CASEFILE COPY

A COMPUTER PROGRAM FOR THE DETERMINATION OF THE ACOUSTIC PRESSURE SIGNATURE OF HELICOPTER ROTORS DUE TO BLADE THICKNESS

G. H. Mall and F. Farassat

Langley Research Center
Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1976

*For sale by the National Technical Information Service, Springfield, Virginia 22161
Page
SUMMARY 1
INTRODUCTION 1
THE FORMULATION 2
THE PROGRAM 3
General Discussion 3
Method of Solution 4
Preparation of Input Data 6
Postprocessor Description 8
CONCLUDING REMARKS 9
APPENDIX A - ROTOR THICKNESS NOISE PROGRAM 10
Program RTN 10
Subroutine NEWYH 20
Subroutine CALCVH 21
Subroutine RMOTIME 22
Function FOFETA1 24
Subroutine OBSPOS 25
Subroutine CALCYST 26
Subroutine CALCSP 30
Function PFUNCN 42
Subroutine LEETA 42
Subroutine TEST 44
APPENDIX B - ROTOR THICKNESS NOISE POSTPROCESSOR PROGRAM 47
Program RTNPP 47
Subroutine PLOTPT 51
Subroutine HELP 54
Subroutine CSDS 56
Subroutine SPLDER 57
Subroutine PSEUDO 60
Subroutine INFOPLT 60
Subroutine CALPLT 63
REFERENCES 65
TABLE I 66
FIGURES 67
Preceding Page Blank iii

A COMPUTER PROGRAM FOR THE DETERMINATION OF THE ACOUSTIC PRESSURE SIGNATURE OF HEL்COPTER ROTORS

DUE TO BLADE THICKNESS

G. H. Mall ${ }^{*}$ and F. Farassat**
Langley Research Center

SUMMARY

This report presents a computer program for the determination of the thickness noise of helicopter rotors. The results are obtained in the form of an acoustic pressure time history. The parameters of the program are the rotor geometry and the helicopter motion descriptors. The formulation employed is valid in the near and far fields. The blade planform must be rectangular, but the helicopter motion is arbitrary. The observer position is fixed with respect to the ground with a maximum elevation of 45° above or below the rotor plane. With these restrictions, the program can also be used for the calculation of thickness noise of propellers.

INTRODUCTION

Thickness noise of helicopter rotors or propellers is the noise generated by the normal velocity distribution on the surface of these rotating bodies. In the past, thickness noise of helicopter rotors and propellers has not been studied thoroughly even after the introduction of some approximations. This noise was investigated by Deming (ref. 1) and Arnoldi (ref. 2); the latter based his analysis on the work of Billing (ref. 3). Deming's and Arnoldi's analyses contain some of the following restrictions which should be removed in applications. These restrictions are of three types:
(1) The rotor or the propeller is required to be stationary or to move in axial direction at uniform speed.
(2) The observer is located in the far field.
(3) The acoustic source distribution must be compact.

[^0]For example, Deming's analysis is developed with restrictions 1 and 2. The expression derived in references 4 and 5 removes restrictions 1,2 , and 3 . This paper documents a computer program developed to evaluate this expression.

The program, as presented, is for blades with rectangular planform. A variety of uniform airfoil sections can be defined by the user in the program input data. The observer is fixed with respect to the ground; this condition is preferred when experimental and theoretical results are compared. Numerical examples showing favorable comparison with some experimental results are presented in reference 5.

THE FORMULATION

Let the surface of the rotor system be specified by $f(\vec{Y}, \tau)=0$, where \vec{Y} is a Cartesian frame fixed to the undisturbed medium and τ is the time. If v_{n} is the local normal velocity of the blade surface and p is the acoustic pressure, then the governing equation for the determination of the thickness noise is (refs. 4 and 5)

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial \tau^{2}}-\nabla^{2} \mathrm{p}=\frac{\partial}{\partial \tau}\left[\rho_{o} \mathrm{v}_{\mathrm{n}}|\nabla \mathrm{f}| \delta(\mathrm{f})\right] \tag{1}
\end{equation*}
$$

where c is the speed of sound in the undisturbed medium, $\delta(f)$ is the Dirac delta function, and ρ_{0} is the density of the undisturbed medium. The solution of equation (1) is presented in reference 4 and in slightly more general form in reference 5.

In the present work, the $\overrightarrow{\eta^{\prime}}$ - and $\vec{\eta}$-frames in reference 5 are replaced by the $\vec{\eta}$ - and $\overrightarrow{Y H}$-frames, respectively. Consider one single blade and a nonrotating coordinate system: the $\overrightarrow{Y H}$-frame is fixed to the center of rotation (fig. 1), and a rotating system is the $\vec{\eta}$-frame, fixed to the blade (fig. 2). Let $\mathrm{T}\left(\eta_{1}, \eta_{2}\right)$ be the thickness function of the blade in this frame. Then the solution of equation (1) is given by equation (32) of reference 5 as follows:

$$
\begin{equation*}
\mathrm{p}(\overrightarrow{\mathrm{X}}, \mathrm{t})=\frac{\rho_{\mathrm{o}} \mathrm{c}}{2 \pi} \frac{\partial}{\partial \mathrm{t}} \int_{\tau}^{\tau} \int_{\Gamma(\text { D.P. })}^{\tau} \frac{\mathrm{T}_{1} \tilde{\mathrm{~V}}_{1}+\mathrm{T}_{2} \tilde{\mathrm{~V}}_{2}}{\mathrm{r}\left[1-\hat{\mathrm{r}}_{3}^{2}+\mathrm{T}_{1}^{2}\left(1-\hat{\mathrm{r}}_{1}^{2}\right)\right]^{1 / 2}} \mathrm{~d} \Gamma \mathrm{~d} \tau \tag{2}
\end{equation*}
$$

where
$\mathrm{p}(\overrightarrow{\mathrm{X}}, \mathrm{t}) \quad$ acoustic pressure
$\rho_{0} \quad$ density of undisturbed medium

W, t	observer position and time
τ_{1}, τ_{2}	source times when the sphere $g=\tau-t+\|\vec{X}-\vec{Y}\| / c=0$ enters and leaves the blade, respectively ($\overrightarrow{\mathrm{X}}$ and t fixed), $\|\overrightarrow{\mathrm{X}}-\overrightarrow{\mathrm{Y}}\|=\mathbf{r}$
$\overrightarrow{\mathbf{Y}}$	source location $\overrightarrow{\mathrm{Y}}$-frame
$\left(\mathrm{VH}_{1}, \mathrm{VH}_{2}\right)$	vehicle velocity components along Y_{1} and Y_{2} axes of \vec{Y}-frame
Ω	angular velocity of rotor
$\left(\hat{r}_{1}, \hat{r}_{2}, \hat{\mathrm{r}}_{3}\right)$	unit vector along radiation direction in η - frame
Γ	curve of intersection of sphere $\mathrm{g}=0$ and mean surface of the blade
D.P.	disk plane
T_{1}	$=\partial \mathrm{T} / \partial \eta_{1}, \quad \mathrm{~T}_{2}=\partial \mathrm{T} / \partial \eta_{2}$
\widetilde{V}_{1}	$=-\mathrm{VH}_{1}+\eta_{2} \Omega$
$\tilde{\mathrm{V}}_{2}$	$=-\mathrm{VH}_{2}-\eta_{1} \Omega$

For several blades, the contribution of each to the acoustic pressure is added linearly.

THE PROGRAM

General Discussion

For this program, the blades are assumed to have a rectangular planform with a uniform airfoil section along the span. The thickness distribution function $T\left(\eta_{1}, \eta_{2}\right)$ is denoted as $F\left(\eta_{1}\right)$ here since there is no dependence on η_{2}. The Rotor Thickness Noise program (RTN) evaluates the integral in equation (2) numerically. Evaluation of this double integral involves one integration over the curve of intersection of the sphere $g=0$ and the rotor blade; the other integration is over source time. The first of these integrals is evaluated using a trapezoidal integration. The second integral is performed with Simpson's rule and a trapezoidal end-point correction where required. The Rotor Thickness Noise program postprocessor (RTNPP) completes the calculation of the acoustic pressure by differentiating the RTN output numerically with respect to observer time. The purpose of this section is to present detailed descriptions of the RTN and RTNPP programs, to
describe the manner in which input data must be prepared, and to describe the program output. Flow charts and FORTRAN listings of the programs are included as appendixes.

The solution technique employed by the RTN program is presented in the section of this report entitled "Method of Solution."' Within this section, several key internal program variables are identified parenthetically. The RTN program reads a number of parameters describing the rotor system structure, the amount of detail to be used in performing the integrations, and various program options. A detailed description of the input required by the program is given in the section entitled "Preparation of Input Data." Output from the RTN program includes an echo of the input data and a table of ordered pairs $[Q(\vec{X}, t), t]$ where t is the observer time and $\Phi(\vec{X}, t)$ is defined by equation (3).

$$
\begin{equation*}
\mathcal{P}(\overrightarrow{\mathrm{X}}, \mathrm{t})=\frac{\rho_{\mathrm{o}} \mathrm{c}}{2 \pi} \int_{\tau_{1}}^{\tau} \int_{\Gamma(\text { D.P. })} \frac{\tilde{\mathrm{V}}_{1} \mathrm{~F}^{\prime}\left(\eta_{1}\right)}{\mathbf{r}\left[1-\hat{\mathrm{r}}_{3}^{2}+\mathrm{F}^{\prime 2}\left(\eta_{1}\right)\left(1-\hat{\mathbf{r}}_{1}^{2}\right)\right]^{1 / 2}} \mathrm{~d} \Gamma \mathrm{~d} \tau \tag{3}
\end{equation*}
$$

The section entitled "Postprocessor Description" discusses the numerical differentiation methodology used by the RTNPP program in computing the thickness noise from equation (3).

