
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19760011531 2020-03-22T17:22:14+00:00Z



5
i

"Made available under NASA sponsorship

in the interest of early and wide dis-
semination of Earth Resources Surrey
Program information and without liability
for any use made thereot."

i

i4448^

E 7. 6 1 0.2 O•!,

Dynamics of Plankton Populations
in Upwelling Areas

Final Report of Skylab EREP Investigation 518

DR. KARL HEINZ SZEKIELDA
College of Marine Studies

University of Delaware

CMS NASA-C-1-75

D,P ^' S2^,^/E-L v y

^°^iNCioA^ ^.vriEsTiGATo,e

^^r-- = 1976

EIVEII
' 11 FACIUff
r BRAWN

Project from
March 19, 1973 to July 31, 1975
Under Contract No. NAS 9-13344

(E76-10207)	 DYNAIICS OF :LANKTON	 N76-18619

POPULATIONS IN UPWEILING AREAS Final
Report, 19 Mar. 1973 - 21 Jul.1975
(Delaware Univ.) 239 p HC $8.00 	

CSCL 08A G3/43 00207s



I

p.

i

I	
.

DYNAMICS OP PLANKTON POPULATIONS IN UPWELLING AREAS

r

Number of Investigation:	 Skylab EREP Investigation 51$

Period Covered:	 March 19, 1973 -- July 21, 1975

I- Contract Number:	 NAS 9-13344

Principal Investigations 	 Lyndon B. Johnson Space Center

ii.
Management Office:

Technical Monitor:	 Zack H. Byrns

Principal Investigator: 	 Dr. Kax1-Heinz Szekielda;,,^^^

Sponsoring Institutions 	 College of Marine Studiesr.	
University of Delaware

ti..	
Type of Report:	 Final Report

ORIGINAL CONTAIN 	 (169 nal photography may be 
purchased tram;EROS Data Center

^,O ii	 10th and bakota Aver
Sioax Falls, SD 571;

C 

-`; 1. 	 •

I

^j



:{	
3

I`
Table of Contents

{
!	 Page

Overview

Fart 1: Skylab Investigation of the Upweliing	 7

_.	 Off the Northwest Coast of .erica
f;

Part . Il: Evaluation of Chlorophyll Measurements	 33
by Differential Radiometric Remote
Sensing

i-^

f^

i!

i;



{

OvervLew

Skylab, with its newly-developed sensors aboard, gave. a very challenging
j

opportunity to investigate oceanic areas, especially regions of upwelltng,

a major source for the world's fisheries. Due to many technical problems

which had to be overcome during the space mission, much of the data necessary

to meet the original objectives of the proposed studies could not be obtained,

even with repeated coverage of ^:he test site. Fortunately, additivrtal.coverage

was obtained by HRTS-1, giving very good insight into the possible dynamics of

color gradients in the oceans.

The planned cooperation with multiship cruises could not be scheduled

simultaneously because of other priorities during the spacecraft'.s missions.

However, significant results during aircraft missions and in laboratory ex-

periments have led to a better understanding of the water mass structure re-

cognized in the Skylab data. Many failures, such as useless recordings with

the S191, led to waste of man power. On the other hand, we gained information

which never could have been acquired by conventional methods.
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ABSTRACT

The upwalling oft the NW coast of Africa in the vicinity of Cape Blanc

was studied in February - March 1974 from aircraft and in September 1973

from Skylab. The aircraft study was designed to determine the effectiveness

of a differential radiometer is quantifying surface chlorophyll concentrations.

Photographic images of the S190A Multispectral Camera and the 5190E Earth Ter-

rain Camera from Skylab were used to study distributional patterns of suspended

material and to locate ocean color boundaries. The thermal channel of the S192

Multispectral Scanner was used to map sea-surface temperature distributions off

Cape Blanc. Correlating ocean .color changes with temperature gradients is an

effective method of qualitatively estimating biological productivity in the up--

welling region off . Africa.

INTRODUCTION

From a practical standpoint, phytoplankton is a very important life form

in the ocean, since primary productivity can be directly related to potential

production of commercial fish. In upwelling regions of the world, such as off

the northwest . coast of Africa, wind stress produces an offshore movement of

surface waters which are replaced by cooler, nutrient-rich subsurface waters.

These upwelled waters are an excellent medium for the propagation of phyto-

plankton. Though upwelling regions comprise only about one-tenth of one per-

.. cent of the ocean surface,. Ryther (1969) estimates that they produce about

half of the world's fish supply.

When studying plankton over large areas of the ocean, oceanographers..

face serious logistics problems. Since it may take several days to several
weeks to cover a large study area by ship, the best that can be- -hoped. 	 is
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a tame-averaged picture of plankton distributions. The ship sampling program

may miss patches of plankton of significant interest and the concentrations

may be changing rapidly over time. Since barge surface aieas of the ocean

can be easily seen from space, the possibility of synoptically determining

plankton quantities and distributions ,from, earth orbit is extremely attractive.

On September 4, 1975, the Skylab spacecraft passed directly over the Cape

Blanc section of NW Africa. This report will summarize the interpretation to

date of radiometeric data derived from Skylab as it pertains to plankton dis-

tributions off the African coast.

ATMOSPHERIC CONDITIONS.
j

The NW coast of Africa can be effectively studied from space, since favor-

able meteorological conditions are present throughout most of the year., During.

winter in the Northern Hemisphere, a high pressure system is centered between

the Canary Islands and the Azores. In summer, this system extends further to

the north and west. Therefore, the coast of Africa experiences clear weather

during most of the year with extremely: good horizontal and vertical visibility.

The NN trade winds are responsible for the upwelli.ng conditions off the

NW African coast.. During the summer months when the Trades are located between

15°N and 35°N latitude, the principal component of the winds is northerly,

therefore giving rise to the most intense upwelling conditions. (Szekielda,

1973),

Figure 1 shows a Nimbus 5 thermal image of the NW coast of Africa taken.

September 2, 1973, two days prior to the Skylab overpass. The clear conditions

surrounding Cape Blanc indicate the influence of the offshore anticyclone and

the low-moisture NB trade winds. The band of thick clouds to the south represent:

the Intertropical Convergence Zone.
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SPECTRAL PROPERTIES OF ELANMON

Light penetration in water is affected by plankton, algae, and dissolved

and suspended matter. As a result, the composition of backscattered light

from the air-sea interface is determined by the nature of the constituents in

the water column. In contrast to the absorption spectrum of chemically-pure

chlorophyll in^solution, algae suspensions absorb and scatter light more uni-

formly throughout the visible part of the electromagnetic spectrum. Because

of the spectral absorption and scattering properties of plankton, its concen-

tration can be estimated by measuring the spectral backscattered radiance

over water.

When monitoring plankton or biomass from hie; altitudes, we must consider

the fact that algae behave more like a suspension than a pure solution of

chlorophyll. As a result, solar light will be scattered at the outer shell of

tha plankton organisms. The absorption of incident irradiance by the cells de-

peads on their outer structure and the optical density inside the cell. Varia-

tion in the optical density or the configuration of the cells may change the

intensity of backscattered light even if the incident solar irradiance, sun

angle, and chlorophyll concentration per unit of volume remain constant.

Yentsch (1960) found that the ,red absorption band of chlorophyll has little

influence on water color. This means that the signal obtained with a red band

sensor would record primarily the effect of backscattered light from the organ-

isms.

The intensir-y of backscattered light caused by plankton and dissolved

matter from the ocean as a function of aveleagth is given in Figure 2:. Gulf

Stream water was used as a reference water assuming that the chlorophyll con-

centration of less than 0.02pg-1 l ,does not change significantly the. backscattered
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light compared to pure water. It was assumed, for the interpretation of the

different spectra, the sky conditions, sun angle, and sea state were the same

over both sites. The spectrum in Figure 2 is the difference in energy between

the spectrum obtained in near-coastal water and the spectrum recorded over the

Gulf Stream.

If both water masses had the same optical characteristics and oceanic

conditions, the energy difference in both spectra should be equal to zero.

Any differences between the two signals would thus be caused by dissolved and/

or particulate matter in the sea. If chlorophyll affected the backscattered

light by its absorption properties in the shorter wavelengths, we would expect

differences near the absorption bands of chlorophyll..

Chlorophylls have two main absorption maxima in the visible region of the

electromagnetic spectrum. The main absorption peaks for pure chlorphyll a are

.at 0.446pm and 0.663pm. However, the naturally occuriug chlorophyll a types

in plants have spectra with peaks near 0.673pm and 0.683pm. Other forms show

maxima near 0.690pm and 0.710pm.

The spectrum in Figure 2 shows that the first and the second absorption

bands of chlorophyll have only a minor influence on the total backscattered

light. Strong absorption appears at about 0.72pm, but the maximum of back-

scattered light appears at 0.381im. Considering only the portion between the

second absorption band and the near-infrared, it can be seen that only a

linear decrease of backscattered light appears. This is an indication that in

addition to the absorption of light by chlorophyll, backscattered light from

the organisms themselves contributes to the total backscattered energy. Thus,

the size and concentration of particles or marine organisms seem to b e the im-

portant contributors to the changes in backscattered light intensity as measured

x

i
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in the Skylab sensors. The scattering intensity of suspended particles is

proportional to Jl_ 71' where a is the wavelength and n the Rayleigh value which

may vary from 4 for pure water to 0 at high turbidity. In other words, the

intensity of backscattexed light increases with particle concentration. This

shows the important influence of particles without chlorophyll on the back-

scattered light from below the sea surface. Lorenzen (1970) established a

correlation between surface chlorophyll concentrations and primary productivity

for different oceanic waters. Better correlations were found when chlorophyll

and primary productivity data from the upwelling region off the IOW coast of

Africa were compared. This suggests that a significant relationship between

the two parameters can be obtained when individual oceanic regions are studied,

thus malting surface chlorophyll measurements that much more valuable.

An often suggested algorithm of narrow band ocean color reflectances was

employed in an aircraft mission for evaluation of its effectiveness in chloro-

phyll determination and in recognition of changes in regional ocean color dis-

tributions. A ratio of the Q..443pm to the 0.525pm reflectances has been dis-

cussed by Clarke and Ewing (1974) and Duntley (1972) as having the ability to

determine chlorophyll concentration in near-surface waters from aircraft and

satellite altitudes. From these observations Arvesen et.al. (1973) developed

a differential correlation radiometric method to detect chlorophyll. Their

measurements of ratio values, using the continuous recording differential ra-

diometer, correlated well with real.-time sea--truth measurements of surface

chlorophyll. concentrations. From the results of flights over various types of

water masses. ,,a calibration of the reflectance ratio to surface chlorophyll.

Concentrations (mg/m3) was Constructed.

During February and March 1974 the differential radiometric (DR) method

was used iii. an extensive oceanographic aircraft mission as part of the JOINT-1
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project in a one square degree region (20 9 - 210 N latitude x 17° - IS' 1-1 long-

itude) offshore of Cape Blanc. In comparison with surface chlorophyll sea-truth,

the DR method was not effective in the determination of chlorophyll off Africa.

Interferences caused by suspender: particulates of eolian origin in the surface

j	 waters plus presumed concentrations of Gelbstoff, resulted:in an "enhanced"

j	 apparent chlorophyll signal,. These interferences can be explained by the

following: 1) Increased backscattered radiance was caused by the high con-

E	 centration of high refractive index (highly reflective) eolian and wave eroded

particulates; 2) Inherent optical properties including absorption by dissolved
i

Gelbstoff, attenuation of radiance by sea water and particulate scattering (in-

eluding multiple scattering) produced a spectral signal that the ratio method

ftthfttit differentiatecouldocu not 	 rom a o chlorophyll; 3 Selective scattering b€ 	 )	 g. Y
i

phytoplankton and high non--selective scattering by the additional particulates

in multiple events produced an increased backscattered signal to the DR which

was an "enhanced" chlorophyll signature. These apparent chlorophyll signals

were investigated in laboratory studies and were found to be principally attri-.

bated to the scattering properties of both inorganic particles and algae in

suspension.

s
Although this color ratio did not effectively determine chlorophyll levels,

there was a strong correlation between sea surface temperature (SST) gradients

and*:ie observed ocean color ratio gradients. Higher ratios Caere coincident

with low temperatures with only a few nearshore exceptions. A significant Cor-

relation of this color ratio and total particulates from sea--truth measurements

does.exist and, in addition, increased fishing was observed to be closely associ-

ated with the SST-DR ratio gradients (Tabc-- 1975). Therefore, ocean color

i changes associated with sea-surface temperature gradients are indicative of pro-

ductive water masses off the M4 coast of Africa.
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CAPE BLANC

The hydrography between Cape Blanc and Cape Timiris can be described by the

^s
T-S diagram based on 16 stations (Allain, 1970) where data were collected be-

tween 0 and 300 m. Two main formations of water masses can be recognized. The

first is within the upper 300 m and can be considered a, mixture of surface water

and Central South Atlantic water with values of 12 0 C and a salinity of 35.35°/oa at 300 m.

The layer between 400 m and 800 m consists mainly of Central North Atlantic

water with tempez gture ,< between 12 0 C and 8°C. The influence of Antarctic In-

termediate, Water is shown by water with a salinity of 35.050/oo and a tempera-

ture of 7°C. Upwelling in this area is limited for water types with tempera-

tures between 18.5°C and 20.5 % and salinities between 35 . 8 and 35.950/oo,
which show that the upwelling has its origin in the upper 100 m.

The upwelling in the vicinity of Cape Blanc is persistant throughout most

of the year and is evident by the high concentrations of chlorophyll noted in

Figures 3 and 4. A survey of fish tonnages between Cape Blanc and Cape Timiris

was made by Boley (1974) in July of 1973. High concentrations offish were

observed west of Cape Blanc while very high tonnages were noted near Cape Timiris.

The tonnages of fish therefore, show some correlation with surface chlorophyll

concentrations in this area.

During the September 4, 1973 overpass, Skylab collected radiometric data

with the S190A Multispectral Camera, the S190B Earth Terrain Camels, and the

S192 Multi.spectral Scanner. The ground coverage provided by these sensors is

shown in Figure 5. During the subsequent Skylab 4 mission, photographs were

also taken of the study area with hand- -held cameras.
Figure 6 is a high resolution color photograph of the Banc d'Arguin taken

with S190B Earth Terrain Camera. The scale of the photograph is approximately

*Temperature--salinity
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1:900,00.0 in covering an area of 110 km x 110 km. There is an obvious color

gradient of blue to green from offshore to nearshora waters indicative of the

presence of suspended material and Gelbstoff. Figure 7 is the green band

S190A multispectral spectral image having a response region between 0.5um and

0.6pm. The scale of this photograph is roughly 1;2.7 million covering an

area of 157 km x 157 km. The patterns and patchiness of offshore suspended

material are evident from this photograph.

The nearshore patterns of suspended material indicate a northerly flow of

waters toward Cape Blanc. The "U-shaped" plankton patch. southwest of the Cape

indicates a southerly, drift of waters from north of the Cape. Us 4mg dynamic

topography, Fedoseev (1970) discussed the geostrophic circulation of .surface

-•- craters in the shelf region and concluded that quasi-stationary gyres are formed

in the eastern boundary of the Canary Current. The most stationary gyre south

of Cape Blanc was observed throughout the year and the offshore patterns noted

in the. Skylab images are influenced by the ,flow of the gyre.

Szeki.elda (197.4) reports that plankton patchiness varies especially with

the change of seasons. A strong gradient of chlorophyll and/or plankton off-

shore of Cape Timiri.s is connected with the converging Seater masses from the

Banc d'Arguin and has been detected in all four season. Figure 8 shows the

location of offshore ocean color boundaries as derived from ERTS--I and Skylab.

The souther?:. gradients show seasonal positions between 1972 and 1973. Besides

small--scat% fluctuations, the gradient shifts over a maximum distance of only

about 16 km. This is an indication that the offshore gradien,t`ie a fairly per-

manent feature.

The enclosed lines south of Cape Blanc, are the relative positions of the

ITU-shaped suspended material patch observed from Skylab 3 and 4. Between

i
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September 1973 and January 1974, the patch experienced a broadening and shore-

ward movement. This may be a result of a seasonal change in the circulation.

Channel 13, of the multiscanner scanner of Skylab, recorded emitted

thermal radiation from the surface of the earth. For the Cape Blanc over-

pass, the radiation data were converted to blackbody temperatures and a

histogram was generated by the Johnson Space Center as shown in Figure 9.

Classifications were chosen and a color-coded image was produced corresponding

to different temperature intervals. Figure 10 is a color--coded temperature

map of the"waters off Cape Blanc. The temperatures have not been corrected

for atmospheric affects, however, the relative temperature gradients can

be used to locate the .origin of upwelled waters. The cold patch of water.

in Figure 10 is shown to be roughly between M and 11°C. Coldest known

upwelling wafer off..the African coast has.only been reported to be as low

as 14 9G. Therefore it is estimated that the calculated blackbody tempera-

tures are at least 4 % to VC colder than actually present; Since the cold.

patch directly corresponds to the "U--shaped" , suspended material pattern

observed in the imagery, this is undoubtedly a source of upwel.led. water.

In September of 1972, Dr. Ballaster (Szekiel.da 1974) observed a strong

gradient: of temperatures and fluorescence to the south*.4est of .Cape Blanc. .

The temperature distribution is shown i.n Figure I.L. The temperature gradient

off	 Cape Blanc is located in the same area as the cold patch we observed

Lrom Skylab.

As described previously, ocean color changes associated with sea

surface temperature 'gradients indicate productive wa.termasses in this region.

The Skylab spacecraft was effective in recording these gradients and it can

therefore be determined that an intensive area of upwel.ling was present in
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September of 1973. By correlating the observed ocean color changes with

the low temperature readings, an obvious area of productive waters was

apparent offshore of Cape Blanc.

CONCLUSIONS

The spectral properties of ti. upwel.led waters off the N14 coast of

Africa have been studied with observations derived from aircraft and Skylab.

Results of the aircraft study indicate that the two--channel, ratio approach

is ineffective in determining surface chlorophyll concentrations and should

not be used in future studies. Ocean color boundaries and temperature
1

gradients were found to be directly correlated with each other and also with

fishing effort in the upwel.l.ing region. Photographic and scanner data derived

from Skylab has been effective in locating ocean color boundaries and

mapping temperature distributions. Both can be utilized in this region to

qualitatively determine areas of biological productivity. This simple

correlation may be .applicable in future efforts toward fishery resource	 j

management in upwelling . areas.	 i
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Figure 1. Nimbus S thermal image of the NW coast of Africa
taken 2 September 1973. Cape BZnnc is located
within the encioiure.
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Figure 6. S190B color photograph of Cape Blanc.
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Figure 7. Green band S190A image of Cape Blanc
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AWTI'RACT

A differential radiometric (DR) method for continuous determina-

tion of near surface chlorophyll levels from aircraft altitudes

measures intensities of two narrow wavelength bands of the spectral

reflectance from the sea. An evaluation of the effectiveness of the

DR method for measuring and surveying the regional distribution of

chlorophyll is . given..

Two aircraft oceanographic research studies in a region of

dynamic ocean color off the NIV coast of Africa are described. The

Sahara Upwelling Project (SUE) focused on a survey of apparent

chlorophyll (Chl.) and radiometric sea surface temperature (SST)

distribution in a 11,000 mi l region. Correlations of SST and Chl.

gradients were found in the longshore and offshore directions. A

constant onshore gradient of increasing Chl, as well as recognizable

structures far offshore, including isolated features, were observed

The regional development: of SST and Chl. structure was synoptically

monitored from 18-26 August, 1973, with an expendable probe

study on 21 August, Recordings of additional ocean spectral reflectance

at yellow (576 nm) and red (663 and 7.23 nm) bands nearshore show.

correlations in intensity of .response with the pR method; while

often offshore SST' and Chl. gradients do not correspond to any

feature in the reel or yellow signals.

