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SUMMARY

This report is a compilation of the research in orbit determination and
optimization in space trajectories carried out by AMA, Tne, , under contract to
Lyndon B, Johnson Space Center, covering the period Februacy 1972 - September
1975,
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INTRODUCTION

Analytical Mechanics Associates, Inc., under contract to the Lyndon B.
Johnson Space Center, acted in the capacity of consultants in the areas of orbit
determinaﬁon, optimization ﬁechniques and trajectory design for manned space
flights, In this capacity, several reports were generated and are included in the

text of this final report,
A brief deseription of each report is included here,

) Multi-Spectral Scanners

This report contains a recommended method applying optimization techniqués

. for estimating the most likely source stimulus for a given sequence of multi-spectral

signals bbtained from a flight scanner passing over an area. The report confains well
known statistical discrimination fechniques for estimating and refining information

from multi-spectral scanners.

(2) Non Singular Earth Gravity Acceleration for Space Shutile

“This report contains a computer routine for computing the earth gravily accelera~

tion des‘ighed for space borne computers., The method is both time and computer core

-efficient,

(3). Drag Acceleration as a Navigation Aid

This report develops a technique for obtaining a more accurate estimate of the
vehicle state during reentry blackout from a drag acceleration measurement by in-
cluding an adaptive atmespheric temperature lapse rate as an additional model para-

meter,

@)  Roll-Modulated Lifiing Entry Optimization

This report develops the optimal technique for a roll-modulated lifting reentry.
Thus, it provides valuable insight for obtaining practical reeniry guidance laws using

roll modulation,
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(5) Minimum Variance Linear Estimator for Non-Linear Measurements

This report derives the minimum variance estimator for modifying the Kalman

filter using range-rate measurements during highly non-linear flight regimes.

(6) Approximate Matrix Inverses

This report derives a rapid method for obtaining an approximate matrix in-
verse for use in flight computers when a full inverse is too time consuming and not

numerieally compelling,

(7) A Variable-Meiric Algorithra Employing Linear and Quadratic Penalties

This report develops a variable metric optimization algorithm for accelerated

search for optimization problems with linear and non-linear constraints.
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AN APPROACH TO VIEWING OF

- MULTI-SPECTRATL SCANNER DATA

Consider the problem of presenting multi-speciral data to a viewer via a _
cathode-ray tube, say a conventional TV or, perhaps, a color TV, Sinectra.]._ dia-
crimination is to be used in some way to aid distinction between objects of main
interest (targets) and other objects (background). Exploitation ef the human's
pattern-recognition capability is,. of conrse, the main ettrac-.tio.zifof the viewing ap-
proach, Preprocessing of the data as well as the data for gi:oundétruth tracts is
assumed on the bagis of purely spectral discrimination computations, from which
at least approximate models of target and background spectra and probability

density distributions are available,

With Bis mm=a by the intensities of signal inthe n measurement f_re—.
quency bands and the probability densities of'target and background denoted
f’I‘('ul’ et '”'n) and iB(ul s ™=y y,n), as per Ref, 1, the ratio efthe j:j:vc

_
S
B

- is the criterion often employed for purely spectral dlscnmmatmn Thus, if LZC
the sample is interpreted as a target signal. The thre.:.hold G is set to admit a
Speclfled percentage of known targets. The approach contemplated s preprocessmg,
perhaps approximate, to obiain mcdele for f and f?B mcludmg numencal values S
of means and covariances of components, ’chen evaluatlon of the 11kehhood ratlo 4

for each data sample and use of it as a gignal for a display optmn




Mean and covariance for the target probability density distributit;n are com-
puted from ground truth data, and in many cases a Gaussian representation will
suffice. The background sometimes may be approximated by a Gauééian distribu—
tion, but more commonly will betier by taken as the sum of two or ihr_ee or several
such, each term representing some prominent ingredient, To get means and co-
variances for the background, the total signal must be processed and those parts
clearly target contribution sereened out by a coarse criterion such as mean * 20.
With this deletion, the mean and covariance of the remainder can be compuied and

the distribution represented as a sum of Gaussian contributions.

Feeding the likelihood ratio to a video display would light up the target areas
and leave others dark, If there are two or three targets, a color display could be
used, For the purpose of estimating the likelihood ratio for a particular target, the
other targets are treated as components of the background. The display should, of
course, zlso function normally, with choice of displaying the picture in any of the
bandwidths on option, or perhaps there should be a second display for simulianeous
viewing of raw data, In this fasﬁion, the likelihood ratio would not be used for classi-
fication according to a black-or-white threshold criterion, Eut would furnish shades
o grey (or green) for display and the viewer, thus assisted, would do the classifying.
It iz difficult to anticipate whethexr the approach skeiched here might find its best ap-
plication in preliminary editing of magsive amounts of data, _perhaps using off-the-
shelf density models from previous reductions, or whether it might instead exeel for

intensive efforts on infrequent difficult cases,

REFERENCE

1.  Legault, R.R.; "Multispectral Remote Sensing," lecture notes, University
of Michigan, 1968.
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INTRODUCTION

The Shutile computer requires a nonsingular gravity acceleration routine
ior polar orbits. The foliowiﬁg formulation, based on Reference 1, is carried .

out in detail for an Barth model consisting of Jz s d 37 J 4’ -022 , and S22 .

REFERENCE

1, Pines, S. and Austin, G.; "Gravitational Acceleration of a Point Mass
Due to a Rotating Nonspherical Body," Analytical Mechanics Associates,

Ine. Report No. 69-12, May 1963,




EQUATIONS

The nonsingular potential in Earth-fixed coordinates is given by

_u
0= =

2

+ %(i‘) A, [C,, B, (5, 1) +‘522 -ig(s,t)] |

T
where
it = central body grairitjr‘ co:tS’cant"
a = Rarth radius

. 9.
T =-'(x-2+§r2+-zz)3

Hin mld BN
- N .

Li o1
CRyfst) = st

L(s,t) = 2st

The ‘a;cceieration'vééfor in the body=fixed system isgivenby . . 7 '
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where i, j, k are it vectors in the

X, v, @ directions, respectively.

(4)

Tor the spacific Earth oblateness coefficients JZI’ 3., Jz;’ ., and
| 3 2277
S99 the partials are given below.
2 3 .
do _ , Pa pat
dr 3 1-4 JZ Az 0(11) 3'3 Ag 0(11) + 5 &2 rﬁ 4 4 O(H)
pa”
T A 00 LCgg Baleat) 8gp Tp(s:t)]
L2e_ Ea— A, (1) 2(S c o FES,
x s 4 22() ¢ 5)
L2, -———L‘Laz- A, | zv S$8,,-tC
r Bt T4 o BByt Ogp)
L 2 g .4 -
Y 3‘2 _ —ka _ Ha _ lla.

