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. TECHNICAL MEMORANDUM X- 64987

ATMOSPHERIC TRANSMI'SSION OF COZ LASER RADIATION
- WITH APPLI CATION TO LASER DOPPLER SYSTEMS
_l. INTRODUCTION |
| Marsha]l Spaoe Fiighf Cerifer (MSFC) 1155 been deveibpiiﬁg loeer Dopplei' .
systems for remote measurement of wind speed and turbulence for over a
- . decade. Some of these systems designed to operate over long atmospheric paths
- are affected by the attenuation due to the atmospheric gases, particulate mattel, o
and turbulence. The transmission losses due to the molecular gases and
aerosols are considered in this report, The effects of atmospheric turbulence

' on the performance of the 1aser Doppler system will be considered in a later
publication,

The transmission losses are characterized as linear or nonlinear to .
‘distinguish between laser power-independent and power—dependent processes.
We consider the linear transmission losses. The infrared 10,6 pm spectral
region lies in one of the atmospheric transmission windows and is the wavelength
- at which CQO, laser operates efficiently, -An atmospheric window is a spectral -
region over which the absorption by the permanent gases is relatively weak and
is usually chosen for atmospherm propaga.tlon to keep the absorptmn losses to
a minimum, _

The atmospheric windows in the infrared lie between the strong bands of
carbon dioxide and water vapor which are the two major absorbing gases in the
" infrared. Figure 1 shows a low resolution absorption spectrum of solar radia—

~ tion at ground level from 1 to 15 pum |1] together with the spectra of various
o atmospherm gases from the laboratory measurements for comparison and the

| ‘operating wavelength region of HT*, DI**, and CO, Iasers. Except forozone and.
water vapor, the other absolbmg gases are generally uniformly mixed.

. - None of the mndows are completely transparent as a result of molecular
':'absorptmn and scattelmg by particulate matter. The CQ4 laser lines have a o
typical line width of 2x 1078 jim or 60 mHz while the absorption lines of atmos-
pherlc gases are several orders of magmtude W1der \IcCl_ntchey_a_nd Selby [2]

* Hydrogen I‘luorlde
** Deuterium Fluoride



" huve calculated the atmospheric transmission in the 10,6 pm region for a set of
stundard atmospheric conditions. Their results are shown as two-way losses in
~d}3 for the ATC Rﬁ‘ Mid-Latitude Summer Hazy Atmosphere for some P-lines and

R-lines in Figure 2. ‘The transmission logses for several lines at 3.5 km altitude
for a 10 km horizontal path are shown in Table 1.

TABLE 1., TRANSMISSION LOSSES

~Laser Line ~ | Loss (dB) ~ |  Laser Line ‘Loss (dB)
Cpar | 2 Pd ~ 3.58
P20 | 7.85 | . R12 6.8
P18 o | 10,4  Re2 | 63
P4 | a2 R3O 4.6
Ps | 464

*P40 and RO lines have the least transmission loss.

The atmospherw conditions are varmble and deviations fwm the st: mdard
' AI‘CRL models can result in large errors in the absor plion coefficient. The
purpose of this report is to provide the absorption coellicient of cach of the

" molecules relevant for CO, laser radiation for various pressures and tempera-
turcs of intevest in the lower atmosphere., The transmission may then he
calculated at the prevalllng almosplu_mc condi tl()l]..:.

'I‘he pulqed laser Dopp]er system devnlopccl b; ‘\IS]‘C 1‘01 the detection
and measurement of atmospheric turbulence uses a CO. luser hcam propagating
-in the atmosphere over several kilometers. The at“musphonc data obtained

" during the flight tests at Edwards AFB are used to caleulate the transmissi.m
loss which the system experie ces and are compared with the measured signal-
to-noise (8/N) ratio. The transmission loss is found to be bl”Tlll]Cd]'lt and

.‘serves to explain a large part of the losses leading to the 1/R? fallolf of the -
measured S/N values insiead of the theoretical 1/ R* falloif where R is the range,
The transmission loss may be reduced by operating at o different infrared wave-

length, . The Py(8) line at 3.8 pm of the DF laser experiences a transmission
loss whlch is much less ﬂl:m that of the 70, laser,

_*Air Torce Camb_ric_lge R_esear_ch Laboratories



1. CALCULATION OF THE ABSORPTION COEFFICIENT

. The molecules active in the 10 ym region of the infrared are methane,
CHy; ethylene, CgH,; nitrous oxide, N,O; ammonia, NHy; Ozone, Og; nitric acid,
- HNOgy; carbon dioxide, CO,; and water, H,O. Excluding water vapor; nitrogen,
oxygen, argon, and carbon dioxide are the four major constituents of the
atmospheric gases. The remaining gases constitute less than 7, 004 percent of
- the total by volume. It is assumed that all of the gases e.xcepf water vapor and
ozone are uniformly mixed by volume in the atmosphere.