Oceanographic research flights of the JOINT-I project are

described and interpreted with available -real-time sea truth . measure-

P ^C	
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ments. A partial description of the synoptic time-series of results

is given for recognition of upwelling events; !Analyses of apparent r

chlorophyll, SST and the DR ratio . value (L443/L525 ) are presented
I

for all flights. Gross differences Between apparent Chl. and surface

measurements are observed < 20 km offshore with apparent Chl. levels

an order of magnitude greater than surface sea truth. In contrast,

an inverse relationship exists offshore with sea truth an order of

magnitude greater than Chl. A multi-comparison showy increasing

particulates, decreasing 50o 
1  

depth, decreasing chlorophyll and

decreasing ratio (443 nm/525 nm) values are positively correlated

nearshore.

From preliminary interpretation of atmospheric effects on

the DR method, the solar elevation is a far greater influence than

atmospheric composition even in high eolian-load areas.

Laboratory investigations on the interference of chlorophyll_
I

free particulates in suspension with algae employed multiple scattering

samples which were spectrally scanned and interpretations of increased

effective reflectance . of the suspensions were made. When a multiple

scattering situation exists the increase of photon survival in a

algae-xei'lective clay suspension causes an enhanced chlorophyll Sig-

nature to be produced. In an optically dense base water, successive

additions of an algae standard and reflective particulates were

related when sample particle counts were correlated to the change in

reflectance ratio value (L
443

/L525). Successive additions of only
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chlorophyll-free particles showed a similar relation of total counts

to ratio change, but the relationships of algae-only and algae-clay

suspensions were independent. The dissolved blue colorant and

non-selective particles were predicted to behave in the same manner

as Gelbstoff and reflective particulates do in high concentrations

in the ocean.

From the results and interpretation of this study the DR

method is evaluated not to be effective in determining concentrations

.of chlorophyll even on a relative basis due to interferences,

predominately in the ocean, of additional wavelength selective optical

properties and particle multiple scattering conditions. 'The DR

method was effective in monitoring an ocean color parameter L443/L5251

Which had a distribution very closely identified with SST. Patterns

from the recordings of these sensors were recognized and their develop-

ment could be monitored in repetitive coverage. 'rhe parameter is

not well defined., but is strongly correlated to near surface

particulate concentrations. The 443 run and 525 nm bands are concluded

to be inadequate alone as an algorithm for determination of chlorophyll

by ocean color measurements. Recommendations for directions of further

research on the backscattered spectral reflectance from the ocean are

made.
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1. INTRODUCTION

1

I

This study is an extension of an area of research which is

stimulated by the possibilities of using reflected signals of visible

radiation to determine phytoplankton pigment concentrations in natural

haters. The determination of color by remote methods is a very useful

parameter to monitor because of its sensitivity to many properties

in the ocean, thus giving estimates of biological chemical, and

physical construction (Ewing, 1969). Research on ocean color

reflected to an-aircraft has shown, quite satisfactorily, correlations

between spectral signals and chlorophyll concentrations in surface

waters (Strickland, 1962; Duntley, 1963 and 1972; Clarke et al.,

1970a; Arvesen at al., 1973; Mueller, 1974; and Pearcy and Keene,1974).

The practical utility of these measurements, due to the

coverage that can be gained in relatively short times has been

recognized (Yentsch, 1971), and synoptic monitoring approaches have

been initially developed (Pearcy, 1971; Pearcy, and Keene, 1974).

The strong relation between concentrations of green photo-

synthesizing pigments of phytoplankton (especially chlorophyll a)

and more tangible parameters in surface waters such as primary

production, phytuplankton standing crop and total biomass, supports

the use of the optical properties of this biochemical as a

biological index (Riley, at al., 1971). Correlations between surface

1
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chlorophyll concentrations and primary productivity measurements of

a wide variety of marine waters were made by Lorenzen (1970).

Historical data from a more defined ocean area (the upwolling region

of the NW coast of Africa) shows a stricter correlation with an rZ

(correlation coefficient) range of 0.758 to 0.824 for individual

cruises. Figure 1,1 shows the regression from the March-April 1971

r
CINECA-Charcot-II cruise.
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2. OBJECTIVES

Continuous recording of measurements at two wavelengths

of the reflected spectral energy as ratio values has been

proposed as a method for determination of chlorophyll pigments in

natural waters (Clarke et al., 1970a; Arvesen et al. ) 1973; Duntley

et al., 197 11). The objectives of the present study are 'to: 1)

evaluate a differential radiometric method proposed by Arvesen

(cit. loc.) for measuring chlorophyll and surveying its regional

distribution by defining the limitations of its effectiveness and by

identifying and investigating interferences in the method, and

2) also gain positive information on ocean feature patterns through

comparisons of the reflected wavelength ratio signal with sea truth

measurements.

3
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3. BACKGROUND

In attempting to expand the use of chlorophyll measurements,

radiometric methods were developed preceded by determination of optical

properties of ocean features from measurements of radiance from the

ocean.

3.1 O ptical Pro }erties of Ocean Features

As a prerequisite to the identification of ocean parameters

of interest, it is necessary to identify the spectral signature

produced by optical properties in the open ocean or varying coastal

waters.. A second, simplistic prerequisite is that the incident

radiation is of suitable wavelength (X) and intensity to produce a

detectable spectral signature.

3.1.1 Significant Optical Processes in the Oc ean

Very clear seawater has a well defined spectral signature

(Clarke and James, 1939; Hulburt, 1945; Jerlov, 1968; and Morel, 1974).

The processes of Rayleigh-like scattering in liquids (Einstein, 1910)

and absorption is responsible for a low attenuation "window" in the

400-500 nm region. [below 250 nm in the UV and above 700 run in the IR

region, the absorption increases strongly by electron transitions

and intra-intermolecular motions respectively. In addition, the

volume scattering function for pure sea water, caused by d

i

F^
t
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fluctuations of molecular movement, increases nearly ton fold from

600 mr. to 360 nm (proportional to a ") (Morel, 1966) . Thus increased

scattering is found at the wavelength regions of least absorption.

The wavelengths of maximum reflected intensity, then,are between

460 and 480 nm in the clearest .raters.

Dissolved organic materials (especially Gelbstoff) are the

greatest influence on the spectral character of sea water excluding

particulate effects. These melanodines described by Ralle (1966),

absorb strongly in the UV and carry over into the blue visible region.

In a region where plankton populations are continually fluctuating,

the backscattered spectra of the filtered "base" water is not that of

the very clearest blue sea water. The diffuse reflection coefficient

at 460 nm is 2-3 times lower in biologically active regions than in the

open ocean (Uuntley et al., 1974). Yentsch and Reichert (1962)

observed that Gelbstoff concentration increases were proportional

to decomposition of phytoplankton pigments. Uuntley et al., (1974]

suggest that base water spectral characteristics for the regions of

interest in remote optical studies be well defined. Jerlov (1964)

presents a relationship between the total scattering function and

the irradiance attenuation coefficient at 465 nm for optical class:

Lion of many ocean regions Areas of upwelling, including the NV

coast of Africa, have a far greater absorbance contribution than o;

ocean areas. This further indicates that spectral signatures of b

waters should be defined.
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Whereas with dissolved matter in sea water and sea water itself,

absorbance predominates over scattering (excluding perhaps the

400 . 500 nm "window"), particulate scattering is two to three lames

greater than absorbance by particulates. In .fact except in clear,

opea ocean waters, particulate processes dominate the characterization

of the optical signal (Kullenberg, 1974; Jerlov, 1974).

Backscattered light in the ocean is a process of interest for

remote studies. Although the lack of reflected radiance can also aid

in description of the optical properties of a region (e.g.,

implying a few, large,forward scattering particulates), only the

backscattered portion of the light field radiance can describe

features characterized by spectral signatures.. Unfortunately, much

scattering and transmittance research has used meters designed to

measure forward and lotia backscattering angle propogati.on (2 0 <0< 1650).

A computation of particle scattering functions observed in situ

is given by Kul,lenbcrg (1974). The water mass types measured range

from turbid . likes and coastal waters to the low productive Sargasso

and Mediterranean Seas. The largest difference in Q e functions is in

the backscattered 6irection, and this is Martially attributed to the

variations in the scattering particles. This indicates, first, that

Uuntley's et al..(1974) suggestion of a . well defined base water should

be extended to include the ident:ificaticn of the particulate composi-

tion, especially including size distribution and.indives of.refraction

associated with different fractions, that may commonly occur in regions

of interest for xemote.optical studies. The use of optically
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effective areas (Owen, 1974) of particulates is a good example of the

type of the basic knowledge needed. Secondly, if optical signals

backseattered and reflected from the sea are going to be used for

recognition of particulate frequency or composition, a more specifically

defined interpretation of the backscattering process is needed. And

	

?r^	 this requires experiments designed for measuring scalterance,

including the contribution of multiple events, in the 120 0 <0< 1800

	

1i	 scattering cone as well as total scattering function.

The production of the optical signal backscattered to the

atmosphere is, of course, a combination of dissolved and particulate

properties in the ocean. The integration of contributions from all

processes that are studied in situ, and using these in a radiative

transfer (Freisendorfer, 1965) calculation to describe an observed

signal is a complex problem, especially when multiple scattering

is included. Although not yet fully utilized, the Monte Carlo

computer modeling approach as described by glass and Kattawar (1969),

and used by Gordon and Brown (1973) for computation of diffuse

reflectance may be the only practical calculation solution.
t

	

f	 I

The dependence of the optical properties of pure sea water

on changes in temperature, pressure, salinity was reviewed by

Morel (1974) and is very slight. Pure sea water, then, can be

F

	 assumed nearly constant. However, the particulate and dissolved

matter in the sett are not found to be conservative in distribution,

composition or in their inherent optical properties (i.e., volume
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scattering function, absorption or attenuation),

Tile optical properties of phytoplankton have bee, recently

described by Muoller (1974). lie considers the chlorophyll signature

from wavelength dependent scattering of the phytoplankton to be a

much flatter spectral response than previous measurements by Yentsch

(1960) and Shibata et al. (1954). The latter two investigators

measured diffuse forward scattered light, while Mueller was concerned

mainly with beam extinction and cross section scattering spectra.

Optical remote sensors with specifications such as the differential

radiometer (see Section 5,2,2) receive a signal of diffuse reflectance

from the ocean closer to that described by Yentsch (cit. loc,),

3.1.2 Optical Processes at the Ocean's Surface

A boundary exists between incident irradiance from the atmos-

phere and backscattered irradiance from the sea itself. This boundary

between the two optical media is the air-sea interface. Processes

that occur at level surfaces such as refraction, reflection and

transmission have been described by Jerlov (1968), In addition, the

effects of wave action, whitecaps rind foam, and slicks at the optical

boundary are recognized (Cox, 1958; Cox and Munk, 1956; and Cox, 1974).

The surface processes involving introduction of incident light into

the sea, reintroduction of an optical signal from the sea to the

atmosphere, and return of incident light to the atmosphere never

having penetrated the surface are significant for the problem of

detecting a backscattored signal from the ocean.

i
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Direct radiant and diffuse skylight incident on the ocean's

surface is partially reflected at the surface and returned to a remote

sensor. This reflection is a function of the index of refraction of the

water, the viewing angle, and the wand speed which governs the wave

slope effect (Austin, 1974a), but is independent of wavelength of the

light. The refraction of radiance passing upward through the surface

will, in effect, spread the same amount of energy into a larger solid

angle cone. The factor of decreased energy is 1/(refractive index

of water) z or 0.555. The presnel reflectance at the surface

(Jorlov, 1968) causes a loss of transmitted signal and is a function

of the angle of observation and wind speed or wave slope (Austin,

cit. loc). Wave action scatters light at the sea surface. Swells

and waves of all sizes continually refract, reflect and even focus

some light with varying distribution. The capillary waves generated

by wind forces > 7 m/s are responsible for surface reflectance that

is observed as sea glitter (Wu, 1972). Larger gravity waves are

critical in the angular reflectance that is observed outside of the

sun's specula3r point. Natural slicks at sea are often monomolecular

layers, much thinner than the wavelength of light. In these cases

slicks have negligible effect on surface reflectivity or angles of

refraction and reflection (Cox, 1974). They do however, have a wave

dampening ,effect which drastically reduces this scattering process (:wing,

1950;	 Garret and Bu .ltman, 1963). Therefore, observations outside

the increased ref lection at the specular point.will be free from the

scattered light of capillary waves. Observation angles for reduced
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reflected sun glint and sun glitter input to the Signal are dependent

on the elevation angle and azimuth angle of the sun. Cox (1974)

also shows a dependence of observed glitter on direction of the wind.

The tilde-averaged effect by sea glitter is not as important however.

Studies of reflectance at the air-sea interface as a function

of observation angles (Cox, 1974, Austin, 1974a) show that parallel

polarized light will have no contribution to the reflected signal

at the Brewster's angle (where the angle of radiance in air 	 53.19)

However, observations at this angle include 1.67 times the optical path

length of sensors viewing in the nadir direction and. this atmospheric

interference severely reduces the advantage gained. For optimum

viewing angles to avoid sea glitter (defined as glitter radiance

observed/glitter radiance max. = 0.01), Fraser (1971) has calculated

that at wind speeds of 10 m/s	 the glitter pattern does not extend

to the nadir when the solar zenith angle is } 40°.

Austin (I 974a) has developed the following equation for total

inherent radiance, N o , leaving the surface

R

No	 II	 r Nr 7t^^ '1'oT	 d 	 (3.1)

where R  is the diffuse water reflectance (a ratio of the irradiance

propagated through the surface to the total irradiance incident at

the surface), RVoT is the total incident irradiance (sun and skylight),

r  is the Presnol reflectance of the. surface (a function of index of

refraction and incident radiant angle), and N s is the zenith radiance.
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This equation points out that N o ha y: a component (.-`y Ufol') which is

independent of observation angle and contains the spectral signature

of the water mass, and a component (r dN5) which can be considered as

glint or noise to the remote sensor and is dependent on the observation

angle, The apparent signal that will be available to a sensor at

some height above the surface, N Z , can be expressed as:

NZ = No 'a + N*	 (312)

where: No is from equation 3.1, and Ta is the transmittance of the

atmosphere and is a wavelength dependent process that reduces the

signal,- N* is the radiance contribution to the path of sight by

atmospheric scattering processes.

3.1.3 Atmospheric Processes on Optical Signals from the Ocean

Atmospheric processes on signals reflected from the sea are

studied mainly to discover the applicability of detection of these

signals from orbital altitudes. The processing of insolating light

by the atmosphere must also be considered in the production of a

signal from the ocean. Depending on the altitude of flight, aircraft

measuremoiits of returning surface signals, to a varying degree, are

effected by atmospheric processes.

The most important process in the atmosphere is scattering.

Rayleigh scattering was mentionod in Section 3.1.1 Again, the

scattering coefficient is proportional to A -`' and in the visible
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i
region the exponent is-4.08 (Ramsey, 1968). Yor particles with sizes

larger than the light wavelength, Mie theory is used to predict

scattering attenuation. The attenuation coefficient for Mie scattering

is a function of the dumber,	 radius of the particle , and wavelength

of light. forward scattering predominates with aerosols (considered

to be Mie scatterers). Ramsey (1968) has pointed out from previous

research that'sea salt particles in the atmosphere have a very uniform

size distribution from 1-2, and exhibit a non-selective attenuation

of visible light, while the distribution of particulates which

originate from land sources (which influence coastal water measurements)

is of much more polydisperse composition and seems to show a higher

_	 scattering coefficient for light in shorter A regions.

Measurements of the contribution of radiance backscattered

from the atmosphere and that returning from the sea, (avoiding specular

reflection), for a variety of turbid atmospheres and at various

altitudes (in Ramsey, 1968), show that 1) the atmospheric signal

measured at 1 km is from one-fifth to equal to the returning signal

from the sea in turbid atmospheres and at a sun elevation angle of

459 ; 2) in Rayleigh atmospheres the signal from the sea is only.

ti 10% greater in wavelength region 400-500 nm. and nearly equal at

higher wavelengths to that of the atmosphere; 3) the total radiance

signal from a turbid atmosphere is 0 40% gre itcr than that from a

Rayleigh atmosphere,

The apparent signal to a remote sensor in the atmosphere can be
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quantified in terms of the albodo of the surface by:

As	{A) [uopt {^)	 C0 (^} ]
	

(3.3)

where IQ) is the wavelength dependent radiance leaving the sea, whether

backscattered or surface rcflected,u
o

F
t
Q) is the directly transmitted

solar irradiance and a function of the cosine of the solar zenith

angle, po , and Lp (A) is a wavelength dependent diffuse incident,

component (Curran, 1972). The equation above sloes not consider

the albedo contribution from the optical bath of the atmosphere.

Curran has'calculated this contribution as a function of A (460 nm

and 540 nit) and found that increased aerosol optical depths

(defined in terms of particle number density and the volume scatter-

ing coefficient) and varying solar zenith angles have a much larger

effect than A 5 alone, Comparisons of one standard deviation in the

color ratio (540 nm/460 nm) observed at the sea surface versus one

standard deviation in the aerosol optical thickness for a variety of

optical thicknesses and solar zenith angles showed that aerosol

scatters are the dominate influence on the color ratio at

1) optical depths only slightly above clear marine atmosphere

conditions and 2) solar zenith angles > 60*.

t.

A large number of albodo recordings made on a 30 m. high plat-

form above Buzzard's Bay, glass. (Layne, 1972) under various solar

elevation angles and atmospheric transmittance conditions showed

again the strong relationship of solar angle and atmospheric trans-

mittance (defined as the ratio of observed downward irradiance to

^a
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irradiance at the top of the atmosphere) to albedo, except in over-

cast. (isotropic radiance distribution) instances.

From 0.9 km to 14.9 km flight altitudes, Hovi.s, et al. (1973)

found a factor of ten reduction in contrast in a 460 nm signal. It was

indicated that 1/2 of the light backscattered from the sea surface

was scattered out of the view of the sensor and that the atmospheric

addition to the radiance signal was 5 times as great at 14.9 km.

Generally the observed effects (LZ E apparent signal) ca:n.he

represented by the equation given by Austin (1974x):

L2 = (Lw	 Lr) 'Ca + L*	 (3.4)

where L11 and L  are the components of radiance front the sea and

radiance reflected from the surface respectively, T  is the transmit-

tance of the atmosphere and is wavelength dependent, and L* is the

scattered atmospheric light contributions and was considered only

20 % of L3.

Clarke and.Lwing (1971 and 1973) have observed the sequential.

effects of an increased atmosphere on surface ocean color. Correlations

for the atmospheric contribution were made by substracting. the change

in signal between observations at 305 m altitude and 152 m altitude

Nom the 152 m curve. The resulting surface curve approximates a

spectra of upwelling irradiance measured at 0.2 m below the surface.

T1 1B wavelength dependent '1'a was not considered, and ivay hav^ ^*"••'^•^^^'

the correlation of the ocean color curves.
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In an ocean-atmosphere model by Katta.war and Humphrey (1973)

the optical depth made a negligible change.in . the radiance ratio

(upward radiance/downward radiance) only at measuring altitudes below

0.1 km.