Method of Solution

Based upon the translational velocity of the rotor system (VH) and the specified initial value of source time (TAU), the location of the center of the rotor system relative to a fixed coordinate system is determined. This fixed coordinate system (Y) is described in figure 1. The origin of this system is the location of the center of the rotor system at time $T A U=0$. The $Y_{1} Y_{2}$-plane contains the rotor disk and the Y_{1}-axis is parallel to the initial orientation of blade number one. The direction from the blade tip to the hub is the positive direction. A new reference frame (YH) is constructed with its origin coinciding with the center of the rotor system at time TAU. This nonrotating coordinate system remains fixed to the helicopter. The position of the observer at time TAU in the YH-frame (X) is computed from the specified location in the Y-frame (X0). The blade-fixed coordinate system is shown in figure 2.

At time TAU, a sphere is constructed with its center at the position of the observer with a radius (RM) equal to the maximum distance between the observer and any blade tip. The observer time (OTIME) is determined by the relation OTIME = TAU - RM/SNDSPD, where SNDSPD is the speed of sound. The radius of this sphere is subsequently permitted to collapse at the speed of sound. The points of intersection of the projection of this
sphere on the rotor system plane and the circle defined by the outer radii of the blades are determined as shown in figure 3. At the position of the observer, the more clockwise of these points (YSTART) defines the initial sweep angle (PHIO). The other point of intersection (YEND) defines the final sweep angle.

The integral over the intersection of the sphere and the rotor blade is performed by sweeping the arc of the intersection of the projection of the sphere and the rotor system plane. The arc is swept in a counterclockwise sense. To execute the sweep of such an arc efficiently, the rotor system is divided into four regions as illustrated in figure 4. These regions are defined as follows:

IREGION $=0 \quad$ The point lies outside the circle defined by the outer radius of the blades.
$=1$ The point lies between the circles defined by the outer and inner radii of the blades, but is not on a blade.
$=3$ The point lies inside the circle defined by the inner (hub) radius of the blades.
$=6$ The point lies on a blade.
Three sweep increments are used by the program. In region 1, a rather coarse angular increment (DELPHI1) is used to space across the region. When a blade is encountered, the intersection of the arc with the edge of the blade is computed. A smaller angular increment (DELPHI2) is used to sweep across the blade. An even smaller angular increment is allowed for points near the leading edge for blunt leading edges. The values of the integrand and differential increment are calculated for each point on a blade. The line integral (trapezoidal) is computed dynamically by cumulative summing. The individual contributions of each blade are also summed. The hub region is bypassed by using the computed value of the intersection points of the arc with the inner circle. The line integral is completed when the sweep across the arc reaches the finai sweep angie.

When a sweep has been completed, the value of the sweep time (SWPTAU) is increased by a small increment (DELTAU). The center position of the rotor system relative to the observer is recomputed. A new sphere is constructed and its line integral is calculated. This process is continued until the sphere no longer intersects the rotor system. As these line integrals are calculated, they are dynamically accumulated into a Simpson's rule sum. The integrands are multiplied by two or four if they are even or odd terms, respectively, and are then added to the sum. If the last term is even, a trapezoidal correction is made.

After the last line integral has been calculated, the value of the double integral and the corresponding observer time are output. The value of the source time is increased
by some multiple of DELTAU and the entire process is repeated until one of three possible termination criteria is satisfied. These criteria are:
(1) TAU exceeds a specified maximum value.
(2) The radius of the contracting sphere becomes less than the outer radius of the blades.
(3) The angle of the observer relative to the center of the rotor system and the rotor system plane exceeds 45°.

The hierarchy of program RTN and its 10 subprograms is illustrated in figure 5. Flow charts and FORTRAN listings of every RTN subprogram are presented in appendix A.

Preparation of Input Data

All input data to RTN are associated with the single NAMELIST name ROTOR. These variables are summarized in table I according to dimension, type, and units and are described in the following paragraphs.

CH . Blade chord.
COEFFS The coefficients for describing the airfoil shape. The airfoil shape used in the subprogram FOFETA1 is given in nondimensional form by

$$
F(E) / C H=T\left(C_{1} \sqrt{E}+C_{2} E+C_{3} E^{2}+C_{4} E^{3}+C_{5} E^{4}\right)
$$

where $\mathrm{E}=\eta_{1} / \mathrm{CH}, \quad \eta_{1}$ is the distance along the chord from the leading edge, CH is the blade chord, and T is the thickness ratio. The function $F(E)$ is the airfoil thickness function which is the airfoil ordinate at η_{1}. This equation is suitable for many airfoil shapes, in particular for the NACA four digit airfoil series. The coefficients for this series (from ref. 6) are as follows:

$$
\begin{aligned}
& C_{1}=1.4845 \\
& C_{2}=-0.6300 \\
& C_{3}=-1.7580 \\
& C_{4}=1.4215 \\
& C_{5}=-0.5075
\end{aligned}
$$

DELTET The angular displacement of the rotor system between consecutive positions of the contracting sphere. This variable is used with the rotor system angular velocity to compute DELTAU, the time required for the rotor to rotate DELTET degrees. DELTAU is then used as the differ-
ential increment in the integration over time. The source time TAU is increased by some multiple of DELTAU between computations of $\mathcal{P}(\overrightarrow{\mathbf{X}}, \mathrm{t})$. A useful formula to select DELTET is

$$
\text { DELTET }=\frac{(\mathrm{CH})(\mathrm{OMEGA}) \cos \psi}{2.5(345-\mathrm{VH} \cos \psi)}
$$

where ψ is the angle that the line from observer to the center of rotation makes with the vertical and VH is the helicopter speed.

DTAUM

ETAMAX The maximum η_{1} value for which increased resolution is desired near the leading edge for airfoils with blunt leading edges. Generally, a value between 10 to 15 percent of the chord is sufficient.

JFLG

KFLG

MORDATA

N
A factor to determine the time increment between data points. The time increment derived from the variable DELTET is multiplied by DTAUM to determine the time interval between data points. Consequently, the rotor system rotates DTAUM*DELTET degrees between data points. A useful rule for selecting this factor is

$$
\text { DTAUM }=\frac{4 \text { to } 6}{(\text { NBLADES })(\text { DELTET })}
$$

Rotor system translational motion indicator:
JFLG $=0 \quad$ Hovering helicopter
$=1$ Helicopter in forward flight
Airfoil section type indicator:

$$
\begin{aligned}
\text { KFLG } & =0 & & \text { Sharp leading edge } \\
& =1 & & \text { Blunt leading edge }
\end{aligned}
$$

Additional data indicator:
MORDATA $=$. T. Process another data set $=. F$ Terminate

A factor to control the spacing along the arc for points not on a blade (i.e., to skip from one blade to the next). The variable N should not be made too small since a large sweep increment near a blade tip might skip over the blade completely. Approximately N points are used to traverse a distance along the arc equal to the blade chord. A value between 3 and 8 is suggested.

NBLADES	The number of blades in the rotor system. The program allows a maximum of eight blades.
NS	A factor to control spacing along the arc for points on a blade. The variable NS is used to compute the sweep angular increment, DELPHI2. The DELPHI2 determines the line integral differential increment. Approximately NS points are used to traverse a distance along the arc equal to the blade chord. A value between 15 and 25 is suggested.
OMEGA	Angular velocity of the rotor system.
PERDM	The number of periods of the blade rotation to be processed. Because of the lengthy computation time, this number should not be given a large value. This variable is used to establish the maximum time termination criterion.
R	Radius of the blades.
RO	Hub radius.
SNDSPD	The speed of sound.
TAUINT	The initial value of TAU, the source time. Nonzero values of this variable provide a restart capability as well as a means of generating highresolution calculations in TAU regions of interest.
THKRAT	Blade thickness ratio.
X0	The location of the observer relative to $(0,0,0)$, the initial position of the center of the rotor system at time $\mathrm{TAU}=0$ (i.e., the Y -frame).

The relationship between the RTN program and the postprocessor (RTNPP) is illustrated in figure 6. Sample RTN output which is input to RTNPP is shown in figure 7. No input, other than the information generated on TAPE12 by RTN, is required by the postprocessor.

The Rotor Thickness Noise program postprocessor in use at Langley Research Center (LRC) performs three functions. The RTN output ordered pairs (\mathcal{P}, t) are used to find the thickness noise by differentiating them numerically with respect to t, the observer time. The resulting thickness noise is interpolated to provide a specification at equally spaced observer time values. The results are then plotted.

Because ϕ is the result of numerical integration, error resulting from finite resolution should be eliminated before attempting to differentiate the RTN output. This elimination is accomplished with a subroutine which fits a smooth cubic spline curve to the set
of data points. This routine requires a specification of the allowed variation of each functional value. For each data point, the difference between the raw data and a value obtained by trigonometric smoothing is used to satisfy this requirement.

The postprocessor output consists of four plots (illustrated in figs. 8 to 11) for each data set. The raw data as output by RTN are displayed in figure 8. The cubic spline curve is presented in figure 9. Figure 10 displays the smoothed data over the raw data to provide a measure of the quality of the cubic spline fit. Figure 11 shows the acoustic pressure time history.

Flow charts and FORTRAN listings of several RTNPP subprograms are presented in appendix B. Several routines required by RTNPP were obtained from the LRC math and graphics libraries. Descriptions of these subroutines are included in appendix B.

