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INTRODUCTION

Analytical Mechanics Associates, Inc. , under contract to the L^+ndon B.

Johnso^^. Space Center, acted in the .capacity of consultants in the areas of orbit

cleterna.inatian, optimization techniques and trajectory design for manned space

flights, In this capacity, several reports were generated and. are included iu the

text of this final report.

A brief description. of each report is included here.

{]..} ' 	 Multi-Spectral_ Scanners

F	 This report .contains a recoinrrzended method applying optimization techniques
i
^	 - fox estimating the most lil^ely source stimulus for a given sequence of multi-spectral
t

signals obtained from a flight scanner passing over an area. The report contains well

lmown statistical dzscximination. techniques for estimating and refining information
E

from multi-spectral scanners.

{2)	 Non. Singular Earth Gravity_ Acceleration far S ace Shuttl^^

This report contai^as a computer xautine for computing tine earth gravity accelera-

^ion designed for space borne computers. The method i.s both tune anal computer care

efficient;

{3}	 Brag Acceleration as a Navigation Aid

This xepart develops a technique for obtaining a more accurate estimate of the

vehicle state during reentry blackout from- a drag acceleration nleasurexnent by in-

eluding an adaptive atmospheric teuxpexa^Etrre lapse. rate as an additia^aal model pars--

meter,

(^}	 RoIX 3Ytoditlated Lifting Entry Optimization

This report develops the optimal technique far aroll--modulated lifting reentry.

Thus, it p^o^ricTes valuable insight for obtai^aing pzactical reentry guidarLe Laws using

roll madu].ation,

-^:-

i
A
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(5) IVlinimum ^axianee Linear EsEirnatox for Non--Linear Measuxetnents

Tl^is report derives the minimum variance estimator for modifying the Kalman

filter using range--rate z^a.easure^nex^.ts d^.tring highly non--linear flight regi^,.eso

(6) ApproKimaie Matrix Inverses

This report derives a rapid uzetltod for obtaining an approximate ^natxi.^ in-^

verse for use in flight computers when a full inverse is too tixo.e consuming and not

numerically coxx^pelling,

(7) A ^tariable-Metric Algorithm Employing Linear and Quadratic Penalties

This report develops a variable metric optimization algorithm far accelerated

search fox optixn.ization. problems with linear and non--linear constraints,

3
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-	 AN APPROACH TO VIEWrNG Q^'

"	 MULTI-SPECTRAL, SCAI'dI^ER DATA
--

Consider the problem of presenting multi-spectral data to a viewer via a

cathode-ray Tube, say a cortventional TV or, perhaps, a color TV. Spectral dis-

	

.	 criminatian is to be used i.n sflane way to aid distinction between objects of main

interest (targets) and other objects (background}. E^tp^.oitatian o^ the hum.au^s

pattern-recobnitian capability is, of course, the ^naixz attraction of the vie^c^iing ap-

proaeh, Preprocessing of the data as well. as the data for graund^Eruth t^aots is

`'	 assuzn.ed on the basis at purely spectral discr^sa.i^ati:a^i coxi^.putations, from which

at least approximate models of target and background_ spectra and probability

density distributions axe available.

With µx , -- - -, µn the intensities of signal in the n measuremznt fre-
.	 ,^

quency bands and the praba]^ility densities of target and background denoted.

fT^ ^^. , - - - , µn) and ^(µ^ , -- -- -- , µn ) , as per Ref. 1., the ratio of the ^o	 ^

fT
^ _ ^

B

is the criterion-often employed: for purely spectral discria3.in.ation. Thus, if _ .L? C ,

fhe sample is interpreted as a target signal. The threshaid C is set to admit a

specified percentage of known targets. The . approach contemplated is pxepracessiaa,

erha s a roxi^.ate to obtain inadels for f a^.d f^ .^
P	 P PP	 ^	 T	

including nu3n.er%cal values

of means ,and cavariances of camponants, then evaluation of the 1%kelihood rati© ^.

for each data sarnp^e and use of it as a sig^a3. fox a display' optiozi,

!^
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Mean and covariance far the target probability density distribution are com-

puted from. ground truth data, anal in many cases a Gaussian representation will

suffice. The background sarnetiries maybe approximated by a Gaussian distribu-

tion, but more cona.monly will be#.^:er by taken as the sum of t^vo or three br several

such, each term. representing some prominent ingredient. To get means and ca-

variances .tor the bacl^;ratuad, the total signal must be processed and those parts

clearly target contribution screened out by a coarse criterion. -such as mean ^ ^ G

'^V'ith this deletion, the mean. and covariance of the remai^ider can. be computed and

the distribution represented as a sum of Gaussian contributions.

Feeding the likelihood ratio to a video display would light up the target arEas

and leave others dark. if there are two or three targets, a color display could be

used. Far the purpose of estimating the 1zkelihaod ratio for a particular target, the

other targets are treated as corrlponents of the background. The display should, of

course, also function normslly, with choice of displaying the picture in any of the

bandwidths an option, or perhaps there should be a second display for sixntiltaneous

viewing of xaw data. In this fashion, the likelihood ratio would not ire used far classi-

fication according to a black-or-white threshold criterion, but would furnish shades

^ grey (ar green) for display and the viewer, thus assisted, would da the classifging.

lE is difficult to anticipate whether the approach sketched here might find its. best ap-

plication in preliminary editin g of z^r!assive amounts of data, perhaps using off-the-

shelf density models from previous reductions, ar whether it might instead excel for

intensive efforts on infrequent difficult cases.

REFE=^E^TCE

1.	 Legault, R.E.. ; ^rMultispectral Remote Sensin^,^ T lecture Hates, University

of Michigan., 1968:

FIJF^	 8-^ 2
Analytical Mechanics Associates, ^.c,
5a Jexich Turnpike
Jericho, ew York 1.753
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INTRODUCTION

The Shut^le computer xequires a nonsingular gra^rity acceleration routine

for polar orbits. The fol3.o^ring formL^.ation, based on RefErence ^., is carried

out in. detail for an Earth mode3. cozisistir^ of ^ 2 , d^ , ^^ , C2^ , and S2^ .

1

{

REFERENCE	 - i



I	 I__	 l	 I	 I	 i	 I
1

t

EQu^T^o^s

T^i.e ^:onsir3^tt7.ar po^eti-^^al in ^^.r^h-^^Yecl cooxc^ina^es is bive^ b^^





1TG T̂SINGULA.R E^.T^I OBL,^I.TEN^$S ROUTINE
r	 - -	 -	 -	 -

OBLAT(P., ACC)

DRI^ENSIO^ R(3), .E1CC(3)

CO^^i'IO?F	 E1^IIl, a, ^'^, ^;, S4, C^2, S`^2

COGENT	 EiVIU" - centxa7. xn^:ss c©e^icie^.t

CO^'l.+i^IENT	 a	 = Earsh xQc^us

R,2 =	 R (1:) ^R(1) + R(2} ^R(?} + R(3} ^=R(3)

^. ^	 SQRT(R2)

F^T:^^V =	 ^.. p/R

B a hRI^^

^i3 'n	

^

—	 B ^B^

B^ —	 ^YT3	
:;

S -	 R(1) =^P^I^V
a

`	 T =	 R(2} ^ RINV

TL2 -	 UxU._

U3 —	 U x U2

i	 ^	 U^ ^	 ^ ^ U3	
-	 ^

.^^x
^.

=	 ^. o * ^r -.	 4
-'.._.	 .'

..
-	 -	 a

y

i

,_

;

_;

^^ ^



A^^ ^ (35. o x U3 — 15. o ^^ U} /2. a

AU	 — — B2 a: J2 :^ A,2I -^ B3 y. ^'3 r A3:1 _ B4 ^ J^ ^ A4^.