Uuntley et al. (1974) have studied the apparent orbital contrast

of computed apparent spectral radiance signals available at an orbital

altitude from a water mass without phytoplankton to one with 00

mg/mI distribution throughout the top 50 m from the equation

Apparent orbital contrast (C) = N 
R	

(3.5)

5

where: NT is the signal from the chlorophyll containing water mass, and

NB is the signal, from the water mass void of phytoplankton. Computations

were made for solar zenith angles from 24.30 - 70.6° and "clear" and

"hazy" atmospheric conditions. His results for both 560 nm and 465 nm

light show that > 0.001 apparent contrast can be obtained at all

angles up to 0 55° from nadir viewing, both toward and away from the

sun azimuth angle, The maximum contrast (> 0.003) was with the solar

zenith angle of 30.9 0 ; At solar zenith angles.> 42.0° the contrast

was greatly reduced.

3.2. 0 Conclusions from Previous Investigations

A representative summary of conclusions from radiometric

studies developed for determination of chlorophyll in surface waters

is necessary for an idea of the state-of-the-art, success of the

methods,.and the expectations and recommendations given for future
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st"di:s.

In general, three applications have been given for use of

remote sensing of chlorophyll in natural waters. Before radiometric

studies, fisheries scientists had observed increased fishing of

migratory species at color boundaries noticed in the sea (Blackburn,

1969; Panshin, 1971; Pearcy, 1971). Interest and research in all

types of radiometric approaches in the fisheries resource area has

increased with developing techniques. An example of investigations

on parameters considered for remote sensing in fisheries research,

including chlorophyll by ocean color analysis, is the 1971 "Symposium

on Remote Sensing in Marine Biology and fisheries Resources" held at

Texas A&M University. Blackburn (1969) has concluded that if aircraft

and satellite sensors can determine chlorophyll at levels of significance

for a biological activity index, the adequate relationship between

surface chlorophyll concentrations and fish populations may present

the most efficient approach to fisheries search activities. One

of the most important aspects of remote monitoring of chlorophyll

distribution is the short time space in which it may be accomplished.

A dynamic condition such as upwelling, and the sequential response

by the food chain, requires this capability of remote sensing to be

useful, in fisheries resource. The second application of remote

chlorophyll determination is in assessment of pollution and

eutrophication (Arvesen ct al., 1971). The use of satellites for a routine

coverage of large regions has been designated the most applicable
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method for chlorophyll measurement (Szekielda and Curran, 1973).

If changes in chlorophyll concentrations (blooms or !tills) in a

specific locale can act as a judicious monitor of discharging

activities of known pollutants, documented radiometric chlorophyll

measurements could act as a powerful and efficient tool. Phytoplankton

in water masses are a non-conservative parameter. 'Phis presents

difficulties in using chlorophyll concentrations as a label in

circulation and mixing studies. However, chlorophyll changes in a

single water mass may be used to observe its development over time,.

and in response to other changing conditions. if remote studies by

aircraft or satellite can -routinely monitor the surface temperature

and the chlorophyll concentrations of a region, systems, patterns,

and cycles of systems of water masses may be identified and partially

interpreted. This application is the most recent suggestion for

radiometric measurements of chlorophyll in natural waters

(Szeki.elda, 1972a) .

Ramsey (1968) has quite thoroughly reviewed many processes

which are considered factors affecting remote measurement of ocean

color and chlorophyll determination at levels of 0.2 mg /m3.

Calculations were made of the contribution to a radiance signal from

the ocean by water reflectance and the atmosphere under a variety of

conditions. From the data presented, specifications for a spectro-

meter to determine chlorophyll concentration levels of 0.2 mg/m 3 are

given. '!'his reference has been used as the background for the

spectrometer employed by Clarke et al. (1970a).
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Nearcy and Keene (1974) used differences of norwalized back-

scattered signals at blue (450-470 nm), green (520-580 nm) and

orange (580-650 run) wavelength bands with additional spectra.

{	 created from 7 signal' band widths in the visible region and 1R

temperature measurements to identify changes in ocean color radiance

W	
with distance offshore from the coast of Oregon. Relationships of

these measurements to the Columbia lover plume, upwelling and open

ocean water types were observed. The oceanic type was

characterized by strong reflectance peak observed only in the blue
3

band. The differences of blue-green intensities were largest of

any Seater types. Differences of green-orange intensities were

^-	 n+1/3 the blue-green differences. In addition the green-orange

difference was ver , uniform in the oceanic water type. In regions

near its mouth ,the Columbia River plume was observed to have the

lowest radiance in the blue and green, but a backscattered signal in

the yellow, orange and red as high as the blue signal in the

oceanic type (blue-green decreased) while the blue intensity was as

high as oceanic water. A decreased slope in the spectra from the

reflectance peak in the blue to yellow green was observed in this

region compared to the similar slope in oceanic waters. The region

of the plume has been identified as containing a small concentration

and smaller sizes of particulates from the river discharge than the

river mouth area. Also larger chlorophyll concentration are found

in the plume offshore. The chlorophyll concentrations are larger in

the offshore plume than in the oceanic water, but this feature can not

i
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be observed by selective blue light attenuation by phytoplankton.

The water type designated as coastal upwelled water has spectra

that vary from maximum signal in the blue (450-470 nm) to maximum

signal in the green-yellow (550-580 nm). The average slope of the

spectra from 450 nm'to 580 nm was least of any water type, with tic

exception of the river mouth discharge. The difference in water

character between the offshore plume and the most near shore upwelling

region is the greater concentrations of physotplankton, phytoplankton

degradation products and dissolved Gelbstoff in the latter, while morn

fine clays and Gelbstoff are contained in the river plume. Pearcy, and

Keene, (1974) have combined comparisons of individual backscattered

signal bands (in this case differences in intensity) with use of

the total spectra to successfully describe these water types. The

blue-green difference Y n strong indicator of phytoplankton or,

moreover, biologically established (containing Gelbstoff in addition)

waters. Figment concentrations were not estimated however. The

difference between green and orange band reflectance is an indicator

of turbidity (lower differences with increasing turbidity) generally

irregardless of chlorophyll concentration. Comparison of color

boundaries or sharp color difference gradients and surface temperature

distribution showed a more complex structure for the ocean color

patterns than temperature. At temperature gradients, color gradients

were always observed, while color gradients were observed independent

Of temperature change.

i

i
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Mueller (1974) has used oc»an color spectra collected by

aircraft over open ocean, upwelling and Columbia River plume

regions for covariance analysis of the principle color components

contributing to the observed spectra. It was Cound that 4 principal

components were responsible for > 95% of the spectral variance. Ocean

parameters of pigment concentration (treated as an average of

chlorophyll and carotenoid pigments as a function of pigment absorp-.

Lion coefficients, vertical integrations of chlorophyll concentration

aQ Secchi depth) the volume scattering coefficient, Gelbstoff

concentration and phytoplankton size distribution were shown to create

a similar variance distribution as observed spectra when calculations

-	 of their optical properties hs eigenvectors in a radiative transfer

model were made. Phytoplankton was found to be the major source

of variation (76%) while similar variations by non- selective

particle scattering, Gelbstoff absorption and changing phytoplankton

size distribution could produce apparent pigment concentration changes

up to 1 mg/m 3 . This large a variation could be calculated by assuming

low concentrations of Gelbstoff and chlorophyll -free particulates

and without considering multiple scattering or the incident light

spectrum. Empirically, the weighted pigment concentration and'Secchi

depth were related to the principal components by multiple linear

regression equations with residual standard deviations of 1.6 mg /m3

and 2.6 m respectively. The parameterization of principal components

as eigenvoctors allows an accurate analysis of the ocean color.

spectra. Relating ocean color spectra to eigenstructure for uniform

analysis and future reference is worthy of consideration. This would
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be especially so if a principal component or components could, in

some way, physically characterize a water mass type. However, as

Mueller points out, an expanded model, which requires measurement

of more optical parameters at sea., must be used to estimate Agment

concentrations or other covariance parameters from ocean color spectra.

The research by Clarke at al, (1970a and b and 1973), Duntley,

(1972), and Duntley et al. (1974) have been the most direct considera-

tions in the diffrrontial radiometric method developed and used by

Arvesen at al. (1973).

Clarke at al. (1970a and b) employed a scanning spectrometer

with a spectral range from 400 to 700 on, scan time of 1.2 seconds

and field of view of 3 0 X 0.5 0 . Normalization', incidLnt light

spectrum was accomplished by scanning a horizontal "gray card",

although this standardization could not be accomplished in flight.

The view angle of the sensor for these studies was at the Brewster's

angle. 'Phis, plus the addition of polarized filter oriented at right

angles to the major polarization axis, eliminated the large

contribution of polarized surface reflected light to the signal which

has no ocean spectral information. A problem was caused at higher

altitudes of flight Q 305 m) by increased di.ffuse.atmospheric

light to the sensor and loss of spectral detail due to the large

optical depth that the signal must transit. Differences between

spectra of differing chlorophyll regions were maintained at higher

altidudes. Spectral measurements of Buzzard's Bay, the Gulf Stream and

r,

i!t

4 -.
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Sargasso Sea with surface chloro p hyll measurements of 4 mg/m 3 ,g	 1

013 mg/m 3 and < 0.1 mg/m 3 respectively (w 2 orders of magnitude)

showed very characteristic curves. Increased :intensities at shorter

wavelengths (< 520 nm) with decreased chlorophyll concentrations

co*	 ponded with decreased intensities at longer wavelengths (> . 520 nm)

r
causing an increasing slope in lower chlorophyll regions. The	 j

inflection point in all spectra was % 520 nm. The curves of various
^	

I

spectral character "rotated" about this wavelength which seemed

insensitive to changes in chlorophyll concentration. Thus it was

called the hinge point. The average slopes correlate well to the 	 {

chlorophyll concentrations. Changes of phytoplankton concentrations

were considered the most important influence on the spectral measure- 	 E

ments. Szekielda (1974), has determined the difference spectrum of

intensity of backscattered light caused by phytoplankton and dissolved

matter. Gulf Stream spectral energy was used as a reference and was

subtracted from a near coastal water energy spectrum. The resulting

spectrum represents the similar spectral variations observed by

Clarke et al. (1970a). The encouraging results of this study for

chlorophyll determination from ocean color spectral character Prompted

further investigation by Clarke and Ewing (1971 and 1973). Spectra

were obtained at altitudes from 150-000 m over Waters of the Gulf

of Mexico, the Pacific near the Panama Canal and along the Mexican

Pacific coast into the Gulf of California. Multiple recordings were

made of each target region at various nadir angles (0 01 400 ) and

i
employed different combinations of polarizing filters. In addition,
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ship sea truth data for interpretation of spectra and expendable bath-

yphotometer probes as the aircraft's own sea truth was included in the

research. These data and data collected over Buzzard's Bay were

interpreted for the effects on the spectral characteristics by various

chlorophyll levels., and the atmosphere at various flight altitudes.

Comparison . of measurements of upwelling light
.
spectra from 20 cm below

the surface and 500, 1000 and 2000 ft. altitudes revealed the addition

of a predominately blue diffuse atmospheric light. The most drastic

change in the spectral character is that from 150 to 300 m. A color

ratio briefly described by Clarke et al. (1970b) and fully by Clarice

and Ewing (1973) was used as an index to describe the character of

spectra, and was related to the spectral effects of chlorophyll

concentration changes. Light extinction profiles from bathyphotemeters

correlated well with the ratio of reflected radiance (540 nm/460 nm).

Increasing extinction coefficients compared to increasing color ratio

values. The research area of the Gulf of Mexico to the Gulf of

California was maj.-pod by the color ratio index and surface chlorophyll.

concentrations. Chlorophyll concentrations were not strictly related

to the ratio. Clarice and Ewing could not discriminate color contribu-

tions of silt or sediments from chlorophyll in near coastal areas where

the color ratio was > 0.7. In chief problems that remained to be

investigated were: to assay varied incident illumination in flight, to

better estimate and reduce diffuse.atmospheric light interferences, and

to identify the characterization of ocean color spectra by other

materials in the sea.
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Uuntley (1972) and vuntley et al. (1974) were concerned with

detecting chlorophyll changes at levels of 0.1 mg /m 3 which was

considered the base of significant levels for commercial fisheries

interests. However, their approach was designed for measurement from

! earth satellites. Radiative transfer calculations were made on the

chlorophyll signal available at orbital altitudes	 from a backlog

of data collected on optical atmospheric parameters, measurement'of

optical 'processes in the sea and measurements of varieties of phyto-

plankton cultures in the laboratory. The results presented represent

the apparent optical signal contrast when passing from biologically

poor water (Chl a < Q.1 111g/m 3 ) to higher selected chlorophyll

-	 concentrations. Data is presented as polar plots of the field of

view and analyzed in apparent orbital contrast isopleths for green

and blue wavelengths of returning light and at varying; solar zenith

angles. These plots indicate the areas of the field of view that

sensors must focus in to distinguish chlorophyll changes. Solar

zenith angles for best contrast were concluded to be 24 0 <0< 42 0 .	 _..

Although most of the . reflected visible spectrum was recommended to

differentiate chlorophyll from other 'ocean colorants", Ountley (1972)

concluded that only phyt.oplankton cause a backscattered spectra to

be increased at 560 nin, remain fixed at 523 run, and be diminished

at 450 nm although only pure laboratory cultures and biologically

poor waters in situ were treasured. Both blue and green wavelengths
I	

^^

from ocean spectra were concluded to be of sufficient intensity to

be detected through both clear and hazy atmospheres at earth orbit.
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Ountley et al. (1974) further developed calculations of chlorophyll

signal to an earth orbit by considering vertical distribution of

chlorophyll, different species composition and differences in filterad

base water composition. Radiative transfer calculations of two vertical

profiles of chlorophyll distribution showed that the diffuse

reflectance is only related to near surface concentrations (< 5 m)

and integrated chlorophyll values through the water column and spectral

diffuse reflectances are ambiguously related. Intensities of back-

scattered light to 1.11TS-1 satellite in a 500-600 nm channel were

determined to be proportional to near surface plankton (Sickielda,

1974). Calculations by lDuntley et al. (cit. loc.) suggested that

increases of sediments in suspension only increase the total diffuse

backscattering coefficient and not the diffuse absorption. 'Thus the

net result should be reflectance increase at all wavelengths in

optically deep waters, and sediments can be distinguished from

chlorophyll-bearing phytoplankton by the shapes of their respective

spectra.

With the previous suggestions for chlorophyll determination by

..olor ratio, Arvesen et al. (1973) studied a correlation method,

rased on differential radiometry to detect chlorophyll. The criteria

he used for 443 on/525 nm wavelength selections were based on

independently observed characteristics of natural phytoplankton,

Rayloigh-like seawater attenuation, and ''white" Mic scattering by

larger particulates. No theoretical treatment of the process of color

ratio production or atmospheric transfer was considered. The
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differential radiometric method did solve some of the previous

problems described. A normalization of incident light intensity could

be accomplished simply by adjusting the incident ratio(I 443/1 525) to
unity. The difficulty in spectra analysis was removed and a

continuous color index now could be more closely compare] to continuous

airborne radiation thermometer measurements. This also allowed an

easy, real-time interpretation. The results of measurements over"

varied natural water types at an altitude of 150 m dewonstrated.the

capability of this method to estimate surface chlorophyll levels.

Iiovis et al. (1973) have continued studies using numerous

reflected ratios at 11.3 km and 0.3 km altitudes over ocean areas

off North Carolina and the Gulf Steam, San Francisco Bay, and NIV

Africa. Because satellite spectral data will be recorded as spectral

bands and not complete spectra, color ratios-to-parameters comparisons

were designed. A rapid scan spectrometer with a field of view of 3.8 X

3.8 milliradians was employed in this study. At low altitudes this

narrow target resolved surface effects of waves. The spectra at the

different altitudes were compared, and, in contrast to Clarke and

Ewing (1973), there was severly reduced contrast. A factor of 2 reduc-

tion in contrast was observed even after the elimination of skylight

from the high altitude signal. The conclusion was that this informa-

tion had been scattered out of the radiance column viewed by the spectro-

meter. Hovis et al. (cit. loc), concluded that the use of ratios could

minimize changing, broad spectral atmospheric effects by referencing

to a spectral band that is insensitive to spectral changes in the ocean=s

i
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backscattered signal. Besides the 550 nm/443 on ratio used previously,

ratios of 600 nm/520 Fnn, 665 nm/520 on and 550/600 on measured

at high altitudes also showed correlations to chlorophyll measurements.

Under haze conditions the 550 llm/443 not and 665 nm/520 nm ratios best

correlated with chlorophyll concentrations. The calibration by

Arvesen (Figure 3.1) was used by Havis at al. for the NW coast of

Africa data.''Correlation of temperature changes simultaneous to

color ratio changes supported the 443 nm/525 nm ratio as an index of

chlorophyll because of the known response of phytoplankton to cold,

upwclling ,raters,

3.2.2 The Uiffecential Radiometer

The differential radiometer (DR) (Arvesen at al. 1973 and

Arvesen, 1973) is an extension of the use of wavelength ratioing for

determination of phytoplankton pigments in natural waters. In general,

the instrument is designed to measure two narrow . spectral regions

of reflected. (backscattelred) light from water bodies at aircraft

altitudes and produce a continuous signal which is a ratio of the two.

The reflected light is received in a sensor assembly through

a fiber optics bundle. The field of view of the bundle is 30°. The

bundle is then divided into four sections, each section having the

same field of view. Behind each section is a spectrally narrow

bandpass filter (AA 0 15 Fun) selected to allow transmittance of the

spectral region of interest. Radiation passing.through each

selection filter is incident on a silicon photodiode detector (UUT 500).
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Integral with each detector, a preanTli£ier produces an output voltage 	 J

signal proportional to the incident radiation. These signals can be

monitored directly. Two .signals are further processed to produce

the following algorithm:

Ratioed output signal = 1p (Signal of detector 112-Sig nal of detector 111)
Signal of detector 112	 !

volts. Similarly, the signals from the remaining two fiber optic bundle

sections are processed and can yield a second ratioed output signal.

One output signal, developed for determination of chlorophyll in

water bodies, has selected filters which transmit a 443 nm band

(detector 111) and a 525 Im band (detector 112). The second output signal

was not used in this study because no other correlations of wavelength

ratios and features effecting ocean color have been proposed at present..

The objectives of the differential radiometer's design are to

provide a high resolution, continuous, real-time, remote determination

of chlorophyll pigment concentrations in near surface waters and still

be simple to operate, The principle of this method for remote sensing

of chlorophyll is a culmination of the conclusions from previous

research outlined in Section 3.3.1 First, the specific spectral

characteristics of chlorophyll in natural water were considered.

The proportional , loss of reflected intensity in the 443 nm region is due
3

to the absorbance by increasing concentrations of chlorophyll pigments,

and the insensitivity of the reflection intensity at 525 not to changes

in clear, natural waters (Uuntley, 1972). The 443 nm intensity, then,

f

j

r
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is the sample signal wavelength (A), while the S25 nm exists as a back-

ground or reference A. The interference to the sample signal (443 nm)

and the reference signal (525 nm) by suspended sediments and the

molecular attenuation of sea water was, from the preliminary research

at the time, considered to have an equal effect on both wavelengths.

Therefore, the algorithm would continuously compare the

intensities of the reference wavelength and the sample wavelength

to normalizes! interferences. From the algorithm it can be seen that

the radiance ratio is linearly proportional to the voltage output.