The absorption coefficient for each line as a function of frequency is

“assuimed to be described by the Lorentz velation

5 Se
Tl (v - )2 + o)

k(v) = (1)

~ where v, (em™) is the resonant frequency, S (cm~!/molecules em™) is the
line intensity per absorbing molecule, and o f crn"l) is the Lorentz line width
parameter. The validity of equation (1) to describe the correct line shape in
_the wings has been in doubt specially for carbon dioxide and water vapor. The
Lorentz shape overpredicts the wings for carbon dioxide while underestimating
for water vapor.

The line intensity is independent of pressure but is dependent on tempera~

ture and is given by

Q (T ) Q@ (T ) | 1'. 439 1-;."('1‘ -T)
( )MS(T) Q(T) Q(T exp

TT
s

_ whele E" (cm 1) is the enelgy of the lower state of the transilion, Q and Q
are the v1bmt10nal :md rotational par tition functions, respectively, and T is
standard temperature, 296 K.

The half-width of the line depends on the pressure ind lemperafure as
follows:

——



where n is usually assumed equal to 1/2. n= 0.62, suggested by Benedict and

Kaplan [3], is used for water vapor. M e'lsurementq by Ely and MeCubbin [ 4]

at high tempevatures and by Tubbs and Williams [5] at temperatures lower than

the room value suggest that the half-width variation of carbon dioxide is closer

- to n=1 than n= 1/2, The exact dependence is uncerta n-and appears to depend

~ on the rotational quantum number of the line. I the absence of more accurate
“information, we use the usual n= 1/2 in this work for carbon dioxide. -

The four absorption linc parameters wy, S, o, and k' have been listed
for the seven molecules H,0, COa; Oy, N0, CO, Cliy, and Oy by McClatchy
et al [6] from the existing information and these are used here [or the line hy-
line caleulation of the absorption eoefficient at the laser line {requencies.

The atmospheric carbon dioxide and water vapor are the major attenua-
- tors at the COy laser line frequencies. The concenirations of the trace gnses
"and pollutants are too low to have any significant effect., A simplc eslimate may
be made as follows. A% the line center, the absorption coefficient is K = 8/m
per molecule. Tor a concenfration of 1 ppm, the number of molecules in 1 km
" path is- apprommately 1018, Tor §= 10" and #v= 0.1, onc obtiing K= 10~
¢/km where c is the number of ppm. Most of the trace gases have a concentra-
tion ¢ of unity or less, For instance, ozone has a concentration of npproximately
0,02 ppm at sea level and 0, 2 ppomv at 25 km. NyO has a concentration of 0.28
ppm. The effect of the trace gases is thus very small compared to CO; and Hi().
Among the trace gases, N30 has several lines in the 10 pm region and its ofl'ect
has been calculated to give an idea of its contribution to the absorption. At
altitudes higher than 12 km, ozone abgorplion may hecome important specially
cat the R-lines of COy laser. I addition to the molecul-n' ahbsorption, scaliering
and 'leOl’pthl’l due to the aemsols must he included in obtaining the total
absorption coeflicient. :

1. ABSORPTION BY CARBON D10XIDE

The absorption coefficient at the center of P20 lascer line by the atmos-
pheric carbon dioxide has been caleulated hy Yin and Long [7] and they gave
polynotial fits to the absorption cocflicient as a function el allitude for two



" model atmospheres. The wings of neighboring lines also contribute to the
absorption at any laser line frequency. In this work,lines within +20 cm™! are
assumed to contribute to the absorption, A concentration of 330 ppm of CO, In

" the atmosphere is assumed. The effect of including the wings of the neighboring
lines is approximately an inerease of 3 to 5 percent at the P20 line, Since the
CO, laser oper.ies efficiently around the P20 line, the absorption coefficients
for PlG P18, P20, P22, and P24 lines are calculated for temperatures and
pressures of interest in the lower atmosphere. The effect of temperature on
the absorption coefficient may be seen from Figures 3 and 4, The absorption
coefficients for P16, P18, and P20 lines are approximately the same at 300 K

