General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

NASA TM X-72798

THE EFFECT OF REMOTE ZONES ON THE ACCURACY OF EVALUATING THE MOLODENSKY INTEGRAL

BY

James J. Buglia

January 1976

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

(NASA-TM-X-72798) THE EFFECT OF REMOTE ZONES ON THE ACCURACY OF EVALUATING THE MOLODENSKY (NASA) 22 p HC \$3.50 CSCL 09E N76-17681

Unclas G3/46 14217

NASA TM X-72798

1.	Report No. NASA TM X-72798	2. Government Accessi	on No.		3. Recip	vient's Catalog No.
4.	Title and Subtitle The Effect of Remote Zone Evaluating the Molodensky	s On the Accurac Integral	y of		5. Repo Jan 6. Perto	rt Date Mary 1976 rming Organization Code
7.	Author(s)				8 Perto	rming Organization Report No.
	James J. Buglia			-	10 W.rk	Unit No.
9.	Performing Organization Name and Address					
	NASA Langley Research Cen	ter		-	11. Conti	ract or Grant No.
	Hampton, VA 23665			F	13. Type	of Report and Period Covered
12.	Sponsoring Agency Name and Address				Techni	cal Memorandum
	National Aeronautics and	Space Administra	tion	H	14. Spon	soring Agency Code
	Washington, DC 20546					
15.	Supplementary Notes					
16.	Abstraut					
	An analytical method is p	resented for det	ermining	the err	or in	computing
	the gravity anomaly from	the Molodensky i	ntegral	if geoid	al und	dulation data
	in remote zones are negle	cted. The error	is give	n in ter	ms of	the usual
	degree variance and a set	of parameters w	hich are	functio	ns onl	y of the size
	of the area in which undu	lation data are	taken.	A numeri	cal ca	alculation
	using Kaula's degree varia	ances indicates	that it	is neces	sary t	o integrate
1	the Molodensky integral o	ver approximatel	y a hemi	sphere i	n orde	er to reduce
:	the effect of neglected d	ata to the order	oflmi	lligal i	n the	computation
	of gravity anomaly.					
•						
1	Key Words (Suggested by Author(s))		18. Distribut	ified -	unlimi	ited
	Geodesy					
	Geoid Molodensky equation					
	norodensky equation					
19.	Security Classif. (of this report) 20). Security Classif. (of this	page)	21 No. of	Pages	27 Part.
	unclassified	unclassified		22		\$3.25
						and the second se

.

For sale by the National Technical Information Service, Springfield, Virginia 22161

.

THE EFFECT OF REMOTE ZONES ON THE ACCURACY

OF EVALUATING THE MOLODENSKY INTEGRAL

James J. Buglia

An analytical method is presented for determining the error in computing the gravity anomaly from the Molodensky integral if geoidal undulation data in remote zones are neglected. The error is given in terms of the usual degree variance and a set of parameters which are functions only of the size of the area in which undulation data are taken. A numerical calculation using Kaula's degree variances indicates that it is necessary to integrate the Molodensky integral over approximately a hemisphere in order to reduce the effect of neglected data to the order of 1 milligal in the computation of gravity anomaly.

INTRODUCTION

The Molodensky integral, which relates the gravity anomaly at a specific point to a global distribution of geoidal undulation measurements, has long been of considerable theoretical use to the geodetic community. This equation has recently begun receiving renewed practical attention because direct geoidal measurements are now available, through altimetry data obtained from the GEOS-3 spacecraft, thus permitting the direct calculation of the anomalous gravity field. Theoretically, the use of the Molodensky equation to compute gravity anomalies requires a continuous, global distribution of geoidal undulation measurements. This ideal situation is, of course, never realized in practice. The integral must be replaced by sums over finite areas, and interpolation and/or extrapolation of measured data are generally required to produce a sufficiently dense network of data.

It is thus of current interest to inquire if one can, as in the case of the Stokes equation, replace the global integration by an integration over a small spherical cap centered at the computation point. Two related questions are thereby raised: What is the expected error incurred in the computation of the gravity anomaly by neglecting undulation measurements in the remote zone outside a spherical cap of specified size; and, how large should the spherical cap be in order to contain the error within a specified accuracy?

A study which addresses these questions has been made and the results are the subject of this paper. The approach used is similar to that taken for addressing these questions for the related Stokes problem. An expression for the mean-square error incurred in neglecting data beyond a spherical cap of given size is derived in terms of a set of universal functions of only the cap size, and of the degree variances associated with the gravity field.

2

An illustration is provided indicating the mean-square error of omission for two different sets of degree variances, one using Kaula's rule of thumb, and the other for the GEM-4 gravity model. It is shown that a cap size of approximately one hundred degrees in radius is required to reduce the mean-square of omission to about 1 milligal.