AR	 -^ 3.0*L'2^J2xA2 ^-^.a,=B3^^^^A3 -H5.o^B^^J4xA^

-	 AR — AR -- S * A5 — T x AT — U ^ AU

ACC(.} = AR ^: S + AS ^ RZNV

ACC(3) = AR :FU :- AU >:-Ri^

BND

iI_ 5

,^
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^.^

,^^
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NOTATXON

p	 atmospheric pressure

p	 atmospheric mass density

T	 atnzaspheric E^mperatuxe (degrees I^olvin}

m u mean. molecular weight

q	 universal gas constant

h	 altitude

R	 vehicle position vector

R.	 vehicle velocity vector

VR	vehicle velocity vector relative to the atmosphere

g	 acceleration of gravity (assumed constant i.n the atmosphere)

L^^T	 delta velocity readout vector of the accelerometers

dt	 accelerometer readout count ti3ne interval

A	 effective vehicle area far drag

m.	 vehicle mass

W	 Earth angular rotation rate

M	 Mach number

c	 speed flf sound in atmosphere

rE	mean Earth radius

e	 eccentricity



geodetic.latitucle

z	 polar cormponent o^ vehicle position vector

y	 ^^atio of specific heats

^	 ^a:ag^itucle of radius vecto^c

v^	 3nagnitude of relative vehicle veloci^ 	 '

-_

i
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II^TIfQDUCTSON

The drag acceleration is pxesently beini; considered as an observation type

for navigation as a substitute for an altir^ieter reading during radio blac^:aut in re--

entry. The measEtrement is sorne^vhat degraded i.n the event the atmospheric

density or the aerodynamic drag characteristics became uncertain. This xepa^.^t

resolves the density variabi3:ity by using a model of the atrnaspheric density from.

80 1^. to 32 km in the form of a layered atmosphere characterized by a sequence

of altitude intervals with. x iece-wise constant ternperatuxe lapse rates. The intEnt

is to rise this parametexizai:ion to enable the not*iga^tion filter to det^:rmin.e thy:

vehicle state as well as the atxnasplieric density variation. Tn. this manner, a

xaore accurate determination of the state and covariance crass-correlation tivill

exist at blacl^out termination when more effective observations can again be made.
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ATi^^IOSP^IERIC MODELS

Below X00 kin , the EarthT s atmosphere seems to obey the rer£eet gas

Iaw far a cnn.stant mean. mnlec^.ar weighty.

my p
A ^ qT

where

m
w =constant
q

Under the assumption of a temperature variation which is piece-wise ^.inear with

alti^de, we have

h^^hsh1

'	 Since the equilibrium pressure variation is given by

dp = -^ ^ p
dh

i

the density between h^ and h2 is given by

x

{^.)

{^}

{^)

{^}

:^	 ^^

Since the equi.libriura atrr^nsphere experiences temperature gradient re-

versals, them: e^-ist alti#.iz

temperature persists. Tn



i

T(b.^} = T = T(h2}
^5}

A = A ^h^} e

The x.962 ^T. S. Standard Atm.osphexe ^'i^.ef. ^.) lists .the follotiving nonzins.^.

values of-the temperature .apse rates

TABLE I

Altitude Tes^zperature Lapse Rate Density
km oKelvin flKelyin/I^n ^g/m3

32 225.65 1.3225 x^.0
2

2.S
3

47 2'7 f}. 65 1.4275 ^1U
0

4
52 275. S5 7.5943 X10

-2.0
4

81 252. 65 2. 5109 ^x4
-4. Q 5

79 1$0. B5 2.Oa1 X10

lTsi_ng the above four-layer model, it is possible to construct an error model far

detasity variations and iequire that the filter solve for the paraax^eters during the

descent blackout.

^	 TlI-3
^,^^ .. _
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While the representation of the observation appeaxs to provide- the abzli^y to

estimate both position and velocity, the uncertainty in modelling the aerodyna^n.ic

coefficient C^ as a fiznetian of Msch number and-angle of attack make this ap-

proach undesirable. We will compute the quantity ^ vR C^ m and produce the

pseudo-obsersration of density

^ ^R 2 m
A = -r__^__._

v^^.t ^^
(`^}

From the I^.owledge of the vehicle state, eve compute

VR = R - S^ x R

vR W ^ R̂ , ^R}s

S^ -- k w	 (^arth1 s angular rotation vector}

cD = ^^^ , o!) tdxa^r coafficiant as fimatis^n of

vR
Macyi number of angle o^ attack}

M - ^--	 .
c

^
	 - ^

q	 -^:
y nz Tlh^.l

W

T(h} f T(^^} ^ T'^hx}(h-h^}
1

Â  .

h	 cx -^ cos ^' ^ v ^'	 Ogle of attack}
i	 R

i

r̂
	

_
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Follo^svin.g the previous section, ^cve x^aodel the density as a fiu^.ction o^ the

geodetic ^.ltitude, h. The altitude is the height above the vehicle suh-satellzte

point. ^`he Earth is modelled as an oblate spheroid ^vith eccentricity, e. T'rom

Ref. 2, the altitude is given by
i

h = r cos( -¢) -- r^(x = e s=n ¢ ^
^	 2 ^	

t9}

The geocentric lati^ttde is defined as

sin ¢^ = r	 ^9a}

The geodetic latitude, accurate to tvaelve digits, is givezx by

^ = ¢' ^- a2(r , e} sin 2 ¢' ^- a4(r , e) sin 4 ¢' + a6{r , e) sin 6 ¢^	

^^h)
a- a8(r , e} sin 8 ¢t

whexe
2

a2 J r^ x.024 (5x2 e2 +x28 e4 f GO e6 ^- 35 e$) : ^^l ^ {e6 a- e8}

3
--
 ^

s l
r̂ I -- 3 {4 e6 + 3 e 8^
r	 ,^56

__ ^ 1	 4	 6	 8	 rEl2 ^ 4	 6 8 ^.5 e8 
rEl3

	

a4	 r r 1024 164 4 -^ 48e ^-35e }-^^^ 116 (4e +2e -^e }-^ 25^ ^i !
8

^^^ ^^
2	 3

a = ^ 3 (4 e6 -r^e8 )- 3 ^^^ (e6.^-e8^^ 35 ^rEr ^4e6 +3e$ ) -

	

6 	 r x024	 32 r	 76S r

S	
2	 3	 4

a8 + 2048 ^-^ ^ + 64 ^^^. - 252 ^^^ + 320 \^^

(9c)
i

i

i

]^

1

^I^ 5
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E2 = 2E--E^

E ^	 ^
29`7.3

The ai^ove equ^.^Eious a •̂e S^ficient -Eo enable one to estim^.te the c^.ensity.

and

III-- 6
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We lake as our state	
9

E,	 vehicle positir^n vector

'	 R	 vehicle velocity vector

^^	 ^	 tL	 e Of the lth ^. er	 ^ -p ^:•)	 densz y at 1at^er aI tud	 ay
L	 d

T^(hi)	 ^;emperature lapse rate of tI^.e i I^ ^.ayer

T(hi}	 te^aperature at the lower altitude of the i h Layer

The partials of the density with respect to each component of the state

-	 are given. by
-	 ^

^ A
	

^ a h ^ a ^ a p {hi)	 ^p ^T {hi)

[14}

	ap	 aT^hi)

The partials of the density with respec$ to the altitude, h, are given by

Far T' (hi} ^ 0

_ 8
	 g m.v 	T (hi}	 ^v	 i	 T thi)	 ^

ah	 -- ^gT^Eh) +^^A(hi}^l'^ T{h.) ^h ^hi) 1	 T(h.)	 ^ '
r

	

L	 ^.	 L

(^1^.)
i

I

For T` thL} = 0	 )

Y 
_p 

^T(h
t̂

,,

r._;

'^	 a
7
r

}.^I1b)