- and they separate out at 200 K. The absorption coefficients are almost indepen~
dent of pressure and the slight pressure depentence comes from the line wings
as the absorption at the line center is independent of pressure. Figures 5
-through 9 give the absorption coefficient at the i..’ividual laser lires for
pressures from 100 to 1100 mb and temperatures from 200 K to 300 K,

IV. ABSORPTION BY WATER VAPOR

Many weak absorption lines of water vapor occur in the 10 pm region,

On the basis of these lines, there should be an almost complete transparency in
this region for reasonable atmospheric water vapor content. The measurements
of heat radiation of the sky gave higher values of total radiation than would be
expected due to the rotational lines of water vapor. To explain the observed
higher emissions, the existence of a water vapor contimmm in the 8 fo 14 um
atmospheric window and beyond due to the wings of strong lines located in the
bands on either side of the window was first suggested by Elsasser [8] in 1938.
The existence of continuum absorption by water vapor has been well established
now due to the several experimental observations on solar spectriun and in the
laboratory [9~14]. However, the theory based on the usual line shapes has not
heen successful in explaining the experimental observations. Thus the calcula-
tions have to be based on the availahle experimental results.

.'McCoy, Rensch, and Long [14] measured the absorption of the water
vapor continuum and suggested the empirical equation,

K = 4.32 x 1078 p(P + 193 p) km™! . (2)

where p is the partial pressure of water vapor and P is the total pressure,
both in Torr, This relation has been widely used to estimate the water vapor
absorption. Equation (2) takes care of the pressure dependence and is valid at
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the room temperature, The conlinuum absorption has been observed to decrease
with increaging temperature and vice versa. _

- Bureh [15] measured the continuum absorption coefficient for pure water

vapor at three temperatures and his results are shown in Figure 10, The points

- marked are the revised values and are 10 to- 15 percent less than the solid curves
obtained in the earlier measuremenis [16]. The rapid decrease in the absorption
coefficient with inereasing temperature is a prominant feature of these results.
The association of water molecules due to hydrogen honding (dimerization) pro-

- posed by Varanasi, Chow,.and Penner [17] predicts the trend of observed
temperature dependence of the continuum ahsorption coefficient.

: For atmospheric transmission studies, we are interested in temperatures
less than 296 K. Since no data are available at low temperatures, an empirical
extrapolation suggested by Burch is used in this work:

F’;(_T)=C;(2ss)(-2—r_%9)7 i | (3)

where C° is the absorptirn coefficient, molecul(_z'1 em? atm™, and 7 is to

be determined from the experimentsal values. At 10.6 ym, we find that 7= 5. 300
for T=358K and 7 =5.25for T =392 K. 7 appears to decrease slightly with
temperature, These 7 values are for temperatures above room temperature;

no laboratory measurements are available for temperatures below room tem-
perature. One value of the absorption coefficient at T = 283 K is 10 g1 cm?
atm™! from Figure 8 of Bignell's [13] paper from the solar spectrum observa-
tions. The magnifude of the error is unknown here. This value corresponds to
7=5,1at T= 283 K. Thus the value of 7 appears to remain close to 5 even
below T'= 296 K. We assume 7= 5,25 in this work.

There is also the effect of foreign gas broadening on the continuum
ubsorntion. The results of McCoy, Rensch, and Long give CB" = 0,005 Cs“

at room temperature. The continuumn ahsorption coefficient is given by X =Cu
where u is the absorber thickness expressed in molecules em™ and C is
given by

C=Crop+CgP (4)



‘where p is the partial pressure of water vapor and P is the total pressure,
both in atmospheres. The partial pressure of water vapor muy be obtained from

P =—'-,'-4_.56><'1.0f5wT1' . o | (5)

- where w is the number of gm-cm™%/lm of water vapor. The water vapor is
usually expressed in units of precipitable centimeters which is the same as
gm-cm™?% The absorber thickness u is given hy

u = 3,34x 109 w =7—£$—:[5'—-E molecules/em? . - (6)

The continuum absorption may be wrltten as follows after combmmo‘ equatmn
(3) to equation {6): : . x

MR h 2\ D
K o L88x 107 (296

T T

We used Co = 2.2 10~% molecules™! cmz‘atm"“1 at 10,6 pm. Equation (7) is

used in tlus work to calculate the water vapm continuum absor ption coefficient
for all COy laser lines shown in Figure 11,

In addifion to the continuum,  rotational lines of water vapor ahsorb in the
10,6 pm vegion. Line-by-line calculation is performed for lines which are with-
in 20 cm~! from the laser line. The line parameters tabulated by McClalchy
et al ave used in these calculations. The effects of varying the pressure and
the temperature are shown in Figures 12 to 18.

