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OPTIMALITY STUDY OF A GUST ALLEVIATION SYSTEM FOR LIGHT
WING-LOADING STOL AIRCRAFT
Masaki Komoda*

Ames Research Center
SUMMARY

An analytical study was made of an optimal gust alleviation system that
employs a vertical gust sensor mounted forward of an aircraft's center of
gravity. Frequency domain optimization techniques were employed to synthesize
the optimal filters that process the corrective signals to the flaps and ele-
vator actuators. Special attention was given to evaluating the effectiveness
of lead time, that is, the time by which relative wind sensor information
should lead the actual encounter of the gust. The resulting filter is
expressed as an implicit function of the prescribed control cost. A numerical
example for a light wing-loading STOL aircraft is included in which the opti-
mal trade-off between performance and control cost is systematically studied.

INTRODUCTION

The need for gust alleviation in reducing peak loads and improving ride
quality has been apparent since the early days of aviation, and numerous
studies of alleviation techniques have been conducted. A review of a number
of these efforts and of the specific problems associated with gust alleviation
is given in reference 1. In the last few years, the need to improve ride qual-
ity for light wing-loading STOL aircraft in short-haul service has led to
increased interest in gust alleviation systems. Analysis has shown that the
severe disturbances in the longitudinal mode arising from vertical gusts can
be effectively alleviated through the use of direct-1lift devices, such as
flaps, as the primary control (refs. 2-5), and that systems that employ rela-
tive wind sensors in conjunction with inertial sensors (ref. 6) are more
attractive than other types. The use of a relative wind sensor permits the
gust velocity component to be extracted as a disturbance signal so that a feed-
forward loop can be constructed that does not interfere with the pilot's con-
trol of the aircraft. This arrangement also permits the use of gust signals
with positive lead time (see fig. 1).

In most analyses of gust alleviation systems, the filter that lies
between the sensors and the control actuators has been assumed to be of fixed
shape and optima have been defined through variation of system parameters such
as filter gains. Some alleviation system studies have been made in which the
filter shape is not assumed, but is optimized using frequency domain analysis
(refs. 7 and 8). In any practical system, control cost, such as surface

*NRC Postdoctoral Research Associate at Ames Research Center. Presently,
National Aerospace Laboratory, Mitaka, Tokyo, Japan




deflection or deflection rate, has some limit. Since limited cost results in
limited performance, it is of interest to examine how the use of an optimally
filtered lead signal improves system performance.

The present analysis extends the frequency domain optimization technique
to define optima for systems with a feed-forward loop with lead time provided
by a relative wind sensor located forward of the aircraft's center of gravity.
A numerical example is given, for a light wing-loading STOL aircraft, that
illustrates the effectiveness of lead time in reducing control cost for sys-
tems that use flaps alone, elevator alone, and combinations of flap and
elevator.

DESCRIPTION OF SYSTEM

Major Assumptions

The objective of this analysis is to improve aircraft ride quality.
Vertical acceleration disturbances within a frequency band of approximately
0.2 to 20 Hz are of particular importance from a ride-quality standpoint
(ref. 9). Analyses covering this frequency band require the inclusion of
unsteady aerodynamic effects and elastic modes in the state equation. These
effects are omitted in this analysis for reasons of simplicity. Even for large
and flexible aircraft, however, the rigid body modes make a fundamental con-
tribution to the total vertical acceleration disturbance; therefore this study
should give a good indication of the possible ride-quality improvements.

Spanwise variation of the vertical gusts is also ignored in this analysis.
This may have a significant effect on the system performance (ref. 10) and
should be considered in future extensions of this work. In addition, future
studies should include the synthesis of the optimal system which gives the
best estimate of the equivalent one-dimensional gust component under the

presence of measurement noise.

Airplane Dynamics and Turbulence Modeling

Linear perturbation equations are assumed to describe the rigid body
response of the airplane both as to control surface deflection and atmospheric
turbulence. Considering a particular realization of turbulence which is
temporarily assumed to vanish outside a long but finite time interval ]tl;gT/Z

x(s) = Fq(s)8(s) + Gy(s)wy(s) (D

is obtained after bilateral Laplace transform using complex frequency s, where
X = (u,a,e)T is state, 8 = (Gf,ée)T is control surface deflection, wg==(ug,wgJT
is longitudinal mode disturbance, and F, and G, are corresponding matrix
transfer functions with consistent dimensions. Appendix A summarizes the
expressions for Fgy(s) and G,(s).



The spacewise wave form of a frozen turbulence is approximated at each
instant by a 'linear representation.'" That is, the velocity component itself
and only the linear part of spacewise variations of turbulence, both evaluated
at CG, are considered. Thus, the rigid body aerodynamic derivatives are
consistent in constructing G,(s).

Since rigid body response is the primary concern in this study, no
flexible mode is considered. By the same token, no unsteady aerodynamic
effects are included. However, by incorporating the 1ift growth functions
such as Wagner's and Kussner's, into F,(s) and G,(8), the refinement necessary
to consider unsteady effects could be readily made.

The disturbance power spectrum is given by

- T _j
Plw) = %.[ E[%EZZ% s wg (T (E + T)dt]e i (2

where w is the angular frequency, w,(%f) is a realization of turbulence, and
where E stands for the ensemble average of turbulence. Although the existence
of cross power spectra and their effect upon airplane response are suggested,
especially near the ground (ref. 11), only diagonal elements of ¢(w) are
retained. A one-dimensional Dryden model of continuous turbulence is used in
the analysis. The one-sided power spectra are given by

o(w) = diagley,(w) . ()]
2 w2 + w2
= EQ%Q— diag [_5_2__*3’ 2\'—”_515] (3)
We * Wy (we + Wy )

where gust frequency, w, = U/L, and rms intensity, oy, are the primary param-
g q Y Wg g

eters. Excluding off-diagonal terms in ¢(w) simplifies the optimization proc-
ess because this separates the effects of ug and Wy and the results thereof

are additive. Since a similar formulation is valid for the Ug component, only
Wey is considered in the following formulation. The term Ga(s)wg(s) in equa-
tion (1) is thus replaced by ga(s)wg(s), where g,(s) is the column of Gg4(s).

By ignoring unsteady 1ift growth effects and using a linear representa-
tion for turbulence with a one-dimensional power spectrum, a trivial diffi-
culty is introduced in the construction of Fy and G4, if a conventional
approximation €% £ (1 - 3) is used for the down-wash and gust-wash lags (see
eq. (A3)). These assumptions lead to an erroneously high response in the high
frequency range. Actually, high frequency spectra of Fg(s)6(s) and G,(s)w,(s)
are attenuated by both unsteady effects and spanwise variations of turbulence.
To avoid this difficulty, while keeping a reasonable simplicity in the optimi-
zation procedure, the first-order Padé expansion, e ®z(-z+ 2)/(z + 2), is
used to approximate these lags.



Under the assumptions stated above, the transfer function matrices F,(s)
and Gg(s) have a common denominator d,(s), that is the open loop character-
istic equation. A stable open loop is assumed. Denoting by Fgy(s) and Ggy,(s)

the numerator matrices of Fgy(s) and G,4(8), respectively,

F G, (8)
Fy(s) = 3§%§§3-, 6a(8) = 75y 4)

each entry of Fgy and Ggy is a polynomial in s with an order not greater than
that of dg(e).
Output Variable and Performance Index

Suppose a scalar output variable y(s) is taken as the basis for assessing
ride qualities, where y(s) is defined by

y(s) = hl(s)x(s)
= £1(8)8(s) + g(8)wy(s) (5)
with
T A W A w7
£7(s) & h'(8)F,(s) g(s) & n' (s)g ()
gy, (8)
A [f(s),e(s)] = dZ(S) > (6)
[, (8)se,(8)]
s () )

The output-defining vector h(s) is a polymomial in s. For example, if y(s) is
the normal acceleration factor n, at a fuselage station [, (positive when
rearward), then

l
W (s) = —g— <0, -s, s——UC: 32> (7)

In the case when y(s) is not a simple dynamic quantity but is, as an
example, a bandpass filtered one, h(s) might be a rational polynomial in s.
Additional poles would hence be included in £ (s) and g(s).