XII-- 7
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1

1

.	 The p^tia.l o^ the a.].tittYde, h, with rasp^:ct to the state is computed on

the assumption that ¢= ^' , and is given by	 ^

ah _ 1 _ xE	 e^ si 2 ¢	 ^ + ^E	 s^ sizi^ ¢ ^ ^
aR	 r	 2 2 ^^ a•	^	 ^ 2 ^

(^ - e sin ¢)	 (1 -- a s in ¢ }

(x^}
^^	 ah	 ah	 ah	 ah	 _

az^	 L	 E	 ^

4

The partial of p (I^.^} 'with respect to the state is

ap fhi}	 aA t^k;}	 aP (lil}	 aA thi}

aR	
-	 aR	 ^ aT' (hi} - aT^hi} - ^

3

(I.G}	 ^

a A Chi}

aAthi}	 ^'
a

4

The pax'ti^.l of the temperature IapsE rate ^vzth respect to the-state is

given uy	
_

aT' (h,)	 aT' (h-}	 aT' (h.}	 dT` (h.}^	 z	 ^	 x	 ^
a^	 -	 r by {h.? R aTCh.)

are	 ^	 3.

a ,	 ^	 (x7}
T {hi}

aTf (h } — 
^

L
,'



a,^..., ......^t.^..,.,.... --^ .-------.__

^Vl^.enevs^.' [ T' ^hi)^ s 0.5°/^ , set T' (^ ^) = D .

;^



NA^7IGATIO T̂ FILTER UPDATE I?QUATIQNS

Reference 3 contains the updatA equations for an onboard navigation filter

for an 18--element vehicle state vector consisti.na of the vehicle position vectcr,

R , the vehicle velocity vector, R , the vehicle gyro tilt error vector, 6 , the

gyro tilt rste error vector, ^ , the accelerozrieter scale fa.ccor e^. • z^or^ vector, i:,

and the accelerometer bias error vector, b . To this state eve add the scalars

p (hi) , T'(hi) , and T(hi) . Thus the nets state Ls a 2l.-element state error vec-

tor, X. l:`ollowing Ref. 3, the update equations following each pseudo-density

observation are given by

^x
^+ = ^^ +CPT (P G PT + Q) 

(fob - Acamp)

where C i.s the 21 x 21 covariance matrix of the errors in the estimate of the

state vector, P is the 2l. x1 vector of the partials of the pseudo-observation

vvith respect to the state X, and Q is the observation noise, irVe have

I^I .ate. ^. ^ 8 pp a ̂  ^ p ^.^ ^^. a ^.^
P ^ L aR ' aR ^ a$	 ^ ^ ' a k ' b b ' by (hi) ' ^T ' (hi) ' eT(hi)

The partials of the density with respect to R , R, p (lii) , T T (hi) , and

T(h.) are given in the previous section, and the remaining partials are ali zero.
L

The residual. is given by

4V • V 2 m.^
bA	 ^ 

C
R	 - P ^ h ^ P 4hi) ^ Z'^hi) ^ T' (hi) ^

r̂R -I] A

The value of Q recommended for sixrLUlation study is

Q = . Ol. A^

:.:.:: . 1TZ^ l 1.

(7.9)

(20)

(2^)

(^2)
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11^e equations of ii€ling entry are examinzd for lined an ;[e-ot attack refticular rnation with path control ria
roll modulation of lift. A campiication arising with this is nanconvexity of the hadograpl^ figure, tshit :h ma;:es the
application of standard variational techniques inadvissbli: unless the problem is first relaxed, i.e., a related problem
is defined With a hadogrrplr figure that is the convex hull of the original. This !cads to a new system in new
variablesthatis apparent[y innocuous lairs simplicity; the linear elements of the convex hull, however, are associated
with singular extremal subarts and their attendant dillieultir^. The singular exiremal far minimnm -heating
symmetric flight with final time and downrange open is simple, TKa order-reduction approximations ore considered,
t+bleb mey include intervals of two-dimensional motion as subares. t3ne.of these approximations relegates taming to
initial and terminal bonndury--Toyer maneuvers; the other is analagaus to tl^e aircraft energy-maneuvering mode[.
Some ¢amputations far a space shard¢ orbiter configuration are presented.

Nafrrenclt^titre
D =drag
E =specific energy
g, ^ acceleration of gravity
H = variational Hamiltonian
L ^ lift
0 =fatal heat load
b =heat sate
r ^ radius

ro =radius of the Earth
V ^ velocity
T:'= weieht

=flight path angle to horizontal
A =longitude
i. = Lagrange multip]ier
!t =bank angle
5 =relaxation interpolation variable
c = relaKaEian control variable
q =latitude

=heading angle to south

S#ate Equations

^
1TH r radius, 7 path angle to horizontal, E ^ {VZ/Zgp}--
(re2/r) specific enerfry, ^ Treading angle to south, ^ latitude,

A longitude, and u ban!: angle, the equations of state are

r = Y sin y {1)
E _ -- D I</ ITV (2)

y=(,i oLcos^t/WY)---(goro2/Yr^)cosr-}-(VJr)cosy (3}

j = (gn Lsin ^tJtYV cosy)—{T%Jr)cosysin ^ tan ^ (4)
^ _ —(TtJr)casgcosy {^

/t = (Y sin ^! cos yJrcos ¢^) (G)
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The first six equations are particle-dynamics equations of motion
far coordinated maneuvering (zero side-force). The last equation
is the total heating integral Q in differential form. Lift L and drag
D are functions of E and r only ; angle of attack is assltmed
constant. (If trim were to vary with the Mach number, the an^1e
of attack would itself be a Function of E and r.) Inequality con-
straints on dynamic pressure, normal load factor, and local
temperatures are in the problem statement.

Ro1111^t3tiulatian
}?ntry atessentially c4nstantangleofattack has been employed.

for such vehicles as the Apollo Command Module, tivith
consequent simp[ificaEion of Iongitudinal control. The desired
vertical component of lift and a desired average out of-plane
component are obtained by bank reversals, square-tivave fashion.
In the particle-dynamics model, this includes the theoretical.
passibility of"chattering," since rigid-ba dy rolling dynamics have
been neglected. There is des a^ interest in rail modulation For
advanced vehicles such as the Earth-vrbitaT shuttle, even tirouglr
a Iangitudinal control system will be featured, since design
compromises may force a narrow range of trim angle of attack.
Thus, constant angle-of-attack nper,•ttian is of interest as a
limiting case far the shuttle entry problem.

Control Relaxation
In the version of the problem cv7ih angle of attack controllable

within bounds, the figure in hodvgraph space (t;, y, yi that is
traced out by varying the controls tt and !s over tlteir complete
range(Cnntensvu's"Domain of Maneuverability")' isnatconvex.
Qperativn at points within the figure, which is a paraboloid for lift
linear and drag quadratic in ^, can be approximated by chattering
contra! operation, square-^ti•ave fashion, but cannot actually by
attained with piecet^•ise conEifauaus controls. In such circum-
stances, it is usual to consider instead a related problem pith
different control variables that attain the convex hull of the
h vdograph figure ; this is the"relaxed" problem.' •z The relaxation
forth° variable angle-of-attack case is sketched in lief. 3. In lire
prevent cage of fixed angle of attack, the ligurc is an ellipse.
ltelaxatictn matins the disk ^^^ithin this ellipse ttitainable.