A normalization of the incident light intensities (i.e., 1443/

1
525 " 1) at the flight altitudes can be obtained. Since the sensor

is a flexible fiber optic bundle, direct viewing of solar

radiation can be easily accomplished. A spectrally flat diffusor is

placed over the sensor to decrease the intensity and also to increase

the diffuse light to the sensor. +Adjustment of a potentiometer varieg

the sample signal output so sample and reference intensity can be

normalized. This solar zero operation can be accomplished periodically

during flight with changes in sunlight conditions and changing solar

zenith angle, Limiting skylight-sunlight intensities for instrument

use have not been well established.

The sensor is mounted at an angle of 20 0 off nadir. Also, the

mounted sensor may be rotated to any azimuth angle. The conclusions

on optimum direction of sensing for the most valuable optical signal

were followed in the design of this mounting apparatus (Duntley, 1972;
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Duntley et al., 1974; Austin 1974a and b). A field of view

of 30° also gives a specular average signal: large enough that sun

glitter contribution is negligible.

The calibration of the differential radiometer (DR) ratio system

in termsof chlorophyll concentration is the result of 50 measurements

over water bodies of various, known concentrations. This included

clear lakes, eutrophic lakes, marine water of varying chlorophyll

content and an estaury. The chlorophyll concentrations ranged from

< 0.03 to > 10.0 Illg/m 3 . The airborne measurements were made at an

altitude of 150 m. Arvesen (1973) shows a remarkable correlation

between sea truth and DR measurements along one 700 km track southwest

from San Diego. Arvesen's calibration (Figure 3.1) is also in agree-

ment with a well established principal in ocean color observations.

At very low concentrations of chlorophyll small changes in concentrations

correlate to large changes in the 443 nm/525 nm ratio. In water masses

of higher concentrations of chlorophyll, a far greater change of

concentration is needed to produce the same magnitude change in the

color ratio. The DR was shown capable of detecting chlorophyll

variations < 0.03 mg/m 3 . Unfortunately, the total suspended particulate

distributions are not given for additional comparison.
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Additional considerations for effective use of the DR

followed in the present study are: The solar elevation ankle should

be > 20° to insure adequate backscattered signal with respect to

background radiance. The direction of view was 20° from nadir oppos-

ing (1800 ) the solar azimuth angle to reduce sun glitter reflec-

tion 'o the sensor. As the solar azimuth angle changes in respect

to the aircraft, it is then necessary to correct the azimuth viewing

angle of the radiometer. The preliminary.effective depth of measure-

ment was considered to be about one-half to one-third of the Secchi

depth (Arvesen, 1173). This limitation is more firmly defined by the

present study. Additional information on the DR is given by

Arvesen (1973).

A pre-study evaluation of the effectiveness of the color

ratioing method is difficult. A number of published aircraft ocean

color spectra with corresponding sea truth chlorophyll concentrations

(puntley, 1972; Clarke and Ewing, 1973; Mueller, 1974; and Pearcy and

Keene; 1974) allow development of a color ratio chlorophyll concen-

tration comparison. However, various altitudes of flight, chlorophyll

concentration ranges of most measurements within only two order of

magnitude, and individual analysis of the data make a cummulative

comparison impractical. Generally, from comparison of color ratios

to chlorophyll concentrations for each study individually, the scatter

is far more than that seen by Arvesen.. Also, in the calibration of

very high chlorophyll values, the larger change in the color ratio
i
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(compared to Arveson's calibration) is indicated for similar changes

in chlorophyll concentrations > 20 mg/m s	 This is supported by

Curran (1972) in a comparison of chlorophyll co,y entrations and the

reflected color ratio 540 nm/460 nm.

{

i
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4. FIELD METHODS

The NW coast of Africa has long been recognized as a region of

upwelling. Smith (1968) has given a general review of the physical
I

oceanographic processes which result in this phenomena observed at

the Eastern boundaries of most oceans. Results of previous oceano-

graphic exploration have been reported by Uefant (1961), Furnestin

(1959), Jones anti Folkard (1970), Jones (1972), Fedoseev (1970), and

Schemainda et al. (1972). Biological results including chlorophyll

measurements have been reported by Furnestin (1970), Lloyd (1971)

Ballestex ct al. (1972) and Margalef (1971 and 1972). Interest in

better defining this upwelling area which led to the Sahara Upwelling

Expedition and the.JOINi'-1 project originated from the recognition

of the upwelling area by the previous investigations cited.

4.1 The SAHARA UPOELL1NG EXPEDiTiON

ln'August; 1373 1 a joint project based on skylab investigations

(Szekielda, 1972b) was conducted by the University of Delaware and

NAVOCEANO. The .area of operation was along the NW coast of

Africa from Cabo Juby (28 0 N, 130) in the north, to Cabo Bo j actor

(260, 14 0 300) in Be south; The area of operation extended seaward

90 nautical miles to Fuerteventura. The bathymetry of this area is

shown ill Figure 4.1.

The -Sahara Qpwalling ExPedit,ion (SUE) was designed as an

experimental mission with these three objectives: 1) to test from

34
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aircraft altitudes a suite of expeviments including expendable probes 	 r

and experimental remote sensing instruments, 2) to evaluate the ability

and utility of this system to recognize biological and physical

patterns associated with an upwelling region, 3) to be a comparison

study'of simultaneous surface truth, aircraft, and s:iellite measure-

meets in an upwelling area to aid in interpretation and correlation

of data acquired by the remote sensors employed.	
i

4.1.1 The Exierimcntal Instrumentation rack g

The experimental package of the Sahara upwelling Experiment

(SUE) contained both radiomotri.c sensors for reflected visible and

emitted iR radiation, and airborne expendable probes for light

penetration and vertical temperature profiles.

The differential radiometer described in Section 3.2.2 and an

airborne thermometer were the remote sensors employed on the aircraft

missions. Continuous sea surface temperatures (SST) were recorded

with a Barnes Airborne Radiation Thermometer 14320 (ART) operating

in the atmospheric window between 9.5 - 11.5 pis. This band of infrared

radiation is emitted from approximately the top 0.02 mm of the ocean's

surface and therefore reveals only the sea surface's skin temperature

(Clarke, 1964; Wilkerson, 1966). Aircraft thermal IR measurements have

been discussed by Clarke (1967) and Saunders (1967a). The raw analog

ART data were recorded on a strip chart recorder. Continual calibration

and corrections for altitude (depth of air column) attenuation; air and

lens temperatures front a format used by NAVOCEANO (Kerling, 1973)

were applied to the raw ART signal so a corrected SST could be
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recorded on a second two-channel recorder. The ART sensor head

was mounted 50 cm above the main deck of the aircraft and 1.5 m

above the aircraft skin in the viewing position normal to the sea

surface plane. The normal viewing angle has minimum correction due to

shortest optical depth and smallest influence by surface reflected solar

energy (Saunders, 1967b). The field of view (Co N.) of the sensor

was 2.2 0 . Extending this solid cone for 300 m, the operating altitude

of the SUE mission, the target spot of the ART was 11.5 m in diameter.

At an average ground speed of 108 m/s and an ART response time of

approximately 1.0 second, the best spacial resolution available from

this instrument system was 108 mi. The target spot of the OR was 184 m

in diameter with its f.o.v. of 30°.

Two expendable probes, a 300 m bathythermograph and a bathy-

thermograph modified to record light penetration levels, were

included in the SUE'mission. The airborne bathythermograph (AXBT)

is dropped from an aircraft and on impact at the sea surface an FM

transmitter is activated by a sea battery. A carrier signal is

transmitted which corresponds to a temperature measurement at the

surface. Following the carrier signal, the probe falls through the

water column in the same manner as a conventional expendable bathy»

thermograph (XBT). The signal is transmitted to the aircraft where

changes in frequency are recorded versus time and calibrated to °C.

versus depth.

AXBTs were modified similarly to those used by Clarke and

^i
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Ewing (1973). The airborne expendable photometer (AXIM) has

incorporated a zenith viewing photocell replacing the temperature

sensor of the Am r, The carrier signal is a mea stir ement of light

incident at the sea surface. The profile, recorded as increasing

extinction of light penetration with depth, can he calibrated to

percent incident radiation (o 1 0 ). Schematics of the expendable

probe operation and a description of signal evolution are presented in'

Appendix A. AX91's and AXI INIs were dropped seconds apart so vertical

temperature profiles could be correlated with light attenuation pro-

files. Probes were dropped on parallel flight lines which ran

approximately normal to the coast. The profiles measured on these

lines iaere analyzed as two dimensional vertical slices.

4.1,2 Ex perimental Procedures and Data Collection

'Elie elate, time, and comments of four flights in the SUE

mission are shown in Table 4.1. Differential radiometer and narrow

band airborne radiation thermometer (ART) signals were recorded

simultaneously on a two-channel strip chart recorder. Time marks,

course changes, station marks, instrument adjustments and calibrations

were noted on the strip chart by the differential radiometer operator.

Visual observations of ocean and sea surface features, atmospheric

conditions and solar azimuth positions radioed by the pilot and front

and rear observers were noted as well. Complete weather observations

were logged every fifteen minutes during the flights. The continuous

differential radiometer and ART signals were immediately available

for interpretation of-surface gradient structure and thus, were a
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decision making input in the expendable probe experiments.

Fifty-seven Airborne Expendable Bathythermographs (A.XYTs) and

thirteen Airborne Expendable Photometers AXPMs wore deployed ^ 	) 	 ini Y

the SUE mission for vertical temperature and incident light penetra-

tion profiles respectively.

On August 22 and 26, additional reflected wavelength regions

were recorded from the differential radiometer's secondary channels.

The continuous reflected `intensity of yellow and reel 	 optical

energy from wavelength regions centered at 576 nm and 663 nm respectiv-

ely was recorded for a major portion of the August 22 flight (see

Table 4.1). The 576 nm yellow band and a substitute 723 nm red band

were again recorded on August 26 for the entire six hour flight.

Table 4.1 Research flight's of the Sahara Upwclling Expedition

(SUE)

Comoents (2)

For all flights: ground speed 195-205
Knots
Altitude: 1000 feet (305 m)

I AXI'M M deployed at end of leg 5,
occasional haze and clouds below air-
craft, > 701 cloud coverage overhead

Expendable probe mission, 11 AXVMs
deployed during leis 8, 6, 5, and 2;
> 80% cloud coverage during 200 of
flight.

Additional reflected wavelength bands
recorded (576 not and 663 nm), 1 AXIN
dropped at 1416 (between legs 4 and 9),

(continued)

Date, 1973

August 18
	

0640-1240

August 21
	

1139-1753

August 22 .	1159-1824

0
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Table X1.1 (colltinuad)

Date, 1973	 'rime	 Comments (2)

August 26 1143-1723 Additional reflected wavelength bands
recorded (576 11111 and 723 nm), haze to
90% overcast for 15'0 of flight.

(1) Airborne Expendable Photometer

(2) Airborne Expendable Bat hythermograph deployment is given by

LaViolette (1974).

4.1.3 Flight Piann:ng

The coverage intensity and regional area chosen for the research

flights were designed to give- a synoptic monitoring of an upwelling

region large enough for comparison studies with the resolution of

satellite data. biter the morning flight of August 18, in which

research was partially hampered by cloudy and hazy conditions, the

remaining flights were scheduled in the middle of the day which also

allowed for use of same-day NOAH-2 satellite images for scheduling.

The average duration of the flights was 6.5 hours. The regional

area was the coastal to open ocean waters between the Canary Islands

(Gran Canaria and Fuerteventura) and the coast of Northwest Africa

from Capo Juby to South of Capo Bojador.

4.2 The Joiur-1 Plinio

The JOINT-1 project of the Coastal Upwelling Ecosystems Analysis

(CUEA) program was an intense oceanographic study of an upwelling area
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approximately one degree square (17 0 -18 O W, 21 0 -22%) off Cap Blanc in

northwest Africa for a three month period from mid February through

mid May, 1974. JOINT-I incorporated a twin-engined aircraft from

the National Center for Atmospheric Research (NCAR) with participating

U.S. oceanographic vessels from NOAH, Woods Hole Oceanographic institute

and University of Miami.. In addition the French research vessels

Jean Charcot and CaLricone, the Spanish research vessel. Cornide de

Saavedra; and the Mauritanian research vessel Almorivide participated

in the project. Synoptic temperature coverage of the research area

was performed by the NOAA-2 satellite.

4.2.1 Airborne Measurements

The aircraft's oceanographic mission was designed as an opera-

tional survey to support research vessel activities in the vicinity

with the objectives of synoptically monitoring sea surface temperature

and phytoplankton chlorophyll pigment concentrations in near surface

waters by remote sensors. In addition, the aircraft was to study

meteorological conditions related to upwelling regimes. It was

designed that data acquired over the extended period of the air-

craft's mission be transmitted daily in a hard copy form (as analyzed

sea surface temperature (SS'f') and surface chlorophyll (C;hl.) maps)

via communication satellite to ships in the research area. The

distribution of these surface parameters could then be used to locate

upwclling events and as a decision-making input into selecting areas

for intense investigation. On the other hand, the data collected by

the differential radiometer (DR) and the radiation thermometer (PRT'-5)
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were supported by the sea truth obtained by the research vessels.

This data includes surface chlorophyll measurements, sea surface

temperatures, distribution of particulates and incident Light

penetration.

Specifications of , the radiation thermometer and the

twin engine Beechc:raft "Queen Air" used in JOINT-1 are described in NCAR

(1973). Pre-flight calibration was accomplished by sensor measurement

of a water bath. Periodically during the flight, the solar standardiza-

tion of the DR was accomplished (see Section 3.2.2). The mounting

of the DR sensor in the aircraft allowed manipulation of the azimuth

angle, while the viewing angle was 20 0 from nadir. The PRT-5

sensor head was mounted at nadir. The operating altitude of the air-

craft was 500 feet (150 Q. The f.o.v. of the DR is 30 0 , and at the

operating altitude the target snot of the pit is 4 92 m in diameter.

The PIZT-5 sensor's view was unobstructed by the aircraft skin. The

plexiglass window through which the DR viewed the sea surface was

identical to the observation window material through which solar

standardizations were made.

4.2.2 Plight Planning

Two types of oceanographic flight plans were devised to give

periodic intense coverage of a small (1/2 0 longitude by 1° latitude)

area and larger (1° square) area synoptic coverage. Occasionally,

both types of flights wore flown on the same clay for comparison

purposes. Intercepts in the flight tracts were designed to give

i
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cross-referencing points for aircraft instrument checks. Oceano-

graphic flights as scheduled did not have More than a two day lapse

between consecutive flights.

Meterologi.cal flights required a profiling of the air column

and no oceanographic data were obtained. On days when one oeoano-

graphic flight was scheduled, the time of optimal sun elevation for

the differential radiometer was selected. This was between 1000-

1440 lir. local time. The average duration of flights was four

hours.

Whenever research vessels were in the vicinity of the flight

tract, the aircraft diverted to make several overpasses to obtain sea

truth measurements. The time "on course" in these passes over the

vessels was usually more than one minute. The amount of time insured

stability of differential radiometer adjustments after the

course change.

Experiences early in JOIN'-I with days of high dust loading

and its detrimental effect on the aircraft's operation became a

safety factor in scheduling flights. The dust that eventur!Ily sifted

into the instruments, especially the Inertial Navigation System and

the NCAR Aris data collection system, caused frequent inflight failures

in the later flights and finally an early conclusion to the aircraft's

mission.
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4.2.3 Aquisiti.on Format and Data Handling

Thirty-five research flights from Feb. 17 to March 28, 1974

were accomplished. 'table 4.2 shows the date, time, and type of each

flight. Raw data available immediately were the precision radiation

thermometer (PRT-5) and differential radiometer traces on the two-

channel strap chart recorder. These recordings were annotated with

time marks, visual observations of atmospheric and sea conditions

by the rear observer who operated all instrumentation, a>>d with

observations of the pilot and front observer. rhis was particularly

important for discrimination in the data of course changes, transition

from cloud-free to clouded areas and visual observations a£

properties on the sea surface such as cloud shadows, large slick areas,

slick streaks, color boundaries, col(-,r streaks, fouilt lines, and fishing

vessels ('tabor, 1974). Besides the detailed strip charts, the front

observer kept a log of times and positions of arriving and leaving

stations anc' of features noted by him or the rear observer. The

Inertial navigation System (INS) allowed a direct, real-time readout

of position, heading, distance to the next station and ground speed.

'these observations also were routinely noted with the specific obser-

vations made in the front observer's log.

All oceanographic sensor data were recorded via the Aircraft

Recording Instrumentation System (Aris) data collection system on

multichannel magnetic tape. This included the differential radiometer

and PRT-5 data, the position data from the INS, and time. A descrip-

tion of the Aris system developed at NCAR is given in NGAR (1973).
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Digital values were recoruuu on tales at eight values per second

after computer processing. I-or oceanographic data usage at this tame,

one,second averages were considered sufficient and expediated the

processing of the twenty-six oceanographic flights, At WAR in Boulder

Colorado, the data from the computer tapes were printed on microfilm

which gave fifteen-minute plots of the different parameters versus

_._	 time as well as the one second average listings of parameter values.

The best spatial resolution for the one second values at the average
1

aircraft speed of 140 knots was 'L 78 meters.

_I

_I

w
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Tablo U JOINT-1 Oceanographic Research Flights

Average
Wind
Direc-

Flight Flight tion/
0 Date,1974 Loyal Tina Pattern Spcuo Com. ants

1 Feb. 17 0835-1320 Small 060/40 light haze	 (dust)	 -
scale: N top at 2000 feet.

2 Feb. 18 0840-1300 Small 050/10- thick haze - top
scale:	 S 89 4000 feet

3 Feb. 19 1230-1605 Large scattered cumulus
scale

4 Feb. 20 0800-1200 Small occasional clouds
scale: N

5 Feb. 20 1325-1630 Small -/10-67
scale:S

6 Feb. 21 0815-1215 Modified light haze
small

7 Feb. 22 0810-1140 Large -/02-68 Cloudy

8 Feb. 28 1335-1745 .Small occasional clouds,
light haze-top 2000 feet

9 Mar. .4 1320-1630 Small 020/12

10 Mar. 5 0800-1130 Large 050/18 few clouds, light
haze-top 3000 feet

12 Mar. 6 0800-1145 Small 353/17 scattered heavy
cloud cover

13 Mar. 6 1315-1700 Small 350/15 special flight for
comparison with AM

16* Mar. 8 0950-1340 Small J02/14 light haze

17* Mar. 9 0800-1200 Small 045/22 Partially cloudy

18* Mar. 9 1330-1700 Large 025/23

19 Mar. 12 0750-1035 Small 045/27 low visibility.	 (3-4

20	 Mar. 12	 1320-1640	 Large

23 * Mar. 16	 0740-1130	 Small

miles), flight cut short,
no Chi. data

040/27 low visibility, heavy
clouds and dust - tole
3500 feet

035/25	 1 fight fog and dust - top
600 feet-
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Tab 10 4.2 (continual)

Average
Wind
Direc-

F1ight Flight tion/
0 Date, 1974 Local	 'l'a.me Pattern S Reed Comments

24 Mar. 16 1320-1450 Large 034/18 very dusty, flight cut
short

29* Mar. 19 1000-1305 Small 036/21

30 Mar. 20 0745-1130 Small 045/22 frequent clouds

31 Mar. 20 1315-1630 Large

32 Aiar, 21 1005-1450 Small -/23 dust top 4500 feet

33 Mar. 28 0915-1015 Small flight cut short - no data

34 Mar. 29 1345-1720 Small 359/16 occasional cumulus, light
haze top 1500 feet
no computer digital data,
analysas from strip
charts

35 Mar. 29 0815-0915 Small scattered N-S cumulus,
flight cut short

* Flights described in text.
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5. RESULTS OF FIELD STUDIES

5.1 SAHARA UPIVELLING EXPEDITION

5.1.1 Explanation of Data Ar,"I v,cs

Analog sea surface temperatures (SST) and differential radio-

meter (DR) voltages calibrated to chlorophyll (Chl.) values from the

calibration curve described in Section 3.2.2 and presented in Figure

3.1 were digitized in one minute averages, then plotted on flight

tracts mapped by the aircraft's navigator. The rationale of using

one minute average intervals of continuous data was: for a first

comparison with either continuous chlorophyll measurements froi vessel

or spacecraft: data, G In average values would be most useful and

convenient. The analog recordings existed as a reference if greater

resolution would be needed. The decision of which data were excluded

from analysis wao made from the written comments on the airborne

recordings and. distinctive features in the traces such as signal

spikes clue to aircraft motion and loss or increasa of normal low level

surface noise by cloud scatter processes or sun glint respectively.

