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PREFACE

Throughout the 1960's the air mass zero efficiency of the silicon solar cell stag-
nated somewhere around 10 percent. Yet it was accepted by most people that an effi-
ciency greater than 20 percent was theoretically possible, There was, however, no
good explanation for this gap. People were_beginning to accept the possibility that it
was a fact of nature that we would have about one-half of theoretical eff'iciency." Happily,
a few years ago efforts were turned toward raising the efficiency, and they met with
success, These efforts fell into two broad areas, The first I call product improvement,
that is, an accumulation of information on obvious losses in the cell. This accumula-
tion had led to substantial improvements in cell performance, The second area is re-
search, The effort in this area revolves around several questions: Where do we want
to be? Why haven't we been able to get there? What is it we don't understand about the
cell? A .

We will cover both of these broad areas in this meeting, We want to focus :specifi-
cally on where we are now, how far we have come, how far we can expect to go, and
where we want to go, It is most important that we consider the goal or limit that we
want to set for ourselves and then, of course, outline the best way to strive to reach
that goal. NASA for the last few years has had a goal in its high efficiency solar cell
program of 18 percent under space conditions, that is, under air mass zero conditions,
The INTRODUCTION will explain how we set the 18-percent goal. o

Daniel T. Bernatowicz,
NASA Lewis Research Center
Chairman

K
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INTRODUCTION

Henry W. Brandhorst, Jr.
NASA Lewis Research Center
Cleveland, Ohio

About 4 years ago, the NASA Lewis Research Center began an examination of sili-
con solar cell efficiency in the hope of establishing a program leading to significant
improvements in cell performance. This study followed that of Wolf (ref. 1), which in-
dicated a maximum efficiency of 22 percent for 0. 01-ohm-centimeter silicon material.

In setting the NASA Lewis goal, efficiency calculations were made by assuring a
reduction of all losses to what was judged practical limits (ref. 2). These included
technological areas for which little, if any, basic research was needed and research
areas where further understanding was needed to approach the known fundamental limits,
These areas were the following: ‘

(1) Technological areas

(a) Reduced grid coverage
(b) Reduced series resistance
(c) Reduced surface reflection

(2) Research Areas

(a) Increased voltage

(b) Increased lifetime

(c) Reduced surface recombination velocity
(d) Reduced excess junction current

‘The first technological improvement would be to reduce the then current 10-
percent grid coverage to 5 percent. This could be accomplished either by use of a fine
line grid pattern or by the use of conventional wraparound contacts. The second would -
be to reduce all series resistance by proper patterning of the grid. For these calcula-
tions a power loss of 3 percent due to series resistance was used. Fmally, a reduction
in reflection from 10 to 5 percent was assumed. R B

These technological factors increase cell output by only about 15 percent. In order
to obtain a significant increase in cell efficiency, several basic research areas must be
considered, The area for largest potential gain in output is the open circuit voltage. -
For these calculations, voltages were obtained by using simple diffusion theory and in-
creases in base doping level, Lifetimes measured in ingots of appropriate resistivities
were used as input to the calculations, The value of surface recombination velocity used
was 102 centimeters per second, and an error function complement diffusion profile was
assumed, No allowance was made for generation recombination currents,' as these were
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thought to be extrinsic and capable of being reduced to negligible values. Thus, only
diffusion currents were assumed to flow in the cell.

Figure 1 shows the result of these calculations (ref. 2). Wolf's value of 22 percent
for 0.01-ohm-centimeter material is indicated as the maximum possible, and the re-
sults of these calculations are shown as the curve labeled maximum practical. A broad
peak in the vicinity of the 0. 1-ohm-centimeter material was obtained. The maximum
practical efficiency calculated was 18 percent. Also plotted in the figure are the ef-
ficiencies that had been measured about 5 years ago. Clearly, a wide gulf existed be-
tween practice and potential, especially with the more heavily doped material.

The NASA Lewis goal became to achieve an 18-percent-efficient silicon solar cell
and thus reduce the spread between thought and practice. A research and development
program was begun to explore the research areas listed previously. Three other major
areas were studied: (1) lifetime and the effects of processing on lifetime, (2) surface
states and surface recombination velocity, and (3) open circuit voltage and the role of
excess junction current in cell behavior. A summary of the findings to date in each of
these areas follows.

The first study focused on lifetime in silicon of different resistivities and attempted
to understand why the lifetime in most solar cell devices was about 10 microseconds,
whereas ingots had lifetimes of many hundreds of microseconds. This work was per-
formed by Centralab and showed that the main reduction in measured lifetime occurred
when the sample was sliced and not dﬁring subsequent processing steps. This reduction
apparently resulted from a change in boundary conditions of the device and not from
damage introduced in the slicing process,

Next, surface state and surface recombination velocity studies were initiated. The
initial calculations (ref. 2) had shown that, by tailoring the diffusion profile, high blue
outputs could be obtained even with S values as high as 105 centimeters per second.

By elimination of the ''dead layer'' due to the constant phosphorus atom concentration

in the first 0. 03 to 0. 04 micrometer of the diffused face, high responses at a 0. 4-
micrometer wavelength could be obtained. The measured values were consistent with
theoretical predictions made by using erfc profiles. However, additional increases in
output could be achieved with further reduction in S, Therefore, studies were initiated
both in house and with Professor H. Gatos at MIT to delve more deeply into surface re-
combination velocity. It is hoped that these studies will lead to management and control
of the surface properties of the cell and so achieve maximum cell blue response,

The final area of study, with the purpose of increasing the open circuit voltage and
reducing the excess junction current, is critical to major improvements in cell efficien-
cy. This problem is acute because the observed voltages of low resistivity cells are
much lower than expected from simple theory. In the Centralab work on lifetime dis-
cussed earlier, in which cells were made from 0. 01-to 10-chm-centimeter material,
open circuit voltages peaked just above 0. 6 volt for about 0. 1-ohm-centimeter cells.
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~ For 0.01-ohm-centimeter material, even lower voltages (0.56 V) were obtained. Cen-
tralab was awarded a contract to investigate the cause of these less-than-expected volt-
ages, They focused on the excess junction current because lifetimes in the material
were sufficient to achieve voltages above 0,66 volt. The first area attacked was the
elimination of surface leakage currents by oxide passivation. While passivation was suc-
cessful, no increase in cell voltage was achieved. Therefore, the Centralab work went
on to examine other areas that might account for the reduced voltages. Three mechan-
isms were uncovered that could account for the reduced voltages. These were
recombination-generation currents, heavy doping effects, and lifetime gradients in the
diffused layer.

As a result of the Centralab work, a grant was awarded to Professors F. Lindholm
and S, Li of the University of Florida and to Professor C. T. Sah of the University of
Nllinois to study recombination centers and heavy doping effects in solar cells. Finally,
a comprehensive computer program that could include all of our knowledge was needed,
A grant was awarded to Professor J, R. Hauser of North Carolina State University to
develop such a program and to test our theories against cell performahce.

We aré now in the midst of identifying the problems in the low resistivity cell,
Progress has been made, We know a little more about open circuit voltages and life-
time and perhaps, also about excess junction currents, but there is much more to be
learned, There are many paths to be pursued, and that is part of the purpose of this
meeting, Our results will be presented as will be those of others across the country
working toward the same goal. A consistent picture will appear as to where we now
stand in the quest for a high efficiency cell, and the key outstanding problems will be
defined.
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RECENT EFFICIENCY IMPROVEMENTS

Review of exper'imental evaluations of present day solar cells that
incorporate design features to increase efficiency



1. THE COMSAT NON-REFLECTIVE SILICON SOLAR CELL:
A SECOND GENERATION IMPROVED CELL"

J. ‘Haynos, J. Allison, R. Arndt, and A, Meulenberg
COMSAT Laboratories
Clarksburg, Maryland 20734

'INTRODUCTION

Recently, a highly significant improvement in the effi-
ciency of silicon solar cells has been achieved (1) at COMSAT
Labs and the resulting product has been labeled the Violet
Cell. The new cell makes use of newly developed (2) anti-
reflection coatings of vitreous Ta,05; or Nb,0; which suppress
reflection from the front surface as well as is possible for a
single layer anti-reflection coating. However, since the coat-
ing can be tuned only for a single wavelength, an average re-
sidual reflection of 7 percent still persists over the spectral
region in which a silicon cell is responsive,

Another approach to the problem of suppression of reflec-
tion losses was described (3) in the literature as early as
1960 and subsequently patented (4) by Rudenberg and Dale in
1964, This approach consisted of mechanically forming a large
number of tetrahedra onto the surface of the solar cell prior
to diffusion. It was claimed that multiple interactions be-
tween the surface and the light substantially increased the
cell output current. Although some laboratory cells were fab-
ricated to prove the physical principles, no further progress
has been reported subsequently,

During the past year COMSAT Labs has independently devel-
oped a chemically selective etching process which produces

microscopic tetrahedra uniformly over the entire surface of the
cell., The process exhibits a high degree of reproducibility
and has provided the take-off point for the development of a
substantially improved second generation COMSAT solar cell
known as the COMSAT Non-reflective (CNR) Cell. The surface
geometry, an explanation of the reflection suppression, and the
optical and electrical performance of the new cell under simu-
lated space conditions are discussed below.

*This paper is based upon work performed in COMSAT Laboratories
under the sponsorship of the Communications Satellite
Corporation.
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CNR CELL SURFACE GEOMETRY

The chemical etching process produces a surface with a
high density of tetrahedra as shown in Figure 1. This is a
- SEM view normal to the cell surface. One can observe the regu-
larity of the pyramid structure over the section shown and see
the apex of the larger pyramids and the outline of the sloping.
sides and bases. The surface is covered with 10%-10° tetrahedra
per square céntimeter and the average dimensions are 2 um in
height and 2 pm at the base. Figure 2 represents the same sec-
tion displayed at an angle of 45° to the normal, Note the
regularity and parallelism of the sloping sides. P P

INTERACTION OF LIGHT WITH SURFACE

An analysis of the enhanced surface absorption and its
effect on the generation of carriers is outlined here for a CNR- .
cell ‘and for:a conventional cell, both without anti-reflection
coating and coverslide. With reference to Figure 3, which rep-
resents a schematic of a small portion of the CNR cell surface,
light intensity I,, incident normal to the plane of the solar
cell, strikes the side of a pyramid at an angle of incidence of
57°., The reflection coefficient is about 0.33, and therefore
0.67Io is refracted into the silicon at an angle of refraction
of about 13° (dependent on wavelength) with respect to the face
of the pyramid.. The light from the first reflection strikes
the face of another pyramid at an angle of incidence of 9°. At
this second surface 67 percent of the intensity is refracted
into the silicon at an angle of refraction of about 2.5° with-
respect to the face of the pyramid. The result of this double .
reflection is that an incoming beam of intensity I, enters the
solar cell in two parts: 1) a beam of intensity of 0.67I5 at
an angle of about 44° from the normal to the cell, and 2) a
beam intensity 0.22I, at an angle of about 69,5° from the nor-.
mal to the cell.

Light is attenuated in an absorber according to Beer's
Law, which is

I =T71I' g-ax
where I is the intensity after light of intensity I' has trav-
eled a distance x in a medium of absorption coefficient a, 1In-
the case of the first refracted beam, if the penetration depth
of the light in the direction of refraction is x, then the
penetration depth,-d, in the normal direction is given by
d = x cos 44°, . Similarly, in the case of the second refrac-
tion, the distances x and d are related by d = x cos 59.5°, -



Substituting for x in Beer's Law, we find, for the total inten-
gity as a function of d after two refractions, the expression

I = 0.67I, &~'-%90d 4 g 227,7%-%70d

The generation rate of carriers is proportional to the
first derivative of the intensity with respect to 4, or

g ~ -0.93aIo 2“-39“dA- 0.43aI, #-'-%72d 7,

By way of contrast, for the case of light incident on a
smooth surface, the carrier generation rate is given by

g ~ -0.670Io 2-%9

. The generation rates, in arbitrary units, are shown in the
‘graph of Figure 4 for light of l-um wavelength for which a has
the value of 64 cm~!. Note the strikingly enhanced generation
rate in the surface owing to the reduction of reflection loss
and to the increased optical path length in the cell.

REFLECTANCE CHARACTERISTICS

-Reflectance was measured on an apparatus consisting of a
double beam, ratio recording, UV spectrophotometer equipped with
an integrating sphere attachment. Figure 5 shows the highly
significant reflection attenuation of the bare CNR surface com-
pared to a polished silicon surface, The reflectance curves in
Figure 6 were generated after these surfaces were coated with a
one-quarter wavelength thickness of Ta,0; and covered with 6-
mil fused silica. They show the decided advantage of a CNR
surface in that the reflectance is about 3 percent and quite
independent of wavelength over the entire region of cell re-
sponse. In contrast, the reflectance from the polished surface
with a well-tuned single layer of AR coating is so high at the
short and long wavelength ends of the spectrum as to represent
an average reflection loss for sunlight of about 7 percent.

*

ELECTRICAL CHARACTERISTICS

In the present state of development the CNR cell exhibits
current-voltage characteristics under simulated AMO solar radi-
ation as shown in Figure 7, The figure includes comparative
plots for typical flight tested Violet and conventional (circa
1970) solar cells of the same size (2 x 2 cm). The increase in
current and power output of the CNR cell with respect to the
Violet Cell is attributable primarily to the increased light
absorption. The maximum power output of the best cells to date
is 86 mW, corresponding to an eff1c1ency of 15.3 percent
(Johnson spectrum, total area). It is of interest to note
that, for terrestrial use, these cells exhibit an efficiency



of over 20 percent. Further improvement is anticipated with
continued development.

RADIATION CHARACTERISTICS

Figure 8 represents a plot of maximum power output versus
1-MeV electron fluence for the same three classes of cell.

Note that the relative power output advantage of the CNR cell
relative to the Violet Cell and to the conventional cell per-
sists over the entire range of fluences studied. The CNR cell
power output after exposure to a fluence of 3 x 10'“/cm?
(equivalent to a 7-year exposure at synchronous altitude) is
equivalent to that of the Violet Cell at beginning of life.

SPECTRAL RESPONSE

Figure 9 is a plot of spectral response for the same three
classes of cell before irradiation. It is interesting to note
that the CNR cell response has been improved over the entire
solar spectrum as would be expected. The spectral response of
the same cells after exposure to a l-MeV electron fluence of
2 x 10'%/cm? is shown in Figure 10. Note that the Violet Cell
and conventional cell have degraded at this fluence to the same
extent for wavelengths above 0.85 um, whereas the CNR cell re-
tains its advantage even over this spectral region, This effect
is a result of the lengthened light paths in the CNR cell as
compared to cells with a smooth surface.

CONCLUSIONS

A major change in the surface geometry of the silicon
solar cell has improved the light absorption characteristics
with consequent substantial improvement in the power output.
The reflection characteristics are unaltered by ionizing radi-
ation and the improvement in the red response resulting from
the altered light paths is less susceptible to radiation damage
than in the case of smooth surfaced cells. In view of the im-
portance of the end-of-life performance, the CNR cell repre-
sents an advance over the Violet Cell comparable to that of the
latter relative to the conventional cell.
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Figure 1. - SEM photomicrograph of normal to CNR surface.
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Figure 2. - SEM photomicrograph of CNR surface at 45° to normal,

Figure 3. - Optical path schematic of CNR tetrahedral surface.



GENERATION RATE (ARB UNITS)
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fFigure 4 - Generation rate for 1 0-um wavelength light as a function of light penetration depth'.
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2. HIGHER EFFICIENCY FOR LESS MONEY

Joseph Lindmayer and Charles Wrigley
Solarex Corporation
Rockville, Maryland

Our aim at Solarex is to achieve the greater efficiency |
for the least cost. This requires a continual examination
of approaches, especially in texms of reproducibility in
yield in mass production. Efficiency is controlled to a large
extent by defect states. Optical problems are not'significant
in efficiency since optical couplings can now be achieved qhite
well. For example, anti-reflection coating, graded index coa-
ting, surface texturing, etc. reduce reflection to an almost
negligible value. '

A large investment is not the main point for remaining
changes in optical properties. A single coating alone pro-
duces an optical coupling of approximately 94%. Texturing of
the front surface is useful if done in a cost effective manner.
We are pursuing this approach and results are shown in our re-
cent NSF quarterly report. Terrestrial cells do no€ require
costly polishing techniques and the final surface texturing
employed must be economical in achieving high efficiency.A
Efficiency areas limited by defect states are the following:

1. Damage to the front surface of a solar ceil, which
can be minimized by introducing less than 1015 impurities per
square centimeter. .

2. Defects throughout the bulk of silicon wafer, which

control the lifetime of photogenerated carrgers.
3. The back contact to the solar cell needs a high-low

junction with a low defect state density to keep the surface
recombination velocity low, that is, it should nod@tintroduce
additional damage to the crystal while providing a retarding
field. . A

4. ' Amorphous and polycrystalline forms of silicon are
essentially manifestations of high densities of defect states.
In the single crystal, the defect state density varies widely
(Cz, float zone, etc.). Formation of iunctioné.for‘the fronts
and backs of solar cells can utilize any of a féft'bf:possible
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diffusion techniques, but the resulting defect state density
can vary violently depending on technique. For example, it.
is extremely difficult to predict that a 830°C phosphorous
diffusion will result in a particular number of states. .Fre-
quently, it is not the impurities per se which introduce the
defects, as much as the control of the processing caution
required; for example, in removing borosilicate glasses in
microelectronie wafer processing before drive in. That alone
is not sufficient, but helps to alleviate the problem.

5. - It is not the purpose of this talk to relate magic
formulas for cell processing. We are working on efficient
terrestrial cells$ and also working under NSF grants to take
a broad look at sources and mechanisms of efficiency degrada-
tion and attack each one in turn. We all need a much better
depth and breadth of understanding. One, of course, prefers
a set of processing procedures producing large areas with low
defect densities and high reproducibility. We are presently
working on a broad-range type of parameter tolerant process.
It would also be desirable to avoid the ﬁse 6f batch type pro-
cessing, such as in vacuum systems because of cost factors.

' The output current of a solar cell is basically a measure
of defect densities, ultimately approaching 55 mA/cmz. The
cell photovoltages also are of interest to us because they
are much lower than they could be. We have formulated a
generai relationship and are studying the implications of such
modeling.. We have, as a start, the front and rear surface
recombination velocities, bulk doping, and impurity profile.
For light bulk doping, the cell benefits from the contribution
by the low-high junction and the contribution from photogen-
erated carriers flooding above the doping level, which help to
keep up the photovoltage at lighter doping levels.

At moderately heavy doping levels (.1l ohm cm p-type for
example), the bulk lifetime decreases. The bulk contribution

14



to reverse diffusion current decreases but the front junction
reverse current cannot then be ignored. The front is controlled
by the lifetime of the diffused layer and the surface recom-
bination velocity produced by introducing the impurity profile.

It appears that going toward intrinsic crystals rather
obviously produces control of the photovoltage by carrier
flooding and the high-low junction, with the net result of less
than 600 mV. Going to heavier doping, the front takes over and
it has the potential to control improvement. However, the par-
ticular impurity profile and the defect states introduced will
control the photovoltage.

$100/W - CONV.SPACE CELL N
efficiency
improvement
$10/W .
Quasirmass-
produced
Solarex cell %0,
in 1974 %%,
“, ‘0,
O" I"
“, l"c
%,
. %, %l,
%, ‘0,
SN - % /
30%/year %, *,, 20%/year
cost reductio "ﬁ cost reduction
l,"‘
/)
M’ ‘@,
OWrwzasarmIas COST OF CONV. POWER "’c,,%
()
ﬁz %%Q%
$0. /M ' . .
1960 1970 1980 1990

Figure 1. - Cost of solar cells as function of time at Solarex. Conventional space solar cells cost approximately
$100W. Solarex has reduced the cost to levels below $10W in 1974, A continued cost reduction program is
indicated by the 20% and 30%/year cost reduction lines. The cost of conventional power is intercepted
between 1980 and 1990
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TERRESTRIAL EFFICIENCY
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Figure 2 - Maximum efficiency as function of thickness.
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3. PROCESS TECHNOLOGY FOR HIGH EFFICIENCY SOLAR CELLS

Peter A Tles
Centralab Semicqnductor
El Monte, California

In the past few years, significant increases in silicon

solar cell output have been achieved in laboratories. These
increases included enhanced bulk (back surface field) cells,
violet cells and the non-reflective modification of the violet

cell.

Work is also in progress to combine these techniques.

Because of the high interest of potential users, there are

intense efforts to extend these reésearch advances into large
scale manufacturing methods.

On surveying the process technology, there are several

requirements which are common to all the high output cells.
These common requirements include:

a)

b)

c)

d)

13)

iii)

growth of high quality large crystals with suitable slicing
and surface finishing '

formation of shallow PN junctions, with good silicon pro-
perties both in the diffused layer and in the bulk region

application of high conductivity contacts in a fine,
multiline pattern, with good adhesion and no degradation
of PN junction properties

appligatibn of an antireflective coating with good trans-
mission over the whole wavelength range useable by silicon

In addition there are special requirements such as:

for enhanced bulk cells, a back surface field must be well
established without affecting other cell properties

violet cells require extremely shallow junctions with a
correspondingly higher grid line density

the non-reflective cells require special surface texturing
and added care in contact application
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» On evaluating the increases in the main I-V parameters
(Isc, Voc and CFF), all advanced cells have higher CFF, enhanced
bulk cells gain in long wavelength response and Voc, violet
cells gain mainly in the short wavelength Isc, while the non-
reflective cells gain in Isc across the spectrum.

The production process sequence must achieve the required
advantages of a particular cell design, and must also satisfy
most of the user needs. Thus the process is chosen for best
trade-off between output, environmental performance (including
radiation) and detailed user needs, especially cost and delivery
schedule. Careful cooperation between cell manufacturers and
users, with feedback on test results, is helping to complete
an iterative approach to the best blend of methods.

Turning to the future, it is possible that these advanced
cells may converge to produce the highest Isc and CFF values.
Thus it may be useful to work on optimum process methods which
can adapt to a range of high output cells, e.g. work on improved
methods to apply precise, fine line patterns with low cost.

Of the I-V parameters, Voc offers the most chance of
additional increase but work is needed to increase Voc while
maintaining other cell properties, such as short wavelength
response and high radiation resistance.

The present period is full of promise and challenge for
cell manufacturers. '

TABLE I. - PHOTOVOLTAIC PARAMETERS FOR
ADVANCED CELLS

[4—cm2 cells; 28° C; AMO illumination. ]

Cell type P, ISC’ VOC’ CFF Pmax’ 7
Q-cm |mA | mv mW | percent
Conventional 10 144 550 | 0.73 58 10
2 142 600 .15 63 11
Intermediate 10 154 550 | 0.76 64 12.5
Enhanced bulk 10 160 | 600 | 0.76 |- 73 13
Violet 2 165 590 .78 176 13.5
Advanced violet 2 183 590 .79 | 85 15
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TABLE II. - PROCESS NEEDS FOR PV PARAMETERS

Parameter Process needs

Short circuit current

Active area goal Evaporation masks
of 95 percent Photoresist
Silk screens
Preformed patterns

Increased short | Shallow diffusion

Surface shaping

Good antireflecfive coating (low a, n ~ 2, 2)
Multilayer antireflective coating

Increased long » | High diffusion length for given dopant con-
centration (plus diffusion control)

Back surface field cell (several methods)
Antireflective coating

Open circuit voltage

Lower resistivity | High diffusion length for given dopant con-
(to ~1 ohm-cm) centration
Good pn junction

Back surface Back surface field methods
field technol- Compatible short
ogy Compatible contacts

Cell fill factor

Low saturation Good pn junction
current Good shallow layer
' Minimum stress

Low series Sheet resistance control

resistance Many grid lines of good
conductivity

Low shunt Ingot surface control

leakage Compatible contacts and
coating
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4, VOLUME PRODUCTION OF ADVANCED SILICON SOLAR CELLS

John A. Scott-Monck and Paul M. Stella
Spectrolab
Sylmar, California

Recent advencements in technology have generated pressure on

the solar cell manufacturer to produce more efficient solar cells.(l’z)
This paper describes the methodology used to transfer these improve-
ments from the laboratory to the factory. It will also briefly des-
cribe some of our own advanced development aimed at producing a more

useful cell for space applications.

During the past ten years the power output of the typical
profuction cell has been relatively static, and most processes heve
remained constant. This stability has allowed a great deal of
information to be accumulated on the cell's performaﬁée under a
variety of mission environments. Thus a degree of confidence in
its reliability has developed. The experience gained by the manu-
facturer has steadily reduced cost. Any "new" cell must show that

it can meet previous reliability standards and be competitive in cost.

