5.6579235E-01.	TDEVP	1.299E-04
ITERATION	NO.	6	ESTIMATED	eigenvalue	IS	5.6578378E-01	PDEVP	1.513E-0.5
ITERATION	NO	6	ESTIMATEO	EIGENVALUE	IS	9.9804141E-01	IDEVP	7.640E-11
ITERATION	NO.	7.	ESTIMATED	EIGENVALUE	IS	5.5910282E-01	CDEYP	$4.398 \mathrm{E}-01$
ITERATION	NO.	8	ESTIMATED	EIGENVALUE	IS	5.5924255E-01	DEVP	2.499E-04
ITERATION	NO.	9.	ESTIMATED	EIGENYALUE	IS	5.5924316E-01	TDEVP	1.078E-16

```
EI=8.866E+50%
EI =1.720E-021
EI = 1.183E-D21
EI=3.261E-04)
EI=2.309E-05%
EI=1.754E-06)
EI=1.758E-061
EI=2.277E-v2)
EI = 2.842E-0 5)
EI=1.799E-061
```

```
EIGENVALUE NO. 1 IS 5.592431EE-01
FOACTION OF RESPONSE YARIANCE DUE TO THIS EIGENYALUE IS - 99463
FRACTION OF RESPONSE VARIANCE DUE TO FIRST 1 EIGENVALUES IS . 99463
\begin{tabular}{|c|c|}
\hline X & EIGENFUNCTICN \\
\hline 0.0000 & 0. \\
\hline - 8100 & 7.0285872829E-03 \\
\hline . 0200 & 1.405544-114E-02 \\
\hline . 0300 & 2.1078851805E-62 \\
\hline . 0450 & 3.1603814298E-02 \\
\hline -0688 & 4.8233465059E-02 \\
\hline . 1588 & 1.105g040718E-61 \\
\hline -3925 & 2.60E4371720E-01 \\
\hline - 7532 & 4.3826169502E-01 \\
\hline 1.2436 & 5.5772357582E-01 \\
\hline 1.8600 & 5.60E3854671E-01 \\
\hline 2.6071 & 4.74E7481916E-G1 \\
\hline 3.4827 & 3.6776402814E-01 \\
\hline 4.4830 & 2.7839935679E-61 \\
\hline 5. 6153 & 2.0852833382E-01 \\
\hline 6.9713 & 1.52EE65E68BE-01 \\
\hline 8.2603 & 1.0799291389E-01 \\
\hline 9.7720 & 7.4001491704E-02 \\
\hline 11.4176 & 4.9038754620E-02 \\
\hline 13.1918 & 3.1470795013E-02 \\
\hline 15.0874 & 1.9593125325E-02 \\
\hline 17.1183 & 1.1792418679E-02 \\
\hline 19.2695 & 6.8870511724E-03 \\
\hline 21.5571 & 3.3874500871E-03 \\
\hline 23.9732 & 2.1248914355E-C3 \\
\hline 26.5083 & 1.127442C928E-03 \\
\hline 29.1811 & 5.7796094088E-04 \\
\hline 31.9719 & \(2.8766772923 E-04\) \\
\hline 34.9013 & 1.383617E211E-04 \\
\hline 37.9594 & 6.4387963348E-05 \\
\hline 41.1340 & 2.9115511114E-05 \\
\hline 44.4487 & 1.2712580531E-05 \\
\hline 47.8791 & \(5.3924807584 \mathrm{E}-06\) \\
\hline 51.4505 & \(2.2081584150 \mathrm{E}-06\) \\
\hline 55.1365 & 9.7865381544E-07 \\
\hline 58.9646 & 3.3743817791E-37 \\
\hline 62.9212 & 1.2548984137E-C7 \\
\hline 66.5911 & 4.53E549E615E-08 \\
\hline 71.2044 & 1.58224CE221E-68 \\
\hline 75.5300 & 5.3656784205E-09 \\
\hline 80.0000 & 1.7551071753E-09 \\
\hline
\end{tabular}
FIRST 1 EIGENVALUES AREE
\(15.5924316 E-01\)
REMAINING EIGENVALUES SQUAREC SUM TO 1.6881512E-03
THE AROVE EIGENVALUES ACCOUNT FOR . 99463 OF THE RESPONSE YAR.
LARGEST POSSIRLE REMAIAING EIGENVALUE IS 4.1087118E-02
```

EIGVW is a program which computes eigenvalues and adjoint eigenfunctions of linear system responses to the vertical or lateral components of the non-gaussian turbulence model. The example presented here shows the calculation of the first eigensolution for a system having the transfer function

$$
\begin{equation*}
H(s)=\frac{1+i}{s-(1+i)}+\frac{1-i}{s-(1-i)} \tag{A3}
\end{equation*}
$$

The parameters of the problem are

$$
\begin{align*}
\sigma_{\omega} & =.3048(\mathrm{~m} / \mathrm{sec}) \\
L_{\omega} & =200 .(\mathrm{m}) \tag{A4}\\
U & =100 .(\mathrm{m} / \mathrm{sec})
\end{align*}
$$

Card Decks

The following card decks were required to produce the sample calculation presented here:

EIGVW
attached subroutines.
(All of the decks required by program EIGVW have been given the identification tag EIGVW and will be found listed consecutively with program EIGVW at the end of this appendix.)

Input Data

The following five data cards were used to produce the example presented here. The meaning and format of these cards is described by
comments in program EIGVW.

Results
The above named card decks were compiled, loaded, and executed on the University of Washington CDC-6400 computer system. Storage requirement including I/O buffers and all system programs was $23,165_{8}$ words. Execution, including compilation and loading, required 18_{10} seconds of central processor time. The following printer output was generated.

BEGIN ITERATION FOR EIGENUALUE ANO EIGENFUNCTION NO. 1
TURBULENGE PARAMETERS:
STD. DEV. $=.305$ HTAS $=100.000 \quad$ SCALE LENGTH $=200.000$
VEHICLE PARAMETERS:
COEFFICIENTS
$1.0000 E+00 \quad 1.0000 \varepsilon+00$

SYSTEM RESPONSE VARIANCE $=2.847561 E-01$

N	NO.	D P	EIGENVALUE	IS	1.1279131E-01.	CDEYP $=1.000 E+00$
ITERATION	NO. 2.	ESTIMATED 0	EIGENYALUE	IS	2.2656324E-01.	CDEVO $=1.4005+00$
ITERATION	NO. 3.	ESTIMATED P	EIGENVALUE	IS	5.26E1024E-01.	CDEVP $=3.669 E+00$
ITERATION	NO. 4.	ESTIMATED 0	eigenvalue	IS	5.4074826E-01.	CDEVO $=1.387 E+00$
ITERATION	NO. 5.	ESTIMATED P	EIGENVALUE	IS	5.3623562E-01.	PDEVF $=1.828 E-02$
ITERATION	NO. 6.	ESTIMATED 0	EIGENVALUE	IS	5.4059088E-01.	IDEVO $=2.910 E-04$
ITERATION	NO. 7.	ESTIMATED P	EIGENVALUE	IS	5.3619030E-61.	CDEVP $=8.45 \mathrm{CE}-05$
ITERATION	NO. 8.	ESTIMATED 0	EIGENYALUE	IS	5.4058727E-01.	CDEVO $=6.682 E-06$
ITERATION	NO. 8.	ESTIMATED Q	EIGENVALUE	IS	9.9717091E-01.	YOEYO $=8.446 E-01$
ITERATION	NO. 9.	ESTIMATED P	EIGENVALUE	IS	5.2998707E-D1.	1DEVP $=1.157 E-02$
ITERATION	NO. 10.	ESTIMATED 0	EIGENVALUE	IS	5.3070587E-01.	IDEVO $=4.678 \mathrm{E}-\mathrm{i} 1$
ITERATION	NO. 11.	ESTIMATED P	EIGENVALUE	IS	5.3037573E-01.	CDEVP $=7.333 E-04$
ITERATION	NO. 12.	ESTIMATED Q	EIGENVALUE	IS	5.3070909E-01.	CDEVA $=6.053 E-06$
ITERATION	NO. 13.	ESTIMATED P	EIGENVALUE	IS	5.3037603E-01.	COEVP $=5.765 E-07$

$E I=8.866 E+501$
$E I=2.282 E-021$
$E I=1.836 E-021$
$E I=1.243 E-021$
$E I=6.531 E-043$
$E I=6.816 E-051$
$E I=7.757 E-061$
$E I=7.889 E-071$
$E I=7.912 E-071$
$E I=7.785 E-143$
$E I=2.695 E-021$
$E I=8.203 E-051$
$E I=7.583 E-053$
$E I=8.100 E-071$

EIGENVALUE NO． 1 IS 5．3054256E－01
$E V F=5.3037603 E-01$ EVQ $=5.3070909 E-0 I$ RELATIVE OIFFERENCE＝6．278E－04
FRACTION OF RESPONSE VARIANCE CUE TO THIS EIGENVALUE IS ． 98848 FRACTION OF RESPONSE YARIANCE OUE TO FIRST 1 EIGENVALUES IS ． 98848
x
0.0000
.0100
.0200
.0300
.0450
.0688
.1588
－ 3925
． 7532
1． 2436
1.3600
2.6071
3.4827
4.4833
5.6153
6.8713

8． 2603
9．7720
11.4176
13.1918

15． 0874
17.1183

19． 2695
21.5571

23．9732
2E． 5083
29．1811
31.9719

34．9［13
37.9594
41.1340
44.4467
47.8791
51.4505

55．1365
58． 9646
62.9212
66.9911
71.2044
75.5300
80.0000

FUNCTICN OF 1ST ARG FUNGTION OF 2ND ARG 0.

6．73245110245－03
1．3482343B75E－02 2．0247587919E－C2 3．0419692969E－02 4．5571979135E－02 1．07e4141104E－01 2．5942987425E－01 4．4146159714E－01 5．5866644871E－01 5．5238306103E－01 4．5575693583E－01 3．683597E265E－21 2．8544936694E－01 2．1516724290E－G1 1．5702144891E－61 1．1086763418E－01 7．5981065944E－82 5．0358752968E－C2 3． $2317565084 \mathrm{E}-02$ 2．0120179093E－02 1．2109644039E－02 7．3723185987E－03 3．992025E440E－03 2．1820527423E－03 1．1577712014E－03 5．9350855992E－04 2．9540622495E－04 1．4202219191E－i4 6．6120351893E－05 2．9858742026E－05 1.305455 9279E－05 5．5375428735E－106 2．2675596710E－06 9．0229545170E－67 3．4651553914E－07 1．28865620G9上ース7 4．6585867398E－38 1．6243035647E－08 $5.5190195309 \mathrm{E}-09$ 1．8023209848E－C9
0.

1．0461591109E－02
2．0894505585E－02
3．1296288211E－02
4．6835310860E－02
7．1268468976E－02
1．6144901928E－01
3． $6958022178 \mathrm{E}-01$
5．9018308049E－01
6．8767121324E－01
5．9129268019E－01
3．7291355406E－01
$1.5671227976 E-01$
4．9083324351E－03
－8．6185086779E－02
－1．3371281284E－01
－1．5016589158E－01
－1．4449874249E－01
－1．2579504215E－01
－1．0150526678E－01
－7．7014503724E－02
－5．526З694482E－D2
－3．7788198842E－02
$-2.4638804756 \mathrm{E}-02$
－1． $5377986136 E-02$
－9．2228821484E－03
－5．3027323990E－03
－2．933c489023E－83
－1．5632781479E－03
－8．0106806971E－04
－3．9662702230E－ 14
－1．8885713453E－04
－8．6993337604E－05
－3．8557179289E－05
－1．6547E12754E－05
－6．8355563869E－06
－2．7268259085E－06
－1．0544685683E－06
－3．9257897507E－07
$-1.4176732168 E-07$
－4．9291119477E－08

FIRST 1 EIGENVALUES ARE

15 ． 305425 EE－01
REHAINING EIGENVALUES SOUAFED SUM TO 3．2806552E－03
THE ABOVE EIGENVALUES ACCOUNT FOR ． 98848 OF THE RESPONSE YAR． LARGEST POSSIBLE REHAIMING EIGENVALUE IS 5．72770G4E－02

RLEVX is a program which computes the level crossing frequency of a iinear system response to the non-gaussian turbulence model. The example presented here, in order to be as simple and compact as possible, utilizes the first and second eigensolutions of the response and its first derivative which were presented in the numerical example section of this report. These solutions were assumed to represent the total non-gaussian portion of the vehicle response.

Card Decks

The following card decks were required to produce the sample calculation presented here:

RLEVX
CF2
COEF
FFT
INRPDT
INVR
SCALE

Input Data

The 175 data cards listed on the next three pages of this appendix were used to produce the example presented here. The meaning and format of these cards is described by comments in program RLEVX.

Results

The above named card decks were compiled, loaded, and executed on the University of Washington CDC 6400° computer system, Storage require-

181
ment including I/O buffers and all system programs was $44,550_{\mathrm{B}}$ words. Execution, including compilation and loading, required 53_{10} seconds of central processor time. Printer output generated by the program.is presented following the listing of input data on the next few pages.


```
RESULTS OF SGALING
EXAMPLE. OF PROGRAM RLEVX USING 4 EIGENSOLUTIONS FROM NUMERICAL EXAMPLE OF REPORT
VARIABLE NO. 1
GAUSSIAN YARIANCE INCLUDING COFRECTION FOR NEGLECTEO EIGENVALUES = 5.58625EF00
SCALED EIGENYALUES
    2. 24153E+00
    7.49533E-01
VARIASLE NO. ?
GAUSSIAN VAPIANCE INCLUDING.CORRECTION FOR NEGLECTED EIGENYALUES = 3.94850E400
SCALED ETGENVALUES
    1.67584E+00
    1.06773E+00
SIGMA RATIO OF TUREULENCE MOLEL = 1.000
VARIANCE CHECK, VARIARLE NO. 1
CORRECT TOYAL VARIANCE = 1.11725E+01
SUM OF SCALED EIGENYALUES SQUAREO = 5.58625E+00
GAUSSIAN VARIANCE = 5.58625E+00
TOTAL VARIANCE = 1.11725E+01
VAFIANCE CHECK, VARIAGLE NO. 2
CORRECT TOTAL VARIANCE = 7.897COE+00
SUM OF. SCALED EIGENVALUES SQLARED = 3.94850E+00
GAUSSIAN VARIANCE = 3.94850E+BC
TOTAL VARIANCE = 7.89700E+CO
```

COVARIANCE MATRIX FCR P VAfIables
EXAMPLE OF PPOGRAM RLEVX USIAG 4 EIGENSOLUTIONS FRCM NUMERICAL EXAMPLE OF REPORT

1.000003	0.000000	.943717	-.261535
0.000000	1.000000	.058157	-.090917
.043717	.058157	1.000000	0.008000
-.261535	-.090917	0.000000	1.000000

COVARIANCE MATRIX FOR Q VAFIABLES
EXAMPLE OF PROGRAM RLEUX USIAG 4 EIGENSOLUTIONS FRCM NUMERICAL EXAMPLE OF REPORT

1.000000	0.000000	.171608	.940547
0.000000	1.000000	.032251	-.063324
.171608	.032251	1.000000	0.000000
.940547	-.063324	0.000000	1.000000

FUNCTIONAL DEPENDENCE MATRIX
EXAMFLE OF DROGRAM RLEVX USIAG 4 EIGENSOLUTIONS FRCM NUMERICAL EXAMPLE OF REPORT VARIABLE NO. 1

```
2.241528 0.000000
0.000000
    .749533
```

functional dependence matrix
EXAMPLE OF PROGRAM RLEYX USING 4 EIGENSOLUTIONS FROM NUMERICAL EXAFPLE OF REPORT VARIAELE NO. 2
1.6758430 .000000
0.0000001 .067731

COqRELATION COEFFICIENT OF RESFONSE AND ITS FIRST DERIVATIUE $=2.831 E-03$
rhis Coefficient should pe much less than 1.0
determinants of covariance matricies
DETA $=3.43320 \mathrm{E}-22$
$D E T B=8.25690 E-C 2$
INCREMENTS:
$D \times(1)=1.0027587 E+00 \quad 0 \times(2)=8.4304304 \mathrm{E}-01$
$D F(1)=1.5582014 E-02 \quad D F(2)=1.8533938 E-02$

$35 E-020$			
77E-03-1.	4.	2.604E-03-1.001E-15	1.4C1E-03 5.158E-15
3.56	3.997E-04 4.152E-15	2.187E-04 9.766E-16	1.222E-04 3.305E-16
.959E-05-7.763E-17	4.019E-05-7.471E-15	2.347E-E5-6.798E-15	1.383E-05-1.C47E-15
06-3.123E-17	4.894E-DE-2.298E-15	2.934E-06-1.712E	766E-06-9.427E-15
067E-16-1.778E-17	6.469E-07 5.336E-15	3.933E-07 2.638E-1	2.397E-07 4.678E-16
4E-07-6.3	3. $569 \mathrm{E}-\mathrm{DB}$ 1.778E-15	5.517E-08 1.304E	3.402E-08-3.395E-15
0E-J8 4.3	$1{ }^{\text {1 }}$ 1515-08	9.047E-C9-2.811E-1	
		9.047E-C9 2.81	
76.335	2.397E-07-4.67	-	
$061.778 \mathrm{E}-17$	1.766E-06 G.027	2.934E-C6 1.71	
.202E-06 3.1	1.3B3E-05 1.un	2.347E-05 6.7	
6.959E-35 7.763E-17	1.222E-04-3.305E-16	$2.187 E-04-¢ .7$	3.997E-04-4
8E-04 3.567E-16	1.401E-03-5.156E-15	2.604E-c3 1.001E-15	4.654E-03
031.4		22E-02-6.143E-15	
1	4.927E-03-c.203E-15	3-8.	
2.		41.0	1.062E-04 6.551E-16
05-2.7	2. $529 \mathrm{E}-05 \mathrm{C}$ -	. $563 \mathrm{E}-15 \mathrm{~S}-6.848 \mathrm{E}-$	8.432E-06-1.0
6	2.525E-06-2.20	.394E-06-1.73CE-	7.765E-97-9.233E-15
1E-07 0.	2.4.51E-07 5.604E-15	1.387E-07 2.835E-1	7.883E-08 4.363E-16
7E-58-2.670E-19	$2.574 \mathrm{E}-081.811 \mathrm{E}-15$	1.478E-08 1.365E-	8.529E-09-3.438E-15
	2. $53 \mathrm{EE}-0 \mathrm{C}$ 3.016E-15	824E-09-2.86	.270E-09 8.893E-16
02E-09	1. 27 CE-0¢ $-2.893 E-16$	824E-09 2.86	2.939E-09-3.016E-15
JE- 79	1.529E-0 ¢	8-1.3	2.574E-08-1.811E-15
082.	7.E83E-08-4.363E-1	-7-2.	2.451E-07-5.604E-15
07	7.765E-07 c.233E-15	94E-06 1.7	2.520E-06 2.209E-15
06	0	563E-056.	2.92
6E-05 2.776E-17	1.062E-04-E.551	2.053E-04-1.093E-1	3.993E-04-4.C46E-15
7.781E-04 2.525E-16	1.4.45E-3 $3-5.169 E-15$	-03 8.792E-16	4.
2.098E-02 0.	02 2.419E-15	270E-82	25E-03 2.918E-15
2.514E-15	1.406E-03-5.611E-15	O9E-04-1	558E-04-3.050E-16
-6.33?E-16	5. $332 \mathrm{E}-05-3.841 \mathrm{E}-16$	521E-05-1.	213E-05-8.934E-17
BBE-07-3.944E-17	1.74EE-97-č.694E-17	3.	
2.148E-17	-9-1.316E-17	-09-1.26	2.924E-09-9.779E-18
433E-09-5.662E-18	7.649E-1C-4.123E-18	8E-10-2.271E-	$2.044 \mathrm{E}-102.075 \mathrm{E}-18$
.C7SE-10 2.958	5. $886 E-11-5.050 E-19$	3.445E-11 5.997E-18	2.325E-11 6.116E-18
-002E-11 0.	$2.325 \mathrm{E}-11-\mathrm{E} .116 \mathrm{E}-18$	45E-11-5.997E-18	5.886E-11 5.050E-19
C 79E-10-2.958E-18	2.044E-1C-2.075E-18	3.939E-1C E.271E-18	7.649E-10 4.123E-18
1.493E-99 6.662E-18	2.924E-0¢ ¢.779E-19	5.742E-09 1.261E-17	1.130E-08 1.316E-17
2.2315-09 2.14	4.414E-08 $2.194 \mathrm{E}-17$	62E-08 3	
3.488E-07 3.944E-17	7.couE-07 4.132E-17	1.413E-06 8.08	

COMPUTED VALUES DF X AND $N(X)$
0 . $1.3474656 E-01$
1.0027587E+0C 1.2746600E-C1
$2.0055174 E+00 \quad 1.0203034 E-01$
3.C082761E+00 B.274E242E-02
$4.011 E 349 E+005.8122950 E-122$
$5.0137935 \mathrm{E}+00$ 3.8195555E-C2
$6.01 E 5522 E+002.4032236 E-62$
7.0193109E+00 1.48034E1E-02
9.0220696E+n0 9.c793143E-03
Q. $6248283 \mathrm{E}+00$ 5.5C596E0E-03

1. $1027587 E+01$ 3.4756023E-03
1.103E34EEFD 2.1737180E-13
1.2333104E+n1 1.3666137E-03
2. $3035863 \mathrm{E}+01$ 8. $6235751 \mathrm{E}-04$
1.4038622E+i 1 5.4557255E-04
3. 5941380E+01 3.458020BE-04
$1.6444139 E+01 \quad 2.1948558 \mathrm{E}-04$
$1.7046898 \mathrm{E}+01$ 1.3945934E-04
1.8049657E+ח1 8.8E85815E-05
4. $6052415 E+i 1 \quad 5.6435779 E-65$
2.0055174E+ت́1 3.5933260E-05
2.1057933E+01 2.2889875E-05
2.236C6915+01 1.4587248E-05
$2.30 \in 3450 \mathrm{E}+01$ 9.3000929E-06
2.4066209E+91 5.9323970E-96
$2.5063967 \mathrm{E}+01$ 3.7874490E-06
2.6071726E+01 2.4222455E-06
2.7074485E+01 1.5552427E-C6
2.8977243E+01 1.0973336E-06
2.9986032E +01 6.6737529E-07
3.c082761E+01 4.63867C7E-07
3.1085520E+C1 3.5549707E-C7
3.2088278E+01 3.2001749E-07
$3.3091037 E+31 \quad 3.5016234 E-07$
3.4093796E+J1 4.5215746E-07