Since reasonable grounds for choosing otherwise in assessing ride
qualities are lacking, the simple mean square value, y2, is chosen as a per-
formance index, Jy. Using the general transfer function y(s)/wg(s), the

performance index is then



2
@wg(m)dw (8)

«©

Az = L
Jy 2 y2 5 Ji

As is well known, the mean square, or equivalent, the rms, value of a random
process can be related to other measures of the process such as the probability
of exceeding a given level, even if the process is not Gaussian (ref. 12). 1In
any case, the vector h(s) must be so chosen that Jy is well defined by

equation (8).

_y_ .
vy (Jw)

Control Surface Dynamics and Cost Index
The control surface dynamics are generally written as
§(s) = C(s)u(s) 9

where u = (uf,ue)T is a hypothetically inertialess control input to the actu-

ating system, and C(8) is the corresponding transfer function matrix. It
would be reasonable enough to define the cost indices Juf and J,, by

« 2
=52, =1 e . .
J“f/e Ufle T 7 w; (Jw) <I>wg(w)dw (10)

—00

where ug? and aez are the mean square input values of the flap and elevator

actuating system and “er(S)/wg(S) are corresponding transfer functions.

Instead of trying to model actual systems precisely, a first-order
decoupled dynamic system is assumed for C(s) in the analysis. Thus,

C(s) = diag ( r s fe ) (11)

8'*‘},1]0 8+Ue

where pup and u, are non-negative real, and distinct. Using equations (11) and
(9), equation (10) becomes

2

_s2 1 Ju*ug/eSg/e
Juf./e = Uf/e =35 th WTQ (dw) @wg(w)dw
T2
- 2, Sf/e
" Of/e v, (12)
e

which indicates that the cost index defined above affords a good measure of
the mean square values of control surface deflection and its time rate.



Control Law

One of the basic assumptions of this study is that an instantaneous
measurement of disturbance w, is available with some lead time t,(>0). The
simplest way to measure the disturbance before it actually hits ‘the lifting
surfaces would be a combination of a relative wind sensor, mounted ahead of
the wing, and inertial sensors that generate signals due to non-gust relative
wind components. Although it is necessary to examine carefully the possible
adverse effect due to measurement noise, more sophisticated versions, such as
a predicting filter, could be utilized to increase the lead time Tg-

Let it be assumed that there exists an optimal filter k(s) such that a
control law

u(s) = -k(s)wg(s)eTgs (13)

minimizes the performance index J, subject to the prescribed cost indices Jy,
and J,,,. Only asymptotic stability and causality are required for k(s) at
this stage. Successive substitutions of equation (13) into (9), and of equa-
tion (9) into (5), give the system transfer function with feed-forward loop
closed,

y(8) = g, (s)wg(s)

[g(s) - £1(s)C(8)k(8)e 9 Tu, (s) (14)

Equations (13) and (14) are valid for each realization wg(s).
OPTIMIZATION

Augmented Performance Index

Following standard procedures, an augmented performance index J is
defined by

- 2 2
J = Jy + Af Juf + A5, (15)

where A, and A, are real multipliers. After the substitutions of equa-
tions (14) and (13) into equations (8) and (10), respectively,

oo

Iy =3 [ a,(-30)0,)g,(Gu)ds (16a)
AT e Ty = 2 1o f_m M (-G kT (Fu) &y, () do (16b)



where

A = diag(xfz,xez) (17)

Using equations (16a) and (16b), equation (15) is expressed as a functional of
the unknown filter k(jw).
Weiner-Hopf Equation

Instead of solving for k(s), it is more convenient to define and solve
for a vector

v(s) = k(s)wge(s) (18)

where Wy (8) is a factored form of @wg(w) in the complex s-plane, that is,
e

®wg(§) = v, (~8)ug, (2) (19)
where, from equation (3),
1/2
s+uwy/v3 3w
A sreg/v3 | - ( Q)
w 8) 2 ¢ 3 c = o} 19a
ge(8) = ge =7 ug)? ge ™ g (19a)

which is usually referred to as the equivalent deterministic disturbance. As

is known, the original (stochastic) problem of finding k(s) is equivalent to the
deterministic problem of finding v(s) with respect to the same J. Once v(s)

is found, k(s) is readily obtained by

k(s) = v(s)wé;(s) (20)

As derived in appendix B, the Wiener-Hopf (W-H) equation to solve is

[2(s)], & [4(s)v(s) - b(s)e "9°], = 0 (21)

where
A(s) 2 A+ c-a)Yf(-a) £ (s)C(8) (22a)
b(s) & C(-S)f(-S)g(S)wge(S) (22b)

and where [ ], indicates that part of [ ] which is analytic in the RH s-plane.
Since the matrix A(s) is real and positive on the imaginary axis of the
s-plane, solution v(s) gives a minimum of J.



Solution v(s)

As shown in appendix B, the equivalent optimal control v(s) is given by
(ref. 13)

v(s) = P-l(s) [[FT(-8) 1 b (s)e "9°], (23)

where P(s) is a factored matrix of A(s), such that P(s), as well as P1l(s), is
analytical in the RH s-plane. Contrary to the apparent simplicity of equa-
tion (23), it is not easy to find the factored form P(s) except when only a
single controller is assumed. Here, A(s), and hence P(s) and v(s), degenerate
into a scalar rational polynomial. The case of a single controller is

summarized in appendix B.

An alternate method of finding v(s), including the case with 14 > 0, is
summarized in appendix C. As derived there, the equivalent optimal control

v(s) can be decomposed into two parts,
v(s) = vo(s)e_Tgs+ vp(s;rg) (24

where v, (s) is the basic part of v(s) when g = 0, and vp(s;Tg) is the
additional part when 19 > 0.

To study the properties of v(s), let us consider the poles of the system
with feed-forward loop closed. The fundamental characteristics of the system
are governed by a set of system poles s = -s,z; kK =1, . . ., ky, which are LH
zeroes of det{4(s)], that is, with Re(syx) > O,

det[A(-syx)] = 0 ; k=1, . . ., ky, (25)

With a scalar output variable and with the first-order control surface
dynamics, the number of system poles is given by

k, = iq + (number of controllers) (26)
where 74 is the order of the least common denominator of f(s). Since A(s) is
Hermitian, equation (25) indicates that s = s,z; k=1, . . ., ky, is also a
zero of det[A(s)]. Let us define a polynomial

Ky
ATT

dy () =k|| (s + s,%) (27)
=1

for later use. Poles s, are neither dependent on the nature of the disturb-
ance nor on T4, but are dependent on the prescribed values of cost via
mgltipliers Hf/e and Aer- Some pertinent properties of v,(s) and Vp(s;rg)
will follow.



Basic Part v,(g)

From equation (C28a),

Pon (8)

-1 _
Vo(8) = ¢ (e) (s + wg)? * dy(s)

(28)

where the numerator polynomial Pon(s) is at least two orders less than that of
(s + wg)? - d,(s), so that v,(s) is strictly proper. This part represents the
equiva?ent optimal control when the gust sensor is located at the CG, or equiv-
alently t, = 0, and is invariant whatever Tg(z_O) is. The corresponding part
ko(s) of optimal filter k{(s) is given by

- Pon (8) -
K, (s) = C~1(s) i +ozm vy (8) (29)
Ky
c cx
8 + B

Equation (29a) is the partial fraction form of equation (29) after extracting
its constant part c¢,. Equation (29a) indicates that k,(s) is composed of a
train of first-order (including ¢, term) and second-order (for complex conju-
gate s,7) low-pass filters. Each gain ¢y, ¢y, and cg has been so determined
that the best compromise between performance and costs results. Figure 2a
shows schematically the structure of k,(s)e”'9%, in the corresponding impul-
sive response function £‘1[k0(s)e'T93] representation. Each element of filter
ko(s)e_TQS has an impulsive response that vanishes when t < Tg for Tg > 0.