ANALYSTS

The Molodensky integral (Molodensky, et al., 1962; Pick et al, 1973) is generally written as

$$\Delta g_{p} = -\frac{\gamma N_{p}}{R_{e}} - \frac{\gamma}{2\pi} \iint_{S} \frac{N - Np}{r_{p}^{3}} d\sigma \qquad (1)$$

in which the reference figure to which all quantities are referred is an ellipsoid of revolution with equatorial radius, a, and flattening, f. Δg_p and N_p are the gravity anomaly and geoidal undulation, respectively, at the point p, γ and R_e are mean values of the acceleration of gravity and radius of the reference ellipsoid, and d σ is the differential area element. N is the variable geoidal undulation associated with d σ and is measured along the normal to the reference ellipsoid. r_p is the chord distance between point p and d σ , and the subscript S on the integral denotes a global integration. Equation (1) relates measured geoidal undulations about the reference ellipsoid, N and N_p, to gravity anomalies calculated with respect to the ellipsoid. Hence, all quantities in (1) should properly be computed on the ellipsoid. The chord distance, r_p , and the differential area, d σ , are in this case rather complex functions of position on the ellipsoidal surface. Fortunately, however, the Earth is very nearly spherical in shape with a flattening of approximately 1/300. Consequently, the expressions for r_p and d σ can be replaced by their spherical approximations with an acceptably small loss in accuracy. Thus, if Ψ is defined as the central angle between the point p and the area element d σ , then

$$r_p \approx 2 R_e \sin \frac{\Psi}{2}$$

Further, if p is taken as the pole of a spherical coordinate system, and α is the azimuth angle of d σ referred to any convenient meridian through p, the area element d σ can be written

$$d\sigma \approx {R_e}^2 \sin \Psi d\Psi d\alpha$$

As a final preliminary, a new function $f(\Psi)$ is defined by

a themator olds flas of . I unlike To gat lands

$$f(\Psi) = \frac{1}{\sin^3 \frac{\Psi}{2}}$$

such that

$$\frac{1}{r_p^3} = \frac{f(\Psi)}{8 R_e^3}$$

Equation (1) is now written as the sum of two parts - an integral over a spherical cap of angular radius Ψ_{o} centered at the point μ , and a second integral covering the rest of the globe.

$$\Delta g_{p} = -\frac{\gamma N_{p}}{R_{e}} - \frac{\gamma}{16\pi R_{e}} \int_{\Psi=0}^{\Psi_{o}} \int_{\alpha=0}^{2\pi} f(\Psi)(N - N_{p}) \sin \Psi d\Psi d\alpha$$

(3)

(2)

$$-\frac{\gamma}{16\pi R_{e}} \int_{\Psi=\Psi_{o}}^{\pi} \int_{\alpha=0}^{2\pi} f(\Psi)(N-N_{p}) \sin \Psi \, d\Psi \, d\alpha$$

5

The second integral of (3) gives the error that would be incurred in the computation of Δg_p by neglecting the undulation data in the region beyond the spherical cap of radius Ψ_o . We call this integral ε_p , and refer to it as the "error of omission." It is the evaluation of ε_p , and, more importantly, the global RMS value of ε_p , which is the topic of the following analysis.

Introducing a new function $\overline{f}(\Psi)$ with the following properties:

$$\overline{f}(\Psi) = 0$$
 for $\Psi \leq \Psi$

$$f(\Psi) = f(\Psi)$$
 for $\Psi > \Psi$

the expression for ε_{p} becomes

$$\epsilon_{\rm p} = -\frac{\gamma}{16\pi R_{\rm e}} \int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} \overline{f}(\Psi)(N-N_{\rm p}) \sin\Psi \,d\Psi \,d\alpha \qquad (4)$$

where now the integration covers the entire globe.

Since $f(\Psi)$ is piecewise continuous, it can be expanded in a series of Legendre polynomials (Macmillan, 1958, p 386; Heiskanen and Moritz, 1967, p 28).

$$\overline{f}(\Psi) = \sum_{n=0}^{\infty} \frac{2n+1}{2} R_n P_n(\cos \Psi)$$
(5)

where the constants are defined by $[(2n + 1)/2]R_n$ to simplify the algebra later, and $P_n(\cos \Psi)$ are the Legendre polynomials with argument cos Ψ . The constants are evaluated by utilizing the orthogonality relations for the Legendre polynomials (Heiskanen and Moritz, 1967, p. 30).

$$\frac{2n+1}{2} R_n = \frac{2n+1}{4\pi} \int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} \overline{f}(\Psi) P_n(\cos\Psi) \sin\Psi \, d\Psi \, d\alpha \qquad (6)$$

or

$$R_{n} = \int_{\Psi=0}^{\pi} \overline{f(\Psi)}P_{n}(\cos\Psi)\sin\Psi \, i\Psi$$
$$= \int_{\Psi=\Psi}^{\pi} f(\Psi)P_{n}(\cos\Psi)\sin\Psi \, d\Psi$$
(7)

Substitute (5) into (4), interchange the order of summation and integration, and expand the integrals,

$$\epsilon_{p} = -\frac{\gamma}{16\pi R_{e}} \sum_{n=0}^{\infty} \frac{2n+1}{2} R_{n} \left[\int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} N P_{n}(\cos\Psi) \sin\Psi \, d\Psi \, d\alpha - N_{p} \int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} P_{n}(\cos\Psi) \sin\Psi \, d\Psi \, d\alpha \right]$$
(8)

