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ABSTRACT

The vapor pressure of water over 2:1 by weight mixtures

of 3-M hydrochloric acid and Al 2 O 3 is reported as a function

of time over a 180 minute reaction period at 31°C. The Al2O3

sample is one of high surface area furnished by NASA Langley

Research Center.
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I. INTRODUCTION

Brief Review of Aqueous Aluminum Chemistry

The various oxides of aluminum have been studied in minute

detail with extensive results, especially since the Hall Process

rendered the most abundant metal in the earth's crust a commod-

OXIDES ity at ca. 25C per pound.(1) The gibbsite form of the trihydrate,

Al 2 0 3 . 3H 2 O 1 is the most common crys t alline form of hydrated alumi-

na. It is soluble in aqueous sodium hydroxide or aqueous strong

acid, yielding solutions of sodium aluminate, Na+ [A1(OH)4] and

aluminum salts, +[A1(OH Z ) 6 ] 3  3X- , respectively.

Anhydrous alumina, Al 2 0 3 , exists in several crystalline

forms, the most common being the a form, known as alundum. In

massive form, that is, large crystals formed from molten Al2031

it is hard.enough to scratch glass easily. It is the matrix of

such ornamental gems as ruby and sap phire, the colors being im-

parted to the gem by trace impurities of other metal oxides.

Alundum is not soluble in ordinary aqueous acid or base, although

it is dissolved slowly by aqueous hydrofluoric acid or alkali

:petal salts thereof. It is much more slowly dissolved by hot,

aqueous NaOH. Alundum is attacked somewhat more rapidly by

anhydrous, fused sodium hydroxide.

Hydrous alumina is the ill-defined substance obtained by

the rapid and complete neutralization of an aqueous solution of

either [Al(OH Z ) 6 ] 3+ salts or [A1(OH) 4 ] salts. Its composition

is Al 2 0 3 • xH 2 O, where x is a large number, impossible to reproduce

precisely. Sometimes called "aluminum hydroxide", hydrous
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alumina is amorphous and of very low density. It loses water

easily, in fact does so upon standing in the aqueous environment

from which it precipitated. The aging process is accompanied by

a decrease in x, an increase in density, and a slow ordering of

the solid, as seen by broad x-ray powder diffraction lines.

Freshly precipitated hydrous alumina is very easily soluble in

aqueous sodium hydroxide or in aqueous strong acid. All oxides

of aluminum in the 3+ oxidation state are white, if pure.

Sodium aluminate, Na+[Al(OH)„] , is soluble in water, and

is the all important "solution" step in the Bayer Process, by

which alumina is produced as the feed material for Hall Process

r

Ir

SALTS	 cells. Alumina is leached from bauxite ore into solution by

sodium hydroxide. Upon cooling and standing, the solutions of

aluminate deposit gibbsite, which is heated to give the anhydrous

alumina. Note that the sodium hydroxide is regenerated and the

solution from which the gibbsite is deposited is recycled to

dissolve more alumina, after appropriate makeup.

Na+ [Al (OH) ., ] + H 2 O	 > Na+ OH + 1/2 Al203-3H20 + H2O

The stability of aluminate solutions is a complicated function

of at leas t three variables, excess sodium hydroxide, aluminum

concentration, and temperature. As well the [Al(OH)„] - ion is

not monomeric. ItE. degree of aggregation, N, in the formula

[Al(OH)„]N
N-

is a function of unknown variables. Solutions of

aluminate at ordinary concentration levels, are stable only at

very high pH, i.e., 12 and greater.

Salts in which aluminum forms a part of the cation(s) are

much more common. A few examples of such common salts are:

z



A1C l 3 • 6H2 

Al 2 (SO4) 3-9H20

A1(NO3)3.9H2O

All are white, easily soluble in water, yielding acid solutions.

The first hydrolysis constant of the [A1(OH 2 ) 6 ] 3+ ion is 10-'

Thus a 0.10-M A1 3+ salt solution results in a pH of 3. As the

PH of A1 3+ solution is raised aluminum solute isopolycations

result, pA1 3+ + gH 2 O	 > [Al 
P 
(OH) 

q 
] 3p-q + qH+	As OH , CO3

HCO 3 or other effective aqueous base is added to A1 3+ solutions,

[A1(OH)n],NN
-n0

 esults, such that the pH does not increase sensibly

Cup to n	 3.0, at which point hydrous alumina precipitates. Fur-

ther addition of base results in large increases of pH into the

basic region and the dissolution of the precipitate as [Al(OH)4] .