The corresponding system transfer function gy ,(8) = yo(s)/wg(s) with the
feed-forward loop closed is given by (see eq. (C33))

s + %%%) © dy(s)

where the order of guon(s) is equal to that of (s + wg//gj * d,(s) when
uf'UQ#O.

Juo (s) = ( (30)

Additional Part vp(s;rg)

The part Vp(S;Tg) is that part of v(s) which makes maximum utilization of
the information about the turbulence that has passed the wind sensor station
but has not yet reached the CG. From equation (C28b), this part is best
expressed by



8 7{ Y (0)6 Tg® -y k(T )
(S T ) = 1(8) E ok — +esuk U pk p g’ (31)

S+Suk

where ka(Tg) are the coefficients dependent on Tg and where ypk(0)==ypk(rg==ol
The coefficients 8,3 are invariant with t Obviously, v (S'Tg), and hence
the corresponding part g(s T ), are not a f1n1te order system. This is so
because of the lag (e  '9%) terms that are present in equation (31). Some con-
sideration of a rational polynomial approximation is contained in a later sec-
tion. Also, clearly vp(s;rg) tends to vanish when Tg -+ 0, thus leaving only
the v,(s) portion of equation (24). It must be noted that vp(s;rg) is finite

and analytlc in the RH s- plane, even at 8 = g,; k=1, . . ., k,. The
counterpart k (s Tg) of k(s8) is written as

kp(s57g) = CT1(8) [C(e)Vy (857, Tug, (o) (32)
ku THS TS k

- Ttg® L g tgtu
k=1

t O _Tgs _ t "Tgs _
. k( Ye k(Tg).Psk(O)e sk(rg) (323
5 + wg//g s+ s,k

where gain vectors Zk(T )y Ty, tk(rg) and sk(r ) are readily obtained as
linear combinations of Bok and ka(T ) in equation (31). (See eq. (C37) for
details.) Thus, kp(s Tg) as seen in (32a) constitutes another train of linear
filters. Figure 2b depicts the impulse response of each term of equation (32a).
As seen, the impulse responses vanish for t < 0, and hence kp(s;rg) is again

causal. For 1 > Tgs kp(S;Tg) is exponentially stable.

Optimal Performance and Costs

As a result of the above, one has the optimal filter of the form

-T

k(s) = k,(s)e '9° + ky (s37,) (33)

When equation (33) is substituted into equations (16a) and (16b) using equa-
tion (14), the performance Jy and costs Jufye: which are optimal in the stated

sense, are obtained. Integrals in equations (16a) and (16b) are evaluated by
summing up all residues in the LH or RH e-plane. The resulting Jy and Juf/e

are implicitly dependent upon the assumed value of the multipliers A /e and
the actuator time constants Mf/e (see eq. (11)). One can then see the best

10



trade-off between available performance and required costs with the p and A
as parameters.

Suboptimal Filter k(s)

In physical implementation of equation (33), some difficulties may arise,
especially in the rp-terms in equation (32a). To cope with these difficulties,
a rational polynomial approx1mat10n of k(s) seems preferable A simple way to
do this is to approximate the e '9° terms, as well as the e '9°uk terms by a
Padé expansion (ref. 14). It is expected that the higher the order of the
polynomial approximation, the better the approximation will be (ref. 15).

Just for simplicity, the first-order expansion formula

=8+ a, .
T a+ta z : complex (34)

e~ 3

is assumed hereinafter, with a real and positive constant a. Substituting
e g% = (-e + a/t,))/ (s + a/t,) etc. into equation (33) and executing the nec-

essary manipulations, one obtains a suboptimal filter of the form

k(s) = k,(8)

S +

T, ~

I + kp(s;rg) (35)
tg

where k,(8) is given by equation (29a) and where

Ry 3 (1)

; #(1))  E(ry) x
. = g g g
kp(sstg) = Lty) + —L- + P e (36)
8+ s+ k=
g V3

The gain vectors Z(Tg), r(rg), t(Tg) and Sk(T ) are uniquely determined as a
linear combination of B,z and ka(rg), where y k(t,) stands for the vy k(T )
which is solved with the Padé expansion of equatlon (34) in equatlons (C25b)
and (C25c). It is not difficult to see that the suboptimal filter k(s) is the
optimal filter of the W-H equation (eq. (21)) to which the same Padé expansion
has been incorporated at the beginning. Corresponding suboptimal performance
Jyfand suboptimal costs Juer are obtained by equations (16a) and (16b) as
before

NUMERICAL EXAMPLE AND DISCUSSION

A typical light wing-loading STOL plane is chosen in this example. The
pertinent numerical data are summarized in table 1. Since we are studying the
nature of the optimal filter and the resulting gust alleviation, both with and
without lead time t,, only one flight condition (U = 41.45 m/sec) and one
turbulence scale length (L = 305 m) are assumed. The necessary aerodynamic

11



derivatives are summarized in table 2.
three fuselage stations (Z, = -2.5 m, 0.0 m, and 2.5 m correspond approxi-
mately to the cockpit, CG, and aft cabin stations, respectively) is taken as
However, primary interest is placed

the output variable y(s) (see fig. 1(a)).

on the aft cabin because it is at this station that alleviation is usually the

most difficult to achieve.

The normal acceleration factor n, at

TABLE 1.- AIRPLANE DATA AND FLIGHT CONDITION

Mass, kg
Wing area, m?
Mean aerodynamic chord,

Tail moment arm, m
True airspeed, m/sec
Altitude, m
Turbulence scale, m
Flap setting, deg

TABLE 2.- AERODYNAMIC DERIVATIVES?

€
o 0.465
o
Derivatives Cp Cp
--- 0.12 0.12
3( )/du -0.012 -—-
3( )/da -—- 0.521
3( )/3sf --- 0.344
3( )/38% ——- -

3 ( )/a(gg) i

m

N

Radius of gyration about pitch axis, m

.42
.58
.453

Cm

-23.95

4,987
39.02
1.981
2.576
7.81
41.15
0
304.8
20

-1.26
-0.195
-1.78

-7.97

4pefinitions of nondimensional derivatives

in table 2 and of stability derivatives in

appendix A are found in reference 18, where a

conversion w =

12

Uo 1s used.




Flap Control With g = 0

Figure 3 shows optimal trade-off characteristics between Vﬁ%/o and
Vﬁ%/c when Tg = 0 with the flap actuating system time constant 1/p, as a

g
parameter. As is known, a flap system (or any equivalent direct-1ift con-

troller) is very effective in alleviating the response to vertical gusts when
a reasonably quick response (or large uf) and enough power (or large /ﬁ% are

available in the flap actuating system. When the available rms input power
Vﬂ% increases (i.e., Afz decreases), the corresponding system poles (s =-s,7)

move as shown in figure 4. Ignoring one real pole, which corresponds to an
artificially introduced downwash lag pole, two pairs of complex conjugate
poles modify the basic short period and phugoid poles. Another real pole
modifies the surface actuating system pole (g = -uf).

In this particular example, and in most cases with a well designed direct-
lift controller, the Gf—into-nz transfer function f(s) has only LH zeroes.