‘A simple computer code is given in the mext section,
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NONSINGULAR EARTH OBLATENESS ROUTINE

R2

RINV

B2

B3

B4

AS
AT

Uz

U3

SLE

A2
A2l

A3
Ad

 OBLAT(R, ACC)

DIMENSION R(3), ACC(S)
COMMON  EMU, a, 32, J3, J4, C22, 522

COMMENT EMU = central mass coefficient
' COMMENT ~ a = Earth radins

R(1)#R(1) + R(2)¥R(2) + R(3)=R(3)
SQRT(R) |
1L.0/R
a #*RINV
EMU/R2 + B

B:C
BxB2
B+B3

COR(L) RNV

R(2) *RINV
R(3) #RINV
B2%6, 0% (54022 + T %9522).
B2#6.0%(S#822 - T#C22)
TU+U '
U * U2

 U=0s _

(3.0#T2 - 1.0)/2.0

3.0%T | -

(5.04U3 - AZLy/2.0
(35. 0% U4 ~ 30,0 U2 + 3.0)/8.0




A3l
A4l
AU
AR

AR

i

tH

ACC(1)
ACC(2)
ACC(3)

END

1l

i

(15,0 U2 - 3.0)/2.0

(85.0%U3 - 15, 0=7)/2.0

- B2xJ2%A21 -~ B3 #J3#ABL ~ Bd*J4* A4l
3.0%B2%J2% A2 + 4, 0¢B3#J3%A3 +5.0+%Bd+J4%Ad
-~ D2%3.0%(C22#(S#8 - T=T)+ 82242, 0% 5% T)

AR ~ S*AS ~ T*AT - U#AU

AR %5 + AS=RINV

AR*T + AT +RINV

AR:#T - AU » RINV
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NOTATION
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AV
At

PA-

atmospheric pressure

atmospheric mziss density

atmospheric temperature (degrees Kelvin)

mean molecular weight

wniversal gas constant

altitude

vehicle position vector

vehicle velocity vector

vehicle veloeily Yector relative to the atmosphere
aceeleration of gravity (assumed congtant in the‘ atmosphere)
delta velocity readout vector of the accelerometers
accelerometer readout count time interval
effective vehicle area for drag

vehicle mass

Earth angular rotation rate

Mach number

speed of sound in atmosphere

" mean Earth radius

eceentrieity of Barth




¢T

geoéentﬁc latitude

geodetic latitude

pﬁlar component of vehicle position vecior
rg.’cio of specific heats

magnitude of radius vector

magnitude of relative vehicle vel'ocify
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INTRODUCTION

The drag acceleration is presently being considered as an observation type
for navigation as a substitute for an altimeter reading during radio blackout in re~
entry. The measurement is somewhat degraded in the event the atmospheric
density or the aerodynamic drag characteristics become uncertain, This report
resolves the density variability by using a model of the atmospheric density from
80 m to 32 km in the form of a layered atmosphere characterized by a sequence
of altitude intervals with piece-wise constant temperature lapse rates. The intent
is to use this parameterization to enable the navigation filter to determine the
vehicle state as well as the atmospheric density variation. In this manner, a
more aceeurate determination of the state and covariance cross-correlation will

exist at blackout termination when more effective observations ean again be made.

.
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ATMOSPHERIC MODELS

Below 100 km , the Barth's atmosphere seems to ohey the perfect gas

law for a constant mean molecular weight.

P =47 4

where

)
-a- = constant

Under the assumption of a temperature variation which is piece-wise linear with
altitude, we have |

<
hl h= hz
, , (2)
T = T(h) + T'(h;)(k~h)
Since the equilibrium pressure variation is given by
dp _ _
the density between ].11 and h2 is given by
T' () -{lgm /q ;r'(h y1+1}
_ 1 w 1
p = plp[t "y (h-h))] (4

Since the equilibrium atmosphere experiences temperature gradient re-
versals, there exist altitude regions of 5 km or so during which constant

temperature persists. In such intervals, we have

Ii-2
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I

T = T(h,) o
? = ®

-[m g/q T(hl)][huhl]. o

p = P(hi) e v _. __ o

“The 1962 T. S. Standayd Atmosphere (Ref. 1) lists the following nominal

values of the temperature lapse rates

TABLE T
Altitude = Temperature Lapse Rate Density
km OKelvin OKelvin/km ke /m¥
' -2
32 228, 65 1.3925%x107°
| 2.8 L
47 270,65 1,4276x10
o 4
52 _ 270,65 7.5843 %10
-2.0 »
61 252, 65 2.5109x10
-4, 0 5

79 180. 65 _ 2.001 x10

Using the above four-layer model, it is possible to construct an error model for
density variations and require thai the filter solve for the parameters during the

descent blackout,

II1-3




DRAG ACCELERATION

The observatwn of drag acceleratmn over the short txme mterval durmo'

which the accelerometers read out the delta.v count (0 5 seconds) is given by

AV V
S 2 »é'- = R 2]
DA, = 3 P VR CD m _VRAAAt | )]

While the representation of the observation appears to provide the ability fo
estimate both position and velocity, the uncertainty in modelling the aerodynamic
coefficient C‘D as g fimetion of Mach number and angle of attack make this ap-
proach undesirable. We will compute the quantity % v CD A and produce the

pseudo-observation of density

o= AV'VR om o _
var D4
B
From the knowledge of the vehicle state, we compute
VR = R -OxR
z
B = gV
Q = kw (Earth's angular rotation vector)
G = CD('VI @) (drag coefficient as function of
v Mach number of angle of attack) (8)
M o= =
e
e = [y — T(hﬂé
— | 1 T u
i -V
-1 %
¢ = COS (angle of attack)
i - ,

m-4




Following the previous section, we model the density as a function of the
seodetic altitude, h. The altitude is the height above the vehicle stb-satellite
point, The Earth is modelled as an oblate spheroid with eccenﬁridity, e, From
Ref. 2, the altitude is given by - I | |

wlR

h=rx cos(gb~<é') - rE(l‘—ez sinz ) 7 {9)

The geocentric latitude is defined as

S S
sing = " (92)
The geodetic latitude, accurate to twelve digits, is given by
¢ = ¢'+a_(r,e)sin2¢ +a (r,e)sindd' +a (r,e)sin 6¢' _
2 4 6
(9b)
tag(r,e)sin 8¢'
where
2
T o1 4 6
a, = 1024 (5128 +128e +60e +35e) ( )32(6 e)
v 3
=) 5
-—( 56 (49 +3e)
J:E 2 8,1
_ E 1 4 ,. 6 8( 1 6 159(_@)
34‘ =7 To%a (Géi-r-:ae +35e )+ )1 43 +2e +e )+ 956\
_(.r_E,) &
r/ 16
rE ‘ %:2 3 (9¢c)
T 3 6 8 3(*) & 8 ( ) 6
= —_——— - — ——— 4 4
a.e © T 1032 (4e +5e) 32 (e +e )T768 (de 3e)
I .
e R e ae(®) - m(B) o (E))
2y 2048[ 51- -1-64(1_) 25 + 320




and

e2 = 28-«82

.
297.3

The above equations are sufficient to enable one to estimate the density.




PARTIAL DERIVATIVES OF THE DENSITY OBSERVATION

We take as our state

R vehicle position vector

R - vehicle jvelocity vector

o] (119 density at lower altifude of the ith layer

T (hi) | temperature lapse rate of the iﬂl layer

T(hi) temperature at the lower altitude of the ith layer

The partials of the density with respect to each component of the state

are given by

. . 1
b _ dpdh, dp OP®) ap T
“df ~ dh df bp(hi) 28 oT'(h,y DB
T (10)
. % T (h)
oT(h) 0B
The partials of the density with respect to the altitude, .h, are given bjr
TFor T'(hi) £ 0
Cap (ER (R, ~lem, AT 142l gy
o ok (qT ‘@) +1)p(h)[1+ y (- h)] - T(h)
(tia
TFor T'(hi} =
.3 gm
| dp . L, W
ok P4 T(h) | | (11b)

Ii-7




The partial of the density with respect to p (h) ‘is given by '

v'.bp. ~ p o = ' ' i
bp(hi) p{) _ Lo (12)

i
The partial of the density with reSpect to 'I"(hi)' is giveﬁ by .