LEYEL CROSSINGS

EXAMPLE OF PROGRAM RLEYX USING 4 EIGENSOLUTIONS FROM NUMERICAL EXAMPLE OF REPORT

OIMENSIONAL LEVEL X	NON-DIMENSIONAL LEvEL $X / S I G M A X$	CROSSINGS PER UNIT TIME	CROSSINGS PER ZERO CROSSING
0.	0.	1.347E-01	1.000E+00
6.685E-11	2.000E-01	$1.315 \mathrm{E}-01$	9.755E-01
1.337E 000	4.000E-01	1.221E-01	9.059E-01
2.006E+C0	$6.000 \mathrm{E}-01$	1.080E-01	$8.017 E-01$
2.674E+00	8.000E-01	9.140E-02	6.783E-11
$3.343 E+08$	1.00CE+00	7.421E-02	5.507E-01
$4.0115+30$	1. $200 \mathrm{CE}+0$	5.312E-02	$4.314 \mathrm{E}-01$
$4.68 \mathrm{DE}+00$	$1.400 \mathrm{E}+00$	4.420E-02	$3.280 \mathrm{E}-01$
$5.348 \mathrm{E}+03$	$1.60 C E+D 0$	3.285E-J2	$2.438 \mathrm{E}-61$
6.017E+30	1.80CE+00	2.403E-02	$1.784 \mathrm{E}-01$
$6.695 E+0.0$	2. $0000+00$	1.742E-02	1.292E-01
7.354E+9B	$2.200 \mathrm{E}+00$	1.257E-C2	9.332E-02
8.022E+00	$2.400 \mathrm{E}+0 \mathrm{O}$	9.079E-03	6.738E-02
8.691E+00	2. $60 . C E+00$	6.57EE-03	4.876E-02
$9.359 E+00$	$2.8008+00$	4.770E-03	3.540E-02
1.003E+01	$3.000 E+00$	3.47EE-03	2.579E-02
1.07CE+01	$3.200 E+00$	2.540E-03	1.885E-02
1. $1365+01$	$3.400 E+00$	1.861E-03	1.381E-02
$1.2935+C 1$	$3.600 E+00$	$1.367 E-03$	1.014E-02
1. $2705+01$	$3.80 C E+00$	$1.005 \mathrm{E}-03$	7.460E-03
$1.337 E+01$	4.00CE+00	7.402E-04	5.493E-03
$1.404 \mathrm{E}+01$	4. $2000+00$	5.456E-04	4.049E-03
1.471E+51	$4.4 C C E+00$	4.025E-04	2.987E-03
$1.5385+01$	4.EOCE +0	2.972E-04	2.205E-03
$1.634 E+51$	$4.800 E+00$	2.195E-04	1.629E-03
$1.571 \mathrm{E}+31$	5. COOE + O O	1.622E-04	$1.204 \mathrm{E}-03$
$1.738 \mathrm{E}+01$	$5.20 G E+00$	1.199E-04	8.90 OE-04
1.805E+11	$5.40 C E+00$	8.869E-05	6.582E-04
$1.872 E+01$	$5.600 E+00$	6.561E-05	4.869E-04
$1.939 E+81$	5.80ceto	4.855E-05	3.603E-04
$2.006 E+01$	6. 50 cetbo	3.593E-05	$2.657 \mathrm{E}-14$
$2.072 E+31$	6.20CE+ 00	2.660E-05	$1.974 \mathrm{E}-04$
2.139E+01	$6.40 C E+00$	$1.9708-05$	1.462E-04
$2.206 E+01$	6. EODE 00	1.459E-05	1.083E-04
2. $273 \mathrm{E}+01$	$6.80 \mathrm{CE}+00$	$1.081 E-05$	8.019 E - 5
2. $340 \pm+01$	$7.00 C E+00$	8.005E-06	5.941E-05
$2.407 E+01$	$7.200 E+00$	5.932E-06	4.403E-05
2.473E+01	7.40 CE +00	4.398E-06	3.264E-05
2.540E+91	7.60 CEF 00	3.262E-68	2.421E-05
2.607E+01	7.80GE+00	2.422E-06	1.798E-05
$2.674 \mathrm{E}+01$	R.COCE+00	1.802E-06	1.337E-05


```
C COMPUTE INUERSE AND DETERMINANT OF CORRELATION MATRIGIES
ENTRY INVES
    IF (N-1) 160,110,110
110 DO 130 I=1,N CF100067
        00 130 J=1,N
        A 2 (I,J)=A (I,J)
    130 日2 (I,J)=8{I,J}
        GALL INUR(AZ,N,DETA,ISIZE,ISIZE)
        CALL INVR(BC,N,OETB,ISIZE,ISIZE)
        DO 140 I= 1,H
        DO 140 J=1,N
        A2(I,J)=A\hat{C(I,J1/2.}
    140 B2(I,J)=82(1,J)/2.
        IF (IOETA.GT.D.).AND.(DETB.GT.O.)) RETURN
        HRITE (6,150) DETA,OETB
    150 FORHAT IIH ,5X,*DETERMINANT .LE. ZERO, DETA =*,E11.3,*, DETB =*,
        1E11.3)
        GO TO 180
    150 HRITE (S,170) N
    170 FORMAT &1H,5X,*HATRIX DIMENSION .LE. ZERO, N =*; I3%
    180 STOP $ END
    CF100064
    CF10UC65
    CF1D0066
CF100068
CF100069
CF100070
CF100070
CF100072
CF100073
CF100074
CF130075
CF100076
CF100477
CF100078
CF100079
CF180BBO
CF100081
CF100082
GF100083
CF10U084
```



```
        A11=A1(1,1) $ B11=31(1,1) $ C11=C1(1,1) CF200039
        DIV=4.*A11*EII*C11**2 & DIVI=DETA*DETB*DIV CF200040
        IF (N-1) 160,105,10
C
    C COMPUTE ANSKEF FOR ADOITIONAL INTEGRATIONS
        10 DO 100 NI=2,N
            K=NI-1
            OO EO I=NI,N ( SIKI=A1(K,I) S CIIK=CI(I,K) s B1KI=EI(K,I) s CIKI=CI(K,I)
            DO EO J=NI,N
            CiKJ=Ci(K,J) s BiKJ=B1{K,J)
            IF (J.LT.I) GO TO 55
            A1KJ=A1(K,J) & CiJK=Ci(J,K)
            A1(I,J)=A1(I,J)-{4**S11*A1KI*A1KJ*(C11*(A1KI*C1JK+C1IK*A1KJ)
            1-A11*C1IK*C1JK))/0IV
            B1(I,J)=B1(I,J)-(4**A11*B1KI*B1KJ*(C11* (B1KI*C1KJ+C1KI*B1KJ)
        1-811*C1KI*C1KJ)J/0IV
        55C1(I,J)=Ci(I,J)-(4.**A1*FIIK*B1KJ*4**B11*A1KI*C1KJ-4**C11*A1KI*
        1B1KJ+C11*C1IK*CIKJ1/0IV
        60 CONTINUE
            A11=A1(NI,NI) क B11=Q1(NI,NI) $ C11=CI(NI,NI)
            DIV=4**A11*B11+C11**2 CFC00060
    100 OIV1=OIV1*DIY
    105 ANS=1./SQRT (DIV1)
    106 RETURN
C
    107 ANS=1.0
        GO TO 106
C
C COMFUTE INVERSE ANO DETERMINANT OF CORRELATION MATRICIES
    ENTRY INYRS
        IF (N-1) 160,110,110
    110 00 130 I=1,N
        DO 130 J=1,N
        A2(I,J)=A{I;J)
    130 B2(I,J)=S{I,J)
        GALL INYR(A2,N,DETA,ISIZE,ISIZE)
        CALL INYR(B2,N,DETR,ISIZE,ISIZE)
        00 140 I=1,K
        00 14C J=1,N
        A2(I,J)=AZ(I,J)/2.
    140 B2(I,J)=32(I,J)/2.
        IF (IDETA GT, D,),ANO, IOETB,GT,0,1] GO TO 105
```



```
    15! FORNAT (1H,5X,*DETERMINANT &LE. ZERO, DETA =*,E11.3,*, DETB =*, CF2000&4
    1E11.3)
        GO TO 180
    160 HRITE (6,17C) N
    170 FORMAT (1H,5X,*MATRIX OIMENSION.LE. ZERO,N N*,I3) CF200088
    180 STOP $ ENO CF200089
```

```
    SUBFOUTINE COEF(I,A,C) COEF0001
```



```
C POLYNOMIAL REPRESENTING A(XI BETHEEN XII) AND X(I+I). NPOLY IS THE COEFOOOS
C THE ORDER OF THE POLYNOMIAL
C
    OIMENSICN A(1),C(1)
    CONMON /AFRAYS/ E(8), EFP(45,8),EFQ(45,8),X(45),FF1(45),FF2{45%,
    1NP, APOLY
    DATA NPOLY/3/
    IF (I.GT.1) GO TO 10 COEFOOLO
    N=1 GC TO 30
    10 IF II.LE.NP-21 GO TO 20
    N=NP-3 $ GO TO 30
20 N=I-1
30 F1=A(N) s X1=X(N) s N=N+1 & F2=A(N) $ X2=X(N
N=N+1 & F3=A(N) & X3=X\N) C2=X\N) COEFO016
N=N#1 & F4=A(N) & X4=X(N) COEF0017
    F1=F1/(X1-X2)/(X1-X3)/(X1-X4)
F2=F2/(X2-X1)/(X2-X3)/(X2-X4)
    F3=F3/(X3-X1)/(X3-X2)/(X3-X4)
F4=F4f(X4-X1)/(X4-X2)/(X4-X3)
C(4)=F1+FE+F3+F4
    l
    C{3)=-F1*(X2+X3+X4)-F2*(X1+X3+X4)-F3*(X1+X2+X4)-F4*(X1+X2+X3)
    1\times2* X4)+F4* (X1* (X2+X3)+X2* X3)
```



```
RETUPN & END COEFO027
COEFOOOS
COEFOOQ6
COEFO007
COEFOOOS
    COEFOOO9
    COEFOOLO
COEFOOI2
COEFOOL3
    COEFOO18
    COEF0018
COEFO020
    COEFO020
    C{4}=F1+F(2+F3+F4 
COEFOO23
COEFOO23
        MPROGRAM EIGU(INPUT, OUTPUT,FUNCH,TAPE5=INPUT,TAPE6=OUTPUT,TAPET=
        EIGUODO1
        1PUNLH)
    EIGU0002
C
C THIS IS A PROGRAM TO GENERATE EIGENVALUES AND EIGENFUNCTIONS FOR THE
EIGUO003
NON-GAUSSIAA TUFEULENCE MODEL RESPONSE GALCULATICNS: THE EIGEN-
EIGUOOO4
FUNCTIONS ARE REPRESENTED BY PIECEWISE POLYNOMIAL FUNCTIONS OVER EIGUODQG
EIGUOOO5
C THE RANGE OF INTEGRATION, ANO ALL INTEGRATIONS ARE EXACT HITHIN EIGUQOOT
EIGUOOQ6
THIS APPROXIHATION.
EIGUOOO8
C THIS PRCGPA* IS FOR LONGITUOINAL GUSTS ONLY
EIGUNLO9
C P,O ARE EIGENFUNCTICN ARRAYS FCR ITERATIVE PROCESS EIGUOOID
C EFP IS ARRAY FOF STORAGE OF EIGENFUNCTIONS EIGUULO11
C ER1 IS ERROR TOLERANCE ARRAY FOF EIGENVALUES USING 21 POINT EIGFN APP.EIGUOOL2
C ERZ IS ERROR TOLERANEE ARRAY FOR EIGENVALUES USING 41 POINT EIGFN APP.EIGUOOL3
C XII) IS ARRAY CCNTAINING AECISSAE OF EIGENFUNCTIONS EIGUOO14
C NP IS THE MAXIMLM NUMBER OF ABCISSAE POINTS FOR EIGENFUNGTIONS. EIGU0015
C CURRENTLY SET TO 41, VALUES GT. 45 REQUIRE REDIMENSIONING, NP MUSTEIGUOOIG
    QE AA ODE NURGER. EIGUCOIT
SHCULD COMFLEX POLES OCCUR, ONLY ONE OF EACH CONJUGATE PAIR EIGUQO18
IS TO gE USED
EIGUOO19
IS TO 的 USED
INPUT DATA:
        RESTRT (LII LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS EIGUQO22
EIGUD020
EIGUOǓ21
        RESTRT (LI| LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS EIGUOO22
EIGUO022
        RESTRT (LII LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS 
                                    EIGUOD23
EIGUC024
C
COEFO014
<1=X(N) F2=A(N) S - C2=X(N) COEFOO15
COEF0016
COEF0017
COEFO027
```



```
```

```
```

 REAO (5,1) NEV EIGUOO96
 I=I1-1 EIGUOO97
 I=I1-1 EIGUOO97
 I=I1-1 EIGUOO97
 I=I1-1 EIGUOO97
 00 18 K=1,NP EIGUOO98
 00 18 K=1,NP EIGUOO98
 18 P(K)=EFP(K,I) EIGU0099
 18 P(K)=EFP(K,I) EIGU0099
 18 P(K)=EFP(K,I) EIGU0099
 18 P(K)=EFP(K,I) EIGU0099
 IF (.NOT.CONT) GO TO }9
 18 P(K)=EFP(K,I) EIGU0099
 18 P(K)=EFP(K,I) EIGU0099
 18 P(K)=EFP(K,I) EIGU0099
 18 P(K)=EFP(K,I) EIGU0099
 EIGUO199
 EIGUO199
 EIGUO199
 EIGUO199
 II=I1-1 % I=II-1
 II=I1-1 % I=II-1
 II=I1-1 % I=II-1
 II=I1-1 % I=II-1
 II=II-1 % IOTI-1
 II=II-1 % IOTI-1
 II=II-1 % IOTI-1
 II=II-1 % IOTI-1
 C
C
C
C
C RESTART IS FALSE, READ DATA OEFINING NEH PROBLEM.
C RESTART IS FALSE, READ DATA OEFINING NEH PROBLEM.
C RESTART IS FALSE, READ DATA OEFINING NEH PROBLEM.
C RESTART IS FALSE, READ DATA OEFINING NEH PROBLEM.
20 READ (5,1) NPOL
20 READ (5,1) NPOL
20 READ (5,1) NPOL
20 READ (5,1) NPOL
IF (NFOL) 900,900,21
IF (NFOL) 900,900,21
IF (NFOL) 900,900,21
IF (NFOL) 900,900,21
21 READ (5,2) (CI(I),AI(I),I=1,NFOL)
21 READ (5,2) (CI(I),AI(I),I=1,NFOL)
21 READ (5,2) (CI(I),AI(I),I=1,NFOL)
21 READ (5,2) (CI(I),AI(I),I=1,NFOL)
EIGUO101
EIGUO101
EIGUO101
EIGUO101
EIGUS132
EIGUS132
EIGUS132
EIGUS132
EIGUO103
EIGUO103
EIGUO103
EIGUO103
EIGUO104
EIGUO104
EIGUO104
EIGUO104
EIGUU105
EIGUU105
EIGUU105
EIGUU105
EIGUOIOS
EIGUOIOS
EIGUOIOS
EIGUOIOS
C CHANGE SIGN OF EXPONENT SINLE ALL SUBROUTINES EXPECT NEGATIVE OF EIGULIOB
C CHANGE SIGN OF EXPONENT SINLE ALL SUBROUTINES EXPECT NEGATIVE OF EIGULIOB
C CHANGE SIGN OF EXPONENT SINLE ALL SUBROUTINES EXPECT NEGATIVE OF EIGULIOB
C CHANGE SIGN OF EXPONENT SINLE ALL SUBROUTINES EXPECT NEGATIVE OF EIGULIOB
C TRUE EXFONENT.
C TRUE EXFONENT.
C TRUE EXFONENT.
C TRUE EXFONENT.
EIGUD109
EIGUD109
EIGUD109
EIGUD109
DO 22 I=1,NPOL
DO 22 I=1,NPOL
DO 22 I=1,NPOL
DO 22 I=1,NPOL
EIGUC110
EIGUC110
EIGUC110
EIGUC110
22 AI(I)=-AI(I)
22 AI(I)=-AI(I)
22 AI(I)=-AI(I)
22 AI(I)=-AI(I)
REAB (5,3) SU,U,UL
REAB (5,3) SU,U,UL
REAB (5,3) SU,U,UL
REAB (5,3) SU,U,UL
B=U/2.1UL \& HI=20./B \& BI=SU*U/UL EIGUO113
IF (HI.LE.I.) GO TO 26 EIGUÜ1144
C
C
C
C
C SCALE X VALUES TO COVER RANGE OF INTEGRATION, USE EI,EVP,EROR FOR EIGUGIIG
C SCALE X VALUES TO COVER RANGE OF INTEGRATION, USE EI,EVP,EROR FOR EIGUGIIG
C SCALE X VALUES TO COVER RANGE OF INTEGRATION, USE EI,EVP,EROR FOR EIGUGIIG
C SCALE X VALUES TO COVER RANGE OF INTEGRATION, USE EI,EVP,EROR FOR EIGUGIIG
C TEMFCRAFY STOFAGE.
C TEMFCRAFY STOFAGE.
C TEMFCRAFY STOFAGE.
C TEMFCRAFY STOFAGE.
C EI IS LCHER LIMIT OF POHER LAH SCALING. EIGUUIIB
C EI IS LCHER LIMIT OF POHER LAH SCALING. EIGUUIIB
C EI IS LCHER LIMIT OF POHER LAH SCALING. EIGUUIIB
C EI IS LCHER LIMIT OF POHER LAH SCALING. EIGUUIIB
C NPWR IS POWER OF SCALING, HIGHER VALUES WILL PLACE MORE X yALUES NEAR EIGULIIG
C NPWR IS POWER OF SCALING, HIGHER VALUES WILL PLACE MORE X yALUES NEAR EIGULIIG
C NPWR IS POWER OF SCALING, HIGHER VALUES WILL PLACE MORE X yALUES NEAR EIGULIIG
C NPWR IS POWER OF SCALING, HIGHER VALUES WILL PLACE MORE X yALUES NEAR EIGULIIG
C ORIGIN. LOW VALUES HILL PROVIDE MORE EVEN DISTRIBUTION OF X VALUES EIGUCI2O
C ORIGIN. LOW VALUES HILL PROVIDE MORE EVEN DISTRIBUTION OF X VALUES EIGUCI2O
C ORIGIN. LOW VALUES HILL PROVIDE MORE EVEN DISTRIBUTION OF X VALUES EIGUCI2O
C ORIGIN. LOW VALUES HILL PROVIDE MORE EVEN DISTRIBUTION OF X VALUES EIGUCI2O
C OVEf RANGE OF Integration.
EI=.OS \& NPWR=1

```
```

```
```

 EI=.OS & NPWR=1
    ```
```

```
```

 EI=.OS & NPWR=1
    ```
```

```
```

 EI=.OS & NPWR=1
    ```
```

```
```



```
```

```
```

 0025 I=1,NF EIGUO124
 EvP=X(I)
 EvP=X(I)
 EvP=X(I)
 EvP=X(I)
 IF (EVP.LT.EI) GOTO25 EIGUO126
 IF (EVP.LT.EI) GOTO25 EIGUO126
 IF (EVP.LT.EI) GOTO25 EIGUO126
 IF (EVP.LT.EI) GOTO25 EIGUO126
 EVP=EVP-EI & EVP=EVP*(1.+EROR*EVP**NPHRI*EI EIGUO127
 EVP=EVP-EI & EVP=EVP*(1.+EROR*EVP**NPHRI*EI EIGUO127
 EVP=EVP-EI & EVP=EVP*(1.+EROR*EVP**NPHRI*EI EIGUO127
 EVP=EVP-EI & EVP=EVP*(1.+EROR*EVP**NPHRI*EI EIGUO127
 25 XIII=EVP
 25 XIII=EVP
 25 XIII=EVP
 25 XIII=EVP
 c
c
c
c
C PUNCH PARAMETERS ON CAROS
26 HRITE (7,14) SU,U,UL
26 HRITE (7,14) SU,U,UL
26 HRITE (7,14) SU,U,UL
26 HRITE (7,14) SU,U,UL
WRITE (7,11) B,B1,NPOL,PCI(I),AI(I),I=1,NPOL) EIGUQ132
WRITE (7,11) B,B1,NPOL,PCI(I),AI(I),I=1,NPOL) EIGUQ132
WRITE (7,11) B,B1,NPOL,PCI(I),AI(I),I=1,NPOL) EIGUQ132
WRITE (7,11) B,B1,NPOL,PCI(I),AI(I),I=1,NPOL) EIGUQ132
WRITE (7,12) NP,X(1),X(NP) EIGUO133
WRITE (7,12) NP,X(1),X(NP) EIGUO133
WRITE (7,12) NP,X(1),X(NP) EIGUO133
WRITE (7,12) NP,X(1),X(NP) EIGUO133
I=0 \& I 1=1
I=0 \& I 1=1
I=0 \& I 1=1
I=0 \& I 1=1
90 READ (5,1) NEV
90 READ (5,1) NEV
90 READ (5,1) NEV
90 READ (5,1) NEV
CONT=.F.

```
```

```
```

 CONT=.F.
    ```
```

```
```

 CONT=.F.
    ```
```

```
```

 CONT=.F.
    ```
```

```
```



```
```

```
```

C

```
```

```
```

C

```
```

```
```

C

```
```

```
```

C
C COMPUTE EXACT SYSTEM RESPONSE yARIANCE
1CG CALL VAFU(SU,UL,U,SRZ)
1CG CALL VAFU(SU,UL,U,SRZ)
1CG CALL VAFU(SU,UL,U,SRZ)
1CG CALL VAFU(SU,UL,U,SRZ)
call starar(lo,loi
call starar(lo,loi
call starar(lo,loi
call starar(lo,loi
IF (.NOT.CONT) GO TO 110
EROF=ER2(II) \& NSKIP=1 \& GO TO 111
c
c
c
c
C GENERATE INITIAL GUESS DF EIGENFUNCTION P(ALPHA)
110 EROR=ERI(II) \& NSKIP=2
110 EROR=ERI(II) \& NSKIP=2
110 EROR=ERI(II) \& NSKIP=2
110 EROR=ERI(II) \& NSKIP=2
CALL GUESS(II)
CALL GUESS(II)
CALL GUESS(II)
CALL GUESS(II)
C
C
C
C
111 HRITE (6,101) II,SU,U,UL,(CI(J),AI(J),J=1,NPOL)
111 HRITE (6,101) II,SU,U,UL,(CI(J),AI(J),J=1,NPOL)
111 HRITE (6,101) II,SU,U,UL,(CI(J),AI(J),J=1,NPOL)
111 HRITE (6,101) II,SU,U,UL,(CI(J),AI(J),J=1,NPOL)
EIGUO134
EIGUO134
EIGUO134
EIGUO134
EIGUO135
EIGUO135
EIGUO135
EIGUO135
EIGUG111
EIGUG111
EIGUG111
EIGUG111
EIGUC112
EIGUC112
EIGUC112
EIGUC112
EIGUj115
EIGUj115
EIGUj115
EIGUj115
EIGUO117
EIGUO117
EIGUO117
EIGUO117
EIGUC120
EIGUC120
EIGUC120
EIGUC120
EIGU0121
EIGU0121
EIGU0121
EIGU0121
EIGUO122
EIGUO122
EIGUO122
EIGUO122
EIGUO124
EIGUO124
EIGUO124
EIGUO124
EIGUS 127
EIGUS 127
EIGUS 127
EIGUS 127
EIGUO22:
EIGUO22:
EIGUO22:
EIGUO22:
EIGUC129
EIGUC129
EIGUC129
EIGUC129
EIGUO130
EIGUO130
EIGUO130
EIGUO130
EIGUC136
EIGUC136
EIGUC136
EIGUC136
EIGUO137
EIGUO137
EIGUO137
EIGUO137
EIGUO138
EIGUO138
EIGUO138
EIGUO138
O-EIGUG140
O-EIGUG140
O-EIGUG140
O-EIGUG140
EIGUO139
EIGUO139
EIGUO139
EIGUO139
EIGUS140
EIGUS140
EIGUS140
EIGUS140
EIGUO14%
EIGUO14%
EIGUO14%
EIGUO14%
EIGUO142
EIGUO142
EIGUO142
EIGUO142
EIGUO143
EIGUO143
EIGUO143
EIGUO143
EIGU0144
EIGU0144
EIGU0144
EIGU0144
EIGUO145

```
EIGUO145
```

EIGUO145

```
EIGUO145
```

```
        I=I1-1}K=1,N
```

 I=I1-1}K=1,N
    ```
        I=I1-1}K=1,N
```

 I=I1-1}K=1,N
 EIGU0097
 EIGU0097
 EIGU0097
 EIGU0097
 60-10 95 (1)
 60-10 95 (1)
 60-10 95 (1)
 60-10 95 (1)
 EIGUC107
 EIGUC107
 EIGUC107
 EIGUC107
 EIGUO113
 EIGUO113
 EIGUO113
 EIGUO113
 EIGUü114
 EIGUü114
 EIGUü114
 EIGUü114
 EIGUM118
 EIGUM118
 EIGUM118
 EIGUM118
 ROM
ROM
ROM
ROM
EIGUD123
EIGUD123
EIGUD123
EIGUD123
EIGUO 125
EIGUO 125
EIGUO 125
EIGUO 125
EIGUOI26

```
```

EIGUOI26

```
```

EIGUOI26

```
```

EIGUOI26

```
```

```
    101 FORNAT (1+1,5X,*BEGIN ITEPATION FOR EIGENVALUE AND EIGENFUNCTION NEIGUO150
```

 101 FORNAT (1+1,5X,*BEGIN ITEPATION FOR EIGENVALUE AND EIGENFUNCTION NEIGUO150
    ```
    101 FORNAT (1+1,5X,*BEGIN ITEPATION FOR EIGENVALUE AND EIGENFUNCTION NEIGUO150
```

 101 FORNAT (1+1,5X,*BEGIN ITEPATION FOR EIGENVALUE AND EIGENFUNCTION NEIGUO150
 10.*,I2,/,/,EX,*TURBULENCE PARAMETERS&*,/,6X,*STD. DEV. =*,F6.3,5X,EIGUO151
 10.*,I2,/,/,EX,*TURBULENCE PARAMETERS&*,/,6X,*STD. DEV. =*,F6.3,5X,EIGUO151
 10.*,I2,/,/,EX,*TURBULENCE PARAMETERS&*,/,6X,*STD. DEV. =*,F6.3,5X,EIGUO151
 10.*,I2,/,/,EX,*TURBULENCE PARAMETERS&*,/,6X,*STD. DEV. =*,F6.3,5X,EIGUO151
 2*MTAS =*,FG.3,5X,*SCALE LENGTH =*,F9.3,/,/,6X,*VEHICLE PARAMETERS:EIGUNै 152
 3*,/,12X,*COEFFICIENTS*,26X,*POLES*,1,(4X,2E13.4,8X,2E13.4)) (EIGUO153
 3*,/,12X,*COEFFICIENTS*,26X,*POLES*,1,(4X,2E13.4,8X,2E13.4)) (EIGUO153
 3*,/,12X,*COEFFICIENTS*,26X,*POLES*,1,(4X,2E13.4,8X,2E13.4)) (EIGUO153
 3*,/,12X,*COEFFICIENTS*,26X,*POLES*,1,(4X,2E13.4,8X,2E13.4)) (EIGUO153
 WRITE (6,102) SE2
 WRITE (6,102) SE2
 WRITE (6,102) SE2
 WRITE (6,102) SE2
 EIGUO154
 EIGUO154
 EIGUO154
 EIGUO154
 1&2 FORYAT (1HO,5X,*SYSTEM RESPONSE VARIANCE =*,E13.6,1,1HO.) EIGUO155
 c
c
c
c
J=1 s EVP=EI=1.E50 \& SEV=1. \& GO TO 210
J=1 s EVP=EI=1.E50 \& SEV=1. \& GO TO 210
J=1 s EVP=EI=1.E50 \& SEV=1. \& GO TO 210
J=1 s EVP=EI=1.E50 \& SEV=1. \& GO TO 210
EIGUO156
EIGUO156
EIGUO156
EIGUO156
200 GALL FILL
200 GALL FILL
200 GALL FILL
200 GALL FILL
EIGUO157
EIGUO157
EIGUO157
EIGUO157
EIGUO158

```
    EIGUO158
```