CONCLUDING REMARKS

This report presents a computer program for calculating the thickness noise of helicopter rotors with rectangular blades. Favorable comparisons with experimental results containing high-speed helicopter blade slap have been found and are reported in reference 5. The program is written in Control Data Corporation (CDC) FORTRAN and, although several postprocessor subroutines are not fully documented because of proprietary rights, sufficient information is supplied to adapt the program to any facility.

Langley Research Center
National Aeronautics and Space Administration
Hampton, Va. 23665
December 12, 1975

APPENDIX A

ROTOR THICKNESS NOISE PROGRAM

This appendix provides a brief description of the calculations performed by each RTN subprogram. The subprogram flow chart and FORTRAN listing follow the description.

Program RTN

RTN reads and writes the NAMELIST input data and initializes other variables used elsewhere in the program. Following each contraction of the sphere, a check is made to see if any termination criteria have been satisfied or if the sphere has completed its pass through the rotor system. If the sphere is still intersecting the rotor system, an additional contribution is made to the Simpson's rule integral. If the sphere has passed out of the rotor system, the source time is incremented, the computed value of the double integral is output, and an additional sphere contraction is initiated. If one of the termination criteria has been satisfied, the program terminates unless an additional data set is specified.

APPENDIX A

Flow Chart of Program RTN

APPENDIX A

Listing of Program RTN

APPENDIX A

APPENDIX A

C*	geltit	ANGULAR DISPLAGEMENT OF THE ROTOR SYSTSM BETHEEN	- RTN	134
C*	-	CONSECUTIVE POSITIONS OF THE CONTRACTING SPHERE.	* RTN	135
C*		THIS VAFIABLF IS USED HITH THE ROTOR SYSTEM ANGULAR	* RTN	136
C*		VELOCITY TO COMPUTE THE SOURGE TIME DIFFERENTIAL	* RTN	137
C*		INCPEMENT, DELTAU. (OEGREES)	* PTN	138
C*			- RTN	139
C*	N	FACTOR TO CONTROL SPACING ALONG ARC BETWEEN BLADES	* RTN	140
c*		(I.E.. TO SKIP FROM ONE blade to the next).	* RTN	141
C*		APPROXIMATFLY N POINTS ARE USEO TO TRAVERSE A	* RTN	142
C*		distance along the arc equal to the blade chord.	* RTN	143
C*			* RTN	144
C*	NS	FACTOR TO CONTROL SPACING ALONG ARC ON A SLADE.	* RTN	145
C*		APPROXIMATELY NS POINTS ARE USED TO TRAVERSE A	* RTN	146
C*		OIStance along the arc equal to the glaoe chord.	* RTN	147
C*		THIS VARIABLE DETERMINES THE LINE INTEGRAL	* RTN	148
C*		DIFFERENTIAL INGREMENTS.	* RTN	149
C*			* RTN	150
C*	KFLG	AIRFOIL SECTION TYPE INOICATOR.	* RTN	151
C*			* RTN	152
C*		KFLG = 0: SHARP LEADING EDGE	* RTN	153
C*			* RTN	154
C*		= 1: BLUNT LEADING EDGE	* RTN	155
C*			* RTN	156
C*	ETAMAX	maximur eta value for which increaseo resolution	- RTN	157
C*		IS desifeo near the leading edge for blunt leading	* RTN	158
C*		EOGES.	* RTN	159
C*			* RTN	160
C*	ELNTN	FACTOR TO GENERATE FINE SPAGING NEAR THE LEADING	- RTN	161
C^{*}		Enge for elunt leading eoges. for eta values	* RTN	162
C*		BFTWEEN ZERO ANO ETAMAX. THE SPACING FACTOQ NS IS	* RTN	163
C*		MULTIPLIED BY BLNTN.	* RTN	164
C*			* RTN	165
C*	JFLG	ROTOR SYSTEM TRANSLATIONAL MOTION INDICATOR.	- RTN	166
C*			* RTN	167
C*		JFLG = E: HOVERING HELICOPTER.	* RTN	168
C*			- RTN	169
C*		= 1: HELICOPTER IN FORWARO FLIGHT.	* PTN	170
C^{*}			* RTN	171
C*	COEFFS	COEFFICIENTS IN THE FUNCTION DESCRIBING THE AIRFOIL	* RTN	172
C*		SECTION. A MINUS SIGN MUST APPEAR EXPLICITLY FOP	- RTN	173
C*		NEGATIVE TERMS.	* RTN	174
C*			* PTN	175
C*	TAUINT	the initial value of source time (tau). (Seconos)	- RTN	176
C*			* PTN	177
c**	PEPDM	THE NUMEER OF PERIOOS OF THE ROTOR SYSTEM TO BE	* PTN	178
C*		PROCESSED. THIS VARIASLE IS USED TO ESTABLISH	- RTN	179
C*		THE MAXIMUM TIME TERMINATION GRITERION.	* RTN	180
C*			* RTN	1.81
C*	DTAUM	time increment getheen data points. the source	* RTN	182
C*		TIME DIFFEPENTIAL INCREMENT DERIVED. FPOM DELTET	* RTN	183
C*		IS MULTIPLIED BY DIAUM TO DEtERMINE THIS INCPEMENT.	* RTN	184
C*			* ptn	185
C*	SNTSPD	SPEED OF SOUND. (IMETERS/SEC)	* RTN	186
e*			* RTN	187
C*	MOROATA	A LOGICAL VAPIABLE TO SPECIfy if an adoitional	* RTN	188
C*		DATA SET IS TO PE PROCESSED.	* RTN	189
C*			- RTN	190
C*			- RTN	191
C*	REOUIPED		* RTN	192
C*	ROUTINES:	-	- RTN	193
C*		SURROUTINE NEWYH	* RTN	194
C*		SUEROUTINE CALCVH (SEE ADOITIONAL DETAILS)	- RTN	195
C*		SUBROUTINE ORSPOS	- RTN	196
C*		SUGROUTINE RMOTIME	- RTN	197
C*		SUBROUTINE CALCYSI	* RTN	198
C*		SUBROUTINE CALCSP	* RTN	199
C*		FUNCTICN FOFETA1 (SEE ADOITIONAL details)	* RTN	200

APPENDIX A

C*		FUNCTICN PFUNCN	- RTN	201
c*		SUgroutine test isee adoitional details)	- RTN	202
C*		SUBROUTINE LEETA	- RTN	203
C*			- RTN	204
C*			- RTN	205
C*	AODITIONAL		* RTN	266
E*	OETAILS:		- RTN	207
C*		FOP A MCVING POTOR SYSTEM (JFLG = 1), A SUBPOUTINE	* RTN	208
c^{*}		MUST PE fRCVIDED TO DESCRIBE THE MOTION.	* RTN	209
C*			* RTN	210
C*		SUBROUTINE CALCVH(VH.TIME)	* PTN	211
C*			- RTN	212
C*		SURQCUTINE Calcvi defines the vector vhl3)	* RTN	213
C^{*}		WHICH MUST CONTAIN THE ThREE COMPONENTS OF	- RTN	214
C*		THE ROTOR SYSTEM TPANSLATIONAL VELOCITY AT	- RTN	215
${ }^{*}$		T = TIME. THESE COMPONENTS ARE TO SE SPECIFIEO	* RTN	216
C*		In the potor system reference frame. the three	- RTN	217
C*		AXES IN THIS COOROINATE SYSTEM ARE DEFINED AS	- RTN	218
C^{*}	.	FCLLOWS.	- RTN	219
C*			* RTN	220
C*		THE Y1 AXIS IS PARALLEL TC the InItial	* RTN	221
C^{*}		OfiEntation of blade numeer one with the	* RTN	222
C*		DIRECTION FROM THE BLADE TIP TO THE CENTER	* RTN	223
C*	,	OF THE ROTOP SYSTEM TAKEN AS POSITIVE.	* RTN	224
C*			* RTN	225
C*		THE YZ AXIS IS PERPENDICULAR TO YI PASSING	* RTN	226
c*		THROUGH THE CENTER OF THE ROTOR SYSTEM AND	- RTN	227
C*		LYING IN THE ROTOR SYSTEM PLANE. THE	* RTN	228
C*		OIRECTION TO THE LEFT OF AN OBSERVER FACING	* RTN	229
c*		teware positive ri is taken as positive.	* RTN	230
C*			* RTN	231
C*		THF Y? AXIS IS PERPENDICULAR TO THE PLANE	* RTN	232
C*		OF THE ROTOR SYSTEM WITH THE POSITIVE	* RTN	233
C*		CIRECTION DETERMINED BY THE USUAL CONVENTION	* RTN	234
C*		FOF A RIGHT-HANOED GOORDINATE SYSTEM.	* RTN	235
C.*			* RTN	236
C*		The present version of function fofetai imposes	* RTN	237
C^{*}		A LIMITATION TO UNIFORM AIRFOIL SECTION ACROSS THE	- RTN	238
C*		SPAN OF THE ELAOES. FOR NONUNIFORM AIRFCIL SECTION	* RTN	239
C*		this function must be modified.	- RTN	240
C*			* RTN	241
C^{*}		THE PRESENT VERSION OF SURROUTINE TEST IMPOSES A	* RTN	242
C*		LIMITATICN TO POTOR SYSTEMS WITH RECTANGULAR	* PTN	243
C*		blades. For other blade shapes this subroutine	* RTN	244
C*		MUST BE MODIFIED.	* RTN	245
C*			* RTN	246
C*			- RTN	247
C*	SOURGE:		- PTN	248
C*		RTN HAS PROGOAMMED AT LANGLEY RESEARCH CENTER BY	- RTN	249
C*		COMPUTER SCIENCES CORPORATION BASEO UPON A DESIGN	- RTN	250
C^{*}		BY F. FAFASSAT.	- RTN	251
C*	-		* RTN	252
C*		.	* RTN	253
c^{*}	LANGUAGE:		* RTN	254
${ }^{+}$		FCRTRAN	* RTN	255
C*			- $\overline{\mathrm{K}} \mathrm{i}$ in	250
C^{*}			* RTN	257
C^{*}	DATE	.	- RTN	258
C*	RELEASET:		* RTN	259
C*		MAY 1. 1974	* RTN	268
C*			- RTN	261
C*			* RTN	262
C*	LATEST		- RTN	263
C*	REVISION:		* RTN	264
C*		CFCEMPEF 16,1975	* RTN	265
C*	.		- RTN	266
C*			* RTN	267
C*	************	**	* RTN	268