8

N can also be expanded in a series of surface harmonics

$$N = \sum_{n=2}^{\infty} N_n$$

Where the N_n are given by equations similar to eq (6) of this text

٤,

$$N_n = \frac{2n+1}{4\pi} \int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} N P_n(\cos\Psi) \sin\Psi \, d\Psi \, d\alpha$$

Hence, the first integral of (8) is simply

$$\frac{4\pi N_n}{2n+1}$$

1

The second integral of (8) is also easily evaluated by recalling that $P_{o}(\cos \Psi) = 1$, and by making use of the orthogonality relations

$$\int_{\Psi=0}^{\pi} \int_{\alpha=0}^{2\pi} P_n(\cos\Psi)P_m(\cos\Psi)\sin\Psi \,d\Psi \,d\alpha = 0 , n \neq m$$
$$= \frac{4\pi}{2n+1} , n = m$$

and, hence, the second integral is equal to 4π .

Eq (8) is written in final form, then, as

$$\epsilon_{p} = \frac{\gamma}{8R_{e}} \begin{pmatrix} R_{o}N_{p} - \sum_{n=2}^{\infty} R_{n}N_{n} \end{pmatrix}$$
(10)

Eq (10) gives the error in the calculation of the gravity anomaly Δg_p at a specific point P, caused by neglecting the undulation data beyond a spherical cap of angular radius Ψ_0 centered at P. Thus, ε_p is a function of the coordinates of P.

While this is of considerable interest in its own right, a more useful parameter is one which has global applicability and is not identified with a specific point.

One such parameter is the global RMS values of ε_p , and is found by squaring (10) and evaluating the mean of the result of the entire globe.

By definition, M $\left\{ \varepsilon_{p}^{2} \right\}$ is the value of ε_{p}^{2} integrated over the unit sphere, divided by the area of the unit sphere, or

$$\mathbb{I}\left\{\varepsilon_{p}^{2}\right\} = \frac{1}{4\pi} \iint_{S} \varepsilon_{p}^{2} d\sigma$$

n=2

If we write $N_p = \sum_n N_n$, then ϵ_p can be written

$$\varepsilon_{\rm p} = \frac{\gamma}{8R_{\rm e}} \sum_{\rm n=2} (R_{\rm o} - R_{\rm n}) N_{\rm n}$$

and thus (11) is

$$M\left\{\varepsilon_{p}^{2}\right\} = \frac{\gamma^{2}}{64R_{e}^{2}} \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} (R_{o} - R_{n})(R_{o} - R_{m}) \left(\frac{1}{4\pi} \iint_{S} N_{n}N_{m} d\sigma\right)$$
(12)

The bracketed term of (12) is the mean value of the product of two Laplace harmonics. This integral vanishes unless n = m. Heiskanen and Moritz

(11)

(1967) gives the following relations (pp. 256 and 259), and show that the mean value of the product of two gravity anomaly harmonics can be written in terms of the degree variances - i.e.

$$M \left\{ \Delta g_n \Delta g_m \right\} = 0 , n \neq m$$
$$= c_n , n = m$$
(13)

Also (p. 97), the general undulation harmonic can be written as a function of the gravity anomaly harmonic as

$$N_{n} = \frac{P_{e}}{\gamma} \qquad \frac{\Delta g_{n}}{p-1} \tag{14}$$

Using (13) and (14), then, we can write

$$M \left\{ \begin{array}{c} N_{n} N_{m} \\ m \end{array} \right\} = 0 \qquad , n \neq m$$
$$= \frac{R_{e}^{2}}{\gamma 2} \quad \frac{c_{n}}{(n-1)^{2}} \quad , n = m$$

and (12) can be written in final form

$$M\left\{\epsilon_{p}^{2}\right\} = \frac{1}{64} \sum_{n=2}^{n} (R_{o} - R_{n})^{2} \frac{c_{n}}{(n-1)^{2}}$$
(15)

This is the desired equation and expresses the mean square value of the error of omission in Δg_p , in terms of only the degree variances, c_n , and the R_n terms, which are functions only of the cap size, Ψ_o .

NUMERICAL RESULTS

Expressions for R_n can be found from a direct integration of eq (7) for any Ψ_0 . R_0 and R_1 are thus found to be

$$R_{o} = 4 \left(\frac{1 - \Gamma}{\Gamma} \right)$$

$$R_1 = R_0 - 8 (1 - \Gamma)$$

Where $\Gamma = \sin(\frac{\Psi}{0}/2)$. For larger n, the direct integration of (7) becomes cumbersome. However, Meissl (1971) has derived a recursion formula for Molodensky-type kernals. With a slight modification of notation this formula is

$$R_{n} = \frac{2 \left[P_{n-2} \left(\cos \Psi_{o} \right) - P_{n} \left(\cos \Psi_{o} \right) \right]}{(n - 1/2) \sin(\Psi_{o}/2)} + 2R_{n-1} - R_{n-2}$$