Hence, considering a limiting case Af? +~ 0 (with Aez + =), the system poles
approach the open-loop zeroes (see eq. (Bl1)), and an optimal control law

8p(s)  gple)
vg(e) | F,(e)

(37

is obtained (see eq. (B13)). Equation (37) defines a stable filter which
could perfectly cancel the disturbance (see eq. (B14)) with a finite Vﬁfz when

“f + o, or with an infinite vaf? when “f < o,

Practically, finite values of My and vaf must be considered. As seen in
figure 3, a larger time constant l/uf requires more rms input power Vﬂfz to

achieve a given performance. The same may be seen from a different point of
view in figure 5 (curve for Tg = 0) where the trade-off characteristics

between /ggg‘and /@??; which are required to achieve /%;7.= 0.03 g at the
cabin station when o, = 2.1 m/sec, are shown. Figure 6 shows the system trans-
fer function 9,0(8) with the feed-forward loop closed, corresponding to
several combinations of sz and sz in figure 5. From figure 6, one can see

the frequency-wise structure of the achieved alleviation. As seen, a smaller
time constant 1/uf provides more alleviation at the high frequencies, but less

alleviation at the low frequencies. Figures 5 and 6 clearly show that a
clever choice must be made from the ride-qualities standpoint to achieve a
proper compromise between the frequency band to be alleviated and the

available st and Gf?.
Flap Control With Tg:>0

As indicated in appendix B (see eq. (B13)), lead time Tg(>0) is
unnecessary when enough ﬁf is available. In other words, 1f the flap

13



surface can be actuated quickly enough and the effect thereof is of minimum
phase lag, then the corrective control need not be initiated before the dis-
turbance arrives. When vaf? is finite however, lead time Tg reduces the

required cost to some extent. Examples are shown in figure 7. Although it is
unrealistic, the limiting case Tg > is included to indicate how lead time T

affects gust alleviation. When l/uf is zero (fig. 7(a)), only a negligible
cost saving is available with a realistic value of g = 0.1 sec. When 1/uf is
0.5 sec (fig. 7(b)) some improvement is realized by small lead values

(Tg = 0.1 sec). These cost savings are also compared in figure 5 with l/uf

and Tg as parameters.

Generally, the merit of lead time T, is only realized when the actuating
system response is slow. This fact would be further emphasized when a sub-
optimal filter is substituted for the optimal one. The broken lines in fig-
ure 7 show the performance corresponding to a rational polynomial filter as
given by equation (35) with a = 2. In these examples, apparently the disad-
vantage introduced by rational polynomial approximation destroys the merit of
positive Tg. This shows that a higher-order Padé approximation would be

necessary.

Elevator Control With t. = 0

g
Figure 8 shows the optimal trade-off between VﬁZ%/og and Vﬁez/%gwith
T, = 0 at the three fuselage stations. As is well known, the elevator is not

an effective gust alleviator, especially at the aft cabin station. This is
due to non-minimum phase lag characteristics of the 8 ,-into-7n; transfer func-
tion e(s). Figure 9 shows the system poles s = -s,3 with vu,2 (or equiva-
lently with Aez) as a parameter at the cabin station. When allowable vu,2
increases, similar to the flap case, system poles start from open loop poles
and approach the zeroes of e(s). When there is a non-minimum phase zero, such
as shown in figure 9, one of the system poles corresponding to the short
period mode terminates at the image in the LH s-plane of the RH zero. This is
what is indicated in equation (B16). The limiting case Aez > 0 (with Afz > )

gives an optimal control law (see eq. (B18))
(Se(s) _ 1 gn* (S)

w,(8)  eg © (38)
g e en*(s)(s+_/%>

where e,*(s) is en(s) with replacement of its RH zero factor (-s + z,) by its
image factor (s + z,), and where g,*(s) is a polynomial defined by equa-

tion (B20). Equation (38) defines another stable filter, but, in this case,
perfect alleviation is not obtained. In fact, the corresponding system
response is given by (see eq. (B21))

14



2

_ Pe (s + wg) _ Pe -1
Gu0(®) = g o = ol Y. ®) (39)
(3 ! /—z) P (o )
where
Po = 2229(3.)ug, (22) (40)

In figure 10, which shows system response g,,(s) with A, as a parameter, one
can see the frequency-wise structure of the alleviation. It is clear from the
figure that the desired alleviation in rms v#z2 is obtained only at the sacri-
fice of amplified response in the low- and high-frequency ranges. Finally,
the best available performance corresponding to the limiting case Aez > 0 is
obtained from equations (16a) and (39),

( 77132)0 = /’;i . _;zé (41
e

which is achieved with infinite cost vu,2. Using equations (40} and (19a),
equation (41) is rewritten in a more practical form:

‘/" 2 + ‘/5
<n > - /T‘ . Bg wg/ . g(ze) (41a)
o

2
O'g g~e (Ze + wg)Z

The inefficiency of elevator control as a gust alleviator depends on the
fuselage station because the location of the RH zero s = z, is dependent upon
the station as well as on the flight conditions. The limiting performance of
equation (41) without lead time in gust sensing is plotted in the Tg =0

curve in figure 11 against fuselage station. At the fuselage station aft of
the center of percussion (I, > lgpz, lpge is positive rearward from CG), the
ride quality becomes worse. At the stations before 7,,, there exist no RH
zeroes in e, (s), hence theoretically perfect alleviation is achievable with
enough input power v#,2 as in the case of flap control. Using the short
period mode approximation, the marginal point Z,, (center of percussion) is
given by

2
L L W (42)
e e Cm

e

Elevator Control With Tg >0

Let us consider the same limiting performance when Aez + 0 with 1754 > 0
at fuselage stations lp > lge. As derived in appendix B, the additional part
of the filter adds the corrective control
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Sg(s) _ da(8)  7'g® - g7 "gPe
wg(s) T TP e,* (s) -8 + 24

-1 T,8
wge(s)e g (43)

and this results in a total system response (see eq. (B23)) of
g,(8) = g,,(s)e g% T9° (44)

and the limiting performance as vz, 2 + « of

g2 _ (»/ﬁgZ) . o TgRe (45)
°g °g Jo

Although equations (44) and (45) are only realized with an infinite control
input /ﬁez, they suggest the possible improvement that lead time Tg gives, an
improvement that can be significant especially when 2z, is large. The essen-
sial role of 8,(s)/w,(s) in equation (43) is that the RH zero in e(s) is can-
celled out by the same factor in the filter denominator when g,,,(s) is
considered (see eq. (B22)). However, when a finite cost /Z;E-(with Aez > 0)
is prescribed, such a pole-zero cancellation occurs only partially. The
effect of the additional part of the filter is shown in figure 11 with Ty > 0

as a parameter. Figures 12(a) through (c) show the optimal trade-off between
/%22/09 and VEQZ/OQ when g > 0 at the three fuselage stations. The ride

improvement is considerable when 1, > 0.1 sec at the aft cabin. As is pre-
dicted by equation (44), the alleviation due to a filter which includes the
additional lead time part covers a wide frequency band. This is shown in fig-
ure 13 where system response g, (s) with and without lead time is compared.

The performance with suboptimal filters as given by equation (35) shows
no significant performance degradation with a = 2. This suboptimal filter is
compared with the optimal filter in figure 13 for the case of A, = 0.1 and
Tg = 0.1 sec.

Two Controllers

It has been shown that the flap control is effective for gust alleviation,
if enough control power is provided, and that the effectiveness of elevator
control as a gust suppressor is improved by feeding the disturbance signal in
with lead time. Now let us consider how much the required flap system cost
could be reduced by incorporating the elevator as an auxiliary controller.
Figures 14(a) and 14(b) show optimal trade-off characteristics between Vﬁz2/og,

VafZ/cg, and anZ/og with T4 as a parameter. These figures are results of the

exact filter of equation (33), but the results using the suboptimal filter of
equation (35) with a = 2 differ only indiscernibly from those shown. This is
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not true for much higher Vﬁf2 than shown or for the cases with smaller time

constant 1/uf. (See suboptimal performance in figs. 7(a) and 7(b).) Similar

to the single controller case, the elevator shows some effectiveness at the
cockpit station even when 1, = 0, but it makes little contribution at the aft
cabin station. When g > 0, the situation is improved considerably at the
cabin station.