Reltuativn may be accvmplishcd fur tt gensrrl state system of
the form
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I'i4. 1 34iinlmum-ftentino ira;ectory is ulfitude/velocity chsrt.

by replacing the system by

	

=1 •(x, rlr. t}+C^I(-r, rtz. t)--f (.r, rtr, t)^	 (`^)

in which the rieltt members are linearly interpolated between
values for control tr T and control u^. I•iere ^. Q •^ ^ ^ 1, is an
interpolation parameter. The control variables of the relaxed
system are the vectors tr l and rrz and the scalar ^. in the present
application, the desired goal of attaining the interior of the ellipse
can be accomplished ^vitlt fewer variables, namely by introducing
an additional control variable c, f) 5 v S 1, multiplicative on
Lin the 'r' and j state equations

j = (r^,Locosµ/1^V)—( .9oro=/Vr`)cosg:(V/r)cosy (3a)

	

=(r^P 1.sinµ/1-l̂% Vcos,^)—(Vjr)cosysin^tanr^ 	 (4a)

Singular Arcs of tlti: lielaxetl Problem

'The appearance of the control variable c linearly in the right
members of the state equations indicates the possibility of si ngular

res in the solution of optimal entry control problems. 'This
possibility may be investigated b}' formation of the usual
Hamiltonian t!, setting cHJce = 0, and pursuing the
consequences.

cH(ca = (r^oL/W V)[J^COS^I- i-%r (sin^t/cosy) _ ^	 (1Q^
$H/cgµ = {1t o Ir,/SVV}t—i r sinµ+i.X (cosµfcosy}] = U (11

Left members of Eqs. (l p) and (1I) trust vanish independenEiy
Since these are linearly independent, it fulEotas that both i., and
^^ are zero along the arc.

The system is already in the canonical forrn of Ref. ^; thus the
variables yard ^ are control-like along singular arcs. A similar
result could have been obtained by noEing that ^ sin µ arc
c cos !t could be taken as new control variables in the neighbar-
hodd of a singular arc far 0 ^ c ^ 1. Desired variations in ^ and

can be realized by varying these, as long as the magnitude of the
desired variations is sufliciently small as oat to encounter
saEuratiun df Ehe Q bounds.

ti^`ith y and L ree.trded as controls, the problem simplifies tc
{lii:ltt in tlteplaneafa great circle. ^^'ithottt Toss nfgent:rality, take
µ == r^5 = O,and y = rl? fnrstudy of this rive-dirnensinnal motion
and Ehe state equations became

i' _ [^ sine	 (12

is = — D l'"1'! 1•'	 (13

In the special cast: of downrange open (final A unspecified fog
initially eyuatorial ilieltt), the cc^ntn^[ variable y enters ortl^
Eq l l2} :rod the r-ariahle r beec y mc-•s control-like afc^ne srntula
arcs as the form with Ecl. {131 deleted is again canunirul, if fine

AIAA 1t7t3RNA^.

time is open, there is analytical advantage in casting E in the role
of itdependent variable; f^,trthermore, the steady d^xrease aF F.
makes this interchange feasible for entry applications.

dQ/dE _ -- IlJ^ f DV	 (15)
The singular extremal is defined by stationary points of the right
member of Eq. (16) regarded as a function of r at various E levels.
The generalized Legendre-Clebsch} test requires that the
stationary value of the right member of Eq. {Ib) as a function of r
be a maximum and ^/DV minimum.

Reduced Aela^ed ^'roltlems
The relaxed problem presents computational difficulties

bcca^tse of singe€ar arcs; appratirnatinns are tlterefnre df mn^e
than usual interest. Possibilities offered by singular perturba-
tion procedures - ' are discussed in the following paragraphs.
If nearly syntmetric flight were assumed, a singular perturba-
tion approach designating latitude, longitude, and heating
as variables of a reduced solution {i.e., solution of a rcduced-
orderapproximation problem) would seem attractive. This would
relegate turning and altitude transitions to cc rrective baundary-
layer transients near initial and terminal points. Energy is
chosen as the independent variable. The reduced problem is of
the great-circle type.

The great-circle reduced-order system far the approximation
that combines altitude and heading transients takes the form

The order-reduction procedurL: used is the same one examined
and employed in Ref. ti. An upper bound an the control variable
r of the reduced problem is furnished by the control botutd c ^--i
of the oribrinal problem together with Eq. (3a} and y = y = ll;
a lower bound is provided by state inequalities on panel
temperatures and acceleration loads, handled in penalty function
approximation in the computations next described. Use of the
model given by Eqs. {17) and (!31 fs limited to problems for which
downrange is specified as greater than, or equal to, the dovvn-
range-opVn value; fdr smaller specified downrange, the singular
extremal fails the generalized Legertdre-Clebsch test and a zigzag
competitor is optimal.

A less drastic approximation using singular perturbations
would treaE heading as well as latitude, longitude, and heating
in a reduced problem. "This ^vduld idealize only the altitude
transients as fast (with respect Eo energy change) compared to the
other transitions. It is the same as aircraft energy approxima-
tion. ;•6 Energy appraeit>3ations have previously been examined
for atmospheric entry of a variable angle-of-attack v^hicle.7
Nn complications arising from the relaxed model are anticipated
using this approach. Evidently a solution for the reduced-order
fixed angle-df=attack problem consists generall} of a turning arc,
a great-circle time-open arc, and, if final heading is specified, a
terminal turning arc.

Computational Results

Data Tor adelta-wine space-shuttle arbiter canfignratinn ^^ere
used for some sample computations with the model of Eqs. (17)
and {i13). The angle of attack vvas fixed at 30'. Inequality con-
straints an normal load f rotor and numerous panel temperatures
«ere irtcarpc,rated by using penalty ftmctiuns.

A minimum of the Hamiltonian cunsistin^ of a linear cum-
bin,ttinn of the right members of irgs. (171 and I lsl plus penalties
ti>:asfound byone-dimensional search. With downrange open, the
mfninttrm :tfwsys occurred at the lower bound on altitude
furnished by the load factcu and temperature constraints (see Fi^^.

). «i itlt downrange sptrificd n! v:lluCS exCCCding the l,pen Val ue,
the mininTirittg altiutd^ was found tL7 be the upper bound value
(r, = i 1 during the latter part of the t rajcctory (sec: Fig. 2}. As range
recluilements were inureast:cl, nunserical re,ults indicated the
pas+ihility of more titan c,n^ sxit^_h bet:tecn a1Eilude iTnunrl+.
The ilamiltonifrn (unctic+n fur the dclwnr;tngr-spt;rfied case of

rtr_rs: .
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Fig. ^ ;12inimilm- [leafing downrange-specified trajectories in allitude^
velocity rliari.

Fig. 3 is sketched vs altitude iu Fig. 3 for several energy values.
The sign of the second derivative Her would seem to indicate
ni+nconvexity and a need for further relaxation. Ho^ve^er, one
recalls [!lift r• in the roleof control variable is not the real thin; but
the result of an order-reduction approximation amounting to
assumed instantaneous vertical dynamics. This implies that t^'eak
as well as strong minima should be considered; hence, that
transi#ions determined according to absolttte minimum N, as in
F'iR. 2, are snore«-hat arbitrary.° Boundary-1^lyer transition
fairings at discontinuities in r •, as in ltef. b, arc needed for
consistency in degree oC approximation of the control, but they
contribute nothing to the performance iiiciex alt this
approximation.

1^Vhen heating was heavily weighted compared to dnivn-
ran^ing, values of a ^+'ere Found to be belu+v unity indicating a
need fur roll tnodulatfon in k>,vn-diniensinnal ftig;Tt. Hn+vc:ver,
solutions+vitli downrange heavily u'eiRlited ride the t1pp::r bound
c =tat lrnv energies and atnear-orbital cuergic^,

Results obtained by a canju^ate gradient Inethad that used a
particle-dynamics model are slintvn fur c^tiipariu,n. Th y cross-
range +vas specified at a snmeuhat ^hallc;n«irl« ^,i1uc csf :;b+)ut
[ 3f1Ci nor. The canju^*ate gradient fortnuliltioll did not enTplciy if
relaccd model and ryas unsuitable for ue:trly symmetric flight
uses. It exhibited poor convergence that ',',as, p4rhap;,
attributabletotlicabsenceofconvcxity.i •:onetheless,the result of
Fig. ?seems of interest !'or the qualitalii^e sir[iilaritt^ of the
altitude history Frith the great-circle model. 'flti^ teas t^btained
using as a first guess a trajectory nliich haul heen forced to f[)llcnv
the Inver bonne! represcntin^* temperature !anti[ uppr'.iximatef^.