Cloud contaminated regions were disregarded in DR data and excessive

sun glint, cloud cover and banking motions of the aircraft were

disregarded in both the DR and ART data. For example, the August 18

flight Was the only . morning flight of the SUE mission and the large

change in solar elevation throughout the flight and variations in

atmospheric conditions suggested some limiting conditions for the

radiometric method. The DR data before 0800 hours was rejected due to

48
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insufficient solar incident light and skylight through the > 710%

cloud cover. Cloud contamination beneath the aircraft caused

features in the recordings which had similar appearance to actual

color boundaries. Loss of the background reflection noise from

constant sea state oscillations helped differentiate this interference

from actual features. Clouds and cloud shadows erratically increased

the ratio value of reflected light. An erratic ART signal supported

the DR signal under these conditions. Analysis of the data maps involved

contouring of SST in °C. and DR maps in mg/m 3 chlorophyll as per

calibration curve. The final forms of these maps are presented in

Figures 5.1 a-d. The flight path, uivided into one minute intervals

on the SST maps and two minute intervals an the Chl. maps, is

indicated by discrete data points. The intervals of chlorophyll

contour are not equal and this caution in interpretation of gradient

structure should be observed. A representation more closely related

to ocean color changes can be exhibited by this presentation, but

again a cautious interpretation is needed.

Data received from the exper d able probes were analyzed on

return to the laboratory. Amplification and normalization of the

Airborne Expendable Bathyphotometer (AXPM) recordings were

needed for interpretation as light penetration. Data of the routinely

used Airborne Expendable Bathythermographs (AXWI's) could be analyzed

immediately. The absolute accuracy of the temperature values given

in the results of the SST and AM data is not known. The relative

accuracy of these measurements, clue to the intercomparisons of data
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that were matte, is reliab)e.

5.1.2 Description and Inta retatzon of Sensor and Probe

Measurements

Results of the SAHARA U1 1WELLING EXPEDITION (SUE) include:

1) maps of the regional distributions of sea surface temperature (SST)

and apparent chlorophyll values (Chl.) that were observed in an eight

day period from 18-26 August, 1973 (Figure 5.1 a-d), 2) analyzed

continuous recordings of DR and ART signals plus reflected intensities

of yellow (576 mn) red (663 nm) and near IR (721 inn) bands which are

presented far comparison of changes in the offshore and longshore

direction (Figure 5.2 a-e), 5) simultaneous light penetration and

temperature profiles of offshore sections on 21 August for identifica-

tion of upwolling phenomena and for light penetration - surface ocean

color comparison (Figure 5.3).

In figure 5.1 a-d, DR measurements indicate increased near—

shore surface chlorophyll levels in all flights with maximum

levels ranging from > 1 mg/m 3 on August 21 and 22, to > 5 Mg/m 3 on

August 18. Also common to all flights are the longshore paralleling

contours which have differing degrees of offshore distensions, but

consistently decrease in value moving offshore. The most dramatic

changes in apparent chlorophyll levels are nearshore, but structure

can be observed offshore in all flights as well. If the results of

the four Blights are observed in time sequence, a -umhor of develop-

ments can be described and interpreted. The 18 August analysis shows
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the most seaward-extending temperature structure and Chi, structure

of any date during SUE. Offshore distending isotherms indicate a

plume of colder water. from the sequential flights (21 and 22 August)

this feature appears to separate from the constant coastal

structure and move generally west by 21 August and then south by 22

August. On 18 August, the Chi. is apparently > 0.5 mg/m 3 in the position

of the plume < 19°. The Chi. analysis indicates that the plume feature

is already separated from the coastal region on 18 August. 'through

21 and 22 August, the temperature difference between the plume and the

surrounding water is lost. Any Chi, difference between the surrounding

water and this migrating plume was not identified on 21 August. On

22 August, however a > 0.5 mg/m 3 feature which corresponds to the NIV

temperature boundary is apparent south of Gran Canaria. Low Chi. and

> 21° SST are observed to the south of W orteventura. In reference

to the southerly Canary Current, this would be the leeward side of

the island. LaViolette (1974) interprets the isolated patches of

> 21 0 water (on 21 and 26 August) as surface eddies or an island wake

created by the expansion of the Canary Current south of the island

after the channelling between the African coast and Fuerteventura,

The > 21 0 feature was observed on all dates. This corresponded

to the clearest waters measured by the DR. Data from 18 August

demonstrate a very strict correlation between decreasing SST and

increasing Chl. The striking identity of location for both Chi. and

SST gradients in all areas and on all dates indicates a

significant dependence of the Chl. measurement on temperature structure.

The structure noted on the 21 August in the 0.5 mg/m 3 contour (the
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third flight line from the south) is difficult to interpret. There

is a correlation between the EST and Chl. distribution. However,

these measurements were taken during observations of g lint. This would

have t1:e effect of: ca p.	 ; the chlorophyll values to lie inaccurately

high. The signal reflected from the surface would approach the ratio

obtained during the solar zero procedure. Since the actual reflected

ratios from the sea in this locale were low compared to the solar zero,

sun glint received by the sensor would raise the values. This would

cause excessive noise in the DR analog signal if it was a significant

input to the sensor. The vertical section results (figure 5.3), on

the other hand, support the surface temperature gradient. On August 22,

an isolated patch of < 0.2 mg'/m 3 Chl. was observed to the southwest

of the structure of 21 August. This may be the development of an

isolated,very clear water parcel moving in the southerly Canary Current

offshore of coastal upwelling activity as indicated by the temperature

and apparent Chl. gradients. The distance which this feature and the

lower temperature offshore patch described above have moved in a one

day period is comparable with the ti 1.5 knot speed of the Canary Current

(Fedoseev, 1970). On 21, 22 and 26 August, isolated patches of-very

low Chl. were measured. just offshore of strong temperature gradients.

The only high Chl. patch was measured on 26 August. The development

of the large Chl.' plume extending to south of Gran Canaria can not

be interpreted due to the longer time interval between this and the

previous flight.
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In actuality, both SST and Chl. have more fine structur°

variability or meandering than is shown because the analysis can

be interpolated between flight lines. This can be exhibited when

flight lines are positioned nearer each other and thus the data

distribution concentrated. in all flights, the inshore legs runn

parallel to the coast showed small, quite frequent plumes of apparent

chlorophyll. Two other observations tend to discount these as

measurements of actual chlorophyll. The SST of these plumes was

consistently ,nigher in the plume and lower in contiguous areas. In

general, this is the converse of the results that showed decreasing

Surface temperature with increases in apparent chlorophyll. This

feature could not usually be resolved in the one minute average

analysis, but it is observed in the continuous recording of

Figure 5.2c at time 1610. Photographs of the sea surface from the

aircraft showed plumes of sediment with the frequency and size of the

features indicated by the Utz. The plumes can be interpreted a, warmer,

surf zone water heavily laden with large sediment particles flowing

offshore and surrounded by colder, Tess reflective coastal-water.

In this case, it was visually clear the DR measured particulate

load as increased chlorophyll levels. More disperse non-phytoplank-

ton particulates originating from coastal orrosion and bottom distur-

bance are suspected to partially cause the general apparent chlorophyll

increases in all near shore areas.
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on August 22 and 26, in addition to the DR and AIVI' signals,

red (663 nm or 723 nm) and yellow (576 nm) channels of reflected

light were recorded. The four reproduced analog recordings of five

time intervals are presented in figure 5.2 a-e. The position of each

recording is shown on the Chl. maps of 22 and 26 August

(figures 5.1 c and d) . The incorl}oration of measkrroments at these

wavelengths was designed to help interpret the effectiveness of the

DR method by having additional wavelengths which could support

the identification of the chlorophyll by its characteristic spectral

response. All large non-selective particulates should cause increased

scattered light from a clear ocean to the sensor at all wavelengths if

they are distributed in near surface waters. If phytoplankton are

present, the blue absorption and ti 525 nm insensitivity will be 	 j

measured as Chi. by DR. The yellow band should respond to the particle

scattering much as if phytoplankton were non-selective. The red bands

are expected to have a similar response as the yellow, with an increased

----	 ^ as prod ^c^ er-dzs r t	 =1es_r to 	 :11-eface^TJi"63 nM

band is close to the chlorophyll absorption maxima at tv 680 nm

1

in vivo, and may indicate high concentrations of phytoplankton near

the surface by decreased backscattered intensity at this wavelength.

With the composition of coastal water including phytoplaniton, i
Gelbstoff and observed sediment particulates, the response of the

yellow and rod bands are complex to calculate. In general, the more

effective backscattering situation produced the largest response at

r

these additional wavelengths. In the 5.2 figures, increasing
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voltages in red and yellow bands represent increasing reflected light

intensity. Positive voltage increases indicate a proportional decrease

in the DR ratio value. The SST trace is offset ten seconds behind

the other recordings. Visual comments are presented to help identify

features. The sensors recorded generally increasing reflectance in

both wavelengths and a decreasing 443 Tim/525 nm ratio going; onshore.

The features of both reel (663 nm) far red (723 nm) and yellow (576- nm)

bands correlated well with nearshore DR features while offshore

the correlation was not this simple. In Figures 5.2 a, c and d, the

time intervals devoid of features in the red and yellow had the most

dynamic DR and temperature structure, but in Figures 5.2 b and e,

the opposite was true, 1 1hytoplankton are believed to be responsible

for the former optical situations. The latter cases and the nearshore

areas of simple red-yellow-Ult correlations are suggested to be obser-

vations of high concentrations of non-chlorophyll, highly reflective

suspended particulates in addition tohyto planktotn. P earc and Keene 	 --P	 I	 Y

(1974) have identified water mass types in the Pacific off Oregon by

spectral variability.
---

ariability. Thei.r comparisons of blue to green and green

to orange in oceanic water, the Columbia River plume (high is suspended

particulates) and upwelling water (spectrally varying, but dense in

phytoplankton) support the interpretation suggested here. The

offshore, separated surface rlume on 22 August (Chl. > 0.5 mg/m3)

was observed to have decreased red (663 nm) signal in this area

(data not presented) in relation to the adjacent, region. 11 earcy and

Keene (cit. loc.) showed spectra obtained over upwelling water furthest
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from the influence of the Columbia River plume was characterized by

the largest decrease in orange reflection of any water type. Although

the broad red spectral , attenuation by clear sea (,rater is usually consid-

ered to mask observation of chlorophyll absorbance at specific red

wavelengths, the decrease in the red intensity noticed in this example

in the SUIT study and possibly in the Oregon study suggests that

chlorophyll absorption in the red was apparent. The vertical

temperature and light penetration profiles of 1524 hours on 21 August

(Figure A.3a in Appendix A) were located in this feature. They show

a more pronounced gradient at ti 30 m, but an extinction rate change

at ru 5 m. This suggests that, the measurements made the following

day were of a near surface feature. Figure S.2e is presented to show that

sharp boundaries were observed in the longshore direction as well as

onshore. This suggests the offshore extension of upwelling at the

surface into the waters of the Canary Current. Such a feature could

become separated from the coastal regime and develop as did the

upwelling plume to south from 18-2Z August.

Table 5.1 lists the one percent light level depth and

the attenuation percentage in the first five motors recorded by the

expendable photometers, and the surface chlorophyll levels

indicated by the DR at the drop site. Generally, the greater

one percent light depths correlate with lower apparent chlorophyll

levels. Appendix A (Figures A.3a-h) showsthe temperature and light

intensity profiles have deflections in the extinction rate toward

decreasing extinction with depth at light levels £roar 80 16 to lSa and

{

I

j
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O5 August 22,1573
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'fable 5.1 itcsults of Airbo: ire Expendable Photometer Study
August 21, 1773

DR
10 Attenuation Sm-17 ► ce

Position Light 4(2) Chloro-
Local Latitude Longitude Level (l) (1st phyll
Time (°N) (*IV) (111) 5 meters) mg/0 Comments

1152 27 0 34' 1,10581 23 3 0.4 SIV of Gran

1155 2.7 0 27' 14051' 17 4 0.4 Canaria

1204 27 0 09' 14027' 38 7 0.5 Line 2

1215 26 0 44' 130501 19 8 1.7

1308 28 0 29' 13040' NAM 4 0.3

1309 28 0 27' 13°38' NA 12 0.3 Line 4

131.8 28 0 15' 13024' NA 5 0.9

1332 27 0 35 1 130131 .r0 12 1.5 Lane 3

1354 27 0 53' 140081 65 S 0.3

1524 27 0 01' 15024' NA 18 0.3 Line 1

1548 26 0 21 1 1,10331 NA 8 014

(1) 10 of the initial Airborne Expendable Photometer (AXIN)
carrier signal

(2) Attenuation percent of initial AXI'M carrier signal

(3) Data was not available
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i

at depths < 20 meters. This depth may represent the bottom of the

euphotic zone --the vertical limit of distribution of a majority of

i
	 active phytoplankton is stable water masses. Phytoplankton and the

I
	 associated chlorophyll probably caused the increased attenuation in

k --
	 the indicated euphotic zone. The, two nearshore profiles on lines 2

and 3 are sites of upwelling, suggested by the cold water originating

at a depth of about 300 m. The well define:! offshore euphotic

zone boundaries were not found in nearshore profiles due to upwelling

effects. PhyLopiankton and non-phytoplankton suspended material from

the coast, well distributed from the surface to depth, and causing

high rates of light attenuation are indicated as causing the high

apparent chlorophyll measurements. It must be pointed out that the

percent light intensity given by the expendable photometers (AXPM)

is calibrated with 100% being the first value measured below

.the surface after impact and stabilization of the probe or approximately

1 meter (see Appendix A). The Secchi depth observed off Cabo Bojador

(just south of the 1548 probe on line I of figure 5.3) ranged between

S to 10 meters in April-May, 1973 (Cruzado and Manriquez, 1974).

The levels of 1% light intensity recorded by all probes was consistently

deeper than 20'm. Also, the 50% light level ranged from 2.8 m to as

shallow as 1 m in similar coastal arias CJOINT-1). 'Therefore, the

percentages indicated by the AXPMs are a fraction of the actual

percent incident intensity (10),
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5.2 JOINT-I I'rojecL

5.2.1 Data Analysis

The immediate analysis of the aircraft oceanographic data for

distribution to research vessels (see Section 4.2) used the real-time

strip chart recordings of DR and PRT-5 signals. This form of the data

presented one minute averaged values mapped over the coverage area. The

standard temperature analysis (SST) was 0,4°C. while the apparent

chlorophyll (Chl.) analysis was made in intervals which more closely

represented ocean color change. The calibration or the DR ratio

(443 nm/525 nm) to Chl. units of mg/m 3 is described in Section 3.2.2

with the calibration curve presented in Figuro 3.1. At the

operational aircraft speed of 140 knots, the one minute averages

translate to one value per 4.4 km. In July, 1974 the.digital micro film

print-out of the sensor data at 1 second averages became available.

The preliminary strip chart analog data was compared to the data

recorded by the NCAR ARIS III data system (NCAR, 1973). The final

farm of the aircraft sensor data given in section 5.2.Z is from analysis

of the ARIS digital output. In addition, an analysis of the data

was made at NCAR,. Data was presented as 15 minute, 1 value/s plots

of parameter versus time. These, graphs are on microfilm and offer a

detailed comparison of parameters similar to the real-time comparison

that was made from the analog traces. preliminary sea truth surface

chlorophyll and surface temperature values from-diract aircraft

over-flights of research vessels are included on the maps

presented in Section 5.2.2, and in Appendix B. Neither the SST or Chl.
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analyses are corrected to sea truth. At present., the data available

allow an evaluation of the effectiveness of the DR for chlorophyll.

determination. Analysis of the solar radiation data recorded at

coastal stations and on the Atlantis 11 (Figure 5.9) was

accomplished by raking; averages over one hour periods where

voltages were converted to calories-cm- 2•min-1.

5.2.2 Description and Interpretation of Sensor Measurements

and Comparison with Preliminary JOINT-1 Sea 'truth Measurements

Of the 26 oceanographic research flights of JOiur-I, six are

described and interpreted in ,this study for determination of the effective-

ness of the DR and for preliminary synoptic recognition of upwelling

events. Table 5.2 presents basic information on the 26 flights

and indicates those which are described here. Sufficient sea truth

was available for specific comparison and interpretation with the

results from these dates. .A 14 day period was covered by the G flights.

The intensity of coverage varied, with 3 flights flown in a 36 Hour

period on 8-9 March, a five day lapse, then the 3 final flights

extending over 5 days (16-21 March). In an exception to this, the

results presented in Figure 5.4 and 5.5 include all applicable sea

truth data from stations made on , 21 0 20 1 N and 21° 40% latitude during

the period 8-21 March. The analyzed.maps of the aircraft research

are shown in figures 5.6 a to 5.6 f. The NW coast of Africa, from

Cap Blanc to Cabo Barbas, the bathymetry of the shelf and contincnta;

slope, and a distance scale are included in most maps for reference,

i
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The position of sca truth measurements is labeled with the

abbreviation of the research vessel.. (Atlantis II - All,

Occanograplibr - OCN, James M. Gilliss - Gilliss). The flight tracts

are outlined by two-minute position paints. Intervals where

meta arologic atmospheric soundings were made, and no oceanographic

data could bo collected,have position points omitted. For

reference, the southern most flight line was the initial outbound leg,

the 21° 40' flight line was also outbound. Three analyses are

presented for each .flight. The first is the differential radiometric

chlorophyll values (in mg/m 3 Chl.), determined from calibration of

the reflected ocean color ratio of intensities at a 443 nm band/525 nm

nand (the ratio is normalized to incident ratio at the aircraft alti-

tude) to previously measured surface chlorophyll values by Arvesen

at al. (1973). The calibration curve is presented in Figure 3.1.

The two analyses presented together for comparison are the values of

the reflected ocean color ratio (L
443 525

/L ) mentioned above, and the

radiometric sea surface temperatures (SST) obtained from the aircraft,

not corrected for atmospheric effects or adjusted to actual surface

measurements. The total set of analyzed results from the aircraft

oceanographic research, with the exceptions of those presented in

this section, are found in Appendix B. A number of the maps are of

different scale due to occasional large-scale coverage and caution

should be used when identifying the same feature on successive dates.
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A detailed description or the surface oceanography from

aircraft data is not atteaapted here. Generally, a maximum gradient of

apparent chlorophyll (Chi.) was in the offshore direction, The

distribution of Chi, farther offshore was of more variable structure,

The Chi. and DR analyses in Figure 5.6a show plumes distending offshore

f
from the generpily longshore paralleling gradients. The larger ratio

values indicate particulate-free and low productive waters. Offshore, 	 +

approximately to the 50 m isobath, increased Chi, distribution 	 I
;

(or lower DR ratio) was associated very closely with that of warmer
i

SSC regions. On the shelf, two separate centers of cold water 	 !