‘For T‘(h.) # 0 o
gm.

14—
TE) 6By 8 TT(m) beb |
sy - Pl —mgy )} (h\) Ty | 09
1+
Th)
fE“Ol’ ’}.;‘(hi)b = ‘0
v SR S (18h)

O (0)

The partial of the density with respect fo T(hi) is given by

For T'(hi} # 0
T () (BB - e m, faTeylead

gm T'(h, )(h ~h, )
_op_ _ W A I ____._____
ory P (hi)[q Tmy 1][1 RN ] |

T _(hi)_ |
(142}
For Tt(hi'} = 0
vp MMy, "
o (L4b)
bT(Il) T &) |
Im- 8




The partial of the altitude, h, with respect to the state is computed on
the assumption that ¢=¢', and is given by

'Oh [1 | e sm ¢ ] rE ez sinzr',f). i‘{
- z . z
(1-e? sin” ) ¥ 1-e? sin? 9)®
| | | (15)
oh _ dh _dh . ®dh 0
L4 - ' = - -
R bT_(hi) | bT(h,i) o bp(hi_)_
The partial of p (hi) with respect to the state is
op () op () dp(k)  dp(h)
. y Py - = = — = 0
R 2R or’ (hi), bT(hi) '
(16)
op(h)
= 1
op (B)
‘The partial of the temperature lapse rate with respect to the state is
given by | V '
BTRY) 0 BT'(R)  BT(R) - AT
L e— = = = g
OR - op(h) Or(h) _
"y | 17
bT'(hi) (17)
OT'(R) =1

TR




The partial of the temperature at hi R T(hi) , with respe¢t_to the state is

given by
oT(hy  OT(h)  OT(h)  OT(h)
L = 2 = k = T L = 0
oR ) oR bp(hi). OT" (1)
DT (h,)
L = 1
OT(h)

This completes the pariials.

Whenever | T'(h)]< 0.5°/km, set T'(y) = 0.




NAVIGATION FILTER UPDATE EQUATIONS

Reference 3 contains the updais equations for an onboard navigation filter
for an 18-element vehicle state vector consisting of the vehicle position vecter,
R, the vehicle velocity vector, R , the vehicle gyro tilt error vector, 8, the
gyro tilt rate error vector, é, the accelerometer scale factor error vector, k,
and the accelerometer bias error vector, b. To this state we add the scalars |
el (hi) , T' (hi) » and T(hi) . Thus the new state is a 21-element siate error vec-
tor, X. Tollowing Ref, 3, the update equations following each pseudo-density
observation are given by

+ - T v 7t |
X =X +CP (PCP +Q) (%b—% ) (19)

omp
where C is the 21x21 covariance matrixz of the errvors in the esiimate of the
state vector, P isthe 21x1 vector of the partials of the pseudo-observation

with respect to the state X, and Q@ is the observation noise, We have

P=[EB:EE:EE='EE:P_E’E'E: b,O s ?E 3 bp] (20)
OR R o8 26 k’ob? 0op (hi) oT (hi} bT(hi)

The partials of the density with respect to R, 1:«‘., P (hi) R T'(hi} , and
T(hi} are given in the previous section, and the remaining partials are all zero,

The residual is given by

AV-VR?.m' .
Ap = —5——— -~ plh, pr), T(h), T'(h) ] (21)
5 A
® %

The value of Q@ recommended for simulation study is

Q = .01p° . (22)

=11




REFERENCES

1.

Anon.; U.,8. Standard Atmosphere, 1962, prepared under sponsorship

of NASA, USATF, and U. S; Weather Bureau, December 1962,

Morrison, J. and Pines, S.; '"The Reduction from Geocentric to Geodetic

Coordinates," Astrondmical Journal, February 1961, pp. 15-16.

Lear, W.; "A Prototype Real-Time Navigation Program for Mulii-Phase

Missions,”” TRW Systems, Ine. Report No, 17618-6003-TO-00, December
1971,

Hi-32




ROLL~-MODULATED LIFTING ENTRY OPTIMIZATION

H.J. Kelley
H.C. Sullivan

T ANALYTICAL MECIANICS ASSOCIATES, INC.

50 JERICHO TURNPIEE
JERICHO, N. Y. 11753




Reprinted from AIAA JOURNAL, Vol. 11, No. 7, July 1973,

013-915

P
Copynght 1973, by the Amencan Institute of Aeronautics and Astronautlcs, and rearn'nr:tedp by permission of the copyright owner

Roli-Modulated Lifting Eniry Optimizali

o4

HEeEnRY J. KELLEY*

- ORIGINAL PAGE IS
OF POOR QUALITY;

AND

Analytical Mechanics Associates Inc., Jericho, N.Y.

Henry C. SULLIVANT
Lyndon B, Johnson Space Center, Houston, Texas

The equations of lifting entry nre examioed for tixed angle-of-attack vehicolar motion with path control ¥ia
rall modulation of 1ift. A complication nrising with this is nonconvexity of the hodogeaph fgure, which makes the
application of standard variational techniques inadvisable unless the yroblem is first relaxed, i.e,, a related problem
is defined with 2 hodograph fipure that is the convex hull of the original. This Jeads to a new system in new
variables thatis apparently innpcuous in its simplicity; the linear elements of the convex hull, however, are associated
with singular extremal subarcs and their attendant difficulties. The singular extrernal for minimum-hesting
symmetric flight with final time and downrange open is simple. Two order-reduction approximations are considered,
which may include Intervals of two-dimensionsl motion s subires, One.of these approximations relegates tuming to
initinl and terminal boundary-lnyer manenvers; the other is anzlogous to the aircraft energy-maneuvering medel,
Some computations for a space shuttle orbiter confizuration are presented.

Nomenclatire
D =drag
E = specific energy
g, = acceleration of gravity
H = variational Hamiltonian

L =liit

0 = total heat load

Q =heat ratc

r =radius

r, = radius of the Earth
V = velocity

W= weight

+ = flight path angle to horizontal

A = longitude

7 = Lagrange multiplier

p = bank angle

2 = relaxation interpolation variable
¢ = relaxation control variable

¢ = latitude

¢ = heading angle to south

State Equations

ITH r radius, 7 path angle to horizontal, E = (V3/2g,)—
{r,>/r) specific energy,  heading angle to south, ¢ Iatitude,
A longitude, and u bank angle, the equations of state are

r'- = Vsiny {1

= —DVIW )]

$ = (g,Lcos g/ WV)—(g,r, 2V cosy+(V/icosy  (3)
= {g,Lsin f WV cosy)—(V/r)cosysin z tan ¢ @

& = —(V/ricosycosy 5

A = (V sin 7 cosy/rcos ) (6

Q=0(En g

Presented as Paper 72-933 at the AIAA/AAS Astrodynamivs
Specialist Conference, Palo Alto, Calif,, September 11-12, 1972;
submitted October 6, 1972; revision reccived March 13, 1973
Reseurch supported in part by Lyndon B. Johnson Space Center under
Contract NAS 9-11532,

Index categories: Entry Vchicle Mission Studies and Flight
Mechanics; Navigation, Control, and Guidance Theors.

* Vice President, Associate Fellow AlAA.