values of R_n are presented in table I for n = 0 to 20, and for $\Psi_o = 5^\circ$ to 180° in 5-degree increments. R_o through R_6 are plotted against Ψ_o in figure 1. All of the R_n tend towards zero as Ψ_o goes to 180°, naturally, since the error of omission is zero if one integrates eq (1) over the entire globe. All of the R_n display a rather heavily damped oscillatory character, with R_n crossing the zero-axis n times. For moderate to large values of Ψ_o , the magnitude of R_n decreases rapidly as n increases, indicating that the high frequency components of the gravity field contribute little to the error of omission for these cap sizes. For small values of Ψ_o the contribution of the higher frequency terms appears to be more significant. However, the degree variances themselves drop off quite rapidly with increasing n. For example, using the well-known Kaula rule of thumb (Kaula, 1962), one can write

$$c_n \approx \frac{96(n-1)^2(2n+1)}{4}$$

for the Earth's gravity field, and it can be seen that the c_n decreases approximately as 1/n. It has been found that, for Ψ_o greater than about 10°, seven or eight terms of (15) are sufficient for convergence to less than 1% error in M $\left\{ \varepsilon_p^2 \right\}$. For illustrative purposes, eq (15) was evaluated for two sets of degree variances -- the Kaula approximation above, and a set of degree variances derived from the GEM-4 gravity field (Lerch, et al., 1972). These results are displayed in fig. 2, where the quantity $\sqrt{M \left\{ \varepsilon_{p}^{2} \right\}}$ is plotted for a range of Ψ_{o} . The general trend of the curves is that expected, namely, that the error of omission drops off rather rapidly with increasing size of the spherical cap, asymptotically approaching zero error as Ψ_{o} goes to 180°. Both sets of degree variances yield quantitatively similar results, indicating that a cap size of the order of 90° - 100° is necessary to reduce the error of omission to the order of 1 milligal.

CONCLUSIONS

A rather simple formula has been derived which predicts the mean-square error incurred in the computation of gravity anomaly by the Molodensky formula when one uses only measured data in a small spherical cap surrounding the computation point, and neglects data outside this cap. If one uses representative degree variances for the Earth it is found that integration of geoidal undulation data over approximately a hemisphere centered at the computation point is required to yield the gravity anomaly at the computation point to an accuracy of 1 milligal. It is evident that rather extensive interpolation and/or extrapolation of measured data would i general be necessary to provide a sufficiently dense network of data for direct utilization of the Molodensky integral.

14

REFERENCES

- Heiskanen, W. A. and Moritz, H., <u>Physical Geodesy</u>, W. H. Freeman and Co., 1967.
- 2. Kaula, William M., <u>An Introduction to Planetary Physics; The Terrestrial</u> <u>Planets</u>, John Wiley and Sons, 1962.
- Lerch, F. J.; Wagner, C. A.; Putney, B. H.; Sandson, M. L.; Brownd, S. J. E.; Richardson, J. A.; and Taylor, W. A.; Gravitational Field Models GEM-3 and -4, Goddard Space Flight Center, X-592-72-476, 1972.
- MacMillan, W. P., <u>The Theory of the Potential</u>, Dover Publications, Inc., 1958.
- Meissl, Peter, Preparations for the Numerical Evaluation of Second-Order Molodensky-Type Formulas, Repts. of the Dept. Geo. Sci., Rep. No. 163, The Ohio State University, Columbus, Ohio, 1971.
- Molodensky, M. S.; Eremeev, V. F.; and Yurkina, M. I.; <u>Methods for</u> <u>Studying the External Gravitational Field and Figure of the Earth</u>, Israel Program for Scientific Translations, Jerusalem, 1962.
- 7. Pick, M.; Picha, J.; and Vyskočik, V.; <u>Theory of the Earth's Gravity</u> Field, Elsevier Scientific Publishing Co., 1973.
- Rapp, Richard H., The Formation and Analysis of a 5° Equal Area Block Terrestrial Gravity Field, Rept. of the Dept. Geo. Sci., Rep. No. 178, Ohio State University, Columbus, Ohio, 1972.