With these requirements as a baseline we undertdok to understand
and evaluate the changes necessary to produce advanced cells. A break-
down of those elements influencing short circuit current is contained
in Figure 1. The standard cell is compared against two types of
advanced cells, field and hybrid, now in production. The hybrid is en
extension of basic technology while the field cell represents a more
dramatic departure from cell fabrication methods. An estimate of future

improvements in these cells is also included.

1. J.ALindmayer & J. Allison, Conf. Rec. Ninth Photovoltaic
Specialists Conf., Silver Spring, Maryland (1972)

2. J. Mandelkorn & J. Lamneck, Jr., Conf. Rec. Ninth Photovoltaic
Specialists_Conf., Silver Spring, Maryland (1972)
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The diffusion process is the key to the high efficiency space
cell, Other process changes mist be made in order to retain the in-
creased short wavelength response and avoid compromising cell curve
shape, both affected by the diffusion., Significant improvements were .

made by adjusting diffusion psrameters, but not processes.

Reducing the junction deptﬁ by a factor of two required a
sophisticated contact configuration to minimize series resistance
effects. Although photoresist techniques can produce more refined
contact patterns we chose to retain the conventional metal mask
evaporation process on the basis of reliability and cost. This caused
some reduction in the cell active area but still gave respectable

curve shape,.

There are high tempersture (500—60000) processes that the cell.
must experience after contact metallization. In the case of shallow
Jurnctions there is a high probebility that contaminants contained in
the titenium interface layer will migrate through the junction and
reduce power output. 3 The laboratory approach eliminated titanium,
but reliability considerations led us .to change process sequences,
even though this added cost, in order to retain the titanium-silver

system.

Conservation of short wavelength response demanded an'optical
steck, AR coating and filter, that had optimized transmission character-
istics. It was necessary to replace silicon monoxide with tantalum
pentoxide (Tagos). The improved transmission in the region below
600 nM coupled with its higher refractive index made this an attractive
choice., This was a major change in processing, requiring new equip-
ment and a concentrated development effort to derive a reproducible

process.

3. J. Lamneck, Jr. et, al. Conf Rec. Ninth Photovoltaic Specialists
Conf., Silver Spring, Maryla.d (1972)

24




Once this was achieved the Ta.205 coatings were rigorously tested
to the same standards as silicon monoxide. Since a manufacturing
facility does not have access to the more sophisticated analytical
equipment possessed by other organizations, we provided samples, made
under production conditions, for customer evaluation. At this time
there is no evidence that Ta 0. cannot perform as well or better than

_ 25
the conventional coating used previously.

A new cut-on filter was developed by the supplier for the advanced
cells. The choice of the cut-on wavelength was conservative and based-
on reliability considerations. Since the Ta205 coating is a better
opticael match to coverglass, the completed assembly shows an improve-~
ment in output. ¥Figure 2 shows a physical characterization of the new

cell types compared to the conventional product.

The field cell was theoretically predicted a number of years
ago(h), but it has only been recently reduced to practice(z). The
fiéld is developed by creating a majority carrier gradient at the back
surface of the cell which prevents recombination of light generated
minority carriers at the back contact. This results in a significant
increase in the long wavelength response (>7OO nM) of the cell. Since
the field tends to increase the effective minority carrier diffusion
length it has a greater impact on thinner cells because the effective
diffusion length can become much greater than the cell thickness.
Although not completely understood, field cells also possess much
higher open circuit voltages which are almost independent of the bulk

resistivity.

Two techniques for creating the field have been demonstrated;
diffusion from a source layer of evaporated aluminum and diffusion

of boron using-conventional methods. The former technique is much

¥. M. Wol’, Proceedings IEEE, Vol. 51, No. 5, May (1963)
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less complicated and can be done at relatively low temperaturee.
(750-800°¢) which aids in the preservation of the existing minority
carrier lifetime. Since there is little difference in cell output
. using either-process, we employ the aluminum diffusion technique. -

‘ Common facilities are used to manufacture both advanced cells.
“Although the field cell requires additional processing steps, their

' sequence has been arranged to fit the basic line flow. Presently
all,fhree cell types are being manufactured simultaneously with
advenced cells making up over fifty percent of production. Advanced
cells with average efficiencies in excess of 12.5 percent are now

- being produced in quantity.

We feel fhat the field cell holds the greatest potential for
. growth. Unlike the hybrid, the field cell can provide high initial
pover independent of both its thickness and base resistivity. ,.
: Figure 3 shows a 0.1 mm (.004") thick field cell made from 100 ohm-cm
i material compared to a hybrid cell of the same thickness and resist-
- dvity. Efficiencies in excess of twelve percent have been achieved
; from 0.1 mm high resistivity field cells. There is some theoretical b
i grounds for predicting that this cell might show superior behavior

 under radiation and we hope to test this in the near future.
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STANDARD HYBERID FIELD

MATERTAL C.G, C.G, C.G.
PREPARATION CHEM ETCH CHEM ETCH CHEM ETCH
DIFFUSION DEPTH 3000-3500 A 1200-1600 X 1500-2000 &
P+ NO NO YES
CONTACT MATERTIAL Ag-Ti-(Pd) Ag-Ti-(Pd) Ag-Ti-(Pd)
CONTACT y .040 ohmic .020 ohmie .020 ohmie
CONFIGURATION 6 x .006 grids 18 x .002 grids 14 x ,002 grids
AR COATING Sio

i . '139.205 '1‘8.205
ADHESIVE R6-3L489 DC93-500 DC93-500

LT —T9H0 19t
COVERGLASS FUSED QUARTZ FUSED QUARTZ FUSED QUARTZ
U.V. FILTER JAlp .35u <351

Figure 2. - Cell physical characterization.
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Figure 3. - Advanced development cell.
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5. PERFORMANCE OF ADVANCED SILICON SOLAR CELLS
IN A SPACE ENVIRONMENT !

Ronald W. Opjorden, Leland J. Goldhammer, and George S. Goodelle
Hughes Aircraft Company
El Segundo, California

INTRODUCTION

Significant improvements in cell efficiency have been obtained with labora-
tory or limited production quantity solar cells (for example, the Comsat
Laboratories ''violet'' cell); the problem has been to mass-produce improved
efficiency cells. In May 1973, therefore, a program was initiated and dir-
ected by Hughes Aircraft Company in cooperation with the Heliotek Division
of Textron Electronics, Inc., and Optical Coating Laboratory, Inc. (OCLI),
to develop and qualify a higher efficiency solar cell and cover(s) that would
be available in production quantities in 15 months, The initial objective of
this program was to produce a cell with 15 percent more power at beginning
of life than the conventional cell.

Development of such a cell that could be manufactured in production
quantities required the following:

1) An extensive test program
2) The use of proven, cost effective manufacturing processes

3) The incorporation of cell improvements that offered the greatest poten-
tial performance gains but were also based on existing technology. -

The program was a success in demonstrating the performance of advanced
cells in a space environment, and its end results were in effect two cell
types, designated by Hughes as the intermediate and high efficiency solar
cells; both included Heliotek and OCLI 0. 35 pm covers. The intermediate cell
has the same grid structure and cell blank as the conventional cell and incor-
porates only optical stack improvements. Flight production intermediate
cells exhibit a performance gain of 10 percent over that of the standard cell.
These cells have been received by Hughes from Heliotek in quantities of

6000 equivalent 2 x 2 cm cells per week beginning in August 1974.

The high efficiency cell, the end product of the full development program,
uses a new optical stack, a shallow diffused junction, high base resistivity
material, and back surface field technology; it has a 21 percent power gain,

+Presented by Edwin Stofel, Hughes Aircraft Company.

*All power numbers given in this paper relate to average production lot
power at specification voltage for 2 x 2 and 2 x 6.2 cm solar cells; i.e.,
actual maximum power is higher.
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beginning of life, compared with the state-of-the-art solar cell. It is beihg
received in the same production quantities and rates as the intermediate cells.

Thus, in developing solar cells that demonstrably exceed present cell per-
formance, are amenable to mass production processes, and are deliverable "
in production quantities, the program has exceeded its initial goals. This
paper describes these cells and the test programs for their qualification.

CELL DESCRIPTION

Basically, the h1gh eff1c1ency cell (F1gure 1) is a shallow diffused n/p cell
with a pt back surface field and a 202-cm base resistivity. The shallower

n region results in an increase in the Igc of the cell because of the increased
spectral response in the blue wavelengths (0.35 to 0.5 um). The cell has a.
narrower bar (0.064 cm) AgTiPd contact with solderless grids. The num-.
ber of grid lines has been increased to compensate for the higher sheet resi-
stivity of the shallower diffused layer (seven grid lines per centimeter
versus three for the standard cell) so that the current output of the cell at -
the maximum power voltage is optimized. The grids are vapor deposited by
means of mechanical shadow masking, as is the case with the conventional
cell; shadow masking was used rather than a photoresist technique because
it permitted the use of existing production technology, without necess1tatmg
a long period of process development

To further increase output, both types of cells use an antireflective coating
of Ta205 rather than SiOx. Ta205 has an index of refraction better matched
to that of the coverslide adhesive (Dow Corning 93-500), resulting in an in-
crease in the Igc of the solar cell after the cover has been applied, rather
than the loss characteristic of the conventional cell. Furthermore, cover- '
slides with a lower cutoff UV filter (0. 35 versus 0.41 pm) are used, so that .
most of the increase in output due to the increased spectral response of the-
cell in the region below 0.41 pm can be utilized. :

The high efficiency cell also has a back surface field, or pt* region, located
underneath the back contact of the cell. This p' layer is a highly doped
region of the same conductivity type as the bulk material; the resulting
gradient of the doping between this region and the bulk material region
results in an additional increase in Ig¢e and V.

The intermediate cell incorporates the 0. 35 pm cover cutoff, Ta20s anti-
reflective coating, and DC93-500 cover adhesive; in all other respects it is
the same as the standard cell. Characteristics of the three cells are com-
pared in Table 1; their structural differences can be see in Figure 2. Fig-
ure 3a presents ""average' production lot I-V curves for a 2 x 6.2 cm con-
ventional cell, a 2 x 6.2 cm intermediate cell, and a 2 x 6.2 cm high effi-
ciency cell; Figure 3b shows the I-V curve for a high grade 2 x 6.2 high
efficiency production cell and indicates what might be expected from the

cell with further production experience., Data presented are based on X-25 .
test at 25°C and are traceable to new balloon flight primaries.
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TEST PROGRAM

"T6 qualify the cells for production, numerous tests were run, especially in
the areas of particulate and UV radiation. Table 2 summarizes the scope of
the test program; two of the tests — the UV and the electron irradiation
tests — are discussed in more detail below.

UV Irradiation Tests

Extensive screening tests were performed on the coverglasses with the

0.35 pm UV filter and on the DC93-500 adhesive to determine the darkening
factor due to UV irradiation. It was found that the 0. 35 pm filters are at
least equivalent to the 0.41 pm filters in their ability to prevent damaging
UV'irradiation from reaching the adhesive. Furthermore, the complete
solar cell assembly was tested in a UV space environment so that the possi- -
bility of darkening caused by interaction between the antireflective coating,
the silicon, the UV filter, and/or the DC93-500 adhesive could be evaluated.
In this test, high efficiency solar cells and control cells were irradiated
under a xenon light source equivalent to 1-1/2 suns of UV. The cells were
mounted in a fixture under high vacuum to simulate the space environment;
the plate on which the solar cell assemblies were mounted was water-cooled’
so that none of the components of the cell assemblies would be subjected to

a temperature beyond the limits of its space environment.

The 1-1/2 sun UV irradiation was continued for more than 1500 equivalent sun
hours, The short circuit currents and spectral responses of the solar cell
asseémblies were monitored at frequent intervals without interrupting the high
vacuum. Cell temperature and light source 1ntens1ty and spectrum were also
monitored. A 0.3 to 2.7% loss in short circuit current was measured at the_
end of 1500 equivalent sun hours for the advanced solar cells, These cells had
Ta,O¢ antireflective coating and were covered with DC93-500 adhesive and

0. 35 ym wavelength filtered quartz. Most of the loss occurred within the first
200 hours, indicating that the darkening effect saturates at longer times. The
loss observed in conventional S1Ox coated cells, covered with R63489 adhe~
sive and 0. 41 um wavelength filtered quartz, ranged from 2.2 to 4.2%. Thus,
the new cells are equal to, or better than, the conventional cells that have
been used in space for the past several years.

High Encrgy Electron Irradiation

To'date, numecrous particulate irradiation tests have been conducted, includ-
ing high energy electrons, high energy protons, and low energy protons.:
Typical of these was the high energy electron test conducted at the Jet Pro-
pulsion Laboratory in Pasadena using their Dynamitron particle accelerator.
This accelerator is capable of irradiating test speciments at energies of
200 keV to 2. 5 MeV. The following energy levels and cumulative fluences
were used:
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. Electron Energy, MeV" . Electron Fluence, e/cm2

0.75 5 x 1013, 4 x 1014, 1 x 10!
T 1.0 1x10'2 to 1 x 10!®
2.0 5 x 1013, 4 x 1014, 1 x 101°

Figures 5a and 5b show the results of this test in terms of the normalized
‘solar cell electrical parameters open circuit voltage, Vi, short circuit
current, Igc, and maximum powers. Pmays; as a function of increasing

1 MeV electron fluence for the conventional and high efficiency solar cell
assemblies, respectively. The figures show that the normalized Pmax for -
the high efficiency cell design at 5 x 1014 e /cmZ (a typical maximum mis-
sion environment for equivalent 1 MeV electrons) is on the order of --

3 percent lower.than that of the conventional design. However, because-the
combination of design parameters in the high efficiency cell yields an initial
beginning-of-life output 21 percent higher than that of the standard cell of
similar area and thickness, the net effect is a higher end-of-life output ’
(i.e., at 5x 1014 e/cmz). A similar relationship has been obtained for high
energy proton irradiation, i.e., a more rapid decay in voltage gain due to
the back surface field than in current gain due to the pt at high equivalent

1 MeV fluence levels. - : ' )

Balloon Flights

One -area of uncertainty involved with the cell development was measurement
of the air mass zero (AMO) output of the cell. Because the cell is "bluer"
(that is, has a higher response in the lower wavelengths), if conventional
solar cell standards were used to calibrate the light sources for measuring
the higher efficiency cells it was possible that the cells would read higher or
lower than their true AMO values. In order to find out how much this dif-
ference was, and provide encapsulated standard cells that would accurately
calibrate light sources, both advanced and standard cells were flown aboard
four JPL balloon flights in the fall of 1973 and the spring of 1974. Table 3
is a matrix of the different design variables that were evaluated as part of
this program.

Because most of the cells flown in the spring 1974 flights were prototype
cells manufactured in the laboratory and included only the smaller 2 x 2 cm
size, a further balloon flight program has been planned and is currently

under way; this program will fly advanced cells taken from the production
line. ‘

CONCLUSION

Advanced intermediate and high efficiency solar cells have been developed
and comprehensively tested in both ground simulated space environment
and balloon flight tests. The tests have confirmed that the cells are ready
for flight use.
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TABLE 1. SOLAR CELL CHARACTERISTICS®

Characteristic

Standard Cell intermediate Cell High Efficiency Cell
Power, mW 570 629 69.1
Size, cm 2x2 2x20r2x62 2x20r2x62
Diffusion depth, um - 03 0.3 02
Bar contact width, cm 0.089 0.064 0.064
Contact material TiAg TiPdAg TiPdAg
Antireflective coating Si0, Tay0g Tay0g
UV filter, pm 041 0.35 035
Cover. adhesive R63489 DC93-500 DC93-500
Resistivity, 2cm 10 10 20
Thickness, cm 0.030 0.030 0.028
Back surface field No No '

Yes

*Based on 2 x 2 cm size and production lot power at specification voltage.
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TABLE 2. ADVANCED SOLAR CELL QUALIFICATION TESTS

UV

® Cover (0.35 pm Optical Coating Laboratory, Inc. and Heliotek) -

Particulate irradiation, protons and electrons

Transmission as function of angle of incidence and temperature (pre-, post-irradiation)
Mechanical {pre-, post-irradiation) :
Elemental analysis of UV filter

UV leak scan to 0.12 pm

® Cover and adhesive

UV tests
Sandwich
Cover only
Particulate irradiation {adhesive)
Protons, neutrons, electrons
Outgassing

® Cell

Four electron screenings
Two “slow” electron screenings
High energy protons
Photon irradiation of electron irradiated cells
Interconnection
Seam welding '
Soldering
Diffusion/blank characterization-
Spectral characterization
50°C anneal — post-irradiation
Electrons
Protons
Low energy protons
Transmission, absorptance, Tas0g, TiOy
- UV irradiation, TapOg TiO,

® Assembilies

Electrical tests

Electrons, protons

UV tests

Balloon flights

Thermal characterizations
Absorptance and emittance (pre-, post-irradiation)
Temperature coefficients (pre-, post-irradiation)

Angle of incidence tests '

Thermal, mechanical environments
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TABLE 3. CELL TYPES USED IN BALLOON FLIGHTS

Cell Type | Junction Type | Back of Cell | Base Resistivity, £2cm | Cell Thickness, cm Contact Cover Ogi::'sln.
[ 0.30 pm n/p Not P+ 10 0.030 TiAg 0.41 um Si0,
" 0.15 pm n/p Not P~ 10 0.030 TiPdAg 0.35 pm Ta,0g
n 0.20 pmn/p P+ 10 0.020 TiPdAg 0.35 pm Tay0g
v 0.20 pm n/p P+ 1 0.020 TiPdAg 0.35 pm TayOg
vi 0.15 pmr/p Not P+ 10 0.030 TiPdAg Bare quartz Tay0g
Vil 0.20 pm n/p P+ 10 0.020 TiPdAg 0.35 pm Tazo5
vinl 0.30 pm n/p No* P+ 10 0.030 TiAg 0.35 pm Tay0g
ix* 0.15 pm n/p Not P+ 10 0.030 TiAg 0.35 um Tay0g
x* 0.15 pm n/p Not P+ 10 0.030 TiAg Bare quartz Tay0g
X 0.20 pmn/p P+ 20 0.030 TiPdAg 0.35 pm Tay0g

*Pre-irradiated to 1 x 1015 1 MeV electrons.

Figure 1. - High efficiency solar cells.
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COVER ADHESIVE

DOW 93-500 - DOW 93-500 -
DOW R63489 UV FILTER
0.35 um 0.35 um
THIN GRIDS THICK GRIDS 0.41 pm
SOLDERLESS

SOLDERLESS
SOLDER COATED

MULTIPLE (7/cm) COATING

T.zos

Sio

SHALLOW P CONVENTIONAL
DIFUSED z DIFUSED
4

14 mil MAX
THICK CELL

12 mil MAX
THICK CELL

J

2.2 cm
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6. ELECTRON DAMAGE IN HIGH EFFICIENCY SOLAR CELLS

W. Patrick Rahilly
Air Force Aero-Propulsion Laboratory
Wright- Patterson Air Force Base, Ohio 45433

INTRODUCTION - One Mev electron irradiations were performed on high

efficiency and state-of-the-art conventional solar cells. The irradi-
ations were performed at the Van de Graff facility at the Aerospace
Research”Léboratory, WPAFB. The cells were irradiated to four fluence
levels. After each level was reached the cells were current-voltage

tested at six temperatures. Spectral response data was taken at 28°C.

-DESCRIPTION OF CELLS - Table I summarizes the gross physical, charac-

teristics of the cells tested. Exact cell thicknesses and resistivities
were not known; nominal values fof these parameters are given. The cells
were obtained from Centralab and Heliotek; the 50Q cm Heliocells were
provided to AFAPL for our evaluation and data exchange. The 29 cm and
102 cm Violet cells were provided by Centralab under Contract F33615-
73-C-2073. Thellon cm Heliocells and conventional cells were obtained

under purchase orders to the respective vendors.

TESTING PROCEDURE - Two cells from each category in Table I were evaluated
at four fluence levels (1013, 101%, 10153, ahd 1016 electrons/cm?). The
cells were pre-irradiation evaluated under the AFAPL Mark I Solar Simu-
Tator at six temperatures (45°F, 70°F, 95°F, 120°F, 145°F, 170°F). The
cells were then irradiated to 10!3 e's/cm? at room temperature and

returned to the Mark I for evaluation at the aforementioned temperatures.
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After evaluation, the cells were returned to the Van de Graff to -
accumulate fluence to the next level. This procedure was - repeated
until a fluence of 1016 electrons/cm? was reached. The electron fluxes
were high; from 0 to 1013 e's/cm2, & = 7.81x 1010 e/cm2/sec; 1013 to
1014, ¢ = 7.81 x 1011 e's/cm2/sec; 101% to 1015, & = 4.69 x 1012 e/cm?/sec;
1015 to 1016, ¢ = 7.81 x 10!2e/cm?/sec. It was assumed that these fluxes
were not large enough to induce dose rate depéndent effects. The Igc,
Voc» Pmax data obtained for each fluence level was Teast squares fit to
a linear temperature dependence. The temperature coefficients obtained
are summarized in Table II.-

Spectral responsé data for each fluence level was taken on the
AFAPL SCATS (So]ar Cell Automatic Test System) at 28°C; The SCATS
also provides AMO background illumination superimposed on the mono-
chromatic light. A quick check revéa1ed no‘iﬁjection ievg] dependenqe.

of the spectral response.

RESULTS - Figure 1 illustrates the spectra] content of the AFAPL Mark I

solar simulator. It is quite clear that our Mark I is "blue deficient."
Because of this, the shallow junction cells (Violet and Heliocells)

did not show enhanced radiation resistance compared to the conventional

solar cells. This is illustrated in Figure 2.

The 102 cm and 50Q cm Heliocells displayed a marked annealing
after 1016 e's/cm2, Some anneal was expected but not to the extent
shown in Figures 3 and 4. Because of the way the cells were tested,
any annealing for thé lower fluences was obscured. "Figure 5 shows

similar data for the 20 cm Violet cells; no annealing was apparent. -
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Figure 6 compargSASpectral responses for the 20 cm Violet cells
and the 102 cm Heliocells. The Violet cells have a:junction depth
near..lgf§; the Heliocellé have junétion depths slightly over .2};.
These depths are apparent: from the response data. Also shown in
Figure 6 is the relative radiation sensitivity of the three fesistivities
with. 502 cm being tﬁé most resistant.

Figure_7.shows the absdlute maximuﬁ'power versus electron fluence
at 70°F. The 22 cm Violet cells were higher in efficiency but as
shown in Figure 2, hone of the high efficiency cells tested demonstrated

superior radiation resistance over the conventional cells.

DISCUSSION - Thg‘résu]ts are rather mundane except for the enhanced
annealing of the Heliocells. The fact that the anneal occurs for the
Heliocells is thought to be associated with the nature of the aluminum
P* back surface region. A possible model for this anneal can be
summarized as folloﬁs: After irradiation, vacancies and interstitial
sflicon atoms exist in_]ahge numbers. A large number of vacancy -
interstitial si]iéon fecombfnations occur élmost spontaneously -
however, some vacqnéies and silicon interstitials remain along with
the formation of vacahqy—dopant impurify defects. It has been shown
that substitutional a]uminum‘atoms will interchange with silicon
interstitials. This reaction results‘in'aIuminum atoms being ejected
into interstial space withih’theiiattice. The aluminum interstitial
is stable at temperatures approaching 250°C. It is thought that the
aluminum atom occupying on interstial position has three electronic

levels within the band gap --a neutral atom level near the conduction
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band, a singley ionized level somewhere near mid gap and a doubley
jonized level near the valence band.‘ If this set of levels exists,
then the interstitial aluminum present would most like1y_be neutral

and would act in competition with substitional dopants and remaining
silicon interstitials as a sink for vacancies of any charge state
moVing about in the silicon. The inferaction of the vacancies with

the neutral aluminum atom would result in a sdbstitutiona] aluminum
which in turn will act as an acceptor. Thus immediately after-exposure
to the e]ectroh environment the built in electric field is weakened

by the removal of acceptor aluminum thus causing a change in the
effective boundary condition at the back contact. As the anneal
_progressed, the electric field bui]ds until minority carrief loss in this
“region is significantly reduced. |

. '; The;same arguments can bewafgued for the bulk regjon containing
boron; however; the propensity for substituational boron - interstial
silicon exchanges may be much lower than for aluminum. This would
suggest that aluminum doped silicon might possibly be more radiation
res}étant'than boron doped silicon (gallium méy also be promising). -
Work by NASA Lewis in the mid 1960's did demonstrate that Al and Ga
dopéd P~type silicon was more radiation resistant than boron doped -

Ve et

silicon.