The c[^mp:trisons suggest that the id[:al:ritl[^n ^+f earl} headin!^
and.tltitudetr:taxi[ionsfu[lu+vcdbyaltitudccontrol ba,cd lnainit
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Fig. 3 Hamiltnliiarl vs altitude at several energy levels fqr dq+snrange-
sprcificd case

on heating and dotti'n-running may n •arrant furtlter investigation.
A separate treatment of the initial transition :u a bounder}' lager
in ►vhich altitude, path angle, and 1leadinl; motions are fast {with
respect Eo E changes) could be carried out along the lines o[ that
for aircraft altitude transitions in Ref. fi.

Conclusion

Attention has been directed to relaxation and its consequences
for the fixed angle-nf attack atmospheric entry prcthlent. T+vo
reduced-order approximations for the resulting system of
equations have been brie!!} examined and appear to ^s'arrant
additional study.
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I

^, Et ^ be the best estimate of the vector slate, and x the true state vec-

tor. Then the vector error in tlae best estimate is given by

Ae = ^-x
a	 o

Let y be a scalar measa.rern.ent which is a noza].iuear (quadratic} function

of the vector state x, contami^aated by white noise. Then, the true measure-

m.ent is given by

^^^c seek a minimum variance linear estimate of x of the farm.

v~*here K is the linear vector gain. The erected change in the error in the

estimate is given by

The variance of a is given by.

E(e , e ) = E( a , ea) - K E(^y , eQ } -- E( o , dY ?^{T

+ K E(L]Y, ^yT)l^T

The xr^.inimum variance estimate of e over all linear K gain vectors is given by

E (^Y ^ ^ }

(^)m.v	
E(dY ^ dy }

(^}

(^)

(3}

(4}

(5)

^-^	 ^
..	 --



we have

a, .t^

where yik is the il^th

;^,

_^ .	 _	 _	 -	 ^_

i

If ti^^e now make the asstuuption that

E( o ^ 71} = E( o' ea Y,cx a}	 E (^1 ^ o y^ o} _ ^ (7}

E(7^,7j^) = Q

P Yx
^^ =	 y

yx P yx ^ R ^ ^ E(o Y 
o ^ 

eo Y^ ^ 3

From matrix algebra, eve have, for any vector ^

^^'e seek the expected value of the trace of the square of the matri:r A , ^^^here

_	 T
^'	 yxx ( o o }

Given any n x n matrix A , the trace of its sgs^are is given by

N N

trace A2 ^ ^ ^ a.. a..^^ ] E
€-1 ^=1.

Ever3^ element of the ^natr:x A is given by

($)

(9}

(10}

(^-^-3



i	 i	 I	 I	 I

^Ve seek the expected value of

N rr N N-^
^	 ^ ^ ^ yil;. yj ^, e0tt e4j e0 ^ e0i	 (1`')

i=X j=]. k=^ ^, =1

I^'o^ a rorxnFtill,^-distribuwer^ randa^^ clariable with ^e^-G mean, tine have

^ { e0^ eQ3 eD ^. e0i } = E (epk e0j ^ ^ { e0 ^ e0i } -E- ^ {e0k e0 ^} ^ (e0j eai }

1

het

P ij = ^ { e^ i e^3 }

Then Eq. (].3} becomes

N N N N

	

L ^	 L1L 1 ^ ttj .ei	 Ec ^ ^ ^	 lei 3 ^
i=^ ^_^ it=x p=x

^f ZRle define Ilse matri;c C to he the expected va].t^e of the ^11^.t?'i:{ A

C = E(y e eT } = y P
XK 4 O	 x^

Equation (12} ;nay be written as

N N	 ^
-,

C.. C.. ^- C. C	 -f• C.. C. - }	 ^^-S}
i=^, ^,x is	 1^	 ^i	 ij	 i^ ]]	 ,

	from which the abtaiz^	 ;I

Q Q = 4 E trace (A2^ = 2 trace (C^) + ^ (trace C }^	 (19}

(J.5)

{^-^)

{x'^}



_i

I	 I	 I	 I!	 I

For tl^e puz^oses of cot^ap^atatiott, tivo recommend that «e first compute

the nqn^ero elerrtettts of C ^ y^ P and then form ^.Q.

N	 N N	 N	 2
^Q	 2 L.^ Ci2 + ^ ^ c ij cji ^ 4 ^ ^^cii)^	 (20)

Fxaznple

Let y depend only ttpon position (e, g. ,

DlIL, or in angle meastt^rernent}. Then y is
xx

of the expected value of ^ A2 is giiren by

Let
^"^1	 C12

3^ P W C (3 x 3} _	 ^'^ 21	 C 
22

c til	 c32

in a r^tt^ge me^.surement, in

an uppar 3 ^:3 and the trace

C13
C 23	 (21)

c33

E (^ trace A2) = 2 (cis. }C22 -;- c33 ) * (C1.2 COX ^ c13 c3I. y C23 C39 }

^ ^ ^c^.x^c2a^c3s}2	 (22}
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T7.^s repori cieri^es ^ procedure for ^. rapid de^errrai.oa^iQn o^ an approxi-

mate ma^ri.x inverse far use on real. ti3ne onboard canapu^e^, con^ro^. s^s^ems.
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Uii-i^o^.rd eoa^p^^^ets o^ci^ rec^icirc za:airi^c inti raisions cic^ritla raal-^in^e

cornp^tter con.-Erol sys iezn eornpuiafion5 ^vhe^ -the cycle tir^a.e does no g allow for a

precise soluiion. The procedure on.^Elined here yields an ap^roxima^e solution

which can be executed in cansidexably less carnpu^Eex ^im.e.

^I-^
^^---
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DERNATY0^3 OP THE APPROXTNiATION

Let A be a.n nxn matrix, and x and y be nxl. vectors. ^iVe seel^

an approximate salutio^ of the prablex^i: Given. A and y , ftnd x , tivhen

Let B be the matrix farxr^ed of the diagonal. el.ezn.ents a£ A.

b.. - ^.. a..	 {2a}
t3	 , ^ tl

Then.

A W B B ^' A	 {2b}

The solution of Eci. ^1} is given by
_l,

Let

C = BSA
and	

^ _^	
{^}	 .^, " B Y

The xnatric, C , satisfies its o^v^a eha.ractnristi.c egtiatian
`^

n	 ^
cY i Cn^L = 0	 {cud = J.}	 (5}	 `^

i-0
a

_!

It follasys l:ram. Ecl,, (5} that the entix'e n-space is annihilated. Thus, 	 `

n	
^

^. Gxz—^ z . ^ 
p	 {s}

^	 ^^
i=0

and



^^ _	 i .

n
(7}

L

i=1.

^tltta.ion (7) can be used to deterxrLiL^e the n unlnoz^n coefficients, cx.. Once
L

these are determ.iLied, eve have, after multiplication b3l C x

n-1

n i=0	 j

To realize a savi^.g in comp^.zter time, eve require an apprnxim.ate characteristic

equation. for the matrix C , of much Io^ver degree than n > T]aus, eve are Iecl

to find the p , ^i , scalars Evhich minirn.ize the length of the vector, ^.