R10	26.57052	-3.76321	-1.48597	.25324	.77582	06794.	.J2133	25710	24763	07295	£106C.	.13857	.07571	02204	07810	36493	00897	.04040	.05046	.02217	01639	03575	02575	.00100	.02227	. 02371	.00782	01092	01825	01128	.00205	. J1066	C1 900 .	.00343	.00000		THE AX	
R9	31.19854	-3.70608	-2.17338	38230	.55724	.67209	14946.	03320	23939	23052	09167	. 05523	.12552	. 10244	.02544	10740	1++10	14150	00282	.03738	.04723	.02691	00578	02907	03075	01368	.00856	.02169	.01948	.00625	00774	01385	01060	00349	.00000			
R ₈	36.12646	-3.23160	-2.67363	-1.11612	16830.	.58811	.57379	.29150	01555	20053	22583	13515	00720	· J8795	.11543	.08036	.01483	04301	06747	05405	01696	.02130	.04205	.03850	.01675	00933	02626	02739	01509	.00200.	•01442	11110.	.01145	.00356	.00000			
RT	41.38996	-2.23540	-2.84562	-1.80049	62016	.18637	.53245	11815.	.30926	11850.	12891	23636	18133	09373	.00662	.07923	.10408	.08319	.03470	01719	05216	06026	04353	01296	61210.	·03539	.03673	.02372	*00÷08	01322	02182	02035	01224	01361	.00000			
R ₆	4146.9414	62196	-2.52045	-2.23568	-1.34545	47787	.13073	.43470	.48370	.36731	.17969	00214	12909	18196	16668	10565	02765	.04101	.08276	•06136	.07114	•03365	00650	03810	05250	- • 04884.	03144	00793	.01352	.02681	.02 959	.02345	.01296	. 30366	.00000			
R5	52.51350	1.70242	-1.52422	-2.13046	-1-84854	-1.20303	55803	05356	.26505	.40605	.40625	.31426	.17881	· 04105	06976	13772	15938	14118	16560	03390	. 31543	.05610	.07708	.07755	.06112	.03434	.00487	02037	03658	04188	03732	32634	01360	01370	0.00000			
Rl	59.18195	4.82465	.31609	-1.36834	-1.79321	-1.63794	-1.24195	78681	36598	U3947	.18750	.31323	.35183	.32398	.25232	.15883	. J6245	02224	08565	12318	13470	12368	09603	05883	01543	.01605	•04294	.05870	.06295	.05724	.04460	19820.	+1+10.	+1EUU.	0.00000	degrees	þ	
R ₃	65. 79276	8.82210	3.16328	.47203	79679	-1.21238	-1.41528	-1.28908	-1.05310	77550	50300	25304	04929	.10491	.20906	.26674	.28427	. 26955	.23118	.17776	.11726	. J5663	6+10C.	04408	07754	06260	10554	10200	08969	07161	05102	03107	01459	01577	0.0000.0	= 5 to 180		
R2	72.74854	13.76003	7.16075	3. 59434	1.52777	· 30145	41637	81144	99621	-1.04291	-1.00000	80106	75599	62382	47484	33192	10102	09612	.01043	.03762	.14547	.18485	.20725	.21467	.20541	.19403	.17118	.14350	.11356	-1580 ·	.05420	.03276	.01453	£7500.	J. JJ0JJ	ients for W.		
R ₁	80. J5150	0+699-51	12.42427	8.21242	5.52537	5.70768	2.43138	1.51397	. 34575	.35671		25097	43760	55919	63480	67453	04529	07641	65 JU2	61128	56305	51011	45299	39439	33603	27939	22515	17015	13149		05983	E5660	01516	00330	0,0000.0	R coeffic	q	
RO	37.70234	26.64519	19. čŁU. 91	14.48091	11.45481	5.302J4	7.69522	0.45250	5.46431	4.06272	4.00000	3.44464	2.97379	2.57072	2.22290	1.92075	1.65685	1.42537	1.22163	1.04189	C1688.	.74276	•61880	.50553	.41351	.32957	.25671	.19412	.14110	21250.	.06171	.03452	.01528	.00341	0.0000.0	TABLE I(a)		
° +	n _	19	20	25	טיַ	35	07	45	00	55	60	65	22	15	90	85	C5	55	100	105	110	115	120	125	130	135	140	145	150	155	100	165	170	175	160			