V. ABSORPTION BY NITROUS OXIDE
Nitrous oxide has several lines in the ld.pm region. . The absorption due

to these lines at the laser line frequencies is obtained by a line-to-line calcula-
tion assuming that lines within 20 em™! contribute, The concentration of N,O

.25 L |
) p(p+ 0,005 P) km™ . =~ = (7)

e et i 0 i



e iséééuﬁiéd to be 0. 28 ppm.-

The results are shown in Figures 19 to 25 for - .
- various presstres and temperatures. It may be seen that the absorptlon of N-;O
1s apprommately two orders of magmtude less than that of COs.

VL COM‘PAR[.-SQN WITH | AF CRL CA‘LCULAT I-ON": S s

: The presenf: calculahons are compared in Table 2 with those of McClatchey
-and Selby [2] for the AFCRL, Standard Atmospheric Models at sea level. Our '

EE _.results have been w1thin +20 percent of AFCRL numbers.

TABLE 2. COMPARISON WITH THE RESULTS OF MGCLATCHEY AND SELBY o

Huffaker [18, 1

: Mldlatltude M1dlatltu.de , 'Suba:rcttc
. 'Tropical . | -~ Summer . Winter Summer
AFCRL| Present| AFCRL | Present| AFCRL | Present| AFCRL | Present
| P16 | 0.5722|0.5481 | 0.3527 | 0,8728 |0.07466(0,00775| 0,1953 | 0,2274 -
P18 | 0.6346| 0.4972 | 0. 4146 0.3377 [0,1223 {0,0907 {0,2548 | 0. 2065 |
‘P20 | 0.6094 | 0.5051 | 0,3852 | 0.3419-|0,09575| 0.08964| 0. 2238 | 0. 20'?8
p22 | 0.6058 | 0.4842 | 0.3867 | 0.3266 [0.1021 |0.084 |0.229 _o 1973
| P24 | 0.6029 | 0,4796 [ 0.3815 | 0. 3216 |0,09554]0.0795 | 0.2223 | 0,1921
Vi

APPLICATION TO PULSED LASER DOPPLER SYSTEM -

, 20, 21] discussed the various laser Doppler systems
“which are being developed at NASA/MSFC. - The pulsed laser Doppler system
utilizes the natural particulate matter of the air for long range atmospheric
applications. It consists of a coherent CO, laser operating at 10,6 um and

“trangmits 140 pps adjustable in width from 210 10ps through a modified

Cassegrain telescope. A homodyne receiver collects the back scattered laser

-+ processing electronies.

radiation which is detected by a cooled infrared detector and processed in signal
: This system was carried aboard Ame’s Convair 990

- airplane and has been flight~tested at Edwards AT B. ‘The ahnospheric tempera—
ture, dew point, and altitude are measured glong the flight path in addition to



- the §/N value, partlcle coneentratmns, efc. The values obtamed during the
descent of the airplane against the uniform target of Rogers Dry Lake are used
+to culeulate the transmission loss for five P lines and the effect on the 5/N ratio.

* The §/N ratio for the pulsed laser heterodyne system is given by [19]

otngngn, &

T
] ) F
) 9. ’H'd ]
16 h v[R (47\)

)

.v for reﬂectmn agamst a target fﬂlmfr t‘ne bea:m whlch is foeusecl 1;3 mfnuty The

. symboals and their values are as follows

. ‘Parameter T ~Symbol - ¢
- -Signal-to-Noise Power Ratio ' S8/N
‘Laser.Pulse Energy ~ . . . e B
Modified Target Cross-—sechon S ot
- Target Range - ' ' R
- Aperture Diameter _ - d
System Efficiency - o g o
Detector Quantum Eﬂieienc’y ng
Atmosphenc T1 ansnussmn - 7
-.Wavelength T ' IR o 'Aa

Energy per Photon ' hr

Valie .

S12md

0.05 ster!