 EIGUO158
    ```
    EIGUO158
```



```
C
    50 K=NSKIP+1
        DO EO J=K,NF,NSKIP
        DP=F(J)-P(J-1) & DX=X(J)-X(J-1) & XJ=X(J)
        XJ=XJ*EXP(-3.* XJ)
    60 P{J}=XJ*OP/OX
    RETURN
C
    70.HRITE (6,71) NSKIP
    71 FOR*AT ILF,5X,*NSKIP=*,IIC.* NOT ALLOWED IN GUESS**
    STOP S END
    SUBGOUTINE NORNFIF:
C
C COMPUTES NORM OF THE FUNCTION P(X)
G THE NOR* IS TME ESTIMATED EIGENVALUE, THE INVERSE OF THE NORM IS THE
C NORNALIZATICN FACTOR
    COMPON/AGRAYS/ X(45),P(45),C(4),F1,NP1,J,I,X1,X2,II,CII,IJ,K,CK,
    1X12, X22,JJ,C(27),NP,NSKIP,NPOLY
    F1=0. & NP1=NPOLY+1 J=NP-1
    DO 60 I=1,J.NSKIP
    F=0.
    CALL COEF (I,P,C)
    12 X1=X(I) * X2=X(I+NSKIP)
    IF (X2.GT.X(NP)) X2=X(NP)
    DO 40 II=1, NPOLY
    X12=X1*FK K=II+IJ-1 S CK=FLOAT(K) EIGUO311
    X12=X1**K X22=X2**K EIGUO312
    DO 40 JJ=IJ,NP1
    F=F+CII*C(JJ)*(X22-X12)/CK
    CK=CK*1. S X12=X12**1 EIGUU315
    40 X22=x22*x2
    F=F*2. s <12* X1**2 s < <22= 人2**2 s CK=1.
    00 50 II=1,NP1
    F=F+(x2-x1)*(C(II)**2)/CK s CK=CK*2. s x2=x2*\times22 EIGUQ319
    50 K1= X1* X12
    60 Fi=Fi+F
    F=SGRT(1./FI)
    F=SGRT(1./F1) EIGUO322
    RETURN
C
C NOFMALIZE EIGENFUNCTION P
    ENTRY NCRH
    OO 10C I=1,AP,NSKIP EIGUQ327
    100 P(I)=F(I)*F
    RETUFN & END
    SUBKOUTINE CRTHOG(I)
C
C A SUBROUTINE TO ORTHOGONALIZE P(X) WITH RESPECT TO THE FIRST I EGNFNS
    COHPON /ARRAYS/ X(45),P(45),Q(45),NP,NSKIP,NPOLY,EFP(45,5),C(4),
    10{4)
    NP1 = NPOLY+1
    \0 5C J=1,I
    00 10 JJ=1,NP,NSKIP
    10G(JJ)=EFP(JJ,J)
    K=NF-1 & F=0.
    00 40 JJ=1,K,NSKIP
    CALL COEF{JJ,P,C!
    CALL COEF(JJ,Q,O)
    XI=XIJJ) & II=JJ+NSKIF & IF (II.GT.NPI II=NP $ X2=x(II) EIGUO344
    00 4I II=1,NFI
    X12=X1**II & X22=X2**II & CII=CIIII & CL=FLOATIIII EIGUOS46
    00 40 KK=1,NiP!
    EIGUO347
```

```
    F=F*CII*D(KK)*(X22-X12)/CL & CL=CL*1. & X12=X12*X1 EIGU0348
    40 X22 = X22*\times2 
    40 X22 = X22*X2 
    50 P(JJ)=P(JJ)-F*Q(JJ)
    PETURN & END
    FUNCTION SUM(I,J)
C
C FORMS PRODUCT (J-I+1)*(J-I+2).......(\)
C
            N=1
            IF(I) 20,20,10
        10 K=J-I+1
            DO }15\mathrm{ L=K,J
        15 N=N*L
        20 SUM=FLOAT(N)
            RETURN & ENO
            SUBROUTINE COEF(I,A,C)
C A SUBROLTINE TO FILL C ARRAY WITH THE COEFFICIENTS CF THE
C POLYNOMIAL REFRESENTING A(X) GETHEEN XII) AND X(I+NSKIP). NPOLY IS
C THE CRDER OF THE POLYNOMIAL
C POLYNOMIAL IS C(1) +C(2)*X +C(3)*X**2 C C(4)*X**3
C
        OIMENSICN A(1),C(1)
    GCMPON /ARRAYS/ X(45),P(45),Q(45),NP,NSKIP,NPOLY
    DATA NPCLY/3/
            IF (I.GT.ASKIP) GO TO 10
            N=1 $ GC 10 30
        10 IF {I.LE.NP-2*NSKIP) GO TO 20
            N=NP-3*NSKIF & GO TO 30
        20 N=I-NSKIP
    30 F2=A(N) & & =X(N) & N=N+NSKIP & F2=A(N) & X2=X(N)
```



```
            N=N*NSKIP & F4=A(N) & X4=X(N) EIGUC380
            Fi=Fi/(X1-X2)/(x1-x3)/(x1-X4) EIGU0381
            F2=F2/(x2-x1)/(x2-x3)/(x2-x4)
            F3=F3/(x3-X1)/(x3-x2)/(x3-x4)
            F4
            C(4)=F1+F\hat{F}+F3+F4
            C(3)=-F1*(X2+X3+X4)-F2*(X1+X3+X4)-F3*(X1+X2+X4)-F4** (X1+X2+X X )
            C(2)=F1*(X2*(X3+X4)+X3* X4)+F2*(X1*(X3+X4)+X3* X4)+F3*(X1*(X2 + X4) +
    1\times2*\times4)+F4*(\times1*(\times2+\times3)+\times2*\times3)
    M
    RETURN S END
    RETURN $ END
C integrate complex terms of transfer function
E
    EQUIVALENCE (E,ER), (XE, XER),(XE1,XE1R),(01,O1R)
    CCMMON /OIF/ X,E,N,OI
    COMFLEX E,XE,XEI,DI
    N1=N+1 $ C1=0.
    IF (N) 70,10,20
C
C CONSTANT TERM OF POLYNOMIAL
    10 D1=1. G GC TO 30
C PONER TERM GF PCLYNOMIAL
C POWER TERM GF PCLYNOMIAL
    2C IF (X.NE.0.) GO TO 25
            n1=(-10/E)**N*SUM (N,N)
            G0 10 30
    25 XN=x**N
            XE1=X*E & XE=1. & S1=1. & S2=FLOAT(N)
            DO 28 I=1,N1
            D1=XN/XE*S1*O1 & XE=XE*XE1 S S1=S1*S2 & S2=S2-1.
        EIGUO349
EIGUO351
EIGUO352
EIGU0353
EIGUOU53
EIGUO354
EIGUO355
EIGUO356
EIGUO357
EIGUO358
EIGU0358
EIGU0360
EIGU0351
EIGUO362
EIGU0362
ETGU0363
EIGU0364
EIGUO365
EIGUE366
EIGUO367
EIGUQ 368
EIGU0369
EIGU0370
EIGUO371
EIGU0372
EIGU0373
EIGU0374
EIGUO375
EIGUO376
EIGU0376
EIGUO378
```



```
            N=N*NSKIP & F4=A(N) & X4=X(N) EIGUC380
            FI=F1/(X1-X2)/(X1-X3)/(X1-X4) EIGU0381
EIGUO382
                    EIGU0383
EIGU0384
EIGU0384
EIGUO385
EIGUC386
    EIGU0387
EIGU0388
EIGUO389
    EIGU0390
    EIGUO390
    EIGUL392
    EIGUO393
    EIGUO394
    EIGU0395
    EIGUO396
    EIGUO397
    EIGU0398
    EIGU0399
    EIGUO400
    EIGUO401
    EIGUO402
    EIGU0403
    EISUB4O4
    EIGUO405
EIGUO407
    S2=52-1- EIGUO409
    EIGUO409
```

```
    28 XN==XN EIGU04111
    30 Di=C1*CEXF(E*X)/EE 
    30 DI=C1*CEXF (E*XI/E 
C
C INTEGRATE REAL TERMS OF TRANSFER FUNETION
        ENTFY DIFR
        N1=N+1 & 01=0.
        IF (N) 17C,110,120
C
C CONSTANT TERM OF POLYNOMIAL
    110 D1R=1. & G0 TO 130
C
C POHER TERM OF PCLYNCMIAL
    120 IF (X.NE.0.) GO TO 125
                O1R=(-1./ERS*FN*SUM(N,N)
        GO TO 130
    125 XN=X**N
        XE1R=X*ER : XER=1. S S1=1, S S2=FLOAT(N)
        00 128 I=1, H1
        O1R=XN/XEF*S1+D1R S XER=XER*XE1R & S1=S1*S2 S S2=S2-1.
    128 XN=-XN
    130 D1=CMPLX(DIR*EXP(ER*X)/ER,0.0)
    170 RETURN & END
        SUBROUTINE NTGRALIV,ALPHAI
C
C INTEGRATES P(X)*H(ALPHA; X)
C
        COMHON /ARRAYS/ X(45),P(45),Q(45),NP,NSKIP,NPOLY,EFP(225),C(4)
        COMNON /CCNST/ CI(5),AI(5),NPOL,B,B1
        CCMMON /OIF/ XI,E,NPOM,DIC
        OIMENSICN 01S(4),02S(4)
        DIMENSICN D1A(45,4),01CA(45,4,2),CA(180)
        COMPLEX DICA
        COMPLEX AI,CI,E,CI,C2,V1,V2,E2,O2S,D1G
        LOGICAL RL
        EQUIYALENCE (E,ER),(01,DIC)
        V=0. S E1=EXP(-3* ALPHAS
C
C CYCLE THROUGH PCLES OF TRANSFER FUNCTION
    DO 100 IPCL=1,NPOL
        Ci=CI{IFOL)/(AI(IPOL)-2.*B)
        E2=CEXP{-ALFHA*(AI{IPOL)-A)}
        V1=0. $ V2=0.
C
C CYCLE THROUGH X INTERYALS
        00 10 NX=1,NPO1
        01S(NX)=01A(1,NX)
        1& B2S(NX)=01CA(1,NX,IPOL)
        I=NSKIP+1 S NXI=1
        00 80 NX=I,MP,NSKIP
        X1=X(NX)
C
C CYCLE THROUGH TERMS OF POLYNOHIAL
        00 EO NPO=1,NPO1
        C1=01A(NX,NPO) S E=DI-DISINPOI S YI=E1*E
        20 01S(NPO)=C1
IF (XI-ALPHA) 21,21,40
        21 O1C=D1CA(AX,NPO,IPOL)
    O1 VI=Y1-E1*(DIC-D2S (NPOI)
        25 02S(NPO)=01C
GOTO 59
        40V1=V1-E2*E
59 V2=V1*CAINXII+V2
EIGUO414
EIGUu415
EIGUU416
EIGUU417
EIGUO418
EIGUG419
EIGUO420
EIGUO421
EIGUO422
EIGUD423
EIGUO424
EIGUO425
EIGUO426
EIGUO427
EIGUO428
EIGUO429
EIGUO430
EIGUO432
EIGU0432
EIGUO433
EIGUO434
EIGU0435
EIGUO436
EIGUO437
EIGU0438
EIGUO439
EIGU0440
EIGUO441
EIGUO442
EIGUQ442
EIGU0444
EIGUO444
EIGUQ446
EIGUO446
EIGU04&8
EIGUO449
EIGU0450
EIGUO451
EIGUO452
EIGUO453
EIGU0454
EIGUO455
EIGU0456
EIGU0457
EIGU0458
EIGU0459
EIGU0460
EIGUO461
EIGUO462
EIGU0463
EIGUQ463
EIGUD464
EIGU0465
EIGUO466
EIGUO467
EIGUO468
EIGU0469
EIGUO470
EIGUN471
EIGUO473
```

```
    60 NXI=NXI*1 EIGU0474
    80 CONTINUE
    V2=V2FC1
    IF (IAIMAG(CI).EQ.O.).AND:(AIMAG(EZI.EQ.O.I) GO TO 100
    V2=2.*REAL\V28
    100 V=V+Y2
    y=Y星1
    GOT0500
C
C
    ENTRY STARAY
    NPO1=NPOLY+1 & ER=-B
    DO 200 NX=1,NP
    X1=X{NX)
    00 200 NPQ=1,NPO1
    NPO M=NPO-1
    CALL OIFR
    200 D1A(NX,NPC)=01
    DO 300 IPCL=1,NPOL
    E=G-AI(IPCL) % RL=AIMAGIE).EQ.0.
    00 300 NPO=1,NP01
    NPOM=NPO-1
    DO 300 NX=1,NP
    XI=X{NX\ S IF&RL\ GOTO 250 & CALL OIFC S GOTO 30t
    250 CALL OIFR
    300 DICA{NX,NFO,IPOL}=016
    GO TO 500
C
C GENERATE TABLE OF POLYNOMIAL COEFFICIENTS
    ENTRY GENCOE
    NPO=0
    BO 400 NXI=1,NP,NSKIP
    IF (NXI-NP) 350,400,400
350 CALL COEF(NXI,P,C) EIGUOSO7
    DO 380 NPO1=1,4
    NPO=NPO*1
380 CA(NPO)=C(NPO1)
    400 CONTINUE
    NPO1=NPCLY*1
    50C RETURN $ ENO
    SUBROUTINE ITERAT(E,SEVI
C
C A SUBROUTINE TO ITERATE THE EIGENFUNCTION P(X)
    COMNON /ARRAYS/ X(45),P(45),O(45),NP,NSKIP,NPOLY
    COMFON /EVAL/ EYP
    CALL GENCOE (O,X)
    Q(1)=0. & E=0. & II=NSKIP*1
    0O 50 I=I1,NP,NSKIP
30 QI=P(I)*EVP
    CALL NTGRAL (Q(I),X(II)
50 E=E+(ASS(QI)-ASS(Q(I)))**2
    E=SGRT(E)/FLOAT (NP) & SI=S2=0.
    DO 60 I=1;NP,NSKIP
    SI=S1+ABS(P(I)+Q(I)) S S2=S2+ABS(P(I)-Q(I))
60 P(I)=0(I)
    IF (S1-S2) 70,90,90
70 SEV=-1. $ GO T0 100
80 WRITE (6.81) S STOP
81 FORMAT &1H ,5X,*ZERO EIGFN. COMPUTED BY ITERAT*;
90 SEV=1.
100 RETURN & END
    SUBFOUTINE STORII\
    EIGU0475
EIGUO476
EIGUQ477
EIGUD478
EIGU0479
EIGU0480
EIGU0481
EIGUO482
EIGUO483
EIGUO484
EIGUO484
EIGUO485
EIGUO486
EIGUO487
EIGUO488
EIGUQ489
EIGUD490
EIGUO491
EIGUO491
EIGUC492
EIGU0493
EIGUO494
EIGUO495
EIGU0496
EIGU0497
EIGUO498
EIGUO499
EIGU0500
EIGUS501
EIGUS501
EIGU{502
EIGUO503
EIGU0504
EIGUO505
EIGUO506
EIGUO507
EIGUS508
EIGUR 509
C
EIGUN510
EIGU0511
EIGU0512
EIGUC513
EIGUU514
EIGUS515
EIGU0516
EIGUL517
EIGUL518
EIGUU519
EIGUC520
EIGUC521
EIGUOS22
EIGUO523
EIGU8524
EIGUO525
EIGUC526
ETGU0527
EIGUO528
EIGUO529
EIGUO530
EIGU0531
EIGUO532
EIGUG533
EIGUE534
EIGUO535
EIGU0536
```

STORES ITH EIGENFUNCTION
COMMON /ARRAYS/ X(45),P(45),J,DUM(44),NP,NSKIP,NPOLY,EFP(45,5)
EIGU0540
DO 10 J=1,NP
EIGUC541
10 EFP(J,I)=P(J)
EIGUG542
RETURN E ENO
EIGU0543

```
```

PROGRAM EIGVHIINPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPEG=OUTPUT,TAPET=

```
PROGRAM EIGVHIINPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPEG=OUTPUT,TAPET=
1PUNCH)
1PUNCH)
C
C THIS IS A PROGRAM TO GENERATE EIGENVALUES AND EIGENFUNCIIONS FDR THE
C THIS IS A PROGRAM TO GENERATE EIGENVALUES AND EIGENFUNCIIONS FDR THE
NON-GAUSSIAN TURBULENEE MODEL RESPONSE CALCULATIONS: THE EIGEN-
NON-GAUSSIAN TURBULENEE MODEL RESPONSE CALCULATIONS: THE EIGEN-
C FUNCTIONS ARE REPRESENTED BY PIECEWISE POLYNOMIAL FUNCTIONS OVER
C FUNCTIONS ARE REPRESENTED BY PIECEWISE POLYNOMIAL FUNCTIONS OVER
THE RANGE OF INTEGRATION, AND ALL INTEGRATIONS ARE EXACT HITHIN
THE RANGE OF INTEGRATION, AND ALL INTEGRATIONS ARE EXACT HITHIN
THIS APFROXIMATION.
THIS APFROXIMATION.
THIS FRCGRAM IS FOR VERTICAL AND LATERAL GUSTS ONLY
THIS FRCGRAM IS FOR VERTICAL AND LATERAL GUSTS ONLY
P(ALPHA),Q(PETAI ARE EIGENFUNCTION ARRAYS FOR ITERATIVE PROCESS
P(ALPHA),Q(PETAI ARE EIGENFUNCTION ARRAYS FOR ITERATIVE PROCESS
EFP,EFQ ARE ARRAYS FOR STORAGE OF EIGENFUNCTIONS
EFP,EFQ ARE ARRAYS FOR STORAGE OF EIGENFUNCTIONS
EIGVHGOO
EIGVHGOO
EIGYH004
EIGYH004
EIG YNOO5
EIG YNOO5
EIGYHODG
EIGYHODG
EIGVHOOT
EIGVHOOT
EIG VHOO8
EIG VHOO8
ER IS ERROR TOLERANCE ARRAY FOR EIGENVALUES USING 21 PCINT EIGFN APP.EIGVNOII
ER IS ERROR TOLERANCE ARRAY FOR EIGENVALUES USING 21 PCINT EIGFN APP.EIGVNOII
ER2 IS ERROR TOLERANCE ARPAY FOR EIGENYALUES USING 41 POINT EIGFN ADP.EIGYHOL2
ER2 IS ERROR TOLERANCE ARPAY FOR EIGENYALUES USING 41 POINT EIGFN ADP.EIGYHOL2
X(I) IS APRAY CONTAINING AECISSAE OF EIGENFUNCTIONS EIGVWO13
X(I) IS APRAY CONTAINING AECISSAE OF EIGENFUNCTIONS EIGVWO13
NP IS THE MAXIMUM NUMBER OF ABCISSAE POINTS FOR EIGENFUNCTIONS. EIGVHO14
NP IS THE MAXIMUM NUMBER OF ABCISSAE POINTS FOR EIGENFUNCTIONS. EIGVHO14
        CURRENTLY SET TO 41, VALUES .GT. 45 REQUIRE REDIMENSIONING, NP MUSTEIGVWOI5
        CURRENTLY SET TO 41, VALUES .GT. 45 REQUIRE REDIMENSIONING, NP MUSTEIGVWOI5
        qE AN ODO NUNBEP.
        qE AN ODO NUNBEP.
EIG VHO16
EIG VHO16
E IS THE EIGENVALUE ARRAY
E IS THE EIGENVALUE ARRAY
HI IS THE UPPER LIMIT OF INTEGRATION EIGYHOI8
HI IS THE UPPER LIMIT OF INTEGRATION EIGYHOI8
NPOL IS THE NUMEER OF POLES IN THE LINEAR SYSTEN TRANSFER FUNCTION
NPOL IS THE NUMEER OF POLES IN THE LINEAR SYSTEN TRANSFER FUNCTION
    SHCULD COMFLEX POLES OCCUR, ONLY ONE OF EACH CONJUGATE PAIR
    SHCULD COMFLEX POLES OCCUR, ONLY ONE OF EACH CONJUGATE PAIR
    IS TO EE USEC
    IS TO EE USEC
EIGVHOLT
EIGVHOLT
EIG VHO19
EIG VHO19
EIG YHO20
EIG YHO20
EIGVWaZ1
EIGVWaZ1
EIGVWO22
EIGVWO22
INPUT DATAE
INPUT DATAE
    RESTRT (LI) LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS
    RESTRT (LI) LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS
    RESTRT (LI) LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS
    RESTRT (LI) LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS
                    TRUE DATA DECK PUNCHED BY PREVIOUS RUN CAN BE USED
                    TRUE DATA DECK PUNCHED BY PREVIOUS RUN CAN BE USED
                    TO RESTART COMPUTATION.
                    TO RESTART COMPUTATION.
                    E IG VH023
                    E IG VH023
                    EIGVN024
                    EIGVN024
                    EIGUHO25
                    EIGUHO25
                    EIG YHO26
                    EIG YHO26
                    EIG VH027
                    EIG VH027
    IF rESTRT = .FALSE. DATA DECK IS AS FOLLOWS
    IF rESTRT = .FALSE. DATA DECK IS AS FOLLOWS
                    EIGVWD28
                    EIGVWD28
    NPOL (II| AUYGER OF SYSTEM POLES TO BE READ. IF COMPLEX POLES EIGYWOZ9
    NPOL (II| AUYGER OF SYSTEM POLES TO BE READ. IF COMPLEX POLES EIGYWOZ9
                        CCCUR, ONLY ONE OF EACH CONJUGATE PAIR IS USED. EIGVHOZO
                        CCCUR, ONLY ONE OF EACH CONJUGATE PAIR IS USED. EIGVHOZO
        (CI(I),AI(I),I=1,NPOL) (4E20.10) NUMERATORS AND POLES RESPECTIVELYEIGVWO31
        (CI(I),AI(I),I=1,NPOL) (4E20.10) NUMERATORS AND POLES RESPECTIVELYEIGVWO31
                CF SYSTEM TRANSFER FUNCTION FARTIAL FRACTION EXPANSION EIGVWO32
                CF SYSTEM TRANSFER FUNCTION FARTIAL FRACTION EXPANSION EIGVWO32
                IN COMPLEX FORM. IF COMPLEX POLES OCCUR, ONLY ONE OF EIGVWOS3
                IN COMPLEX FORM. IF COMPLEX POLES OCCUR, ONLY ONE OF EIGVWOS3
                THE PAPTIAL FRACTION COMPLEX CONJUGATE TERMS IS USED. EIGVHO34
                THE PAPTIAL FRACTION COMPLEX CONJUGATE TERMS IS USED. EIGVHO34
                fEAL PART OF POLES MUST SE NEGATIVE FOR STABLE SYSTEM. EIGVHO35
                fEAL PART OF POLES MUST SE NEGATIVE FOR STABLE SYSTEM. EIGVHO35
    SH,U,WL (3F10.5) TURSULENCE VELOCITY STANDARD CEVIATION, EIGVHD3E
    SH,U,WL (3F10.5) TURSULENCE VELOCITY STANDARD CEVIATION, EIGVHD3E
                VEHICLE MEAN TRUE AIRSPEED, ANO TURBULENCE GUST EIGVHO3T
                VEHICLE MEAN TRUE AIRSPEED, ANO TURBULENCE GUST EIGVHO3T
                yELOCITY SCALE LENGTH.
                yELOCITY SCALE LENGTH.
    NEV (II) .TCTA: NUMBER OF EIGENVALUES/EIGENFUNCTIONS REOUIRED.
    NEV (II) .TCTA: NUMBER OF EIGENVALUES/EIGENFUNCTIONS REOUIRED.
                NEV MUST BE LESS THAN OR EQUAL TO 5.
                NEV MUST BE LESS THAN OR EQUAL TO 5.
    IF FESTRT = .JRUE. DATA DECK IS AS FOLLOWS
    IF FESTRT = .JRUE. DATA DECK IS AS FOLLOWS
    IALL BUT LAST THPEE CAROS IEOR,CONT,NEYI ARE PUNCHED BY EIGVHO43
    IALL BUT LAST THPEE CAROS IEOR,CONT,NEYI ARE PUNCHED BY EIGVHO43
    PREVIOUS RUN:
    PREVIOUS RUN:
    SW,U,WL (FOFMAT 17) SEE DESCRIPIION ABOVE.
    SW,U,WL (FOFMAT 17) SEE DESCRIPIION ABOVE.
    E,B1,NPCL,(CIII),AI(I),I=1,NPOL) (FORMAT 6)
    E,B1,NPCL,(CIII),AI(I),I=1,NPOL) (FORMAT 6)
    NP,LO,HI (FCRMAT 7)
    NP,LO,HI (FCRMAT 7)
    J,E(J),(X{K),EFF{{,J),EFQ(K,J),K=1,NP) (FORMAT 13)
    J,E(J),(X{K),EFF{{,J),EFQ(K,J),K=1,NP) (FORMAT 13)
    END OF FECOFD INDICATES END OF EIGENVALUE/EIGENFUNGTION DATA. EIGVHO49
    END OF FECOFD INDICATES END OF EIGENVALUE/EIGENFUNGTION DATA. EIGVHO49
    CONT [li) lOGICAL VAPIA日LE, IF TRUE IT IS ASSUMED THAT ITEPATION EIGVHOSO
    CONT [li) lOGICAL VAPIA日LE, IF TRUE IT IS ASSUMED THAT ITEPATION EIGVHOSO
    OF THE LAST EIGENSOLUTION IS TO CONTINUE, IF FALSE IT IS ASSUMEO EIGVHOSI
```

 OF THE LAST EIGENSOLUTION IS TO CONTINUE, IF FALSE IT IS ASSUMEO EIGVHOSI
    ```
```