Hereinafter, attention will be focused on the aft cabin station, where
non-minimum phase lag characteristics hamper the effectiveness of elevator
control. The cost savings achieved in the flap system by incorporating the
elevator, is shown in figure 15. In the figure, required costs V6f2 and
Véfz to obtain Vﬁzz = 0.03 g for Og
power v,2 and flap time constant l/uf as parameters for Tg = 0 sec and

= 2.1 m/sec are plotted with rms elevator

0.1 sec. These results are based upon the use of a suboptimal filter as in
equation (35), and hence the adverse effects of rational polynomial approxima-
tion appear when l/uf is small with Tg > 0. Except for this fact, it is seen

that much greater cost savings can be achieved in the flap system by elevator
control when tg > 0. As to the frequency-wise structure of the alleviated
system, several cases are compared in figure 16 in their system transfer func-
tion g, (s). The figure indicates that the resulting alleviation by two con-
trollers is the blended one of the single controller cases of figures 6 and
13. This is shown by the fact that the corresponding system poles s = -3,

are located between the optimal pole locations in the single controller cases.
This is seen in figure 17 where the system poles corresponding to the short
period mode arc shown. Locations of the other poles are almost the same as
those in the single controller cases.

Limiting Cases

As has been seen in the above, if one is concerned with a given criteria
such as Vﬁz2/cg = 0.03 g/2.1 m/sec at a particular fuselage station, there is

a family of requirgg_po§£§_(uf,V&f2) and (ue,VQQZ), or equivalently
(/SfZ,Vsz) and (/382,/582), as illustrated in figure 18. To obtain a rough

idea of system performance, including the power spectrum characteristics and

required costs, two limiting cases are considered. One is the case of flaps

only (Aez + »); it corresponds to point F in figure 18 and has been described
before. The other is the case assuming an infinite elevator control. It is

indicated by point E in figure 18 and is characterized by Xez -+ 0 while

retaining A g2 finite. A process similar to the one used in appendix B
(limiting case A2 + 0) leads to somewhat simple formulas. Inspection of
equation (C16) gives the limiting characteristics

e S + U H
vdy(s) > ap L uffen*(s) P em =3 o (46)
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where ey, is the leading term coefficient of e,(s) and where e,*(s) has the
same definition that is used in equation (38). Also, equation (C19) yields

0
A"l (s)b(s) » ) (47)
S+ g coo cco gnls
Mg -8+c, S+c, €,(s) " ¥g, (8)

Denoting by vf(s) and v¢(s), and pf(s) and p®(s) the flap and elevator compo-
nents of v(s) and p(s), respectively, equation (47) indicates (see eq. (C9))

oF(s) = - S:Jfff ol (e) (48a)
oo = uee [—sc+ Cor sfcoo ' Zn(z) e(8)e T (S)] (48b)

In equation (48a), pf(s) has no poles other than dy,(s) zeroes, which comprise
the LH zeroes of ey*(s) as well as s = Wy and s = -¢,. Evaluating equa-

tion (C25a) at these poles, it can be shown that all the unknown coefficients
in pfks) vanish except for the ones, f (Tg) and yg (Tg), which are the gains

corresponding to the poles s = “Hf and s = -3,, respectively. Further, equa-
. . f‘ £ - .
tion (C25c¢) requires Ypu(Tg) + Yﬁe(rg) 0, so that one can write

0 (1) ) V) (1)

3+11f S+Ze

o (8)

g - 2)v) (1) '
JCERTICEIES (49)

Now considering equation (47) again, the only possible RH pole in p€(s) is

§ = 3,, which comes out of e,(s). This implies that the RH members of equa-
tions (C25b) and (C25c) are proportional to e TgPe , and hence that all the
unknown coefficients Y;(Tg) and yp(T ) are given by yf(O) e~ g% and
Yp(O) Tg? €, respectively. Thus, substituting equation (49) into equa-

tion (48a), one has
r
-z, v,,(0)
of(s) = - L "e. pe ~ gt (50)
Uf 8 + Ze

which gives the required cost in the flap system
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TgZe (51)

The elevator component v€(s) has a similar structure to that of equation (B18),

I
We 'ﬂpe(O)

except that it includes an add1t10na1 pole s = -up, and that both 9 *(s8) and
p, are now dependent upon Xf The corresponding” system transfer function of
equation (14) is written as
vf(s) . .
g,(&) = g(s) - [f(sle(s)]C(s) wg (8)e d (52)
ve (S) e

Substitution of equations (48a) and (48b) into equation (52) gives a limit
when ¢ » =

g,(5) > [Fer0T(e) + e(e30%(0)]uy. (5)279° (53)

Taking the requirements of equations (C25a) through (C25c) into account, one
can expand the RH [ ] of equation (53) into partial fractions and find that

g (s8) = ——Egzig l(s)e ghe o'g° (54)

] e "V f
Pef Tz FGa  Tpe® (53)

Equation (54), a very similar expression to equation (44), which is the limit-
ing case of elevator control, indicates that the output y(s) = ny(s) has a
power spectrum

(w) . __ef ef —2nge (56)

2
w Ze

which is to be compared with the output power spectrum of open loop
(@, (@], = 9(-jw)¢wg(m)g(jw) (57)

Finally, equation (56) gives a limiting performance
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logrl
V7,2 = /g . -% . e TgRe (58)

Since the filter gain Y;;(O), and hence the system gain Pefs is implicitly
dependent on the assumed value of Af as well as on Hes equations (51) and (58)

do not afford a pair of closed form solutions of the flap cost and performance.
However, it may be noted that the algorithm required to solve for the unknown
gains is greatly simplified in this limiting case.

An example of the reduction in the flap cost available by incorporating
elevator control to achieve a given performance has been shown in figure 15.
It is seen in figure 15 that a much greater cost reduction is realized in the
flap system when the elevator control is used together with a positive lead
time (e.g., T, = 0.1 sec) than when it is used without lead time (t, = 0 sec).
Figure 19 compares the output power spectra corresponding to Vi ,2 ="0 (point F)
and to vii,2 » « (point E) with that of open loop. When the loop is open, two
peaks appear in [®;_(w)], corresponding to the phugoid and the short period
modes. The turbulence spectrum @wg(w) and the transfer function g(s) cut off

the output spectrum at the high- and low-frequency ranges, respectively. The
same feature exists in the flap case (point F) where optimally relocated poles
and zeroes result in a gust alleviation. In the two controller case (point E),
the infinite elevator cost eliminates all the inherent poles and zeroes except
one image pole s = -3,. Thus the output spectrum &y, (w) is not attenuated in
its low frequency range.

CONCLUSIONS

An analytical study was made of an optimal gust alleviation system that
uses vertical gust sensors mounted ahead of the CG. Frequency domain optimiza-
tion techniques were used to synthesize the optimal filters that produce the
corrective control signals into the flap and elevator actuators. A special
emphasis was placed upon the effectiveness of the time by which sensor informa-
tion leads the actual encounter of the gust in reducing the rms value of verti-
cal acceleration caused by the gust. The resulting filter, a lagging filter
when the lead time is positive, is expressed as an implicit function of the
prescribed control costs; that is, prescribed rms values of surface deflection
and its time rate. Using this method, the optimal trade-off between system
performance and required costs was systematically studied. A numerical
example, which considers a light wing-loading airplane in the approach condi-
tion, is included. The conclusions derived from the study are that optimal
feed-forward of gust signal with positive lead time results in the following.

1. It improves the cost-effectiveness of flap control, especially when
the flap actuating system has a large time constant.