¥ Acrospace Technologist. Member AIAA,
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The first six equations are particle-dynarmics equations of motion
for coordinated maneuvering (zero side-force). The last equation
is the total heating integral Q in differential form. Lilt L and drag
D are functions of E and r only; angle of attack is assumed
constant. {If trim were to vary with the Mach number, the an-le
of attuck would itssif be a function of £ and r) Inequality con-
straints on dynamic pressure, normal load factor, and local
temperatures are in the problem statement.

Roll Modulation

Entry at essentially constant angle of attack has been employed
for such vehicles as the Apollo Command Module, with
consequent simplification of longitudinal control. The desired
vertical component of lift and a desired average out-of-plans
component are obtained by bank reversals, square-wave fashion.
In the particlé-dynamics model, this includes the theoretical
possibility of “chattering,” since rigid-body rolling dynamics have
been neglected. There is design interest in roll modulation for
advanced vehicles such as the Earth-orbital shuttle, even though
a longitudinal control system will be featured, since design
compromises may lorce a narrow range of trim angle of attack.
Thus, constant angle-of-attack operation is of interest as a
limitiag case for the shuttle entry problem.

Control Relaxation

In the version of the problem with angle of attack controllable
within bounds, the figure in hodograph space (E, , #) that is
traced out by varying the controls « and it over their compiete
range(Contensou’s*Domain of Maneuverability™)' isnot convex.
Operation at points within the figure, which is a paraboloid for lift
linear and drap quadraticin «, can be approximated by chattering
contro!l operation, square-wave fashion, but cannot actually be
attained with piecewise contipuous controls. In such circum-
staness, it is usual to consider instead a related problem with
different cortrol variables that attain the convex hull of the
hodograph figure ; thisis the “relaxed” problem.!® The telaxation
for the variable angle-of-attack casc is sketched in Ref. 3. In the
present case of fixed angle of attack, the figure is an ellipse.
Relaxation makes the disk within this ellipse attainable.

Reluxation may be accomplished for o genaenl state system of
the form

L =flxut 8

V-
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by replacing the system by

% =fx 0+ L0 (e D—flx.u.0) %)
in which the right members are linearly interpolated between
vatues for control 1, and control uy. Here {, 0= <1, is an
interpolation parameter. The control variables of the relaxed
system are the vectors i, and u; and the scalar £, In the present
application, the desired soal of attaining the interior of the ellipse
can be accomplished with fewer variables, namely by introducing
an additional control variable &, 0 £ ¢ = |, multiplicative on
L in the § and 7 state equations

7 = (g, Lo cos yf/WI)—{g,r,2 V) cosy+(V/r)cosy (3u)
7= g,LosingfWV cosy)—(V/ricosysinztang  (4a)

Singular Arcs of the Relaxed Probiem

‘The appearance of the control variable ¢ lineatly in the right
members of the state equations indicates the possibility of singular
res in the solution of optimal entry control problems. This
possibility may be investigated by formation of the usual
Hamiltonian H, selting ¢H/éc =0, and pursuing the
CONSSqUences.
EH/de = (g, LiWV)[ 1, cospu+ 7, (sinp/cosy)] = 0 (10
PHfep = (g, LafWVI[— L sinp+4, (cospfeosy)] =0 (11)
Left members of Eqs. (10) and (11) must vanish independently.
Since these are linearly independent, it follows that buth 4, and
£, are zero along the arc.

The system is already in the canonical form of Ref. 4; thus the
variables y and 7 are control-like along singular arcs, A similar
result could have besn obtained by noting that ¢ sin g and
& cos p could be taken as new control variables in the neighbor-
hood of a singular arc for 0 < ¢ < 1. Desired variations in y and
zcan be realized by varying these, as long as the magnitude of the
desired variations is sufficiently small as not to encounter
saturation of the & bounds.

With 7 and 7 regarded as controls, the problem simplifies to
flight in the plane of a great circle. Without loss of generality, take
i = ¢ = 0,and ¥ = /2 for study of this two-dimeasional motion,
and the state equations become

F = Vsiny {i2)
E=—-DV}W (13)
A = Vcosy/r (14)

0 = O(E.r) {15)

In the special case of downrange open (final A unspecified Jor
initially equatorial Right), the control variable y enters only
Eq (12} and the variable r becomes control-like alony singular
arcs as the form with Eq. {12) deleted is again canonical. If tinal
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time is open. there is analytical advantage in casting E in the role
of independent variable; furthermore, the steady decrease of £
makes this interchange feasible for entry applications.

dQ/dE = — WQ/DV (16)
The singular extremal is defined by stationary points of the right
member of Eq. {16) regarded as a function of r at various E levels,
The generalized Legendre-Clebsch* test requires that the
stationary value of the right member of Eq. (16) as a function of r
be a maximum and J/DV minimum,

Reduced Relaxed Problems

The relaxed problem presents computational difficulties
because of singubitr arcs; appro<imations are therefore of more
than usual interest. Possibilities offered by singular perturba-
tion procedures®~7 are discussed in the following paragraphs.
If nearly symmetric flight were assumed, a singular perturba-
tion approach designating latitude, longitude, and heating
as variables of a reduced solution (i.e, solution of a reduced-
order approximation problem) would seem attractive. This would
relegate turning and altitude transitions to cc rrective boundary-
layer transients near initial and terminal points. Energy is
chosen as the independent variable. The reduced problem is of
the great-circle type.

The great-circle reduced-order system for the approximation
that combines altitude and heading transients takes the form

dAJdE = — W/Dr amn
dQ/dE = —WQ/DV (18}
The order-reduction procedure used is the same one examined
and employed in Ref, & An upper bound on the control variable
r of the reduced problem is furnished by the control bound ¢ = 1
of the original problem together with Eq. (3a) and § =y =0;
a lower bound is provided by state inequalities on panel
temperatures and acceleration loads, handied in peralty function
approximation in the computations next described. Use of the
model given by Egs. (17) and (18) is limited to problems for which
downrange is specified as greater than, or equal to, the down-
range-open value; for smaller specified downrange, the singular
extremal fails the generalized Legendre-Clebsch test and a zigzag
competitor is optimal.

A less drastic approximation using singular perturbations
would treat heading as well as latitude, longitude, and heating
in a reduced problem. This would idealize only the altitude
transients as fast (with respect to energy change) compared to the
other transitions. It is the same as aircraft energy approxima-
tion.™® Energy approkimations have previously been examined
for atmospheric cniry of a variable angle-of-attack vehicle”
No complications adsing from the relaxed model are anticipated
using this approach. Evidently a solution for the reduced-order
fixed angle-of-attack problem consists generally of a turning arc,
a great-circle time-open are, and, if final heading is specified, a
terminal turning arc,

Computational Results

Data for a delta-wing space-shuttle orbiter configuration were
used for some saimnple computations with the medel of Egs. (17)
and {18). The angle of attack was fixed at 307, Inequality con-
straints on normal load factor and numerous panel temperatures
were incorporated by using penalty functions.