C
THAT THE LAST EIGENSOLUTION IS ACCURATE AND ITERATION OF THE EIGVHOS2
NEXT SOLUTICN IS TO BEGIN.
EIGVHO53
NEV [II| TOTAL NUMSER OF EIGENVALUES/EIGENFUNCTIONS SOUGHT (ALE.5JEIGVHC54
c
DIMENSICN E(5),ER1(5),ER2(5)
EIGVHOS5
EIG VHO56
COMMON /ARRAYS/ X(45),P(45),Q(45),OUM(45),NP,NSKIP,NPOLY,USEP,
1EFP(45,5),EFQ(45,5),C(4),0(4)
COMMON /CCNST/ CI(5),AI(5),NPOL,B,B2
CCMMON /EVAL/ EVP,EVQ
COMPLEX CI,AI S REAL LO S LOGICAL RESTRT,USEP,CONT
DATA ERI/1.E-3/
DATA ER1,ERZ,NP/1.E-4,1,E-4,5.E-4,1,E-3,1,E-2,1,E-5,1,E-5,1,E-4.
15.E-4,1.E-3,41/
DATA (X(I),I=1,411/0.,.01,.02,.63,0045,.06,008,.1071,.1341,
1.1612,.1882,.2153,.2424,.2694,.2 2965,.3235,.3506,.3776,04047,
2.4318,.4588,04359,.5129,.5400,.5671,.5941,.6212,.6482,.6753,
3.7024,.7294,.7565,.7835,.8106,.8376,.8647,.8918,. 9188,.09459,
4.9729,1./
C
1 FORPAT (II)
2 FORMAT (4E20.10)
3 FORMAT (3FIO.5) Y
4 FGRMAT (IID)
5 FORPAT (LI)
6 FORPAT (3X,E20.12,5x,E20.12,11X,I2.1,(4E20.12)3
7 FORKAT (}4\textrm{X},\textrm{I},\mp@code{27X,2E20.11)
8 FORMAT (BF10.5)
11 FORRAT FEE=*,E2O.12,1X,*B1=*,E2O.12,5X,*NPOL =*,I2,1, (4E20.121: EIGVHO79
12 FORMAT \&*NP =*,I3,5X,*RANGE OF INTEGRATION =*,2E20.11) EIGVHO80
13 FORNAT {43X,I2,E20.1i,/,13E25.14);
14 FORMAT (*SH =*,E15.7,1X,*MTAS =*,E15.7,1X,*HL =*,E15.71
17 FORHAT (4X,E15.7,7X,E15.7,5X,E15.7)
C
READ (5,5) RESTRT
IF(.NOT.RESTRTI GO TO 20
C
C RESTART IS TRUE, REAO DATA FROM PREVIOUS RUN
REAC (5,17) SH,U,WL
REAE (5,G) B,BI,NPOL,(CI(I),AI(I),I=1,HPOL)
READ (5,7) NP,LO,HI
DO 15 I I=1,G
READ (5,13) J,E(J),(X(K),EFP{K,J),EFQ(K,J),K=1,NP)
IF (EOF,5) 16,15
15 CONTINUE
GO TO 800
16 PEAG (5,5) GONT
REAC (5,1) NEV
I=I1-1
00 18 K=1,NP
P(K)=EFP(K,I)
IF (.NOT.CONT) GO TO 18
Q(K)=EFQ(K,I)
18 CONTINUE
IF {.NOT.CONTI GO TO }9
I1=I1-1 % I=II-1
G0 10 95
C
C RESTART IS FALSE, READ DATA DEFINING NEH PROBLEM.
20 REAO (5,1) APOL
IF (NPOL) 900,900,21
21 REAE (5,2) (CI(I),AI(I),I=1,NPOL)
C CHANGE SIGN OF EXPONENT SINCE ALL SUBROUTINES EXPECT NEGATIVE OF
c TRUE EXFONENT.

```

EIGVHO52
EIGVHO53
EIGVHC54
EIG VHO56
EIGVH057
EIGVH058
EIGVHOS9
EIGVNO60
EIGVHLG 1
EIGVNO62
E IG VHO63
EIG VHO64
EIGVHO65
EIG VH066
EIGVH067
EIG VH06 8
EIGYH069
EIGVWOTO
EIGVHA71
EIGVH072
EIGVH073
EIGVW074
EIGVWO75
EIGVW076
EIG VWOT 7
EIGVHO7 8
EIGVW080
EIGVWOA1
EIGVW082
EIGVWOS3
EIGVWO 84
EIGVWO85
EIGVHO86
EIGVH087
EIG VHO8 8
EIGVHO 89
EIGVHO90
EIGYH091
EIGUn092
EIGVH093
EIGVW094
EIGVH095
EIGVWO96
EIGVHO97
EIGVHO98
EIGYHO99
EIGVH100
EIGVHIDI
EIGVH102
EIGVH103
EIGVH104
EIGVH105
EIGVH 106
EIGVHIO 7
EIGVW10 8
EIGVHIO9
EIGVM1:0
EIGVH111
EIGVH112
EIG VW113
EIGVH114
```

 DO 22 I=1,NPOL EIGYM115
 22 AI(I)=-AI(I)
 READ (5,3) SH,U,HL
 g=U/2./KL & HI=20./B S BI=SW*U/WL*SORT{2.: EIGVH118
 IF {HI.LE.1&) GO TO 26 EIGVH119
 C
C SCALE X VALUES TO COVER RANGE OF INTEGRATION, USE EI,EVP,EYO FOR
C TEMPORARY STORAGE.
C EI IS LCHER LIMIT OF POHER LAW SCALING.
C NPHR IS PONER OF SCALING, HIGHER VALUES WILL PLACE FORE X VALUES NEAR EIGVHIZ\&
C ORIGIN. LOH YALUES WILL PROVIOE HORE EVEN OISTRISUTION OF X VALUES EIGVHIZS
C OVER RANGE GF INTEGRATION. EIGVHI26
EI=.05 \$ APMR=1
EVO={(HI-EI)/(1.-EI)-1.)/{1.-EI|*FNPWR EIGVH128
DO 25 I=1,NF
EYP=X(I)
IF (EVP.LT.EI) GO TO 25
EYP=EYP-EI \& EVP=EYP*(1, +EYQ*EVP**NPHR)*EI
25 X{I|=EVP
C
C PUNCH PARAMETERS ON CARDS
26 WRITE (7,14) SH,U,WL

```

```

 HRITE (7,12)NP,X{1), X(NP) EIGVH138
 I=0 & II=1
 90 READ (5,1) NEY
 CONT=.F.
 95 IF (NEV-I1) 800,100,100
 c
C COMPUTE EXACT SYSTEM RESPONSE VARIANCE
100 CALL VARW(SH,WL,U,SR2)
CALL STARAY(LO,LO)
IF I.NOT.GONTS GO TO 110 EIGVH147
EROR=ER2(II) \& NSKIP=1 \& USEP=.T. \$ GOTO 1111 EIGVN148
C
C GENERATE INITIAL GUESS OF EIGENFUNCTION PIALPHAD
110 EROR=ER1(II) \& NSKIP=2 \$ USEP=.T.
CAL\& GUESS(II)
C
111 WRITE (6,101) II,SH,U,HL,(CI(J), AI(J),J=1,NPOL)
EIGVW153
EIGVW154
101 FORRAT I1H1,5X,*BEGIN ITERATION FOR EIGENVALUE AND EIGENFUNCTION NEIGVH15S
10.*,I2.f.I, EX,*TURGULENCE FARAMETERSE**/,6X,*STD, DEV* =*,F6.3,5X,EIGVW156
2*MTAS =*,FB.3,5X,*SCALE LENGTH =*,F9.3,%,/,6X,*VEHICLE PARAMETERSIEIGVW157
3*,/,12X,*COEFFICIENTS*,26X,*POLES*,/, (4X,2E13.4,8X,2E23.41) EIGVH158
3*,',12X,HCOEFFICIENTS*,26X,*POLES*,%,(4X,2E13.4,8X,2E23.4I) SR2 WRITE (G,102) EIGVN15S
102 FORNAT (1HO,5X,*SYSTEH RESPONSE VARIANCE =*,E13.6,/,1HO) EIGVHI6O
J=1 \$ EVP=EVQ=EI=DEVQ=1.E5G \& GO TO 210 EIGVH161
C
200 CALL FILL
EROR=ER2(II)
C
C IF (I.GT.E) EIGENFUNCTION MUST BE ORTHOGONAL TO ALL PREVIOUS FNS
210 IF (I.LE.O) GO TO 300
CALL ORTHCG(I)
C
C COMPUTE NCRYALIZATION FACFOR
300 CALL NORMF(F)
C
C ESTIMATE EIGENVALUE
400 EI=EI*F
400 EI=EI*F
401 DEVP=ABS(1./EVP/F-1.1
EVP=1./F
EIGVH116
EIGVH117
EIGYH119
EIGVH120
EIGYH121
EIG
EIGVH127
EIGVH128
EIGVH129
EIGVH130

```

```

EIGVH132
EIGVH133
EIGVH134
EIGVH135
EIGVH138
EIGYH140
EIGVH142
EIGVH143
EIGVH144
EIGVH145
EIGVH149
NSKIPE2 USEP.T.
EIGVW150
CALL GUESS(II)
EIGVH151
EIGVH162
EIGVH163
EIGVH164
EIGVH165
65
EIGVH167
EIGVW168
EIGVH170
EIGVH169
EIGVW171
EIGVW172
EIGVW173
EIGVN173
EIGVW175
EIGVH176
EIGVH177

```
```

 WRITE (6,40E) J,EVP,DEVF,EI EIGVH178
 405 FORVAT (1H,5X,*ITERATION NO**,I3,*. ESTIMATED P EIGENVALUE IS*, EIGVHIT9
 1E15.7,*. (CEVP=*,E10.3,2X,*EI =*,E10.3.*)*%) EIGVH180
 G0 70 500
 410 OEVO= ABS(1./EVO/F-1.)
 EVQ=1./F
 EIGVH183
 HRITE (E,415) S,EVQ,DEVO,EI EIGNH184
 415 FORYAT (IH,5X,*ITERATICNNO.*,I3,*. ESTIMATEO Q EIGENVALUE IS*, EIGYHIB5
 1E15.7,*. (OEVG =*,E10.3,2X,*EI =*,E1O.3,*)*) EIGVH186
 c
NORHALI2E EIGENFUNGTION
500 CALL NOFM(F)
IF (IS.LT.3C).OR.({J/5)*5.NE.JN) GO TO 520
HRITE (E,E{0) (X(JJ),P(JJ),Q(JJ),JJ=1,NP)
510 FORMAT (1H,3E25.14)
HRITE (7.511) I1
511 FORYAT (43X,I2)

```

```

c
C IF DEY IS SUFFICIENTLY SMALL, ACCEPT EIGENFUNCTION
52C IF (COEVP.LE.EROR).ANQ. (OEVQ.LE.EROR).AND.(EI.LE.ERII) GO TO 700
IF (PJ.GE.25).AND.(NSKIP.NE.1)) GO TO 200
C
C EIGENFUNCTICN NCT YET FOUND, CONTINUE ITERATION PROCESS
500 CALL ITERAT(EI)
J=3\&1
G0 10 210
C
C ERRCR IS BELON TOLERANCE, CHEGK TO SEE THAT MAX. NO. OF POINTS USED
70E IF (NSKIP.NE.1) GO TO 200
C ACCEPT EIGENFUNCTIONS
I=I+1 \& II=I+1
DEVP=ABS(EVP-EVO) \& DEVQ= PEVP+EVQI/2. \& DEVP=DEVPJOEVQ EIGVH210
E(II=DEVQ FS=OEVQ**2/SR2 \& TFS=0. EIGVWZ1IL
DO 702 J=1,I
702 TFS=TFS+E(J)**2 \$ TFS=TFS/SR2
KRITE (7,706) I,DEVG
7CG FOGMAT I*EIGENUALUE AND CONJUGATE EIGENFUNGTIONS NO.*,I2, E2D.111
WRITE (7,707) (X(J),P(J),O(J),J=1,NP)
707 FGRNAT (3E25.14)
WRITE (6,708) I,DEVO,EVP,EVO,DEVP,FS,I,TFS,(X(J),P(J),O(J), J=1,NP)EIGVH218
708 FORMAT [1H1,5X,*EIGENVALUE NO.*,I2,* IS*,E14.7,/,5X,*EVP =*, E14.7,EIGVH219
1* EVO =*,E144.7,* RELATIVE DIFFERENCE =*,E10.3,1,%,5X,*FRACTION OEIGVW22O
2F RESPONSE YARIANCE DUE TO THIS EIGENVALUE IS*,F7.5,1,6X, EIGVW221
3*FRACTICN OF RESPONSE VARIANCE DUE TO FIRST*,I2,* EIGENVALUES IS*,EIGUHZ22
4F7.5,1,1,9X,*X*,8X,*FUNCTION OF 1ST ARG*,3X,*FUNCTION OF 2ND ARG*,EIGUW223
5/,(EX,FR.4,5X,E17.10,5X,E17.101): EIGVW224
IF (I.GE.NEV) GO TO 800 EIGVH225
CALL STOR(I) EIGVH22G
CONT=.F. EIGVWZ2T
GO TO 110 EIGUH228
C
800 WRITE (6,805) NEV,(J,E(J),J=1,I)
EIGYH229
EIGYH230
805 FORHAT (1H1,5X,*FIRST*,I2,* EIGENVALUES ARE\&*,f,(10X,I2,2X,E15.7))EIGVW231
FS=SF2*(1,-TFS) EIGVH232
HRITE (6,01G) FS,TFS EIGVH233
B1C FORYAT IIHO,5X,*REMAINING EIGENVALUES SQUARED SUM TO*,E15.7,/,6X, EIGVH234
1*THE ABOVE EIGENVALUES ACCOUNT FOR*,F7.5,* OF THE RESPONSE VAK.*) EIGVW235
IF (FS.LT.O.) GO TO 900 EIGVW236
FS=SQRT \&FS) EIGVH237
WRITE (E,812) FS EIGVW238
812 FORMAT (1H ,5X,*LARGEST POSSIBLE REMAINING EIGENVALUE IS*,E14.7) EIGVW239
900 STOP \& END EIGVH24O

```
```

 SUBROUTINE VARN(SH,HL,U,S21) EIGYH241
 C
C A SUgROUTINE TO COMPUTE THE RESPONSE VARIANCE OF A LINEAR SYSTEM
C SUBJECTED TC FANDON INPUT WITH DRYDEN H-GUST SPECTRUM
C SH = TUFBULENCE STANDARO DEVIATION
WL = TURBULENCE SCALE LENGTH
C U = VEHICLE MEAN TRUE AIRSPEED
C AI = NEGATIVE OF VEHICLE IMPULSE RESPONSE EXPONENTS PPOSITIVE REAL PTIEIGVHZ4G
C CI = VEHICLE IMPULSE RESPONSE CONSTANTS
C IF CI CR AI IS COMFLEX, ONLY ONE OF EACH CONJUGATE PAIR IS TO BE USEDEIGVH2SI
COMMON /CCNST/ CI(5),AI(5),NPOL
COMPLEX CI,AI,AJ,AK,CJ,CK,C2,C3,C4,D1,D2
LOGICAL RLI,RL2
C=U/WL S S2=0.
DO 20 K=1,NPOL
AK=AI{K) \$ CK=CI(K) \$ C4=0.
RL1=AIMAG(AK).EQ.O..AND.AIMAG(CK).EQ.O.
5 D1=C+AK
DO 10 J=1,NPOL
AJ=AI(J) \& CJ=CI(J) \& CJ=0.
RL2=AIMAG(AJ).EQ.O..AND.AIMAG(CJ).EQ.O.
6 D2=C-AJ
C2=(C* (C+(AK-AJ)/2.)/01/D?-1.)/01/02
C2=C2+C*(C**2-3.*AJ**2)/(AK+AJ)/(AJ+C)**2/(AJ-C)**2
C2=C2*CJ*CK \& C3=C3+C2 \& IF (RL2) GO TO 10
AJ=CONJG(AJ) \& CJ=CONJG(CJ) \$ RLZ=.T. \$ GOTO 6
10 C4=C4+C3
IF (RL1) GO TO 20
AK=CONJG(AK) \& CK=CONJGICK) \& RLI=.T. \& GOTO 5
20
S2=S24REAL(C4) \& SZ=S2*SH**2 \& RETURN S ENO
SUBROUTINE FILL
C
C THIS SUEROUTINE INTERPOLATES THE 21 POINT EIGENFUNCTION TO FORM THE
C FIRST APPROXIPATION TO THE 41 POINT EIGENFUNCTION.
COMNON /AFRAYS/ X(45),P(45),Q(45),I,II,K,XP,C(41),NP,NSKIP
I1=NSKIP/2+1
00 10 I=I\&,NP,NSKIP
XP=X(I) \& K=I+1-II
CALI COEF (K,P,C)
P(I)=((C(4)*XP+C(3))*XP+C(2))*XP+C(1)
CALL COEF (K,Q,C)
10 O(I)=((C(4)*XP+C(3))*XP+C(2))*XP+C(1)
NSKIP=NSKIP/Z
RETURN E END
SUBROUTINE GUESSII)
C
C THIS SUEROUTIAE GUESSES THE NEXT EIGENFUNCTION TO BE THE
C DERIVATIVE CF THE PROVIOUS RESULT OR X*EXP\-3.*XI FOR THE FIRST.
E
COMHON /ARRAYS/ X(45),P(45),G(45),J,XJ,K,DX,OP,OUM(40),NP,NSKIP
IF (NSKIP.LE.1) GO TO 70
IF (I.GT.1) GO TO 50
DO 1C J=1,NF,NSKIP
Q(J)=0. \$ XJ=X(J)
10P(J)=XJ*EXP{-3,* XJ)
RETURN
C
5c K=NSKIP+1
DO EO J=K,NP,NSKIP
Q(J)=0. \&P=P(J)-P(J-1) \& DX=X(J)-X(J-1) \& XJ=X(J)
EIGVH242
EIGVN243
EIGVH244
EIGVH245
EIGVH246
EIGYH247
EIG\H248
EIGVH250
EIGVN25 2
<)
EIGVH253
EIG VW254
EIGVH255
EIGVH256
EIGVH257
EIG VW264
EIGYN265
EIGVW266
EIGVN267
EIGVH268
EIGVH269
EIGVN270
C
EIGVH271
EIGVH272
EIGVH273
EIGYW274
EIGVH275
EIGVH276
EIGVN277
EIGVH278
EIGYH279
EIGVH280
EIGYH281
EIGVH282
EIGVH263
EIGVW284
EIGVW284
EIGVH285
EIGVH286
EIGVH287
EIGVH288
EIGVH289
EIGVH290
EIGVN292
EIGVH293
EIGVH294
EIGVH295
EIGVH295
EIGVW297
EIGVN298
EIGVH300
EIGVH301
EIGVH3O2
EIGVH303

```
```

 XJ=XJ*EXP{一\Xi.*XJ) EIGYH304
 60 P(J)=XJ*DP/OX
 RETURN
 70 WRITE (6,71) NSKIP
 71 FORMAT ILH,5X,*NSKIP =F,I10,*NOT ALLOHED IN GUESS*I
 STOP S ENO
 SUBFOUTINE AORMF(F)
 C
C COHPUTES NORM OF P(X) OR Q(X) DEPENDING UPON USEP TRUE OR FALSE EIGVH3IZ
E IGYH305
EIGVH306
EIGVH307
EIGYH308
EIGVH309
EIGVH310
EIGVW311
C THE NCRM OF P OF O IS THE ESTIMATED EVO, THE INVERSE IS THE NORH. FAC.EIGVHZIS
COMRON /ARRAYS/ X(45),P(45),Q(45),C{4),F1,NP1,J,I,X1,X2,II,CII, EIGYH315
IIJ,K,CK,X12,X2.2,JJ,OUM(27),NP,NSKIP,NPOLY,USEP E NGYW316
LOGICAL USEF EIGVH317
FI=D. \& NPI=NPOLT+1 \& J=NP-1 EIGVH318
0060 I=1,\,NSKIP EIGVH319
F=0. EIGVH320
IF(USEP) 10,11
10 CALL COEF(I,P,C)
GO TO 12
EIGVH321
1 0 CALL COEF(I,P,C) EIGVH322

```

```

 12\times1=X(I) X2=X\I+NSKIP) EIGVH325
 IF (X2.GT.X(NP)) X2=X(NP) EIGVH32G
 0O40II=1,NPOLY EIGVH327
 CII=C(II) E IJ=II*1 S K=II*IJ-1 S CK=FLOAT(K) EIGVH328
 X12= X1**K & <22= X2**K EIGVH329
 OO40 JJ=IJ,NP1 EIGVH330
 F=F+CII*C(JJ)* (X22-X12)/CK
 CK=CK+1. & X12=x12*\times1 EIGVH332
 40 <22=\times22* X2 EIGVH333
 F=F*2. s < <12=X1**2 s <22= X2**2 $ CK=1. EIGVH334
 OO 50 II=1,AP1 EIGVH335
 F=F+(X2-Xi)*(C(II)**2)/CK & CK=CK+2. S X2=\times2*X22 EIGVH336
 50 X1=X1* K12
 S0 X1=x1+X12
 F=SGRT{1./F1)
 RETURN
 C
C NORNALIZE EIGENFUNCTION P OR Q DEPENDING UPON USEP TRUE OR FALSE.
ENTfY NCRM
00 100 I=1,AP,NSKIP
IF (USEF) 95,96
95 P(I)=P(I)*F
GO 10 100 EIGVH347
96(I)=Q(I)*F% EIGYN348
100 CONTINUE EIGVW349
RETUQN END EIGVN35O
SUBFOUTINE ORTHOGIII
EIGVH337
EIGYW338
C
EIGVN340
EIGYW339
EIGVN341
EIGVH342
EIGVH343
EIGVW344
95 PTMPEF\&EIGVN34S
C EIG VH352
C A SUBROUTINE TO ORTHOGONALIZE P{X) CR Q\&X) WITH RESPECT TO THE FIRST IEIGYH35S
C EIGENFUNCTIONS CEPENDING UPON USEP TRUE OR FALSE. EIGVH354
C
CGMPON/AFRAYS/ X(45),P(45),Q(45), DUM(45),NP,NSKIP,NPOLY,USEP.
2EFP(45,5),EFO(45,5),C(4),O(4)
LOGICAL USEP
NP1 = NFOLY*1
00 50 J=1 % I
0O 10 JJ=1,NP,NSKIP
IF (USEFI 5,6
5 OUM(JJ)=EFP(JJ, \)
GO TO 10
6 LUM(JJ)=EFQ(JJ,J)
1 0 ~ C O N T I N U E ~
EIGVW355
EIGVA356
LOGICAL USEP
EIGVH357
EIGVH358
EIGVH360
EIGVH361
EIGYH362
EIGYH362
EIGVH364
EIGYH355
EIGVH366

```
```