2. It improves cost-effectiveness of the elevator control significantly,
especially at the aft cabin stations where otherwise non-minimum phase lag
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characteristics hamper the elevator's effectiveness. Elevator control both
with and without flap control decreases the rms vertical acceleration by a
factor e '9g®€ times that with the zero lead time Tg = 0 case, if enough
elevator control power is available.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, August 19, 1975
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APPENDIX A
STATE EQUATIONS

The longitudinal equations of motion defining the response of an aircraft
to control inputs and disturbance are written as

s - X, -X, g u(s)
-Zy 8 -2y -8 o(s)
-M, - (My8 + My) s(s-—M& 6 (s)
d “A[5te) 2y (6
= de ZSe +1 2y Z,/U (Al)
S (8) wg (8)
Méfs +M(Sf M(Se Mu [(Md—Mq)S +M(X]/U
where the linear representation of the vertical gust
\
_ Y9
%9 =7
. 1 sz
% = 7 5t [ (A2)
q = - % = - -]; _BB&
g dx U 3t |

is assumed. Also assumed in equation (Al) is the first-order expansion in
downwash lag terms such as

1
() - oc(t - —ZUZ) - TT &(%) (A32)

or equivalently in the frequency domain

Z
[1 - e_(ZT/U)S]OL(s) - TTsu(s) : (A3b)
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Inspection of the moment equation in equation (Al) indicates that response ]
due to 8¢ or wy, or both, becomes very high in the high frequency range. This
is of no” consequence in the conventional analysis of rigid body modes; however,
if one is concerned with the rms value of a response evaluated over the fre-
quency range [0,«), this unrealistic feature must be avoided. For this reason,
the first-order Padé expansion e % = (-3 + 2)/(3 + 2) is used in this analysis
so that equation (A3b) becomes

} A
[1- e C2/D2)ace) - —ZL - F sato) o

Consequently, terms M&s, Méfg, and (Mg - Md)s in equation (Al) are multiplied
by the factor (2U/lp)/[s + (2U/1lp)].

By multiplying the inverse of the LH coefficient matrix in equation (Al),
explicit forms of F,(s) and G,(s) are obtained.
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APPENDIX B

THE WIENER-HOPF EQUATION AND ITS SOLUTION

Wiener-Hopf Equation

Given is an augmented performance index J (eqs. (15), (16a), and (16b),

<y
|

2 2
= Jy AT+ Ay

45 J. {[Q(jw)wge(jw) - fT(jw)C(jw)V(jw)eijg]

=00

x[iig,, (-30)g (Gu) - VI (~Gw)C(~jw) £(-ju)e 7*79)
T (—Gw) Av (Fw) 1)

Required is a stable and causal v(s) such that v(jw) minimizes J. The first
variation &J due to an infinitely small variation &v{jw) is given by

8T = %-jt: [svI (-dw)z (Gw) + 2T (-Jw)sv(jw)]dw (B2)

with

z(Fw) = [A + C(-gw) £(~duw) £l (w)C(Fw) v (jw)
-0 (-Gw) E(-Fu)g (Fwlwg, (Fu)e ™ T8 (B3)

In order that 8/ = 0 for any variation 8v(s), which is analytic in the RH
s-plane, z(s) must be analytic in the LH s-plane, see, for example, refer-
ence 9; this is stated by equation (21). It must be noted that, if v(s) is
analytic in the RH s-plane, then so is k(s) of equation (20) and vice versa.

Solution v(s)
Since the matrix A(s) in equation (22a) is real on the jw axis, conjugate,

and Hermitian, and has a maximum rank of 2 (when A{z . Aez #0) or 1l
(when Afz or Aez = 0), there exists a (2x2) or (1x1) matrix P(s)} such that
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4(s) = PT(-8)P(s) . (B4)

and that P(8) as well as its inverse P"l(s), is analytic in the RH s-plane
(ref. 13). Hence, the solution v(s) is given by the closed form

v(e) = P 1) [[BT(-) 1 b (o) 0%, (85)

Single Controller Case

Let f,(e) = f1n(3)/da(3) be either f(s) or e(s) of equation (6), and A

and y be corresponding multipliers. Matrix A(s) and vector b(s) of equa-
tions (22a) and (22b) become scalars, and the factored form P(s) is readily
given by

P ——ifi—gil—— B6
(S) d (S)da(S) ( )
where, using a shorthand notation d,(s) = s + u and a real constant v,
v2dy (-8)dy(8) = A2dg(-8)dg(-8)dg(s)da(s) + u2f1,(-8)f1,(8) (B7)
and where d,;(s) has only LH zeroes s = -s,2; kK =1, . . .,k ky = iq + 1.

After partial fraction expansion, the rational polynomial [PT( s)] " 1b(s) is
expanded as follows

r,,(=8)g,(s)
T ! -TgS _ M | 1R n -Tg8
[PF(-8)] "b(s)e 9~ = v d, (51,08 wge(s)e g
Ky
(-8)g,,(8) B
= B Pk ) -8
'v{[d(s)d (s) Qe(s)]++k§—s+suk e 9
(B8)
where the [ I ]+ term has poles of d,(s) and of wge(s). Knowing
that
-Th8 © joo ._Tgs
e 9 | . i e 7.t as)ae
-8 + Sy, o 2ng G -8 + 8,7,
-THS -TH8
_e 9 - ol TuK (B9)

-8 +
8 Suk
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the solution v(s) of equation (B5) is written as

d d £, (-8)g (&)
v(s) = (u)2 2(8) dy(s) { ” n wge(s)]+ . ,TgE

v v dy,(s) dﬁ(—s)da(s)

% - Tgs - Tgsuk
+ B = - B10
k: 1 k -8 + Suk ( )

After another partial fraction expansion, equation (B10) is rearranged into
the standard form in equations (24), (28) and (31).
Limiting Case A2 + 0

A special case where an infinite cost is allowed, is specified by letting
A2 > 0. If f1n(8) has no RH zeroes, equation (B7) implies that the system

poles approach either LH zeroes of f,,(s) or s = -c_ when A2 > 0, so that
uf
s + C 1no
vd,(8) > ufy(s) ===  cn =~ (B11)

o©

where fino is the leading term coefficient of fin(s). Equation (B8)
simplifies to

_ an (8) -
[PT(-8)]"1b(s)e 9% ~ —2 ZZ(E) wg, (8)e tg® (B12)

[oo]

Applying [ ], operator to equation (B12) while retaining A2 as finite and
finally letting A2 > 0, one can see that the contribution of e, /(-8 + ¢c.),
which is the only possibility yielding the additional part of the filter,
vanishes even when t, > 0. Hence, the limiting case without the non-minimum

phase zero is obtained as follows:

v(s) = §?~- e ?ZE2§ vy, (s)e”'9° (B13)
s +u 9nls) -
y . 7,.05) wge(s)e g [s] < = (B13a)
which gives, in turn
g9,8) >0 (B14)

where g, (s) is the system response that is defined by equation (14).
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Next, suppose f;,(s) has a RH real zero, s = z,, with 3, > 0. Putting
Fin(s) = (-8 + 22)f1,(8) (B15)
f* (s) has LH zeroes only. This time, equation (B7) has a limit
) 9

coo

vdy(8) » u(s + 2,)f1n(e) 2= (B16)
and hence,
- 8 -
(BT (-)]" b (e)e79% » = ThEe g;g; vg, (8”9 (B17)

As a result, from equation (B5), a limiting case with the non-minimum phase
lag is obtained as follows:

U(S) - s + M [ gn*(s) e-"[gs
H + * + 2
(s + 58)f1n(8) (8 + wg)
Ay (e) gt gt
"Pe o v BT, -8+ g ] ls] <= (818)
where
Pe = ZZe[g(s)wge(s)]8=Ze (B19)

and where g,*(8) is a polynomial of order k, such that
(-8 + 22)9,%(s) = cg, (8 + wg/V3) (s + 35)9,(8) - oo dg(s)(s + wy)? (B20)