A minimum of the Hamiltonian consisting of a lincar com-
binittion of the right members of Eqs. (17) and (18) plus penalties
was found by vne-dimensional search. With downrange open, the
minimum always occurred at the lower bound on altitude
furnished by the load factor and temperature constraints (see Fia.
1). With downrange specified at values exceeding the open value,
the minimizing altitudz was found e be the upper bound value
(s == 1)during the latter part of the trajectory (see Fig 21 As range
requitements were increased, numerical resulis indicated the
possibility of mure than one suwitch between altitude bounds,
The Hamiltonian function for the downrange-specified cuse of

R r_9.
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Fig. 2 is sketched vs altitude in Fig. 3 for several energy values.
The sign of the second derivative H,, would scem to indicate
nonconvexity and a need for further relaxation. However, one
recalls that rin the role of control variable is not the real thing but
the result of an order-reduction approximation amounting to
assumed instantaneous vertical dynamics. This implies that weak
as well as strong minima should be considered; hence, that
transitions determined according to absolute minimum H, as in
Fig. 2, are somewhat arbitrary.® Boundary-layer transition
fairings at discontinuities in », #s in Rel 6, arc needed for
consistenpcy in degree of approximation of the control, but they
contribute nothing to the performance index in this
approximation,

When heating was heavily weighted compared to down-
ranging, vatues of ¢ were found to be below unity indicating a
need for roll modulation in two-dimensional flicht. However,
solutions with downrange heavily weighted ride the upper bound
& = 1 ot low energies and at near-orbital energies,

Results obtained by a conjugate gradient method that used a
particle-dynamics model are shown for compartson. The cross-
range was specified at a somewhat challenging value of cbowt
1300 nm. The conjugate gradient formulation did not employ a
reluxed model and was unsuitable for pearly symmetric Right
cases, It exhibited poor convergence that was, perhaps,
attributable to the absence of convexity, Nonatheless, the result of
Fig. 2 seems of interest for the qualitative similarity of the
altitode history with the great-circle model, This was obtained
using asu first mess a trajectory which had been foreed to follow
the lower bound representing temperature limit approximately.
The comparisons stggest that the idealizition of carly heading
and altitude transitions followed by altittde control bused mainly
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Fig.3 Hamiltonian vs altitude at several energy levels for downrange-
speeilied case,

on keating and down-ranging may warrant further investigation.
A separate treatment of the initial transition as a boundary layer
in which altitude, path angle, and heading motions are fust {with
respect to E changes) could be carded out along the lines of that
for aircraft altitude transitions in Ref. 6.

Conclusion

Attention has been directed to relaxation and its consequences
for the fixed angle-of-attack atmospheric entry problem. Two
reduced-order approximations f{or the resulting system of
equations have been briefly examined and appear to warrant
additional study.

References

! Contensou, P, "Etude Theerigue des Trajectoires Opiimales dans
un Champ de Gravitation. Application au Cus d'un Centre d"Attraction
Unique,” Astronantica Acta, Vol VIIT, Fase, 2-3. 1962, pp. 134-150.

2 Warga, L, "Reluxed Variational Problems.” Journal of Mathematical
Anulysis aml Applications, Vol, 4, 1902, pp. 111-127.

3 Kelley. H. J. and Edelbaum, T N., “Energy Climbs, Crergy Turns
and Asymptotic Expansions,” Journal af Aireraft, Vol. 7. No. 1, 1970,

p. 93-05,

* Ketley, 1L 3, Kopp, R Foand Maover, HGLUSingular Exremals ™
Topivs in Optimization, edited by G. Leitmann, Academic Press, New
York, 1967,

5 Wasow, W, Asympiotic Expansicns for Ordinary Differential
Eguations, Interscience, New York, 1963,

& Reltey, H. L, “Adreraft Mancuver Optimization by Reduced-
Order Approximustion,” Conteols and Dyaamic Systems: Advarces in
Theory and lpplications, Vol. X, edited by C. T. Leondes, Academic
Press. New York, D73

T Krenkel. R.. Kelley, H, . O'Dwyer, W, and Hinz, H., “Euler
Equations for 3-D Reentry in Energy Approximation,” RN-304, June
1971, Gruniman Acrospace Carp., Bethpage. WY,

Bk oV AT i




MINIMUM VARIANCE LINEAR ESTIMATOR FOR

NONLINEAR MEASUREMENTS

Samuel Pines

Report No. 73-42
Contract NAS 9-12516
October 1973

ANALYTICAL MECHANICS ASSOCIATES., INC
50 JERICHO TURNPIEE
JERICHO, N. Y. 117563

S SV S U SN T L T I e




Let 5% be the hest estimate of the vector state, and x the true state vec-

tor. Then the vecior error in the best estimate is given by

= - 1
e =X (1)
Let 3 be a scalar measurement which is a nonlinear (quadratie) function

of the vector state x, contaminated by white noise. Then, the true measure-

ment is given by

; = y(k)+y e +Ler
¥(e,m) = ¥X)+y e +we y e+ (2)

We seek a minimum variance linear estimate of X of the form
-2 = Kly(x,m -¥x)] (3)

where K is the linear vector gain. The expecied change in the error in the

estimate is given by
e = e - Kly(x,7n)-y(X)] (4
The variance of e is given by

E(e,eT) = E(eo,e;r) -K E(Ay,e;r) - E(GO,AYT}KT

+K BAy, Ay KT (5)

The minimum variance estimate of e over all linear K gain vectors is given by

E(Ay,ef )
v T Lo A ©
E(Ay,Ay )
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If we now make the assumption that

T _ T _
E(eo,'n) = E(eo,eo yxxeo) = B(n,eo y}c{eo) = 0 {7)
and that
T —
E{eo,eo) = P
T
E(n.m) = Q
we have
Py
X
K = (8)
T 1 T T
yx Pyx'}Q'!‘%E(eo Yxxeo’eo y:o:eo)

From matrix algebra, we have, for any vector 4
T T _ T T
L yxx(f,«& )ymaf, = trace [yﬂ(«f’,% )yXX(Ld’, )] (9)
We seek the expected value of the irace of the square of the matrix A, where
T
A= Yxx(eo e ) (10}

Given any nxn matrix A, the trace of its square is given by

N N
=
‘trace £ = ), Z a., (11
. ij ji
i=1j=
Every element of the matrix A is given by
N
= 2
i Z Yik ®ox ®oj (12)
k=1

where yik is the i!cth element of yx‘_{.

V-2




We seek the expected value of

NNNN

EZ Z z y ylky]& Ok 03 0z D!. ’ (13)
i=1 j=1 k=1 =1

For a normally-distribuied randem variable with zersv mean, we have

E(eq, 0o;) (g 5 e )+ Ele

Elegy eg; 89 ¢ %o1) = ok %047 B(8g; Sop)

+E(e0k eOi)E(er e{}{’) (14
Tet
Then Eq. {13) becomes
N N 5‘{ N
Z Z ) Z Vite Y52 (Pig Pii " Preg Pji+ P Py ) (16)
i=1 j=1 k=12=1 |
If we define the matrix C to be the expected value of the matrix A
_ T, -
= E(yxx A o) yx:{P (17
Equation (17) may be writien as
N N
ZZCC-:-CC-{-CC) (18)
=i R 4
irom which we obtain
1 2 1
AQ = ry E trace (A) = 5 trace (C )+ {trace C) (19}

V-3
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For the purposes of computation, we recommend that we first compute

the nonzero elements of C = Voo P and then form AQ.