 K=NP-1 & F=O. EIGVH367
 0040 JJ=1,K,NSKIP
 IF (USEP) 20,22
 20 CALL COEF(JJ,P,C)
 GO TO 22
 21 CALL COEF(JJ,O,C)
 22 CALL COEF{JJ,DUM,O)
 XI=X(JJ) & II=JJ+NSKIP S IF (II.GT.NP) II=NP S X2=X(II)
 DO 40 II=1,NP1
 X12=X1**II & X22=X2**II S CII=CIII) S CL=FLOATIII)
 DO 40 KK=1,NP1
 F=F+CII*O{KK)*(X22-X12)/CL s CL=CL+1. s X12=X12**1
 40 X22 = X22* X2
 00 50 JJ=1,NP,NSKIP
 IF (USEP) 45,46
 45 P(JJ)=P(JJ)-F*DUM(JJ)
 GO TO 50
 46 Q(JJ)=Q(JJ)-F*OUN(JJ)
 50 CONTINUE
 RETURN & ENO
 FUNCTION SUM\I,J)
 C
C FORMS PRODUCT (J-I+1)*(J-I+2)}······.···(J
C
N=1
IF(I) 20,20,10
10 K=J-I*1
00 15 L=K,d
15 N=N*L
20 SUM=FLOAT (N)
RETURN \& END
SUQROUTINE COEF(I,A,C)
C A SUGROUTINE TO FILL C ARZAY HITH THE COEFFICIENTS OF THE
C POLYNOMIAL FEPRESENTING A(X) BETHEEN X(I) AND XII*NSKIP). NPOLY IS
C THE OROER OF THE POLYNOMIAL
C FOLYNOMIAL IS C(1) + G(2)*X + C(3)*X**2 - C(4)*X**3
C
DIMENSION A(1),C{1)
COMNON /ARRAYS/ X(45),P(45),O(45), DUM(45),NP,NSKIP,NPOLY
OATA NPOLY/3/
IF (I.GT.NSKIP) GO TO 10
N=1 \& GO TO 30
10 IF (I.LE.NP-2*NSKIP) GO TO 20
N=NP-3*NSKIF S GOTO 30
20 N=I-NSKIP
30 F1=A(N) \& X1=X(N) \& N=N+NSKIP \& F2=A(N) S X2=X(N)
N=N+NSKIP \& F3=A(N) \& }X3=X(N
N=N+NSKIP F F4=A(N) \$ X4=X(N)
F1=F1/(X1-X2)/(X1-X3)/(X1-X4)
F2=F2/(X2-X1)/(X2-X3)/(X2-X4)
F3=F3/(X3-X1)/(X3-X2)/(X3-X4)
F4=F4/(X4-X1)/(X4-X2)/(X4-X3)
C(4)=F1+F2+F3+F4
C(3)=-F1*(X2+X3+X4)-F2*(X1+X3+X4)-F3* (X1+X2+X4)-F4*(X1+X2+X3)
C(2)=F1* (X2* (X3+X4) +X3*X4) +F2* (X1* (X3+X4) + X3* X4) +F3* (X1* (X2+X4) +
1\times2*\times4)+F4*(\times1*(\times2+\times3)+\times2*\times3)
C(1)=-F1* X2* X3* X4-F2*X1* X3*X4-F3*X1*X2* X4-F4* X1* X2*X3
RETUPN \$ END
SUBROUTINE RIFC
C INTEGEATE CCHPLEX TERHS OF TRANSFER FUNCTION
C
EDUIVALENCE (E,ER), (XE,XER), (XE1,XEIR),(D1,D1R)
COMPON/DIF/ X,E,N,O1
EIGVH368
EIGVH369
EIGVH370
EIGVH371
EIGYH372
EIG VH373
EIGVN374
EIGVW375
EIGVH376
EIGYH377
EIGVH378
EIGVH379
EIGVW380
EIGVH381
EIGVH382
EIGVH383
EIGVH384
EIGYH385
EIGVW386
EIG YH387
EIGVW388
EIGVH389
EIG VH390
EIGVW391
EIGYH392
EIGVH393
EIGVH394
EIGVH395
EIGVW396
EIGVW397
EIGVH398
EIGVW399
EIGYW400
EIG VH401
EIGVH402
EIGVH4OS
EIGVH404
EIGVH405
EIG VH406
EIGVH407
EIGVH408
EIGVH409
EIG VH410
EIG YH411
EIGVH412
EIG YH413
EIGVW414
EIGVH415
EIGVW416
EIGVW417
EIGVW418
EIGVW419
EIGVN420
EIGVH421
EIGVH422
EIGVH423
EIGVH424
EIGVW425
E IG VH426
EIGUH427
EIGVH427
EIGVW429

```
```

 COMFLEX E,XE,XE1,O1 EIGNW43O
 N1=N+1 & C1=0. EIGVH431
 IF (N) 70,10,20 EIGVW432
 C
C CONSTANT TERM OF POLYNOMIAL
10 01=1. \$ GC TO 30
C
C POHER TERM CF PCLYNOMIAL
20 IF (X.NE.O.) GO TO 25
01=(-1./E)**N*SUM(N,N)
G0 TO 30
25 XN=X**N
XE1=X*E \& XE=1. \& S1=1. \$ S2=FLOAT(N)
DO 28 I=1,N1 _ \& XE=XE*XE1 \& S1=S1*S2 \& S2=S2-1.
28 XN=-XN
3C C1=01*CEXP(E*X)/E
70 RETURN
C
C INTEGRATE REAL TERMS OF TRANSFER FUNCTION
ENTRY DIFR
N1=N+1 s D1=0.
IF (N) 170,110,120
C
C CONSTANT TERM OF POLYNOMIAL
110 01R=1. \& GO TO 130
C
C POHER TERM CF PCLYNOMIAL
120 IF (X.NE.C.) GO TO 125
D1R=(-1./ER)**N*SUM(N,N)
GO TO 130
125 XN=X**N
XEIR=XFER \& XER=1. \& S1=1. \& S2=FLOAT(N)
DO 128 I=1,N1
D1R=XN/XEF*S1*D1R \$ XER=XER*XE1R \& S1=S1*S2 \& S2=S2-1.
128 XN=-XN
130 01=CMPLX(D1G*EXP(ER*X)/ER,0.0)
170 RETURN S ENO
SUBROUTINE NTGRAL (V,XAB)
C
C INTEGRATES P(X)*H(X,XAB) OR Q(X)*H(XAB,X) DEPENDING UPON USEP TRUE
C OR FALSE.
C
EIGVW472
/a, (ARRAYS/ X(45),P(45),Q(45),E1,E2,C1,C2,CO2,CO3,CO4,CO6,IPOLEIGVH473
1,NX,NPO,NFO1,IA,ICA,D1S(4),D2S(4),D1SI(4),D1S2(4),NP,NSKIP,NPOLY, EIGVW47%4
2USEF,EFP(453),C(4)
COMMON/GCNST/ CI(5),AI(5),NPOL,B,B1 EIGVW476
CCHPON /DIF/ XI,E,NPOM,D1G EIGVH477
DIMENSICN DIA(225),D1CA(900),CA(180) EIGVH478
COMPLEX DICA,AI,CI,E,C1,C2,V1,V2,E2,01C,01S1,01S2,C01,C02,CO3, EIGVH479
1CO4,CO5,CC6,D1C1,01C2
LOGICAL RL,USEP
EQUIVALENCE (E,ER),(D1,D2,D1C),(CO1,CO2),(CO4,CO5),(01C1,DIC2)
V=0. \& EI=EXP{-B* XABI \& ICA=0
C
C CYCLE THROUGH PCLES OF TRANSFER FUNCTION
DO 100 IPCL=1,NPOL
E2=CEXP(-XAE*(AI(IPOL)-日)) \$ C1=31*CI(IPOL)/(AI(IPOL)-2.* G)
C2=C1*B \& C1=C1*(AI(IPDL)-8)/(AI(IPOL)-2**B) \& CO3=C2*E1
IF (USEP) 5,6
5 C01= (C1-XAB*C2I*E1 \& C05=C1*E2 \& GO TO 7
6CO2=(C1+XAGFC2)*E2 \& CO4=C2*(E2-E1) \& COG=C1*E1 EIGVW491
7V1=0. \& VE=0. \& IA=1 \& ICA=ICA+1 EIGYN492

```
```

C
C CYCLE THROUEH X INTERYALS
EIGYN494
DO 15 NPO=1,NPO1 EIGVN495
DIS(NPO)=01A(IA) \& IA=IA+1 S DISI(NPO)=0ICA\&ICA) S ICA=ICA+IEIGVN496
IF (USEP) 12,13 EIGYN497
12 01S2(NPO)=D1CA(ICA) EIGVH498
G0 10 15
13 02S(NPO)=D1A(IA)
15 CONTINUE
I=NSKIP+1 SXI=1 ETGYH502
00 80 NX=I,NP,NSKIP EIGVW503
XI=X(NXI \$ IA=IA+IINC S ICA=ICAFIINC EIGVH504
C
C CYCLE THROUGH TERMS OF POLYNOMIAL
IF (USEP) 16,25
c
C COMPUTE NEW Q(BETA) EIGENFUNGTION
1600 20 NPO=1,NPO1
D1=C1A(IA) \& IA=IA+1 s E=D1-01S(NPO) S Y1=C01*E EIGYW5111
DISTNPO\=C1
IF (X1-XAB) 17,17,18
17 D1C1=D1CA(ICA)
* E=D101-01S11NP0)
D1C2=D1CA(ICA) S E=DIC2-DIS2(NPO) \& VI=V1-G03*E EISI(NPO)=DICI EIGVWSIS
01S2(NPC)=D1C2 EIGVH517
GO TO 19 EIGVN518
18V1=V1-CO5*E EIGVH51G
ICA=ICA+1
19 V2=V2+V1*CA(NXI)
20 NXI=NXI+1
GO TO }8
C
C COMPUTE NEW PIALPHAD EIGENFUNCTION
25 DO 40 NPO=1,NPO1
01=01A(IA) S IA=IA+1 E=D1-DIS(NPO) V1=C06*E
30 D1S (NPO)=01
IF (X1-XAB) 31,31,38
31 O1C1=OICA(ICA)
ICA=ICA+1 E=01C1-01S1\&NPO: S V1=V1-CO6*E
35 01S1(NP0)=01C1
D2=01A(IA) \$ E=02-D2S(NPO) \$ VI=V1-CO3*E \& D2S\NPOI=D2
GO T0 39
38 V1=V1-CO2*E
02=01A(IA) \& E=02-02S(NPO) \& V1=VI+CO4*E \& O2S\NPO\=D2
ICA=ICA+1
39 V2=V2+V1*CA(NXI)
40 NXI=NXI+1
8G CONTINUE
IF ((AIMAG(CI).EQ.O.).AND.(AIMAG(E2).EQ.D.)) GO TO 100
VZ=2.*REAL(V2)
100 V=V*V2
GOTO 500
C
C
SET UP OIA ANO CICA ARRAYS
ENTRY STARAY
NFO1=NPCLY+2 \& ER=-B \$ I=1
DO 204 NX=1,NP
X1=X(NX)
OO 20E NPO=1,NPO1
NPOR=NPO-1 \& CALL DIFR \$ D2A(I)=01
200 I=I*1 \$ I=1
OO 300 IPOL=1,NPOL
EIGVN520
EIGVH521
EIGVW522
EIGVH523
EIGVH524
EIGVH525
EIGVH526
EIGVN527
EIGVH528
EIGVH529
EIGVH530
EIGVH531
EIGVH532
EIGVH533
EIGVH534
EIGYW535
EIGVH536
EIGVH537
EIGVH538
EIGVH539
EIGVH540
EIGVH541
EIG VH542
EIGVW543
EIGVH544
EIGVW545
EIGYH546
EIGVN547
EIGVH548
EIGVH549
EIGVH550
EIGVH551
EIG YH552
EIGVH553
EIGYW554
EIGYW555

```
```

 E=B-AIIIPCL) RL=AIMAGIEI.EQ.O. EIGVH556
 0O 300 NX=1,NP EIGVH557
 XI=X\NXI
 DO 300 NPO=1,NPO1
 NFOM=NPO-1 IF &RL) GO TO 250 EIGVH56O
 CALL DIFC
 GO TO 2ge
 250 CALL DIFR
 290 D1CA(I)=D1C
 300 I=I*1
 60 10 500
 C
C GENERATE TABLE CF PGLYMOHIAL COEFFICIENTS. CA, FOR EIGENFUNCTION P OR EIGVH5G8
C O OEPENEING UFON USEP TRUE OR FALSE ENTM GENCOE EIGVH569
C O OEPENLING UFON USEP TRUE OR FALSE ENG GENCOE EIGUH569
NPO}=
NPO=0
IF (NXI-NP) 353,400,400 EIGVH573
350 IF (USEP) 360,370
360 CALL COEF(NXI,P,C)
GO 10 375
370 GALL COEF (NXI,O,C) EIGVY577
37500 380 NPO1=1,4 EIGUNS788
NPO=NPO \& 1
380 CA(NPO)=C(NFO1)
400 CONTINUE
NFO1=NPGLY+1
IINC=(NSKIP-1)*(NPOLY+2)+1 E EIGVH583
500 RETURN S END EIGVW584
SUGROUTINE ITERAT(E)
C
C A SUBROUTINE TO ITERATE THE EIFENFUNCTION P(X) OR Q(X) DEPENOING EIGVW587
C UPON USEP TRUE CR FALSE.
C
COMMON /AFRAYS/ X(45),P{45),Q(45),DUM(45),NP,NSKIP,NPOLY,USEP
CCMMON /EVAL/ EVP,EVQ
EQUIVALENCE (PI,QI) EIGVW592
LOGICAL USEP
CALL GENCOE (0,X)

```

```

 00 50 I=I1,NP,NSKIP EIGVW596
 IF (USEF) 3E,40
 3C QI=Q(I)*EVO
 CALL NTGRAL(O(I),X(I)) EIGVH599
 E=E+(ABS(QI)-ABS(Q(I)))**2 EIGVW600
 G0 TO 50
 40 PI=P(I) #EVP
 CALL NTGRAL(PII),X(I)] EIGVH603
 E=E+(ABS(PI)-ABS(P(I)))**2 E EIGVH604
 50 CONTINUE
 SO E=SGRT(E) /FLOAT (NP)
 USEP=.NOT.USEP
 RETURN S END
 SUBROUTINE $TOR(I)
 C
C STORES ITH EIGENFUNCTION
C P(X) IN EFP(X,I), O(X) IN EFQ(X,I)
COMMON /ARRAYS/ X(45),P(45),Q(45),J,DUM{44),NP,NSKIP,NPQLY,USEP, EIGVH6144
1EFP(45,5),EFQ(45,5)
DO 10 J=1,NP
EFP(J,I) =P(J)
10 EFQ(J,I|=Q{J) EIGVNG18
EIG VH558
EIGUH559
EIGVH560
EIG VW561
EIGVH562
EIGVH563
EIGVW564
EIG VH565
EIGVH566
EIGVW571
EIG VM57 2
EIGVH573
EIGVH574
EIGVW575
EIGVH575
EIG VH578
EIGVW579
EIG VW5s0
E IG VH581
EIG VW585
EIGVH588
EIGVH589
CCMHON EYAL EVP.EVQ EIGVN591
EIG VW597
EIG VH598
EIGVW600
EIG VW601
EIGVH602
EIG VH603
EIGNH604
EIGVH605
EIG VH6055
EIGVW607
EIGVW608
EIG VH609
C
E IG VW61O
EIGVW611
EIGVH61?
EIGVH612
EIGVH613
EIG VW614
E IG VH615
EIGVH616
EIGVH617

```

```

JJDIF=KEIT FFTO0059
KEIT=KBIT/4
KL=KBIT-2
DO 140 I=1,ILI,IDIF
KLAST=I*KL
00 14C K=I,KLAST,2
K1=K+KBIT
K2=K1+KBIT
K3=K2+KBIT
T=A(K2)
A(K2)=A(K)-T
A(K)=A(K)*T
T=A(K2+1)
A(K2+1)=A(K+1)-T
A(K+1)=A(K+1)*T
T=A{K3)
A(KZ)=A(K1)-T
A(K1)=A(K1)*T
T=A (K3+1)
A(K3+1)=A(K1+1)-T
A(K1+1)=A(K1+1)+T
T=A(K1)
A(K1)=A(K) -T
A(K)=A(K)+T
T=A(K1+1)
A(K1+1)=A(K+1)-T
A(K+1)=A(K+1)+T
R=-A(K3+1)
T=A(K3)
A{K3)=A{K2)-R
A(K2)=A(K2)*R
A(K3+1)=A(K2+1)-T
A(K2+1)=A(K2+1)+T
IF (JLAST) 310,310.150
JJ=JJDIF\&1
ILAST=IL*JJ
OO 160 I=JJ,ILAST,IDIF
KLAST=KL*I
DO 160 K=I,KLAST,2
KI=K*KBIT
K2=K1+KEIT
K3=K2+KBIY
R=-A(K2+1)
T=A\K2)
A(K2)=A(K)-R
A(K)=A(K)*R
A(K2+1)=A(K+1)-T
A(K*1)=A(K+1)+T
AWR=A(K1)-A(K1+1)
AHI=A(K1+1)+A(K1)
R=-A(K3)-A(K3+1)
T=A(K3)-A(K3+1)
A(KE)=(AWR-F)/ROOT2
A(K3+1)=(AWI-T)/R00T2
A(K1)=(AWE*R)/ROOT2
A(K1+1)=(AWI+T)/ROOT2
T=A(K1)
A(K1)=A(K)-T
A(K)=A(K)+T
T=A(K1+1)
A(K1+1)=A(K+1)-T
A(K+1)=A(K+1)+T
R=-A(K3+1)

```

FFT00059
FFTOOO60
FFTOO461
FFT00062
FFT00063
FFT 00064
FFTLOD65
FFTOOC66
FFTOOC67
FFTOOO68
FFTOC069
FFT 00070
FFTOOG71
FFT00072
FFT 00073
FFT 00074
FFTOOO75
FFT00076
FFT00077
FFTOL078
FFT00079
FFT00080
FFTOOU81
FFT 00082
FFTOOC83
FFT 00084
FFTUDO85 FFT 00086 FFTOC087 FFTOGO88 FFT00089 FFT00090 FFT00091 FFTCOO92 FFTOU093 FFTOOU94 FFT00095 FFTOOO96 FFTODO 97 FFT 00098 FFTOGO99 FFTOC100 FFT OC 101 FFTDO102 FFTOO103 FFTOO104 FFTOO105 FFTGO106 FFT00107 FFTOU108 FFT 00109 FFT 00110 FFTOU111 FFT00112 FFTOU113 FFTOU114 FFT00115 FFTOU116 FFT 30117 FFT 00118 FFTCL119 FFT 00120 FFTOO121


\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& 440 \\
& 450
\end{aligned}
\]} & IP3＝INV（JP3）／NTVN3 & FFT00248 \\
\hline & ［ \(3=(1 P P 3+1 P 3) * N 2\) & FFT00249 \\
\hline & JJ2＝1 & FFT00250 \\
\hline & \(0056 \mathrm{CPF} 2=1\) ，N2UNT & FFTOG 251 \\
\hline & IPP2＝INV（JJ2）+13 & FFT00 252 \\
\hline & 00550 JPE＝1， 1 INN2 & FFT00253 \\
\hline & G0 TO（460，470），IGO2 & FFTOO254 \\
\hline 460 & IP2＝INV（JP2）＊N2YNT & FFT00 255 \\
\hline & G0 70480 & FFT00256 \\
\hline 470 & IP \(2=I N V(J F 2) / N T Y N 2\) & FFT00257 \\
\hline \multirow[t]{6}{*}{480} & \(\mathrm{I} 2=(\mathrm{IPP} 2+\mathrm{IP} 2) * \mathrm{~N} 1\) & FFTi025 \\
\hline & JJ1＝1 & FFT00259 \\
\hline & DO 550 JPFi \(=1\) ，NiVNT & FFT00 260 \\
\hline & IPP1＝INV（JJ1）+12 & FFTOC 261 \\
\hline & DO \(540 \mathrm{JP} 1=1\) ，MINN1 & FFT00262 \\
\hline & GO T0（490，500），IGO1 & FFTOC 263 \\
\hline \multirow[t]{2}{*}{490} & IP1＝INV（JFi）＊NIVNT & FFTOC 264 \\
\hline & GO 70510 & FFT00265 \\
\hline 500 & IP1＝INV（JFi）／NTVN1 & FFT00266 \\
\hline \multirow[t]{2}{*}{510} & \(\mathrm{I}=2 *(\mathrm{PPF} 1+\mathrm{IFI})+1\) & FFT00267 \\
\hline & IF（J－I）520，530，530 & FFT 00268 \\
\hline \multirow[t]{6}{*}{520} & \(T=A(I)\) & FFT 00269 \\
\hline & \(A(I)=A(J)\) & FFT00 270 \\
\hline & A（J） \(\mathrm{T}^{\text {a }}\) & FFT00271 \\
\hline & \(T=A(1+1)\) & FFTOO 272 \\
\hline & \(A(I+1)=A(J+1)\) & FFT00273 \\
\hline & \(A(J+1)=T\) & FFTGO274 \\
\hline 530 & CCNTINUE & FFT00275 \\
\hline 540 & \(\mathrm{J}=\mathrm{j}+2\) & FFT 00276 \\
\hline 550 & JJ1打1＋JJ01 & FFT00277 \\
\hline 560 &  & FFT00278 \\
\hline \multirow[t]{2}{*}{570} & JJ3 \(=\) JJ3 +J J03 & FFT 00279 \\
\hline & IF（IFSET） \(530,600,600\) & FFTJO280 \\
\hline 580 & DO \(590 \mathrm{I}=1, \mathrm{NX}\) & FFT00281 \\
\hline 590 & \(\mathrm{A}\left(2^{*} \mathrm{I}\right)=-\mathrm{A}(2 * \mathrm{I})\) & FFTCO282 \\
\hline 600 & RETURN & FFT00283 \\
\hline \multirow[t]{3}{*}{610} & MT＝MAXO（M（1），M（2），M（3）－2 & FFTOO284 \\
\hline & MT \(=\mathrm{P}\) AXO（2，MTI & FFI00285 \\
\hline & IF（NT－20） \(630,530,620\) & FFT00286 \\
\hline 620 & IFERR \(=1\) & FFT 00287 \\
\hline & GO 10600 & FFTUO288 \\
\hline \multirow[t]{17}{*}{630} & IFERR \(=0\) & FFT00289 \\
\hline & \(N T=2 * * M T\) & FFTOO290 \\
\hline & NTV2＝NT／2 & FFFO0291 \\
\hline & THETA \(=.7853981634\) & FFTOO292 \\
\hline & JSTEP＝NT & FFT00293 \\
\hline & JOIF \(=\) NTY？ & FFI 10294 \\
\hline & S（JITF）＝SIN（THETA & FFT00295 \\
\hline & DO E6G L＝E， C T & FFICO296 \\
\hline & THETA＝THETAノ2． & FFT00297 \\
\hline & JSTEP2＝JSTEF & FFT 0 C 298 \\
\hline & JSTEP＝JDIF & FFJ00299 \\
\hline & JOIF＝JSTEP／2 & FFT00300 \\
\hline & S（JCIF）＝SIN（THETA） & FFT 00301 \\
\hline & JGI＝NT－JOIF & FFF 00302 \\
\hline & \(\mathrm{S}(\mathrm{J} 1)=\cos (T \mathrm{HETA})\) & FFT 00303 \\
\hline & JAST＝NT－JSTEP2 & FFTOO304 \\
\hline & IF（JLAST－JSTEP）660，640，640 & FFI 00305 \\
\hline \multirow[t]{3}{*}{840} & CO ESO J＝」STEP，JLAST，JSTEP & FFT00306 \\
\hline & \(J C=N T-J\) & FFTCO 307 \\
\hline & JO＝J＋JOIF & FFTOO38 8 \\
\hline 650 & S（JD）\(=\) S（J）＊S（JCil＋S（JDIF）＊S（JC） & FFTOO309 \\
\hline 660 & continue & FFT 30318 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { C SET UP TNY(d) TABLE } & \text { FFY00311 } \\ \text { C FFTOO } 312\end{array}\)
C SET UP INY(d) TABLE FFTOO312
    HTLEXP=NTV2 FFT00313
    LM1EXP=1
    INY(1) \(=0\)
    \(00680 L=1, \mathrm{HT}\)
    INYILM1EXF+1)=MTLEXP
    DO 670 J=2,LMIEXP
    \(J J=J+L\) M1EXP
670 INV(JJ)=TAV(J) +MTLEXP
    HTLEXP=HTLEXP/Z
680 LN1EXP=LM1EXPFZ
    IF (IFSET) \(20,600,20\)
    END
FFTOO 312
FFT 00313
FFTOU314
FFTOO315
FFTJU316
FFTOU317
FFTOO 318
FFTOO318
FFTOO319
FFTOO 320
FFTOO321
    FFT氏U322
FFTOO323
FFTOO
C SUBROUTINE FFTRS\{X,OX, OF, \(M, I N V, S, I F S, I F E R\}\)
FFTRS 001
SUBROUTINE FFTRS\{X,OX, OF, M,INV,S,IFS,IFERI
C FOURIER TRAASFOFM OF REAL SYMMETRIC DATA STORED AS COMPLEX ARRAY \(X\)
FFTRSOO2
FFTRSOO3
FFTRSOO4
LIMENSICN X(1), M(1), INV(1), S(1)
C
```

 0F=1./0Xf2.**M(1) $ X(1)=X(1)*DX & X(2)=0. { II=3
 I2=2**(M(1)+1)-1 \$ M1=2**(M(1)-1)
DO 10 I=1,M1
X(I1)=(X(I1)+X(I2))*OX S X(I21=X(II)
X(II+1)=0. S X(I2+1)=0. \& II=I1+2
10 I2=I2-2
IF=IABS(IFS)
CALL FFT(X,M,INY,S,IF,IFER)
RETURN S END

```
FFTRSOO 5
C
FFTRSU06
FFTRSOO 7
FFT RSOO 8
FFIRSOO 9
FFTRSO10
FFTRS 010
FFTRSG11
FFTRSOL2
FFTRSOL3
FFTRSD14
FFIRSO15