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

n = 0 to 10

•

•

3

Contraction of the local distribution of the

^R 20	-3.62740	-3.32825	1.47728	.200J5	51897	.09827	.19804	11896	36562	. 19326	.00633	06255	+1610.	.0360B	02735	01593	2646	.00175	02107	. J0687	16610.	66010	00693	.01168	.00105	0001C	60E0C.	10100.		00366	.00562	e7000.	0450	.00083	.00246	.00000
R19	-1.78713	-4.01269	1-25871	. 53129	51082	08457	.24827	1464	13227	203:E0.	. J7264	04205	16860	•03823	.01871	03229	00628	.02598	00136	61947	.00587	.01456	00824	00936	01600.	16500-	06800		+6200.	·00035	00646	.00111		00159		.00000
R18	.29020	-4.62407	.90208	14068.	39146	27078	.20015	11411.	12419	11450	.08186	.02781	05743	+1+10	.04214	• 00662	03195	00226	.02481	00036	01960	·00195	•01565	00290	01256	14600.	.01006	19600	00796	+SE00*	.00613	00317		.00235	. 00270	00000.
R17	2.61456	-5.12735	.41362	1.05803	16744	40542	.07294	.20513	16660	12133	.01567	·07918	00634	05521	. 30125	.04035	.00164	03049	166 00	.02360	.00428	01857	00480	• 01 475	.00502	01173	00503	. 00926	.00486	00713	00450	.00518	.00387	00317	00280	.00000
R ₁₆	5.19564	-5.48493	13957	1.15976	.13213	43885	11403	.23445	66760°	10355	07746	.05233	.06223	02375	04922	e6900.	. J3816	•00299	02875	+1800	. 62079	.7110.	01410	01276	85P0C-	.01246	00413	01124	e1000.	. 60931	+91cc*	00689	04253	•00+00-	16200.	
R15	8.04278	-5.05690	87863	1.12853	1+25+.	34195	28918	90550.	.18597	01000.	11487	03808	.06433	.04857	02877	04572	. J0486	.03647	.00978	02485	01713	.01336	.01894		01687	00363	.01247	.00786	00714	00920	.00211	.00802	.00158	00496	00300	00000.
R14	11.16501	-5.60184	-1.61250	96606.	74297	+5211	37848	09772	.17165	.12595	04963	10458	01637	.0646J	.04358	02529	04533	00410	.03292	.02040	01521	02440	00076	*****	11110.	00995	01454	.00027	-U1207	.00635	00622	00834	.00018	.00590	.1500.	.0000.
R13	14.57092	-5.27671	-2.33794	B1802.	.91733	.19137	32644	26282	.03850	.17clJ	.07832	06740	09382	01163	.05950	.04673	C1402	04468	01883	. 32235	.02996	.00244	02453	01742	.00645	.01876	.00767	01012	01329	00097	65500.	.00761	00 433	00686	00319	.0000
R12	18.26u73	-4.63 795	-2-99004	15937	.91771	-11603-	12178	33451	15252	.19271	.16017	.35594	36632	18390	1-57 76	.04373	.05294	· J.J589	03039	J3445	+1100.	.3285.	.02257	JU45 J	12221	01461	19300.	.01712	14500 .	30603	11265	00563	.J)482	. JJ782	.00327	
R ₁₁	22.26617	- 3. c4176	-3.49331	740+2	e1660.	.73662	.18750	23758	28703	08994	.10415	·14074	.05093	05141	08705	04111	.02721	. 05046	.03183	01%17	03366	U255 a	.00066	.02724	16020.	00209	01924	01700		.01309	.01325	.00246	00702	00877	00335	
¢°	u)	3	15	20	25	?	Ξĩ	7	45	20	55	90	5	22	15	20	85	3	5	100	C01	117	115	120	125	130	135	140	145	150	155	160	165	17.	15	(BU

1

R coefficients for $\psi_0 = 5$ to 180 degrees Table I(b)