P
^3 i Cnrz z. _ ^	 a	 P c< n	 (0)

i=0

The ^'s are given by the least squa •̂es solution far ^= 0 , with ^Q = I.. ^rVe

form. the Gram--ach^.nidt upper triangular decomposition. of the nxpT:L matrix

of tiLe vectors z , Cz ,	 . , Cp z , ^^e Dave

where (9 } is an ortl^LOgonal matrix (nxp+^} anal (T} is upper triaugtLlar

matrix (p+1xp-r-^.).

The solution for ^ is given. byi
(p ^'^ x ^)

^p

^p-^

^^

(^.o)

(11)

I

^^-^



Txansposi^.g the p-^xst vector of (T), eve have, ft^x $i

^p	-^	 t^^p^x)

n -	 `	
t

The fixst Eery saJ.uEio^s ars provided belo^v.

2exo Drdex

^..
good Oxzly if	 L^	 CC ^ .

aii 31

Z'irst Dxder	 '

x -- X11 ^	 (1^)

I2

Second Dxder

__	 t23 t11	 t^^ t22	 ^ )

^	 t12 t2^ ^ t^^ t22 z E t^.2 t23 - t^.3 t22 C z
	 15

The Gram--Schmidt caef^icients are ^.isted beloivr

tip = g^ Ci-1 ^	
^ C i

i-^.	 T	 i-^.	 1^^

zt	 ^^ J	 ^^ 3
j-^	 J =1



^/^
^^^ = ^^ z}

i--Z

$i - t..	 ^J Jzi	 jTI

`1'o ulai;cEitz tl.^: uopez • tz'i:li^^^^lar i n^,• erse ^sf "i' , let S be ^^lE: ir].Verse o^ T ,

then the nonzero upper tria .no 12^: elemen^s of S are given by

1

s ii -- t.
zi.

j-1

sij r ^ ^ . ^ ^ sik t^j ^	 j > i
]^ k=^.

=`ron^. tize aUat=e, it follotivs that the S i coe^icien^s are given by

^i
Since eve ^.re interested only iiz the ratio ^	 the tp^-1, p{x coefficient need

P
x3.ot ^e generated a.nd may be arbitrarily set equal to t^.ity. 	 '
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A ^G'ART^T3L^''-^I^TR?C ALGC)RTT?'PI T;1rTFL0^°Ii.4TG LTi EAR AND

QUADRATT^ PENALTTES ^`

Henry J. Kelley}
Leon Lefton	 ,

Analytical Mechanics Associates, Tnc, , Jericho, N. Y,

and

Tvan L, Johnson, Jr,^^

NASA Johnson Spade Center, ]:Touston, Texas

ABS'l`RACT

A variable-metric algorithm is described that makes use of both linear and

quadratic penalty terms for handling nonlinear constraints and employs both pro-

jection and penalty features. Quadratic penalty coefficients are adjusted in a

process which attempts to maintain apositive-defi^tite matrix of second partial.

derivatives of the function, incl^zding penalty terms without generatin8 the large

positive eigenvalues traditionally attending the use of quadratic penalties, which

cause zigzagging and slowed convergence. The schemes contemplated male use

of inferred second--order properties not only in terms of the variable metric of

DFP (or its relatives} but by estimation of second directional derivatives by fitting

cubics to various functions along directions of search, Some e •̂periments are de-

scribed with a simple con^^rained-minimum problem contrived to offer difficulties

with ^n.ethods that use only linear penalties, hence taxing the quadratic-penalty-

adjustment procedure,

Presented at the AAS/ATAA Astrodynamics Conference, Nassau,
Bahamas, July 28-30, 1975.
Supported under Contract NAS 9-125J.6 with NASA Johnson Space Center,
Houston, Texas.

-}- Vice President
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INTRODUCTION

The arrival of variable-metric parameter optimization, the Davidon-rletcher--

Powell algorithm (Ref. ^) and its relatives, literally revolutionized numerical opti^.i--

nation in the sides. Even variational problems, crammed into the mold by some-

times awI^vard paratx^etexizations, were treated handiiy }^y DFP in competition with

various sophisticated continuous-control algorithms. The i^ey to success is the

superficially first--order character of the technique --- only first partia? derivatives

need be generated explicitly -- together Zvith speed and the sureness of convergence

accomplished by infere^ace of second•-order properties.

Taut in mast variable-^uetric applications wank the constraints are treated by

•the quadratic penalty function, a primitive device well iuiown to affect convergence

rate adversely and to magnify niun.erical errors. The combination of penalty function

and variable metric was explored in a 1.9G6 paper {Ref. 2) which included various

au:^iliary devices to ameliorate the adverse effects o£ penalty-function approximation.

This particular computational procedure has turned out to be a reliable work-horse

and is currently in fairly wide use in day-to-day applications work.

Efforts at adapting variable metrics to the standard alternative schezue for

treating constraints, gradient projection, proved straightfar^vard and immediately

tractable only in the case of linear constraints (Ref. 3). Variable-metric projection

schemes, making selective use of what amount to linear penalty ftmctions, ^i: cre

even^.ally developed for the case of uon^ ir,^•ar t^anst^ • a.ints anal proved workable in

limited Costs {Refs. 4 and 5). This class of variai^^le-metric scheme has only seen

limited use in. complex applications, however, a-^d is not yet hig?^l^ r developed.

One suspects that current-state-of-the-ax-t schemes are costly and slow

compared to what is possible. The focus in the fallazving is upon that class of

x
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problems in which auxiliary vector-mal.xix computations are inexpensive in earn--

parison with the generation of function samples and gradients, as, far example, in

aerospace trajectory-shaping problems. Use is made of both per_alty and projection

ideas and various other features of the algorithms of Refs. 1.-Z0; the adjustment of

penalty coefficients represents the main innovation, and the bulk of the discussion

will bs devoted to #his,

A VARI^^ELE--i^IETRIC GRADIENT PROCESS W.ETH LT'NEAR-PLUS-C^UADRATIC

P^NA.LTIES

.	 Consider an alternative to the problem of minimizing a fun.ctian f(^c)

(x an n.-vector) subject to an m. vector equality constraint g(x} = 0 , namely

the xainim.ization of the function f given by

f = f 3- g^ -^ 2 g K gT	 (^}

which contains both linear acid quadratic penalty terms. V^'ith ^- Q and the

el,emen.#s of the diagonal matrix l^ii » 0 , one has the quadratic penalty scheme
(Ref. S}; large 1^ values are needed in this approach not only to insure that the

function adopted for minimization actually possesses a minimum near the con-

strained minimurz^, sought, but also to render the anagnitudes of the constraint

.violations, ^ g. ^ , small at the nzinimurtt.
z

^Iestenes' Method oflllultipliErs (Ref. 7} employs both linear and quadratic

penalty terms, tivith the quadratic terms viewed as primary; the lizx.ear terms,

missing in a first r3aajor iteration, are introduced as auxiliaries to reduce con-

straint violations anti permit use of somewhat lover quadratic penalty coefficients.

The h vector for each major iteration, which consists of a zninirriizatiori of f, is

taken in this algorithm as the value of ^-^ I^g at the end of the preceding major

iteration. Qf course, any minirn.ization algorithm can be used for the major itera-

Lions but, Tor such unconstrained problems, Dl+'P, and its relatives are highly

competitive.	 -- ^ -

V II-3
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The algoritlun e^;amined in the following makes use of the form of f above

including both linear and quadratic penalty terms, However, the vietivpaint taken

is different front the Method of Multipliers, namely that the iin.ear terms axe

primary, the quadratic ones supplementary and missing whenever advisable. The

l vector cazrnanents will be determined as the praj ection values every fe^v cycles,

and the l^ diagonal elements chosen generally sa as to provide the second partial

derivative matri:^ f^ tvitl^. positive definiteness, but ^vithaut the excessive margin

traditionally furnished by large quadratic penalty farms, tivhich hinders convergence.