```

C MINIMUN VALUE OF H(1) FOR OX OF .05 AND XMAX OF 10. IS 9 (5121 INCPOO27
OATA DX/.G5/ INCPD028
C NORMALIZED DENSITY IS TO BE EVALUATED AT X/SIGMA = MULTIPLES OF DX INCPOO29
OATA C1,C2,C3/7.63888888.89E-03,-6.45833`3333E-02,5.5694444444E-I1/ INCPDC30
C C1,C2,CZ ARE CONSTANTS USED IN NUMERICAL INTEGRATION OF PROB. DENSITY INGPDU\1
C
DATA PI22/3C.478417604/
DATA ISIZE/E/
1 FORYAT (SA10,/,I1,/,FF10.5) INCPDO35
2 FORNAT (8F10.5)
FORMAT P1H,5X,8F10.5)
4 FORMAT (1HO)
5 FORMAT (1H1,5X,8A1B)
6 FOR*AT (1HO,5X,*COYARTANGE MATRIX OF 1ST GAUSSIAN VECTOR*)
7 FORNAT 11HO,5X,*COYARIANCE MATRIX OF 2ND GAUSSIAN VECTOR*) INCPOO41
7 FORMAT 11HO,5X,*COYARIANCE MATRIX OF 2ND GAUSSIAN VECTOR*)
C read infut cata
15 READ (5,1) TITLE,NOIM,SG2
IG IF (EOF,5) 400,16
16 HRITE (6,5) TITLE
WRITE (6,6)
DO 17 I=1,NCIN
READ (5,2) (A(I,J),J=1,NOIN)
17 WRITE (6,3) (A(I,J),J=1,NDIM)
WRITE (6,7)
DO 18 I=1,NCIM
READ (5,2) (B(I,J),J=1,NDIM)
18 WRITE (6,3) (B(I,S),J=1,NOIM)
WRITE (6,e)
DO 19 I=1,NDIM
READ (5,2) (C(I,J),J=1,NDIM)
19 WRITE (6,3) (C(I,J),J=1,NOIM)
C
C CALCULATE STANDARD DEVIATION OF TOTAL PROCESS, SR
SR2=SG2
DO ED I=1,NEIM \& DO 60 J=1,NDIM
GIJ=C(I,S) G IF (CIJ.EQ.0.1 GO TO 60
0O 50 K=1,NOIM \& 00 50 L=1,NOIM
CKL=C(K,L) \$ IF (CKL.EQ.O.) GO TO 50
SR2=SR2+A(I,K)*B(J,L)*CII*CKL
50 continue
60 CONTINUE
SR=SORT (SF2) \$ WRITE (6,65) SR
65 FORMAT (1HO,5X;*STANDARD DEVIATION OF PROCESS =*,E10.3)
C
C GENERATE CHARACTERISTIC FUNCTION INGPDO71
CALL INVRS
WPITE (6,70) DETA,OETB
7C FORNAT I1H0,5X,*DETERMINANTS OF COVARIANCE MATRICIES*,1,6X,
1*OETA =*,E12.5,/,6X,*DET3 =*,E12.5)
EVG2=SG2/2. \& F=0. \& DF=1./0X/2.**N(1) \& NPTS=2**(M(1)+1)
DF1=DF/SR
DO 150 I=1,NPTS,2
F2=FI22*F**2
CFP=1.
CALL CFI(CFF,F)
CFR=CFR*EXP{-EVG2*F21
PHI(I)=CFR \& PHI(I+1)=0.
150 F=F+DF1
C
C FOURIER TRANSFORM TO OBTAIN PROBABILITY OENSITY
CALL FFTRSIFHI,OF,DX,H,INY,S,IFS,IFER)
IFS=2
INCPDO43
INCPOO44
INCPDO45
16 HRITE (G,G) TITLE
INCPOO46
INGPOO47
INCPDO48
INGPOO49
INCPDO50
INCPDUS1
INCPDO52
INCPOC53
INCPOO54
INCPOO54
INCPOO55
INCPOO56
INCPDO57
INCPDO32
INGPDO33
INCPOO34
INCPDO}3
INCPDO36
INCPDO37
INCPDO3
INCPDI3 }

```
```

 INCPDO58
 INC PDO59
 INCPDO5O
 INCPDOG1
 INCPDO52
 INCPDO63
 CKL=C(K,L) TF (CKLEEOO: GO TO 50
 INCPOO65
 INCPDG66
 INCPDOS7
 INGPDOG }
 INCPDO69
 INCPDO70
 ING PD071
INCPDO73
INCPDO74
INGPDOT5
INCPDO76
INCPOO77
INCPOO78
FF=4?
INGPOO79
INCPDU80
INCPDO81
INCPOOB2
INCPDO83
INCPOO84
INCPOO85
INCPOO86
INCPOO87
INCPDOS8
INCPOO89

```
```

 IF (IFER.NE,0) HRITE (6,200) IFER
 INCPOO90
 200 FORMAT (1HO,*----ERRROR IN FFT, ERROR FLAG =*,I2,/,5X,*RESULTS INVAINCPDO91
 1LID FOR THIS CASE*)}\mathrm{ INCPDO92
 IF (PNCH) WFITE (7.219) TITLE INCPDO93
 219 FORPAT (8A1O)
HRITE (6,220) TITLE
220 FOPMAT (1H1,5X,8A10)
HRITE (6,221)
221 FORMAT (1HO,5X,*NORMALIZEO*, 4X,*STOIZEO*,4X,*OISTRIBUUION*,5X,
1*UNNORMALIZED*, 3X,*NONSTOIZEO*,/,7X,*VAFIABLE*,3X,*PROBAGILITY*, INCPDOG9
24X,*FUNCTION*,9X,*VARIARLE*,5X,*PROBABILITY*,/, TX,*X/SIGHA X*, INCPOIOO
34X,*DENSITY*,27X,*X*,10X,*OENSITY*,/3 INCPD101
OX1=DX*SR2
CD=.5 \& X=0. \& Xi=0.
LINCNT=0
N=INT(10.10x)+2
IF (N.GT.NPTS/4) N=NPTS/4 * N=N*2
JHA X=N
00 250 J=1,N,2
IF (PO(J).LT.O.) GO TO 255
250 CONTINUE
GO TO 265
255 JMAX=J
DO 260 I=J,N,Z
260 PO(I)=0.0
265 CONTINUE
IF (.NOT.PNCH) N=JMAX
DO 300 J=1,N,2
UPD=FD(J)/SF2
HRITE (6,222) X,PO(J1,CD,X1,UPD
222 FORMAT (IH, 7X,FG.3,4X,E1O.3,3X,E12.5,6X,E1O.3,4X,E10.3)
IF (PNCH) WFITE (7,223) X,PD(J),CD,X1,UPD
223 FORNAT (SEIE.B)
LINCNT=LINCNTPI
C RESULTS ARE PRINTED AT 51 LINES PER PAGE INCPD124
IF ILINCNT.LT.51) GO TO 290 INCPD125
IF IJ.GE.N-1) GO TO 300 INCPO126
HRITE (6,220) TITLE
WRITE (6,221)
HRITE (6,222) X,PO(J),CD,XI,UPD
LINCNT=1
290 IF (J-3) 291,292,293
291 CO=CD+(C1*PC(J+4)+C2*PO(J+2))*DX INCPD132
GO TO 2g4
292CD=CD+IC1*PC(J)+C2*PD(J-2))*OX INCPO134
GO TO 294
293CD=CD+(C1*PC(J-4)+C2*PD(J-2))*OX
294CD=CD+(C1*PC(J+6)+C2*PO(J+4)+C3*(PD(J)+PD(J+2S))*DX
x=x+0x
300 X1= \1+0\times1
G0 TO 15
400 STOP \& END
INEPDO94
INCPDO95
INCPDO96
INC PDO97
INCPDO98
INCPDO99
INCPO100
INCPD101
INCPD102
INCPO 103
INCPO103
INCPO104
INCPD105
INCPD105
INGPD107
INCPD108
INCPD109
INCPD 110
INGPO111
INCPO112
INCPD113
INCPO114
INCPO115
INGPO115
INCPO117
INCPO118
INCPD119
INCPD120
INCPO121
INCPD122
INCPO123
INCPO126
INCPO127
INCPD128
INCPD129
INCPD130
INCPO131
INCPO 132
INCPO133
INCPO134
INCPO135
INCPD136
INCPD137
400 STOP \& END
INCPDI3 B
INCPD139
INCPD140
INCPD141

```

```

C SEARCH FOR FIVOT ELEHENT
INV RGO13
40 ANAX=0. % ICOLUM=0 INYROO14
45 CO 105 J=1,N
50 IF IIPIVOT(J)-1) 60, 105,60
60 00 100 K=1,N
70 IF IIPIVOT(K)-11 80, 100, 740
80 IF(ABS (AMAX)-ABS (A\&J,K));85,100,100
85 IROH=J S ICOLUM=K \& AMAX=A(J,K)
100 CONTINUE
105 CONTINUE
110 IPIYOT(ICCLUM)=IPIVOT (ICOLUM) +1
C
C INTERCHANGE ROWS TO PUT PIYOT ELEMENT ON DIAGONAL
130 IF (IROH-ICOLUM) 140, 260. 140
140. DETERM=-DETERM
150 00 200 L=1,N
160 SHAF=A(IROH,L) \& A(IROH,L)=A(ICOLUM,L)
200 A(ICOLUM,L)=SHAP
260 INDEX{I,1)=IKOH
270 INOEX(I,2)=ICOLUM \$ PIVOT(I)=A(ICOLUM,ICOLUM)
320 DETERM=DETEFM*PIVOT(I)
C
C DIVIDE PIVOT ROW BY PIVOT ELEMENT
330 A(ICOLUH, ICCLUM)=1.0
340 DO 350 L=1,N
350 A(ICOLUK,L)=A(IGOLUM,L)/PIVOT(I)
C
C
380 DO 550 L1=1,N
39\& IF(11-ICOLUN) 400, 550,400
45C T=A\L1,ICCLUM)
420 A(L1,ICCLUM)=0.0
430 00 450 L=1,N
A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
450 CONTINUE
55G CONTINUE
C
C INTERCHANEE COLUMNS
600 00 710 I=1,N
610 L=N+1-I
620 IF (INDEX(L,1)=INDEX(L,2)) 630,710,630
63C JROW=INCEX(L,11
640 JCOLUM=INOEX(L,2)
650 00 705 K=1,N
660 SHAF=A(K,JRCW) \& A(K,JROH)=A(K,JCOLUM) S A(K,JCOLUM)=SHAP
705 CONTINUE
710 CONTINUE
74B RETURN \$ END
PROGRAM LEVXNG(OUTPUT,PUNCH,TAPEG=OUTPUT,TAPET=PUNCH) LEYXGOO1
C
C PROGRAM TO COMPUTE SPECTAL CASE LEVEL CROSSING FREQUENCIES OF THE NON-LEVXG
C PROGRAM TO cOMPUTE SPEGIAL CASE LEVEL GROSSING FREQUENCIES OF THE NON-LEVXGOO 3
C GAUSSIAN MOCEL FOR GIYEN LIST OF R FARAMETER VALUES. LEVXGOD\&
C INPUT DATA - NONE (PROGRAM IS CONTROLLED THROUGH DATA STATEMENTS) LEVXGOOG
C
CCMMON/CCR/CI(B, 8),C2(8,8),C3(8,8),C4(6,8),NN,ISIZE,DETA,DETB,
1C{320)
OIMENSICN X(8192),S(1024),INY(1024),H(3),OF(2), OX(2),TITLE(8) LEVXGO10
OIMENSICN RARRAY(6) LEVXGU11

```
```

 GOMPLEX SUM,A(64,641 LOGICAL PNCH LEVXGO12
 EQUIVALENCE (X(1),A(1,1))
 LEVXGO13
 C IFS AND m are variables uSED by fft
DATA IFS,H/1,E,6,0/
LEVXG014
LEYXG015
C rarrar contalas the r parameter values to be used
LEVXG016
DATA RARRAY/1.,0.,.5,.75,1.3333ミ33333,2.1 LEVXG017
C NCASE IS THE NUPBER OF R PARAMETER VALUES TO BE USED, \&LE.6
LEYXG018
LEYXG019
C DXOS IS INCREMENT OF TABULATION IIN STANDARD DEYIATIONSI
C NTAB IS NUMEER CF TABULATED VALUES DESIRED
CATA DXCS,NTAB/.2,41/
C ISIZE IS SIZE OF MATRICIES USED GY INYR
OATA ISIZE/E/
C PNCH IS lOGICAL VARIABLE, IF SET TRUE RESULTS ARE PUNCHED ON CAROS
DATA PNCH/.F./
C CII,CI2, ANO CLI ARE CONSTANTS USED IN NUMERICAL INTEGRATION OF THE
C JOINT DENSITY FUNCTION
DATA C11,C12,C13/7.63888888889E-03,-6.4583333333E-02,5.5694444444E-LEV XG029
101/
C
00 140 NRATIO=1,NCASE
R=RARRAY(NFATIO)
C GENERATE TITLE APRAY TO ACCOMPANY OUTPUT LEVXGOJ5
ENCCDE(80,5,TITLEIR LEVXG036
5 FORTAT 1* LEVEL CROSSING FREQUENCY OF THE NON-GAUSSIAN MODLEVXGO37
1EL, R=*,F7.?,* *) LEVXG038
C CONSTRUCT CCRRELATION ANO FUNCTIONAL DEPENDENCE MATRIGIES LEVXGO39
NN=2 \$ IF (R.LE.O.INN=0
C1(1,1)=Cz(1,1)=R/SQRT(1,+R**2)
C1(2,1)=C1(1,2)=C2(1,2)=C2(2,1)=0.
C3(1,1)=1. \& C3(2,2)=C3(2,1)=C3(1,2)=0. LEVXG043
C4(1,1)=C4(2,2)=0. \$ C4(1,2)=C4(2,1)=1. LEVXG044
SIG2=1./(1.*R**2)
LEVXG045
C
C CODING USED HERE IS FOR U-GUST COMPONENT UNIVERSAL CURVES LEVXGO47
EVXG046
C1(2,2)=C1(1,1)/2. \& C2(2,2)=C2(1,1)/2. s S2G2=S1G2 LEVXG048
C
C CODING FOR THE V-H GUST UNIVERSAL CURVES HOULD BE
LEYXGO49
LEVXG050
C C1(2,2)=G1(2,2)/2. \& C2(2,2)=C2(1,1) \$ S2G2=1.5*S1G2 LEVXGG51
C
S12=S1G2+C1(1,1)*C2(1,1)
LEVXG05?
LEYXG053
S22=S2G2+C1(1,1)*C2(2,2)+C1(2,2)*C2(1,1)
LEYXG054
IF (NN.NE.O) HFITE (6,3G) ((CI(I,J),J=1,2),I=1,2),((C2(I,J),J=1,2)LEYXGO55
1,I=1,2)
LEVXG056
30 FORMAT (1H1,5X,*COVARIANCE MATRICIES OF FIRST AND SECOND*,/, LEVXG057
16X,*GAUSSIAA VECTORS ARE*,/,(6X,2E1C.31) LEVXGC58
IF (NN.NE.0) WRITE (6,31) ((C3(I,J),J=1,2),I=1,2),((C4(I, 3),J=1,2)LEVXGC59
1,I=1,2) LEYXG\&60
31 FORMAT \1HO,5X,*FUNCTIONAL RELATIONSHIP MATRICIES FOR FIRST*,/, LEVXGU61
16X,*ANB SECCNO TRANSFORM VARIABLES ARE*,/,(6X,2E10.3))
WRITE (E,35) R
35 FORMAT (1HO,5X,*R PARAMETER =*,F6.3)
-F (PNCH) H\&ITE (7,40) R
LEVXG063
LEVXG054
40 FORFAT (*F =*,FG.31
C
C generatf cmaracteristic function
56 CALL INVRS(ANS,F1,F2)
HRITE (6,54) DETA,DETB LEVXGO70
54 FORMAT (1H0,5X,*DETERMINANTS OF COVARIANCE MATRICIES*,/,6X,*DETA =LEVXGO71
1*,E12.5,/,6X,*DETB =*,E12.5) LEYXGO72
57 DX(1)=.3*SOFT(S12) S DX(2)=.3*SQRT(S22) LEVXG073
M1=2**M(1) \& H2=2**M(2) LEYXG074

```
```

 DF{1)=1./OX(1)/M1 S DF{2)=1./0X12)/H2 LEVXG075
 HRTTE (6.10E) DX,OF LEVXG076
 102 FORFAT (1HB,5X,*X INCREMENTS: OX{1)=#,E14.7,* DX{2) =*, E14.7,/, LEYXG077
 16X,*F IACREFENTS: DF(1) =*,FE14.7,* OF(2) =*,EE14.7) LEVXG078
 OFDF=DF(1)*[F(2)
 S1G2=-S1G2*THOPI2 s S2G2=-S2G2*THOPI2
 A(1,1)=CMFLX(1.,0.) s F1=DF(1) & F2=0.
 F11=FLOAT(1-M1)*OF(1)
 00 20C I=2,M1
 CALL CF2(ANS,F1,F2) S ANS=ANS*EXP{S1G2*F1**2)
 CALL CF2\ANS1,F11,F21 S ANS=ANS+ANS1*EXP(S1G2*F11***2)
 A(I.1)=CMPLX(ANS,0.) & F11=F11%DF(1)
 20C F1=F1+DF(1)
 F1=0. * F2=DF{2) & F22=FLOAT(1-M2)*OF\2)
 DO 300 Jx2,H2
 CALL CFZ(ANS,F1,F2) & ANS=ANS*EXPIS2G2*F2**2)
 CALL CF2(ANS1,F1,F22) & ANS=ANS+ANS1*EXP&S2G2*F22**21
    ```

```

 300 F2=F2+DF(2)
 F11=FLOAT(M1)*DF(1) s F1=0. s M22=H2/2-1
 OO 410 I=2,N1
 Fi=F1+DF{1) $ F11=F11-OF(1)
 F2=0. * F22=FLOAT(M2)*OF(2)
 00400 J=2,M22
 F2=-F2+OF{2) & CALL CF2(ANS,F1,F2)
 ANS=ANS*EXP(S1G2*F1**2+S2G2*F2**2)
 F2=-F2 $ CALL CF2(ANS1,F11,F2)
 ANS=ANS +ANS1*EXF\S1G2*F11**2*S2G2*F2**2) LEVXG102
 F22=-F22+CF(2) & CALL CF2(ANS1,F1,F221 LEVXG103
 ANS=ANS+AAS1*EXF\S1G2*F1**2+S2G2*F22**2i LEVXG104
 F22=-F22 $ CALL CF2(ANS1,F11,F22) LEVXG105
 *ANS=ANS+ANS1*EXP\S1GO*F11**2*S2G2*F22**2) LEVXG106
 A{I,J)=CMFLX(ANS,0.)
 400 A(H1+2-I,M2+2-3)=CMPLX\ANS,O.)
 410 CONTINUE
 WRITE (6,61) (A(J,1),J=2,M1)
 HRITE (6,E2) (A(1,J),J=1,M2)
 HRITE (6;E2) {A(J,J),J=1,M2)
 61 FORPAT (1H1,5X,*FIRST RCW, FIRST COLUMN, AND OIAGONAL OF*.I/.
 16X,*JOINT CHARAGTERISTIC FUNCTION*,/,(5X,8E10.3))
 62 FORMAT {1H ,/, (5X,8E1O.3))
 C
C FOUFIER TRARSFOFM TG OBTAIN PROQABILITY OENSITY
0071 J=1,8192,2
71 X(J)=X(J)*OFDF
CALL FFT{X,M,INV,S,IFS,IFER\
IF (IFER.EQ.0) GO TO 73
WRITE (6,72) IFER S STOP
72 FORMAT I1H0,5X,*FATAL EFROR IN FFTRS2, IFER =F,I5!
C
C INTEGRATE TC OBTAIN LEVEL CPOSSINGS
73C1X=C11*DX(2) s C2X=C12*DX(2) S C3X=C13*DX{2)
HRITE (6,74) (A(J,1),J=1,M1)
HRITE (6,62) (A(1,J),J=1,M2)
W?ITE (6,62) (A(J,J),J=1,M2)
74 FORNAT IH1,5X,*FIRST ROH, FIRST COLUNN, AND OIAGONAL OF*,/, LEYXGI3O
16X;*JOINT P\&OGABILITY DENSITY*,/, (5X,BE1:.31: LEVXG131
XE=C. 1 M21=N2/2*1 \& M11=M1/2+3 LEYXG132
DO 80 J=1,M21
DO }75\textrm{I}=1,\textrm{M11
75 A(I,J)=A(I%J)* X2
80 <2=\times2*D\times(2)
M21=M2/2-2 , LEVXG237
LEVXG107
LEVXG108
LEVXG109
LEVXG110
LEYXG111
LEVXG112
LEVXG113
LEVXG1i44
LEYXG115
LEVXG116
LEVXG117
LEVXG118
LEVXG119
LEVXG120
LEVXG121
LEUXG122
1EUXG123
LEVXG124
LEYXG125
LEYXG126
LEVXG127
LEVXG128
LEUXG129
LEYXG132
LEUXG133
LEVXG134
LEVXG136

```
```

 00 06 I=1,M11 LEYXG138
 SUM=C1X*(-A(I,3)+A(I,4)-A(I,2)+A(I,5))+C2X*(A(I,I)-A(I,2)+A(I,3)+ LEVXG139
 1A(I,4))+C3X*(A(I,1)+2.*A(I,2)+A(I,3): LEVXG140
 OC E5 J=1,M21 LEVXG141
 85 SUM=SUM+CIX*(A(I,J)+A(I,J+5))+C2X*(A(I,J+1)*A(I,J+4)) +C3X*(A(I,J+2LEYXG142
 1)+A(I,J+3I)
 X(I)=FLCAT (I-1) *DX(1)
 LEVXG143
 LEV XG144
 86 S(I)=REAL(SUM)
 HRITE (6,87) (X(I),S(I),I=1,M11)
 87 FORMAT (1H1,5X,*COMPUTED VALUES OF X AND N(X)*,/,(4X,2E15.7)) LEVXG147
 C
C INTERPOLATE TC FIND LEVEL CROSSINGS AT SPECIFIEO VALUES OF X

```


```

 WRITE (6,S0) TITLE
 LEVXG145
 LEYXG146
 INTERPOLATE TC FIND LEVEL CROSSINGS AT SPECIFIEO VALUES OF }X\mathrm{ LEVXG148
90 FORYAT (1H1,36X,*LEVEL CROSSINGS*,/,5X,8A10,/,/,15X,*DIMENSIONAL LEVXG153
INON-DIMENSICNAL CROSSINGS PER CROSSINGS PER*,/,19X,*LEVEL*,10X, LEVXG154
2*LEVEL*,9X,*UNIT TIME*,4X,*ZERO CROSSING*,/,21X,*X*,10X,*X/SIGMA XLEVXG155
3*,1)
LEYXG156
DO 105 I=1,NTAB
91 IF (X(NINOEX)-X1) 92,99,93
LEYXG157
LEVXG158
92 NINCEX=NINOEX+1 5 IF (NINDEX-M21) 91,91,150 LEVXG159
93 NINCEX=NINDEX-1
H=(X1-X(NINDEX))/OX11)
FIS=S(NINCEX) \& FI4=S(NINDEX+1) \& FI5=S(NINOEX+2) LEVXG162
FI6=S(NINCEX+3) \& IF (NINDEX-2) 94,96,97 LEVXG163
94 IF (NINDEX-1) 159,95,96 LEY XG164
95 FII=FI5 FI2=FI4 \& GO TO 98 LEVXG165
96 FII=FI3 \& FIZ=S(1) \$ GOT0 98 LEVXG166
94 IF (NINDEX-1) 150,95,96 LEVXG164
97 FI1=SININCEX-2) F FI2=SININDEX-1: LEVXGIG7
98 F1=-FI1*H*(t**2-1.)*(H-2.)*(H-3.1/120.+FI2*H*(H-1.)*(H**2-4.0)* LEVXG168
1(H-3.)/24.-FI3*(H**2-1.)*(H**2-4.)*(H-3.)/12.+FI4*H*(H+1*)*(H**2 LEVXG169
2-4.)*(H-3.)/12.-FI5*H*(H**2-1.)*(H+2.)*(H-3.)/24.+FI6*H*(H**2-4.) LEVXG170
3*(H**2-1.)/120.
GO TO 100
LEVXG171
LEVXG172
99 F1=S(NINDEX)
100 F2=F1/OIVISR
WEITE (E,120) X1,X2,F1,F2
IF (PACH) WFITE (7,121) X2,F2,F1 LEVXG176
IF (F2.LE.1.E-10) GO TO 140
X1= x1 +0X1
105 <2= 人2+0\times05
120 FORNAT (1H, 15X,E10.3,5X,E10.3,6X,E10.3,5X,E10.3) LEYXG180
121 FORMAT (3E20.10)
140 CONTINUE
150 STOP S END
LEVXG148
LEVXG149
LEYXG150
LEVXG152
LEVXG160
LEVXG173
LEVXG174
LEVXG175
LEVXG176
LEVXG177
LEVXG178
105 X2=X2+0X05 LEVXG179
LEYXG180
LEVXG181
LEVXG1.82