APPENDIX A

APPENDIX A

APPENDIX A

```
C.50 CALL CALCSP(RSO,POSQ,PHI,Y,SCRIPI)
C
C
    60 NPTS = 0
        WRITE(12.70) NPTS
        IF(MORDATA) GO TO 10
C
        TERMINATION.
    7C FORMATII5,3E25.151
    END
\begin{tabular}{ll} 
RTN & \(4 C 4\) \\
RTN & 405 \\
RTN & 406 \\
RTN & 407 \\
RTN & \(4 C 8\) \\
RTN & 409 \\
RTN & 410 \\
RTN & 411 \\
RTN & 412 \\
RTN & 413 \\
RTN & 414 \\
RTN & 415 \\
RTN & 416 \\
RTN & 417
\end{tabular}
```


Subroutine NEWYH

This routine calculates YH , the three coordinates of the center of the rotor system relative to its initial location. This routine is called only for moving (translational) rotor systems.

Flow Chart of Subroutine NEWYH

APPENDIX A

Listing of Subroutine NEWYH

Subroutine CALCVH

CALCVH returns the three components of the translational velocity of the rotor system. In general, this subroutine is a user-supplied subroutine which must be provided for any case other than for that of a hovering helicopter. The routine included with the current version of RTN provides for a constant velocity of $61.73 \mathrm{~m} / \mathrm{sec}$ (120 knots) directed along the Y_{1}-axis.

Flow Chart of Subroutine CALCVH

APPENDIX A

Listing of Subroutine CALCVH

Subroutine RMOTIME
This subroutine determines the range from the observer to the most distant blade tip in the rotor system. This range (RM) is the initial radius of the contracting sphere. Corresponding to this range and the current value of source time, the value of the observer time (OTIME) is also computed.

APPENDIX A

Flow Chart of Subroutine RMOTIME

APPENDIX A

Listing of Subroutine RMOTIME

Function FOFETA1

This subprogram computes the blade thickness for specified distance along the blade chord. The function included with the current version of RTN is limited to uniform airfoil section across the span.

Flow Chart of Function FOFETAL

APPENDIX A

Listing of Function FOFETA1

Subroutine OBSPOS

This subroutine returns X, the three coordinates of the observer relative to the YH-frame fixed to the helicopter.

Flow Chart of Subroutine OBSPOS

APPENDIX A

Listing of Subroutine OBSPOS

Subroutine CALCYST

Subroutine CALCYST is called by RTN. A second entry point, CALCY, is used by subroutine CALCSP. This subprogram calculates the points of intersection of the projection of the sphere on the rotor system plane with the circles(s) defined by the rotor system. The calculation is made for either the circle defined by the outer blade radius or for, that defined by the hub radius. The two components of the more clockwise point of intersection (relative to the observer) are returned in YSTART. The more counterclockwise point is returned in YEND. The angle (at the observer's position) defined by YSTART is returned in PHIO. The CALCYST entry contracts the sphere. The CALCY entry does not.

APPENDIX A

Flow Chart of Subroutine CALCYST

APPENDIX A

APPENDIX A

Listing of Subroutine CALCYST

APPENDIX A

Subroutine CALCSP

This routine controls the sweeping across the arc defined by a fixed position of the contracting sphere. The sweep is in a counterclockwise direction beginning at PHIO and terminating when a point is reached outside the circle defined by the rotor system. A trapezoidal integration over the intersection of the arc with each blade is performed dynamically. The coarseness of the sweep increment is determined as a function of whether or not a point is on a blade. Even finer sweep increments are used near the leading edge of blades with blunt leading edges.

APPENDIX A
Flow Chart of Subroutine CALCSP

APPENDIX A

APPENDIX A

APPENDIX A

APPENDIX A

APPENDIX A

APPENDIX A

APPENDIX A

Listing of Subroutine CALCSP

APPENDIX A

APPENDIX A

```
C
    100 CALL TEETA(ETA(2,J2),Y)
    110 ETA(2.J2) = ETAZ
C
C
C
    120 PHI = ACOS(J.9999999999*(Y(1) - X(1))/SRCOST)
        IF(Y(2).LT.X(2))PHI = 2.*PI = PHI
        GOro40
C
    130 CALL CALCY(ROSQ,PHX)
        Y(1) = YEND(1)
        Y(2) = YENO(2)
        ETA(1,J2)=CH/2.-Y(1)*SBETA + Y(2)*CBETA
        IF(ETA(1,J2).LT.C.) GO TO 90
        ETA(2,J2)=-Y(1)*CBETA - Y(2)*SBETA
        GOT0 120
C
    140 JFTETA(1,J2).GT.CH/2.) GO TO 150
C
    CALL LFETA(ETA(2,J2),Y)
    ErA(1,J2) = C.
    GOTO 16C
C GO TO 16C 
150 CALL TEETA(ETA (2,JZ),Y)
    ETA(1,J2)= CH
    16CETA(2,J2)= ETAZ
    (T)T0.60
CH
170 CALL CALCY(RSQ,PHX)
    Y(1) = YENO(1)
    Y(2) = YEND(2)
    50 TO 190
C
        ENTERING EEGION 3 FROM PEGION 6. GET'INTERSECTION WITH
            INNER RADIUS
180 CALL CALCY(ROSO,PHX)
    Y(1) = YSTART(1)*
    Y(2) = YSTART(2)
19j ETA(1,J2)=CH/2. - Y(1)*SBETA * Y(2)*CBETA
    IFPETA(1,J2I.LT:C.) GO TO 145
    ETA(2.J2)= -Y(1)*CBETA - Y(2)*SBETA
    GOTO 5C
    EN!
\begin{tabular}{|c|c|}
\hline calcsp & 141 \\
\hline CALCSP & 142 \\
\hline CALCSP & 143 \\
\hline CALCSP & 144 \\
\hline CALCSP & 145 \\
\hline Galcsp & 146 \\
\hline CALCSP & 147 \\
\hline Calcsp & 148 \\
\hline CALCSP & 149 \\
\hline CALCSP & 15 C \\
\hline CALCSP & 151 \\
\hline CALCSP & 152 \\
\hline CALCSP & 153 \\
\hline Calcsp & 154 \\
\hline CALCSP & 155 \\
\hline CALCSP & 156 \\
\hline CALCSP & 157 \\
\hline CALCSP & 158 \\
\hline CALCSP & 159 \\
\hline CALCSP & 160 \\
\hline CALCSP & 161 \\
\hline Calcsp & 162 \\
\hline CALCSP & 163 \\
\hline CALCSP & 164 \\
\hline CALCSP & 165 \\
\hline CALCSP & 166 \\
\hline CALCSP & 167 \\
\hline CALCSP & 168 \\
\hline CALCSP & 169 \\
\hline CALCSP & 170 \\
\hline Calcsp & 171 \\
\hline CALCSP & 172 \\
\hline CALCSP & 173 \\
\hline CALCSP & 174 \\
\hline CALCSP. & 175 \\
\hline CALCSP & 176 \\
\hline CALCSP & 177 \\
\hline CALCSP & 178 \\
\hline CALCSP & 179 \\
\hline CALCSP & 180 \\
\hline CALCSP & 181 \\
\hline CALCSP & 182 \\
\hline CALCSP & 183 \\
\hline CALCSP & 184 \\
\hline CALCSP & 185 \\
\hline CALCSP & 186 \\
\hline CALCSP & 187 \\
\hline CALCSP & 188 \\
\hline CALCSP & 189 \\
\hline Calcsp & 190 \\
\hline CALCSP & 191 \\
\hline CALCSP & 192 \\
\hline CAICSP & 193 \\
\hline CALCSP & 194 \\
\hline CALCSP & 195 \\
\hline CALCSP \({ }^{\text {c }}\) & 196 \\
\hline CALCSP & 197 \\
\hline CALCSP & 198 \\
\hline
\end{tabular}
```


APPENDIX A

Function PFUNCN

This function subprogram computes the integrand of the line integral at each sweep position.

Flow Chart of Function PFUNCN

Listing of Function PFUNCN

Subroutine LEETA

Subroutine LEETA returns the coordinates (in the YH frame) of the point of intersection of a fixed arc and the leading edge of a blade. The second ETA component (see fig. 2) is also returned. A second entry point, TEETA, does the same thing for a trailing edge.

APPENDIX A

Flow Chart of Subroutine LEETA

APPENDIX A

Listing of Subroutine LEETA

Subroutine TEST
TEST returns the region index (IREGION) for a given pair of coordinates in the YH reference frame at a given time. The region indices correspond to points outside the outer radius, inside the hub radius, within the rotor system but not a blade, and on a blade. When a point is found to be on a blade, the routine returns the blade number, the angle made by that blade, the sine and cosine of this angle, and the ETA coordinates of the point. The subroutine included with the current version of RTN is limited to rotor systems with rectangular blades.