Lo g YN ire 2 '
AQ=35 ) Ci+ ) ) €3 Cj1+'=i[z(cii)] (20)
i=1 i=1 j.—.i-&-l 1:1
Example

Let y depend only upon position (e.g., in a range measurement, in
DML, or in angle measurement). Then yxx is an upper 3x3 and the trace

of the expeeted value of L Az is given by

4
Let :
“11 C12 Ci3 _
4 —1 3 - ¢ ' 1
Vg T T C B3 Co1 Cas Cys (1)
C

| C32 C33

i -2 1 2 2 .2
E(Z tlaceA)—2(Cu+022—r(}33)+(c 021+C C,,+C

12 13 731 23 C32)

1 2
+ 31611 Cgg*Cy3) (22)
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SUMMARY

This report derives a procedure for a rapid determination of an approxi-

mate matrix inverse for use on real-time on-board compuier control systems.,




INTRODUCTION

Un-board compuicrs often require mairix inversions during raal-fime
compiter control system computations when the cycle time does not allow for a
precise solution. The procedure outlined here yields an approximaie solution

which can be executed in considerably less computer time,
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DERIVATION OF THE APPROXIMATION

Let A bean nxn matrix, and x and y be nxl vectors. We seek

an approximate solution of the profnlém: Given A and y, find x, when

Ax = v (L

Let B be the matrix formed of the diagonal elements of A.

by = &; 2 (22)
Then
-1 . '
A=BEB A (2b)

The solution of Eq. (1) is given by

-1
x= (874 Bly 3)
Let
c=%8"'a
and 1 4
z'= B ¥y

The matric, C, satisfies its own characieristic equation

Y e ™o g (@.=1) (5)

@, C "z =0 . (8)

and
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S n
Z a oty = -tz (M
i=1

Equation {7) can be used to determine the n unknown coefficients, o, . Once

these are determined, we have, afier multiplication by C—1 s

n-1
=L _ 1 n-1-i
G z—-—a{z @ C % } @)
n o i=0 |

To realize a saving in computer time, we require an approximate characteristic
equation for the matrix C, of much lower degree than n. Thus, we ave led

to find the p, 'Bi , scalars which minimize the length of the vector, L.

B.C "z =4 , p<<n (9}
i=0

The B's are given by the least squares solution for £4=10, with BG_= i, We
form the Gram-Schmidt upper triangular decomposition of the nxp+l matrix

of the vectors z, Cz, . . ., sz. We have

(nxp+l) (nxp+l)

(z, Cz, C2z, ...,CPz) = (8)(T) . (10)

where (8) is an orthogonal matrix (nxp+l) and (T) is upper triangular

matriz (p+1xp+l).

The solution for ﬁi is given by

(T(p-t-l xp+1)) . =0 {11)

Vi-4
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Transposing the p—l-lst vector of (T), we have, for ,8.1

_ 1 ~
i
Bp 1 1(p+l) -1
A -1 4= - (': (pxp)) Lo p+1) (12) -
n £ °
M1 L plptl) .
The first few solutions are provided below.
Zero Order
X = z, (13)
B'ij
good only if ———<< 1.,
4.,
it §i
Tirst Order
i
X = -t—l—l- 2 (14
12 )
Second Qrder
1:23 i:11 t11 t22
*=i % -ttt *Yi i -t.i. ©® (19)
12 23 13 22 12 23 13 22

The Gram-Schmidi coefficients are listed below:

i =gl gly §<i

ij ]
T i-1 1/2

s i""l i
b [(Cl lz"jzl b Bj) (Cl 12". KT ej):'

il
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To ohiain the upper triansular inverse of T, lei S be the inverseof T,
" o

then the nonzero upper triangular elements of S are given by

s, = L
ii t..
131
j-1
8,. = -—-1-(2 s. t )
ij t.. ik kj ji=i
3 k=1

From the above, it follows that the Bi coefficients are given by

Boti-i= Si,pi I=1,2,...,p

B.
. . . . . i PO
Since we are interested only in the ratio -——ﬁp , the tp +1,pel coefficient need
not be generated and may be arbifrarily set equal fo unity.
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ABSTRACT

A variable-metric algorithm is described that makes use of both linear and
guadratic penalty terms for handling nonlinear constraints and employs both pro-
jection and penalty features, Quadratic penalty coefficients are adjusted ina
process which attempts to maintain a positive-definite matrix of second partial
derivatives of the fxmcii.ion including penalty terms without generating the large
positive eigenvalues traditionally attending the use of quadratic penalties, which
cause zigzagging and slowed convergence. The schemes contemplated make use
of inferred second-order properties not only in terms of the variable metric of
DFP (or its relatives) but by estimation of second directional derivatives by fitting
cubics to various functions along directions of search, Some experiments are de~
scribed with a simple consirained-minimum problem contrived to offer difficulties
with methods that use only' linear penalties, hence taxing the quadratic-penalty-

adjustment procedure,
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INTRODUCTION

The arrival of varigble-metric parameter optimization, the Davidon-Fletcher-
Powell algorithm (Ref. 1) and its relatives, literally revolutionized numerical optimi-
zation in the sixties., Even variational problems, crammed into the mold by some-
times awkward parameterizations, were treated handily by DFP in competition with
various sophisticated continuous—control algorithms. The key to success is the
superficially first-order character of the technique — only first partial derivatives
need be generated explicitly — together ;.vith speed and the sureness of convergence

accomplished by inference of second-order properties.

But in most variable-metric applications work the constraints are treated by

' the quadratic penalty function, a primitive device well kmown to affect convergence
rate adversely and to magnify numerical errors. The combination of penalty function
and variable metric was explored in a 1966 paper (Ref. 2) which included various
auxiliary devices to ameliorate the adverse effects of penalty-function approximation.
This particular computational procedure has turned out to be 2 reliable-work—horse

and is currently in fairly wide use in day-to-day applications work.

Efforts at adapting variable metrics to the standard alternative scheme for
treating constraints, gradient projection, proved straightiorward and immediately
tractable only in the case of linear constraints; (Ref. 3). Variable-metric projection
schemes, making selective use of what amount to linear penalty functions, wersa
eventually developed for the case of nontirear constraints and proved workable in
limited tests (Refs. 4 and 5). This class of variable-metiric scheme has only seen

limited use in complex applications, however, and is not yet highly developed.

One suspects that current-state-of-the-art schemes are costly and slow

compared to what is possible. The focus in the following is upon that class of
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probleﬁ'ls in which auxiliary vector-matrix compuiations are inexpensive in com-
parison with the generation of function samples and gradients, as, for example, in
aerospace trajectory-shaping problems. Use is made of both penalty and projection
ideas and various other features of the algorithms of Refs, 1-10; the adjustment of

penalty coefficients represents the main innovation, and the bulk of the disqussion

will be devoted to this.

A VARIABLE-METRIC GRADIENT PROCESS WITH LINEAR~PLUS-QUADRATIC
PENALTIES

. Consider an alternative to the problem of minimizing a function (%)
('x an n-vector) subject to an m-vector equalily constraint g(x) =0, namély

the minimization of the function £ given by
f=fights g Kg M

which contains both linear and guadratic penally terms. With A= 0 and the
elements of the diagonal ma'.trix kﬁ = 0, one has the quadratic penalty scheme
(Ref. 68); large k values are needed in this approach not only to insure that the
function adopted for minimization actually possesses a minimum near the con-
strained minimum sought, but also to render the magnitudes of the constraint

violations, lgi] , small at the minimum.