(14.67 at 21°45 I N and < 14.0°.at 21°200) were observed, Low Chl.

and higher DR ratio values are associated with the center to the

north, while a low apparent Chi. feature was adjacent to the southern

cold center A thermal gradient was identified at the shelf break

on 214 4S I N latitude. Here, increased apparent Chi. was

associated with an offshore boundary of upwelled water at the surface.
1

The line 21 0 30 I N latitude partitioned this feature to the north from

the low temperature well on the shelf and the high DR value associated

(althougW not precisely) with it. This fapl are . represented an

active upwelling location. The 9 March (AM) anaiysos identify March 8
I

features offshore of 50 m in precisely the same positions. Inshore of	 !

50 m a slight southerly shift of ocean color and SST features was	 {

observed. From a synoptic point of view, the patterns of the gradients	 ^

or boundaries have meandered, but the features have remained stationary

and gradient intensities have not developed or broken down. The large

i
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scale March 9 PM flight gives additional coverage north to 22 0 00' 11

longitude. The increased area covered is compensated by a loss of

coverage intensity. This is why the higher Chi, region observed on

21° 90 1 N at the shelf break is not resolved in the large scale flight.

A better interpretation of the extent of the warm feature north of 21'

20 1 N and west of the shelf break is the trade-off gaiAed by this large-

scale flight,Flight Number 23, on 16 March, (Fig. S.Gd) shows a .

different type of situation. The coldest . suriace water was located

at the slope shelf boundary. Both seaward and shoreward there were

up to	 r%,1.5*  thermal gradients. Beyond the shelf on 21° 301N

a colder region was depicted. The warmest temperatures were observed

onshore but staggered between the locations where the cold coastal

upwelli.ng was noticed on 8-9 March. Whereas the highest apparent Chi.

distribution compared to the lowest- onshore temperatures on flights

of 8-9 March, on 16 March the highest apparent Chi., in levels similar

to 8-9 March, were coincident with the highest onshore temperatures. A

small area.of high DR ratio was observed at 21° 20 1 N, 17 171W.

Thus far, all DR and Chi. analyses described this feature. Coverage

on other dates also confirmed a relatively constant feature of clearer

water or less apparent Chi. at this location (see Analyses in Appendix

B). On March 16 the thermal gradient at the shelf oreak and seaward

was in a region of very uniform ocean color. On March 19 and 21

(Figures 5;6e and 5.6f) a situation existed similar to 8-9 March.

Two, and perhaps three cold areas on the 50 m isubath were observed.

The 19-21 March, coastal upwelling was occurring in an even

narrower, nearshore band than on 8-9 March. These cold features

1
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were associated with higher apparent Chi, values than surrounding

waters, although onshore the values continued to increase. This was

the constant, general observation of apparent Chi, distribution.

A distribution of cooler water at the shelf break coexisted with higher

Olt values. Some ocean color fronts were visually observed,

as well as radiometrically, between 21° 21 1 N and 21° 31% P * 3011V

on 21 March. A development at the shelf region located at 21 0 401N

was monitored from 19 to 21 March. A cooler water miss beyond the

slope was oriented normal to the slope on 19 March. It was also

identified in the apparent Chi. analysis (Figure 5.6e) as a shoreward

extending . plume, The southern boyMaxy of this feature can be-

identified thermally and spectrally on 20 March at 21 0 30%

(see Appendix B), On 21 March more well defined offshore gradient

structures have developed. The ocean color analyses for 21 March

showed much the same orientation as 19 March and apparently no depen-

dence on the thermal development

t

Preliminary results from investigators presented at a

JOINT-I workshop (Friday ilarbor Workshop, 074) were interpreted . for

recognition of distinct upwelling types. Three types were discussed

and dates of the development of these events were given. Briefly,..

8-9 March was in a period designated as classical, one-cell upwelling

occurring over the shelf. lG March,.was in a period of shelf break

upwolling, and 19 March was transitional type including two upwelling

cells, It can be seen that the aircraft results lend support to.
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these interpretations. The next step in interpretation of upwelling

processes with the results presented ]sere should include the time

sequence of the wind data.

More important to the objectives of this study is the inter-

pretation of ocean color chlorophyll - surface chlorophyll differences.

The constant feature of onshore increasing apparent Chl. is

presented in Figure 5.7, with relationship to specific real--time

sea truth measurements available. The plot: expresses the

difference of apparent Chl., measured by the differential

radiometer (DR), and the ship measurements (ship ground truth) as a

function of distance offshore. It can be seen from the preliminary

data, that extraordinary discrepancies existed between measurements

within 0 10 km offshore. The measurements correlated better at

20 In offshore (i.e., difference approaches 0), but diverged off-

shore of 20 km in a inverse manner from that observed nearshore

(i.e., ship surface measurements > OR Chl.) The trend is clear

although the statistical significance may be questioned with the pau-

.city of comparisons - especially inshore of 20 km. For identification

of interferences in the DR method, and to give a semi--quantitative

comparison of ocean color and parameter distributi.on,.Figureg5.4

and 5.5 are presented. DR ratio values from measurements on the 210

40 1 N and 21° 20 1 N lattitude flight lines from March 8-21 are

plotted versus offshore distance. In addition, the integrated

chlorophyll for the 50a incident light (Io) depth, the 50.

T  depth, and t]1C integrated parti^ l ^ ammf-c d'nr MA. I rinnth nvp

'^I
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Q 18 3/9 9.5-31.0	 1.2-1.3	 4,0 4.58 +9.15 1337

* 23 3/16 0.58	 3.85 42.7 6.28 -3.36 84.4
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Figure 5.7	 Comparison of the difference bet-ween apparent chlorophyli
and actual surface measurements versus offshore distance
(DR - Ship ground truth). A tabulation of data for each

composition is given and is identified by the symbols.
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plotted versus distance offshore. The effective depth sensed by the

DR roughly corresponds to the -<. 504 I o depth, from the preliminary

data. At the stations used for comparison with the DR signal, this

depth averaged 2 m. The 50' I o effective depth was determined

by comparison of the DR response to the integrated particle counts for

100%, 50%, 300, 15% and 1-,, Io depths irrespective of actual

chlorophyll concentration. The comparison at the 50a Io level was

determined to be the best correlated with DR values. The -results of

Figure 5.4 are from specific DR-to-parameter comparisons, while

Figure 5.5 results are the general case of all measurements made at

these distances offshore. The relationship between apparent

chlorophyll diverging from actual measurements shorcwa rd

(from Figure 5.4) is supported by the general case. The relationship of

DR ratio values and apparent chlorophyll has been described as a

log-linear function (Figure 3.1), with logrithmically increasing

chlorophyll concentrations -required for a-proportional decrease in

DR value. The relationship between individual comparisons shows an

inverse correlation between reflected intensity ratio values and

actual chlorophyll concentration to that ascribed. A positive

correlation in the individual comparisons exists between the increasing

443 nm/525 nm reflected intensity and decreasing particulate counts.
S

It may be established from the two figures that non-phytoplankton

particulates are responsible for the measured interference and

diminishod off ctiveness of the DR. At > 70 km^offshore, the apparent

chlorophyll exhibits a positive correlation with the actual measurements.
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The apparent Chl. analysis in the surface maps presented in figure 5.6

often are observed to have increased values offshore. The 50% Io

depth decreases while the particulate counts remain generally constant

with a slight decrease. It is suggested that the proportion of non-

phytoplankton particles is decreasing.

The atmospheric processes that affect the differential radio-

metric method can only preliminarily described at this time.

Additional support materials including the satellite coverage

imagery, meteorologic conditions, solar radiation measurements, Solar

standardization settings (solar zeros), aircraft photographs and col-

lected eolian dust loadings must be compiled for conclusions on atmos-

pheric interferences. p eliniation of the atmospheric interference is.

of prime importance in evaluation of IR thermal detection as swell,

and the corrections that can be .introduced to the ss'r results

presented here. figure 5.8 compares the DR solar zero setting during

periods of data collection by the aircraft and the incident solar

radiation intensity measured by hemispherical pyranometers at the

coastal meteorological stations (Station G at 21 0 28 1 N, Station 4 at

21' 18' N). The plot shows a correlation between increased

radiation and lower solar zeros. The solar zero is the offset

potentiometer reading of the 443 nn signal. This offset is used to

normalize the intensities of the 443 nm and the 525 nm used as the signal

and reference wavelengths (respectively) by the DR. Lower solar zero

settings are linearly proportional to lower 443 nm/525 nm ratio values..

From this comparison it is seen that changes in the .incident solar

1
i



C	 _

0

C

o
n

^ l A	 ti	
y^

y	
•	 ^ ^ 1

A	 • • • •	 ti 1

X
yy

.	 ^•`

1 ^
•	 ~ 1 ti 1^

4.0 -	 6.0	 8.0	 10.0

D.R. Solar Zero

ure 5.8' . Relati.onship between the solar standardization se`ti.ng
of the differential radiometer (DR solar zero) and
the incident ratiation measured	 two coastal pyranometers
(Langleys)_ See.text for explanation of solar zero setting.

Ln



i

1

j

136

radiation were apparently linearly correlated to the ratio of intensities,

I443/1525 measured with a spectrally flat diffusor placed over the.

[lit sensor and viewing the sun directly at its solar altitude.

Thus, less diffuse scattering which is related to tale decreased blue

atmospheric signal was observed at higher solar radiation levels.

This selective atmospheric contribution was normalized (I443/I525 = l}

by the solar standardization. 'Therefore, the deviation of ratio

values from 1.0 are assumed to be due only to the reflected ocean color

signal. Also, the solar elevation has a far greater. influence on

daylight spectra than variations in atmospheric conditions at the same

time on different days.	 This is recognized from Figure 5.9 a-c. Daytime

pyranometer recordings from the coastal stations and from aboard the

A 11 are presented for the time period of the flights discribed.

The solar zero settings are also included and increased incident

radiation was again observed to correlate to decreased solar zeros.

The radiation curves on the coast are lower in intensity than the

recordings at sea due to the eolian attenuation onshore. The

variations in incident radiation from day to day were primarily due

to atmospheric eolian loadings. The hourly irregularities observed

were due both to clouds and eolian loading fluctuations. The description

of eolian loadings collected during this period has been presented by

l,epple (1974). Tile daylight spectra were dependent on atmospheric

particulate distribution. High loadings of particulates caused increased

extinction of the ocean color signal and increased. contribution of

atmospheric light to the DR sensor.
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{	 An interference in the infrared radiation thermometer

(observed as daily variations in .radiation SST and actual SST differences)

was suspected to be clue to changing particulate concentrations of wind

blown eolian material from the Sahara. Differences between radiation

temperature measurements from SOD feet and actual SST versus offshore

i	 distance with respect . to the time of measurement and the solar radia-

tion intensity From either the coastal stations (if SST measurements

were from Gillis or Oceanographer} or the Al I were investigated. From

these correlations, interpretation of the eolian interference was

attempted. It was thought that Ssrdiffercnces offshore would be

less due to the fail-out of particulates from the lower atmosphere

j	 .[ti SOO feet). Ilowever, no simple relationship exists between the

SST differences and either time of measurement or distance offshore.
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G. LABORAT0RY INVE'S'TIGATIONS ON INTL:PFERENCL•S

IN RADIOMETRIC CHLOROPHYLL DETERMINATION

6.1 Reflective Spectroscopy of High Chlorophyll Concentrations and

Chlorophyll-free Particulate Suspensions

Field study results initiating this investigation were that

the interference of suspended, chlorophyll-free particulates in

the near coastal waters affected the radiometric measurement of phyto-

plankton chlorophyll pigments. Reflective scanning spectroscopy of

varying phytoplankton and clay suspension concentrations was . applied

to detail the sediment effects on the spectral signature of

chlorophyll. A spectral scan can deliniate the full optical contribu-

tion. of added clay particulate suspensions to a phytoplankton suspension

and allow a more concrete interpretation of the combined effects than

can the ratio of two wavelength bands from the differential radiometer.

From particle counts in the field, it is suggested that

particle multiple scattering of light must be considered in this

region. Study as to this consequence on the optical signal leaving

the sea surface has been recommended by Jerlov (1974) and by Mueller

(1974) in a similar study.

6.1.1 Design of the Reflection Spectrometer Hyper iment

For the initial investigation on the interference of suspended

particulates, a Cary 14 Reflection Spectrometer (a prism-grating, double
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monochromator) with better than 1 nm resolution was employed to measure

the reflected intensities of very dense, multiple scattering suspensions.

i

	 A phytoplankton sample was prepared by gently concentrating (via

centrifugation) 100 ml of healthy Carteria cells (obtained from

University of Delaware's Nlariculture Project) to a 5 ml volume with a

final chlorophyll a concentration of 48,600 mg/m 3 and 11 X 10 9 . cells

per liter by direct count, The concentration of the original cell

suspension was found too dilute for meaningful spectral information

to be gained. A fine potter's clay for a standard particulate suspension

i	 was made by airing clays and distilled water, allowing settling of

large particulates for one Hour and pipetting off the remaining

suspension. Red and grey clay standards were mixed 1:1 by volume and

contained 124 X 10 9 particulates per liter with 950 of the particles

having diameter sizes between <1 um and Slum as determined

by a Coulter Counter (Model B). For compari. , „ . e size distribu-

tion of particulates from preliminary analys_. ,i .OINI'-1 data

showed 07% of the particulates < 10 um 4 nautical miles offshore

(Castiglione, 1974a). Because there is no river input into these

coastal waters and erosion of very reflective Sahara -type material via

wave and wind action was observed in nearshore areas, detrital

material of•a higher, broad spectral extinction was not considered to

have a significant contribution to the reflected ocean signal. This

sloes not take into account phytoplankton remains that may

possibly be a significant influence in a short time period before

dispersion by mixing.
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The incident source of the spectrometer was normal to the

sample, and the 180° reflected signal, scanned at 2.5 nidssis

referenced to the signal from a barium sulphate cell. The spectral

region from 400 nm to 800 nm was scanned. The black sample cell itself

is of nearly uniform 0.3% reflectance over the spectral range and

has dimensions of 4.5 cm diameter by 1 cm depth.

6.1.2 Results and Interpretation

The reflection spectra resulting from this investigation are

shown in Figure 6.1. Curve A is a record of the reflectance of distilled

water (< 1 cm deep) in the black sample cell. This curve is approximately

of uniform reflectance and thus no corrections of the following sample

curves were made. Curve B represents the reflected spectrum of a 5 ml

(T .3 cm deep), dense sus 3nsion of Carteria (4.86 X 104 Mg/m 3 Chi. a.

11 X 10 6 counts/mi.). This curve shows increased reflection in the

visible region Q
max 

0 , 555 nm) outside of the pigment absorption bands.

The small increased reflection at 0 450 nm was also observed in a spectro-

photometric transmittance curve of the pigments extracted from Carteria.

This indicates a decreased absorbance by pigments in this isolated

wavelength region. Three reflectance minima are seen at % 428, 475

and 672 nm. and correspond to the absorption maxima that were seen in.

the pigment extraction curve. Curves C 1 and Q are repeated scans of

a suspension of sample B (5 ml algae suspension) with the addition of

1.0 m1. of the standard clay mixture (total volume = 6.0 ml,, 29 X 106

total counts/ml.) described in 6.1.1. Curve 0 is the reflection spectrum

of sample C plus 1.0 mi of the clay standard (total volume 7,0 ml.,

43 X iO G total c./my). The spectra
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A. Distilled water

B. Carteria 4.86x104 mg/m3 Chl.a

ClI p. Sample B plus I.OmI of clay suspension
(124 x 10 6 counts/ml )

D, Sample C plus I.Oml of clay suspension

E. Clay suspension ( 31 x 10 6 counts/ml)
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of these samples appear as an enhanced signal of the chlorophyll-

containing phytoplankton in Curve B. A shift in the green reflectance

maximum can be observed (A 0 8 nm) to a longer wavelength. A small

shift towards longer wavelengths is seen for the Q 450 Q reflection

maximum as well (A 0 4 nm). The reflection minima in Curves C 1,C 2 and

D are also shifted from Curve B. In the blue regions, the shift in

the minima is towards shorter wavelengths (A 0 6 nm). The red

spectrum minimum, due to chlorophyll absorption, is shifted to shorter

wavelengths in Curves C 1 , C 2 and D also. More noticeable however,

is the narrowing of the minimum reflection region at w 675 nm.

With the increased addition of clay mixture, changes in the shape of

the C and D curves are noticed. This is especially the case in the shape

of the yellow-to-orange region (575 - 630 nm) where the maximum

reflectance of the clay (Curve E) appears to be contributing to

the color of the total suspension.

i

The effect of increased reflected radiance due to clays in

suspension with the phytoplankton can be interpreted. The phytoplankton

suspension (Sample 8) contains the dominant light absorption character-

istics contributing to the spectral, signatures in all.suspensid samples.

This is predominately due to selective absorption of chlorophylls

-which are solely responsible. for the reflection minima at 0 675 nm.

A selective attenuance is observed for the mixed clay suspension in

Curve 5. However, the dominant optical property determining the

spectral distribution in the phytoplankton--plus-clay suspensions is

the absorption by chlorophyll	 Backscattered light from single
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scattering events is the consequence of reflection and refraction.

Refracted light acquires the spectral signal of chlorophyll through

the absorption by chloroph lls contained within phytoplankton scattering

layers. In a single scattering sit uation, the large flagellate

Carteria (> 10 P dia.) would have a greater reflection/refraction

proportion at backscattering angles than if additional scattering

events occur. An the existing multiple scattering situation of sample B.

however, the signal at backscattered ankles has optical contributions

from a very complex light field distribution. in general, the'dominant

forward propogation of refraction scattering for large biological

particles of relatively low refractive index in single scattering

situations approaches a more isotropic distribution as the number

scattering events increase (Woodward, 1964). This increases the portion

of the refracted light at backscattered angles. Sample B is approach-

ing an optical situation where further increases in the concentration

of chlorophyll-containing cells will have little effect on

the spectral distribution by scattering processes. This is due

to the loss of the dominant radiance distribution by which the process

of forward scattering was able to selectively attenuate spectral contri-

butions. However, with isotropic scattering conditions, portions of

all spectral contributions by scattering are reflected to the sensor.

Also, the high, non-selective total spectral attenuance by

phytoplankton reduces reflection of an "enhanced" chlorophyll absorp-

tion signal.
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The addition of suspended clays to sample B increases the total

reflectance of the suspension. Compared to a similar addition of phy-

toplankton, the reflectance is increased because the effective refractive

index of the suspension is higher. The chlorophyll in suspension with

the clays is being exposed to more light per volume due to increased

scattering by the clays. Moreover, the selective signal scattered_.

by the phytoplankton is more effectively rescattered by the clay

particles than by high, broad attenuance phytoplankton. Thus, the

chlorophyll signal is enhanced in the reflected signal. In sample U,

again, a higher effective refractive index per volume suspension

creates an increased efficient transfer of more of the specific

absorption portion of the phytoplankton extinction via clay

scattering, and less of the non-selective extinction by decreasing

the percentage of rescattering events by phytoplankton.

Ile spectral attenuance of the clay suspension is responsible

for the spectral shifts at the reflection maxima and minima from Curve B

to Curves Cx, C 2 and D. The maxima will shift to regions of lower

attenuation coefficients, while the minima will shift: to the high-st

attenuation coefficient regions of the suspension.