"CONCLUSION - These experiments resulted in the following cohc]usions:
(1) The spectral response data in conjunction with measured I

versus fluence demonstrates the need for good "blue content" simulators
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+ " TABLE L - CELL DESCRIPTION .

BACK SUR-

CELL | GENERIC |yomINAL BasE] CONTACT [COVERSLIDE] AR COATING | .35 » CUT-|NOMINAL

W6, | NAME AL " | OFF FILTER] THICKNESS | FACE P +
L | VIOET [24acn A | ONONE | Tl NO lomL | w
CL ~VIOLET(BF] 2 o e A CFQ}CEOz TA20 NO 10 MIL NO
CL | VIOLET | 10acw A | NONE Tay0g NO 10 ML | NO
HUTK | HELIOCELL| 10 ocn fe | o1 | Tl YES gMIL | YES
HUTK | HELIOGELL| 50 ocH s YES 8 MIL | YES
(Lo CW. | 10gcw A | o | s NO ML ] N
| cowv. | 109cH e | o1 | S0 NO oML | N
HTK| COWV. | 10acw | oo | T NO oML | N
WTK| cow. | 100w A | 011 | Tan0c NO oML N
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7. ELECTRON AND PROTON DAMAGE COEFFICIENTS IN LOW-
RESISTIVITY BULK SILICON AND SILICON SOLAR CELLS

J. R, Srour, S. Othmer, K. Y, Chiu, and O, L. Curtis, Jr,
Northrop Research and Technology Center
Hawthorne, California 90250

Damage coefficients have been determined for low resistivity silicon based
on minority-carrier lifetime measurements on bulk material and diffusion
length measurements on solar cells. Irradiations were performed at three
electron energies (0. 5, 1.0, and 2.5 MeV) and one proton energy (10 MeV)
on bulk samples an& cells fabricated from four types of boron-doped 0.1
ohm-cm silicon ingots: 1) Czochralski (CZ), low dislocation density (LD);
2) CZ, high dislocation density (HD); 3) float-zone (FZ), LD; 4) FZ, HD.
For comparison, measurements were also performed for higher resistivity
specimens. All silicon employed in this investigation was obtained from
Dow Corning and solar cells were fabricated by Centralab Semiconductor.
The sample designation system employed gives the growth method, relative
dislocation density, resistivity, and specimen number. Two illustrative
examples are: a) FZLD 0, 1/4--bulk specimen number four fabricated
from float-zone, low-dislocation-density 0.1 ohm-cm material; b) CZHD
0.1/SC3--solar cell number three fabricated from Czochralski, high-
dislocation-density 0.1 chm-cm material. If no specimen number is given
on a figure for a specific case, then the data points shown represent an
average for several samples of the same type. Additionally, the designation

HD or LD only appears if dislocation density was determined for a given ingot.

Figure 1 illustrates schematically the lifetime measurement technique em-
ployed for bulk specimens. A sample-under-test was connected in a con-
stant-current circuit and the steady-state photoconductivity signal due to
chopped-light illumination was then monitored using phase-sensitive de-

tection. This signal yields excess carrier density. The measurement
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system was carefully calibrated in terms of carrier generation rate. Life-
time was obtained by dividing measured excess density by the knowﬁ gen-
eration rate. The background lamps shown in Figure 1 were employed to
fill traps. D‘iffusion lengths 7wer.le determined for solar cells by measuring
shortv-circ_uit current during exposure to a Co-60 gamma sourée (known

generation rate).

Values for damagé coéfficient (KL) were determihed using the relationship
L, » - L . = K ¢ ? . (1)

where Lo and L, are pre- and post-irradiation diffusion length, respectively,
and ¢ is the fluence of the irradiating particle. Figure 2 presents the quan-
tity (L-2 - LO-Z) vs 0. 5-MeV electron fluence for various specimens. The
dashed lines have unity slopg anq thus yield values for KL. 'The deviation
from unity slope at high fluences noted in some cases is generally attributed
to rlacii‘a.tion-induced trapping effects aﬁd was also observed at other particle
energies. Damage coefficients were generally obtained from lower fluence
data where trapping effects were judged to be unimportant. Figure 3 pre-
sents KL Vs resistivity for the 0. 5-MeV electron data of Figure 2. Itis
seen that KL increases as resistivity decreases and that damage coefficients
for low-resistivity CZ specimens are about a factor of three larger than
their FZ'counterparts. -Additionally, no dependence of KL on dislocation.

density is apparent.

Data for 1.0- and 2. 5-MeV electron-irradiated specimens are shown in
‘.AFigures 4 and 5, respectively. _In.Fi'gure 4, K‘L values for bulk CZ samples
are seen to be a factor of ~2 larger than for FZ specimens., Additionally,
solar cell damage coefficients are about a factor of two larger than cor-
ré‘spondiﬁg~ 'bulk fnatérial ;rall;les. Figures 4 gnd 5 further demonstrate

the depeﬁdex}ée of KL on reé:iétivity;.' In‘Figure 6, data for 10-MeV proton-

irradiated specimens are presented and findings are qualitatively similar
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to those for electron-irradiated sami:les. Figure 7 presents results ob-
tained for 1. 0-MeV electron-irradiated solar cells using a solar similator
(at Centralab) under AMO conditions at an intensity of 140 mW /cmz. The
ratio of post- to pre-irradiation maximum power output is plotted versus
electron fluence, and it is seen that the performance of irradiated 0. 1
ohm-cm cells is considerably worse than their higher-resisﬁyity counter-
parts. This finding is consistent with damage coefficient results obtained

on bulk samples in that more damage is expected in lower resistivity cells.

For all three electron energies examined, empirical fits to the data yield
the following approximate relation:
-2/3
« . 2
L =P (2)
Hole density po was determined for p-type material over the resistivify
range from 0.1 to 10 ohm-cm. Additionally, damage coefficient is pro-
. -2 -2 .
portional to (L. - Lo ), which can be interpreted as the reciprocal of
radiation-induced carrier lifetime T. Thus, KL°= 1/r. Equation 2 was
then employed to obtain a plot of T vs P, which is shown as the solid

curve in Figure 8. This curve is thus representative of the experimental

data obtained here for three electron energies.

We next attempted to fit the solid curve using the Hall-Shockley-Read
(HSR) model. The HSR lifetime expression for a single recombination

level in p-type material at low injection levels is

po+p1 n°+nl
TTTNp  t TNp (3)
n "o P o

where all terms have their usual meaning. As.p_o increases, lifetimé de-
creases due to the increased recombination rate. For ease of analysis
and for purposes of illustration, a recombination i‘e‘vel in the lower half
of the bandgap was assumed. For any reasonable capture-probability-

ratio assumed, Equation 3 then simplifies to
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e (e D o
an> P, 4

We attempted to fit Equation 4 to the solid curve in Figure 8 by treating the
multipiica.tive term l/an as an adjustable scale factor. A reasonable fit
was obtained for a level at Er - Ev‘a- 0.12 <-?V. However, an exact fit can
be obtained by using a two-level HSR model, as shown in the figure. By
assuming that each level can be expressed in the form of Equation 4 and

by addiﬁg the contributions of each level reciprocally to obtain T, the solid
.curve representing the experimental data can be fit exactly. As shown in
Figure 8, the level more effective for higher resistivities is at Er - EV £
0.18 eV, whereas the level more effective at lower resistivities is at

Er - EV 2> 0,08 eV. The ratio of the multiplicative scale factors for these

two levels is ~22, with an for the 0. 18 eV level being larger.

No physical significance should be attached to the above recombination para-
meters. Our purpose here was only to illustrate that a two-level HSR model
describes the present data quite well. In order to obtain meaningful para-
meters from such a model, the temperature and injection-level dependences
of radiation-induced lifetime are required. In terms of gaining increased
understanding of the dependence of KL on resistivity, it would be useful to
measure the temperature dependence of damage coefficient for samples of
several resistivities and then attempt to fit the data with two (or more)

HSR levels.

Several of the major observations made and conclusions reached in this

investigation are the following:

1. Low-resistivity boron-doped silicon may be an undesirable material
for fabricating solar cells to be employed in a space radiation en-
vironment because damage coefficients increase with decreasing

resistivity.
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For 0.5-, 1.0-, and 2. 5-MeV electron bombardment, empirical
fits to experimental data can be approximately expressed as K

-2/3
« p / for 0.1 S p<20. For 10-MeV proton bombardment, an

-0.44
p

empirical fit of the form KL o was found to describe the

data reasonably well,

The dependence of damage coefficient on resistivity can be
qualitatively accounted for quite well using a two-level Hall-

Shockley-Read model.

Damage coefficients for solar cells were observed to be larger

than their bulk-material counterparts.

Bulk samples and solar cells prepared from float-zone material
were generally observed to be more radiation tolerant than their

Czochralski counterparts at all resistivities examined,
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Figure 1. - Schematic representation of the steady-state photoconductivity (SSPC)
apparatus employed to measure minority-carrier lifetime in bulk silicon specimens.
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ALTERNATIVE STRUCTURES AND MATERIALS

‘A review of some work on nonconventional solar cells (vertical multi-~
junction, grating, grooved, and gallium arsenide cells)

Preceding Page Blank



8. FABRICATION AND PERFORMANCE OF VERTICAL
MULTIJUNCTION SOLAR CE LLs*

R. K. Smeltzer
Texas Instruments Inc.
Dallas, Texas

Introduction
(1)
The vertical multijunction (VM]J) structure, as conceived by J. F. Wise and

analyzed by W. P. Rahilly(Z) , 1s predicted to have the advantages of improved
' efficiency and improved radiation tolerance. (Fig. 1). It is only recently théf
the technology for fabricating the close-spaced vertical junctions became
available. (3).
This paper discusses the fabrication technology for VMJ cells and gives the

results of some preliminary characterization.

Fabrication of Type I, VM]J Cells’

Although all three of the structures shown in Fig. 2 have been examined,
only the fabrication of Type I cells will be described.

Wit.h‘ reference to Fig. 3, a thermal oxide is grown on a (110) P-type silicon
substrate and windows_, are opened in the oxide by standard photolithographic
techniques. The windows are an array of parallel slots on 20 am centers with
each slot 8 am wide.

Grooves are etched into the silicon using an orientation dependent etch
(O.D.E.) of KOH in water, which etches 400 times faster in the (110) direction
than in the (111) direction (4). Key to the process is the alignment of the oxide
windows such that the groove walls are within 0.1° of (111) planes.

* Presented by William W. Lloyd; this work is supported by the United States Air
Force, Aero Propulsion Laboratory, under Contract No. F33615-73-C-2019.
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Fig. 4 is a microphotograph-of IOOAm deep slots px;odu;:ed in this manner; the
appérent V-ghape is due to the method of sample preparation.

Antimony is then diffused into walls of the grooves and, as indicated in
Fig. 5, the junction depth is quite uniform.

‘A short O.D.E étch is used to remove the junction from the bottom of the
grooves. prior to epitaxial refili.

Pig 6 sbows a cell affer épita:;iél_reﬁll. Altemate‘dopant—types have been
used to delineate the shape of the growing surface at differenf times during fh_e
depositioﬁ cycle. The increase of depositionrate with groove depth, which is
obtained by controlling the gas flow patterns and the temperature-gradients, is
a necessary condition for the prevention of v_oid formation. It has been found
that both silicon tetrachloride and tdcﬁloroéilane are unsatisfactory. as silicon
sources; silicon tetrachloride because of the high operating temperature, and
trichlorosilane because of the precise temperature control need to obtain the |
correct balance between etching and void formation. Dichlorosilane is satisfactory
providing the ratio of silicon to chlorine atoxﬁ_s in the incoming gas‘e4sb is controlled;
for a given deposition temperature this z;atio must 5e increased ;bove the
thermodynamic equilibrium value by a fixed aqd known amount.A |

_ Fqllc.w-ving the epitaxial refill, ;an,N*' junction.is diffused écross the top surface,
11nk1n§ together all the vertical junctions. " | | |

Thﬁs, sufficient progress ha; been madé in the advanced:p‘rocesses shown
in Fig. 7 to pérmit the fabdf:at.ion of-VM_I_'c‘e.lls. _

Performance of VMJ Cells

The spectral response data of Fig. 8 is for some Type III cells and for some
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conventional cells processed simultaneously. As can be seen, the response-at
1 um for the type III is the predicted 30% higher than that for the.conventional

cells. .The boor blue response for both types of cell {s believed due to an

unnecessarily deep top junction.

"The voltage-current ,characteristics,for the. same cells are shown in Fig. 9.

‘As expected, the light currents for the VM] cells are superior to those for the

conventional cells while the open circuit voltages are lower. The lower voltages

. for the VM]J cells are .presumabiy due to the increased junction area. Because

of the long collection path inherent in the Type III structure, the series resistance

of these oolls is quite high.

Acknowledgments:

. Acknowledgments are due to M. R. Peter Isles of Centralb, Inc, for both

the antireflection coatings and the spectral response measurements.
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DEFINITION-

o COMBINED PLANAR AND DEEP VERTICAL P-N JUNCTIONS
. @ VERTICAL JUNCTION PACKING DENSITY
" > 1000 JUNCTIONS/CM

CHARACTERISTICS

. @ ALL GENERATED CARRIERS ARE NEAR THE JUNCTION
~ @ ENHANCED RESPONSE AT LONG WAVELENGTHS

PREDICTED ADVANTAGES - -

o HIGHER EFFICIENCY
" @ RADIATION HARDENED

Figure 1. - Vertical multijunction solar cells.
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Figure 4. - Photomicrograph of 100+um-deep etched grooves.

Figure 5. - Photomicrograph of grooved cell after antimony diffusion.
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Figure 6. - Photomicrograph of grooved cell after epitaxial refill.

Orientation Dependent Etching
Epitaxial Refill of Deep Grooves
Electron Beam Pattern Generation over Large Areas

Deep Groove Diffusion

Figure 7. - Vertical multijunction solar cell technology development.
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9. V-GROOVED SILICON SOLAR CELLS

Cosmo R. Baraona
NASA Lewis Research Center
Cleveland, Ohio

The objective of making V-grooved silicon solar cells is to reduce the reflection
loss and thus improve the efficiency of a silicon solar cell. Figure 1 shows what the
simplest type of grooved cell looks like, Its front illuminated surface consists of a
series of parallel grooves which are V-shaped in cross section. The mechanism by
which reflection is reduced by such a structure is as follows. Light which is perpen-
dicularly incident on a surface (such as the flat spots between the grooves in fig. 1) is
perpendicularly reflected and lost after only one reflection. However, light incident on
a groove wall will be reflected onto the adjacent groove wall, where it has a second
chance to be absorbed. Thus, if at a given wavelength there is a 0. 30 reflection loss on
a flat surface, a grooved surface will have an effective reflectivity of 0.30 X 0. 30 or
0.09. Note that this reflection loss mechanism is independent of the wavelength of the
incident light.

A second mechanism operating on macroscopically grooved surfaces may result in
| improved carrier collection, because of the generation of carriers closer to the collect-
ing junction. Light striking a groove wall enters the silicon and is refracted toward the
perpendicular to the wall, that is, laterally in the cell. The lateral direction results in
absorption and carrier generation closer to the front surface than in a cell with a
smooth surface. Carriers generated closer to the junction have a higher probability of
being collected, which results in improved collection efficiency. The amount of re-
fraction depends on the wavelength of the light because of the varying index of refraction
of silicon, The blue light, which is strongly absorbed, is also strongly refracted and
therefore is absorbed not much closer to the local surface than in a smooth cell,

There are three methods of arranging the grooves on a surface: (1) parallel grooves,
where the groove spacing (the width of flat spots between the grooves) can be varied; the
lowest reflection would occur for a 100-percent-grooved surface, that is, a saw-tooth-
cross-section surface with no flat spots; (2) a grid-type pattern with perpendicularly
intersecting V channels resulting in regularly spaced, four-sided pyramids with either
pointed or truncated tops; and (3) randomly spaced and randomly sized pointy pyramids
or a textured surface. .

There are at least two methods of making grooved or textured surfaces. The first
we tried was a preferential caustic etch on < 100> silicon, as reported by Stoller in
the 1970 RCA Review. This method requires oxide masking and photoresist technology,
which are not desirable for inexpensive cell production. A second preferential etch we
tried was reported by Lee in the 1969 Journal of Applied Physics. On unmasked <100>
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silicon this etch results in samples with black velvetlike surfaces. Views of this velvet
surface are shown in figures 2 and 3. Figure 2 is a scanning electron micrograph taken
at a 45° angle to the sample. Figure 3 is another portion of the surface viewed perpen-
dicularly. The velvet surface consists of randomly spaced, four-sided, pointed tetra-
hedra with a maximum size and height of about 10 to 12 micrometers, Other textured
surfaces with different tetrahedra sizes have also been made. These textured surfaces
are desirable for reducing reflection losses.

Figure 4 shows the measured total reflectivity plotted against wavelength of the in-
cident light for several kinds of samples. The top curve is for a mirrorlike mechani-
cally polished silicon surface. The next two are for parallel-grooved samples, each
with a different amount of surface area covered with grooves. This was accomplished
by varying the groove spacing WT, so that the measured groove ratios expressed in
percent were 16 and 36 (see bottom of fig. 1). The total reflectivity of these surfaces is
the flat ratio times the reflectivity of the flats RF plus the groove ratio times the re-
flectivity of the flat raised to the 2.1 power R%.'l. The exponent is based on an estimate
that most photons incident on a groove undergo two reflections, but a few undergo three,
so that overall about 2.1 reflections are achieved. Thus, the equation in figure 1, when
used to calculate the reflectivities of the 16- and 36-percent-grooved samples in figure 4,
results in good agreement with the measured values. The velvet surface in figure 4 cor-.
responds to a near-100-percent-grooved surface. The bottom curve is for a velvet tex-
turized surface with an antireflection coating and encapsulated in Teflon FEP film. The
reflectivity is very low (4 to 5 percent) and relatively independent of wavelength. Sam-
ples with 100-percent-grooved or textured surfaces have a very matte or velvet black ap-
pearance. This confirms the low reflection capability of modifying the surface structure.

The enhancement of collective efficiency has been seen by us in radiation damaged
cells. A solar cell with 65 percent grooving was irradiated with 1-MeV electrons,
Figure 5 shows the decrease in effective diffusion length (a measure of collective effi-
ciency rather than true diffusion length) with electron fluence for the grooved cell and a
conventional smooth cell,

Presumably the true diffusion length in both cells changed the same with irradia-
tion, but the collection of carriers was not impaired as quickly in the grooved cell. The
grooved cell therefore exhibits a lower damage coefficient. The grid-type pattern and the
random or textured pattern are expected to exhibit the same effect, In summary, sev-
eral methods of making different types of grooved silicon surfaces were demonstrated.
Optical reflection was reduced and can be approximately predicted by using a simple
formula, A texturized surface consisting of numerous random pyramids was created by
using a hydrazine etch, This velvet surface, when covered with an antireflection coat-
ing, had a reflectivity of only 4 percent, which was relatively independent of wavelength.
Radiation damage results suggest that collection efficiency declines with electron irradi-
ation more slowly when solar cells are made with grooved surfaces,
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Figure 1. - Low reflection grooved surface solar cell.

Figure 2 - Lewis velvet surface - 45° view.
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Figure 3. - Lewis velvet surface - normal view.
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Figure 4. - Total reflection for various types of
silicon surfaces.
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Figure 5. - Radiation damage of grooved solar cell.
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10. A SUMMARY OF INVESTIGATIONS INTO THE PERFORMANCE
OF ""GRATING' TYPE PHOTOVOLTAIC DEVICES*

J. J. Loferski, L. Y. Chen, and E. E, Crisman
Brown University
Providence, Rhode Island 02912

For high photovoltaic conversion efficiency, a solar cell requires:
{1) a minority carrier diffusion length, in the base material, which is com-
parable to the adsorption depth (1/a) of, say, 95% of the photons having energies
in excess of the band gap; (2) low surface recombination losses on the light
receiving surface; and (3) a large potential barrier between the n and p
regions of the cell. In the case of silicon these requirements translate to
base materials with diffusion length of one hundred microns or greater; surface
recombination velocities in the few hundred cm/sec range and; less than 1 Q-cm
resistivity. Such parameters must be maintained through the various processing
steps and be realized in the finished cell. The planar diffusion technique
commonly used in the commercial production of solar cells results in a highly
disordered 1light receiving layer in which the lifetime of minority carriers is
reduced by orders of magnitude from that of the starting crystal. A correspond-
ing reduction in cell response is observed for the short wavelength ("blue")
photons which are primarily absorbed in this diffused layer.

A possible way of realizing the performance criteria, enumerated
above, is to redesign the cell geometry so that most of the light receiving
surface is the base material maintained in the original chemo-mechanically pol-
ished condition, i.e., not subjected to diffusion or any other process which
might introduce impurities or surface contamination or damage.

The approach described herein (referred to as the "grating" cell
design) employs narrow strips, or fingers, of junction separated by wider
regions of exposed base material. The fingers need not necessarily be made by
diffusion. Indeed, the most recent work, reported here, has concentrated on the
formation of an alloy junction of aluminum and n-type silicon. By such an

approach both p/n junction and front surface contact are simultaneously formed

®
This work has reen supvorted primarily by NASA Grant 40-002-093 and in part by
Micro Components Corporation of Cranston, Rhode Island.
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in a single thermal cycle. Titanium-silver back surface contact can also be
sintered during the same heat treatment. By heating below the Al-Si eutectic
temperature (v576°C) aluminum/silicon Schottky barrier cells have also been
produced in the grating format.

This paper summarizes the work which has been performed to date on the
grating type silicon solar cell using the various junctions formation approaches,
i.e., diffused, alloyed, and Schottky barrier.

PREVIOUS INVESTIGATIONS

1. Waffled Cells

The earliest attempt to produce blue shifted cells consisted of etching
a grid pattern through the diffused layer of commercially produced solar cells.
Both p/n and n/p cells were used. Details of the procedure employed can be found
in references 1 and 2. The resulting pattern, consisting of 50 x 50 u recesses
spaced on 100 u centers is shown in figure 2. The etching depth was approxi-
mately 1.5 u. The normalized (to maximum value) short circuit current spectral
response of such a "waffled" area is shown in figure 3 compared to the normalized
response of the same portion of the cell before etching in the pattern. While
there is apparent improvement in response at say HOOOZ illumination by a factor
of two for the etched compared to the pre-etched condition, the absolute response
of etched areas was always lower than that of the untouched portion. Analysis
of the i-V characteristics showed that the change in absolute short circuit cur-
rent can be traced primarily to an increase, by a factor of about five, of the
series resistance of the cell after waffling.

2. Small Area Cells

In an attempt to produce devices with series resistances comparable to

those of commercial. cells, four small area (1 x 1 mm) designs were produced on
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single chips (2 x 2 nn)* which were subsequently bonded to standard TO-5 headers.
About 400 such chips could be produced on a single wafer of silicon thereby
reducing variations related to changes in individual wafer characteristics.
Referring to figure 4, the four configurations consisted of: (a) an area dif-
fused cell included for comparison purposes; (b,c) two "finger" diffused cells
of different finger spacings; and (d) a (undiffused) metal-semiconductor,
Schottky barrier cell. A comparison of the response of the four types of cells
is shown in the illuminated i-V characteristics for the most efficient of each
type (figure 5). As can be seen, the Schottky barrier cell was the least effi-
cient owing primarily to the reduced open circuit voltage. Since aluminum was
the metal used to form the barrier, it is to be expected that V;c would be
reduced for this type of cell. The short circuit current for the metal-
semiconductor configuration is, however, comparable to that of the other three
configurations. The estimated maximum efficiencies, at AM1l, of the best cell of

each design were:

Area Diffused 12.9%
Narrow Spaced Finger Diffused 11.9%
Wide Spaced Finger Diffused 12.2%

Metal-Semiconductor (Undiffused) 3.7%
A more important result of this phase of the investigation can be seen by examin-
ing figures 6 through 9, which give the normalized short circuit current response
of the four cell types as a function of the wave length of illumination. The
feature most evident is that all three types of grating cells have enhanced blue

response compared to the area diffused cell. The relative response per photon

*
These cells were prepared by Micro-Components Corp., of Cranston, R. I.




of the area diffused cell was typical of the commercial cells available at that
time. At 40003 the response was about 14% of peak output. The three grating
desighs all show significantly enhanced blue responses which vary between 60%

and 84% of the peak output depending on design. Because the illumination source
used for the i-V measurements was deficient in short wave length photons, it is
likely that the use of a source with greater blue output (i.e., the sun) would
result in an improvement of the efficiencies of the grating cell designs relative
to the area diffused type.