```
        PROGRAM POIST\&INPUT, OUTFUT, PUNCH, TAPES=INPUT,TAPEG=OUTPUT,TAPE7=
        PDISTOO 1
        1PUNEH)
\(c\)
C A PROGFAM TC GEAEPATE PPOBABILITY OISTRIBUTIONS FOR THE NON-GAUSSIAN
C MODEL OR THE RESPONSE OF A LINEAR SYSTEM TO THE MODEL.
POIST00 2
POISTOO 3
INPUT DATAE
    TITEETI, \(I=1,9\) (BA10) DESCRIPTIVE TITLE TO ACCOMPANY OUTPUT
    SR2 (E20.10) STSTEM RESPONSE VARIANCE FOR UNIT VARIANCE INPUT \(S R 2=1.0\) FOR TURBULENCE MODEL DISTRIBUTION CALCULATIONS
NEV (I2) NUMEER OF NCN-GAUSSIAN EIGENVALUES TO BE USED (OLE. 2N) NEV=1 FOR TURBULENCE MODEL DISTPIBUTION CALCULATIONS POISTOO 3 PDISTU04 POISTOOS POISTU0 6
    EVII), I=1,NEV (E20.10) NON-GAUSSIAN EIGENVALUES FOR RESPONSE TO PDISTCi3

```

DATA C1,C2,C3/7.6388888889E-S3,-6.4583333333E-C2,5.5694444444E-01/PDISTB45
C CI,G2,C3 ARE CONSIANTS USED IN NUMERICAL INTEGRATION OF PROE. DENSITY POISTO4G
C PDISTO47
C REAC INPUT OATA POISTO48
15 READ (5,1) TITLE,SR2,NEV PDIST049
IF IEOF,5) 400,16 PDISTO50
16 READ (5,2) (EV(I), I=1,NEV) POISTOSI
READ [5,3) R
1 FORMAT (SA10,f,E20.10,1,I2) PDIST053
2 FOPNAT (E20.10) PDISTO54
3 FORMAT (F10.5) PDISTO55
C
C WRITE INPUT DATA
NRITE (6,11) TITLE,SR2,NEV,(EV(I),I=1,NEV:
HRITE (6,12) R POISTC59
11 FGRNAT \1H1,5X,BA1B,/,/,6X,*VARIANCE =*,F10.5,/,6X,*NUMGER OF NON-PDISTO6O
IGAUSSIAN EIGENVALUES =*,I2,/,6X,*EIGENVALUES ARE**,/, (12X,E15.8)) POISTG6I
12 FORNAT I1HO,5X,FSIGMA RATIO OF TURBULENCE MODEL =*,F10.5) POISTO62
C
C COPY EIGENYALLES TO WORKING ARRAY, CHECK SUM OF SQUARES
SE2=0.
DO 20 I=1,NEV
EVZ(I)=EV(I)***Z
20 SEZ=SE2+EYZII| POISTO68
IF ISE2.LE.SR2I GO TO 100 POISTOG9
IF ISE2.LT.SR241.051 GOTO 90 POISTO70
C
C SUM OF SQUARES IS TOO LARGE POISTO72
WRITE (6,30) SR2,SE2
PDIST063
PDIST064
PDISTC65
PDIST066
PDIST067
PDISTU71
30 FORPAT (1HO,5X,*-S-E-EFROR IN DATA, SUN OF SCUARED EVEI) MORE THANPDISTOT4
1 5 FEPCENT GREATER THAN SR2*,f,6X,*SR2 =*,E12.5,/,6X,*SUM OF EYIIIPDISTG75
2 SQUAPED =F,E12.51
PDIST076

```
```

 G0 TO 15 POISTO77
 GO T
POIST078
C SUM OF SQUARED EIGENVALUES EXCEEOS SYSTEM YARIANCE EY LESS THAN 5 PCNTPOISTOTG
90 SE2=SE2/SE2
DO c2 I=1,NEV
EVZ(I)=EV2(I)/SER
92 EV(I)=SQRT(EV2(II)
HRITE (6,94) SE2,(EV(I),EV2(I),I=1,NEY) PDISTOB4
POISTGBI
POISTO82
POIST083
HRITE (6,94) SE2,(EV(I),EV2(I),I=1,NEY) PDISTOB4
94 FORRAT (1HO,5X,*SUM OF EIGENVALUES SQUARED EXCEEDS VARIANCE BY A FPDISTO85
IACTOR OF*,F\&.5,f,6X,*EIGENYALUES WILL BE SCALED TO GIVE CORRECT VAPOISTO86
2RIANCE*,/,6X,*SCALED EIGENVALUES AND SQUARED EIGENYALUES ARE*,/, POISTO87
3(6X,2E15.73)
SER=SR2 .
C
C SCALE GAUSSIAN AND NON-GAUSSIAN VARIANCES ACCOROING TO SIGHA RATIO POISTU9I
C Of turgulfNCE mCDEL
100 RC=F**2/(1.4R**2)
RC=R**2/81**R**2) PERG(SR2-SE2)*RG POISTO93
EYG2=SR2/(1.+R**2)+SE2G
c evgr IS the variance of the gaussian portion of the system response
C INCLUDING CORRECTION FOR NEGLECTEO NON-GAUSSIAN EIGENYALUES
SC=1./(EVG2+SES2) S SE=SES2*SC \& SG=EVG2*SC PDIST099
WRITE (6,130) SE2,SR2,SES2,EVG2,SE,SG
130 FORMAT (1H0,5X,*SUH OF EIGENYALUES SQUARED =*,E15.7,/f,/,6X,
PDIST101
4*FOF VARIANCE OF*,E15.7,1,6X,*NON-GAUSSIAN VARIANCE =*,E15.7,/,5X,POIST102
2*GAUSSIAN VARIANCE INCLUDING CORRECTION FOR**/.6X,*NEGLECTED EIGENPDIST103
3VALLES =*,E15.7,/,/,6X,*FOR TOTAL VARIANCE OF UNITY*,/,6X,*NON-GAUPDIST104
4SSIAN VARIANCE =*,EE15.7,/,6X,*GAUSSIAN VARIANCE INCLUDING CORRECTIPDISTIOS
5ON FOR*, /,6X%*NEGLECTEO EIGENVALUES =*,E15.7% PDIST106
SC=SG*RC PDIST107
.SC=SC*RC
135 EV2(I)=EV2(I)*SC
MRITE (G,137) (EVZ(I),I=1,NEY)
PDIST108
POIST109
MSITE (6,137) (EV2II),I=1,NEY)
M, HRITE (6,137) (EV2II),I=1,NEY)
1SSIAN*,/,6X,*CONTRIBUTION TO UNIT VARIANCE:*,/,(6X,E15.7)) PDIST112
C GENERATE PESPCNSE CHARACTERISTIC FUNCTION
C GENERATE PESPCNSE CHARACTERISTIC FUNCTION (SIN \& SF=1./DX/2.**M(1) \& NPTS=2**(M(1)*1)
00 150 I=1,NPTS,2
F2=PI22*F**2 \$ CFR=1.
00 140 J=1,NEV
140 CFR=CFR/(1.+EV2(J)*F2)
GFR=SQRT(GFR) CFR=CFR*EXP{-EYG2*F2) POIST119
PHIRI)=CFR \& PHI(I+1)=0. PDIST120
150 F=F+DF
C
C TRANSFORM CHARACTERISTIC FUNCTION
CALL FFTRS(FHI,DF,OX,M,INV,S,IFS,IFER!
IFS=2
IF (IFER.EQ.0) GO TO 210
HRITE (6,200) IFER \$ STOP
PDIST112
PDIST1144
POIST115
POISTi16
PDIST117
POIST118
GFR=SQRT(GFR) CFR=CFR*EXP{-EYG2*F2) POIST119
PHIRI)=CFR \& PHI(I+1)=0. PDIST120
POIST121
PDIST122
POIST123
PDIST123
POIST125
<<<
200 FOPMAT (1HO,*----ERROR IN FFT, ERROR FLAG =*,I2,1,5X,*RESULTS INYAPOISTIZ8
1LID FOR THIS CASE*)
C
C INTERPOLATE DENSITY FUNCTION TO OBTAIN FINAL RESULTS
210 IF (PNCH) HFITE (7,219) TITEE
219 FORFAT (8A10)
219 FORHAT (BA10) TITLE
220 FOFFAT (1H1;5X,8A10)
WRITE (6.221)
221 FORHAT (1HO,5X,FNORMALIZED*,4X,*STOIZEO*, 4X,*DISTRIBUTION*,5X,
1*UNAORMALIZEO*, 3X,*NONSTOIZED*,/,7X,* YARIABLE*, 3X,*PROBA3ILITY*,
24X,*FUNCTIOA*,9X,*VARIAELE*,5X,*PROBABILITY**/, 7X,*X/SIGMA X**
POIST088
POIST088
C
POISTO90
PDISTu91
POISTO92
PDISTO93
POISTO94
PDIST095
PDIST096
C
POIST097
PDI STO98
PDIST099
PDIST100
130 FORH VARIANCE OF*,E15.7,%,6X,*NON-GAUSSIAN VARIANCE =*,E15,7,1,5X,POISTIO2
PDISTO77
C SUM OF SQUARED EIGENVALUES EXCEEOS SYSTEM VARIANCE EY LESS THAN 5 PCNTPDISTOT9
PDIST080
POIST089

$$
0
$$

 150 FH=F+DF
    ```

```

PDIST129
PDIST129
PDISTi30
210 IF (PNCM) HFITE T7, 19) TTTEE ANN FINAL RESULTS
PDIST131
PDIST132
POIST132
PDIST134
POIST135
POIST135
PDIST136
PDIST137
POIST138
POISTis9

```
```

 34X,*OENSITY*,27X,* X*,1[X,*DENSITY*,N POMST1&0
 OX1=0XFSRE & CD=.5 S X=0. $ X1=0. POISI141
 LINCNT=0 & N=INT(10./DX*-99)*1 S IF (N.GT.NPTS/4) N=NPTS/4 PDIST142
 00 300 I=1,N
 J=2*I-1 UPD=PD(J)/SF2
 WRITE (6,222) X,PD(J),CD,X1,UPD
 222 FORHAT (1H,7X,F6.3,4X,E1O.3,3X,E12.5,6X,E10.3,4X,E10.3)
IF (PNCH) HFITE (7,223) X,PD(J),CD,X1,UPD
223 FOPMAT (SE1E.8)
LINCNT=LINGNT+1
C LISTING PPOOUCEC AT 51 linES PER PAGE
IF (LINCNT.LT.51) GO TO 290 % IF (I.EQ.N) GO TO 15
WFITE (6.220) TITLE
HRITE (6,221)
HRITE (6,222) X,PD(J),CD,XI,UPD
LINCNT=1
290 IF (I-2) <91,292,293
291 CO=CD+(C1*PC(J+4)+C2*PD(J+2))*DX \& GO TO 294
292CD=CD+(C1*PC(J)+C2*PD(J-2))*DX \& GO TO 294
293CD=CD+(C1*PD(J-4)+C2*PD(J-2))*DX
294CD=CD*(C1*PC(J+6)+C2*PD(J+4)+C3* (PD(J)+FD(J+2));*DX
X=X+DX
300 X1= \1+0\times1
GO TO 15
400 STOP S ENO
POIST140
CX1＝OX＊SR2 \＆CD＝．5 \＆ $\mathrm{X}=0$ 。 \＆ $\mathrm{X} 1=0$ 。
PDIST142
PDIST143 PDIST144
PDISTI45
PDISTi46
PDIST147
POIST148
PDIST149
POIST150
POIST151
POIST152
POIST153
POIST154
PDIST155
PDIST 156
POIST157
PDIST15：
PDIST159
PDIST 160
PDIST161
PDIST162
PDIST163
400 STOP $\$$ ENO
PDIST164

```

PROGRAM RLEVXPINPUT，OUTPUT，PUNCH，TAPE5＝INPUT，TAPE6＝OUTPUT，TAPE7＝ 1PUNGH：

RLEVXOOI
RLEVX002
c
C PROGRAM TO COMPUTE LEVEL CROSSINGS／UNIT TIME OF LINEAR SYSTEM RESPONSERLEVXOO\＆ C TO NON－GAUSSIAN MODEL．CROSSINGSJDISTANCE CAN 日E OBTAINED BY DIVISIONRLEYXOOS
C by rean true aifspeed．
c
c input oata
C TITLE（BAIO）DESGRIPTIVE TITLE TO ACCOMPANY OUTPUT
C NPT（I2）NUMBER OF ABCISSAE POINTS AT WHICH EIGENFUNCTIONS ARE tabulated
C NRI（II）NUPBER OF EIGENSOLUTICNS DEFINING FIRST VARIABLE
C E（I），（X（J），EFP（J，I），EFG（J，I），J＝1，NPTI（45X，E2Q．11，（，（3E25．16））
EIGENVALUE，ABCISSAE POINTS，P EIGENFUNCTION，AND 0 EIGENFUNCTION
RESFECTIVELY AS PUNCHED BY GENERATING PROGRAM．REPEATED FOR
EACH OF THE NRI EIGENSOLUTIONS．（ \(I=1\) ，NRI）
S12（F10．5）TCTAL VARIANCE OF FIRST VARIABLE
NR2（I1）NUMPER OF EIGENSOLUTIONS DEFINING SECOND
C E（I），（X（J），EFP（J，I），EFQ（J，I），J＝1，NPT）（45X，E20．11），／，（3E25．14）） EIGENVALUE，ABCISSAE POINTS，F EIGENFUNCTION，AND Q EIGENFUNCTION RESPECTIVELY AS PUNCHED BY GENERATING PROGRAM．REPEATEO FOR
EACH OF THE NRZ SIGENSOLUTIONS（ \(I=1\), NR2
S22（F10．5）TCTAL VARIANCE OF SECOND VARIABLE
\(C R\)（FiO．5）SIGPA RATIO OF TURBULENCE MOOEL
C NRIHRRZ MUST BE－LE．B，OTHERWISE REDIMENSIONING IS REOUIRED．
C RESULTS ARE PUNCHED ON CARDS IF LOGICAL VARIABLE PNCH IS SET TRUE． c

RLEVX006
RLE VXOO 7
RLEVXOO 8
RLEVXOO 9
RLEVXO10
RLEVXII1
RLEVX012
RLEVXG13
RLEYXO14
RLEVX015
RLEVX016
RLEVX018
RLEVXO19
RLE VX020
REEYXO21
RLEVXO2 2
RLEVX023
RLEYX024
RLE YX025
RLEVXO26
fLEVXOZ 7
RLE YX 028
RLEVXOZ9
RLEVXO30
RLEVXU3i
RLE VX 032
RLEVXO33
RLEVXO34

\footnotetext{
COMRON／ARRAYS／E（8），EFP（45，6），EFQ（45，6），XA（45），G1（45），G2（45）， 1NPT，NPOLY，COEFA（8）
 1C（320）
DIMENSICN X（8192），S（1024），INY（1024），M（3），DF（2），DX（2），A（64，64）， 1TITLE（B）
}
```

 COMPLEX A,SUM & LOGICAL PNCH RLEVX035
 EQUIVALENCE (X(1),E(1),A(1,1))
 RLEVX036
 C PNCH SET .F. SUFPRESSES PUNCHED OUTPUT
DATA PNCH/.F.f
C IFS AND M ARE VARIABLES USED bY SUbROUTINE FFT
DATA IFS,M/1,6,6,0/
DATA TWCPI2/19.739208802/
C CII,C12,C13 ARE CONSTANTS USED IN NUMERICAL INTEGRATION OF JOINT
C PROBABILITY DENSITY FUNCTIOA
DATA C11,C12,C13/7.6388888889E-03,-6.4583333333E-02,5.5694444444E-RLEVX044
181/
C DXOS IS TAGULATION INCREMENT IIN STD. DEVIATIONS OF THE RESPONSEI
C NTAE IS NumbEG CF tabulated values to be computed
DATA DXOS,NTAB/,2,41/
C ISIZE IS OIMEASION CF MATRICIES USED BY INYERSION ROUTINE INVR
DATA ISIZE/B/
C
C READ INfut dATA
1 FORHAT (I2,/,II)
2 FORPAT 145X,E20.11,1,(3E25.14))
3 FORNAT (E20.11,%,I1)
4 FOKMAT (E20.11,f,F10.5)
5 FORFAT (BA10)
READ (5,5) IITLE
REAC (5,1) NFT,NR1
IF (NP1.LE.O) GOTO }
00 6 I=1,NR1
6 READ (5,2) E(I),(XA(J),EFP(J,I),EFQ\&S,I),J=1,NPT)
7 REAE (5,3) S12,NR2
J=NR1+1 \& NN=NR1+NR2 \& IF (NR2.LE.0) GO TO 9
DO \& I=J,NN
\& READ (5,2) E(I),(XA(J),EFP(J,I),EFQ(J,I),J=1,NPT)
9 READ (5,4) S22,R
C
C SCALE EIGENVALUES AND COMPUTE GAUSSIAN VARIANCES
CALL SCALEIE,NR1,NR2,S12,S22,S1G2,S2G2,R,TITLE)
C
C generate covafiance matricies
IF (NN.LE.O) GO TO }5
00 20 I=1,NN
G1(I,I)=1. \& C2(I,I)=1. s II=I*1
OO 20 J=II,NN
IF ((I-NR1)*(J-NR1)) 10,11,12
10 CALL INRPOT(Ci(I,J),I,J,I) \& Ci(J,I)=Ci(I,J)
CALL INFPOT(C2(I,J),I,J,-1) \& C2(J,I)=C2(I,J)
GO TO 20
11 IF (I.EG.AR1) GO TO 10
12C1(J,I)=0. \& C1(I,J)=0. \& C2(J,It=0. \& C2(I,J)=0.
20 contINUE
HRITE (6,21) TITLE
21 FORMAT (1H1,5X,*COVARIANCE MATRIX. FOR P VARIABLES*,/,6X,8A10)
0O 25 I=1,NN
25 WRITE (}6,30) (C1(I,J),J=1,NN
30 FORNAT (1H0,5X,10F11.6)
WRITE (6,31) TITLE
31 FORMAT (1HO,5X,*COVARIANCE MATRIX FOR Q VARIABLES*,/,6X,8A10)
DO 35 I=1,NN
35 HRITE (6,3!) (C2(I,J),J=1,NN)
C
c generate functicnal dependence matricies
36 IF (NR1.LE.0) GO TO 51
I=1
I=1
RLEVX037
RLEYX038
RLEVXO40
RLEVXu41
RLEYXO42
RLEVXC43
RLEVXO45
RLEVXO46
RLEVX047
RLEVXO48
RLEYXO49
RLEVXO50
RLEYXG51
RLEVX052
RLEVXO53
RLEVX054
RLEVX055
RLEVXO56
RLEVX0S7
RLEYX058
RLEEXO58
RLEVXO60
RLEVXU61
RLEVX062
RLEEXO63
RLEVX064
RLEYX065
RLEVX066
RLEVX066
RLEVX067
RLEVX068
RLE VX06 g
RLEVXC70
RLEVXü71
RLEYX072
RLEYX072
RLEVX074
RLEVX075
RLEYX076
RLEVX076
RLEVX077
RLEVX078
RLEVX078
RLEVX080
RLEVX080
RLEUX082
RLEVXO83
RLE YXO84
RLEVXO85
RLEVX086
RLEVXO87
RLEYXC88
RLEYXOBG
RLEVXO90
RLEVX091
RLEYX092
RLEVX093
RLEVX094
RLE VX095
RLEVX096
RLEVX097

```
```

 40 FORMAT (1HO,5X,*FUNGTIONAL DEPENDENCE MATRIX*,/,6X,8A10,/,6X,*VARIRLEVXOO8
 1ABLE NO.*,I2)
 00 50 I=1,NF1
 C3(I,I)=E(I) & C4(I,I)=0. & II=I+1
 045 J=I1,NN
 C3(I,J)=0. & C3(J,I)=0. & C4(I,J)=0. & C4{J,I)=0.
 45 CONTINUE
 50 WRITE (6,30) (C3(I,J),J=1,NR1)
 51 IF (NP2.LE.0) GO TO 56
 I=2 * MI=NR1+1
 HRITE (E,4O) TITLE,I
 OO 55 I=M1,AN
 C3(I,I)=0. & C4(I,I)=E(I) $ II=I+1
 DO 53 J=I1,AN
 C3(I,J)=0. & C3(J,II=0. & C4II,J)=0. $ C4IJ,I)=0.
 5 CONTINUE
 55 WRITE (6,30) (C4(I,J), J=M1,NN)
 IF (NR1.LE.C) GO TO 56 $ ERRD=0.
 DO E5 I=1,NF1
 DO 65 J=M1,AN
 65 ERRD=ERRD+C1(I,J)*C2(I,J)*C3(I,I)*C4(J,J)
 ERRC=ERRD/SGRT(S12*S22)
 WPITE (6,E6) ERRD
 RLEVX099
 RLEVX100
 RLEVX101
 RLEVX102
 RLEVX103
 RLEVX104
 RLE VX105
 RLEVX106
 RLEVX107
 RLEVX10 }
 RLEVX109
 RLEVX110
 RLEVX111
 RLEVX112
 RLEVX113
 RLE VX114
 RLEVX115
 RLEVX116
 RLEVX117
 RLEVX11:
 RLEVX119
 RLEYX120
 66 FORMAT I1+0,5X,*CORRELATION COEFFICIENT DF RESPONSE AND ITS FIRST RLEVXI21
 IDERIVATIVE =*,EIO.3,/,6X,*THIS COEFFIGIENT SHOULD BE MUCH LESS THARLEVXI22
 2N 1.0*)
 C
C GENERATE CHARACTERISTIC FUNCTION RLEVXI25

```

```

 WRITE (6,54) DETA,DETB RLEVX127
 54 FORKAT (1HJ,5X,*DETERMINANTS OF COVARIANCE MATRICIES*,/,5X,*DETA =RLEVXI28
 1*,E12.5,/,6x,*DETB =*,E12.5)
 57 DX(1)=.3*SOFT(S12) DX(2)=.3*SQRT(S22)
 M1=2**M(1) & M2=2**M(2)
 DF(1)=1./CX(1)/M1 & DF(2)=1./OX(2)/M2
 HRITE (6,102) DX,OF
 102 FORPAT (1HD,5X,*INCREMENTS:*,/,6X,*DX{1) =*,E14.7,5X,*DX{2) =*, RLEVX134
 1E14.7,/,6x,*DF(1) =*,E14.7,5X,*DF(2) =*,E14.7) R, RLEVX135
 DFDF=DF(1)*EF(2)
 S1G2=-S1GC*TWOPI2 & S2G2=-S2G2*THOPI2
 A(1,1)=CMPLX(1.,0.) & F1=DF(1) & F2=0.
 F11=FLOAT(1-M1)*DF(1)
 CO 20n I=2,N1
 CALL CF2(ANS,F1,F2) & ANS=ANS*EXP(S1G2*F1**2)
 CALL CF2(ANS1,F11,F2) $ ANS=ANS*ANS1*EXP(S1G2*F11**2)
 A(I,1)=CMPLX(ANS,0.) & F11=F11+DF(1)
 200 F1=F1+DF(1)
F1=0.0 \& F2=0F(2) \& F22=FLOAT(1-M2) FDF(2)
DO 300 J=2,N2
CALL CF2(ANS,F1,F2) \& ANS=ANS*EXPIS2G2*F2**2)
GALL CF2(ANS1,F1,F22) ANS=ANS+ANS1*EXP(S2G2*F22**2)
A(1,1)=CMFLX(ANS,0.) \& F22=F22*OF(2)
300 F2=F240F(2)
F11=FLOAT(H1)*OF(1) \& F1=0. \& M22=M2/2+1
DO 410 I=2,M1
F1=F1+DF(1) , F11=F{1-DF{1)
F2=0. \& F22=FLOAT(M2)*DF(2)
00 400 J=2,M22
F2=-F2+DF\21 \& CALL CF2(ANS,F1,F2)
ANS=ANS*EXP(S1G2*F1**2*S2G2*F2**23
F2=-F2 CALL CF2(ANS1,F11,F2)
ANS=ANS*ANS1*EXF(S1G2*F11**2+S2G2*F2**21
F22=-F22+[F(2) \& CALL CF2(ANS1,F1,F22)
RLEVX123
1(1)
RLEVX129
RLE VX130
RLEVX130
RLEVX131
RLEVX132
RLEVX133
RLEVX135
RLEVX136
RLEVX136
RLEVX137
RLEVX138
RLEVX139
RLEVX140
RLEVX140
RLEUX142
RLEVX143
RLEVX144
RLEVX144
RLEVX146
RLEVX146
RLEVX148
RLEVX149
RLEVX149
RLEVX150
RLE VX151
RLEVX152
RLEVX153
RLEVX154
RLEVX155
RLEVX156
RLEVX157
RLEVX158
RLE VX159
RLEYX160

```
```

 ANS=ANS*ANS1*EXP(S1G2*F1**2+S2G2*F22**2) RLEVX161
 F22=-F22 S CALL CF2(ANS1,F11,F22) RLEVX162
 ANS=ANS+ANS1*EXP{S1G2*F11**2+S2G2*F22**2} R&EVX163
 A(I,J)=CMPLX(ANS,O.)
 400 A(H1+2-I,M2+2-5)=CMPLX(ANS,0.)
 410 CONTINUE
 HRITE (6,61) (A(J,1),J=1,M1)
 HRITE (6,E2) (A\1,J),J=1,M2)
 HRITE (6,62) (A(J,J),J=1,H2)
 61 FORYAT IHH1,5X,*FIRST ROH, FIRST COLUMN, AND DIAGONAL OF JOINT CHARLEVXI7O
 1RICTERISTIC FUNCTION*,/, (5X,8E10.3): RLEVX171
 62 FORMAT (IH ,f,(5X,8EID.3))
 C
C FOURIER TRANSFOKM TO OBTAIN PROBABILITY DENSITY
0071 J=1,8192,2
71 X(J)=X(J)*OFOF
RLEVX176
CALL FFT(X,M,INV,S,IFS,IFER) \& IF (IFER.EQ.0) GO T0 73 RLEVX177
WRITE (6,72) IFER
72 FORHAT (1HO,5X,*FATAL ERROR IN FFTRS2, IFER =*,I5%
STOP
C
C INTEGRATE TC CBTAIN LEVEL CROSSINGS
73 C1X=C11*DX12) \& C2X=C12*DX(2) \& C3X=C13*DX(2)
HRITE (6,74) (A(J,1),J=1,M1)
WFITE (E,E2) (A{1,J),J=1,M2)
HRITE (6,E2} {A(J,J),J=1,M2)
RLEVX
<164
RLEYX165
RLEVX166
RLE YX167
RLEVX168
RLEVX169
RLEVX172
RLE\X173
RLEVX174
RLEYX175
RLEVX176
RLEVX178
RLEVX179
RLEYX180
INTEGRATE TC CBTAIN LEVEL CROSSINES

```
```