6.2 Coordination'of Differential Radiometric and 51jectroradiometric

Measurements of Chlorophyll and Chlorophyll-free Particulate

Suspensions

A second laboratory inv
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modified for airborne use from the Goddard Space blight Center's,

New York Institute for Space Studies with the NASA differential radiometer

I
(6R). A comparison of the UA response to various phytoplankton and

suspended sediment concentrations . with their reflected spectra was

designed to identify interferences in the differential radiometric method

^..'	 in the IaboratQry.

6.2.1 Experimental Design

The spectroradiometer has 512 channels over a wavelength range

from 400-850 nm with a resolution of 0.20 nm. The experiment consisted

of a tungsten lamp as an incident source installed 0 1.5 m above a	 I

12 later, 20 m sleep container painted with low reflectance black paint.

The spectroradiomctor and DR were installed above the container and

focussed at the surface-at a small angle (< 20°) from nadir to avoid surface
t.	 ,

glint, and to include only the sample and not the container walls

in the field of viers, of the sensors, The DR solar standardization was
__i

i
modified for use of this field instrument in the laboratory. In this 	 I

study normalizing of the 
I443/1525 

incident intensities
a

`	 (see Section 3.2.2) was accomplished from the reflection of the tungsten

lamp source on a standard white disc held horizontally.at  the surface

of the sample container. The standard disc also served as the reference

for the spectroradiometcr.
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The standard suspended clay mixtures described in Section 6.1.1

were used in this study as reflective sediment load. A chlorophyll

standard. (algae mixture) had a concentration of 7.93 X 10 2 mg/m 3 Chl. a.

The algae contained in'the mixture included Carteria, Phaeodactylum

Isochrysis and ether marine diatoms. The total direct count of the

algae standard was 138.5 X 10 7 cells/liter. The white clay standard

had 140 X 10 9 counts/liter (c/1) with 950 of the size distribution

in the < 1 . 42 }gym range. The red clay standard had a total concentration

of :A, X 10 9 c/1 with 95% in the < 1-60 }gym range.

The base water used in this investigation was designed to be

optically dense quasi-model of clear deep sea waiver. Water soluble

food dyes (McCormick, U.S. Certified) were added until a

transmittance curve of the water standard (from spcctrophotometric

measurements) was obtained, which was a close reproduction of the sea

water transmittance curve presented by Jerlov (1968, p. 110) for

clear Mediterranean Sea water. The transmittances at the 440 nm and

525 nm regions were proportional to the transmittances (in percent/

meter) given by Clarke and James (1939) for clear ocean water.

Following the incident light source standardization,

ppectroradiometric spectra and OR ratios were recorded Ivor each sample.

The successive additions of standard mixture samples were kept uniformly

suspended in the container by gentle stirring until the recordings were

made. Measurements of a calm, clear surface with no bubbles were

recorded.
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6.2.2 Results and Interpretation

The particle counts and .chlorophyll concentrations of samples

measured by the DR-spectroradiometer is given in Table 6.1. Samples

of the'hl-Bq were made by successive volumetric additions of the

algae (chlorophyll) standard, The C samples are volumetric additions

of clay standards to Sample B h . Sample D, is an initial addition ..

to the clear optically dense base water and the retraining D samples

are made by sequential additions. The diffuse reflectance spectra,

referenced to the standard white disc and backscattered

to the spectroradiometer, are shown for the majority of samples in

Figures 6.2, 6.3 and 6.4. The lowest reflectance is exhibited by

the deep blue base water void of particulates. The predominate

scattering of the spectral signal is forward and lost to the non-

reflectant container surfaces. Figure 6.2 reveals the increasing.

backscattered reflectance (R) with successive algae concentration.

In the visible region, at wavelengths below 650 cur, the absorption

characteristics of the blue base water are still evident. This is

pointed out when the signal from the algae standard (in a 4000 ml beaker)

is compared to the samples in the dnop blue rase water (the o reflec-

tance of the algae standard curve is reduced by a factor of 0.2 for

closer comparison with the curves 13 2 -13t). The standard algae curve and

the curves	 arc similar at wavelengths > ti 675 nm, indicating

little .influence by dyc absorption at these wavelengths. The algae

standard sloes show lower relative reflectance at 680-690 nm than the

B curves due to greater absorption by tho denser chlorophyll suspension.
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Table	 6.1 The Differential Radiometer Laboratory Study

Total Total Total Total Counts
Chlorophylla Concentration Phytoplankton Phytoplankton

San.Dl e - Description of Sample (mg/m3) (counts/1 (Cells/1) + Clays

A Optically modelled "blue" water	 0 0 0 0

Bl 500 ml. standard algae mixture (S^No 35.45 0 5.81 x 107 S . 3-1 x 10 f
B2 1000 ml.	 SAM 61.18 0 11.21 x 10.7 11.21 x 710

B.. 1500 ml. SAM 92.5.5 0 16.17 x 10 7 16.17 x 107 	-

B
4

2000 ml. SXNI 118.76 0 20.75 :x 107 20.75 x 107 

C1 . 2000 ml. SM 118.31 52.22 x 107 20.6, x 107 72.97 x 10
7

+.50 ml. Gray Clay Standard (GCS)
E,

C2 2000 ml .. S.kl l y 100 ml . GCS 117.S7 104.05 x 107 . 20.59 x 10 7 124.64 x
0

710 	 --	 - -

C.. 200 ? ml, SA:IN1 } 100 mi. GCS +	 1171.44 143.65 x 107 20.52 x 10 7 164.24 x 107
'. 50 ml. red clay solution

D1 Clear water + 25 ml. GCS 0 50.76 x 10 7 0 50.76 x 107

D^ Clear water + 50 ml. GCS 0 61.38 x 107 0 61.38 x 107

D 3 Clear water f 100 ml. GCS 0 121.69 x 107 0 121.69 x 107

D Clear water + 150 m1. GCS 0 151.74 x 10' 0 181.74 x 107
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51'ANDARU ALGAB MIXTURE: 793 mg/m 3 Clit.a
15.85 X 10 8 CUUNTS/LITER (C/1)

SAMPLE 841 118.7 mg /m 3 CIILa
2.07 X 10 8 C/1

SAMPLE B 3 i 92.5 mg/m 3 CIIL L

1.62 X 10 8 C/1

SAMPLE B 2 ; 64..2 mg/m 3 CIILa
O.S8 X 10 8 C/1—

Std. Algae
Mixture

B4

B3

82

400	 500	 600	 700	 800
Nanometers

Figure 6.2 Reflectance Spectra of the Standard Algae. Mixture and
threv Algae Samples of Various Concentrations.. Sao 'fable 6.1

^_	 for composition of samples.	 i
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Comparison in the blue region (450-490 ruri) between the standard mixture

and samples B ?.-Bt, shows that properties of the blue base medium do

have an effect on the algae samples relative to the algae standard.

In this case, the relative reflectance of the samples is increased in

this region. The B curves show that on successive addition of algae

the spectral reflectance at all wavelengths is increased in this region.

They also	 show that on successive addition of algae the spectral

reflectance at all wavelengths is increased although not proportionally

at different wavelengths. This is caused by the wavelength dependence

.o£ the total attenuation coefficient which affects both primary and

multipl4 scattered light. Increased chlorophyll is noticed by the

changing shape of the spectral curves in the 440-550 rvn region and an

5ndentatlon in the slope between 'L 665 nm and 690 nm. Figure 6.3

presents the spectral curves of samples B 3 and By and the curves of

algae-clay suspensions. increased concentrations of particles are

again responsible for increased diffuse backscattered reflectance.

Spectra of samples C 1 -C 2 appear brighter and are described by the same

interpretation of the optical situation given in Section 6.1.2. Spectra

of B, C and D samples are presented in Figure 6.4. The most noticeable

differences in spectral signature are observed between U curves of

chlorophyll-free particulate samples and algae-clay and algae-only

suspensions. Decreased relative reflectance in the 410-450 nm ranges

increased R in 500 - 'u 570 nm region and the decreased R at u 675 nm

due to chlorophyll-containing algae are best discerned from comparison

of curves of samples Da and Cz which had quite similar particle



SAMPLE BW 92.5 mg/m' C11La
1.62 X 10 6 COUNTS/LITER

SAMPLE 13 4 ; 118.7 mg/m l CIILa.
.2.07 X 1QBC/1

SAMPLE C 1 i 118.3 mg/m 3 CHLa
7.30 X 10 6 C/1 —

SAMPLE Cy; 117.8 mg/m 3 CIILa
12.0 X 10 6 C/1 —

SAMPLE C 3 ; 117.4 mg/m i CH La.
16.42 X 10 6 C/1—

C

,

400	 500	 600	 700	 800

Nanometers

l WWO 6.3 Re rlectunce Spectra of lllgao S. mpIcs and Mixed
Al !le.Cl n R"spanslons. Sup Tnhln 6.1 for

composition of samples
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Nonometers

1-xgure 6.4 Reflectance Spcctrn of Algae SampI s, Mixed Algae-Clay
Suspensions and Clay Samples. See Table 6.1 for
Composition of samples.
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.concentrations. Unlike the low refractive index of the flagellate

algae suspension studied in Section 6.1, the algae standard in this

study was predominately diatoms with higher indices of refraction

resulting in greatai effective scattering. The results presented

in 6.5 are the correlations of measured DR ratio value of each sample

with the particulate count of each sample. The solid.data points

represent the extreme of the ratio value for each sample with the open

circles representing the mode average value. Thu range in ratio suggests

that the suspensions are not stable or uniformly homogeneous. The

averaging of a number of spectroradiometer spectra recorded at

32 scans per second has reduced this instability of , the spectra

presented for each.suspens,ion. Two results from this figure are the

most significant: 1) The properties of the algae-only and algae-clay

suspensions created spectral response that are related to the ratio

value 
L443/L525. 

The spectral reflectance of the chlorophylls-free

clay suspensions are not related to the spectral response of B and C

samples. 2) With increased particle counts the L443/L525

value decreased. The empirical relationships and correlation

coefficients , for both related samples sets.are shown in figure 60.

It is , predicted from this figure that the possibility exists for very

high concentrations of particles that have non-selective reflectance

in the sea to have ratio values which would indicate high

apparent chlorophyll concentrations by the differential radiometric

method. Also, it can be predicted that water masses in the sea will

show a enhanced chlorophyll signal faith the OR method when they are

f
l ..

,E

tj'

i
i,

,

E
f
i
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180
p
D4

A. OPTICALLY DENSE "ALUO'
15AITR

Ii i : A+ S()0 ml .	 STANDARD

160 AI.c^At:, ^flxTUlil:	 (sAe1)	 C3
13 2 :A+IUUO mI, SAM

13 3 :A+1500 rnl.SAM
B4 :A+2000 in I. SARI
C 1 : B4+SO nil.	 GREY CLAY

140 STANDARD CGCS)
C2: fiq+l()o	 nil..	 (3CS
C 3 :C z+SU ml .	 ftf'D CLAY

STANDARD

o 120 o	 C2
D3

x Line 8

L Y;: 749 x 1026 X-20.58
r2=-0.984100

cn

4U
m 80

a
cl

6.0 '
D2

Line A
Y= 5.09 x 1033 X-26.77	

_...
40 r?-	 - 0.987	

f

DI	 B

20 0	 • B3
o	 ,B2

• o 81

17	 1.6	 1.5

DR	 Ratio	 (14-4-3/1525)_ ..

MgUre 6.5 Relationships between Particle Co unts and Itef]ectauce Ra tio Value ChCinge for
Chlorophyll free Particulate Samples, and Algae only and Algae:-Clay samples.

I

See Table 6.1 for composition of samples

r li f n"
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I composed of phytoplankton and more reflective, chlorophyll,-free

particulates in concentrations high enough for multiple scattering

events to occur. 	 The enhanced chlorophyll signal will be proportional

E

L`
to the total particulate counts. 	 However,, if the reflectance spectra

of these water masses are observed, the intensity of total backscattered

reflectance is_a simple method to identify regions of.chlorophyll-._

containing particulate composition from those of chlorophyll-free

particulate composition. 	 Even from their spectral signature, chlorophyll-

{ free parrticulates added to algae suspensions appear undifferentiable

z
from algae-only suspensions under the conditions of this investigation

LJ and perhaps also in natural waters.

i
in addition to the results on chlorophyll enhancing by

inarticulate scattering, the use of the blue modelled water allowed an

" interpretation of the combined effect of particulates all y dissolved

compounds with specific optical characteristics of which Golbstof£

is an example.	 It can be seen from the D samples that the addition of

clay suspension standard caused reflectance of a brighter blue..

r. The probability of photon backscattered reflectance to the sensor

X, can be expressed as the ratio of total effective scattering

coefficient to total effective attenuation coefficient Q = b/c).

Specifically, the backscattered signal with the s2ectral characteristics

of the dissolved Celli Sound will be increased.

y

U
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7. EVALUATION OF EFFECTIVENESS OP THE 01P ER1,NrIAL

11AUlOME-TER FOR CHLOROPHYLL UETE-101INA'I'1ON

7.1 Com parison of Radiometric Measurements with Historical Data

and !teal-Time Sea 'Truth

Velasquez and Cruzado (1979) reported results of surface chlorophyll

and surface temperature distribution from the SAHARA-I expedition of

July, 1971. The 6-8,July cruise tract from 2491 0N, 14.29°19 and 26.09 0N,

14.76 * W corresponded to the Sti ll coverage area from 18-26 August. The

--	 chlorophyll gradient structuro'onshore tends to confirm the DR effective-

ness of chlorophyll survey. The surface values are comparable

with tho ocean color chlorophyll calibration. The surface temperature -

chlorophyll relationship described in Section 5.1.2 is supported here

as well. Many radiation temperature-apparent chlorophyll patterns were

observed to be, essentially, reconstructed in these surface results.

A consistently colder and apparently more productive region at the coast

between 26 0 20'N observed in during the Sahara Upwelling Expedition

(SUE) was substantiated by the Sahara-F results. Cruzado (1874)

reported the continuous underway fluorometric and surface temperature

distribution of the same cruise from the method described by

Ballester et al. (1972). Results were presented as parameters versus

offshore distance and one tract, coincident with the onshore flight 	 _-

line at the southern tip of Fuerteventura, was available for comparison,

Surface temperature values were in the same range of values as those

i

1



I	 I	 !	 i
3.59

recorded by the lit radiometer and their distribution closely approximated

that observed on 18 August, 1973 in SUE with a ON temperature increase

between 9 and 5 miles onshore. The lowest surface temperature

(< 18.5°) was located 10 miles offshore and the increasing temperature

distribution seaward had a small deflection toward cooler temperatures

(ti 1.0 0 ) between 22 and 46 miles offshore.r then increases again far

offshore. For chlorophyll, presented in fluorescence units, increasing

fluorescence was inseparably identified with decreasing temperature

nearshore (within 25 miles). In the offshore temperature pattern

described, the fluorescence was observed to decrease with lower tempera-

tures. In section 5.1.2, low apparent Chl. isolated patches were

located just offshore of strong temperature gradients on 21-26 August

and are comparable features in size and ,structure to the actual measurements.

Again far offshore, fluorescence decreases accompanied increasing surface

temperatures.

For similar reasons of sea truth'comparison, Szekielda (1974)

presented surface chlorophyll distribution analysis from the

August 1972 NORCAMARIAS Expedition. These more synoptic results showed

surface values > 8.0 mg/m 3 0 but the same nearshore gradient structure

and structure patterns offshore as noted in SUE were depicted here

as well.

From the available, appropriate-season historical data, the

DR method .ior determination of chlorophyll levels and surveying its

distribution was apparently quite successful. Discrepancies in surface
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chlorophyll-temperature correlations between Historical data and the

results of the SUE study existed only in very nearshore areas

where visually sediment-laden water patches (< 3 miles across) had coinci-

dent higher temperatures. The significance of accompanying chlorophyll

and temperature regional discontinuities were discussed by Lorenzen

(1971). The lack of pronounced chlorophyll gradients with

temperature gradients suggested a biological "aging" of the two adjacent

water masses. In addition, the suite of sensor-probe experiments

tested in SUE was shown to be valuable in synoptic surveys for

recognition of upwclling patterns and monitoring development of these

patterns in a time-series such as the 18-22 August 1973

results interpreted in Section 5.1.2

Vertical chlorophyll distribution profiles of the NORCANARIES

Expedition presented in Braun and de WE (1973)

supported the interpretation of euphotic zone boundary detection

in the light penetration profiles. Stations distributed coincidentally

to probe sites of SUE (see 'fable 5.3) showed maximum

distribution of phytoplankton above the depth of deflection in the

extinction rates noticed in expendable probe profiles. A discontinuity

in the comparable chlorophyll distribution profiles at depths < 50

meters would cause a similar decrease in extinction rate as shown in the

AXPM profiles at < 50 m.
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During the JOINT-1 project all vhlorophyll (CH.) and actual

surface chlorophyll measurements showed extraordinary differences

when compared. Nearshore (< 10 km) differences showed an order magnitude

higher apparent Chl. values than actual surface measurements. Offshore

(> 36 km) an order of magnitude more actual surface chlorophylls

was observed compared to apparent Chl. (see Figure 5.7). The DR method

clearly was not effective, even in relative chlorophyll level

determinations. No pr.clitainary sea truth chlorophyll measurements available

supported the DR method in the JOINT-1 area. The multi-comparison

of sea truth parameters vs. offshore distance (Figures 5.41 and 5.5)

indicated that total particulate counts were in part responsible for the

low DI  ratio values (L443A525) which corresponded to high apparent Chl.

Only at distances > 70 km offshore were actual chlorophyll values

positively correlated to any degree with apparent Chl. It should be

pointed out again, that the relationship of apparent Chl. to DR ratio

value is log-linear (i.e., a linear decrease in DR ratio value is

proportional to a logaritlimic Chl.. increase).

High concentrations of particulates in the nearshore areas

originated from blowing sand and dust off the Sahara. A

complete study of atmospheric colian loadings collected on the Cap Blanc

coast and at sea has been presented by Lepple (1974). A size

distribution gradient by atmospheric fa11-out of those particulates is

created in the offshore direction and a particle size zonation was

considered by Castiglione (1974111) for this period of JOINT'-1. A.

vertical structure in particle frequency shown in nearshore areas

1
I
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indicated an atmospheric input or phytoplankton. Total particulates

did not have a significant component of phytoplankton however, as shown

by the general multi-comparison in Figure 5.5 and also in a statistical

correlation by Castiglione, in which logarithmic surface particle

counts/liter vs. surface chlorophyll had a linear regression correlation

r = D.S. A particle nwnber distribution offshore did not strictly

follow the We zonation of Castiglione or Figure 5.5 and the suggested

compositional change from predominately eolian to phYtoplankton

is well considered. In support of a change in particulate

composition, comparisons were made between to surface incident

light. (Io ) depths and integrated chlorophyll (to the 1% level)

concentrations for various zones determined by diWonce offshore.

For the nearshore (out to 0 11 mi offshore) and shelf stations (out to

0 23 mi offshore) increased to 
1  

(deeper ouphotic zone) correlated

with increased chlorophyll concentrations when compared independently

by zones. For zones determined as outer shelf break and offshore,

the chlorophyll concentrations were an increasingly more important

factor in light extinction with distance offshore (i.e.,

increasing chlorophyll concentrations caused decreasing 1% to depths).