APPENDIX A

Flow Chart of Subroutine TEST

APPENDIX A

Listing of Subroutine TEST

APPENDIX B

ROTOR THICKNESS NOISE POSTPROCESSOR PROGRAM

This appendix includes brief descriptions of each of the RTNPP subprograms. Where possible, each description is followed by a flow chart and FORTRAN listing of the subprogram. The CSDS subroutine is the property of International Mathematical and Statistical Library (IMSL). Four other subroutines, SPLDER, PSEUDO, INFOPLT, and CALPLT, are the property of Langley Research Ceñter. For these five subroutines, FORTRAN listings are not included, but the more detailed descriptions (ref. 7) provided should permit their replacement by similar routines which might be available at other facilities.

Program RTNPP

Program RTNPP reads the output from the RTN program. If the contents of TAPE 12 were disposed to the card punch following execution of the RTN program, this deck should be placed in the RTNPP input stream. If TAPE 12 is a disk file, it should be rewound prior to executing RTNPP. No other input is necessary for the postprocessor program. Once the data has been read and stored into arrays, trigonometric smoothing is used to obtain an estimate of the validity of each data point in the $\mathcal{P}(\overrightarrow{\mathrm{X}}, \mathrm{t})$ plotted against t spectrum. These estimates are then passed to a cubic spline smoothing routine. Interpolation is performed on the smoothed data to provide values at equally spaced values of the observer time. The smoothed data are numerically differentiated with respect to the observer time and the results are plotted.

APPENDIX B

Flow Chart of Program RTNPP

APPENDIX B

APPENDIX B

Listing of Program RTNPP

```
            PROGRAM RTNPP(INPUT=101B,OUTPUT=1C1B,TAPES=INPUT,TAPEG=OUTPUT)
            OIMENSION SCRIPTP(350),0TIME(350),F(500),T(500), DER1(500).
    1 CER2(500), COEF(350,4),WK(3850), DF(350)
    OIMENSION XO(3),COEFFS(5)
    LOGICAL MORDATA
    NAMELIST/ROTOR/XC,NBLADES,R,CH,OMEGA,RO,THKRAT, DELTET,N,NS,KFLG.
    1 ETAMAX, BLNTN,JFLG, COEFFS,TAUINT, PERDM, DTAUM, SNDSPD,MORDATA
    1 FORMAT (1HG,*IERR =*,I5)
    2 FORMATII5,3E25.15)
        M=0
        INIT = C
10 PEAD (5,ROTOR)
HRITE(6,ROTORI
20 CONTINUE
    M=M+1
30 CONTINUE
    READ(5,2) I,7,OTIME(M),SCRIPTP(M)
    OTIME(M) = ICOC.*OTIME(M)
    IFII.NE.OI GO TO 2S
    M=M-1
    MNPTS = 35%
    NCVS = 1
    M = M/3
    M = 3*M
    DT = (OTIME(M) - OTIME(1)//499.
    004! IJ=1,5C!
    T(IJ) = OTIME(1) + FLOAT(IJ-1)*OT
40 CONTINUE
    MM = 500
    S = FLDAT(M) + SORT(FLOAT(2*M))
    PI = 3.141592654
    NM1 = M - 1
    O0 50 I=1.M
    OERI(I) = 0.
    WK(I) = 0.
    OF(I) = SCRIPTP(I) - SCRIPTP(1) - FLOAT(I-I)*(SCRIPTP(M) - SCRIPTP
    1. (1)//FLOAT(NM1)
50 CONTINUE
    NNMY = MINC(85,M)
    \capO }70\textrm{J}=1.NNM
    OC 5J I=2,NM1
    WK(J)=WK(N) + DF(I)*SIN(FLOAT(J*(I-1))*PI/FLOAT(NMI))
6C CONTINUE
    WK(J) = 2.*WK(J)/FLCAT(NM1)
7! CONTINUE
    DO 9C I=2,NM1
    RC 30 J=1,NNMM
    DERI(I) = DEPI(I) + WK(J)*SIN(FLOAT(J*(I-1))*PI/FFOAT(NM1))
8C CONTINUE
    COEF(I,1)= OEPI(I) + SCRIPTP(1) & FLOAT(I-1)*(SCRIPTP(M)
    1-SCRIPTP(1))/FLOAT(NM1)
90 CONTINUE
    CCEF(1.1)= SCRIPTP(1)
    COEF(M,1)= SCRIPTP(M)
    00100 I=1,M
    DF(I) =1.5*ABS(COEF(I,1) - SCRIPTP(I))
100 CONTINUE
    ML = 0
    IF(INIT.GT.O) ML=1
    INIT = INIT* 1
    CALL PLOTPTCOTIME,SCRIPTP,M,ML,1)
    ML =1
    IW=-1
```

```
    CALL CSOSIMNPTS,M,OTIME,SCRIPTP,DF,S,IW,COEF,WK,IERR) RTNPP 65
    HRITE(G.1) IERR RTNPP66
    CALL PLOTPT(OTIME,COEF,M,HL,Z) RTNPP . NT
    XHN = OTIME(1)
    XMX = OTIME (M)
    YMN = 1.E1O
    YMX = -1.E10
    DO 110 I=1.M
    IF(SCRIPTP(I).LT.YMN) YMN = SCRIPTPII)
    IF(SCRIPTP(II.GT.YMXI YMX = SCRIPTPIII
    IF(COEF(I,1).LT.YMN) YMN = COEF(I,1)
    IF(COEF(I,1).GT.YMX) YMX = COEF(I,1)
110 CONTINUE
    OTIME(M+1)= XMN
    OTIME (M+2) = XMX
    SCRIPTP(M+1)= YMN
    SCRIPTP(M+2) = YMX
    COEF (M+1,1)= YMN
    COEF(M+2,1) = YMX
    CALL PLOTPTCOTIME,SCRIPTP,M,ML,41
    CALL PLOTPTCOTIME,COEF,M,ML,5)
    IW=-1
    CALL SPLOERIMNPTS,M,NCVS,MM,MM,OTIME,COEF,T,F,DER1,DER2,IH,WK,
    1 IERRI
    WRITE(6.1) IERR
    00120 I=1,MM
    DERI(I) = 10CO.*DERI(I)
120 CONTINUE
    ML = 2
    IF(MOROATA) ML = 1
    CALL PLOTPT(T,DER1,MM,ML,3)
    M=O
    IFIMOROATAI GO TO 10
    STOP
    END
```

Subroutine PLOTPT
This subroutine serves as an interface between RTNPP and the graphics output library. Plot size and captions are provided for each plot.

APPENDIX B

Flow Chart of Subroutine PLOTPT

APPENDIX B

APPENDIX B

Listing of Subroutine PLOTPT
SUBROUTINE PLOTPT $X, Y, N, M L, J)$
PLOTPT
PLOTPT

```

\section*{PLOTPT}
``` PLOTPT 30
PLOTPT
PLOTPT
PLOTPT
```

    SUBROUTINE PLOTPT(X,Y,N,ML,J) PLOTPT 
    ```
 SUBROUTINE PLOTPT(X,Y,N,ML,J) PLOTPT
 OIMENSIONX(1),Y(1) PLOTPT
 OIMENSIONX(1),Y(1) PLOTPT
 IF (ML.EQ.O) CALL PSEUDO PLOTPT
 IF (ML.EQ.O) CALL PSEUDO PLOTPT
 IF(J.GT.3) GO TO 15 PLOTPT
 IF(J.GT.3) GO TO 15 PLOTPT
 XMIN = 1.EIO PLOTPT
 XMIN = 1.EIO PLOTPT
 YMIN = 1.E10 PLOTPT
 YMIN = 1.E10 PLOTPT
 XMAX =-1.E10
 XMAX =-1.E10
 YMAX =-1.E10
 YMAX =-1.E10
 DO 10 I=1,N
 DO 10 I=1,N
 IF(X(I).LT.XMIN) XMIN=X(I)
 IF(X(I).LT.XMIN) XMIN=X(I)
 IF(Y(I).LT.YMIN) YMIN = Y(I)
 IF(Y(I).LT.YMIN) YMIN = Y(I)
 IF(Y(I).LT.YMIN) YMIN = Y(I)
 IF(Y(I).LT.YMIN) YMIN = Y(I)
 IF(Y(I),GT,YMAX) YMAX=Y(I)
 IF(Y(I),GT,YMAX) YMAX=Y(I)
10 CONTINUE
10 CONTINUE
 GOTO 16
 GOTO 16
15 CONTINUE
15 CONTINUE
 XMIN = X(N+1) PMOTPT
 XMIN = X(N+1) PMOTPT
 XMAX = X(N+2)
 XMAX = X(N+2)
 YMIN = Y(N+1)
 YMIN = Y(N+1)
 YMAX = Y(N+2)
 YMAX = Y(N+2)
16 CONTINUE
16 CONTINUE
 SH=8. PLOTPT
 SH=8. PLOTPT
 SV = 5.
 SV = 5.
 ISH=8
 ISH=8
 ISH=8
 ISH=8
 CALL HELP(XMIN, XMAX,ISH, XMIN,XMAX)
 CALL HELP(XMIN, XMAX,ISH, XMIN,XMAX)
 CALL HELP(YMIN,YMAX,ISU,YMIN, YMAX)
 CALL HELP(YMIN,YMAX,ISU,YMIN, YMAX)
 GO TO (20,30,40,60,70),J
 GO TO (20,30,40,60,70),J
2C CALL INFOPLT(1,N,X,1,Y,1,XMIN,XMAX,YMIN,YMAX,1.,
2C CALL INFOPLT(1,N,X,1,Y,1,XMIN,XMAX,YMIN,YMAX,1.,
 1 13,13HOBSERVER TIME,18,18HSCRIPTP (PAW DATA),C,SH,SV,1..1.)
 1 13,13HOBSERVER TIME,18,18HSCRIPTP (PAW DATA),C,SH,SV,1..1.)
 GO 10 50
 GO 10 50
30. CALL INFOPLT(1,N,X,1,Y,1,XMIN,XMAX, YMIN,YMAX,1,.,
30. CALL INFOPLT(1,N,X,1,Y,1,XMIN,XMAX, YMIN,YMAX,1,.,
 1 13,13HOBSERVER TIME,16,16HSCRIPTP (SPLINE),0,SH,SV,1.,1.)
 1 13,13HOBSERVER TIME,16,16HSCRIPTP (SPLINE),0,SH,SV,1.,1.)
 GOTO 50
 GOTO 50
40 CALL. INFOPLT (1,N,X,1,Y,1,XMIN,XMAX,YMIN,YMAX,1.,
40 CALL. INFOPLT (1,N,X,1,Y,1,XMIN,XMAX,YMIN,YMAX,1.,
 1 28,2BHOBSERVER TIME (MILLISECONDS),17,17HPRESSURE (N/M**2),0,
 1 28,2BHOBSERVER TIME (MILLISECONDS),17,17HPRESSURE (N/M**2),0,
 l 28,2BHOBSERVER TIME (MILLISECONDS),17.17HPRESSURE (N/M**2).0.,
 l 28,2BHOBSERVER TIME (MILLISECONDS),17.17HPRESSURE (N/M**2).0.,
 GOTO 50
 GOTO 50
SO CALL INFOPLT(0,N,X,1,Y,1, XMIN, XMAX,YMIN,YMAX,
SO CALL INFOPLT(0,N,X,1,Y,1, XMIN, XMAX,YMIN,YMAX,
 1.1.,13,13HORSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1,1)
 1.1.,13,13HORSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1,1)
 1.1.,13,13HORSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1,1)
 1.1.,13,13HORSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1,1)
70 GALL INFOPLT(1,N,X,I,Y,1,XMIN, XMAX, YMIN, YMAX.
70 GALL INFOPLT(1,N,X,I,Y,1,XMIN, XMAX, YMIN, YMAX.
 1 1.,13,13HOBSERVER TIME.7,7HSCRIPTP,O,SH,SV,1.,1.1)
```