It is actually possible to add base to A1 3+ solution up to n = 2.5

without obtaining a precipitate, although the stability of the

resulting solutions varies enormously. A white, solid substance

of the empirical composition Al 2 (OH),Cl • xH2O (x = 2) is obtained

upon evaporation of such solutions. Identical or similar sub-

stances are obtained in at least two other ways:

(i) 5A1 (s) + A1C1 3 • aq	 3Al2(OH)5C1•aq ., and

(ii) 5Al 2 O 3 • xH2O + 2A1C1 3 aq	 > 6Al2(OH),C1 • aq .

The resultant white solid, or solutions thereof, are commodity

chemicals, used in at least two practical applications, as anti-

perspirants (3) and as clay-stabilization reagents in oil wells.(4)

The details of just what solute particles exist in solutions are

not agreed upon as yet. However a number of facts about such

solutions have been established. Thus 2-M solutions of

I
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Al 2 (OH) 5 C1 are stable at room temperature indefinitely.

Upon simple dilution to ca. 0.1-M or less the solu t ions depos-

it, slowly, crystals of gibbsite with a concomitant lowering

of pH. These facts are best described by the reaction:

+0.5
6A1 (OH^ .S 	5A1 (OH) 3 (s) + A13+

That such solutions are not at true equilibriwn is certain.

Some idea of how far from equilibrium these isopolycation salt

solutions are may be shown as follows. At room temperature the

Ksp for gibbsite is - 10- 34 = [A1 3+ ][OH ] 3 . At pH = 4, the

concentration of hexaaquoaluminum ion should be - 10 "-M. Yet

2-M solutions of the basic aluminum salt persist for long periods

of time. The rates at which such polymeric solutions change

and the nature of the ultimate products are influenced profound-

ly Ly temperature, ionic strength, total aluminum concentration,

and the nature of the anion present.

Booster rocket propellants will be Al + NHIIC104 + blinder

with resulting exhaust of Al 2 0 3 + N 2 + HC1 + water + traces of

several other substances.(2) The possibility of chemical. reaction

IMPACT among the Al 2 0 3 , HC1, and H2O need be considered. Were the Al203
UPON
SHUTTLE massive a-Alz0 31 little chemical change would be expected. How-

ever the Al 2 0 3 is high surface area, very small particle size,

and its reactivity, as such, will not be negligible. The

particles serve a ,- nucleii for the condensation of liquid

water, in which HC1 is very soluble. HC1 • aq in contact with

high surface Al 2 0 3 is expected to result in chemical reactions.

If



Sequential possible reactions are:

1. H 2 0(g) + Al 2 0 3 (s)	 > A1(OH) 3 surface reaction

2. Al 2 0 3 (s) + H 2 0(g)	 > Al 2 0 3 (s) + H 2 0(l) (on the Al 2 0 3 (s) )

3. HC1(g) + H 2 0(1)	 > HC1•aq

4. HC1 • aq + Al (OH) 3 (s)	 > A1C13•aq

5. A1C1 3 • aq + Al(OH) 3 (s)	 > Al(OH)nCl 3 _n • aq .

6. Al (OH) nC ^ aq	 > Al (OH) 3 (gibbsite) + A1C1 3 • aq

The extent to which 3, 4, 5, and 6 take place will determine

the vapor pressure of water in the system. Since the vapor

pressure of H 2 O is a parameter in the cloud stability, a de-

tailed knowledge of the chemical behavior of the Al203•HC1•H20

exhaust cloud system is desirable.

It is likely that thorough understanding of the chemical

details outlined in steps 1-6 will emerge slowly, i.e., over

years, if not decades. Thus it is considered expedient to

undertake experiments designed to obtain direct measurements of

the vapor pressure of water over ranges of Al203•HC1•H20

mixtures such as might be expected in the exhaust cloud.

S



II. EXPERIMENTAL PROCEDURE

t
A Hewlett Packard Model 302B Vapor Pressure Osmometer was

available in the Chemistry Department. It had never been used.