The linear penalty terms provide the n3eans of reducing constraint violatians to

zero in. case the constraints are cflmpatible, i, e, , the surfaces defined by g i = 0

have an intersection,

The two algorithrris examined employ DFP (R.ef, 1j and its batch-processor

DFP modification (Ref, Sj applied to f for major iterations, They bear a resem-

blance to the Method of Multipliers, differing fronn it in the determination of hand

k values. It is similar for the first fe^v cycles, during which the diagonal K ele-

ments are assigned "moderately large' t positive values in the quadratic-penalty--

function tradition. The major iteration proceeds by variable metric for n cycles,

however, rather than all the jvay to a minianum.

The general idea: of the quadratic--penalty-coefficient selection scheme is

control of the eigenvalues of the second partial-derivative matrix

zn

^- ^}^
^=x

m

^j gj +^ ^(gj
xx ^^^

T
gj ^ gj gj )
xx ^ ^

{^^

to produce positive-d^;finiteness and a largest eigenvalue not much exceeding the larbest

eigenvalue of f a- g a ^ illegal notation but suggestive shorthand for the first t^va
xx xx

ternxs of (2) ^ , One would tike this not locally, with ^ the projection value, but at

the constrained minimum where the projection A coincides ;vith the Lagrange rnulti-

`plier vector; however, it mould be difficult and expensive enough to calculate the local

VII-4
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second partials and the largest eigenvaltte, so a less direct and mare approximate

approach is taken. The sche^.ne proposed as follows takes advantage o^^.he fact that
-•.

there will usually be a large range of values for the Iti meeting the requirements,
+

	

	 the lotiver limit determined by loss of definiteness and/or excessive constraint viola-
tions, and the upper limit related to the largest eigeuvalue of ^+ g^h.

During the n cycles of each "batch' s, or major iteration, second directional
derivatives aloe; the n directions of search are estimated for the function
f'`` =. f + g l^ , where ^^ is given by

11

^^= - ^ gX o gx I gx o x	 (^3

as the gradient--projection value; this varies tram cycle to circle. ^ is a fizl.l-rank
nxn matrix, fixed during a batch, At the constrained minimum sought, the value

given by (3} is equal to the Lagrange multiplier vector for stationary t + g 7^; it is

independent of the metric a when. evaluated at the constrained minimum..

For a step determined by the 3m.odified DFP algorithm as

Nr

^_

{4}

the first and second derivatives in the direction axe given by

axT t^

^^' _ ^ dx ^

Lax f ^{

	

^^r'i- _	 x

	

r	 j a^^

fo
ss r 6^t^+--t^') _ 2 t*

r+
}4t^ r

-	
^ax ^ ^ 	

^a^ l

t	 ,+

^ Ax ^^	 ^ ax ^ .
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(Here the +superscript denotes evaluation at file i+^, encl of a search segment. }

The second derivative estimate corresponds to cuUic fit to f^' and f^'^ values at

the endpoints, T.n computations carried out with short ward length or subject to

excessive roiuid-off error, the simple difference-quotient approx'unation `vhich is

the average of (7} and (8) may be preferable.

In the vicinity of the constrained mi^iiiz^lem sought, some of the secoc^d ili-

rectional derivatives of the function f' ` , which approximates the :first t^vo terms
N

of f , can be expected to be positive as ^+ g^^ possesses at least n-m non-
negative eigenvalues. The largest positive value determined over one or several
batches can be adopted as a guide for adjusting the penalty coefficients, as it tivill

f^l^. in the range between sera and the largest eigenvalue.

The second directional derivatives of f^ ` in directions along the constraint

function gradients are not, in general, positive; if tl^.ey were, in a large enough
neighborhood of the constrained muiimum, the cuadratic penalty terms might be
dispensed tivith. One set of requirements on the quadratic penalty coefficients

might be determined front second derivatives of f in these directions, by requiring
them to be equal at the least to a guideline value.

Carrying tlus scheme out directly necessitates either special probing apera-
tians in the directions of the constraint gradients ar the inference of equivalent
information from the function samples and gradients computed in the course of

minimization iterations. Bath have been considered and investigated in. a preliminary
tivay and a combination. is recommended for use. An estimate of the latter type fox the
penalty coefficients kj is given by the ^o.axi3uum (over one or more batches) of the
values ^. given by

t

	

^.	 n1a^c t
_	 ^	

:s	 s2
i	 ^ gi+l. gi } 

gi+x^
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^ 	 I

t	 1	 _	 ^	 ..I

^vhere

©xT ^i^ ^ ^	

^ dx t̂ ^	 j g^ _ 1
I
.Y

^,.^,

(^-^)

3 - ^: , - - , x^a:

Values are to be excluded frons consideration ^vhen the tzvo terms of the denominator

in (9) are opposite in sign and .nearly equal in magnitude; lilse^vise when ^3 gi^ren by

(10} is smaller than some prescribed value, indicating that the particular step dx.

vas nearly in the tangent planE of the constraint zvhase quadratic penalty coefficient
.requirement is .being estimated. Here ^ = f + g ]^, ^vhere ^ is the va3.ue of the
]linear penalty l employed in the function f during the particular laatch; a prime
denotes the first derivative along the direction of the step tal^en, a double prime the
second derivative. The expression (9) vas obtained by requiring the k value be
large enough to produce f TT equal to the guideline value c ^'^ for ^ _ ^ aiitl re-
maiaibounded for small ^ (inasmuch as the denominator behaves lil{e ^^ for

g = fl and ^ small). Since it is desired that 1^ estimates err on the high sid^,

the fTT values used should 1',e the larger of the values at beginning and end of the

search segauent foa •̂ f''" and the sna.allar o£ the two vahtes for f ' .

An additianal candidate_ is introduced to cover the frequently-occurring 	 , ^

contingency that all ^. are small aver ane or more batches used in the selection,

viz.	
31	 _.

a

(c ^max fiuin)	,

^	 ^ ^^'̂ ^	 ^

where ^, carresponcls to the last cycle befoie k selection and 
^^Tr 

is taken as the

	

min	 ^

smallest of the 
f^'Tr 

values over a chosen n^.mb,er of batches, or zero, ^vhichevex is
the laser. The multiplicative constant c z 1 in the A ideline value of f"" introduces	 :_
a measure of conservl^,ism to offset the possibility that none of the candidate values of 	 ^

f ^`" in the maximization determining f x" is really close to the largest eigenvalue ofmax .	 ', ' I
tea- g^h^ •
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^IET.EtIC ADJiJST1l2E^T

After determining the l and ^ ele^n.ents azzew at the beginning of each

w.ajor iteration, one would life to adjust the variable-metric matrix is to account,

at least approxi.^:aatell^, for the changes. The corrections are based upon the idea
--1

that the H Znatri<x emerging from. the preceding major iteration approximates f

Na coxxection is made far chacges in the sure h^- leg appearing in the second
partials {^) as this sung approximates the Lagrange multiplier at the constrained

minimiun when the g. are small.
i

Corrections for ki changes aze done sequentia^.ly, using

	

(	
a^^.

	h r ^H -^ H - \	 T -^ ^ H gi gi H	 (l.2)
'	 3. + dki gi H gi ^	 x x

x x

which accounts for changes in. the last terns of eq. (2} via the Schur identity (Ref. ^).

each increment ak, is limited to some f^,'action Of the arigi llal Or updated
I

•value !s. so as to insure that: the denominator of the fraction im parenthesis re-
I

mains positive and does not nearly vanish.

TEST pROBLE1l^I

The problem. used fQr experiments employed a cubic in one variable, :^ x ,

for f , and a quartic of the following form for ache single constraint fituction g

,;

g W xx - b^ x2 -- b^ x^ - b3 x^	 (14}
	 ;- 

^#
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^In the simplest c^.se, used- for fizn,ctional checks of computer programming,

al ^ a2 = b0 = 0 , b^ > 0 , b^ > 0 , the constraint surface is a paraboloid ai elliptic

cross-section and the zninin^um of the linear function f is attained at the origin.