Equation (B18), in contrast with equation (B13a), comprises both the basic and
the additional parts of the filter. The basic part in equation (B18) gives a
system response

g,,* (&)
(8 + 25) F%, (8) (8 + wg)

Pe
8+ 2,

u,(8) > g(8) - £(s) ~ g (8) = wyl(s)  (B2D)

and the additional part in equation (B18) gives an additional response
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dg(s) “Tg® _ o7 gRe
gup(S) e ‘f(S)pe (S + Ze)f\,]\:n(s;) * = g + ie wQ;(S)eTgS (822)

Pe -T2 T8, =1 (B22a)
= - —< _ e
5z, (1 - e 9°€ g9 )wge(s)
It must be noted that, in equation (B22), the factor (-s + 3,) in the numera-

tor of f(sg) is cancelled out by the same factor in the filter denominator.
This is the essential role of the additional part of the filter. From equa-

tions (B21) and (B22a),
— _ pe -TgZe Tgs "1
9,(8) = gu5(8) + gyp(s) = PRy e 9 ug_ (s) (B23)

is obtained for the total system response.
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APPENDIX C
ALTERNATE METHOD TO SOLVE THE WIENER-HOPF EQUATION

References 16 and 17 provide practical methods of solving a given Wiener-
Hopf equation without finding the explicit form of P(s) when T, = 0; however,
those methods are not applicable when Tg > 0. The following iS5 an extension

to include such a case.
Preliminary 1

Let h(s) be a scalar rational polynomial which is strictly proper,l

q(s)

A O RIS b

where r(-s) =1 (-s + Sri) and Z(g) 2 (s + s7z) with RQ(SPi,SZk) > 0, so
7

that s = Sp; and 8 = -s7j are poles of %Z(s) in the RH and LH s-planes, respec-

tively. Denoting by [ ], and [ ]_ those parts of [ ] which are analytic in
RH and LH s-planes, respectively. Then, when g >0

[h(s)e '9°%], = n(s)e '9° - z(s) (C2)

where ¢ (s) is a strictly proper rational polynomial in s. The reason is as
follows. By Fourier's integral formula, h(s)e '9° is expanded into [ ], and
[ 1. parts, where

) oo
[R(s)e "9°] _ =f e 5% at [Z%f n(o)e F7Tg)0 dc]
— - oo

e—Tgs_'pi

oy
-8 + Sri

7

with unique coefficients qr - The £ term just above is denoted as z(s), which
has the stated properties. Equation (C2) is valid even when Spg is a multiple
pole. What is implied by equation (C2) is that, by evaluating [ ]_, which is

1A rational polynomial is proper when the order of the numerator poly-
nomial is not greater than that of the denominator. If the numerator's order
is less than that of denominator, the rational polynomial is strictly proper.
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a rational polynomial in s, one can avoid difficulty in evaluating the [ ],
part, which is not a simple rational polynomial, but includes e~ '9€ terms.
Preliminary 2
The matrix A(s) of equation (22a) may be modified as follows,
A(s) = C(-8)A*(s)C(s) (C4)
where

dg(-8)d, ()T (-8)AC7 (8] + £,(-8) - £, (e)

Arte) = BEECACOEHO (cs)
Equation (C4) indicates that LH zeroes of det[4A(s)] are given by
det[A* (-s,3)] = 0 , k=1, . . ., k, (C6)
Using equations (C5) and (22b), one has
471 (e)b(8) = ¢ (s) [4%(8) ] (=) g (8)ug, () (€7

Furthermore, since the matrix A(s) has its inverse, one has an expression
41(s) = P 1) [PT(-8)]7! = ¢7l(s) [A*(s)]71Cm1(-9)

(see eqs. (B4) and (C4)). This suggests that P-1(s), and hence v(s) too (see
eq. (B5)), has a LH factor c~is).

Possible Expression of v(s)

In equation (B5), each entry of vector [PT(-S)]—lb(S) has the properties
of #(8) in Preliminary 1 above. Hence, putting

[T )17 b(e)e™™6%] = [P (-e)1 M b(e)e ™™ - (o) (c8)

and substituting into equation (B5), one has a possible expression for v(e)
such that

v(s) = 4" 1(s)b(s)e 9% - ¢ l(s)p(s) (C9)

where

c"l(8)p(s) = P l(8)z(s) (C10)
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is a rational polynomial vector that is again strictly proper. Following
Preliminary 2, the LH factor C~1(s) has been artificially inserted in equa-
tion (C9). Once the unknown vector p(s) is determined, v(s8) is readily solved
from equation (C9). Substituting equation (C9) into equation (21), the W-H
equation requires

[z(s)], = -[4(s)C 1 (s)p(8)], = O (C11)

Properties of p(s)
The unknown vector p(s) has the following properties.

1. 1In order that v(s) in equation (C9) be analytic in the RH g-plane,
any singularity of A~ 1(s)b(s)e '9° in the RH s-plane must vanish with its
counterpart in C~l(s)p(s). This implies that RH poles of p(s) must exactly
coincide with those of A~!(s)b(s) with the correct multiplicity.

2. In order that equation (Cl1) be valid, that is, z(s) be analytic in
the LH s-plane, LH poles of ¢ !(s)p(s) are nothing but LH zeroces of det[4(8)].
This fact (ref. 17) is proved as follows. Suppose ¢ 1(s)p(s) has a pole
§ = -s1 with Re(s;) > 0. Then after partial fraction expansion, C~!(s)p(s)
has a term p,/(s + s;) with uniquely determined coefficient vector p;. Exe-
cuting the [ ] operation in equation (C11) gives

A(-s1) - py = 0 (c12)

0, or equivalently, that

which insists, for p; # 0, that det[A(-s1)]

det[4*(-81)] 0 (C13)
The statement is then proved by comparing equations (C13) and (C6). If s
coincides with a pole of A(s), a slightly modified proof leads to the same
result.

Poles of p(s)
Properties (1) and (2) determine uniquely the explicit form of p(s); the

details are presented in the following. When C(s) and f(g) are given by equa-
tions (11) and (6), equation {C5) becomes

Ap\2 . . i}
<—1§> dof dop dg dg + Fufy Fren
Ao\ - _
Tnén (ﬁé> dee dpe dy dg + enen
A% (s) = _ e (C14)
da da
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where d, e = (s + “fye)’ dg = dg(e), aa = d,(-8), etc., are used for short-
hand notation. Also’,

v2dy, (-g) - dy(s)

det[A*(8)] = T8 ~d(e) (C15)

where
0 )\f 2 Ao 2 _ - -
ved, (-s) - dy(s) = H}' a;' dcf d@f dce dep dg dg
)\f' 2 _ e 2 _ -
and where, with LH zeroces s = -g,;; (k =1, . . ., k), d,(s) is so factored
that
ky,
du(s) = || (s + 8,2) , ky = igq + 2 (C17)
k=1
It must be noted that
Pank[da(—s)da(s)A*(s)]S:=_sai =1 ; =1, . . ., i, (C18)

which is a consequence of the fact that the output variable y(s) 1is a scalar
in this case.

Again, when C(s), f(g) and g(s) are given by equations (11) and (6), then
equation (C7) is given by

r;\ 2
e\ - -
(ﬁ;’ dce dce fh
gu (8)
AL\ - _
() et o
A"ls)b(s) = ¢ 1) = 2 0)d, () wge(s) (C19)

Using equation (19a) and expanding equation (C19) into partial fractions, an
alternate form
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Ry
4-1(s)b(s) = c~1(s) Z( Bok . Yok >+ Mo, M (€20)

= -8+ 8y S+syk) S+ug (s-+wg)2

is obtained with unique coefficients B,; and y,; (either real or complex con-
jugate), and n; and n, (real). Equation (C19) or (C20) indicates that only
§ = 8,1 k=1, . . ., k,, are left as RH poles of 4-1(s)b(s). This is a
result of hidden pole-zero cancellation. Finally, considering the properties
of p(s), one can put

Ky

B Y.
k "pk
o(s) = ( P __, ) (c21)
kgl -8+ Sy S * 8,

with real (for real s,j;) or complex conjugate (for complex conjugate sy%)
unknown coefficients Bpk and vy, both being two dimensional (f- and
e-components) vectors. There is a total of 2x2xk;, unknowns to be determined.