A	 ?actually it was a replacement for an earlier H-P VPO which had

been destroyed in a fire during the summer of 1972. The VPO

was placed in operation in accordance with the operating and

service manual. Routine performance checks were made and spare

parts were ordered, but no thorough check of the operation char-

acteristics was undertaken until we moved into the new building,

on or about 1 September 1976.

Reproducible data on standard solutions from week to week,

F
even from day to day, were not possible unless the instrument

operating temperature was several degrees above the lab tempera-

ture. Similar limitations have been reported by others.(5) Ac-

cordingly for the data reported herein, the operating tempera-

ture was 31°. The Variable Temperature Controller 18575A, an

option on the VPO Model 302E - not available on the original

VPO 302, ;wade it possible to set our operating temperature at

any desired temperature rather than the individual fixed tem-

perature thermostat probes used with the 302.

New Rogers Hall (the new chemistry building at William and

Mary) uses deionized water rather than distilled water, the

former being f,!.ped from a central supply to each lab. Standard

solutions prepared from deionized water were found to give

different VPO readings from replicate solutions prepared using

distilled water. All data reported herein are for solutions

prepared using distilled water.

I
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	 The VPO output is microvolts of bridge imbalance and is

proportional to AT, the difference in temperature between two

F
	 thermistor beads. In our case the reference bead is always

wet with water and the sample bead with the sample solution.

The usual protocol for a sample reading is as follows:

1. Both reference and sample beads washed with 4-5

drops of solvent.

2. Leave one drop of solvent on each bead to check

zero of bridge balance.

3. Sample bead washed with 3-5 drops of sample.

4. Place drop of sample on sample bead.
K

5. Record VPO readings at 2, 3, 4, and 5 min.

intervals from the time the drop was placed

on the sample bead.

6. Wash sample bead with 3-5 drops of solvent.

7. Repeat steps 3, 4, 5 to get 2nd set of values.

8. Wash sample bead with 3-5 drops of solvent.

9. Repeat steps 3, 4, 5 to get 3rd set of values.

10. Repeat step 1.

A thorough check of instrument performance was undertaken using

3 series of standard solutions:

KC1 ca. 0.10, 0.25, 0.50, and 1 molal

NaCl ca. 0.10, 0.25, 0.50, and 1 molal

HC1 ca. 0.10, 0.25, 0.50, 1 and 3 molal.

The standard solutions were prepared gravimetrically, using

c. p. samples of KC1 and NaCl, dried at 100°C. The HC1 solu-

tions were prepared to approximate strength from c. p. cone.

I
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HC1 and stan3ardized by titration.

Large scale p',ts of m (molality) vs. a  (activity of

water) were made for the NaCl and KC1 solutions, using data

from Stokes and Robinson.(6) From these graphs a  values

were read for the individual solutions. 4 significant figures

were carried although we believe they are good to 3 only.

Assuming p = p 0 • aw is is first necessary to know p0 .

It was obtained by interpolation between values at 30 and 35°

given on p. 457 of ref. 6. The figure used is p 0 = 33.8952 mm

Hg (31°C). Ap values for individual solutions were calculated

as p0-p. A large scale plot of .,p vs. VPO readings was made to

use as the standard curve from which to convert VPO readings to

Op values for experimental solutions. A point on the Ap vs.

VPO plot was obtained for the ca. 3-M HC1 solution by reference

s	 to other data.(7) The data were available for 10% and 14% HC1

Eby weight (our sample was 10.42%) anJ H 2 O v.p. at 30 and 35°C.

The Ap value for that solution was calculated by dual interpo-

lation.

The first sample of Al 2 0 3 to be studied was received on

October 2, 1975 from Mr. W. R. Cofer, III of the Space Applica-

tions Technology Division of Langley Research Center, NASA. It

was packaged in a T 34/12 weighing bottle, labelled "Al 2 0 3 #51

prepared 7-25-74." We used the sample as it was received.

Into each of nine small, rubber capped vials was weighed

accurately ca. 1 gm. of Al 2 0 3 . At time zero ca. 2 ml of ca. 3-M

HC1 was added to each vial, and each vial was stoppered and

reweighed. The vials were shaken vigorously and allowed to

, k 	 8



stand. At 20 minute intervals ca. 0.5 ml of the liquid was

sampled from a different vial for VPO measurement. The

standing samples were swirled every 20 minutes. Thus sample

one had been swirled once and represented the results of

Al 2 0 3 • HC1 • H20 contact for 20 min., sample two had been swirled

twice and represented 40 min. contact, etc. Readings were

taken by the following protocol:

1. 3 successive drops of 3-M HC1 on sample bead.