n = 11 to 20

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ⁿ 23	p	٩	۵	α	a a	æ	a
$ \begin{bmatrix} -5.2.0 \text{ M}_{12} + 5.2.7 \text{ M}_{12} + 5.2.5 \text{ M}_{12} + 5.17 + 10.2.5 \text{ M}_{12} + 5.17 + 10.2.5 \text{ M}_{12} + 5.17 \text{ M}_{12} + 5.27 \text{ M}_{12} + 5.2$	<pre>5 -5.24082 -6.63785 -5.24081 -1.40524 1.56121 1.52197 -1.0334004275 -1.0344004275 -1.561711568 -0.287009494 -0.4235 -0.771101075 -0.771101075 -0.771101075 -0.225202134 -0.035402134 -0.035402154 -0.03540139 -0.03540139 -0.0355</pre>		R24	^R 25	^R 26	r27	ⁿ 28	62 _u	02,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.56121 1.56121 1.52197 1.56121 1.56121 1.52197 20 1033J 35231 21 1033J 35231 25 42964 2717J 26 93540 2717J 25 23550 28755 25 15617 11668 26 02870 94275 27 15618 0423J 25 02711 .01075 26 02870 .03470 27 01075 .03470 27 02135 .03470 26 02135 .03470 27 02135 .03470 28 02254 .02134 29 02254 .0139 20 0136 .01754 20 02254 0136 20 0138 0136 20 0138 0136	10628-1-	-8.82526	-9.63727	-10.27603	-10.75250	-11-07762	-11.26232	-11.31743
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 42964 27173 26 42964 27173 26 42964 27173 26 42964 27173 26 3550 .28755 26 35617 11668 27 15617 11668 26 02870 .9494 27 15617 11668 26 02870 .94949 27 11668 04253 26 02135 .03470 27 02135 .03470 26 02135 .02134 27 02135 .02134 26 02135 .02154 26 02254 01339 27 0133 .01754 26 .00954 01339 27 0136 .01564	1-1-14051	16164-	.18372	.75128	1.23974	1.64152	1.95232	2.17089
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	255 42964 27170 255 42964 27170 35 08540 04275 45 02870 9494 45 02870 9494 50 02870 9494 50 02870 9494 50 02870 9494 50 02870 9494 50 02870 9494 50 02135 01075 50 02135 02134 50 02135 02134 51 02135 02134 50 02135 01339 51 02134 0139 54 02154 0139 54 0139 0136 54 0139 0136	1.37139	1.14983	. 86424	. 54545	-22147	08788	36219	58621
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		800+C · -	-04302	11100-	Incace-		510/2	C1610 -	.105/6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45 15617 14275 45 02870 9494 50 07711 14275 50 07711 14275 50 07711 16533 50 07711 1075 50 07711 1075 50 07711 1075 51 02135 05470 60 01057 03470 70 01057 03797 70 01057 03797 70 01057 03797 70 01057 02154 90 02247 0139 91 01247 0139 92 01264 0139 93 01541 0136		96001.	1 (4 4 7 .	10826.	15345.	-29206	68251.	5+190·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45 02870 04450 50 07711 11668 50 07711 11668 50 07711 11668 50 07711 16533 50 02135 05333 60 01137 05733 70 01137 03473 70 01137 03797 70 01137 03797 70 01137 03797 70 02134 03139 90 02247 0139 91 01247 0139 92 01247 0139 93 0139 0139	41107.	CI011.			SOB01	16607	11681 -	11906
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45 12017 11005 50 .07711 .19494 50 .07711 .1075 50 .07711 .1075 50 05135 .03470 60 02135 .03470 61 02135 .03470 62 04459 .02134 70 01057 03797 70 01057 03797 70 01057 03154 70 022547 02154 90 022547 01399 91 022547 01399 92 01264 01369 93 013654 013654		19111-	10641-	+0010	56520.	c1001.	.13411	+6/11.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 -07711 -09494 50 -07711 -11075 50 -07711 -11075 50 -07711 -1075 50 -07711 -1075 60 -02135 -0531 60 -02135 -0573 70 -01057 -02134 75 -01057 -02154 75 -02247 -00139 90 -02247 -0136 91 -01241 -0136 92 -01247 -0136 93 -01541 -0136		CU8CU.	.11232	1011.	19360.	10+10	17670	E1660
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 01111 01010 50 05618 0533 60 02135 .03470 60 02135 .03470 60 02135 .03470 70 02135 .03470 70 02157 031951 71 02154 02154 80 .02252 .02154 90 02254 01139 91 02254 01139 92 .00954 01136 91 02254 01339 92 .00254 01365 93 .01754 .01355	rono1.	.04852		nss10	25810	73763	.02075	.Jc185
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	05475	07525	04217	.01604	• 05 713	•02494	.01536	03395
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60 02135 .04679 .02134 70 01057 03797 75 01057 03791 75 01057 03791 75 01054 02154 80 02247 01139 90 02247 01139 91 02247 01139 92 02247 01139 93 01541 01339	02 050	.03559	.05641	01620.	558 10	04668	03353	. 00574
The formation of the f	62	.05059	10/10.	02925	0+2 58	-•01393	.02501	•03625	•01167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700105703797 7502916 .00951 80 .02252 .02107 85 .0095402154 900224700139 95 .00473 .01754 00 .0150101055		03915	00838	. 02843	.02981	00176	02825	10120
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	75	01501	.02390	.02856	00297	02742	01500	.01502	.02327
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	64 .02252 .02107 85 .0095402154 940224700139 95 .00473 .01754 64 .0154101.93 050113800055	·03029	.JJ583	02401	31683	01330	· J2154	00148	5 TO ZO
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	85 .0095402154 9u0224700139 95 .00473 .01754 0u .u150101.93 050113800555	01335	02284	.00446	.02175	.00307	01852	00880	•01396
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	940224700139 95 .00473 .01754 04 .0154101433 050113800555	01175	11210.	.01313	51312	31 384	.00953	ne+1c.	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	→5 .00473 .01754 00 .0150101∪93 050113800535	69510 ·	.00113	01743	00093	•01558	.00077	01403	00065
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 .0150101993 050113800535	00709	01425	.00368	.01121	00565	00843	11010.	16500.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05011380Ja35	00553	.01278	.00421		.00048	.01128	00419	00880
$ \begin{array}{llllllllllllllllllllllllllllllllllll$.01351	00103	01145	• 30656	.00100	00933	00169	.00927
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10		12600	.00918	.00224	00565	.00428	06500 .	30772
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 .0126100399	00797	.00978	00085	00802	•00119	14100.	19200	.00486
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16200- 04200- 02	.00.554	00203	00652	551CC .	00175	00550	.00681	00152
Table I(c) R ₁ coefficients for ψ_0 = 5 to 180 degrees Table I(c) R ₁ coefficients for ψ_0 = 5 to 180 degrees r = 21 to 30	2500499 .00375	00157	00602	.00790	00323	00355	.00676	00419	0153
Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees	30 .00690 .00039	09052	.00754	00338	0.0259	.03618	00522	.00082	. JU372
Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees	35	. 00676	00242	00276	·00584	00536	•00196	·00219	00472
Table I(c) R coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R = 21 to 30 n = 21 to	4000765 .00487		00385	.00583	30502	. 30238	84100.	004.03	+5+00·
Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees	45 .00119 .00276	03529	. JU572	00415	·00135	.00162	30373	.00434	30341
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	50 .0055800586	.00463	00239	00020	.00245	00384	.00411	00331	511co.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55U0342 .JUL75	.00045	00231	.00355	20500-	.00374	03282	64100.	00002
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	6000234 .00342	00399	.00403	00361	.00283	00181	6900C*	.00040	+2100
700002500031 -0007900119 -0015100175 -0019100201 -0020300200 7500236 -002213 -0020100189 -0017700165 -00163 -00141 -00130 80 -00000 -000000 -000000 -000000 -000000	65 .004110035)	.JJ275	10192	.00105		00054	61100.	00169	+0200.
7500236	70003250331	. 00079	00119	.00151	00175	16100.	00201	.00203	00200
BU .JOUUJ .0000U .000U .0000U .000U .0000U .000U .000	7500236 .00225	03213	10200.	00189	1100.	00165	.00153	14100	CE10C.
Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees n = 21 to 30 n = 21 to 30		.0000	.00000	.00000	00000.	00000.	.00000	00000.	ccooc.
Table I(c) R _n coefficients for $\psi_0 = 5$ to 180 degrees n = 21 to 30 n = 21 to 30							ORIUM	ないわいに	
n = 21 to 30	Table I(c) R_ coeffi	icients for	4 = 5 to 18	0 degrees		PAGE	REPRUI		
n = 21 to 30			D		100	BILLIN	20110		
	n = 21 to	0 30				- OF			