A method for analyzing the response of the cell response as a function
of position was developed during this phase of the investigation. In brief, it
consists of locally exciting carriers using the electron beam of a microprobe
and then displaying the resulting signal, proportional to isc , on an oscillo-
scope for photographic recording. The display can take the form of either an
intensity enhancement (by putting the isc signal into the z-axis of the scope)
or a 3-dimensional appearing perspective display by adding isc output to the
y-deflection signal. Examples of the types of displays available from the
electron microprobe are shown in figures 10 and 11 for the finger diffused cells
and figures 12 and 13 for the metal-semiconductor cells. Note certain areas of
reduced and enhanced response that are evident in the isc mappings which have
no counterpart in the corresponding secondary emission surveys of the same areas.
Also, by expanding the scale in the deflection enhanced mode, diffusion lengths
in the various regions of the cells can be directly estimated. Such techniques
have proved valuable in relating localized response changes to crystallographic

3 . 3 . 3 *
imperfection as discussed elsewhere in this conference record.

*
R. Kaul, B. Roessler and J. J. Loferski, "Correlation Between Mechanical
Imperfections and Electrical Properties of Solar Cells."
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Descriptions of the fabrication techniques and testing procedures of
the small area devices are given in references 3 and 4.

ALLOY GRATING CELLS .

After demonstrating that grating structure approach could produce the
desired blue shifted device in either diffused junction or Schottky barrier
junction form, efforts were directed to geometrically similar devices with the
junction produced by alloying fingers of a dopant metal into polished base
wafers. Aluminum was chosen as the alloying agent primarily for the following
reasons: (1) The small but finite solid solubility of aluminum in silicon
(v 7 x 1018 atoms/cc) should result in a transition to p-type material in the
regrowth region for n-type base wafers with dopant concentrations in the range
101“ to 1018 atoms/cc commonly used for solar cells (i.e., 100 2-cm to 0.0l Q-cm
resistivities). (2) Aluminum is an inexpensive metal which would, therefore,
lend itself to large-scale production of cells for terrestial applications.

(3) The relative low eutectic temperature of Al-Si alloys (v 576°C) permits
investigation at temperatures significantly lower than normal diffusion tempera-
tures for silicon. Such low temperatures should also help reduce costs of

mass produced devices.

The alloying of aluminum with silicon was extensively investigated during
the early days of the semiconductor industry. Extended analysis of the inter-
action can be found in references 5 through 8. Briefly, as the system is heated
above the eutectic, the percentage of aluminum in the liquid phase increases
(see figure 1). Lowering the system temperature through the eutectic points
results in excess silicon in the liquid phase being rejected and a regrowth
region forming at the liquid-silicon interface. It is believed that the silicon
base wafer acts as a seed for recrystallization of the liquid, and that the

regrown crystal is single crystal in form with the same orientation as the base
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wafer. If the solid solubility of the aluminum is sufficient to overcome the
n-type dopant of the base material an abrupt p/n junction is formed at the
regrown region/base material interface.

Extensive theoretical and experimental investigations were undertaken
to determine the effects of varying the finger/spacing ratio and the temperature
profile of the alloying cycle. A summary of much of the early part of this
work is given in references U4 and 9. At that time it was concluded that small
area cells could be produced by the alloy-grating technique with short circuit
densities equal to or greater than those of conventional planar diffused cells.
Such devices, also, displayed strongly blue shifted collection efficiencies:
essentially flat in response to photon wave length in the region from 85003 to
HOOOZ. The main disadvantage of such cells was the reduced open circuit voltage
which at best was only 0.440 Volts compared to a nominal 0.550 Volts for com-
mercial cells. It was also observed during this earlier investigation of the
alloy-grating cell that starting with a <100> oriented base wafer gave cells
with a Voc about 18% greater than <111> oriented wafers. No satisfactory
explanation has thus far been offered to explain this difference. However,
orientation dependent alloying has been observed by others (reference 10) and
techniques have been presented in the literature to stabilize the junction
formation during alloying.

To investigate effect of the alloying temperature cycle per se, a number
of samples have been alloyed at successively high maximum temperatures with all
other parameters being held constant. The result is shown in figure 14, which
shows that the curve of open circuit voltage versus maximum temperature reaches
a broad maximum of Voc ~ 0.500 volts for alloying temperatures between 650°C
and 750°C. While this represents an improvement over the 0.440 Volts maximum
reported earlier it is still some 10% below the nominal 0.550 Volts of commercial

cells,
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An important conclusion can be made as a result of these experiments:
the low Voc's reported earlier cannot be caused merely by the .presence of
the grating pattern. Since the samples used for the Voc vs temperature measure-
ment were 2 x 2 mm squares completely allcyed with about 7000: of aluminum
their exposed junction length was only the periphery of the squares or about
70004, The 2 x 2 mm alloyed-grating cells reported in reference 9 had effective
exposed junction edges of 40000u to 80000u--about ten times as great. However,

the open circuit voltages for alloying at 600°C were essentially the same for

both cases.

This conclusion is further verified by the results of measurements made
on large area (1 cmz) cells which have been constructed by the alloy-grating
technique. The configuration used for these cells is shown diagrammatically in
figure 15. Figure 16 is the I-V characteristic of one such cell which was
fabricated on the (100) plane of a 2-3.5 Q-cm silicon wafer. The characteristic
was measured using a Spectrolab artificial sun located at NASA Lewis Space Flight
Center.* The I-V characteristic of this cell and a 2 cm2 commercial silicon cell
(without antireflection coating) were made with the source illumination set at
136 mw/cm2. The commercial cell information has been displayed on a per square
cm basis to facilitate the comparison.

Note that the grating cell produces a short circuit current comparable
to, and indeed a little greater than, that produced by the commercial cell.
However, the open circuit voltage (v 0.470 Volts) is about 14% lower. The
efficiency at the maximum power point is consequently about 7.9% as compared to
11% for the commercial cell. The spectral response of the two cells is given in

figure 17. Note here that the grating cell shows definitely higher output at the

*
We wish to thank Dr. Henry Brandhorst of NASA Lewis who made arrangement for
these measurements and helped to perform them.
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shorter wave length end of the curve, ~ Since the Spectrolab simulator is deficient
in the blue region compared to true solar AMO conditions, the Isc of the grating
cell (in figure 16) should be even larger than the commercial cell for a true

AMO illumination.

CONCLUSION

1. Large area cells have been constructed using the alloy-grating struc-
ture which have essentially the same characteristics as the small area (< 4 mm2)
cells heretofore constructed.

2. The best large area cell fabricated to date has AMO efficiency of 8%
without antireflection coating.

3. Large areca cells made by the allow-grating technique are considerably
blue shifted and have Isc equal to or greater than commercial cells of the same
area.

4, The reduced open circuit voltage of such cells is not primarily the
result of the increase in exposed junction edge effected by the grating structure.

5. The lower process temperature and reduced number of fabrication stepc
suggest that real financial saving can be realized by employing the alloy-grating
construction. If the mechanisms causing the reduced Voc can be overcome, cells
of this type should perform in a space environment at least as efficiently as
conventional planar diffused cells.

6. At present the reduced Voc of this design is not understood. Pre-
liminary investigations seem to indicate that excess exposed junction edge is
not the cause. It is also unlikely that the alloying process forms inherently
poorer junctions than the diffusion process does. This contention is supported

by the fact that no diffused grating cells have been fabricated with Voc's
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significantly greater than those of the alloyed type (see figure 2). Theoretical

predictions, which agree well with experimental data in other aspects of per-

formance, suggest that surface recombination velocities as high as 1000 cm/sec

should not significantly affect response. Such values should be readily obtain-

able with stand: ~d processing techniques.

1.

10.
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Figure 12. - Metal/semiconductor cell.
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11, GALLIUM ARSENIDE SOLAR CELL RESEARCH
AT NASA LANGLEY RESEARCH CENTER

Gilbert H, Walker
NASA Langley Research Center
Hampton, Virginia 23665

Gallium arsenide solar cells have a theoretical efficiency of about
26%.(1) GaAs has good high temperature properties suéh that operation at
300°C is possible. In addition to these two properties GaAs solar cells
have good radiation resistance. This paper describes the gallium arsenide
solar cell research program being conducted at NASA Langley Research
Center. The goals of this program are to obtain GaAs solar cells with
20% efficiency at Air Mass Zero (AMO) and to obtain 5% efficient cells
which will operate stably at 300°C.

The absorption coefficienf of GaAs is such that the incoming photons
are absorbed within a few microns of the front surface; therefore the
surface properties are very important. Figure 1 is a theoretical plot
by Ellis and Moss(z) of the log of the surface recombination velocity vs
efficiency for a GaAs solar cell with a 0.25 micron p-n junction. For a
surface recombination velocity of 107 cm/sec, the GaAs solar cell efficiency
is limited to about 12%; however, if this recombination velocity can be
reduced to 104 cm/sec, an efficiency of 24% is possible. Measurements of

the surface recombination velocity of GaAs at Langley indicate that the

. 7 6
value is between 10 cm/sec and 10 cm/sec. One method by which the

surface recombination velocity can be reduced is by growing a heteroface
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layer on the GaAs surface such that the number of interface states is
reduced. Such a technique has been developed by Woodall and Hovel.(s)
‘This structure consists of a p GaAs n-GaAs solar cell W1th a layer of

p-Ga AL As epltaxlally grown on the p-GaAs surface. The value of X

1-x
in the Ga Ales layer is chosen such that the layer is transparent to

1-x

the incoming photons. The improved high energy responses of such solar
cells 1nd1cate that the surface recombination veloc1ty has been reduced
to 10 cm/sec.. | |

Another‘problem area in obtaining high efficiency GaAs solar cells is
the low minority carrier diffusion length of the base n-type‘GaAs materiql.
Figure 2 is a theoretical plot of current collected from the base reg1on)
of a GaAs solar cell as a function of minority carrier d1ffus1on length
for a Junct1on depth of 0.25 micrometers. ) The base current contr1but1on
is 7 ma/cm for a diffusion length of 0.5 micrometers. This current can be
increased to 14 ma/cm by increasing the diffusion length to 3 m1crometers.
In an effort to determine if commercially available GaAs had the requlred
3- m1crometer diffusion lengths, Carnegie-Mellon University (under an NASA‘
Langley grant) undertook a survey of commercially avallable GaAs The
results of thrs survey are shown in the lower part of Figure 2. 57% of
the material surveyed had diffusion lengths of 0.3 to 1. 0 m1crometers, 30/
had d1ffu51on lengths of 1 0-2.0 micrometers; 9% fell in the 2.0-3. 0 micro-
meter range; whlle only 4% had the required d1ffu51on length of greater}than
3.0 micrometers. Because of epitaxial growth problem no complete cells were

produced from the 6 samples of GaAs with dlffu51on length greater than

2 m1crometers. A program is underway with the goal of obta1n1ng GaAs w1th
the required diffusion length,

The most efficient cell produced to date has an AMO efficiency of

13.5%. This cell is a p-Ga, _AL As-p-GaAs-n-GaAs cell with an area
1-xxA57P
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of 0.25 cm?. The increase in the diffusion length of the base material

should increase the efficiency of this structure to about 17%.

The results of high temperature studies of a p-Gal_xAles-p-GaAs-n-
GaAs are shown in Figure 3.(5) The efficiency of the cell is 8% at
245°C.- Optimization of this structure is continuing.

The continuing Langley program is outlined in Figure 4. The program
consists of four subelements: materials improvement, surface improvement,
cell development, and cell characterization. Research is being conducted
in these areas through combined in-house, grant, and contract feséarch
efforfs. The matérials improvement part §f the program is directed toward
obtaining n-type GaAs with 3-micrometer diffusion lengths for use as sub-
strates for epitaiial growth of cells. " Both epitaxial growth techniques
and bulk growth techniques are being: used to obtain these substrates. At
Brown University research is underway to determine the effect of crystal
dislocations on diffusion length. In the surface improvement pért~of the
program, fundamental studies of surface states and their relationship to
recombination velocity will be conducted.

Development of the p-Gal_xAles-p-GaAsfn-GaAs heteroface solar cell
is coﬁ;inuing. This cell will be optimized for maximum efficiency at air
mass zero using the improved diffusion length base material. This cell
is also being oétimized for stable operation at 300°C. In addition to
this heteroface cell, a heterojunction cell is being developed for opera-
tion at'high femperatures. This cell consists of a layer of p-Gal_iAles

on n-Gal_yAlyAs. This aluminum content of the p layer is chosen such that
the p-Gal_xAles has an indirect band gap and hence is transparent to the

incoming solar radiation. The aluminum content of the n-Ga; AL As is
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chosen such that the n-type material has a larger band gap and hence has
less degradation of efficienty with temperature..

The silicon grating cell was developed at Brown University under an
NASA grant.(6) Techniques used to fabricate this cell ﬁill be applied to
GaAs as a means of lowering processing costs.

In summary, the goal of this program is to obtain GaAs solar cells
with efficiencies of 20% and to obtaiﬁ GaAs solar cells that will operate
at 300°C. Presently the AMO efficiency of GaAs solar cells is 13.5% at

20°C and 8% at 245°C.
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12. HIGH EFFICIENCY GRADED BAND-GAP
AL Ga,_ As-GaAs SOLAR CELL

James A, Hutchby
NASA Langley Research Center
Hampton, Virginia 23665

It is well known, from the standpoint of optical band-gap energy, that
GaAs is a near optimum material for solar cell fabrication, and is predicted
to have a maximum theoretical ﬁir mass zero (AMD) power conversion efficiency
- of 23% compared to 20% for Si.1 However, iﬁ early wofk with GaAs p on n
diffused cells, maximum AMO efficiencies of only 9.32 were achieved.2 A major
difficulty in achieving higher_efficiencies is the significant loss through
_surface recomﬁination»of:photogenerated minority carriers, which are created
‘hear the surféce (within approximately 1 uﬁ) due to the direct nature of
optical absorption in GaAs. The highest experimenta;.AMO efficiencies of
11.0% - 12.1% (not corrected.fo: contact area) for GaAs cells were :epqrted

- by Hovel and Woodall3 for the Alea xAs-GaAs heteroface cell. In their

1-

device the surface Alea xAs layer was typically many diffusion lengths thick

1-
- (4-20 um) and the p-n junction was located approximately 1 um below the inter-
metallic junction in the GaAs suﬁstrate. Thus, the main function of the
sﬁrface layer was to reduce the surface recombination velocity (S) of the
GaAs éutface and to reduce the series resistancé of the cell; 1i.e., pﬁotons
absorbed in tﬁe epitaxial layer did not contribute significantly to the
short-circuit current. | .

Another method proposed to reduce surface re;ombination loss is that §£
a built-in electric field in the surface layer to accelerate éxcess minority

carriers toward the p-n junction and reduce the time required for their
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- Such a field can be accomplished by vg;ying either the .
doping concentration or the qnetgy_bandfgab 1n,thg surféce'layer. -Théorg;icai
analysesz and tentative experimgntél rgsuita?'shoﬁ that equnential doping‘ |
" profiles yield é significant improvement in efficiency of GaAs célls.;

Also, an idealistic analysi_.s8 of a‘anHgl;£TeVgraded band-gap cell
indicated ‘improvements in'efficiency pﬁfﬁiéuiérly_fot:yery low doping Eoncen-'
tration in the surface layer, In this letter initial results of a detailed:
analysis of an n on p gradéd band-gap,Aleai;xAs-GaAs cell are presented.

An energy band diagram of the cell structure, as shown in Fig. 1, depicts
a surface Aleal;*Aé layer divided_inﬁo-a_region'of indirect material fof, |
y <vye (x 2 0.29) and a region of dirgctvﬁaterial forlyc £y< Yy The .
electric field for holes in the indirect material, being profoftional:to the
slope of the valeﬁce band, is lower than that in the direct material. Coﬁ4
sequently for a fixed junctiog depth (yj) the sutface electric field for'hoigs:
should increase with surface molé-fréﬁtibn'of AlAs (xALb) until the surface
material aﬁproaches the direct-indirect traﬁéition; Furthef ihcreases in
Xpro Yield a decreasing'éurfécé field until most of the free éleﬁtrons reside;
in the indirect conduction band. |

" The analysis was performed using the éténdard continuit& and current:

5 6

cm/sec

density«expressionsg.fbr the bulk material assuﬁing S=1x10 -1x 10

at y=0 and S+® at y = 125 um. The injected excess carrier cohceutrations
at the p-n junction were assumed to be given by the standard Boltzman boundary'

conditfon.10

.In the graded Aleal;xAs layer the hole transport parameters. were
assumed to:be constant, but the position dependence of the absorption coeffi-
cient required a numerical solution. An analytical solution was used for the.

GaAs region. The hole diffusion length_(lpo) in the Al#Gal_x§s~layer and the .
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electron diffusion length (%,,) in the GaAs substrate were assumed to have an' -
empirical dependence on impurity concentrations-as compiled and given by Ellis
and Hosé6 for GaAs. -Furthermore, junction recombinatibn current density,ll

series resistance of the ce11,’12 and surface reflection losses were cons:ldered.13

The analysis was performed for AMO insolation given by Johnsc‘:n.14
-Optimum values of ‘impurity concentrations'andvjunction depth were first
de;ermined»to yield maximum conversion efficiency. Donor concentrations below

the optimum value of Nj = 4 x 1017 ;m73

significantly reduce cell voltage
produced at the maximum power point through an excessively large series
resistance. Larger donor concentrations reduce the cell current delivered at
maximum pdwer due to reduction of hole diffusion length and thereby hole . |
collection efficiency in the Alea ‘xAs region. An optimum acceptor. concen- .

1-
tration of Na = 2 x 1017 <:m-3 was used, although cell efficiency is rather

insensitive to this parameter below N, = 1 x 1018 cm-3. Larger values of N,
reduce electron diffusion length and thereby electron colleCtion'efficiency in.
the GaAs region. A junction depth of gj =:1 Um was determined as optimum.
Sméller values of lj'excessively increase the series resistance, and larger -

values reduce the hole collection efficiency in-the'Alea xAs layer.

1-
Figure 2 shows the dependence of efficiency (not corrected for contact

‘area) ﬁpon‘XALo fbr two values of S and for both assumed and degraded values

“*for 1po' In each case; XALb‘has a profound effect upon efficiency up to the

direct-indirect transition, above which a decrease in su?face field causes

a slight drop in efficiency. Although the presence of an electric field

decreases the sensitivity of efficiency to S and lpo’ these parameters

(particularly the latter) are still important.to achieving high efficiencies.

As can be seen, an optimized cell having zno = 7.6 um, zpo = 2.1 ym, and
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S - 1x 105 cﬁ/seé-is ptedicted to have a# efficiency of 172; fhe same
.cel; with § = 1 x 106 cm/sec has a,predicted.efficigncy‘§f 16Z. ‘“W
The primary effect of the built-in fie;d is to 1mprovg thé collection
effiéiency of photogenerated holes in the Aleal_xAs lgyer. Thesg hoieg
'recombine with free electrons either at the surface orAin~the bulk or they
are collected at the p-n junction. Plots of the areal densities of holes
participating in these processes normalized to the total areal dgnsity of
holes ﬁhotogénerated in the undepleted n tggion are shown as funct;ons

of xALO in Fig. 3. The effect of the electriq-fig}d for XALolf 0.2§ compared
to the zero field case is seen to be a 114% increase of the hole colleqtiop
efficiency caused primarily by a 95% decrease in ;he‘dominant surface
recombination loss and, to a lesser extent, by a ?7Z'decreasg in the b@lk
recombination loss. This illustrates the reduced sensiﬁivity of the graded
band-gap cell to high surface recombination‘velogity.or reduced hole
diffusion length.

These results lead to the conclusion that a graded band-gap Alxcal_xgs-

GaAs cell with XKLO

for reasonable values of surface recombination velocity and minority carrier

= 0.25 should have a power conversion efficiency of 177

diffusion lengths.
We acknowledge Mr. Richard L. Fudurich of Computer Science Corporation

for his enthusiastic support and cooperation in programing this analysis.
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EXPERIMENTAL RESULTS ON LOSS MECHANISMS

A focus on the measurement and identification of surface and bulk
parameters that can influence solar cell efficiency

preceding Page Blank



13. APPLICATION OF THE MOS C-V TECHNIQUE TO THE DIFFUSED
FACE OF SILICON SOLAR CELLS

Irving Weinberg
NASA Lewis Research Center
Cleveland, Ohio

The diffused face is perhaps the least understood portion of the silicon solar cell.
In an attempt to remedy this deficiency, we have initiated an experimental program
aimed at obtaining information concerning the states which contribute to recombination
on the highly doped, diffused solar cell surface, The MOS, capacitance-voltage tech-
nique is the experimental method chosen for this investigation, 1 This technique has
predominantly been used, in the past, to investigate the nature of the Si—SiO2 interface
and oxide states, The current investigation is concerned, however, with silicon coated
with Ta205, an oxide used as a coating on advanced solar cells, 2 Although the diffused
surfaces of solar cells are our primary interest, it is easier to understand the much
simpler combination of Ta205 on moderately doped silicon, This latter research is
concurrent with our experimental work on the solar cell diffused face, Hence, a sum-
mary is first given of initial results on the simpler system. Following this, a descrip-
tion is given of our initial solar cell results,

Our initial experiments on moderately doped single crystal Si- Ta205 are concerned
with the effects of heat treatment after oxide deposition. Figure 1 shows the 1 MHz data
for 3 ohm-cm n-type Si-Tazos. Postdeposition heat treatment details are shown in
the figure. Oxide thicknesses were 595x10™ 10 and 625x10710 m (585 and 625 A) for
the heat treated and as-deposited oxide, respectively. After oxide deposition and heat
treatment, the MOS capacitor was completed by vacuum deposition of circular gold dots,
0.0254 cm in diameter, on the free oxide surface. The hysteresis observed in both
cases is attributed predominantly to the presence of oxide traps. 3 In addition, the ef-
fects of mobile oxide ions are also observed. 4 The theoretical curve, calculated for
the absence of surface states, 1 combined with additional frequency dependent data, in-
dicates that a reasonable approximation to the high-frequency limit has been attained,
Although instability is noted in bot}i sets of data, CFB’ the flat band capacitance can be
calculated by standard techniques.~ Hence, for the as-deposited sample, CFB =39.7
pF, while for the heated sample CFB = 44 4 pF, Additional information is obtained
from the conductance-voltage data shown in figure 2, Curves similar to that shown in
figure 2 were obtained over a frequency range extending from 10 kHz to 1 MHz and used
to compute 7, the time constant for interface states, 5 Calculations for the flat-band
point are summarized in figure 3. The density of fixed surface charge Ng includes
oxide charge as well as charge in surface states, The density of states NSS is obtained
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from the slope of the C-'V curve at the flat-band point. Implicit in this procedure is
neglect of the effects of possible inhomogenities in the oxide charge distribution on the '
MOS C-V characteristics. 6 The as-deposited sample yielded no peak in the conductance
data; hence, no values of T are obtainable for this case,° Summarizing, postdeposi-
tion annealing reduces the charge density NS, although the density of states NSS re-
mains approximately the same, These results indicate that additional postdeposition
heat treatment is required in order to minimize the effects of oxide trapping and ion
motion in the oxide,

The configuration used in obtaining the solar cell C-V data is shown in figure 4.
Oxide thickness was 575x10~ 10 m (575 A) and the gold dot is again 0.0254 cm in diam-
eter. This configuration is used in order to avoid complications due to the p-n junction,
The capacitance-voltage data shown in figure 5 are expanded to yield the enlarged curve
shown-in figure 6, The latter curve clearly shows the presence of a minimum and ap-
proaches a limiting maximum value. Excursions outside the voltage range shown are
limited by dielectric breakdown. However, since a minimum is observed, the bulk im-
purity concentration close to the surface is obtainable from a plot of l/C_2 against ap-
plied voltage (fig. 7). 7 The data for the diffused face of the silicon solar cell are sum-
marized in figure 8, The depletion width W. was obtained after taking into account band
gap narrowing due to heavy doping effects. 8 The impurity concentration N is the value
at a depth W, 15x10710 m (15 A), from the diffused surface and is, in effect, a surface
parameter. Furthermore, the value found for N is in reasonable agreement with the
solid solubility limit for phosphorus in silicon at 850° C. 9 The surface fixed charge
concentration NS is obtained from the data at the flat-band point (220 pF). As before,
NS includes the effects of oxide charge as well as surface states. In obtaining Ng,
correction was made for bulk resistance due to the configuration used. In addition, the
oxide dielectric constant was obtained from an independent experiment on a similar

oxide. _ _
The solar cell C-V data are the first such data obtained for the heavily doped, dif-

fused face. Furthermore, the MOS C-V technique can yield information regarding sur-
face parameters for the highly doped, diffused face of the silicon solar cell..
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Figure 3. - Summary of data, n-Si-Tay0s.
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Figure 4. - Configuration used for MOS C-V experiment on solar cell diffused face.
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Figure 5. - C-V data for diffused face of silicon solar cell.
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Figure 6. - Expanded C-\( data plot.
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Figure 8. - Data summary for diffused face of silicon solar cell.
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14, BULK DIFFUSION LENGTHS IN SILICON SOLAR CELLS
USING THE SEM

Victor G. Weizer
NASA Lewis Researchr Center
Cleveland, Ohio

A diffusion length measurement technique is described, the main advantage of which
is that bulk effects are isolated from surface effects. This method is ideally suited for
measurements on silicon solar cells because of the geometry involved and the large mag-
nitudes of diffusion length usually found therein. The results of measurements on a
number of silicon cells are presented and compared with those obtained using a penetrat-
ing radiation (X-ray) technique. The values of diffusion length obtained are found to be
significantly larger than, but proportional to, those obtained using penetrating radiation,

The method is a variation of the technique in which the highly focused electron beam
in the scanning electron microscope (SEM) is used to generate carriers in a sample con-
taining a collecting junction, 1 The relation between the measured short circuit current
and the location of carrier injection is used to determine the diffusion length. The main
difference in the present technique is that, by the employment of a highly doped field
layer at the electron beam entry surface, carrier recombination there is reduced to
negligible values, The actual recombination velocity at the beam entry surface is de-
termined by measurements made on cells of special geometry.