Unknown Coefficients Bpk

Applying property (1) to equation (C9) at & = sy,z, that is, requiring
that [v(s) - (-s + Suk)]s—s ” = 0 with v(s) of equation (C9) and with p(8) of
=Su

equation (C21), one obtains

- ~Tg8
Bpre = [0()ATH(Ib(e) (6 + sypde” T o (C22)

When equation (C20) is substituted into equation (C22), it gives 2xk;, unknown
coefficients Bpk such as

Bpk = Bok e—TgSuk > k = 1, e e ey ku (C23)

which depend upon Tg-

Unknown Coefficients ka

Applying- property (2), equation (Cl1l) must be evaluated at all LH poles
of A(s)C 1(s)p(s), as shown below. At s = -s,7, k=1, . . ., k,

|
o

COLRICN NN T (C24a)

at 8§ = -sgi, T =1, . . ., ig
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[(s + sai)A(s)C'l(s)p(s)]sg_sai =0 (C24b)

and at § > -®

[A(s)C71(8)p(s)],, _ =0 (C24c)

Equations (C24a), (C24b), and (CZ24c) are necessary and sufficient to solve for
the y,%. This becomes clear from the following notes. Equation (C24a) is
simplified to A*(-s,z) ° Ypk = 0, but it degenerates into 1xk;, independent
equations due to equation (C6). Hence, taking the first row of A*(s) gives,
for k =1, . . ., k,,

AL\ - - - -
[(;?) dof dof dg dg * fnfn fhen] " Ypr = 0 (C25a)
= -Suk
Next, equation (C24b) insists that [(s + sai)A*(s)p(s)]S__ s . = 0, but due to
T Tfal

equation (C18), it again degenerates into 1xZ, independent relations. Taking
again the first row of A*(s), one has f (-847) « e(-847) = 0, or more
precisely, for ¢ = 1, . . ., T4,

-T,8 7
ACEI }: £ (-84:) E o suz e IH (c25b)

Finally, equation (C24c) is simplified into

E Ypr = Z B, e 9l (C25¢)

Equations (C25a), (C25b), and (C25c) are k, + i, + 2 = 2xk, independent,
linear and inhomogeneous equations, and determine 2xk; unknown coefficients
Ypk uniquely with Tg as a parameter.

Decomposition of v(s)

Substituting equations (C20), (C21), and (C23) into equation (C9), one
has the solution
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k
1 % Bok Yok Ny Ny -T,8
v(s) = CT*(8) Z + + + - e 9

= \7° tOuk &t Suk &+ Uy (g4 wg)z
“ufp p e "%k y (1))
)Y » PR g (C26)
P IR SR

When equations (C25a), (C25b), and (C25c¢) are solved for t, = O,
ka(o) = ka(rg = Q) is obtained. Using ypk(O), equation (C26) is rearranged
as follows:

v(s) = L) [p,(e)e 97 + p (837 )] (c27)
where
Ku -y, (0)
b (s) = m Ny . 2: Yok ~ Ypk
o s+ Wy (s + wg) k=1 S+ Syuk
S
= pO”(Z) (C28a)
(s + wg) du(s)
and
i o (0) tg® (1)
_Tgs _ —'Tgsuk e - 'ka Tg
Pp(83tg) = ; : Bor s # Suk s+ sy - (c280)
=1

Clearly, p (s) is invariant in t,, and py,(s;tg) > 0 when 1, >~ 0. Also it is
not difficult to show that P, (s)”is obtained by directly taking the [ ], part

in equation (C8) when Tg = O which is the procedure used in references 16
and 17.
System Response gu(s)

Let us consider the system response g,(s) of equation (14) with the feed-
forward loop closed, which is now decomposed as

9,(8) = g,,(8) *g,,() (€29)

where
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Guo(8) = g(8) - £ (8)p, (&)} (8) (C302)

n

Gup(e) = -£ ()P, (s57g)u ] (8)e 9 (C30b)

Apparently, both guo(s) and g,,,(8) have a factor da(s) in their denominators;
these factors are cancelled out with numerators. This is shown as follows.
Since C'l(s)po(s) is a part of v(s) when Tg = 0, and hence satisfies the

Wiener-Hopf equation (see eq. (21)),

[A(s)C™ 1 (s)p, () - B(8)], = 0O (€31)
Executing the [ ], operation at & = -sg4;, =1, . . ., ia, reveals that
(7 @)po(e) - gy, (16 + 80)] ., . = 0 (C32)

which assures that the factor dgy(s) in the common denominator of equa-
tion (C30a) is cancelled out by its numerator. Thus, one can rearrange equa-

tion (C30a) as

(C33)

where guon(s) is a polynomial in s, the order of which is not greater than
that of (s + wg/V§) -+ d,(s). Next, gup(s) of equation (C30b) has a factor

T ky
£ (s) l[ Bk . ka(O) ]Q‘Tgs

T . =
£ (S)pp(S’Tg) ~ dy(s) 8 + 8y, &+ Suk

k=1
B Yo (Tg)
S|Pk kg (C34)
8+ Sy 8 * Suk
By virtue of equation (C25b), it can be shown that equation (C34) is finite at
§ = -847, and © = 1, . . ., 74, which means that the denominator d, (s) in

fT(s) is cancelled by the same factor in the numerator of gup(s). Thus, one
has a form ‘
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Ky
~TgSyuk _TgS
_ T i 1 - g 9°UK o7°g
Jup(e) = 'EEE £ (5x) * Bok -8 + 8,

TS
ka(O) - ka(Tg)e g
&+ Sur

+fT(—suk) wé;(s) (C35)

Filter Gains

The following is obtained after straightforward manipulations. As to the
basic part of the filter, partial fraction expansion of equation (29) with a
substitution of equation (C28a) results in

1
— 0
Hr
c0=_1_ n2+(1-i)wan1
°ge 1 V3 -
0 TN
e
ku
1
+ - 0 ( _.__) - 8 ] C36a
%:I[Yok Ypr ( )][ 7z) Ya uk , ( )
1 -/—U_)i— 0
3 u
1 il ( 1)
= = 1 - ——
w7 o, Wy " /3) "9
0 1- =
He
2 k - 0
R (1 - L) uy2 3 Yor = Ypr') (C36b)
V3] 9 k=1 Syk - wg//g
S
L - 7?E 0 2
il (w, - 8, 4)
K = 5 M Tor - (@] (@360)
s = " k
0 1 - 7?E 3o
e
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where ¢, and ¢, are real, and ¢ is either real or complex conjugate. The
same procedure is executed for the additional part of equation (32), and then

one has

1
—_— 0
Uf _
Ix(tg) = - é ) " Suk [ka(Tg) + Boy € Tgsuk] (C37a)
e 0 =
Suk
1 H Mf ° (g + s,2)?
rk = ‘é— e * —_L—_‘E)‘lz‘"“ ° Bok (C37b)
e uk 8,1 +
0 1+ uk /3
He
8
) 1 - uLk 0
1 1 2 r
tr(t,) = — < - ———> w
g 0ge /g g 0 1 _ .S;Lk
e
~TgS,k
B e JU Y, . (t)
x | 2ok 5 + Pk g (C37c)
suk + /— Suk - -/-—g
Suk
1 ) W;F- ° (wg - 8,1)°
sk (1g) = 57— C I () (c37d)
cge 0 1 - st 7’1;— - Suk
He

where Iy, Ty, tz and s; are again either real or complex conjugate.
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Figure 1.- Gust alleviation system.
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