10 in,

Lo .-0..'05_ RSN

0, 25

: 1.06>< 1075 m

9 x 1078 J

- The atmosphemc transmlsswn loss Na is calculated from

R
na = e}‘{p‘af[ 2KA{R) dR . =

“The range is converted into altitude by the Telation

H = 1. 97]{ft + R Sin 70 . :

 for the flight data of Tanuary 1973,

ey

(10)



The loss in S/N ratio doe to atmosphenc absorptlon at any range is
calculated from SO _ _
H

- '-;(Iq ‘=s6s [ K(H) -

) _ sic
T’ Aftm. Loss . 1.97

sin 7“

it

b (11)

o The measured values of the static temperatur (’I‘ ) and the dew-point
B 1Lemperatv.l.:.e (T ) along the ﬂ.lght path at various altﬂ:udes for fiight BS, Run 18,

1/19/1973, at Edwards AFB are given in Table 3, The individual molecular

- absorption coefficients correspending to these atmospheric conditions are calcu~
14ted from the data of this report and are shown in detail for the P20 line. The
aerosol attenuation must also be added to obtain the total absorption coefficient.
The aerosol absorpuon and scattering coefficients for the hazy condition are
taken from Reference 2 and are shown in Table 4 together with the total molecu-
lar absovption coefficients for five P lines. The atmospheric two-way trans-
missio_n loss is calculated using cquation (11) and is shown in Figure 26 for the
five P lines. The P22 and P24 lines have lower loss and P16 and P18 lines have
higher loss than the P20 line. The magnitude of the difference is approximately
2'dB over a paih of 90 kft, Thus the variation from line to line is not significant

. around the P20 line. . The $/N ratio corrected for the transmission loss is shown

in Figure 27 together with the 1i1easuied values. If there were no atmospheric
losses, the curve fails off as 1/R* where R is the range. The measurements
indicate a fall-off nearly as 1/R3 Though {he CO, laser operates in the atmos-

e "pherm window, ‘the transmission loss is significant over long paths which may

explain a large_ part of the losses leading to 1/ R? dependence of the measured
S/N values. Some of the remaining losses may be of instrument origin and
“some due fo the atmospheric turbulence.

 The range of the system will improve if the large transmission loss can
be reduced.  One way to reduce the transmission loss is to operate atl a different
' mf:c'ared wavelength having less atmospheric absorption, This possibility is
“examined in the next section.
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TABLE 3 CALCULATION OF ABSORPTION COEFFICIENT FOR FLIGHT BS
RUN 18, 1/19/1973 EDWARDS AFB -

P20

P20

P20

. T2C T °C g2 20 KHzO KH?O Ion | KT:‘.im
H (lkft) s "0 CO, Continuum Lines (NQO km-1

2 39 '_'-0.6 C-7.9 0.05137 0.02773 ’ 0.000933 5>< 10-5 : 0.'0_8063‘
300 [ -3.6 | -9.4 | 0,04821 0.02633 0.000818 | 3.9x 107 | o. 0754
4,00 -8.6 [ -9.9 | 0.0424 -0,0309 7.1x 1074 3.5x 1075 | 0.07405
5,03 -10.5 | -11L.1 | 0.0404 0.0291 6.08 % 101 :’3:._3><, 107 | 0.07014
5. 98 -9.9 -13.8 | 0.04105 0.02016 | 4.75 ><71o-_4'._ 2.9% 1075 | 0.0817
6.98 | -12.3 | -15.3 | 0.03852 | 0,01877 3.95x 1074 | 2.6x 1075 | 0.05771
8.00 | -18.5 | -16.6 | 0.03729 0.0168 - 3.37x 107 2,4x 107 | 0.05445

8. 99 | -15.0 | —19.0" 0.03579 0.01348 | 2.61 x_10“4 2,1% 1079 o.b4953
10. 00 -16.4 | -20.8 | 0.03444 0.0115 2.13x 107 | 1.9x 107 | 0.04617
11,03 -17.3 -25.9 | 0,03358 0. 0068 1.29% 107 | 1.8x 1075 | 0.04053 |
12,02 | -18,5 | -27.4 | 0.03246 | 0.00568 | 1.07x 107 | 1.6x 107 | 0.03826
12. 96 ~19.5 | -34,2 | 0.03156 0. 00267 5% 1077 1.5x 107 | 0.0343
14,00 -19.8 | -45.0 | 0.03128 0.00075 | 2% 1077 1.3% 1075 | 0.03205 |
14, 99 ~20,7 | -42.3 | 0,03048 | 0.001044 | 2x 10° 1.2x 105 | 0,03156 |
16,01 | -21.3 | -40.6 | 0.02097 | 0.00127 2.4x 107 | 9.5% 107 | 0.03127