The continuity equation describing point injection of carriers in a planar solar cell
of thickness d at a distance X, from the collecting junction is

vn(x) - M¥) - (1)

where L is the bulk diffusion length., A diagram of the geometry involved is given in
figure 1(a). The solution of equation (1) under the boundary conditions
(1) At the junction, x =0, n=0

(2) At the rear surface, x=d, D a__gnm
dx

yields an expression for the short-circuit current

1 +: - zexp(-2y1)
+

¥ exp(-yy) + = explyy)exp(-2y;)

+
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In equation (2) Yy = (d - X, )/L Yy = -X. /L I is the carrier injection rate, and S
is the rear surface recombmatlon velomty normahzed to D/L, where D is the minori- -
ty carrier diffusion coefficient,

Let us consider, now, generation of carriers by the SEM beam at a point just in-
side the rear surface of the cell, By setting X; = d in equation (2), we obtain the fam- -
ily of curves shown in figure 2, Here, Isc /Im ax’ the fraction of the injected carrier flux
which is collected by the junction, is plotted as a function of d/L for several values of
S. From this plot one can determine L from the measured value of Ier if S and
I_ . are known,

max ‘
The values of I. can be determined theoretically from the known pair production

energy (3.5 eV for gﬁ}({:on), 2 the incident beam energy (40 keV), the electron backscat-
tering coefficient (0. 16 for 40-keV electrons on silicon), © and the incident beam current
IB.' Using these values we obtain the relation

I =9.6x10° 1

max : B
The calculated value was verified experimentally from Is ¢ measurements when the
carriers were injected in close proximity to the junction, where the collection efficiency
is expected to approach 100 percent. Agreement was found to within 0. 5 percent,.

In order to reduce the effective rear surface S to as low a value as possible, a
highly doped field (p+) layer was employed (fig. 1(a)). In an attempt to obtain a quanti-
tative estimate of the degree of reduction in S effected by the pt layer, several cells
of the geometry described in figure 1(b) were fabricated. These cells contain crescent
shaped slots, about 1 mm wide and 1 cm long, cut in their rear faces with a circular
diamond saw. The slots were cut so that the cell thickness at the bottom of the slot is
of the order of 25 um, This geometry permits measurement of the variation of ISc
with cell thickness without the interference of edge effects which could be present if, for
instance, an angle lapped geometry were used, .

After slotting, the p layers were incorporated by evaporatmg aluminum on the rear
surface and diffusing for 60 minutes at a temperature of 875° C. Subsequent to the dif-
fusion.,st‘gp,‘.,tg.e remaining aluminum was removed from the slot and a small adjacent
flat area. R

Results of measurements of IS c 3a function of the location of carrier injection
along the slot in a typical cell are shown in figure 3. As can be seen, Isc drops sharply
as the injecting beam begins to impinge on the slotted area, indicating a higher value of
S in the slot than on the unslotted regions, The increase in S is very likely due to re-
sidual lattice damage from the grinding procedure. Although a short range variation in
S across the surface cannot be ruled out, it is believed that the scatter in the data of
figure 3 is due to the presence of tenacious aluminum-silicon alloy particles remaining
on the surface which reduce the effective beam current that enters the underlying silicon.
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Thus the true response of the uncovered silicon is best described by the upper envelope
of the data,

The best fit of equation (2) to the data along the slotted region is indicated by the sol-
id curve in figure 2, The theoretical fit requires a value of 0, 315 for S and a value of
262 um for L. This value of the diffusion length can then be used with equation (2) to
determine S on the flat area, The results of such a calculation indicate that on the flat
S =.0.012, a value several orders of magnitude less than the minority carrier diffusion
velocity D/L. We can therefore assume that, for all practical purposes, the p* field
layer, as described here, constitutes a perfectly reflecting barrier to minority carrier
transport, effectively preventing recombination at the rear surface of the cell.

There are two points that were of some concern in the interpretafion of the point
injection data: (1) the possibility of the presence of high injection level effects and (2)
the possibility of contributions to the measured Is c from the low-high junction formed
by the application of the highly doped field layer. 4 '

In a search for high injection level effects, measurements of the current gain, i.e,,
the ratio of collected current to input beam current, were made for beam currents from
a few picoamperes to over a nanoampere for a wide range of defocousing conditions,

No variation in the gain was seen, indicating that the measurements are free of high in-
jection effects, ‘ '

Evidence of current contributions from the p—p+ junction was sought in two ways,

(1) The p-n junctions were removed from a number of 10-ohm-cm n‘L-p-p+ BSF
cells, isolating the p- p+ junctions, Measurements of V on the isolated junctions un-
der roughly simulated AMO conditions show that there 1s no significant collection when
this material is used, i.e, V0 ~ 0,005 V., Similarly treated 100-ohm-cm cells, how-
ever, yielded open-circuit voltages of 0,050 to 0,100 V,

(2) The rear faces of a number of 10- and 100-chm-cm n’“-p-p+ BSF. cells were
divided into two regions by etching grooves across the rear of the cells, The Is c Was
then measured (in the SEM) from one of the rear areas while carriers were injected first
into one of the areas and then into the other (see fig. 1(c)). A significant increase in
Is c when injection takes place on the metered side would be an indication of majority
carrier collection at the p-p+ junction. In agreement with the first experiment no in-
crease was found for the 10-ohm-cm cells, whereas the 100-ohm-cm cells showed a
51gn1f1cant (~ 8 percent) increase in response. '

We can conclude, therefore, that for the 10-ohm-cm cells of. 1nterest here, p- p
collection does not seem to be a concern, If higher base resistivities are used, how-
ever, current generation by the rear junction must be accounted for.

"It is interesting to compare the results of the SEM measurements on a number of
10-ohm-cm BSF silicon solar cells with the values of L determined by an independent
technique, in this case a penetrating radiation technique employing X-rays as carrier
generators, The X-ray technique, which is described elsewhere, 5 has been extended
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4, Lade, R. W,; and Jordan, A, G.: J. Electronics Control, 13, 23 (1962),
5. Lamneck, J, H.: NASA TM X-1894 (1969).

TABLE 1. - COMPARISON OF OBSERVED AND CALCULATED 'Isc

Cell field Cell Observed |Original calibration | New calibration
layer type Isc’ HA L oAl uA L, pm lsc’ LA
8C
362-5 BSF 27 80 . 27 152 27
(boron) Non-BSF 21,5 . 80 26.5 152 ©20.7
HAL-25 BSF 55.7 215 55.7 410 $5.7
(aluminum) | Non-BSF { 29.9 - | 215 | 33.5 .| 410 28.1
T +
T e e P
d X P
4 — e A ), n#
{a) Configuration used in derivation of equation (2).
©
p— O —-————— ’
= —Z—
SIDE VIEW LS A L
- - == e — —|e— n?t
TOP VIEW  |{mm ]
FTh— 10m —

(b Siotted cell.

{c) Split back cell.
Figure 1. - Schematic diagrams of solar cell configurations.
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Figure 2. - A plot of the collected fraction of injected car-
riers as a function of the ratio d/L.
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Figure 3. - A plot of the collected fraction of injected car-
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15, CORRELATION BETWEEN MECHANICAL IMPERFECTIONS
AND ELECTRICAL PROPERTIES OF SOLAR CELLS

R. Kaul, * B, Roessler, and J. J. Loferski
Brown University
Providence, Rhode Island 02912

I. INTRODUCTION-

This research has been supoorted on a grant entitled "Methods of Im-
rroving the Efficiency of Solar Cells”" from NASA-Langley and by the Brown
University-NSF-Materials Research Laboratory institutional grant-GH- '3631.
This report descfibes a new part of our research activity which focuses
on the localized characterization of solar cell materials by several
different but complementary techniques, The initial, xS-gfown,condition, as
l{ell as the effects of processing steps during device manufacture, are of
equal concern. The work is based unon the idea that imperfections in the
crystal lattice can detract from ultimate device performance either directly
through interactions with charge carriers or indirectly by influencing the
distribution of dopants and imvurities:. The term 1mpsrfeétions is meant to
include dislocatiops, orecivitates of second phase, non-uniform imnurity

 and dopant distributions, small angle grain boundaries, surface damage,
and similar defects.. Imperfections of these kinds'are sometimes oresent
initlally or can be introduced during device fabrication. In GaAs, for ex-~
ample, such impverfections are often introduced during crystal growth.(l'Z)
An assessment of the importance of various imperfections is not straight-
forward. For example, in GaAs crystals of high perfection the minority-
carrier diffusion length is sometimes limited to flhe distance between dis-~
lbcations(B). A low dislocation density, on the other hand, does not--
avparently--guarantee a long minority carrier diffusion length in GaAs(u).
Although an inverse relation between dislocation density and minority
carrier lifetime has been revorted by several workers for silicon of both

(5-10) (11)
high and low resistivity + this dependence is not always found .

*p.
Present address: School of Business Adminis i i : .
Ch tration, Universit
icago, Illinois. > y of Chicago,
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The minority carrier lifetime apparently can be affected in exactly the

opnosite(fa;hlon if a dislocation inhibits the capture of majority
11 .
carriers. = , Although dislocatlon free silicon is now readily avallable

as starting material, this hi(.gh)perfection is not always found in finished
. 12 ) ,

commercially available cells « The presenc? og dislocations may, in

: . 13

-fact, be advantageous for certain applications « For both direct

(electronic) as well as indirect effects, the character of the dislocations,

i.e. the relatién between their Burgers and their tangent vectors, has had
little experimental attention. |

- A surfacé of high peffection--free of  damage from prior processing ,.
operations also'seems.desirable if high efficiencles are to be attained.

In this résearch we will focus our atﬁéntiqn upon'éha;acterizing our

specimens--as regards crystalline perfection--and then correlating these

measurements with measures of device performance locallzed to regions in
which we know the state of crystalline perfection. We have set up and begun

to use a varlety of characterization techniques including x-ray tovogranhy,

scanning electron microscopy and differential interference microscopy. Devie:

verformance is indicated by measurements of locélized spectral response at
selected wavelengths and by electron voltaié response generated by electron
beam excitation in the scanning electron M1croscope.. Much of the ;mpetus for
this work came from an earlier observation in the scanning electron micro-
scope(ig)the'existence within the illuminated region of silicon solar cells

of “dead areas" il.,e, areas of reduced response,

II. DESCRIPTION OF THE TECHNI:JU®S

A.) X-Ray Tovogranhy

The exverimental arrangement for the lang x-ray topographic technique

which we have used is shown in Fig, 1. An x-ray beam falls upon a crystal
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arranged to diffract from a;selected set of lattice planes. The diffracted
beam is recorded on a fine grained film as the crystal and film are trans-
lated through the beam. The presence of any source of strain or strain
gradient alters the dAiffraction conditions in the vicinity of the imper-
fection and‘gives rise to an image of the defect. . As an example~-an x-ray
topograph from a specimen of silicon 1s shown in Fig. 2. It shows this as-
recelved crystal to be of relatively low dislocation dens;ty. Fig, 3 shows
this same specimen following a high temperature diffusion treatment in
phosphorous oxychloride. Extensive slip has occurred starting'from surface
sources at the edres of the disc., An array of slip dislocations is seen at
8L and circular defects are also seen at C and R. The dislocation density
at.the edges of the slab becomes extremely high,

X-ray topograohy, then provides a non-destructive method for speci-
fying the state of crystalline perfection throughout the process of device
fabrication., In addition to displaying the distribution and character of the
dislocations in the svecimen, other defects such as second phase particles,
strains due toAsurface damage, and non-uniform oxide layers are also revealed,

B.) The Localized Electron Voltaic Response

In this technique, the short circuit current is displayed on the screen
of a scanning electron microscope (SEM) as the electron beam is scanned over
a selected region of the solar cell, Figs. 4-7 show such a display as the
acqelerating voltage of the SEM is increased from 10 to 25 kilovolts. The
*dead areas” (the dark circular disks) are similar to those previously
described(lu)z they change in appearance as the accelerating voltage is in-
creased because the venetration deoth of the eléctrons increases for higher

accelerating voltages.

C.) The Localized Spectral Response

The loralized spectral response measurements consist of recording the

short circult current from a ccll illuminated in an optical microscope by a
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small collimated beam of selected wavelength., In our original equipment

the beam was localized to a 200 micron diaméeter. Typical results are

shown in Fig. 8. We now feal that the beam diameter must be reduced to
about 10 to 20 microns so that the localization of the response more nearly
matches the capablilities and resolvihg pouér of the x-ray me@hods as well
as the ;canniné electron microscope. .The anélquths'are selected to
sampleAthe photo?oltaic effect to different depths. .In'Fig.'B the wave-~
lengths are a green for which ‘the (l/e) absorption depth is 1.2 microns, and
an infrared for which the ahsorotion depth.ié 8.3 microns;

D,) Localized Correlations of Imperfections and Electxical Response

When the vphotovoltaic response is sufficientiy localized, we intend
to correlate these measurements w}th the x-ray topographic display of
Erystalline perfection and surface condition in a finished,cgll. For this
purnose an x-ray topographic stereo pair is recorded to give a three dimen-
sional display of the state of perfectién of the c=11, An example is ;héwn
in Fig, 9. This stereo pair of a finished éell. toge£$er with additimal
toposravhs which reveal imperfections which are out of contrast in Fig. 9,
are then used as a gulde in selecting regions for measuring thé electron
voltaic and locallzed photovoltaic respogse; b

Qur initial attempts to correlate the results of the §ariou$ techniques
in siligon cells sugzest thatAthe régioné of reduced elgctron voltaic re-
sponse occur in regions where elther dislocations pierce tbrough'fhe p~n
" junction to the surface or where nodes in the dislocation network ocpurﬂ"
These resutts, however, are preliminary since we.have not &et completed thé
kind of localized corfela£ion thet 1s needed; that will require some furtker
improvements in both eqﬁipment and technique.. ‘

ﬁhen thé SEM i1s operated in thé beam deflection mode a localized

(15)
measure of the minority carrier lifetime 1s obtained. Evaluation and
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control of this important parameter and, ln particular, an understanding of

the reasons for its decrease to undesirably low values, is essential if

maximum efficlency solar cellsAare to be attained.

1.)
2.)

3.)

4,)
.5_.)
6.)
7.)

'a.)
9.)
10.)
11.)

12.)

13-)

14,)
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Figure 2. - A (220) X-ray transmission topograph of a
silicon wafer in the as-received condition. Magnifi-
cation 16.9X. (L-65, LP106)
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Figure 3. - A (220) topograph of the same region after

2 minute diffusion treatment in phosphorous oxychloride
at 1100° C. Circular defects at C and R may be
similar to electrically ''dead' areas seen in commercial
cells by scanning electron microscopy. Some disloca-
tions, as at A and B, are visible in both topographs.
Many dislocations are introduced by slip during this
processing step, as at S-L. Magnification 16.9X.
(L-89-LP104)
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Figure 4. - Electron-voltaic response (short
circuit current) from silicon solar cell.
Accelerating voltage 10 kilovolts.

Figure 5. - Electron-voltaic response (short
circuit current) from silicon solar cell.
Accelerating voltage 15 kilovolts.
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Figure 6. - Electron-voltaic response (short
circuit current) from silicon solar cell.
Accelerating voltage 20 kilovolts.

Figure 7. - Electron-voltaic response (short
circuit current) from silicon solar cell.
Accelerating voltage 25 kilovolts.
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Figure 9. - This is a stereo pair of a finished solar cell recorded with
molybdenum radiation. The antireflection coating was present on the
cell when these topographs were recorded. The electrical contacts or
"fingers'' on the front face of the cell run diagonally across the photo-
graphs at F, | and N, G. The defect at SC indicates the presence of
surface damage in the finished cell. The diffracting planes are (220)
[LP-189] and (220) [LP-190]. Note that a large number of dislocations
present in the cell are not visible in these topographs since their
Burgers vectors are contained in the diffracting plane; they are re-
vealed in topographs recorded with a different diffracting plane.
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16. EXPERIMENTAL STUDIES OF IMPERFECTION CENTERS IN LOW RESISTIVITY
SILICON p-n JUNCTION SOLAR CELLS*

S. S. Li, F. A, Lindholm, and P. J. Chen
University of Florida :
Gainesville, Florida 32611
and
C. T. Sah
University of Nlinois
Urbana, Illinois 61801

I. Introduction

Defects in silicon p-n junction devices can be induced
by irradiation, high-temperature diffusion or impurity-
related doping process. If a defect is impurity-related,
the probability of its formation will increase with impur-
ity concentration. These defects can act as electron and
hole traps and as recombination centers. They, therefore,
alter the electrical characteriétics of silicon devices.

The charge states of each defect can be determined by
comparing its concentration to changes in the steady-state
charge in the depletion region. The charge state is impor-
tant in determining the recombination properties of the
defect. These properties affect the operation of various
semiconductor devices.

The importance of the electron-hole recombination in the
transition region of a p-n junction under forward bias con-
ditions was first analyzed in detail by Sah, Noyce and

(2)

Shockley This recombination current has been reported

by Pfann and Van Roosbroeck(3) in silicon solar cells and
has been observed on commercial silicon diodes by Sah(4).

-Analyses of recombination and diffusion current compon-
ents in silicon p-n junction solar cells have been made

(6) and Hovel(7). Their results

recently by Wolf(s), Stirn
indicated that the recombination current component in the
junction space charge region may dominate at low current

and at low temperatures.

*
Research sponsored by NASA Lewis Research Center under Grant
No. NSG-3018.
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In this paper analysis of the preliminary experimental
results on the I-V characteristics of a 0.1 ohm-cm silicon
N'p junction solar cell fabricated with a MOS guard ring
gate is given. ‘Theory of the transient capacitance methods
that are employed to determine the carrier emission and
capture rates, the energy level and density of defects in
the junction space charge region and the substrate of a

p-n junction solar cell is describad.

o o +
II. 1I-V characteristics of a 0.1 ohm-cm silicon N P solar

cell

Measurements of current-voltage characteristics of a
0.1 ohm-cm silicon ﬁ+P junction solar cell fabricated in our
laﬁoratory have been méde between 145°K and 295°K. The
results are displayed in Fig. 1; The cross sectional view
of the N+vailicon test diode is shown in Fig. 2. To
explain the 1I-V characteristicé shown in Fig; 1, thé total

(4) -

junction current may be empirically written as

I exp{qV/mkT) ' (1)

I s

]

where 1 < m < 4. Eé. (1) is valid for forward junction
voltages greater than a few kT/q.

Detail analysis of Eq. (1) has been given by Sah(4).
In_general, the total junction current may consist of four
components, namely, fhe bulk diffusion current (i.e., m=1

and I, proportional to nz; n; is the intrinsic carrier

density), the bulk generation-recombination current in the
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transition region (i.e., 1 <m < 2, and I, proportional to

2/

m . . . .
n:’ "), the surface generation-recombination current (i.e.,

i
1 <m < 2, and Is proportional to ni/m), and the surface

channel current (i.e., 2 <m < 4 and I proportional to
ni/m)s4)

Among these four current components, the diffusion
current depends most strongly on temperature, while the
surface channel current has the smallest temperature depen-
dence. This prediction is consistent_with the measured I-V
characteristics shown in Fig. l. The results show that at
low current level m=2 for T=295°K and 2 < m < 4 for T=145°K
and 196°K, indicating that at low current level the current
component due to recombination in the junction space charge
region plays dominant role at 295°K and recombination current
in the surface channel becomes imminent at 145°K and 196°K.
The diffusion current component becomes important only at a
higher current level.

Theoretical fit with the experimental data shown in
Fig. 1 at the low current level (where recombination current
is the dominant component) yields.a carrier lifetime of 60 nsec

o]
in the junction space charge region for T = 295 K.

I1I. Theory of transient capacitance methods

The presence of deep level defects in a semiconductor
can be detected by observing the capture and emission rate
of charge carriers at the defect site. This can be done by

monitoring the reverse bias capacitance of a p-n junction
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diode after disturbing the steady state charge condition.
The four processes by which the charge state of a deepl
level defect is chaﬁged, according to the Shockley-Read-Hall
model are illustrated in Fig.3.
The net rate of change of the concentration of frépbed
electrons is obtained by summing the contribution from each
of the four processes as follows:

dn, de

T_.__T_ _.t t t _ .t :
3t = 3t e, np + ¢ npy + e, Pp cp 21 (2)

This equation is simplified for the case of a depletion region,

where n ~ p = 0. Thus, Eq; (2) reduces to

dn :
T _ t _ ot -
at =~ Sn " " % Pr 3
Using Npp = np + pp = total concentration of a deep level

defect the solution of.(3) is given by

- et o S
AnT(t) = AnT(o) exp ( e, t) . . (4)
where we assume et >> el if E. >.Eg/2; “An. is the
n P T ~° ! T .

disturbance of the trapped electron density from its steady
state value. This disturbance is seen to decay exponentially

with a time constant given by the reciprocal of the emission

(8)"

rate, ei. It has been shown that
e -~ exp(-AE/KT) . - . (5

where AE is the thermal activation energy and is approximately

the energy level from a band edge (i.e., ET)'
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The presence of deep level defects is determined by
observing the presence of the decay implied by Eq. (4).
Measurements of this decay constant versus temperature yield
values for the thermal activation energy.

The emission of charge cagriers from defect sites in a
depletion region is observed by monitoring the capacitance
of the depletion region. The capacitance of a reverse biased

p-n junction in the depletion approximation is given by

2 _ €0

for deep acceptor level where
p = qINy = np(t)) N

which illustrates the time and temperature dependence of p,
."comes from the emission of trapped charges at the deep level
defects, and C is proportional to p%.

The method of disturbing steady state charge in the
depletion region is shown in Fig. 4.

Fig. 4(a) shows the charge state at zero bias condition
in which the trap levels are filled with electrons. Fig. 4(b)
shows the charge state of the majority carrier traps under
reverse bias condition in which the electrons are emitted
from trap levels into the conduction band; the time constant
is determined by the electron emission rate. Fig. 4(c) shows
the charge state of the minority carrier (i.e., holes) traps;
the holes were injected into N-region by photo-excitation and

capture by the trap levels and re-emitted into the valence band.
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In general the defect levels may:-be switcﬁed from a
depletion region to a quasi-neutral region :‘and back by
momentarily zero bigsing a reverse-biased diode. The
charge states of the defects are determined by the relative
emission rates of electrons and holes. By studying both
diode types (i.e., Nt-p and p*-n diodeSf, the entire band
gap can be scanned for defect energy levels.