Rho	-7-03576	. 57522	58601.	15233	.16769	12382		04729	10126.		+1500	72č1v.	01705	.01505	1200	.00450	61400 ·-	.00032	C120C.	00467	5350C*	C0545	9640C.	00322	.00163	50000 ·-	00119	. 30236	-*200	. +30u.	30232	86100.	04068	10000.	+3026	C0000.
^R 39	-7.69023	.90047	+0+10	08796	.11340	10329	70480.	06393	+94564·	U3007	.01741	+5100	.00022	+9400*	00798	19900.	11600	10500*		+550n*		.00210	00037	00107	•00214	00283	.00313	00336	.00275	00222	· 00156	00089	• J0029	.00016	00035	00000.
R38	-8-34234	1.21827	26524	E12Ev.	.03243	15205	•05454	JSUST	4427	33734	1305L.	02428	:01863	01366	· 00538	00576	. JO277	0037	0150	.00283		•00439	00462	.00458	00432	.00388	00332	· J0265	00232	. 30137	-1000	.00025	91000.	1+000*-	++00C ·	.0000
R37	17535.95	1.51745	45146	.16455	06141	662 10 .	e6100*	11135	•01565	11732	•01756	01734	.01639	01492	· JI 365	01235	.01106	00930	. CU86J	00746	.00635	00539	14400.	00362	•00284	00214	.00151	00 0655	.00048		00024	.00048	00062	.00066	00054	00000.
R36	-9.51559	1.78657	61880	.28245	15069	.08358	05575	.03665	02453	16716.	01218	. COB61	00636	.00421	0.1284	18100.	03102	24000.	SULU.	14000	.03065	C5000 -	10100.	511co	.00128	+2100	.00138	11135	*E100*	1135	· 00125	00121	P0100.	15000	+>11164	conco.
R35	-10.01666	2.01413	75347	.37356	21740	.14020	09706	.07076	05364	£514C.	03358	.02744	02279	.01918	31634	.01405	01219	.01064	00935	.00325	00731	.00650	00579	.00517	00462	.00412	JU367	.03326	00234	.00252	00218	. 30184	10100	.00116	+2000	cococ.
R ₃₄	-10-45416	2.189.12	84241	.42382	24042	.15638	10492	.07295	05185	.03727	02684	.01918	01343	.00906	JU509	.00309	00107	00048	.00167		.00322		.00396	00411	• 00 4 1 4	1.0400	.00392	00370	.00342	00309	.00271	00230	.00166	00139	. 00,085	.00000
R33	-10-81-74	2.33375	87630	.42320	22 864	.12951	07335	+6560.	31 792	.00420	.00455	- 00995	EUE10.	01444	· J1470	01421	clelo .	01160	.00989	00806	.00623	- • 00440	.00282		. 00007	99000 .	00180	· UJZ37	04272	.00284	00277	.00252	01212	· 3100 ·		.0000.
R ₃₂	-11.08165	2. 34 JU3	04046	· 36714	16333	. Jé 523	01075		- J3 J22	03510	.03478	03134	. J2516	12020	11410.	00350		. 00056	00306	· JU575	16900	22/CC.	00082	1 950 0	30461	£1600.	00163	+2rrc.	£9000.	00.78	. JJ229	00243	.00224		10100.	
R ₃₁	-11.25366	2.25879	74948	.25766	05457	32741	.06194	0703-	. 06+26	05173	. 03667	02140	. 30875	.03146		.01252	01373	.01272	01016	. 10013	00307	00030	.00297	00472	.00547	U05 Ju	.00438	00296	· 00135	.00012	00131	.00200	00222	16100.	J116	conon.
°.	5	1	5	50	25	3	35	1	10	00	52	00	59	10	15	30	3	30	52	101	50	11	51	50	521	3.0	35	07	145	50	551	00	105	12	175	061

Table I(d) R coefficients for ψ_0 = 5 to 180 degrees

n = 31 to 40

.

for n = 0 to 5

 $\mathbf{R}_{\mathbf{n}}$, dimensionless

Figure 2. Mean value of error of omission in gravity anomaly as a function of distance from the computation point for two sets of degree variances.