2. 4th drop of 3-MHC1 on sample bead.

3. Read VPO at 5 min. after addition of 4th drop.

4. Wash sample bead with 3-5 drops of solvent.

5. Add 3 successive drops of sample 1 solution

to sample bead.

6. Add 4th rop of sample 1 sol'n. to sample bead.

7. Read VPO at 5 min. after 4th drop.

8. Repeat 5-7 using sample 2.

9. Check VPO for 3-M HC1 (blank)

10. RE-peat 5-7 for sample 3, etc.

Ap values for each of the nine vials were read from the

large scale graph of Ap vs. VPO.

Two additional experiments were conducted. 10th and 11th

sample vials were prepared. For No. 11, after zeroing the

instrument with solvent on sample bead, a drop of 3-MHC1 was

placed on the sample bead, followed by 3 drops of sample solution,

then the 4th drop. VPO readings were recorded on that drop for

ca. 30 min. For No. 10 the regular sample protocol was followed,

that is, the sample bead was washed with 3-5 drops of solvent

^1L
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prior to making the sample reading, which in this case was

the 4th drop of sample and readings recorded for ca. 30 min.
r

III. RESULTS

A. The reproducibility of VPO measuren3nts from time to time

is shown in Table _T , in which are listed the actual solu-

tion molalities and VPO readings. The VPO readings aie

usually the average of the 5 readings.
i

I B. The Ap vs. m calculations for the average values of each

molality of each standard (NaCl, KC1, and HCl) are shown

in Table II. The data plotted in Figure 1.

j	 C. Vapor pressure lowerings, Ap values, for the nine Al203•HC1•aq
i

samples were read from a large scale plot similar to Figure 1,

using the VPO readings. Blank readings were made using 2.999-

M HC1 approximately every third sample. Tne results appear

in Table III, and are plotted in Figure 2.

D. The VPO readings on Samples 10 and 11 follow:

Sample 10	 Sample 11

time (min.)	 VPO(UV)	 time (min.)	 VPO(PV)

	

7.8	 160.9 x 100	 8.	 177.3 x 100

	

10.3	 169.0 x 100	 10.8	 179.9 x 100

	

13.2	 167.9 x 100	 13.2	 178.5 x 100

	

16.2	 167.7 x 100	 15.5	 177.3 x 100

	

19.0	 168.8 x 100	 17.8	 175.0 x 100

	

21.7	 168.8 x 100	 20.2	 176.8 x 100

	

22.7	 169.1 x 100	 23.5	 172.9 x 100

	

27.0	 170.	 { 100	 26..E	 174.3 x 100

	

29.3	 169.7 x 100	 31.0	 176.8 x 100

10



IV. CONCLUSIONS

A. The vapor pressure osmometer is well-suited to the task

of measuring the vapor pressures of the reacting systems

Al203 • IiCl • H 2 O .

B. For the one sample of Al 2 O 3 tested thus far, the reaction

with 2.999-M HC1 (ca. 10% HC1 by weight) is such as to

result in an increase in water presstl.-F from ca. 28.2 mm

Hg (2.999-M HC1) to ca. 29.2 mm Hg.

C. The first sample data point in Figure 2 and Table III is

an artifact of the protocol used in light of results re-

ported under D. The obvious explanation is that the

samp le bead requires more time (in terms cf conditioning

drops) to give a correct res-oonse when being changed f: 	 a

pure solvent wash to a sample in which the solvent a.:tivity

differs so much from unity.

V. FURTHER WORK

A. Different samples of Al2O 3 and different con<,ntrations of
h

HC1 will be investigated for chemical interaction using the

same technique.

B. Electron microscopy will be used to at^.empt the detection_

of changes in the Al2O3 concomitant with the chemical

interaction.	
1

Experimental work done by Mrs. Ann Grinnalds and recorded in

it A-37 research notebook No. 1.

Respectfully submitted,

J ^,

S. Y. Tyree, Jr.
Professor of Chemistry
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