Hestenes' Method of Multipliers (Ref. 7) employs both linear and quadratic
penalty terms, with the quadratic terms viewed as primary; the linear terms,
missing in a first major iteration, are introduced as auxiliaries to reduce con-
straint violations and permit use of somewhat lower quadratic penaity coefficients.
The X vector for each major iteration, which consisis of a minimization of f , 18
taken in this algorithm as the value of A+Kg at the end of the preceding major
iteration. Of course, any minimization algorithm can be used for the major itera-
tions but, for such unconstrained problems, DT¥P and its relatives are highly

competitive,
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- The algorithm examined in the following makes use of the form of f above
including both linear and quadratic penalty ferms. However, the viewpoint taken
is different from the Method of Multipliers, namely that the linear terms are
primary, the quadratic ones supplementary and missing whenever advisable. The
A-vector components will be determined as the projection values every few cycles,
and the K diagonal elements chosen generally so as to provide the second partial
derivative matrix 'f“ﬁ with positive definiteness, but without the excessive margin
traditionally furnished by large guadratic penalty terms, which hinders convergence.
The linear penalty terms provide the means of reducing constraint violations to
zero in case the constraints are compatible, i.e., the surfaces defined by 8= 0

have an intersection,

The two algorithms examined employ DFP (Ref, 1) and its batch-processor
DFP modification (Ref. 8) applied 1o f for major iterations, They bear a resem-
l-Jlance to the Method of Multipliers, differing from it in the determination of A and
k values, It is similar for the first few cycles, during which the diagonal K ele-
ments are assigned "moderately large' positive values in the quadratic-penalty-
function tradition. The major iteration proceeds by variable meiric for n cycles,

however, rather than all the way to a minimum,

The general idea of the quadratic-penalty-coefiicient selection scheme is

control of the eigenvalues of the second-partial-derivative matrix

m mn T
f=f+Z)\..+Zk...+.. 2
wx T xx JngX . 5 (8 ngx ngng) (2)

= i=

o produce positive-d-finiteness and a largest eigenvalue not much excceding the largest
eigenvalue of fxx+ gxx‘\ [illegal notation but suggestive shorthand for the first two
terms of (2)]. One would like this not locally, with X the projection value, but at

the constrained minimum where the projection X coincides with the Lagrange multi-

“plier vector; however, it would be difficult and expensive enough to calculate the local

VIi-4




second partials and the largest eigenvalue, so a less direct and more approximate
approach is taken. The scheme proposed as follows takes advantage of the fact that
there will usually be a large range of values for the ki meeting the requiréih'énts,

' the lower limit determined by loss of definiteness and/or excessive constraint viola-

tions, and the upper limit related fo the largest eigenvalue of fxx+ g A

During the n eycles of each "batch", or major iteration, second directional
derivatives along the n directions of search are estimated for the function
f*= £ +g )™, where X\* is given by
# T - T : '
A= _(gx Hogx) B Hofx @)
as the gradieni-projection value; this varies from cycle to cycle. Ho is a full-rank
nxn matrix, fixed during a batch, At the constrained minimum sought, the value
given by (3) is equal to the Lagrange muliiplier vector for stationary f+ gA; it is

independent of the metric H0 when evaluated at the constrained minimum.
For a step determined by the modified DFP algorithm as
Axi=x_ - X, . i=1, ---, n (4)

the first and second derivatives in the direction are given by

o AxT f:;
“ - Tat ©
T st '
f*'+— AX fx .
“TAx[ {6)
N Te Sl W E Al 2 Y i : -
2
| Ax] | ax|
P E(f*—f*+l + 2f*‘+.4f*'+ ®
ax P jax] -
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(Here the + superscript denotes evaluation at the i+l end of a search segment.)
The second derivative estimate corresponds to cubic fit fo £ and ' values at
the endpoints. In computations carried out with short word iength or subject to

excessive round-off error, the simple difference-gquotient approximation which is

the average of (7) and {8) may be preferable.

In the vicinity of the constrained minimum sought, some of the second di-
rectional derivatives of the function £ , Wwhich approximates the Lirst two terms
of § , can be expected to be positive as fxx+ gxxh possesses at least n-m non-
negative eigenvalues, The largest positive value determined over one or several
batches can be adopted as a guide for adjusting the penally coefficients, as it will

{411 in the range between zero and the largest eigenvalue.

The second directional derivatives of * in directions along the counstraint
funection gradients are not, in geneval, positive; if they were, in a large enough
neighhorhood of the constrained minimum, the quadratic penalty terms might be
dispensed with. One set of requirements on the quadratic penalty coefficienis
might be determined from second derivatives of ¥ in these directions, by requiring

them to be equal at the least to a guideline value.

Carrying this scheme out directly necessitates either special probing opera-
tions in the directions of the constraint gradients or the inference of equivalent
information from the function samples and gradients computed in the course of
minimization iterations. Both have been considered and investigated in a preliminary
way and a combination is recommended for use. An estimate of the latter type for the
penalty coefficients kj is given by the maximum (over one or more batches) of the

values kj given by
i
82 (et™ -1 .
]i max i . .
.= l !t+ 12l ! j=1 ———.m (9)
VoIBy B T By ’ ’

k.
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where,

-T o
6 - A}.i Jlx , i=1, ——-,n 20
| lax ] e | j=1, --=ym
5
=

Values are to be excluded from consideration when the two'terms of the denominator
in (9) are opposite in sign and nearly equal in magniiude; likewise when B given by
(10) is smaller than some prescribed value, indicating that the particular step Ax
was nearly in the tangent plane of tﬁe constraint whose guadratic penalty coefficient
requirement is being estimated. Here f=f+ g'i, where A is the value of the
linear penalty A employed in the function 3 during the partieular bhateh; a prime
denotes the first derivative along the direction of the siep taken, a double prime the
second derivative. The expression (9) was obtained by requiring the k value be
large enough to produce £ " equal to the guideline value ¢ f::a;x for =1 and re-
main bounded for small g (inasmuch as the denominator behaves like ﬁz foxr
g=0 and B small), Since il is desired that k estimates err on ithe high side,
the f' values used should ke the larger of the values at beginning and end of the

search segment for £ #' and the smaller of the two values for £ .

An additional candidate is introduced to cover the frequently-occurring

contingency that all Bj are small over one or more batches used in the selection,
i

viz. S at
(e’ _-£ .}
o = - ax  min _
5, £, - | (11)
£ ]
£
X

where 4 corresponds tp the last cycle before k selection and f;:i'n is talen as the
smallest of the £ values over a chosen number of batches, or zero, whichever is
the lesser. The multiplicative constant ¢ =1 in the guideline value of £ *' introduces
a measure of conservatism to offset the possibility that none of the candidate values of
£
£

s e .- e S .
in the maximization determining flgax is really close to the largest eigenvalue of

.-
R l .
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METRIC ADJUSTMENT

After determining the A and K elements anew at the beginning of each
major iteration, one would like to adjust the variable-metric matrix ¥ tio account,

at least approximately, for the changes. The corrections are based upon the idea
~ "'l
that the H matrix emerging from the preceding majox iteration approximaies fv.:-: .

No correction is made for changes in the sum A+ Kg appearing in the second
partials (2) as this sum approximates the Lagrange multiplier at the constrained

mininnmm when the g, are small.

Corrections for ki. changes are done sequentially, using

ALk,
H+AH = H—( ‘T )Hgi giTH (12)
]L-H!}.kigi Hgi : X X
x X

which accounts for changes in the last term of eq. (2) via the Schur identity (Ref, 2).
Lach increment Aki is limited to some fraction of the original or updated
value ki g0 as to insure that the denominator of the fraction in parenthesis re-

mains positive and does not nearly vanish.