The Thermally Stimulated Capacitance (TSCAP) method
allows a rapid scan of all the deep level defects which are
majority carriers (i.e., electrons in P+N diodes) traps on
the lowly doped side. The diode is cooled éo a température
such that the emission rates are negligible. The diode is
zero biased momentarily and then heated at a constant rate.
In a characteristic temperature range related .to the activa-
tion energy, the emission rate becomes large enough:for all
the trapped electrons td be thermally emitted to the conduc-
tion band and swept out of the depletion region. This results
in an increase in the charge concentration in the depletion
region and a corresponding capacitance increase.

There will be one of these capacitance increase steps
for each activation energy in the upper half of the band gap.
The magnitude of each step is related to the concentration

of defects producing the step(l)

2AC TT (8)

C N

The emission rate versus temperature measurements allows

the determination of the activation energy of each defect.
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After a momentary zero bias, the capacitance exhibits an
exponential transient having a time constant given by the
reciprocal emission of the trapped majority carriers (i.e.,

electrons),
t
AC ~ exp(-e_ t) (9)

Measurements of this transient capacitance decay at
various temperatures show an exponential temperature de-

(8)

pendence
t m
e, = An(T/300) exp (-AE/kT) (10)

The data is least-square fitted to Eq. (10) to give the
thermal activation for m = -1, 0, 1 and 2.

From the aforementioned experimental methods for both
n+p and p+n junction solar cells, the information concerning
defect centers such as NTT' eg, e;, cﬁ, c; and ET in the
entire energy gap can be obtained readily. The electron
and hole lifetime as well as diffusion lengths can thus be
calculated from these parameters.

These measuréd recombination parameters are of paramount
importance to the understanding of the basic properties of

the defect centers and their roles in affecting silicon solar

cells performance.
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(a) electron copture rate = c,'{np.r

(b) electron emission rate = e,',nT

(c) hole emission rate = ert‘p.r

(d) hole capture rate = ¢ _— ;
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Figure 2. - Cross- sectlonal view of a’ 5|l|con N P diode with .MOS guard
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DEVICE ANALYSIS

Presentatlons of the most recent approaches to the mathematical
modeling of solar cells -
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17. ROLE OF RECOMBINATION CURRENT ON PHOTOVOLTAIC PARAMETERS"

. Richard J. Stirn
Jet Propulsion Laboratory
Pasadena, California

For obtaining maximum convgrsion efficiency in solar cells, thé electrical.
properties of the p/n Junction are second in importance only to high mi-
nority carrier lifetime. For solar cells with more heavily doped sub-
strates, the junction performance can even’become of primary importance
mainly because of excessive space-charge recombinatibn current. Most
reported measurements of junction characteristics have given widely
varying and erroneous values even for standard cells due to series
resistance effects and to the presence of localized current-shunting

paths.

The pertinent equations for the following discussion are given in Fig. 1,
where Vd is the voltage drop‘across the Junction, IOI_and I02 are the
reverse saturation currents for diffusion and recombination in the space-
charge region, respectively. RS and Rsh are the series and ohmic shunt
resistance, respectively. The last equation does not include other
possible current mechanisms such as surface channel or surface recombin-
ation as it is felt that proper processing can sufficiently control these
mechanisms, and since extensive measurements on 2- and 10-ohm-cm cells

have indicated negligible effects. A computer program has been developed

¥ This paper presents the results 6f one phasé of research carried out
at the Jet Propulsion Laboratory, California Institute of Technology,
under contract no. NAS 7-100, sponsored by the National Aeronautics
and Space Administration. '

preceding Page Blank
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thgt accurately solves for the five variables: IOl’ IOZ’ A2,'RS, and
Rgh from the dark forward current-voltage characteristics. Since each
one of these variables affects the solar cell parameters of open-circuit
and maximum-power voltages (V and V ), f£i11 factor (F.F. ), and effi-
ciency (n), another computer program was written which will calculate
these parameters and draw the light I-V curves for any combination of
the five variables for any temperature or light level. This paper
pfesents some results for room temperature when the space-charge recom-

bination current is varied.

For comparison, a standard Mariner 2-ohm-cm solar cell at earth-orbital
conditions is presented in Fig. 2, where I02 is the variable. The change
in four of the photovoltaic parameters is given in Fig. 3. The average
value of 102 measured on such cells is indicated as are average values of
the Vmp’ voc’ F.F., and n. The small difference is well within experi-
mental error and may also be accounted for by shunting effects which were
not included in calculating the solid curves. The results show that for

typical values of I_. . in standard solar cells, the loss in efficiency 1is

02
no more than about 10%. The loss in more advanced solar cells having

(incidentalbﬂ narrower space-charge regions is considerably less.

The situation in more highly doped solar cells is quite different, how-

ever, due to the relatively much smaller value of diffusion component.

Fig. 4 gives the light I-V curves for a substrate resistivity of 0.1 ohm-cm
and an assumed light-generated current of 46 mA/cmZ. The resulting variation
in photovoltaic parameters is shown in Fig. 5. Now one can see that the

loss in efficiency, for example, can be as much as 100%. Even if the
reverse saturation current density due to space-charge recombination 1h 0.1
ohm-cm material is comparable to that typically measured in conventional 2
to 10 ohm-cm material, the efficiency of the 0.1 ohm-cm cell is reduced
from 18% to about 13%. ‘ '

The choice of 1.0 ohms for the series resistance may be somewhat harsh.
The shallower junctions required to get as much as 46 mA/cm‘ have consider-
ably higher sheet resistances. However, photolithographic grid contacts

have reduced the total series resistance tof#éiﬁé§;;oger;than l.ohm. .

Lt v - L. - LY ANEIEY
Ny v St s )_,,‘,.‘35 g
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Consequently, the numbers for efficiency and fill factor on Fig. 5 probably
can be raised somewhat. TFigure 6 gives some values for the case of I

-7 2 -9 o 02 ~
1 x 10”' A/em". The values for I, =1 x 10~ A/cm” are:

02
R_(ohms) n (%) F.F.
o 9.2 83
0.5 18.5 812
1.0 17.8 .782
2.0 16.5 .723

The specific impurities and/or impurity defect complexes responsible for

the amount of recombination current are presently unknown. Planned exper-
iments of thermally stimulated capacitances and capacitance transients on
high-doped silicon and on low~-cost ribbon silicon, where the excess curfent
problem is equally bad, should provide some answers. I believe that
processing ~ both on the silicon blank and in Jjunction fabrication - are
crucial steps, no matter what the starting densities of deep-level impurities
are. In the case of low-cost silicon, such as ribbon-grown or sheet silicon,
the presence of grain boundaries and other lattice defects can cause impurity
segregation and enhanced localized excess leakage current. Even with single
crystal silicon, the recombination current may well be enhanced by the
diffusion process itself. It is well known that the phosphorous "glass"
formed fg)m P205 is an efficlent getter of metallic impurities. Consequently,
it is quite likely that one may have a situation such as given in Fig. 7,
where the original background density No has been reduced in the bulk by

the gettering, but has been actually increased near the surface. Thus,

the space-change region at xJ may have an unexpectedly large concentratipn
of deep level impurities injurious to the Jjunction characteristics. It is
for these reasons that various Jjunction formation processes should be

explored in conjunction with the low resistivity high efficiency cell program.

In conclusion, the development of highly efficient low resistivity solar
cells or moderately efficient very low cost silicon solar cells will

require reducing the presently measured values of reverse saturation

current density due to space-charge recombination two to three orders of
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magnitude. This will best be accomplished by identifying the responsible
deep level impurities by transient capacitance measurements, minimizing
the source of such impurities during the silicon crystal growth, and by
changing cell processes to m:lnimize ‘segregation effecté.

I'Il‘ID
- VeIRg+Vp

Ip~ Ig [exp qtvp + TRAT-i]-
+1gp[exp qtvp + IRg/AT -]
+ VDHIRSh .

Figure 1. - Solar cell equations.

301

25F o
T=335K
Igy=6x 10710 prcm?
Pin = 140 mwicm?

G 20F B
& Ij = 3.7 mAlcm2
[ R = 2.0 ﬂ-c_m2
= 15F .
Igp (Alem?)
I Ix10-3 ‘
wf  2.5x10°8 -
Sl R N T L R L
4. 1x108 - o
5} “ i
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Figure 2. - Light I-V characteristics.
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18, A SEMI-EMPIRICAL ANALYSIS OF SILICON SOLAR CELL PARAMETERS
AS A FUNCTION OF SOLAR INTENSITIES*

E. Y. Wang
Wayne State University
Detroit, Michigan 48202

I. Introduction

It has been known for years that the electrical characteristics
of silicon solar cells have an important effect on open circuit vol-
tage, Voc and fill factor FF. These parameters have been studied
previously for AMO sola; intensity based on ideal diffusion limited
current-voltage charactefistics of the silicon solar cells. TFor
terrestrial application, the solar intensity is less than the AMO
condition, or considerably moré than the AMO condition if a concen-
trated op;ical,syétem is used. In this paper, we have investigated-
the solar cell-parameters as a function of solar intensity based on
various models of junction current, The models considered in the

€9

space-charge region re-~

(3)

calculation are, bulk recombinafion,

(2)

combination, surface channel effect, and ohmic shunting

(4,5) The cells considered in the studies are of 0.01, 0.1,

paths.
1., and 10 ohm-cm resistivity. The short circuit current Isc is
assumed to be linearly dependent on solar intemsity. In additionm,

we also present the effect of the series resistance for a typical

cell on fill factor at high solar intensities.

*
Major portion of this work is performed ‘under NASA Grant NGR 23-006-
057 and NGR 23-006-063.
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II. Calculation Results

The total junction current of the silicon solar cell consists
of the contribution from the diffusion current due to bulk recom-
bination, generation—recombination‘éurrent'in“the“t:ansition rggion,
and currént§ dﬁe to surface channel.aﬁd éhunting resistancé. The'“

total junction cufrent can then be empirically written as:

- Qv _ oxp L
Ij ID(exp T 1) + IR(exp kT 1)
v _ ‘

v _
+ Io(exp g7 - 1) + Rgy @

R IQ are saturation currents due to diffusion, recom-

bination and surface channel respectivily. RSH is the shunting re-

where ID’ I

sistance and other symbols have their usual meanings.
(A) Sho:t—circuit Current | l
Equation (1) gives the current~voltage rélationship based
on the theory of junction current in éilicon solarlcells. Under

illuminétion, the I-V characteristics becomes:

= - = - g_v__ - __g!_ A
I=1 -1, =1 Iy(exp o7 = 1) - Lpexp(Gr - 1)

- vV _ 4y .V
IQ(exp BT 1) Ry o (2)

where IL is the source current due to photogenerated excited

carriers. By the definition of the short-circuit current, we
set V equal to zero and solve for I. The short-circuit cur-

rent, Isc is simply equal to the source current, I Further-

L
more, the Isc is independent of‘any excess junction mechanisms.
(B) Open-circuit Voltage

The open-éircuit voltage is obtaiped by setting the net

D o T
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junction current equal to zero under illumination. For low 1llumi-
~ nation intensifies, such as terrestfial applications or a Jupiter
mission in space; the voc decreases as we include the other_excess
junction current mechanisms. Since the dependence of voc on excess
junction currents is through the'logrithmic function (except the
current component form shunting resistance effect)., the Voc is re-
latively insensitive to the various excess junction mechanisms.
’Fiéure 1 is the piot of Voc as a function of solar intensities for
various excess current mechanisms. The Isc is assumed to be linearly
dependent on solar intensity. The value of Isc is taken as 35mA/cm2
and I_ in

R’ RsH Q

equation 12 used in calculations were listed in Table I for various

at AMO condition., The numerical values of ID’ I

resistivity cells.

As shown in Figure 1, the junction current at AMO conditiomn is
dominated by diffusion current, and the excess junction has little
effect on Voc' For a diffusion current limited solar éell, Voc is‘

obtained from equation (2) and becomes the well-known expression:

g =K

I
SC
be = g 1B T+ D) €)

D

As shown in equation (3), larger Voc requireslsmaller saturation cur-
rent. Theoretically, this can be achieved by dbping héé&ily in the
base region of the solar cells. Figure 2 illustrates the ideal
diffusion-limited solar cells for various base resistivity material.
Figure 3 shows the results for generation-recombination limited solar

cells.
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(C) Fill Factor:

Fill factor is defined as the ratio of'thg Ime product to the
Isévoc product where Im; Vm are the current and voltage to giye-ﬁhe
maximum power output. It also means to extract the ma#imum area of -
a éurrent-voltage curve when solar'cell 15 under illumination (6).

The fill faétor'depen&s on the series resistahce.and thé'curfentQ
voltage characteristics of the n~p junction. The saturation current of
a typical silicon solar cell junction exhibits at least one or-two
orders of magnitude larger cﬁfrent than that of diffusion-liﬁiﬁed’
éur;ent. This excess junction current'leﬁds to decreasing conversion-
efficiency primarily thfqugh the decreasé in fill factor. By using -
equation (2), the current-voltage curves undér illumination for various
combinations of excess jﬁnction_cﬁrrent mechanisms can be_generatéd._'
Isc is taken as 35mA/cm2 and a linear_dependénce of Isc.oﬁ illuminating
intensities is assumed. Fill factor values can be obtained from the -
genefated i-V curves.under illumination. Figure 4 gives the results
of £f111 factor values for various excess junction current mechanisﬁs
at various solar intensities. The results show that the reduction in
conversion efficiency through the decrease in £i11 factor becomes more
.acute for low illumination environments. Figure 5 and 6 show the fill
factor results for the diffusion-limited and generation-recombination .
limited solar cells respectively. At high solar intensities, the
excess junction current has little effect on the fill factor of solar
cells; however, the series reéistance, typically 0.3-0.5 ohm, will tend

to decrease the fill factor. This.effect is illustrated in Figure 7.

Figure 8 shows the results on ;he fill factor if zero series resistance
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is assumed. Therefore, for terrestrial applications in a concentrated
optical system, the problem of series resistance should be the prime
concern of the research. It should be pointed out that base resis~
tivity of the cell might play a important role in determining the -
series resistance at high solar intensities.

(D) The Effect of the Base Resistivity of Solar Cells on the Relative

Conversion Efficiency:

Based on diffusion theory, low base resistivity cells should
provide a higher efficiency cell. as illustrated in Figure 2 and 5. 1In
practice this is not the case. This is because the iow resistivity
solar cells are found.to exhibit much more excess junction current
that those of high resistivity solar cells, hence a decrease in
efficiency through the decrease in f£ill factor is expected. The
relative cell conversion efficiency is simply the product of the fill
factor and open-circuit voltage. As shown in Figure 9, the concept of
the lower resistivity of the base material yielding more efficient solar
cells is true only for the diffusion limited current-voltage character-
istics. Realistically, cells will probably be generation-recombination

current limited. Therefore, there will be an optimum value of the

base material resistivity for achieving optimum efficiency at particular

solar intensities. Figure 10 shows the results for the G~R limited

case for various base resistivity cells. The results suggest that at
AMO condition, 0.1 ohm~-cm celi gives the optimum efficiency; at

0.1 solar ;ntensity illumination, the 1 ohm-cm cell has the best con-
version efficiency; and 0.01 ohm-cm cell gives the best efficiency at

5 sun intensity illuminations. TFigure 11 shows the results including
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surface channel current and shunting resisfance efféct. Again, the

optimum conversion efficiency at different -solar intensities corres-

ponds to different base resistivity cells.

III. Summary

The effect of the‘excesa.junqtion,dur:ents and series resistance

on silicon solar cell converSion’efficiéncy at various solar inten-

sities for various base resistivity solar cells has been theoretically

analyzed in detail. The highlights of the results can be summarized

as follows:

(¢))

(2)

(3)

)

(5)

Short-circuit current is independent of any excess junction

mechanism.

.Open-circuit voltage is relatively insensitive to the various

Junction mechanism, paritcularly at sqlar in;ensit? higher -
than AMO conditions.: ‘ | 4

Fill facfbr étrongly depends on junctionvéﬁrrent meéhanism,“
pérticulafiy af solar intensity lower than AMO conditioms.
At high intensity, series résiétance; typically 0.2-0.3 bh;,
will tenﬂ to decrease the fill factor;v |

The concept of the lower resistivity of the base material.
yielding more efficient cglls is true only for diffusion
limited current-voltage characteristics. Realistically,
however, at a particular solar intensity there is an optimum
value of the base material resistivity for achieving optimum

efficiency cell.
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TABLE I NUMERICAL VALUES USED IN CALCULATIONS

' iO ohm-cm 1 ohm-cm .1l ohm-cm .01 ohm-cm

IR'Am.b/cm2 Cix10°% 7 1.35 x 2078 3.34 x 10°° 1.0 x 10~/
ID:Amp/cm?‘ 2.64 x1o"il 21 2012 1.5 x1013 1,37 x 10720
I, smp/em® 1x 107 1x 107 1x1073 1x1072
Ry ioo;oéo‘ohm 100,000 ohm 100,090 ohm 100,000 ohm
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19. SOME COMPUTER STUDIES OF SILICON SOLAR CELL EFFICIENCY*

J. R. Hauser and P, M. Dunbar
North Carolina State University
Raleigh, North Carolina 27607

Introduction

The basic starting point for the analysis of semiconductor devices

is the current density and continuity equations:

= oan
Jp = aupE + P, 3% 0
J_ = qu pE - qD EP_
(1)
aJ
n _ _ 1l ™n
I S
aJ
. _yse -L_P
at e qox °

where U is the net internal thermal generation-recombination rate and
Ge is any external generation rate (due to light for example). The
generation-recombination rate U is modeled in this work by a single

Shockley-Read-Hall recombination level which gives

n-n 2
5} T

= tpo(niﬁ;) ¥ rno(p+p17 * (2)

In addition to the above equations, Poisson's equation must be ‘used to

relate E to the doping profile as

3E
X

= 2 (p-n + N(x)), (3)
where N(x) is the net donor-acceptor impurity density.

The above set of equations must be applied to a device and solved
in order to accurately calculate the terminal current-voltage characteristics.
In solving the above equations, it is convenient to reduce the equations

to a set of three coupled, nonlinear, second order differential equations.

*This work has. been supported by a NASA Lewis research grant.
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In this process one has several choices for the three variables in which
the equaticns can be empressed. For example the three varlables ‘may be
electrostatlc potentlal. electron dens1ty and hole dens1ty or electrostatic
potential, electron quas1-Ferm1 level and hole quasi-Fermi level. In the

- present work the latter choice of three variables has been made where

the quasi-Fermi levels ¢n and ¢p are related to n and p as

=]
"

n explq(y-¢_)/KkT],
(u)

o .
"

niexP[q( ¢p-'¢)/kTJ-

The device equations expressed in terms of electrostatlc potent1a1
and quaSL—Ferml levels have been reported elsewhere [1 2] along Hlth a
discussion of the numerical technlques used in solv1ng the device
equatlons. Figure 1 shows a block dlagram of the computer program which
has been developed to solve the equatlons for w, ¢ and ¢ The solution
technique employed to solve the nonlinear device equatlons is an iterative
'techuicue wherehy initial approx;mations to ¢, ¢n and ¢pnare used to
.generate more accurate values and the process‘repeated in a nonlinear
equation iterative loop (see Figure 1. .

Other features of the computer analysis program which are 1mportant
to the present study are discussed below. Doping and fleld dependences
of mobility are included in the work. An optical carrier generation
suhroutine allows the calculation of carrier generation due to.AMO, AM1 or
monochromatic spectral irradiance. After the calcuiatiom of potential and

quasi-Fermi levels, the carrier densities and current densities are printed

and plotted for any desired device terminal voltage.
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Solar Cell Analysis

The computer analysfs program briefly discussed in the previous
section hag been applied to a,variet& of p-n junction and solar cell
structures. The present work concentrates on one series of these
calculations which waé designed to explore fhe_dependence of solar
cell efficiency on resistivity (or doping) of the cell, The basic
solar cell structure studied is shown in Figure 2. It consists of a
thin diffused n' layei into aAbase p-type layer. The analysis allows
for the présence of a back surface fieldlér p* back surface layer [3,4], .

In order to concentrate on the effects of varying base layer
resistivity, a§ man& dimensional and material parameters as possible were
held constant in the present studies. A collection of these parameters
is shown in the.Table I (éee Figure 2). Basically the cells studied were
250 pM in total thickness ﬁitﬁ 0.25 ﬁM n' layers and 0.5 uM p+ layers
(when.present).‘ The n' iayer was-modeled by a Gaussian impurity profile

3. The lifetime in the n' layer

with a surface concentration of 102o/cm
for most of thé_calculations was held at 100 nsec. Some calculations to be
reported later were made at a lifetime of 1 nsec. A surface recombination
velocity of 103 cm/sec was used at the n' surface. Calculations with
varying surface recombination velocities have shown that this is not a
major parameter in determining solar cell efficiency. Varyi;g surface
recombination from iero to infinity was found to vary solar cell efficiency
by only about 0.2%. |
In addition to the parameters shown in Table I, the minority carrier

lifetime, or diffﬁsion length in the f-type base layer is a very important

parameter in determining solar cell efficiency. The dependence of diffusion
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length on doping density has been.baéed in this work on' the experimental
data shown in Figure 3. The data points show experimentally measured °
diffusion lengths in n- and p~type material [5). The solid lines are
.empirical curves which have been genefated to bracket the'expefimental
data. In the present computer calculations the upper solid curve has .
been used to model the ﬁ—type diffusion iéngth. In'soﬁe firét order model
calculations to be presented later, calculatlons using data correspondlng
to the upper curve are 1nd1cated as "hlgh llfetlme range" whlle
calculations using data corresponding to the'middlé curve are indicated
as- "low lifetime range". | - T .

Using the above data, the efficiency 6f_n+—p and«h+—p—p+ cells has
‘been calculated at AMO for several p-type doping iévéls;«,Tﬁe results .
of the efficiency calculations areAshown as'déta péints‘in Figure 4.

The circle points are for the n+—p--p+ cell while the triangle points

are for the n+—p cell. In order to have a compafison basis for the
computer device analysis program, the results of fairly simple first
order models of solar cell efficienéy are also showé aé solid and dotted
curves in Figure 4. The assumptions used in the first order calculations
are briefly discusséa below. ‘ | .

First for the n+--p-p+ cell the first order moééiJcalculations assume
that the cell- collects with lOO% efficiency all carriers created to a‘

" depth of either the total cell tblckness or the dlfquIOn 1ength whlchever
is smaller. Also, in calculating the forward darkfcurrent, the minority.
carrier reflecting properties of the back surface p+-p jﬁnction:are

incorporated into the analysis. The presence of a single layer Si0
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antireflecting coating is also included in the analysis. All solid curves in
Figure 4 have been calculated using diffusing length values represented by
the upper solid curve in Figure 3. The upper curve in Figure 4 labeled

ideal p+ contactvié a first order calculation assuming that the back

p+ layer acts as an ideal minority carrier reflecting contact. The solid
curve labeled n+-p—p+ cell is a calculation including the non-ideal nature

qf a back p+ layer with. the parameters of Table I.

First order calculations for the n+-p cell give the solid curve
labeled n+-p cell in Figure 4. In this calculation, it is assumed that
carrier collection occurs with 100% efficiency to a depth equal to either
one-half the cell thickness or the diffusion length whichever is the smaller
value. The back surface is also model as an ideal ohmic contact; The
major difference between the,n+—p cell and the n+—p--p+ cell is a larger
forward dark current in the n+—p cell. This results in a iower open
circuit voltage for the n+-p cell and a reduced efficiency. '

The first order calculations in Figure 4 also include one other
factor which is not included in many first order calculations for solar
cell -efficiency. This is the inclusion of high injection effects in the
model for high resistivity cells. This becomes important in ﬁ+-p—p+ cell
at doping levels below about lOls/cma'and results in the almost constant
efficiency regions of the two upper solid curves in Figure 4 below about
10°/cn®.

The results of the detailed computer calculations can now be compared
with the corresponding first order models. The circle points in Figure 4
are to be compared with the solid curve labeled n+7p7p+.cell and the

triangle points are to be compared to the solid curve labeled n+-p cell.
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In general the detailed calculations exhibit the same general shape as

the first order models but lead to a lower efficiency at all base doping
levels. The peak efficiency is slightly above 16% while the first

order models predict a peak effiéiency of about 18%. The‘major differences
between the complete computer calculations and the first order models

has been identified and are discuéséd later in this paper.,

Two calculated points are shown in Figure 4 using a lifetime of
1 nsec in the diffused n' layer. In general it was found that the n'
minority carrier lifetime had little effect on cell efficiency for lifetimes
of 100 hsec or larger. Below thié value, hoﬁéver, the n' lifetime Qés
found to influence efficiency at high doping leveis in the p region.