    1 1.,13,13HOBSERVER TIME.7,7HSCRIPTP,O,SH,SV,1.,1.1)
    ```


```

    RETURN
    ```
 RETURN
 END
 END
2
2
 PLOTPT
 PLOTPT
 plotpI
 plotpI
 3
 3
 YMIN GT.3OGO TO 15
 YMIN GT.3OGO TO 15
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
 PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
 PLOTPT
 PLOTPT
 XMIN = X(N+1) PMOTPT
 XMIN = X(N+1) PMOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT 23
PLOTPT 23
PLOTPT
PLOTPT
 ISH=8
 ISH=8
PLOTPT 24
PLOTPT 24
PLOTPT 26
PLOTPT 26
PLOTPT
PLOTPT
MLOTPT
MLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT 32
PLOTPT 32
PLOTPT
PLOTPT
PLOTPT 33
PLOTPT 33
PLOTPT
PLOTPT
pLOTPT
pLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT 36
PLOTPT 36
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
PLOTPT
 1.1.,13,13HORSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1,1)
 1.1.,13,13HORSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1,1)
 1.1., 13,13HORSERVER.TIME,7,7HSCRIPTP,0,SH,SV,1,.1.)
 1.1., 13,13HORSERVER.TIME,7,7HSCRIPTP,0,SH,SV,1,.1.)
PLOTPT
PLOTPT
 l 1.,13,13HOBSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1.1)
 l 1.,13,13HOBSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1.1)
 l 1.,13,13HOBSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1.1)
 l 1.,13,13HOBSERVER TIME,7,7HSCRIPTP,0,SH,SV,1,,1.1)
 1 1.,13,13HOBSERVER TIME.7,7HSCRIPTP,O,SH,SV,1.,1.1)
 1 1.,13,13HOBSERVER TIME.7,7HSCRIPTP,O,SH,SV,1.,1.1)
 M 1.,13,13HOBSERVER TIME.7,7HSCRIPTP,0,SH,SV,1,,1.1)
 M 1.,13,13HOBSERVER TIME.7,7HSCRIPTP,0,SH,SV,1,,1.1)
PLOTPT
PLOTPT
4
4
 %
 %
 10
 10
 5
 5
 *
 *
 43
 43
PLOTPT 4
```

PLOTPT 4

```

\section*{Subroutine HELP}

This routine serves to eliminate the problem of rounding associated with the annotation of the values of the variable at the tic marks. If the specified values for the minimum and maximum result in rounding, a smaller minimum and larger maximum are substituted so that rounding does not occur.

\section*{APPENDIX B}

Flow Chart of Subroutine HELP

Listing of Subroutine HELP
```

SUBROUTINE HELP(XI,X2,D,XMIN, XMAX)
HELP
INTEGER O
P1 = ALOGIC(ARS(X1))

```

```

P = AMAX1(P1,P2)
IF{P.LT.0.1'P=P - 1.
IP = P - 2.
X1P= X1/10.**IP
X2P= X2/10.**IP
IX1P = X1P - 1.
IX2P=X2P*1.
IDIF = IX2P - IX1P
N=IOIF/(O+1)
JOIF = N* (D+1)
IF(IOIF.EQ.JDIF) GO TO 10
N=N+1
KDIF = N* (0+1)
LDIF = (KOIF - IDIF)/2
IXIP = IXIP - LOIF
IX2P = IXIP + KOIF
10 CONTINUE
XMIN = FLOAT(IXIP)*10.**IP
XMAX = FLOAT(IX2P)*10.**IP
RETURN
END

| HELP | 2 |
| :--- | ---: |
| HELP | 3 |
| HELP | 4 |
| HELP | 5 |
| HELP | 6 |
| HELP | 7 |
| HELP | 8 |
| HELP | 9 |
| HELP | 10 |
| HELP | 11 |
| HELP | 12 |
| HELP | 13 |
| HELP | 14 |
| HELP | 15 |
| HELP | 16 |
| HELP | 17 |
| HELP | 18 |
| HELP | 19 |
| HELP | $2 C$ |
| HELP | 21 |
| HELP | 22 |
| HELP | 23 |
| HELP | 24 |
| HELP | 25 |
| HELP | 26 |

```

\section*{APPENDIX B}

\section*{Subroutine CSDS}

\section*{Language: FORTRAN}

Purpose: To fit a smooth cubic spline curve to a set of data points representing a univariate function. The functional values are allowed to vary by specified amounts in smoothing the curve. Data points may be unequally spaced.
```