The constraint function nonlinearity is an essential feature of the we11-defined con-

strained minimum. Tf a slightly negative value of a1 is uitradt^ced, one already

has a problean far tii^hich no mini^i^um a:i f w g h exists a.t the cntfstrained n^.ininzittz^

as the llessian xi^atrix is indefinite and, accordingly, quadratic penalty terms are

essential.. This is not quite enough complexity for algoritlun development, evaluation,

and comparison, however, as ffg ^ is then quadratic and the variable-metric pxo-

j ection schemes have too easy a time of it. Hence, use of a2 r 0 and b3 ^ 0 is

attractive. It should be noted that a^> 0 large enough precludes the appearance of

m.inits;a other than at the origin. The numerical values of the coefficients used in the

computational experiments were: al = -10 ^, a2 = 10 ^, bl = 1, b^ = 102, b3 ^ 10 ^;

these are such as to offer modest challenge,

` The starting paint for the nuumerical corriputa^ions of the example was x 1 = 14 ,

x^ ^ 5 , antl x3 = YO . The multiplicative constant c used in (9) .and (11) to designate

the guideline value of fx ^^ was tai^en as ^.inity i.n the comparison.

COIVIPUTATIONAL COi^^TPAHZSON

Ta afford a basis for comparison, l^l<'P seas razz on the exaznp:[e with the quad--

ratic penalty coy cficient fixed at several values and zero linear penalty coefficient.

The first three entries in the accompanying table present these results for quadratic.

penalty coefficients of 10 3 , 10^, azzd ^.0 . At the minim. found, the constraint

g^0 was not satisfied awing to the absence of linear penalty`texms, ^boundaxy shifting',

ar any other palliative. The violations were fortnd to be excessive for k s 10 ,

- VII-g
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The next t;y'o entries iu flee table are for sequential and batch-processor

versions of the algorithm described in the preceding. The batch version cues un-

accountably better than the sequential; usually, the sequential is slightly better

with fixed quadratic penalty when an accurate linear search is performed (Ref. 8).

The accelerated search of Ref. 9 was employed in all of the coinputatians presently

reported, with a tight tolerance employed for term.inatian. The quadratic-penalty

<djtzstment procedure ^^•as restrained from changing the coefficient mote than an

order of magnitude on any single adjustment. The scheme brought the e^oefficient

down into the range ].^ Z ^ !^ s 10 , a favorable rac.ge when the linear term is

present to avert large constraint violations.

.	 The last two entries correspond to the variable-metric projection algorithms

of Refs. 5 and 4, respectively, the latter slightly modified. These are reviewed in

Appendices A and B for the reader's convenience.

CONVERGE^TCF COII+!??ARISOI^r

Algorithm.
Quadratic Penalty N'u^nber o^ Cycles

Coefficient	 it :to convergence

DFP Y03 105

DFP x.02 58

D^'P 10 24

linear-quadratic penalty/sequential variable 27

linear-quadratic penalty/batch variable 21

Rosen-ICreuser {modified) projection 6^

Kelley-Speyer projection ^ 72

_	 ..
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POSSIBLE IMPT10VE1VIEi^TS I.iJ PENALTY-COEFFICIEZtTT-AD^7USTME^T

PROCEDURES

i

Two features intended to aid the process of adjusting Iin.ear and quadratic

penalty coefficients •••°; ill be described very briefly. These have been explored
_,

ao^niuta.i.ion<<Il.y aiid fo^aad to prad^tce reas^^na.blc res^.tlts, but etjaluated in;,u^^'z^:tenCl;y

to permit overall judgement on their merits. 	 ,

Early values of the linear penally coefficients, the cona.ponezats of h, by

projection, tend to be far off the mark, tivhich recamanends use of a zero value

during the first batch. A short first batch suggests itself, m cycles instead of n ,

mainly to reduce the ma;nitudes of the constraint violations. It might be hoped that

a better metric would also be obtained as well, bettor at least in the subspace de-

fined. ^y the constraint gzadient vectors. An obvious modification of the batch metric

update formula of Ref. S i.s requited.

Another obvious temptation is smoothing of a values used on successive

batches by weighted averaging, heavily weighting the nett' projection value when

there is an indication of accelerating convergence, as by drastic shrinifage in the

^a.agnitude of the projected gradient vector during the batch just completed. The

xnativation far avoiding unduly large fluctuations i.ri linear penalty coefficients, of

course, is that changing the function being minimized taxes the nlachitxery for

inferrinb the metric and the various second derivatives,

L^ the lixnited trials of these two featltres to date, it has been found that

they generally enhance the smoothness and "suxefootedness T ' of the algorithm, al-

though at slight expense in convergence speed. The use of higher values of the

constant c ^ 7. , say 2 , or even I.0 , has a similar effect.

V ti-zl.
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CONCLUDING RE1^^^1Ri^a

The xesults axe thought to indicate promise fai the class o^ algaxithm cona-

biniug linear and ci^tadratic pei3alty adjo.stanent with variable-metric optirrxization.

11IIore exEensive testing is obi*iouSly needed, including the Large class o^ problems

in which -the ciziadx^atic turns c1n safeip h^; adjusted da^^^ntvard to zero.

^,rii-12
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APPENDIX A

TI-IE ROSEN-:i^R1;;USER PR^^'ECTIO`^ ALGOIIITI^!^i

After restoration of constraints, •the gradients of f and g and the projection
..

multiplier vector are calculated and designated ^, g X , ^ at this hatch-reference

point :^ = x.
r
^ ` (gx o g^ }^ gX a fx	

to 1}

The algorithm proceeds to rnini^nize f + g ^ subject to the li^xear constraint

gx(X -- x } = 0	 (A 2}

w
by projecting the gradient of £ + g ^ upon #his constraint at each step. The pro-

jection multiplier needed is

„T	 ^. -1 ..T	 ^
h ^ -- (gx o gam ) gx I ̂  (x + g^ ^)	 (A ^)

A linear search is made in the direction

Lax = - cr H (X+ gX ?^ + gx ^)	 (A 4)

to a one-dimensional minimum. On the first cycle ^^ 0 , but not subsequently,

except in special cases such as linearly constrained problems. The rx^etric H is

updated sequentially by the DT'P formula evaluated using the gradient of f + g ^:

H(6 ^^- dg^?^j(d fx^- lSgx h)T H	 ^x GxT

(^ X+ pgX ^} H (d 
x+ 

pgx^) Lax (p x+ ^gx^)

After n--m. cycles, H attains its limiting value far a quadratic f , linear

g model; hence n-m is a natural batch size. It ^nuld seem generally more ef-

ficient to xestore and relinearize after each n-m cycles of DrP than to run to a

min.i3num of ^ + g l as proposed in R.ef. 5. In fact, this feature encountered diffi-

culty in the numerical computations reported, and relinearization each n-m

cycles jvas the znodification actually used. 	 .

VIi-3.3



AP^'ENDIX B

THE KELLEY-SPEYLR PROJECTION ALGORITHM

The accelerated gradient projection process of Ref. 4 employs the formulas

?^ = - (gam H g^ )^ g^ H ^	 (B 2}

with h recalculated every optimization cycle tivhich successfully ter^n.inates ozz

a one-dimensional iu.inimurn of ^ + g.^, and with H updated by

H+^^=I-I+	 -

d^ (a ^+^gx ^ (Q ^+ 4gx ^)T H (L1 ^+^g^ A}

which is the DTP formula applied to the linear combination f + g ^, hence

guarantees that kI remains positive definite. Constraint restorations are

carried out ^:fter each optimization cycle ^Idef. 10) .

(B 3)

vrr--z^
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