TABLL 4, ‘MOLECULAR ABSORPTION COEFTFICIENT OI‘ P LINES AND

AEROSOL ATTENUATION PER KM

_ Ka} 0‘2; '
H (kft) K (P16) K (P18) | K (P20} K (P22) K (P24) |  (aeroscl)
2,39 0.08503 0.08171 0.08063. 0.07512 0.07062 |  0,0248°
3.00 0.08227 0. 07658 0.0754 0..07032 0.06603 | = 0.02075
1,00 0. 08081 0.07542 0. 07405 0.06963 0.06572 | © 0.0153
5,03 0.:07634 0,07143 | 0.07014 0. 06585 0.06207 |  0.0114
5. 98 0.06717 0. 05303 0.0617 0.05747 | ©0.05363 | . 0.0085
5, 0% 0. 06275 0. 05903 0. 05771 0.05374 0. 05007 ©0,0057
3,00 0. 05394 0.05578 | 0.05445 | 0.05062 0, 04703 0.0036
4,99 0. 05354 0,050 | 0,04953 0.04588 0.0442 " 0.0026.
19,00 0.05024 0. 04751 0. 04617 0.04267 | 0.0393 | 0,002
11,03 0.04373 0,04157 0.04053 0, 03686 0.03352 | = 0.0017
12,02 0,04167 0.0.496 0, 03326 0.035 0,03175 0.0013
1295 0. 93736 0, 05563 00343 0.03125 0.02756 |  0.001
14,00 0. 3487 0.03339 0.03205 0,029 0.02579 0.00072
14,99 0. 0343% 0. 03258 0. 03156 0.02854¢ | 0.02542 0.00053
16,01 0. 03409 003238 | - 0.03127 0.02829 | 0.02521 0.00039




VIl LASERS WITH LOW TRANSMISSION LOSS

Infraved transmission of HF and DT laser radiation has been calculated

by Wang [23]. Spencer, Denault, anc_l Takimoto [24] have given experimental

‘resulis for several DT laser lines, - We will now use this informatioa fo caleu-

late the transmissicn loss for the laser Doppler system using HF and DI‘ laser
hnes and compare wﬁ:h the COq laser system.

The per[ormances of COg, HI‘, and DT laser Dopplm systems lookmg
down at a ground target from 5 km altitude at an inclination of 16° in ATCRL
~ Midlatitude Summer Atmosphere are shown in Figure 28, The curves without
~ atmospheric effects are calculated for the same values of the parameters '
ass'ming that the backscatter coefficient varies as 1/ A? [25]. The CO, laser
experiences a loss wlnch is 16 dB lug.,hel thfm that 1'01 DI‘ laser for a slant mnge
of 20 km. - : : :

The two-way transmission losses for a horizontal transmission over a

range 0£ 40-km at altitudes of 5 km ancl 10 km are given in Tahle 5.

TABLE 5. T\VQ-WAY HORIZONTAL TRANSMISSION LOSS FOR INFRARED
LASERS OVER 40 km RANGE

Loss in db
Laser, Line and Wavelength ‘ I = 5 km H = 10 km
COp, P20, 10.6 pm 19 | 7
| Hr, Py(8), 2.91um 4 0.6
DF, PQ'(B); 3.8um 1 0, 45
CO, Pg(5), 507 um 3.5 0,45

The DF laser has the least loss. ~ As the altitude increases, the magni-
tude of the loss reduces, At 10 xm altifude, HF, D7, and CO lasers have
apprommately the same loss, Tigure 29 gives the two-way loss as a function of
altitude for these lasers in AFCRL mid-latitude summer atmosphere using data
from Reference 23, DT laser is much better than the CO, laser for transmission
through the atmosphere. But due to the longer wavelength, the 20, laser system
has a larger coherence diameter than the DT laser system which may be an
important consideration for an operating system.
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X CON CLUSI O'NS

The. ahnospherlc tra.nsmztssmn loss has been. calculaterl for five P lines

R ; F(P16., P18, P20, P22, and P24y of the CO, laser using the January 1973 flight

‘test conditions. It is found that the transmission loss is approximately 7 per~
cent higher for P16 lines and 10 percent lower for P24 line compared to the P20

- 1ine, Thus the variation of the transmission loss is not ver y -significant-around

the P20 line which is the usual range of efficient operation of the CO, laser,
The P40 line or RO line have better transmission but it may not he possﬂ:ﬂe to

_-operate on these lines.

Comparison with other infraredlasers reveals that DF laser operating at
3.8 um on Po(8) line has the least transmission logs and that the CO, laser has
g hlgher loss at all alﬁtudes. However for altitudes higher than 10 km, fhe
magnitude of the loss is small, and no significant advantage appears to be gained
in choosing one lager or the other.

14
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