Use: CALL CSDS (MAX,IX,X,F,DF,S,IPT,COEF,WK,IERR)

```

MAX An input integer specifying the maximum number of data points for the independent variable, as given in the dimension statement of the calling program.

IX An input integer specifying the actual number of data points for the independent variable. IX \(\leqq\) MAX.
\(X \quad\) A one-dimensional input array dimensioned at least IX in the calling program. Upon entry to CSDS, \(\mathrm{X}(\mathrm{I})\) must contain the I -th value of the independent variable.

F A one-dimensional input array dimensioned at least IX in the calling program. Upon entry to CSDS, \(F(I)\) must contain the I-th value of the function.

DF A one-dimensional input array dimensioned at least IX in the calling program. Upon entry to CSDS, DF(I) must contain an estimate of the standard deviation of \(F(I)\). The value \(D F(I)\) determines the amount of variation permitted in the I-th functional value in smoothing the data. If the standard deviations of the functional values cannot be estimated, specifying \(\mathrm{DF}=1\) is suggested.
\(S \quad\) A nonnegative input parameter which controls the extent of smoothing. A value in the range \((\mathrm{IX}-(2 * \mathrm{IX}) * * .5) \leqq \mathrm{S} \leqq(\mathrm{IX}+(2 * \mathrm{IX}) * * .5)\) is suggested. Increasing values of \(S\) permit increasing amounts of smoothing of the functional values. If \(S=0\) is specified, an unsmoothed cubic spline curve passing through the data points is computed.

IPT An input initialization parameter. The user must specify IPT =-1 whenever a new \(X\)-array is input. The routine will then check to insure that the X -array is in strictly increasing order.

COEF A two-dimensional output array which must be dimensioned (MAX,4) in the calling program. Upon return, \(\operatorname{COEF}(\mathrm{I}, \mathrm{J})\) contains the \(J\)-th coefficient of the spline for the interval beginning at point \(X(I)\). The functional value of the spline at abscissa X 1 , where \(\mathrm{X}(\mathrm{I}) \leqq \mathrm{X} 1 \leqq \mathrm{X}(\mathrm{I}+1)\) is given by:

\section*{APPENDIX B}
\(\mathrm{F}(\mathrm{X} 1)=((\operatorname{COEF}(\mathrm{I}, 4) * \mathrm{H}+\operatorname{COEF}(\mathrm{I}, 3)) * \mathrm{H}+\operatorname{COEF}(\mathrm{I}, 2)) * \mathrm{H}+\operatorname{COEF}(\mathrm{I}, 1)\)
where \(\mathrm{H}=\mathrm{X} 1-\mathrm{X}(\mathrm{I})\)
WK A one-dimensional work area array dimensioned at least (7*IX + 9) in the calling program.

IERR An output integer error parameter.
\(=0\) Normal return.
\(=\mathrm{J}\) The J -th element of the X -array is not in strictly increasing order. No calculation performed.
=-1 There are less than four values in the X -array. No calculation performed.

Upon return, this parameter should be tested in the calling program.

Method: A set of IX data points (\(X_{i}, F_{i}\)), \(i=1,2\),. . .IX are given, where \(F_{i}\) is the functional value at point \(\mathrm{X}_{\mathrm{i}}\). A set of weights \(\mathrm{DF}_{1}, \mathrm{DF}_{2}\). . . \(\mathrm{DF}_{\mathrm{IX}}\) and a nonnegative smoothing parameter \(S\) are also given.

The routine computes a cubic spline \(G(X)\) having the following properties:
i) \(\sum_{i=1}^{I X}\left\{\left[G\left(X_{i}\right)-F_{i}\right] / D F_{i}\right\}^{2} \leqq S\)
ii) \(\int_{X_{1}}^{X_{I X}}\left[G^{\prime \prime}(X)\right]^{2} d x=\) Minimum of all splines satisfying property (i)

Subroutine SPLDER

\section*{Language: FORTRAN}

Purpose: To perform a cubic spline approximation; interpolation, and differentiation.
SPLDER computes \(F=f_{i}(X)\), DER1 \(=f_{i}^{\prime}(X)\), and \(D E R 2=f_{i}^{\prime \prime}(X)\) for any number of different dependent variable arrays associated with the independent variable array.

Use: CALL SPLDER (MNPTS,N,NCVS,MMAX,M,X,Y,T, \(\dot{F}\), DER1,DER2,IW,WK, IERR)

MNPTS An input integer specifying the maximum number of values in the independent variable array as stated in the dimension statement of the calling program.

\section*{APPENDIX B}
\(\mathrm{N} \quad\) An input integer specifying the number of values in the independent variable array. \(\mathrm{N} \leqq\) MNPTS.
\(T \quad\) A one-dimensional input array containing the values of the independent vari-

DER1 A two-dimensional output array in which SPLDER stores the values of the

DER2 A two-dimensional output array in which SPLDER stores the values of the

IW An input-output integer.

NCVS

NMAX

M

X

Y

An input integer specifying the number of dependent variable tables associated with the independent variable.

An input integer specifying the maximum number of values at which interpolation is desired as stated in the dimension statement of the calling program.

M An input integer specifying the number of values at which interpolation is desired on this entry into SPLDER. M \(\leqq\) MMAX.

X A one-dimensional input array containing the independent variables. The array X should be dimensioned by at least N in the calling program, and the value must be monotonic.

Y A two-dimensional input array containing the dependent variables. The array Y is dimensioned with variable dimension in the subroutine; therefore, Y must be dimensioned in the calling program with first dimension MNPTS and second dimension at least NCVS. able for which values of the dependent variable and the first and second derivatives are desired. The array T must be dimensioned by at least M in the calling program.

F A two-dimensional output array in which SPLDER stores the values of the function at the M values of the independent variable. The array F is dimensioned with variable dimension in the subroutine; therefore \(F\) must be dimensioned in the calling program with first dimension MMAX and second dimension at least NCVS. derivative of the function at the M values of the independent variable. The array DER1 is dimensioned by variable dimension in the subroutine; therefore, DER1 must be dimensioned in the calling program with first dimension MMAX and second dimension at least NCVS. second derivative of the function at the \(M\) values of the independent variable. The array DER2 is dimensioned by variable dimension in the subroutine; therefore, DER2 must be dimensioned in the calling program with first dimension MMAX and second dimension at least NCVS.

\section*{APPENDIX B}

INPUT: IW is the initialization integer. Whenever a new X - or Y -array is input, IW must be set to -1 . This condition will cause the independent variable array to be tested to determine if it is increasing. Also, certain values pertaining to the \(X\) - and \(Y\)-arrays will be computed. These values will not change unless either the X - or Y arrays are replaced.
OUTPPT: IW is an index pointer indicating that \(X_{I W} \leqq X_{O} \leqq X_{I W+1}\). On the next call to SPLDER, the previous.IW is used to begin the search for the interval containing the interpolation point.

WK An array used by SPLDER as a work area. WK must be dimensioned at least 3 (NxNCVS) +8 N . This array should not be used elsewhere in the program.

IERR An output integer error code.
\(=0\) Normal return.
\(=1\) The independent variable array is not increasing. A message will be printed, 'INDE PENDENT VARIABLE ARRAY NOT INCREASING IN SPLDER AT POSITION IIII X=XXXX,XXXX."
\(=2\) A value in the \(T\)-array is not within the limits of the \(X\)-array. There are no provisions for extrapolation; therefore, every \(\mathrm{T}_{\mathrm{j}}\) must satify \(\mathrm{X}_{1} \leqq \mathrm{~T}_{\mathrm{j}} \leqq \mathrm{X}_{\mathrm{n}}\).

Upon return to the calling program, the parameter IERR should be tested.

Method: The method used in SPLDER is that of the reference. The reference gives the derivative of a matrix equation relating the second derivative of a univariate spline function at the given values of the independent variable to the values of the function at these values of the independent variable. Values of the second derivative are assumed to be zero at the end points. The matrix equation is tridiagonal and is solved by the Thomas algorithm which is equivalent to Gaussian elimination without pivoting. Expressions are derived for the first and second derivatives of the spline function at any point in an interval in terms of the values of the spline function and its second derivative at the end points of the interval.

References: Greville, T. N. E., 'Spline Functions, Interpolation and Numerical Quadrature," Mathematical Methods for Digital Computers, Vol. II, pp. 156-168, John Wiley and Sons, 1967.

\section*{APPENDIX B}

Subroutine PSEUDO

\section*{Language: COMPASS}

Purpose: To create and write an appropriately named Plot Vector File. Through linkages set up by an initial call to PSEUDO, all subsequent graphics data generated by the user will be routed through one of the PSEUDO entry points and written on the Plot Vector File.

Use: CALL PSEUDO

\section*{Subroutine INFOPLT}

\section*{Language: FORTRAN}

Purpose: To provide a one-call method of preparing plotting displays automatically.

Use: CALL INFOPLT(IEC,N,XDATA,KX,YDATA,KY,XMIN,XMAX,YMIN,YMAX, PCTPTS,NXMC,XM,NYMC,YM,ISYM,SX,SY,XOFF,YOFF), where

IEC The code for terminating the frame.
0 (1). Used to initialize a frame and plot first curve of multiple curves per frame. This value of IEC leaves frame incomplete and expects additional curves.

OR
(2) Used to plot second to nth curves on the frame. This value of IEC guarantees that all curves will be plotted in the same frame, although the scales for second to nth curve could be different depending on other options selected. If the scales are different from labeled scales, the rescaled values of the origin and the scale increment for the call are printed out in the right vertical margin of the frame.

1 (1) Used to plot one curve per frame. This value of IEC completes the frame.

OR
(2) Used to plot the last curve for the frame. This value of IEC guarantees that all curves will be plotted on the same frame, although the scales for the last curve could be different, depending on the other options selected. If the scales are different from label scales, the rescaled values of origin and scale increment for the call are printed out in the right vertical margin of the frame.

\section*{APPENDIX B}

OR
(3) Used to complete frame only. Generates no plotting. Special call with two parameters only.

\section*{CALL INFOPLT(1,0)}
-1 Used to plot a curve with scales from previous calls on the same frame. This value of IEC leaves frame incomplete. If the curve will not fit on the plot, a new frame is set up for the remaining curves.

\section*{Example:}

Same Plot (Scales could change)
CALL INFOPLT(0,. . .
CALL INFOPLT(0,. . .
CALL INFOPLT(1,. . .
Same Plot if Possible (If scales change, create new frame)
CALL INFOPLT(0,. . .
CALL INFOPLT(-1,. . .
CALL INFOPLT(-1,. . .
CALL INFOPLT \((1,0)\)
\(\mathrm{N} \quad\) The number of points to be plotted.
XDATA The name of the array containing the floating-point values of \(X\) to be plotted. If all data within the array are to be plotted, the parameter would be expressed as XDATA. If it is desired to plot only a portion of the array, the desired beginning location is specified; for example, XDATA(4) would begin the plotting at the fourth element of the array.

KX The interleave factor which specifies the sequence in which X-data are stored.
\(=1\) Indicates that values are stored sequentiaīly.
\(=2\) Indicates that values are stored in every other location in the array, etc.
YDATA The name of the array containing the floating-point values of \(Y\) to be plotted.
KY The interleave factor which specifies the sequence in which Y-data are stored.
XMIN The minimum value for \(X\).
XMAX The maximum value for \(X\).
YMIN The minimum value for \(Y\).
YMAX The maximum value for \(Y\).

\section*{APPENDIX B}

The routine checks for the first call only to determine if either (XMAX - XMIN) or (YMAX - YMIN) is equal to zero. When either is zero, the routine will scan the X - and/or Y -array to determine the limits. For multiple curves per display, the limits must be specified on the first call to include all curves since the limits from the first call will be used for all curves.

If any data falls outside the limits, it will be eliminated; but a count will be kept of all points dropped.

At the completion of a particular curve, if the percentage of points dropped exceeds the value of PCTPTS, the current curve data will be automatically rescaled and replotted. For multiple curves, the first curves would not be contained on the rescaled plot.

If values are given for XMIN, XMAX, YMIN, and YMAX different than on the first call and IEC \(=0\), the scales could be different on the second to nth call. If the scales are different, the new origin and scale increment will be printed out. The XMIN, XMAX, YMIN, and YMAX values are ignored on the second to nth call if IEC \(=\mathbf{- 1}\).

PCTPTS The percentage of points in any one curve that may be off scale without automatic replotting. The value of PCTPTS is a floating-point number ranging from 0.0 to 1 .
\(=0.0\) No points are allowed off scale. The data will be rescaled if any points are off scale.
\(=0.550\) percent of the points are allowed off scale before the curve will be rescaled. Any percentage may be expressed.
\(=1.0\) No rescaling will be done.
NXMC The number of characters for the X-label including embedded blanks. The number of characters is calculated in two ways depending on the option selected in XM.
(1) XM is written in form nHxxx. . ..
NXMC = n
(2) XM is the beginning storage location containing alphanumeric information.

NXMC \(=\) Number of words in array multiplied by 10. Each alphanumeric word contains 10 characters including blanks.

The sign of NXMC is used to control generation of the X axis.
>0 An axis will be drawn and annotated.

\section*{APPENDIX B}
\(=0\) No axis will be drawn; therefore, no annotation.
\(<0\) One-inch grid lines will be drawn in addition to the axis.
XM The label for horizontal annotation. This label may be expressed in two ways:
(1) The string of alphanumeric characters for the label may be written in the form:
nHxxx. . ..
(the same way an alpha message is written using FORTRAN format statements).
(2) The beginning storage location of an array containing alphanumeric information may be used.

NYMC The number of characters for the Y-label. (See explanation under NXMC.)
YM The label for vertical annotation. (See explanation under XM.)
ISYM An integer code specifying the symbol or mode to be used in plotting the data values.

0 Draws a line (no symbols)
SX The length of the X -axis in floating-point inches. The default SX is 10 inches.
SY
XOFF The offset for \(Y\)-axis from frame origin. A nonzero XOFF allows room for the \(Y\)-axis annotation. The default XOFF is 0.75 inches. If preprinted grid paper is used, the user may specify \(\mathrm{XOFF}=1.0\) or change offset with postprocessor option.

YOFF The offset for the X -axis from the frame origin. A nonzero YOFF allows room for the X -axis annotation. The default YOFF is 0.5 inches. If preprinted grid paper is used, the user may specify YOFF = 1.0 or change offset with postprocessor option.

\section*{Subroutine CALPLT}

\section*{Language: FORTRAN}

Purpose: To move the plotter pen to a new location with pen up or down.

Use: CALL CALPLT(X,Y,IPEN), where
\(\mathrm{X}, \mathrm{Y} \quad\) Are the floating-point values for pen movement.

\section*{APPENDIX B}

IPEN = 2 Pen down
\(=3\) Pen up
Negative IPEN will assign \(\mathbf{X}=0, \quad \mathbf{Y}=0\) as the location of the pen after moving the \(\mathrm{X}, \mathrm{Y}\) (create a new reference point).
\(=999\) Writes a terminating block address of 999 to terminate the Plot Vector File and all further processing is skipped.

CALL CALPLT(0.0, \(0.0,999\))

\section*{REFERENCES}
1. Deming, A. F.: Noise From Propellers With Symmetrical Sections at Zero Blade Angle. II. NACA TN 679, 1938.
2. Arnoldi, R. A : Propeller Noise Caused by Blade Thickness. Rep. R-0896-1, Res. Dep., United Aircraft Corp., Jan. 1956.
3. Billing, H., ed.: Modern Aeronautical Acoustics. Rep. \& Transl. No. 960, British M. M.A.P. Volkenrode, July 1, 1947.
4. Farassat, F.: Some Research on Helicopter Rotor Noise Thickness and Rotational Noise. Second Interagency Symposium on University Research in Transportation Noise, Vol. I (Raleigh, N.C.), June 1974, pp. 363-370.
5. Farassat, F.: Theory of Noise Generation From Moving Bodies With an Application to Helicopter Rotors. NASA TR R-451, 1975.
6. Abbott, Ira H.; and Von Doenhoff, Albert E.: Theory of Wing Sections. McGraw-Hill Book Co., Inc., 1949.
7. Computer Programing Manual. Langley Research Center, NASA, 1975.

Vol. I.- General Information.
Vol. II. - Subprogram Library.
Vol. III.- Manufacturers Manuals.
Vol. IV.- Special Capabilities.

TABLE I.- ROTOR THICKNESS NOISE PROGRAM INPUT VARIABLES
\begin{tabular}{|l|c|c|c|}
\hline Variable & Dimension & Type & Units \\
\hline BLNTN & \(*\) & Real & \(* *\) \\
CH & \(*\) & Real & meters \\
COEFFS & \(*\) & Real & \(* *\) \\
DELTET & \(*\) & Real & degrees \\
DTAUM & \(*\) & Real & \(* *\) \\
ETAMAX & \(*\) & Real & meters \\
JFLG & \(*\) & Integer & \(* *\) \\
KFLG & \(*\) & Integer & \(* *\) \\
MORDATA & \(*\) & Logical & \(* *\) \\
N & \(*\) & Integer & \(* *\) \\
NBLADES & \(*\) & Integer & \(* *\) \\
NS & \(*\) & Integer & \(* *\) \\
OMEGA & \(*\) & Real & rev/min \\
PERDM & \(*\) & Real & \(* *\) \\
R & \(*\) & Real & meters \\
RO & \(*\) & Real & meters \\
SNDSPD & \(*\) & Real & meters/sec \\
TAUINT & 3 & Real & seconds \\
THKRAT & & Real & R* \\
X0 & & Real & meters \\
\hline
\end{tabular}
*Single variable, not an array.
\({ }^{* *}\) Not applicable, unitless.

Figure 1.- Definition of YH reference frame based upon orientation of rotor system at time \(\mathrm{TAU}=0\). (Numbers in parentheses are blade identification numbers.) Reference frames \(Y H\) and \(Y\) are identical at \(T A U=0\).

Figure 2.- Definition of blade coordinate system.

Figure 3.- Definition of arc used to sweep fixed position of rotor system.

Figure 4.- Definition of sweep regions.

Figure 6.-RTN Postprocessor flow.

SROTOR
```