At a lifetime of 1 nsec, there is little effect on efficiency for a

10 Q+cm gell but the efficiency of a .01 Q¢cm cell was reduced about 1% in
total efficiency to about 15%. It can also be seen that at low n' lifetimes,
low resistivity cells have little or no advantage in efficiency over high
resistivity cells,

The dotted curve in Figure 4 is a first order calculation of solar
cell efficiency for both the n+—p-p+ aﬁd n+—p cells when low lifetime
values are used corresponding to the center range of diffusion lengths of
Figure 3, This curve when compared with the solid curves illustrates the
effect of diffusion length on efficiency. Also the increased efficiency
of the back surface field cell'disappears when the diffusion length becomes
significantly less than the cell thickness. These conclusions concerning

diffusion length effects have also been verified by the complete computer

analysis program.
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The major differences in predicted efficiency of the first order
models and the complete computer analysis have been identified as an
over estimation of the minority carrier collection depth of the first
order models. From the detailed‘computer calculations, it is possible to
determine the exact depth to which carriers are being collected in the
golar cell. This can be done by looking for the spatial peint at which
the'minority carrier current in the base layer reverses sign. This must then
represent the effective depth to which carriers are collected. Data from the
computer program on the actual collection depth for n+—p and n+-p-p+ cells
are shown in Figure 5. Consider first the n+—p cell. In the first order
calculations the collection depth was assumed to be the smaller or Ln or
W/2. The actual collection depth was found to be_considerably smaller, being
varound W/3 when the diffusion’ length is much larger than the cell thickness
and around Ln/2 for small diffusion lengths. For the n+—p—p+ cell the
actual collection depth was also found to be considerably smaller than assumed
in the first order model. -For examble at doping densities between lols/cm3
and 1017/cm3 the actual collection depth was less than half the cell
thickness even.though the diffusion length was considerably longer than the
cell thickness.

The reduced minority carrier collection‘depth has been found to be the
majo? source of the lower efficiency obtained from the exact computer
calculationé as opposed to the collection depth normally assumed in first
order efficiency calculations. When the first order models were éorrecteq
for the actual collection depth, there was close agreement between the first
order models and the exact computer analysis. The redﬁced collection depth

appears to occur because of the very non-uniform generation of carriers
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in the solar cell, result;ng in a diffusion of carrigrs away -from the
collecting p-n junction. These combined effects of non-uqiform carrier”
generation and diffusion are not easily combined in a first order model fo-give
a realistic collection depth. With the computer analysis program these

effects are all included giving more realistic efficiency predictions.

In the present device analysis program a major effort has been made
to model the solar cell with as exact a model and input data as possible.
However, there is one major area where the present computer calculations
do not accurately describe solar cell behavior. This concerns the effects
of heavy doping in the n' region. There are several modifications
of the basic device equations which must be considered for doping densities
above about 1018/cm3 in silicon [6,7]. Probably the most important
effect as far as solar cell operation\is concerned is the.rédqction
in energy band éap which occurs at heavy doping. This leéds to a decreased
"effective doping" in the n' region as far as minority carrier injectioﬁ
into this region is concerned. Heavy doping can result in an increase in
back injection of minority carriers into the n' region as well as an
increased importance .of surface reéombination due to the decreased field
acting to aid minority carrier flow away from the surface.

In an initial look at the influenée of heavy doping on solar cell
performance, the band gap reduction has been modeled-by an empirical
expression [8] and included in the first order model calculations of cell
efficiency. The results are shown in Figure 6. Curve number 1 is the
ideal n+—p—p+ cell with a lifetime of 100 nsec or longer in the n' layer.
Curve number 2 corresponds to a lifetime in the nt layer which varies with
doping according to the high diffusion length data of Figure 3. Curve number

3 includes both the variable lifetime and heavy doping effects.
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As the curve illustrates, heavy doping effects can significantly reduce
the predicted efficiency of solar cells at all doping levels. In fact

it appears that heavy doping effects may eliminate fhe predicted enhanced
efficiency of low resistivity solar cells., From this preliminary
investigation it appears to be very important to include heavy doping
effects in any complete analysis of solar cells. Presently fhese effects
are being included in the detailed computer analysis program to accurately

evaluate the importance of heavy doping in the nt region.
Summary and Conclusions

A detailed computer device analysis program is being used to study
silicon solar cell efficiency. A series of calculations of solar
cell efficiency at several doping levels has indicated lower efficiencies
than are predicted by simple first order models of solar cell performance..
The maximum calculated efficiencies are about 16% as opposed to about
18% for first order models. The calculations have been made for a
single Si0 antireflecting layer and slightly higher efficiencies would
result from the textured surface cells [9,10]. The major problem with
first order models of cell.efficiency has been found to be the overestimation
of the depth to which minority carriers are collected. A preliminary look at
heavy doping effects in the diffused n' layer of éells has also indicated
that these effects may have important limitations to solar cell efficiency

in low resistivity material.

183



10.

List of References

E. D, Graham and J. R. Hauser, Solid State Electroniecs, 15,
303-310, 1972.

E. D. Graham, Ph.D. Thesis, N. C. State University, Raleigh, N.C.,
1970.

M. P. Godlewski, C. R. Baraona, and H. W. Brandhorst, Jr.,
"Low High Junction Theory Applied to Solar Cells", Tenth IEEE
Photovoltaic Specialists Conference, 1974,

H. W. Brandhorst, Jr., C. R. Baraona, and C. K. Swartz,
"Performance of Back Surface Field Cells", IEEE Photovoltaic
Spec1a11sts Conference, 1973.

Based upon unpubllshed data obtalned by P A. Iles, Centralab Ine.,

work performed under NASA contract NAS 3 17360

M. P. Godlewski and H. Brandhorst, "Effects of :High Doplng Levels on
Slllcon Solar Cell Performance", paper presented at this conference.

F A Llndholm S$. §. Li, and C. T. Sah, "Studies of Some
Fundamental Limitations on the Performance of p-n -Junction Silicon
Solar Cells", Paper presented at this conference.

J. R. Hauser, "Minority Carrier Transport in Heav1ly lefused
Semiconductor Devices", Final report on NSF Grant GK- 1615
September 1369. :

J. Haynos, J. Allison, R. Arndt and A. Meulenberg, 'The. COMSAT , - -
Non-Reflective Silicon Solar Cell: A Second Géneration Improved
Cell", paper presented at this conference. s .

C. R, Baraona, "V-Grooved Silicon Solar: Cells'", paper-presented’
at this conference.

184



TABLE I. - MATERIAL AND DIMENS!{ONAL PARAMETERS

.Overall cell thickness
n' thickness
+ . + +
p ‘thickness (n -p-p cell) .

+ .
n surface concentration

p+ doping concentration

p doping concentration
Lifetime in n+ region

Lifetime in p regioﬁ

Surface recombination velocity

Si0 antireflecting layer thickness

250 uM
0.25 uM
0.50 puM
10%%/cn®
10%8/cm®
variable
100 nsec
variable
103 cm/sec

o
800 A
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Figure 1. - outline of computer progfam for solar cell analysis.
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20. COMPARISON OF RECENT SOLAR CELL PERFORMANCE IMPROVEMENTS

In a recent paper,

Martin Wolf
University of Pennsylvania
Philadelphia, Pennsylvania

1)

the efficiency improvements

achieved in the Comsat "violet" cell were compared to those .

predicted previously2
.after the announcement of the Comsat "non-reflective" cell,

) and shown as goals in Table I. Now,

3)

this analysis can be updated (Table II), and several impor-

tant conclusions can be drawn:

l.

2.

The entire predicted collection efficiency improve-

* ment has been achieved.

The entire predicted reflection loss reduction has
been achieved.

While the "violet" cell brought the anticipated im-
provement in short-wavelength collection efficiency,
it suffered some reduction in long-wavelength
collection efficiency. This loss has been erased in
the non-reflective cell not by an increase in
diffusion length, but by a reduction of the éverage
photon absorption depth measured normal to the - now

roughened - surface plane. The same measure helped

-reduce reflection losses without further work on the

antireflection coating. Diffusion length and AR
coating improvements may now yield a further, al-
though small collection efficiehcy increase.

A suspicion exists that the o0ld p/n solar cells,
which were not polished, but underwent a heavily
etching'BCL3

from this processstep, never requiring an AR coating,

diffusion treatment and emerged "black"

may have had a surface texture similar to that of the
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"non~reflective” cell.

Active area coverage by the contact grid structure

has been slightly increased from that of the commercial
cell. There may be a technology and cost-effectiveness
bar;ier'against significant improvement.

The voltage factor (relating open circuit veltage to
energy gap) in the "non-reflective" cell appears
slightly decreased from that of the "violet" cell,

but this apparently is due to use of an average value
for the former in contrast to-'a close to best value
for the latter. Both show a slight improvement over
the 2-3 Q cm commercial cell. Here, however, a :
major improvement had been predicted by going. to

0.01 Q@ cm base material, and this is the area re-
quiring the major future research effort, either to
achieve the improvement or to firmly establish the
basic limitationsagainst such an accomplishment, as-
may be posed by bandgap narrowing or formation of
recombination centers by unionized donors or acceptors
which would be required for resistivity reduction.

The curve factor improvement is directly connected

with the voltage factor improvement.

The additional curve factor, connected with an "A-factor"
greater than 1 or with "excess current" has been eliminated
in the "violet" cell and practically eliminated in the
"non-reflective” cell as an influence on maximum power
output under standard operating conditions, as analysié

of the current-voltage characteristic reveals. This.is'im-
portant, since it answers the old question, wether
"generation-recombination éurrents“ due to deep centers

in the depletion region and "surface channel currents"

can be adequately reduced. These currents can, however,
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still cause a slight distortion of the current voltage
characteristic at voltages below the maximum power
point, and can influence the maximum power output in
operation at low light levels or at low temepratures.
8. Series resistance has been decfeased further than
expected, at least partially through a trade-off
against increased active area coverage by the con-
tact grid system (point 4 above ).
~Table III further illuminates the above statements
through a.listing of the physical parameters of both the "violet"
and the "non-reflective" cell. . The effective optical path
length in each region is about 50% greater in the latter cell

than in the former. Using Fig. 1 of 4)

, the photon fraction
absorbed in each region can be determined.

‘Explaining the open circuit voltage in either'type cell
requires a saturation current of about 4°‘_].0-12 Acn? as a
diffusion current, which, in turn, requires a base region

diffusion 'length of about 90 pm, or a minority carrier life-

time v of 2.5 us. ysing this diffusion length and the graphs
of ), one of which is represented in Fig. 2, the collection
efficiency for each region can be obtaind and combined
| with the fractions absorbed to

.yield the total collection efficiency. Thus, for the "violet"
cell} a total collection éfficiency of 0.83 is obtained, against
a value of 0.79 derived from the short circuit current. Part
of this difference may be explained by a larger reflection
loss of the "violet“cell 3) than used .in ref. 2). .In comparison,
the "non—ref;ective" cell shows a collection efficiency of 0.86
with this value of diffusion length, against an observed value of
0.88. The latter would require:a base region diffusion length
of 120 um (t = 4.5 us), or a less likely increased optical
path length. ‘

Although a 2% discrepency could arise from any number of

errors, one may want to speculate about a single cause: what
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could create a higher saturation current than compatible with
diffusion current at a given diffusion length? Generation -
recombination current from the depletlon reglon is always a
favored candidate. But it was seen, than the curve factor
indicates no excess current connectediwith an A > 1 in the
exponent of the current-voltage relationship, thus no effect of
energetically deep traps in the depletion region. However, ref. 5)
indicates that energetlcally shallow traps can result in excess
current with A = 1, which thus would have the characteristics
of a diffusion current, and which could-be 1solated only by
detailed temperature dependance measurements. Tnis could be
another area of. future frultful 1nvest1gatlons.
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TABLE L - PREDICTED PERFORMANCE COMPARED WITH THAT OF VIOLET CELL

Commerciat CeLe ~ GoaL
(NOMINALLY 2-382cH N/P) . (nominaLLY 0.0182cmM)
JUn1ts FOR |
: QutpuT "EFF'cy Output EFF’cy Outpur POTENTIALJ
JATTRIBUTE SymBoL | OuanTITiES || CoNTRIB, QuaNTITY CoNTRIB. | QUANTITY | IMPROVEMENT
asic LOSSES - W w2 0.45 63.0 0.45 '
CoLLECTION EFFICIENCY [ o, | WA cM2 0.71 39.6 0.88 49.0 . 22
T N cbmes on v :
eoating) R | ma o2 || 0,905 35.9 0.97 47,5 7.6
GRID LINE CovERAGE - wA o2 |l 0.9 34,4 0.96 45,5 -
(AppL1cABLE CELL AREA) A (3.8 cvd) )
nA : 131 45,5
(Open CIRCUIT VOLTAGE) Voc (0,580 V) (0,788 \»
VoLTAGE FACTOR (V.F.) | mH 0.522. 76.0 0.71 35.8 36.5
Curve FACTOR (C.F | o 0.82 62.2 0.86 30.8 5
Aop'L Curve FACTOR - MW 0.91 56.7 1.0 30.8 10
Ser1ES RESISTANCE s | MW (0.1752) 53.6 0.97 29.9 1
0.9
Conversion EFFICIENCY | 7 M om=2 0.104 0.22

TABLE II. - REVISION OF ANALYSIS OF NONREFLECTIVE CELL

ComsaT "VioLeT” CELL ComsaT. “NR* - CeLL
Units For (NOMINALLY 2-3 82 c#M) (NOMINALLY 2-382cm n/P)
Qureut EFF’cy QutpuT AcHIEVED EFF'cy OutPuT | AcHIEVED
| ATTRIBUTE SymBoL |QuanTITIES ContriB. | QUANTITY | ImPrOVEMENTZ ||-CONTRIB.,  |QUANTITY | [MPROVEMENT
|Basic Losses = M w2 Q.45 ) Q.45
CoLection EFFIcIency | v o, | MA o2 0.79 44,0 1 0.88 49.2 2
REFLECTION Loss - .
INCL, ABSORPTION IN -2 .
COATING R MA cM 0.951 41,7 6 0.97 u7.7 " 7.6
GRID LINE COVERAGE. ’ - MA o2 ' 0.95 39.6 -1 0.95 45,4 -1
(AppLicaBLE CELL AREA)] A - |- - (4 em2) - 4 omd) -
R - A . 158.4 . -1 181,5 -
(Open CircusT VOLTAGE) Voc (0.595 V) X O oo 1 0,591 V)
VoLTace FacToR (V.ED) | i 0.535 94,2 3 0.531 | 107.3 2
Curve FacTor (C.F.) | MW 0.825- 77.8 0.5 0.822 88.2 0.2
App'L Curve FACTOR - MW 1.0 77.8 10 . 0.99 87.1 10
"|Series Resistance Rg | n : (8:835 ) < 76.5 2.5 (818§u ) 8.7 2:3
. CoNVERSION EFFICIENCYV n w2 0.14 36 0.153 LY
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TABLE IIL - PHYSICAL PARAMETERS .OF VIOLET AND NONREFLECTIVE CELLS

Base MasoriTY CARRIER CONCENTRATION: 7.101°
Difrusion DePTH 0.1 sim
DepLETION Recion HipTH 0.4 um
WAFER THICKNESS 300 um
Minor1TY CARRIER LIFETIME (BasE) 258
(1.5 us)
Dirrusep Recion “DepLETION REGION, Base Recion
VioLET HR VIOLETY R VIOLEY R
P
™ Noa |ogs 0.1-0.5 | 0.5-0.75] 0.56-300] 0.75-450
" . ~
UMULATIVE 0.12 | 0.14 0.24 0.30 0.94 0.%
It ‘ :
IN ReGION 0.12 | 0.14 0,12 0.16 0.70 0.66 ;
D .
ERerilon  [l0.1 {~0.1 - - %0 90
I . o (120)
BrFicieney || 0.98 | 0.38 1.0: 1.0 |loss 0.85
i {4 (0.8 |
ltecrer || 0,116 | 0,137 || 0.12 0.16 0.565 | 0.561
TotaL CoLLECT’N
EFFICIENCY Jl 0.83 (g:gg)

06

04

02

o 1 e ul: B
io~® 107 03 102 10
—— Wafer Thickness d {cm)

Figure 1. - Ratio Rgy of the number of photons absorbed in a single pass through a silicon layer
of thickness d toat e number entering the layer, as contained in airmass zero sunlight up to
1.125 pm wavelength, T = 300° K.
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sunlight, T=300°K. x; p=0.8um.
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21. STUDIES OF THE BSF CELL

Joseph Mandelkorn, John H, Lamneck, and Larry R. Scudder
NASA Lewis Research Center
Cleveland, Ohio

The Back Surface Field Cell, BSF Cell, is made by fabricating a p+ region
at the back of the conventional cell structure, as shown in Figure 1. Although
BSF cells are now in production1 the mechanism giving use to the increased Voc’
open-circuit voltage, of such cells is the subject of continuing investigations.
The investigation at Lewis is presently concerned with the characteristics and
behavior of p+, P cells. !

The p+,p cells are faBriCafed from parent, n+,p,p+; BSF cells as shown in
Figure 1. Following the removal éf the top n+ region and contacting of the p
region exposed, the p+,p structure formed is illuminated on the p+ side, and
photovoltages are measured. |

Much higher photovoltages were obtained from 100Q-cm cells as shown in
Table I. The data indicate that the Voc of p+,p cells increases with increasing
bulk thickness.

Table II shows that, for equally thick p+,p cells, values of Voc correlate
directly with the Voc of the "parent" BSF cell. This result suggests that the
increased Voc of n+,p,p+, BSF cells, compared to n+,p éells, is caused by the
p+,p junction generating a photovoltage; The back p+,p photovoltage then adds
to the photovoltage at the front, due to the n+p junction. It should be noted
that high light intensity or high injection level is not required to achieve
this effect since BSF cells have higher voltages than conventional cells even
at low illumination levels.2 Another noteworthy advantage of BSF cells shown

in Table 11 is that the Voc of 100Q-cm cells can equal that of the maximum V.
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attained for 10Q-cm BSF cells;-i.e., the Voc of BSF cells is independent of
bulk resistivity.

Solid state voltage genefators have characteristic Voc tempefature co-
efficients. As shown in Table III, the Voc temperature coefficient of n+,p
cells is negative (Voc decreases as temperature increases) whereas that of
p+,p cells is positive. Thg temperature coefficients of both types of cell,
increase with increasing resistivity. It appears from the data that, within.!;
the n+,p,p+ BSF cell, the coefficients of the back,p+p,Ajunction and front,
n+p, junction combine to give high resistivity BSF cells an advantage, un-
usually low Voc temperature coefficient. The data on Voc,temperature coeffi- -
cient.fur;her substantiate the concept that the pfp junction functions as a
voltage generator within the BSF cell.

In 1953, Brattain published the theory for p+§ and n+h junction photo-
voltages.3 Basically, a photovoltage is possible because of the difference in
Fermi level between the p+ and p regions. Table IV points out the changes in
Fermi level difference, AF, which occur for cells as bulk resistivity is in-
creased. Theoretically, a decrease in AF should result. in a decrease in Voc'
The n+,p_ce11 and p+,p cell behavior shown are in accord with the stated theory.
Considering the n+p cell, as bulk resistivity is increased, AF between nt and
p regions is dedreased and, correspondingly, Voc will decrease. As illustrated,
the lOOQ—cm.n*,p;cell has a lower Voc’ 0.48 volts, compared to the 0.55 volt Voc
of the 10Q-cm n+p cell. However, for p+,p cells, an increase in bulk resistivity
produces an increase in AF and, therefore, an increase in Voc' The increased
Voc of the 100Q-cm p+,p cell apparently adds to the decreased Voc of the 100Q-cm
n+,p cell to yield a Voc value for 100Q-cm BSF cells equal to that of lower re-
sistivity cells; equal Voc values of 0.6 volts were obtained for 10 and 100Q-cm

BSF cells as shown. Once again, we find that the V_ ., behavior of BSF cells
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appears tc result from a combination of p+p cell and n+p cell Voc behavior.
An additional unique Voc characteristic of BSF cells appears in Table V.
BSF cells were made at Lewis from wafers taken from the same region of an in-
got using g selected fabrication process to yield maximum Voc values. Vbc
values of 0.6 volts were obtained for cells ihdependent of bulk . thickness up
to the maximum thickness inveséigated, 0.084 cm. It 1is concluded that the
mechanism for generation of  the p+p voltage within the BSF cell apparently
makes the generatéd voltage completely.independent of bulk thickness for
thicknesses up to at least 0.084 cm. A long history of measurements at
Lewis shows minority carrier diffusion lengths preserved in the bulk of tﬁick
cells made from the best available silicon are in the range of ZSOﬁm (0.010
inch). This eliminates the possibility of pfp junction activation arising
from generated minority carriers; such activation would result in diminished
Voc values as cell thickness increased. It is therefore proposed that the
mechanism for the V,. behavior of BSF cells is based upon majority carrier
activation of the p+,p junction. The proposed mechanism 1s depicted in
Figure 2. The difference in hole concentration between the p+ and p regions
of the BSF cell result in diffusion of holes from the p+ region into the p
region. A depletion region is established as well as an equilibrium hole
density at the back of the cell bulk. Under illumination, electroﬁ-hole pairs’
are generated within the bulk. Most of the generated excess electrons leave
the bulk by being collected, crossing over the n+p junction. Excess hoies
cannot cross the n+p junction because the nt region constitutes a barrier for
holes. The presence of the unbalanced excess holes disturbs the equilibrium

at the pt,p Junction and a balancing flow of holes into the p+ region occurs.

This flow constitutes hole collection at the p+,p junction and produces the
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photovoltage shown. This mechanism of hole colleCtion.permits an undiminished
photovoltage to be gener#ted at the p+p.junction even when the Junction is far-
removed from illuminafed surface of the cell. Figure 2 simply depicts the
mechanism for generation of the p+,p photovoltage. Since the value of a
photovoltage depends upon the forward bias characteristic of the junction
generator, the Voc increase affected by the p+p junction within a BSF cell
depends upon the properties of the cell bulk as well as the quality of the
back and front junctions. The two junctions interacting through the common
bulk region represent a complex feedback circuit.zv

Analysis of the unique behavior of BSF célis ﬁas opened the door to
creation of advanced cells made from very high resisitivity material. The
previous limitétions of high resistivity cells, for example, low values of
Voc’ can now be eliminated, and full advantage can be taken of the beneficial
aspects of using high resistivity bulk_material. This is pointed out in Table
VI.

It is emphasized that future advances made in silicon solar cells will
involve design and fabrication of unique structures advantageously combining
developments in other aspects of solar cells with p+ back region effects.

The possibility now exists that the highest efficiency cells will be high

resistivity modified structure BSF cells rather than very low resistivity

cells.

REFERENCES

1. These Proceedings: "Volume Production of Improved Efficiency Solar Cells,"

John Scott-Monck.

202



2. Mandelkorn, J. and Lamneck, J. H.: Proceedings of the IEEE Ninth Photo-
voltaic Conference, May 1972, pg. 66.
3. Brattain, J. H. and Garett, C. G. B.: Annual New York Academy of Science,

58, 951, 1954.

203



+, o+
TABLE II. - V__ OF ot + 0%

. :
TABLE I. -V, OF p’,p CELLS {100 @-cm; 0.03 em (12 mile).]
+
Cell Thickness | Voo mV Cell as n*,p,0" As p .p
cm mils vV_, volts
oc
igon;cmm 0.030 | 12 | s-10 100 f-cm | - oss
-c ’ - .526 0.038°
1 .033 | 13 64 4433 o3 038
443-2 .540 .
2 _-058 23 74 o |ossr-2 |r 587 -049
3 0076 0.1 9 v |as7-2 .. 602 .063
T 457-3 . .605 ».064
S . 10 Q-cm .6 (max.) -

TABLE III. - V_ TEMPERATURE COEFFICIENT

TABLE IV. = RESISTIVITY EFFECTS ON FERMI
N LEVEL DIFFERENCE, 4F,. and V

_‘;[AF ]

décreasing voc,decreasing'

(a) Changes as p resistivity increases

' B +

Junction Resistivity, 0-cm n+,p p+,p .n+sP:P
10 100 AF Decrease | Increase No change
. o Voc Decrease Increase No change

Temperature coefficient, mV/ C .
(b) Values of V
VP “2.3 -2.6 + — T+
p+.p[ +0.1420.02 +0.65+0.05 Cell resis- n,p P sP n ,p,P
4 . ‘tivity, Q-cm
PP ~2,15+0.02 -1.9£0.01 B
2 Voc, volts
10 0.55 0.050 0.6
w00 v | .48 | .120

TABLE V. - v;c AND THICKNESS OF BSF CELLS

nmswh e

Wafers used taken from same region of ingot

.. Controlled fabrication process

Thickness Tt varied from 0.010 to 0.084 cm (0.004 to 0.033 in.)