RLEVX182

```
```RLEVX183RLEVX184RLEVX185RLEVX186
```

74 FORPAT IIHI,5X,FFIRST ROH, FIRST COLUMN, AND DIAGONAL OF JOINT PRORLEVXI87

```
 1BABILITY CENSITY FUNCTION*,/, (5X, 3E10.3)% RLEVX188
 X2=0. % M21=M2/2+1 & M11=M1/2+3 RLEVX189
 00 RO J=1,Mट1 RLEVX190
 0075 I=1,M11 RLEVX191
 75 A(I,J)=A(I;J)* X2
 8& X2= X24DX(2) % M21=M2/2-2
 DO }86\textrm{I}=1,N1
 SUM=C1X*(-A(I,3)+A(I,4)-A(I,2)+A(I,5))+C2X*(A(I,1)-A(I,2)+A(I,3)+ RLEVX195
 1A(I,4))+C3XF(A(I,1)+2.*A(I,2)+A(I,3)) RLEVX196
 00 85 J=1,M21 RLEVX197
 85SUM=SUM+C1X*(A(I,J)+A(I,J+5\)+C2X*(A(I,J+1)*A(I,J+4))+C3X*(A(I,J+2RLEVX198
 1)+A(I,3+3)]
 X(I)=FLOAT(I-1)*DX(1) RLEVX200
 LEVX199
 86 S(I)=REAL (SUM)
 HRITE (6,87) (X(I),S(I),I=1,M11) RLEVX202
 RLEYX201
 87 FOQMAT (1H1,5X,*COMPUTED VALUES OF X AND N(X)*,/,(4X,2E15,7))
 RLEVX202
 RLEVX203
C
C INTERFOLATE TO FINO LEVEL CFOSSINGS AT SPECIFIEO VALUES OF X RLEVX2OS
 RLEVX204
 <1=0. $ <2=0. $ DIVISR=S(1)
 DX1=0\timesOS*SQRT(S12) $ M21=M2/2+1 & NINDEX=1
 WRITE (6,90) TITLE
 RLEYX206
 RLEVX207
 HRITE (6,90) TITLE RLEVX208
 90 FORMAT (1H1,36X,*LEVEL CROSSINGS*,/,5X,8A10,/,/,16X,*OIMENSIONAL RLEVX2O9
 1NON-OIMENSICNAL CROSSINGS PER CROSSINGS PER**,/,19X,*LEVE:*, 10X, RLEVXZ20
 1NON-OIMENSICNAL CROSSINGS PER CROSSINGS PER*,/,19X,*LEVE!*, 10X, RLEVXZ20
 INON-DIMENSICNAL CROSSINGS PEQ CROSSINGS PER*,/,19X,*LEVE:*,10X, RLEVXZ1O
 DO 105 I=1,NTAB
91 IF (X(NINOEX)-X1) 92,99,93
92 NINCEX=NIADEX+1 & IF (NINDEX-M21) 91,91,150
93 NINEEX=NINDEX-1 $ H=(X1-X(NINDEX):/0X(1)
 FI3=S(NINCEX) & FI4=S(NINDEX+1) & FIS=S(NINDEX+2)
 FIG=S\NINDEX+3) & IF (NINDEX-2) 94,96,97
94 IF (NINDEX-1) 150,95.96
95 FII=FI5 & FI2=FI4 & GOTO 98
 96 FII=FI3 S FI2=SI1) & GOTO 98
97 FI1=S (NINCEX-2) $ FI2=S(NINOEX-1)
98 FI=-FII*H*(H**2-1.)*(H-2.)*(H-3.)/120.+FI2*H*(H-1.)*(H**2-4.)* RLEVX223
 RLEVX212
RLEVX214
RLEVX215
RLEVX216
RLEVX217
RLEVX218
RLEVX219
RLEVX220
98 F1=-FI1*H*(H**2-1.)*(H-2,|*(H-3.)/120.+FT2*H*(H-1.)** (H**2-4-)*% RLEVX222
```

```
 1(H-3.)/24.-FI3*(H*E2-1.1)*(H**2-4.)*(H-3.)/12.+FI4*H*(H+1.)*(H**? RLEVX224
 2-4.)*(H-3.)/12.-FI5*H*(H**2-1.)*(H+2.)*(H-3.)/24.+FI5*H*(H**2-4.) RLEVX225
 3*!H**2-1.1/120. RLEVX226
 GO TO 100
 99 F1=S(NINOEX)
10G F2=Fi/DIVISF
 HRITE (6,120) X1, X2,F1,F2
IF (F1.LE.1.E-11) GO TO 150
 XI= X1+D X1
105 <2= 人2+0\times0S
120 FORMAT (1H,15X,E1O.3,5X,E1O.3,6X,E1O.3,5X,E1O.3)
150 STOF $ ENO
RLEVX227
RLEVX228
 RLE YX229
 RLEVX230
 RLE VX232
RLEYX233
RLEVX234
RLEVX235
```


130 FQRMAT (1HA,5X,FVARIANCE CHECK, VARIABLE NO.*,I2,/,6X,*CORRECT TOTSCALEO48 1 AL VARIANCE $\mathrm{F}^{*}, \mathrm{E} 12.5, /, 6 \mathrm{X}, *$ SUM CF SCALED EIGENVACUES SQUAREO $=*$, EISCALEO. 9 $22.5, /, 6 \mathrm{X}$; ${ }^{2}$ GAUSSIAN VARIANCE $=*, E 12.5, /, 6 \mathrm{X}, *$ TOTAL VARIANCE $=*, E 12.5 S C A L E 050$ 33 SE2=0. SCALEG51
SCALEN52 scaleg51 DO $135 \mathrm{I}=\mathrm{NO}, \mathrm{N}$ WRITE $(6,130) \mathrm{I}, \mathrm{S} 22, S E 2, S 2 G 2, S$ SCALEO55

## APPENDIX B

## TABULATED FUNCTIONS

The purpose of this appendix is to present tabulated values of certain esults which were presented in graphic form within the main body of this report. Specific results to be presented are:

Table B1 - standardized probability densities of the non-gaussian turbulence model for various values of the probability distribution parameter $R$

Table B2 - probability distribution functions of the non-gaussian turbulence model for various values of the probability distribution parameter $R$

Table B3 - universal level crossing frequencies of the non-gaussian turbulence model longitudinal component for various values of the probability distribution parameter $R$

Table B4 - universal level crossing frequencies of the non-gaussian turbulence model vertical and lateral components for various values of the probability distribution parameter $R$.

Table Bl,--Standardized probability densities of the non-gaussian turbulence model for various values of the probability distribution parameter $R$. (Graphical presentation of most of those data is given in figure 15 on page 61 of this report,)

$$
\hat{p}(x \mid R)
$$

	$R$					
$x$	0.0	0.5	0.75	1.0	1.33	2.0
0.0	$3.989 \mathrm{E}-01$	$4.073 \mathrm{E}-01$	$4.234 \mathrm{E}-01$	$4.455 \mathrm{E}-01$	$4.792 \mathrm{E}-01$	$5.478 \mathrm{E}-01$
.2	$3.910 \mathrm{E}-01$	$3.986 \mathrm{E}-01$	$4.132 \mathrm{E}-01$	$4.330 \mathrm{E}-01$	$4.623 \mathrm{E}-01$	$5.182 \mathrm{E}-07$
.4	$3.683 \mathrm{E}-01$	$3.738 \mathrm{E}-01$	$3.843 \mathrm{E}-01$	$3.976 \mathrm{E}-01$	$4.156 \mathrm{E}-01$	$4.409 \mathrm{E}-01$
.6	$3.332 \mathrm{E}-01$	$3.359 \mathrm{E}-01$	$3.407 \mathrm{E}-07$	$3.457 \mathrm{E}-01$	$3.496 \mathrm{E}-01$	$3.434 \mathrm{E}-07$
.8	$2.897 \mathrm{E}-01$	$2.894 \mathrm{E}-01$	$2.884 \mathrm{E}-01$	$2.854 \mathrm{E}-01$	$2.774 \mathrm{E}-01$	$2.514 \mathrm{E}-01$
1.0	$2.420 \mathrm{E}-01$	$2.391 \mathrm{E}-01$	$2.335 \mathrm{E}-01$	$2.248 \mathrm{E}-01$	$2.096 \mathrm{E}-01$	$1.786 \mathrm{E}-01$
1.2	$1.942 \mathrm{E}-01$	$1.898 \mathrm{E}-01$	$1.814 \mathrm{E}-01$	$1.699 \mathrm{E}-01$	$1.530 \mathrm{E}-01$	$1.266 \mathrm{E}-01$
1.4	$1.497 \mathrm{E}-01$	$1.447 \mathrm{E}-01$	$1.356 \mathrm{E}-01$	$1.241 \mathrm{E}-01$	$1.093 \mathrm{E}-01$	$9.100 \mathrm{E}-02$
1.6	$1.109 \mathrm{E}-01$	$1.063 \mathrm{E}-01$	$9.802 \mathrm{E}-02$	$8.838 \mathrm{E}-02$	$7.748 \mathrm{E}-02$	$6.662 \mathrm{E}-02$
1.8	$7.895 \mathrm{E}-02$	$7.527 \mathrm{E}-02$	$6.885 \mathrm{E}-02$	$6.194 \mathrm{E}-02$	$5.510 \mathrm{E}-02$	$4.953 \mathrm{E}-02$
2.0	$5.399 \mathrm{E}-02$	$5.153 \mathrm{E}-02$	$4.728 \mathrm{E}-02$	$4.309 \mathrm{E}-02$	$3.952 \mathrm{E}-02$	$3.724 \mathrm{E}-02$
2.2	$3.547 \mathrm{E}-02$	$3.420 \mathrm{E}-02$	$3.195 \mathrm{E}-02$	$2.997 \mathrm{E}-02$	$2.865 \mathrm{E}-02$	$2.822 \mathrm{E}-02$
2.4	$2.239 \mathrm{E}-02$	$2.208 \mathrm{E}-02$	$2.138 \mathrm{E}-02$	$2.094 \mathrm{E}-02$	$2.098 \mathrm{E}-02$	$2.151 \mathrm{E}-02$
2.6	$1.358 \mathrm{E}-02$	$1.392 \mathrm{E}-02$	$1.425 \mathrm{E}-02$	$1.474 \mathrm{E}-02$	$1.549 \mathrm{E}-02$	$1.648 \mathrm{E}-02$
2.8	$7.915 \mathrm{E}-03$	$8.603 \mathrm{E}-03$	$9.511 \mathrm{E}-03$	$1.046 \mathrm{E}-02$	$1.150 \mathrm{E}-02$	$1.266 \mathrm{E}-02$
3.0	$4.432 \mathrm{E}-03$	$5.240 \mathrm{E}-03$	$6.373 \mathrm{E}-03$	$7.476 \mathrm{E}-03$	$8.585 \mathrm{E}-03$	$9.764 \mathrm{E}-03$
3.2	$2.384 \mathrm{E}-03$	$3.160 \mathrm{E}-03$	$4.295 \mathrm{E}-03$	$5.375 \mathrm{E}-03$	$6.432 \mathrm{E}-03$	$7.548 \mathrm{E}-03$
3.4	$1.232 \mathrm{E}-03$	$1.896 \mathrm{E}-03$	$2.912 \mathrm{E}-03$	$3.884 \mathrm{E}-03$	$4.834 \mathrm{E}-03$	$5.848 \mathrm{E}-03$
3.6	$6.119 \mathrm{E}-04$	$1.135 \mathrm{E}-03$	$1.987 \mathrm{E}-03$	$2.817 \mathrm{E}-03$	$3.643 \mathrm{E}-03$	$4.539 \mathrm{E}-03$
3.8	$2.919 \mathrm{E}-04$	$6.812 \mathrm{E}-04$	$1.36 \mathrm{E}-03$	$2.050 \mathrm{E}-03$	$2.751 \mathrm{E}-03$	$3.530 \mathrm{E}-03$
4.0	$1.338 \mathrm{E}-04$	$4.103 \mathrm{E}-04$	$9.382 \mathrm{E}-04$	$1.495 \mathrm{E}-03$	$2.081 \mathrm{E}-03$	$2.749 \mathrm{E}-03$

Table B2.--Probability distribution functions of the non-gaussian
turbulence model for various values of the probability distribution parameter $R$.
(Graphical presentation of most of these data is given
in figure 15 on page 61 of this report.)

$$
P(-\sigma x \mid R)^{\dagger}
$$

$x$	$R$					
	0.0	0.5	0.75	1.0	1.33	2.0
0.0	5.000E-01	5.000E-01	5.000E-01	5.000E-01	5.000E-01	5.000E-01
. 2	4.207E-01	4.191E-01	4.160E-01	4.117E-01	4.053E-01	3.924E-01
. 4	3.446E-01	3.416E-01	3.360E-01	3.284E-01	3.171E-01	2.959E-01
. 6	2.743E-01	2.705E-01	2.633E-01	2.538E-01	$2.404 \mathrm{E}-01$	$2.174 \mathrm{E}-01$
. 8	$2.119 E_{-01}$	2.078E-01	2.003E-01	1.906E-01	$1.776 \mathrm{E}-01$	1.582E-01
1.0	1.587E-01	1.550E-01	1.481E-01	1.396E-01	1.291E 07	1.156F-01
1.2	1.151E-01	1.121E-01	1.067E-01	1.003E-01	9.305E-02	8.537E-02
1.4	8,076E-02	7.878E-02	7.511E-02	7.108E-02	6.704E-02	$6.384 \mathrm{E}-02$
1.6	5.480E-02	5.380E-02	5.189E-02	5.000E-02	4.854E-02	4.823E-02
1.8	3.593E-02	3.578E-02	3.535E-02	3.511E-02	3.542E-02	3.671E-02
2.0	2.275E-02	2.322E-02	2.385E-02	2.472E-02	2.605E-02	2.810E-02
2.2	1.390E-02	7.474E-02	1.602E-02	1.750E-02	1.930E-02	$2.160 \mathrm{E}-02$
2.4	8.198E-03	9.188E-03	1.075E-02	1.246E-02	$1.438 \mathrm{E}-02$	1.666E-02
2.6	4.661E-03	5.643E-03	7.237E-03	8.931E-03	1.076E-02	1.288E-02
2.8	2.555E-03	3.429E-03	4.892E-03	6.436E-03	8.085E-03	9.987E-03
3.0	1.350E-03	2.069E-03	3.324E-03	4.659E-03	6.091E-03	7.757E-03
3.2	6.871E-04	1.245E-03	2.271E-03	3.386E-03	4.599E-03	6.036E-03
3.4	3.369E-04	7.491E-04	1.559E-03	2.468E-03	3.480E-03	4.704E-03
3.6	1.591E-04	4.517E-04	1.075E-03	1.803E-03	2.638E-03	3.671E-03
3.8	7.235E-05	2.735E-04	7.433E-04	1.321E-03	2.003E-03	2.868E-03
4.0	3.167E-05	1.663E-04	5.156E-04	9.687E-04	1.523E-03	2.243E-03
4.2	1.335E-05	1.016E-04	3.585E-04	7.117E-04	1.159E-03	1.756E-03
4.4	5.412E-06	6.230E-05	2.498E-04	5.236E-04	8.830E-04	1.376E-03
4.6	2.112E-06	3.840E-05	1.744E-04	3.857E-04	6.735E-04	1.079E-03
4.8	7.933E-07	2.370E-05	1.219E-04	2.844E-04	$5.141 \mathrm{E}-04$	8.472E-04
5.0	2.867E-07	1.470E-05	8.530E-05	2.100E-04	3.928E-04	$6.655 \mathrm{E}-04$

[^1]Table B3.--Universal level crossing frequencies of the non-gaussian turbulence model longitudinal component for various values
of the probability distribution parameter $R$.
Graphical presentation of these data is given
in figure 16 on page 74 of this report.)

$$
\hat{N}_{u}(x \mid R)
$$

$x$	$R$					
	0.0	0.5	0.75	1.0	1.33	2.0
0.0	1.591E-01	1.597E-01	1.606E-01	1.618E-01	1.637E-01	1.674E-01
. 2	1.506E-01	1.563E-01	1.569E-01	1.576E-01	1.587E-01	1.603E-01
. 4	1.469E-01	1.468E-01	1.465E-01	1.459E-01	1.448E-01	1.417E-01
. 6	1.329E-01	1.322E-01	1.307E-01	1.285E-01	1.249E-01	1.172E-01
. 8	1.156E-01	1.142E-01	1.116E-01	$1.081 \mathrm{E}-01$	1.027E-01	9.300E-02
1.0	9.653E-02	9.481E-02	9.152E-02	8.721E-02	8.126E-02	7.221E-02
1.2	7.747E-02	7.564E-02	7.221E-02	6.796E-02	6.262E-02	5.595E-02
1.4	5.973E-02	5.809E-02	5.506E-02	5.153E-02	4.755E-02	4.355E-02
1.6	4.425E-02	4.301E-02	4.075E-02	3.831E-02	3.591E-02	3.415E-02
1.8	3.150E-02	3.077E-02	2.944E-02	2.815E-02	2.717E-02	2.691E-02
2.0	$2.154 \mathrm{E}-02$	2.133E-02	2.088E-02	2.057E-02	$2.063 \mathrm{E}-02$	2.128E-02
2.2	1.415E-02	1.436E-02	1.462E-02	1.503E-02	1.575E-02	1.687E-02
2.4	8.934E-03	9.432E-03	1.017E-02	1.102E-02	1.207E-02	1.339E-02
2.6	5.417E-03	6.063E-03	7.051E-03	8.111E-03	9.281E-03	1.064E-02
2.8	3.157E-03	3.833E-03	4.896E-03	5.995E-03	7.154E-03	8.465E-03
3.0	1.768E-03	2.395E-03	3.409E-03	4.446E-03	5.524E-03	6.738E-03
3.2	9.508E-04	1.484E-03	2.383E-03	3.307E-03	4.271E-03	5.367E-03
3.4	4.916E-04	9.164E-04	1.672E-03	2.465E-03	3.306E-03	4.276E-03
3.6	$2.441 \mathrm{E}-04$	5.654E-04	1.177E-03	1.841E-03	2.560E-03	3.409E-03
3.8	1.166E-04	3.496E-04	8.310E-04	1.376E-03	1.984E-03	2.718E-03
4.0	5.354E-05	2.168E-04	5.880E-04	1.030E-03	1.539E-03	2.168E-03
4.2	2.351E-05	$1.348 \mathrm{E}-04$	4.167E-04	7.714E-04	1.194E-03	1.730E-03
4.4	1.004E-05	8.425E-05	2.959E-04	5.782E-04	9.265E-04	1.380E-03
4.6	4.090E-06	5.278E-05	2.102E-04	4.336E-04	7.192E-04	1.102E-03
4.8	1.580E-06	3.315E-05	1.495E-04	3.253E-04	5.585E-04	8.793E-04
5.0	6.109E-07	2.089E-05	1.064E-04	2.442E-04	4.338E-04	7.020E-04
5.2	2.206E-07	1.318E-05	$7.581 \mathrm{E}-05$	1.833E-04	3.370E-04	5 605E-04
5.4	7.410E-08	8.328E-06	5.402E-05	1.377E-04	2.619E-04	4.476E-04
5.6	2.668E-08	5.274E-06	3.852E-05	1.034E-04	2.035E-04	3.574E-04
5.8	8.484E-09	3.341E-06	2.748E-05	7.773E-05	1.582E-04	2.855E-04
6.0	2.424E-09	2.117E-06	1.960E-05	5.842E-05	1.230E-04	2.281E-04
6.2	8.545E-10	1.344E-06	1.399E-05	4.392E-05	9.563E-05	1.822E-04
6.4	2.359E-10	8.534E-07	9.990E-06	3.302E-05	7.436E-05	1.456E-04
6.6	5.528E-11	5.419E-07	7.134E-06	2.483E-05	5.784E-05	1.163E-04
6.8	2.059E-11	3.446E-07	5.096E-06	1.868E-05	4.500E-05	9.301E-05
7.0	4.792E-12	2.191E-07	$3.641 \mathrm{E}-06$	1.405E-05	3.502E-05	$7.439 \mathrm{E}-05$

Table B4.--Universal level crossing frequencies of the non-gaussian turbulence model vertical and lateral components for various values of the probability parameter $R$.
(Graphical presentation of these data is given in figure 17
on page 80 of this report.)

$$
\hat{N}_{w}(x \mid R), \hat{N}_{v}(x \mid R)
$$

$x$	0.0	0.5	0.75	1.0	:. 33	2.0
0.0	1.949E-01	1.955E-01	1.965E-01	1.979E-01	2.000E-01	2.042E-01
. 2	1.911E-07	1.914E-01	1.920E-01	1.928E-01	1.938E-01	1.954E-07
. 4	1.799E-07	1.797E-01	1.792E-01	1.784E-01	1.768E-01	1.728E-01
. 6	1.628E-01	1.618E-01	1.599E-01	1.571E-01	1.525E-01	1.429E-01
. 8	$1.415 \mathrm{E}-01$	1.399E-01	1.366E-01	$1.321 \mathrm{E}-01$	$1.254 \mathrm{E}-01$	1.134E-01
1.0	1.182E-01	1.161E-01	1.120E-01	1.066E-01	9.924E-02	8.806E-02
1.2	9.488E-02	9.260E-02	8.834E-01	8.308E-02	7.647E-02	$6.825 \mathrm{E}-02$
1.4	7.316E-02	7.112E-02	6.736E-02	6.299E-02	5.807E-02	5.313E-02
1.6	5.420E-02	5.266E-02	4.985E-02	4.682E-02	4.386E-02	4.167E-02
1.8	3.857E-02	3.767E-02	3.601E-02	3.440E-02	3.318E-02	3.284E-02
2.0	2.638E-02	2.611E-02	2.554E-02	2.514E-02	2.520E-02	2.598E-02
2.2	1.733E-02	1.758E-02	1.788E-02	1.838E-02	1.923E-02	2.059E-02
2.4	1.094E-02	1.155E-02	1.244E-02	1.347E-02	4.474E-02	1.635E-02
2.6	6.635E-03	7.421E-03	8.624E-03	9.914E-03	1.134E-02	1.300E-02
2.8	3.866E-03	4.692E-03	5.988E-03	7.328E-03	8.742E-03	1.034E-02
3.0	2.165E-03	2.931E-03	4.170E-03	5.435E-03	6.751E-03	8.231E-03
3.2	1.164E-03	1.816E-03	2.914E-03	4.043E-03	5.220E-03	6.556E-03
3.4	6.021E-04	1.122E-03	2.045E-03	3.074E-03	4.040E-03	$5.225 \mathrm{E}-03$
3.6	2.990E-04	6.920E-04	1.439E-03	2.251E-03	$3.130 \mathrm{E}-03$	$4.165 \mathrm{E}-03$
3.8	1.429E-04	4.279E-04	1.016E-03	1.683E-03	2.426E-03	3.322E-03
4.0	6.557E-05	2.653E-04	7.192E-04	1.259E-03	1.881E-03	2.650E-03
4.2	2.880E-05	1.650E-04	5.098E-04	9.434E-04	1.459E-03	$2.114 \mathrm{E}-03$
4.4	1.229E-05	1.031E-04	3.619E-04	7.071E-04	1.133E-03	1.687E-03
4.6	5.009E-06	6.460E-05	2.572E-04	5.303E-04	8.794E-04	1.347E-03
4.8	1.935E-06	4.057E-05	1.829E-04	3.978E-04	6.829E-04	$1.075 \mathrm{E}-03$
5.0	7.482E-07	2.557E-05	1.302E-04	2.986E-04	5.304E-04	8.582E-04
5.2	2.702E-07	1.614E-05	9.275E-05	2, 242E-04	4.121E-04	6.852E-04
5.4	9.075E-08	1.019E-05	6.610E-05	1.684E-04	3.202E-04	5.472E-04
5.6	3.267E-08	6.455E-06	4.713E-05	1.265E-04	2.489E-04	4.370E-04
5.8	1.039E-08	4.089E-06	3.362E-05	9.508E-05	1.935E-04	3.491E-04
6.0	2.968E-09	$2.591 \mathrm{E}-06$	2.399E-05	7.146E-05	1.504E-04	2.789E-04
6.2	1.047E-09	1.645E-06	1.712E-05	5.373E-05	1.170E-04	$2.228 \mathrm{E}-04$
6.4	2.890E-10	1.044E-06	1.222E-05	4.040E-05	9.095E-05	1.780E-04
6.6	6.774E-11	6.633E-06	8.729E-06	3.038E-05	7.074E-05	1.423E-04
6.8	$2.526 \mathrm{E}-11$	4.218E-07	6.236E-06	2.285E-05	5.504E-05	1.137E-04
7.0	5.911E-12	2.682E-07	4.455E-06	1.719E-05	4.283E-05	$9.098 \mathrm{E}-05$

*U.S. GOVERNMENT PRINIING OFFICE: 1976 - 635-275/63


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]:    $\dagger \quad P(\sigma x)=1-P(-\sigma x)$