x0 = .25E+03,0.3, 0.0,
NBLAOES = 2.
P $\quad=.6715+11$,
CH = .7E+EC,
OMEGA =.48E+C3,
RO =.61E+OT,
THKRAT =.8E-01.
DELTET = .4E+00.
N = G.
NS = 2C
KFLG = C.
ETAMAX = G.O.
BLNTN =.1E+O1.
JFLG = O,
GOEFFS = 0.0,.2E+[1, -. 2E+01, O.0. C.O.
TAUINT = 0.0.
PEPCM = .1065+01,
OTAUM = . 2E+01.
SNDSPO =.34E+C3.
MORTATA = F.

```
REND
\(\because\)
-277777777777778E-C3 . \(555555555555556 \mathrm{E}-03\) \(.83333333333332 E-03\) -111111111111110E-C2
. 13 8898888888888E-02
\(.755003247706419 E+C C\)
\(.7552931520722 C 9 E+C C\)
\(.755579312092344 E+O C\)
\(.755861726257422 E+O D\)
\(.75614 C 393732565 E+C C\)
\(.756415314357586 E+O C\)
. \(368274186289126 E-02\) . \(376488349357262 E-02\) \(.412774739956806 \mathrm{E}-02\) \(.423309736144570 E-02\) .462362067791356E-02 \(.465687047375710 E-02\)
\begin{tabular}{|c|c|}
\hline . \(166666656666665 E-02\) & . 75668648864 \\
\hline . 194444444444442 E - 2 & . \(756953917789762 E\) \\
\hline - 222222 222222219E-c2 & \(.757217603649526 E+\) \\
\hline . \(249990999999996 E-02\) & . \(757477548764001 E+C C\) \\
\hline . 277777777777773E-L2 & . \(757733756344756 \mathrm{E}+06\) \\
\hline \(305555555555549 \mathrm{E}-92\) & . \(75798623: 1276764 \mathrm{E}+0\) \\
\hline . 333333333333326 E-02 & . \(758234975117880 \mathrm{E}+\) \\
\hline . \(361111111111102 \mathrm{E}-12\) & . 758479996 C98231E+ \\
\hline . 3 88898888888879E- C2 & . \(758721299119451 \mathrm{E}+0\) \\
\hline . \(416666666666654 E-\int 2\) & . 758958890753917 E \\
\hline . 444444444444431 E-02 & . \(759192778243825 \mathrm{E}+\) \\
\hline . 472222 222222207E-02 & . \(759422969500225 E+\) \\
\hline . \(499999999999984 \mathrm{E}-32\) & . \(759649473101881 E+\) \\
\hline . 52777777777776CE- ² & . \(759872298294145 \mathrm{E}+0\) \\
\hline . 555555555555537 E -02 & . 76 认091454987670E+ \\
\hline . \(583333333333313 E-02\) & . 750366953757 C27E+0 \\
\hline .E11111111111000E-こ2 & . 7665188 C5839279E+ \\
\hline -6388889839R8867E- ¢2 & . 76 C727023132397E \\
\hline - E66666566666643E-C2 & . 76 C931618193645E \\
\hline 9444444444442 OE- 22 & . 761132604237847 E \\
\hline & . \(751329995135512 \mathrm{E}+\) \\
\hline
\end{tabular}

Figure 7.- Example of RTN output.

Figure 8.- Postprocessor graphic output of Rotor Thickness Noise output.
\(\times 10^{-3}\)

Figure 9. - Smoothed RTN output data using spline technique.
\(\times 10^{1}\)

（己＊W／N）ヨyחSSヨyd
Figure 11．－Acoustic pressure caused by blade thickness for one period of blade system of example in figure 7.

\begin{abstract}
"The aeronautical and space activities of the United States shall be conducted so as to contribute .. It the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable'and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Séace Act of 1958
\end{abstract}

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

\section*{TECHNICAL MEMORANDUMS:}

Information receiving limited distribution because of preliminary data security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

\section*{TECHNOLOGY UTILIZATION} PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obfained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE```

[^0]: *Computer Sciences Corporation.
 ${ }^{* *}$ The George Washington University, Joint Institute for Acoustics and Flight Sciences.