TEST PROBLEM

The problem used for experiments employed a cubic in one variable, x 1

for f, and a quartic of the following form for the single constraint function g:

2 3
= +
f X, + a.1 X, ta,x; (13)
_ 2 2 4 ’
g = % - b1 %, bz Xq b3 £, . (14)
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“In the simplest case, used for functional checks of computer programming,
a,=8,= b?; =0, bl >0, b2 >0, the consiraint surface is a paraboloid of elliptic
cross-section and the minimum of the linear function f is aitained at the origin,

The constraint function nonlinearity is an essential feature of the well-defined con-

strained minimum, If a slightly négative value of a_, is introduced, one already

1
has a problem for which no minimum of £+ g A exists at the constrained minimum

as the Hessian matrix is indefinite and, accordingly, quadratic penalty terms are -
essential, This is not quite enough complexity for algorithm development, evaluation,
and comparison, however, as f+g ) is then quadratic and the variable-metric pro-
jection schemes have too easy a time of it, Hence, use of a_#0 and b3 #0 is

2

attractive, It should be noted that a2> 0 large enough precludes the appearance of

minima other than at the origin., The numerical values of the coefficients used in the
computational experiments were: a = -10”2, 5= 10_3, bl =1, b2= 102, b3= 10-1;
these are such as to offer modest challenge. '

The starting point for the numerical computations of the example was x_ = 10,

1

X, = 5, and Xy = 10, The multiplicative constant ¢ used in (9) and (11) to designate

oI
the guideline value of £° was taken as unity in the comparison,

COMPUTATIONAL COMPARISON

To afford a hasis for comparison, DFP was run on-the example with the quéd—
ratic penalty co. tficient fixed at several values and zero linear penalty coe_fﬁcient.
The first three entries in the accompanying table present thése rés.'ults. for quaﬁratici'
penalty coefficients of 103, 102, and 10. At the minima found, the constraint
g=0 was not satisfied owing to the absence of linear penalty ‘ferms,' "boundary shifi:i_ng",

or any other palliative, The violations were found to be excessive for k =10,
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_The next two entries in the table are for sequential and batch-processor
versions of the algorithm described in the preceding, The batch version was un-
accountably better than the sequential; usually, the sequential is slightly better
with fixed quadratic penalty when an accurate linear search is performed (Ref. 8).
The accelerated search of Ref. 9 was employed in all of the computations presently
reported, with a tight tolerance employed for termination. The quadratic-penalty
zdjustment procedure was restrained from changing the coefficient more than an
order of magnitude on any single adjustment. The scheme brought the coefficient
down into the range 10{L < k £ 10, a favorable range when the linear term is

present to avert large constraint violations.

The last two entries correspond to the variable-metric projection algorithms
of Refs. 5 and 4, réspectively, the latter slightly modified. These are reviewed in

Appendices A and B for the reader's convenience.

CONVERGENCE COMPARISON

. Quadraiic Penalty | Number of Cycles
Algorithm Coefficient k o Convergence

3
DFP 10 105

2
DFP _ 10 58
DIrP ‘ 10 24
linear-quadratic penalty/sequential variable 27
linear-quadratic penalty/batch variable ' 21
Rosen-Kreuser (modified) projection 64
Kelley-Speyer ~ -t projection " 72
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POSSIBLE IMPROVEMENTS IN PENALTY-COEFFICIENT-ADJUSTMENT
PROCEDURES

Two features intended to aid the process of adjusting linear and quadratic
penalty coefficients vill be described very briefly. These have been explored
computaiionally and found to produce reasonahle resulis, hut evaluated insuiiciently

to permit overall judgment on their meriis.

Early values of the linear penalty coefficients, the components of A, by

projection, tend to be far off the mark, which recommends use of a zero value
during the first batch, A short first batch suggests itself, m cycles instead of n,
mainly to reduce the magnitudes of the constraint violations. Tt might be hoped that
a better metric would also be obtained as well, better at least in the subspace de-
fined vy the constraint gradient vectors. An obvious modification of the batch metric

update formula of Ref. 8 is required.

Another obvious temptation is smoothing of A values used on successive
batches by weighted averaging, heavily weighting the new projection value when
there is an indication of accelerating convergence, as hy drastic shrinkage in the
magnitude of the projected gradient vector during the batch just completed, The
motivation for avoiding unduly large fluctuations in linear penalty coefficients, of
course, is that changing the function being minimized taxes the machinery for

inferring the metric and the various second derivatives,

In the limifed trials of these two features to date, it has been found that
they generally enhance the smoothness and "surefootedness' of the algorithm, al-
though at slight expense in convergence speed. The use of higher values of the

constant ¢ =21, say 2, oreven 10, has a similar effect.
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CONCLUDING REMARK:

The results are thought to indicate promise for the class of glgorithm com-
bining linear and quadratic penalty adjustment with variable-metric optimization,
More extensive testing is obviously needed, including the large class of problems

in which the quadratic terms can safely be adjusted downward to zero.
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APPENDIX A

THE ROSEN-KREUSER PROJECTION ALGORITIIM

After restoration of constraints, the gradients of f and g and the projection
multiplier vector are calculated and designated fx ) éx’ A at this batch-reference

point x = X.

A=-@Tra) &tui (A1)
(gx ng) gx 0 X '

The algorithm proceeds to minimize f+gX subjeci to the linear constraint
g (x-x) =0 (A 2)

by projecting the gradient of £+ g A upon this constraint at each step. The pro-

jection mulfiplier needed is

R ~1

_ T 2 WT 3 .
A= (g, Big) g H(f +e ) (A 3)

A linear search is made in the direction

Ax

]

- H(fx+ gxk+ gxk) (A 4)

to a one-dimensional minimum. On the first cycle A=0, but not subsequently,
except in special cases such as linearly constrained problems. The meiric H is
updated sequentially by the DFP formula evaluated using the gradient of f+gaA:
Eal " T
H(AE + Ag. AXAL + Ag_ Ay H T
H+AH = H- = XAT e TAXAX P (A 5)
(Afx+ Agx?t) H (Afx+ Agx A) Ax (Afx+ Agxk)

After n-m cycles, H attains its limiting value for a quadratic f, linear
g model; hence n-m is a natural batch size. It would seem generally more ef-
ficient to restore and relinearize affer each n-m cycles of DFP than to run to a
minimum of f+ gs. as proposed in Ref, 5. In fact, this feature encountered diffi-
culty in the numerical computations reported, and relinearization each ﬁ-m

cycles was the modification actually used.
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APPENDIX B

THE KELLEY-SPEYER PROJECTION ALGORITHM

The accelerated gradient projection process of Ref. 4 employs the formulas

Ax —aH(fx-kng) (B 1)

1
A

n

T -1
-(g, He ) g HE (B 2)

with A recalculated every optimization cycle which successfully terminates on

a one-dimensional minimum of f+g), and with H updated by

T
) H(Afx-l- Agx A)(AfX—F ﬁgx A H

~ T
H+AH = H +— 2% B%

T T (B 3)
Ax (Afx-risgxz\) (/_\.fx+ Agx A H (ﬁfX+AgXA)

which is the DFP formula applied to the linear combination £+ g, hence
guaraniees that I vemains positive definite. Constraint restorations are

carried out after each optimization cycle (Ref. 10).
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