. Maximum V__ of 0.6 volt for all thicknesses

Minority rrier diffusion length L measured in,thick (0.127 cm;
0.050 in.) éells made- ftom best” silicon is approximacely 250 ‘ym
(0.010 in.)

SYPABLE VIu:~ FEATURES OF- HIGH RESISTIVITY BSF CELLS

1.
2.

Readily Achievable

Highest preserved minority carrier diffusion lengths
Increased radiation damage resistance -

epitaxial BSF or thin BSF cell
Excellent quality extremely shallow junctions -

no need for passivation

Achievable
High £111 factors, 78 percent

High voc’ 0.6 volt
Low Voc temperature coefficient
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LIMITS TO PERFORMANCE

Considerations of high doping and recombination phenomena as in-
fluences controlling cell performance

glank
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22. LOW RESISTIVITY SILICON SOLAR CELLS - PROMISE AND PROBLEMS

S. Soclof and P, TNles
Centralab Semiconductor
El Monte, California

Most recent increases in solar cell output have been
achieved without much increase in Voc.

Even with the highest Isc and CFF values achieved to date,
to reach conversion efficiencies of 18% or 20% would require
Voc exceeding 700 mV or 750 mV respectively. For several years
lower resistivity silicon has been studied in attempts to
obtain increased Voc. Simple diffusion diode theory predicts
a steady inc¢rease in Voc as doping concentration is increased,
thereby decreasing the saturation current (Io). In practice,
however, solar cells or diodes made using low resistivity sil-
‘icon did not show large Voc increases; instead,_Voc reached a
peak around 620 mV for concentrations around 1018 em=3, and
fell off rapidly for higher concentrations. If modifications
are made to the simpler diode theory (using realistic values
for diffusion constant and diffusion lengths, and including
effects of bandgap narrowing), the Voc versus concentration
resembles the experimental curve more closely. This Voc limi-
tation is one problem in the chance of obtaining high output
from low resistivity silicon.

Other problems result from the rapid decrease in measured
minority carrier diffusion length (L) at higher doping levels.
The decrease in L leads to reduced photocurrents. Multiplying
the observed Voc and predicted Isc values gives an estimate of
peak conviysigg efficiency around 15% for doping concentrations
around 10 (corresponding to 0.1 ohm-cm).

Experimental results on cells made u51ng a wide range of
resistivities showed a more rapid fall-off in conversion effi-
ciency because of the rapid decrease in CFF at high doplng levels.

Thus it may be difficult to retain high Isc and CFF values
already achieved if low resistivities are used in attempts to
obtain higher Voc. If the reduced L-values are the result of
deep traps (impurities like Fe or Au), there is experimental pos-
sibility of decreasing the effect of these traps; on the other
hand, if the cause for lower L-values at high doping levels is a
direct consequence of shallow traps caused by the intentional

dopants, the prospect for high Isc in low resistivity silicon is
bleak.

. age B\ank |
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The present picture we have is that at hiéh doping levels,

Io is increased by several independent mechanisms including:

a)

b)

i)

ii)

ii)

iv)

v)

vi)

reverse injection from the,bulk into the thin, highly
doped diffused layer, aided by band gap narrowing in the
diffused layer

the effect of low lifetimes in the depletion region. At
high doping levels, the depletion region is very narrow
(less than 1 um) and about half the region is in the low
lifetime diffused layer. Using plausible values for the :
low and high lifetimes in portions of the depletion region, .
it was possible to simulate observed I-V characteristics.
The increased Io-values can decrease both Voc and CFF as
observed.

Looking to the future, the requirements to make high out~-
put cells from low resistivity silicon are very demanding,’
for the following reasons.

high L-values are needed at high doping levels, requiring
increased control of crystal perfection. Fortunately

many of the steps presently used to obtain high Isc .
(surface texturing, greater active area and improved coat-
ings) are possible for low resistivity silicon

reduced Io-values are needed

good quality shallow PN junctions may be difficult to
achieve, because reduced surface concentrations will not
overdope the highly doped bulk sufficiently, the high
total impurity concentration may increase the incidence of
precipitates (with shunting of the junction), and the
higher vacancy density may make diffusion control more
difficult.

present indications are that the radiation resistance of
highly doped silicon is lower.

back surface fields will be more difficult to establish

to avoid these problems, hybrid structures (epitaxial etc.)
may be needed, with added complexity and cost.

Thus it is seen that before improved cells can be made from
low resistivity silicon, much increased understanding is
required of highly doped silicon and of PN junctions made
therein. : ' : '
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TABLE I. - PV PARAMETERS

Cell type Isc’ CFF Voc' Pm’ n,
max mvV mw percent
Achieved
Conventional 10-Q-cm 144 0.73 550 58 10
Enhanced bulk 160 .76 600 73 13
Conventional 2-Q-cm | 142 .75 | 590 | 63 11+
Violet 165 .78 590 76 13.5
Advanced violet = 183 .79 590 85 15
| Estimated
18-Percent cell ' . 183 0.79 700 100 18
20-Percent cell 183 .79 775 112 | 20

TABLE II. - ESTIMATE OF ACHIEVED CELL PERFORMANCE

Cell Fraction of peak value
parameter
Voc | - 0.99 .0.89 0.77
ISc .88 .55 .34
CFF . .98 .68 .«35
Prax .86 .35 .09
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23. EFFECTS OF HIGH DOPING LEVELS ON SILICON SOLAR CELL PERFORMANCE

Michael P. Godlewski and Henry W. Brandhorst, Jr.
NASA Lewis Research Center
Cleveland, Ohio

INTRODUCTION

There has been considerable interest in raising the efficiency of silicon solar cells
to near its limit. Analyses (1, 2) have been made to define what gains can be expected
and also what areas of research are most likely to yield the necessary improvements (or
to identify the principal obstacles that must be overcome).

It has been suggested that the maximum practical silicon solar cell air mass zero
efficiency of 18 percent would occur in 0.1 ohm-cm material, Realization of this effi-
ciency depends heavily on obtaining an open-circuit voltage close to 0.7 volt calculated
from simple diffusion theory. The best present-day performance of low resistivity cells,
however, falls substantially short of these predictions, Measured efficiency and voltage
are typically about 10 percent and 0. 61 volt, respectively. It is believed that improve-
ment of the voltage is the key factor leading to high efficiency. However, the difference
between the achieved and predicted voltage performance is one area for which a satis-
factory explanation is not available,

It has been widely hypothesized that the low observed performance of the 0,1 ohm-
cm cell is a result of undesirable carrier recombination processes occurring in the
base and depletion regions, However, measurements show that the short-circuit cur-
rent and the base diffusion length are not prima.riljr responsible for the low cell perform-
ance. A study of low resistivity cells by Soclof and Iles (3) not only supports this, but
also strongly indicates that other mechanisms which influence junction injection efficiency
must be considered. One such mechanism is the narr-owing of the silicon bandgap by
high dopant concentrations,

The theoretical work of Kane (4) and Morgan (5) demonstrates that donor or acceptor
concentrations in excess of 1018 atoms /cm3 alter the conduction band and broaden the
impurity band densities of states, This work has been applied to silicon material by
several investigators (6-10). Their results suggest that high impurity concentrations
can indeed change the bandgap. Additional theoretical and experimental studies are cited
in (10).

An important consequence of bandgap narrowing for p-n junction device operation is
the increase of the intrinsic carrier concentration, Ni' Van Overstraeten et al. (11)
have incorporated in detail the impurity level-dependent Ni in the basic semiconductor
device transport equations. Similar equations modified to include bandgap narrowing
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have been used to analyze and reconcile the long-standing discrepancy between the pre-
dicted and measured current gain in bipolar transistors (6, 12—16).

The alteration of the bandgap and the intrinsic concentration by high impurity con-
centration effects, which will be referred to as the Heavy Doping Effect (HDE) in this
paper, may also have significant effects on silicon solar cells,

The purpose of this paper is to make a preliminary analytical assessment of the
significance of the HDE on the open-circuit voltage of silicon solar cells, Voltage cal-
culations based on diffusion theory (such as used in (17)) are modified to include the
first order features of the HDE. Comparisons of the open-circuit voltage measured for
cells of various base resistivities are made with those calculated using the diffusion
model with and without the HDE,

THEORETICAL BACKGROUND
Open-Circuit Vbltage
The open-circuit voltage (Voc) is calculated using

1
v =KL ja(sc (1)

ocC
q I

where the diode saturation current (I 0) with the HDE, given by

KT 1 (N /i
[ =n? 4 (W N n2 kT y,(Np) g (W g (2)
o~ "id N o, dr, b= P\ /

1d La Np, Ly,

is the sum of the diffused and base region components (I0 = Iod + Iob)' The subscripts

d and b refer to the diffused and base regions, respectively. All calculations are made
for an n*-p device and assume ohmic contacts, uniform nt region impurity level, a

0. 25 um junction depth, a 300 um cell thickness, and an operating temperature of 300 K.
For the purpose of this paper, the effect of bandgap narrowing on the short-circuit cur-
rent (IS c) is neglected. Values of Is c used in the calculations are typical of the various
cell resistivities. The mobilities ( ITEp “b) and impurity concentrations (NId’ NIb) cor- -
responding to material resistivities were selected from the literature (18). A diffused
region diffusion length (Ld) of about 1.0 ym is assumed. However, the base region Ly
values are based on typical experimental data. The geometry factors Gd and Gb are
given in detail in (17). However, these factors reduce to the coth W/L form when an
infinite surface recombination velocity is assumed.
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For those calculations which include the HDE, the values of ng corresponding to
a net impurity concentration are selected from the calculated data of- (ll) These data
are shown in figure 1. 1t is seen that for net impurity levels below 101 /cm3 ng has
the classical value. (n )of 1.1x10 /cm3 More importantly, however, Ny increases
rapidly for levels above 107", Typical solar cells have diffused region impurity con-

centrations in excess of 10 9/ cm3- thus the variation of n, must be taken into account.
The implication of figure 1, suggested in (4, 5), is that the conductlon and valence band
edges are no longer well-defined at high impurity levels.  Hence the bandgap is narrowed
and ni' increased, compared to a lightly doped, slightly extrinsic crystal.

Calculations which do not include the HDE are referred to as the simple diffusion
theory. For this case equations (1) and (2) are also used; however, the intrinsic carrier
concentration n, -is independent of impurity lovel and equal to the classical value (nic)
of 1, 1x101¥em3. : '

- Effective Impurity Profile

An effective impurity concentration is defined by

NI d(x)

Negs(®) = (3)

n;3(Nyg)
ic
ff(x) is the actual donor concentration at some location x in the material and the ratio
N4 (NID)/nlc is a heavy doping factor based on the data of figure 1. When equation (3)
is used, the diffused region saturation current component I od €an be written in the
form :

_n (KT) (kg Gy

1, = 4
U Ny Ly ?
Note that for Ny, <1018
Negr = Npg
and for Ny, > 1018
Nett <Npg

Because Iod becomes large when Ness is small, the diffused region properties can
dominate the voltages calculated from equation (1).
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24, STUDIES OF SOME FUNDAMENTAL LIMITATIONS OF THE PERFORMANCE OF
pn JUNCTION SILICON SOLAR CELLS*

F. A, Lindholm and S. S. Li
University of Florida
Gainesville, Florida 32611
and
C. T. Sah
University of Nlinois
Urbana, Nlinois 61801

1. INTRODUCTION

To predict the performance of a device requires accounting
for all of the phenomena present that dominate in determining
its performance. Past descriptions of pn junction solar cells
have failed to take detailed quantitative account of various
competing phenomena that accompany high doping in either. the
diffused layer or the substrate. '

The intent of this paper is to describe these phenomena,
mainly from a theoretical standpoint, and to indicate which of
_them'may be the dominant contributors to solar cells characteristics.
The distortion of band structure produced by high doping receives
special attention, particularly its consequences in the junction
space-charge region. There, many different kinds of electronic
transitions can occur between localized and delocalized (or
vektended) energy levels. The performance of a pn junction solar
cell can depend sensitively on these transitions, which in turn
depend critically on the doping profile and the processing used
in fabrication.

2. EXAMPLE ILLUSTRATING COMPETING PHENOMENA

} Recombination in a junction space-charge region can_ be
characterized by the Sah, Noyce, and Shockley model [l]. 1In

this model, electronic transitions between the conduction and

*
Research sponsored by the NASA Lewis Research Center under
grant No. NSG-3018.
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valence bands occur via localized states of a single energy’
level lylng deep within the forbidden gap. This, however, is
only one of the possible mechanisms for electron-hole recombina-
tion. Among the many possible rival mechanisms, one example'
involves a two-step electronic transition, in which an electron
in the conduction band is first captured by a 1oca1ized deep
level and subsequently tunnels to the valence band or to the
valence-band tail states, Sah has suggested thlS as the excess-
current mechanism in silicon tunnel diodes [2]. ' Dependlng on
the temperature and the doplng of the junctlon, thlS two-step
process can wholly dominate the Sah—Noyce Shockley process, and
can impose a fundamental 11m1tatlon on the performance of the

solar cell.

3. SOME PHENOMENA'ACCOMPANYING HIGH DOPING

At high doping concentrations, various deviations from the

conventional band structure can occur, such as:

a. The band edges need no longer be sharp; rather,
states can extend beyond the band extrema describing
lowly-doped silicon, forming thereby so-called band
tails [3-5]; '

b. The impurity states can broaden into an lmpurlty band
[6,7] with increasing impurity concentration; at very
high levels of doping these states can become delocalized;

c. A spatial variation of the energy gap can result from °
macroscopic lattice strain- introduced by a high- .
concentration diffused impurity profile, the strain

“ - iarising from the misfit of the impurities in the
silicon lattice [8]. _ c
For both conduction and recombination-trapping processes, -
it is important whether the energy'states are localized or
delocalized. .Thus: - '

d. Borrowing from the concepts used in models describing
amorphous semlconductors, we identify a critical energy,
~the Cohen moblllty edge [9], which separates localized
from delocalized states; the moblllty edge plays a role
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in describing charge transport in disordered solids
similar to that which the band edge plays in periodic
solids. ‘ ' '

e. For delocalized states, conduction can occur by drift
" and diffusion; if the variation in doping produces
spatial dependence of the band gap or of the electron
affinity, quasi-électric fields [10] can influence
' the transport of electrons and holes. ‘ '
f. For localized states, conduction can occur from hopging
between neighboring states [11] due to thermally '
 activated transfer of the trapped charges in the Mott -
model [12] or by tﬁnneling in the Andersoh model [13].
g. Transitions among localized and delocalized states that
constitute recombination-generation-trapping processes
occur via several energy-momentum conservation mechanisms,
including phonon-assisted, photon-assisted, and Auger-
impact processes [14].

4. EQUIVALENT CIRCUIT MODEL

This list, which ié not exhaustive, of phenomena accompanying
high doping indicates the complexity of the physics undergirding
the operation of silicon solar cells. Sah [14] has provided a
network representation that can be extended to include explicitly
all of the additional effects due to high doping.

In this paper we indicate the necessary extensions,. including
those needed when. the collision scattering rate and the generation-‘
recombination-trapping~-tunneling rate become comparable-:[15} and
when the band gap or electron affinity become position-dependent.
We demonstrate the use of the equivalent circuit model both as an
aid in physical insight and as a tool .in the numerical computation

of the performance of solar cells.

5. HIGH DOPING IN EXISTING DEVICE THEORY

Recently, strides have been made toward including the effects
of high doping in the operation of the bipolar transistor [16].
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This inclusion has enabled a closerﬁagreement between experiment
ahd'prediction than was obtained preuiously,'particularly for the
forward-active current gain and the galn—bandw1dth product and
their deperidence on collector current

’ The model for high doping now used in.bipolar transistor:
theory is based, essentially, on the Kleppinger-Lindholm extra-
polation fl?] of the models of Morgan .[7] and Bonch-Bruyevich [4].
It excludes much of the physics indicated in Section 3 above.

We give a critical appraisal of this theory of high-doping
effects now being used 1n descrlblng the behav1or of silicon
bipolar transistors, -assessing the approprlateness of its appllca-
tion to silicon solar cells. Temperature dependence receives
particular attention in this appraisal. '

6. PERSPECTIVE.

Silicon solar cells contain reglons of high doping; hence
the phys1cs underlylng their operation is complex. Many different:
-phenoména compete to determine the behavior. A

Thus, a major problem in understanding the operation and the
efficiency'of the solar cell lies in determining which of these
phenomena are dominant and which may be neglected. A second
problem, relating to design, lies in controlling both the domlnance
and the magnitude of the phenomena via controlling the device
structure and the steps used in fabrication. ‘

' This paper deals with these issues from mainly a theoretical
standpoint. ’A‘companion.paper (18] reports experimental results.
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SUMMARY OF ROUND TABLE DISCUSSION

An assessment of the near and far term directions of future ef-
ficiency improvement efforts and specific recommendations and
_conclusions
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SUMMARY OF ROUND TABLE DISCUSSION

Daniel T. Bernatowicz
NASA Lewis Research Center
Cleveland, Ohio

About 35 representatives of government, industry, and university groups active in
silicon materials research, photovoltaic research, and device development participated,
The organizations represented are listed in figure 1,

PRESENT STATE OF THE ART

The recent efficienéy improvements were described and are summarized in\figure
2. The Helios cell was in production' at Spectrolab and could be supplied with a minimum
efficiency of 12 to 13 percent (AMO). The Violet cell was reported to be nearing pro-
duction at Centralab (now OCLI) and had an efficiency between 13.5 and 14 percent
(AMO). The COMSAT Non-Reflective (CNR) cell was still made only in the laboratory -
at COMSAT, Although it had not been thorodghly optimized, an efficiency of 15 percent
(AMO) was measured, Although these cells are different, they reflect several similar
technological thrusts. All the cells have p* backs, Ta,Op antireflection coatings, shal-
lower junctions, and thinner grid fingers, Conspicuous differences are the 20 ohm-cm
resistivity in the Helios cell and the etched, low reflection (textured) surface of the CNR
cell. - Discussions of these recent technology developments made clear the importance of
production factors, such as integration of processes, yield, and cost, to the develop-
ment of a marketable solar cell, Considerable process development, which may involve
performance compromise, is involved in integrating new technologies into the commer-
cial production of a solar cell. |

IMPROVEMENTS IN THE NEAR FUTURE

Further gains in efficiency are expected in the near future (2 to 3 years), These
are expected to be extensions of recent improvements and process development:

p" Back (Back Surface Field)
Better antireflection coatings
Textured (non-reflective) surface
Better junctions

Thin structures

Narrow grid fingers
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Adhesive or cover bonding methods that admit more blue light

The improved production cells in this period are expected to have a base resistivity in
the range of 40-100 ohm-cm and to have a back surface field.

DIRECTIONS FOR THE LONGER TERM

The longer range efficiency gains centered about research activities rather than
process and technology development were discussed. Although the technological im-
provements were reducing the gap between achieved performance and the theoretical
limit, it was agreed that further research was appropriate and necessary.

Several general areas of need, for an effective eff1c1ency 1mprovement program,
were identified. These consisted of

- Better modelhng of the solar ce11 including detailed deseription of the structure
and of the physical processes.

- Better techniques for making and interpreting lifetime and diffusion length meas-
urements. Bulk and surface effects on these parameters should be separated.

- Bet’tér knowledge of the solar spectrum in space. Space tests on the Violet cell
 suggest that the blue end of the spectrum has been underestimated. '

- .. -.Space tests for new solar cells on a timely basis.

There was an extended discussion on what was a reasonable efficiency goal. The
maximum theoretical efficiency of 22 percent was not disputed, but it was agreed that
the goal should be the maximum practical efficiency, which would allow for such losses
as reflection, shadowing, and series resistance. Some disagreement on these losses
and junction losses, and further uncertainty due to the newly recognized band gap nar-
rowing due to heavy doping, led to adoption of a range for the maximum efficiency. It
was agreed that the maximum practical efficiency for silicon solar cells lay between 17
and 20 percent (AMO).

Although certain combinations of the technological thrusts listed earlier might yield
a new device whose efficiency could approach this goal, it was agreed the main research
path should continue to be on low resistivity silicon. The principal range of interest
should be near 0.1 ohm-cm. Research on 0,1 ohm-cm silicon should investigate

- Lifetime as a function of dopant concentration, defects, processing procedures,
and geometry.

- Band gap narrowing due to heavy doping.

- Dopants other than boron and various dopant profiles.

N .
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- Radiation damage and the effects of oxygen and carbon on radiation damage. -

There was some concern that the reduction in lifetime, increase in recombination
current, and increase in radiation damage as the doping level is increased may be due to
the dopant itself rather than other impurities or defects due to processing. There might
then be little potential for improvement of these parameters.

Since the meeting was concerned primarily with cells for space use, discussions
were held on directions for radiation damage work to raise the end-of-life efficiency.
The following devices and structures were identified as those that may be more tolerant
to radiation damage and therefore deserve attention:

- Vertical multijunction cell.

Thin cells and cells with very thin epitaxial layers.

Cell with high resistivity base and a p* back surface field.

GaAs cell, if the price of gallium can be reduced.

Although no specific deficiencies in radiation damage theory were identified, it was
agreed that a larger store of basic information should be acquired. Research in the
following areas should be conducted:

- Determination of the generation rate of primary defects by electrons and protons.

- Determination of the cross sections for the capture of primary defects by dopants
and impurities.

- Search for getters for primary defects.

- Investigation of photon-induced degradation in s111con, espec1ally float zone mate-
rial.

MAJOR CONCLUSIONS OF THE ROUND TABLE DISCUSSION

The major conclusions reached in the round table d1scuss1on at the High Efficiency
Silicon Solar Cell Meeting were as follows:

- The maximum practical efficiency of silicon solar cells is between 17 and 20 per-
cent (AMO) and is still a reascnable goal. ‘

- The long range R&D approach toward this goal should continue to focus on low
resistivity (0.1 ohm-cm) silicon.

- Near term R&D should continue to focus on higher resistivity silicon, back surface
fields, thinner grid fingers, and surface texturing to produce efficiency improve-
ments,

ing,
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- More research should be undertaken in radiation damage to raise end-of-life eff1-
ciency.

- Development of a production cell mvolves tradeoffs among fabncablhty, cost, and
" performance,

- OBJECTIVE

- REVIEW PROGRESS IN RAISING EFFICIENCY
- ASSESS THE REMAINING PROBLEMS -
- OQUTLINE DIRECTIONS FOR FUTURE WORK

PARTICIPATING ORGANIZATIONS

CENTRALAB HELJOTEK MONSANTO SIMULATION PHYSICS
- COMSAT HUGHES MOTOROLA SOLAREX
DOW CORNING IBM NORTHROP - TEXAS INSTRUMENTS
UNIVERSITY GOVERNMENT .
FLORIDA PENNSYLVANIA NASA-GSFC  JPL
ILLINOIS - WAYNE STATE NASA-HQ. NSF

N. CAROLINA ST. BROWN NASA-LaRC NRL
. . NASA-LeRC =~ USAF-WPAFB
Cs~173683

Figure 1. - High efficiency silicon solar ceII meeting cbjective and participating
organizations.

" DESCRIPTION EFFICIENCY STATUS

HELIOS CELL 12 TO 13% (AMO)  IN PRODUCTION
2 Q-CM
P+ BACK

SHALLOW JUNCTION
THIN GRID FINGERS
Ta205

VIOLET CELL 13.5 TQ 14% (AMO)  NEARING PRODUCTION
2 Q-CM ' : :
Pt BACK

VERY SHALLOW JUNCTION
VERY FINE GRID FINGERS

T3205
COMSAT NON-REFLECTIVE CELL 15% (AMO) LABORATORY, NOT
’ OPTIMIZED
ETCHED, LOW REFLECTION SURFACE | R

OTHERWISE LIKE VIOLET CELL

‘Figure 2. - Summary of present high efficiency solar cells.

~
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