These calculations were made from preliminary data available from

Leg 1 (March-April, 1974) of the JOIN'NI Project, More complete

integrated chlorophyll, In 
1  

depths and other productivity data was

presented by Huntsman and !Barber (1974) and showed that Leg I data fit

the chlorophyll-light penetration relationship better than later Logs

(after April 1), although the trend was apparent for the whole

JOINT-1 period .. This situation of inverse correlation of particulates

t

j

^l
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to chlorophyll was a rigorous test for the DR method. The historical

data available for comparison with the results presented here tended

to point out that such large quantities of chlorophyll-free particulates

over ,the shelf may have been an anamoly. Lloyd (1971) presented photic

zone depth and surface chlorophyll (mg /13 3) data for May and June, 1969

for ' tions positioned on the shelf off Cap Blanc, which agreed with

the established increased light extinction with increasing chlorophyll

correlation made by Lorenzen (1972). An exception (shallow photic

zone and lower chlorophyll) was observed at 'u 11 mi. offshore. Two

stations nearshore Cap Blake studied during the CINECA-Charcot iI

study (11-13 April, 1971) also show increased chlorophyll concentrations

with increasing 1% I o . Margalef (1973) positively correlated total,

particulates to increasing chlorophyll concentrations in upwelling regions

off NW Africa during; March, 1973. Similarly, Lascartos (1974) found a

strict positive correlation, of chlorophyll a and particulate concentra-

tions and also between total concentration of particulates and organic

particulates in the regions of upwelling off Cap Sim (w 31 0 30'N)

during CINEGA-Charcot III (July-August, 1972). The volume percentage

of the mineral component in the most nearshore areas derived from the

coast: K 6 mi.) was w 20%,

The particulate distributions during SUE might be concluded to

be closer to those described by the historical data, and therefore the

Utz method was actually more effective for chlorophyll determination when

the concentration of high refractive index, mineral particulates was low
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(an onshore limit in effectiveness still must be established). When

i
data from SUE are compared to these of JOINT-1, the discrepancy between

the magnitude of apparent Chl. values recorded nearshore was not r

only an effect of the inherent backscattered reflectance from

the ocean, but also an effect of altitude of data collection. It was

seen from previous work (Clarke et al., 1971; and Uuntley et al., 1974)
i

that investigators have recognized the increased diffuse atmospheric

light scattered into spectral signals of ocean color, The greatest

blue addition was going from 500 to 1000 feet altitudes and the color

ratio 
L5404460 

was observed to decrease 0 64 with this increased optical

path. Since the JOINT-•I aircraft operated at 500 feet while SUE flights

were at 1000 feet, the apparent Chl, signal would have appeared greater,

even over identical spectral areas, at the lower altitude.

7.2 Definition and Discussion of the Interference Processes in the

Differential Radiometric Method Developed from Field Studies and

Supporting Laboratory Investigations

With the preliminary results available from JOINT-t Leg l

(March, 1974), the predominate interference to the DR method for chloro-

phyll determination can be defined. The unusual correlations of

increasing particulates with decreasing chlorophyll concentration and

decreasing depths of 1% surface incident light (1 ) with decreasing
0

chlorophyll(mg/m2 ) nearshore and an the shelf, described in 7.1, point

out the fact that chlorophyll,-free particulates, certainly a large

percent coli.nn in origin, govern important optical properties and

l

i
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thereby the apparent chlorophyll signal measured by the differential

radiometer. The three-factor attenuation model presented by Lorenzen

!4	 (1972) which relates light extinction to phytoplankton, Gelbstoff and

undifferentiated particulate concentrations, and which was determined

{	 from a wide variety of ocean waters including upwelling areas, did

not define the relationship of light penetration-to-extinction parameters

observed from JOINT-1, Leg l results. however, this did support the

unusual, if not anomolous, compositional and, thus, optical charactoriza-

tion of this region. Recognition of the compositional change of suspended

r.'	 materials from offshore to nearshore waters can be matte from the continuous

recorded yellow, red and near 1R reflectance signals. (Figures 5.2 a- e).

Areas of large increases in these reflected intensities and corresponding

j '!	 small temperature changes represented a composition of predominately

coastal, highly reflective sediments. This was substantiated by

corresponding airborne photographs and visual observations. The

comparison of the continuous red and yellow reflectance with the

OR signal and SS'T's enabled a broader based interpretation of

apparent chlorophyll and SST features. However, for these spectral

measurements to support interpretation of optical properties,. a

!'	 greater quantitative certainty of combined effects by these properties

on the spectral reflectance in particular optical situations is required.

This can only be accomplished by optical sea truth measurements in a

region of interest and semi-empi.ri.cal modelling of these measurements

to describe a spectral signal, The same quantification of optical

properties is required for interpretation of light penetration profiles

such as those presented in Appendix A for support in defining spectral,

1
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signals. Not enough particulate frequency and area distribution data

are available now to do a semi.-empirical modelling of optical properAes

from actual observatio p s to reconstruct the backscattered spectral

reflectance changes observed in JOINT-1. In addition to the information

above, the fluorescent particle distributions and morphology (which

can be then related to phytoplankton), the particulate organic carbon

distribution and some quantification of Gelbstoff concentration are

needed. There have not been any successful attempts to quantitatively

interpret backscattered signals by modelling radiative transfer

calculations of optical properties observed at sea. This is also duo

to lack of essential optical property information. Simplifying models

^-	 have been presented for estimation of particulate Mie scattering properties

(Gordon and Brown, 1972) which consider an average refractive index

without absorption and compared well with observed scattering

functions in the Sargasso Sea. Maul and Gordon (1973) also attempted

to interpret qualitative changes in spectral reflectance in relationship

to ERTS-1 (Earth Resources Technology Satellite) spectral sensor signals.

The simplifying assumptions only consider wavelengths > 500 nm

anu A effect of particulate concentration variability. This model

is not rigorous enough to interpret the observed variability of

numerous optical properties.

It was not apparent from the field studies if only sediment

suspensions would cause the high apparent Chl. values, or if phytoplankton-

sediment mixtures were required. Gelbstoff and particulates have

been previously recognized as producing a signal nearly indistinguishable

f

I
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from chlorophyll by airborne spectral measurements in coastal areas

(Clarke and Ewing, 1973) and from radiative transfer

calculations (Maul and Gordon, 1973). A conclusion from Chapter 6

is that Highly reflective suspended material, which are only to a small

degree solective,.causes a measurement of significant enhancement of the

chlorophyll present in suspended mixtures. It is suggested that situa-

tions of multiple scattering in chlorophyll-clay suspensions were

observed by the changes in spectral structure. The non-phytoplankton

material in the Nld African coastal waters is composed of highly

reflective material, because of the input from the Sahara. Similar

highly reflective suspensions of clays were used in the laboratory to

investigate the interference by spectral comparison of phytoplankton-

clay mixtures. In laboratory investigations, changes in the shapes

of the spectral curves were noticeable on successive additions of clays

to algae suspensions. In Section 6.1, the most concentrated particulate

sample (represented by Curve U in Figure 6.1) exhibits the contribution

of the selective optical properties of the clays. .A partial differentia-

tion of sediment interference from chlorophyll, signature in natural

waters could be accomplished if the concentrations and distribution with

depth of chlorophyll--free particulates and the entire diffuse reflectance

spectra were available. But the reflectance ratio from two -avclengths

can not differentiate the interference. In Section 6.1, two

processes were defined in multiple scattering suspensions of phytoplankton

and non-selective absorbing particulate that were applicable to explain

the DR measurements off NW coast of Africa. first, the field distribution

i
^s



	
3i	 I

1

1.68

of radiant light is changed by the fact that more isotropic back-

scattered light is "chlorophyll enhanced" because the proportion of

refraction/reflection scattering; is larger than in single particle

scattering situations (the refraction contribution containing the

signature of chlorophyll absorption). Secondly, by increasing; the
E

chlorophyll-free particulate concentration and thereby the effective

"white" scattering of the suspension,an "enhanced" 	 chlorophyll

signature was produced by two means: 1) a greater number of 'white"

scattering events exposed the algae to more light which was

effected by chlorophyll absorbance. 2) The processed signal scattered

by the algae, having predominately the signature of pigment absorption,

	

~	 was rescattered and eventually reflected.with a diminished probability

of additional scattering events involving the high, broad spectral

attenuance of phytoplankton.

lf , intermixed phytoplankton and chlorophyll-free suspended

sediments were found in a near surface distribscion in

concentrations large enough to consider muiciple scattering; processes,

the effects seen in the laboratory investigations could well be observed

in the ocean. The lowest chlorophyll concentration (in the areas of

highest particulate frequencies) still was > 1.0 mgr/ma which can be

considered a large enough fraction of phytoplankton/total particulates

for chlorophyll.--lieu particulate - phytoplankton multiple scattering;.

events and thereby an enhanced chlorophyll signal. Perhaps more
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significant to the production of the high apparent Chl. signal are the

interactions of Gelbstokf and particulate optical properties. These

interactions could be explained from the laboratory

investigation in Section 6,2 when chlorophyll-free particulate concen-

trations are high. The general conclusion from observations in

Chapter 5 . and Chapter 6 investigations is that, besides chlorophyll,-

the 525 nm and-443 nm wavelengths bands are not equally affected

optical properties in multiple scattering samples or in nature where

inherent properties process the incident radiance and the diffuse

reflectance is an apparent signal which may not be unique to any one

optical situation.

Sea surface effects could be identified in the analog

recordings (see Chapter 5) as an interference to the

effectiveness of the OR method. The 30° field of view, variable

azimuth angle control and 20 0 from nadir viewing angle reduced any

glitter or specular glint addition to the'sonsor.

The atmospheric interference on the signal backscattered to the

airborne sensor can not be adequately considered at present.

Additional available data plus historical measurements of

solar radiation attenuance by pyrano:deters and sun photometers such

as those made during BOMEX (Carlson et al., 1973) can be used to define

this interference in DR methol.oby, Briefly, the ]laze and dust

frequent during JOINT-1 was considered to follow Mie theor y; thus strong

forward scattering and low diffuse atmospheric (Rayleigh) scattering

should cause the incident radiance spectrum to more closely approximate

the solar spectrum than if the sky were clear and free of co]
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In these situations the :increased aerosol scattering would reduce the

fraction of parallel beam solar radiation and, in turn, reduce the

intensity and frequency of specular reflectance from the ocean's surface.

Jerlov (1974) has reported the effect of solar elevation on a
i

color index, 
l'450nm/L520 

nm just below the surface and at various depths

of the wafer column in differing water masses (see Section 8.3) . ills

results showed that with sun elevation < 15 1 , the blue skylight
1

significantly increased the value of the color index in a uWar water

mass at depths, while a considerably lower index in turbid water was

less effected at all depths by the high percentage skylight with the sun

near the horizon.	 The greatest effect in color change in the latter

case was the attenuation by the water mass. In clear water, therefore,

diffuse atmospheric light, predominately blue, contributes to the

spectral character of ocean color at periods of lower solar radiation.

The solar standardization procedure could be used to measure a

defined limit of diffuse light.	 The solar zero was effective in

normalizing the atmospheric selectivity of the reflected ratio L443/L525

from the ocean as described in Section 5.2.2 Qualitatively, a limiting

condition for OR effectiveness even with solar standardization was when

haze in the atmosphere obscured the outline of the sun. This was

determined by observations of discrepancies in apparent Chl. values

when cross-points on flight tracts were crossed at low (< 10) solar

elevation angles and then again at hillier Q 30°) solar positions.
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8. CQNCLUSiONS

8.1 Summary of Study

A differential radiometric (DR) method for continuous

determination of near surface chlorophyll levels at aircraft altitudes

continu6usly measured two narrow wavelength bands of the spectral

reflectance from the sea as a ratio value. A wavelength Highly influenc-

ed by phytoplankton attenuance (443 am) has been correlated to change

in chlorophyll concentration from aircraft measurements. A second

wavelength (525 nm) was selected for an intensity-normalizing

reference signal because of its insensitivity to changes in chlorophyll

concentrations and the additional preliminary assumptions that optical

properties of parameters other than phytoplankton do not effect the

value of the reflectance ratio 
L443/L525. 

A chlorophyll calibration

from the values of the spectral reflectance ratio was accomplished

from aircraft and corresponding surface chlorophyll measurements in a

variety of natural waters. Advantages of this method include real--time

interpretation, airborne solar standardization and continuous recording;

capability.

In this study an evaluation of the effectiveness of the DR

method for mensuring and.surv.cying the regional di stribution of chloro-

phyll was made by defining limitations of successful use and by

identifying and investigating interferences in the method.
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Two aircraft oceanographic Cesearch studies in a region of dynamic

ocean color as a partial function of upwclling o££ the NW coast

of Africa are described. A regional survey was accomplished and

allowed identification. of interferences in chlorophyll determination.

The SAIIAM UPIVELLING EXP1:U1Tl0iV (swo was an experimental

study designed. 	 as a survey of surface waters with known optical,_

variability clue to high phytoplankton concentration in response to

upwclling (Szekielda, 1973). Goals of this preliminary study were to

establish the effectiveness of using a differential radiometer (DR)

and an airborne radiation thermometer (AIU) for simultaneous recording

of surface parameters and synoptic analysis of a coastal region over

a period of time. Expendable probe data and visual observations

supported the interpretation of the system's effectiveness. The DR

method for chlorophyll determination was preliminarily evaluated. The

conclusion is that the method was effective in measuring changing

apparent chlorophyll levels in the experimental conditions with

support for visual observations of noticeable plankton strips (Figure

5.2) and a nearly constant dependence of apparent chlorophyll change

with temperature (see surface maps of Figure 5.2). In addition - to the

evaluation, a valuable collection of oceanographic data was obtained,

the results of which were preliminarily interpreted in Section 5.1.2.

A full interpretation of the oceanographic processes identifiable by

the data was not an objective of this study, but is a study that can

now be made with Fiore significance clue to this prior evaluation.

However, quantitative evaluation of chlorophyll determination was

it
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not considered, nor the quantitative evaluation of what parameters.

were actually measured by the DR.

Six of 26 oceanographic research flights of the JOINT-I

project are described and interpreted with preliminary available

real-time sea truth measurements for defining the DR method's

limitations and identifying interferences in its effectiveness in the

square operations area (20-220, by 17-18°N) off Cap Blanc.

In addition, a partial description of the synoptic time-series of

results is given for recognition of upwelling events. Analyses of

i
apparent- ocean color chlorophyll, ssr and the DR ratio value

Q443 /L525 are presented for all flights. As in SUE, a maximum

gradient of Chi. in the offshore direction was located in the

nearshore areas. Besides this constant nearshore gradient, Chi.

distribution farthor offshore had a more variable structure. There

was a close identification between SST and Chi. gradients although

at times it was an inverse relationship. Comparison of Chi. and

1	 surface chlorophyll levels raised immediate concern about the DR

measurements. Gross differences between apparent Chi. and surface

measurements were observed < 20 km offshore with apparent Chi, levels

an order of magnitude greater than surface sea truth. An inverse

i
relationship existent offshore with sea truth an order of magnitude

greater than Chi. To identify the interferences in the DR method,

a multi.--comparison of ocean color ratio value (DR ratio value), chlorophyll

t

:.	 concentrations and total particulate counts (both integrated to the

50% to depth) to distance offshore was made which shaved increasing

particulates, decreasing 500 10 depth and ratio values positively correlated

nearshore. Expected decreasing ratio with increasing;
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Chl. was observed to be the inverse. A positive correlation of Chl. and

DR ratio was observed > 70 km offshore. The effective depth of

measurement was not determined for all varieties of optical water

masses, but was about 50' I
o 
or < 2 motors for this study as

—

determined by correlation of the integration of particulate counts

to various incident light penetration depths with the effects on DR

response.

Sufficient data were collected for interpretation of atmospheric

effects on the DR method and IR therinal measurements. When these

support materials become available, complete conclusions can be made.

From preliminary interpretation of atmospheric effects oil 	 DR

method, the solar elevation was a far greater influence than

atmospheric composition even in high eolian-load areas.

Two laboratory investigations oil 	 interferences of chlorophyll-

free particulates in suspension with algae employed multiple scattering

samples which were spectrally scanned. interpretations were made of

increased effective reflectance of the itu.pensions. When a multiple

scattering situation exists the increased photon survival to the back-

scattered signal in the algae-reflective clay suspensions

causes an enhanced chlorophyll signature to be produced. In optically

dense (blue) base floater, successive additions of an algae standard

and clay particulates were related when sample particle cnnntS were

correlated to change in reflectance	 ratio value (L443/L525).

Successive additions of only chlorophyll-free particles showed a

similar relation of total counts and ratio change, lout, was not related
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to the algae-only and algae-clay mired suspensions. The dissolved

blue colorant and particles were also predicted to behave in the same

manner as Gelbstoff and reflective particulates in high oceanic concen-

trations. It was concluded from this prediction that optical

situations could exist when Gelbstoft and particulates could be undiff eren-

tiable from chlorophyll even with analysis of reflectance spectra,

$,2 Summary of Evaluation

From the results and interpretation of this study the Olt

method was evaluated not to be effective in determining concentrations

of chlorophyll even on a relative basis due to interferences,

predominately in the ocean, of additional wavelength selective optical

properties and particle multiple scattering conditions. The DR method

was effective in monitoring an ocean color parameter, b443A. 25' which

had a distribution closely identified to SST, The parameter was not

well defined but was strongly correlated to near surface particulate

numbers. The 443 nm and 525 nm wavelength bands are concluded to be

inadequate alone in an algorithm for determination of chlorophyll by ocean

color measurements.

An increased apparent Chi. gradient, which was not due to

actual increased chlorophyll especially within 20 km offshore of

the NW African coast correlated far better with the distribution

of total particulates. The gradient was a constant feature in the two

fields studies. The DR method did distinguish features offshore that

were known or suggested to be actual chlorophyll from historical data
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and real--time sea truth. The atmospheric interference beyond that

which could be normalized by the solar standardization procedure,

was minor compared to the interferences of processes in the ocean.

With the availability of support material, a full definition of the

atmospheric interference can be made,

Without measurement throughout the visible spectrum or at least

additional wavelengths that distinguish pre-quantified sediment: influences

in spectral reflectance, the two wavelength DR method in this

study is limited in effective use for chlorophyll measurements. 	 To

be effective, the attenuation.of the incident light signal must be

entirely due to phytoplankton. In addition, the cell concentra-

tion must be low enough that only single scattering occurs. Suh

conditions are not the case in near coastal regions. In tact,

in productive areas, the detrital and other suspended materials may

exceed the amount of phytoplankton (as in .JOINT-1). Detailed study

on multiple scattering processes and the influence on optical properties

is desperately needed. This process has been disregarded in light

attenuation and transmission studies in the sea because the small path-

length of mater measured. The laboratory results of this study have

shown that spectral reflectance maxima and minima are shifted to

represent the effective scattering and attenuation coefficients of the

particular optical situation. Very narrow multiple spectral bands

or the entire spectrum are needed to recognize this shift. However,

in nature it may be impossible to recognize spectral shift effects due to
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illdefined optical properties. A .fact that must be recognized is;

the more of the spectrum recorded, the better the ability to interpret

it for identification of processes that created the spectral signal.

Ratios of wavelength bands, on the other hand; 1) facilitate data

reduction and presontation and 2) allow continuous rec-rding from

which small ocean color structures, sea state and atmospheric effects

can be discerned and simultaneously compared with continuous .-ea

surface radiation temperatures.

Although the evaluation of effectiveness of the Dlt method fr,^

its specific purpose was not encouraging, the synoptic coverage aL)proach

for support in oceanographic research of dynamic regions may be evaluated

as important in the recognition of large-scale, time-sequence

patterns developments as demonstrated by the results of the Sahara

Upwelling Bxpedition and JOINT-1.

8,3 Recommendations for further Research on Radiometric Chlorophyll

Determination

Chapter 3 points out basic considerations

for effective radiometric chlorophyll determination and will not be

repeated here. The following list of recommendations were concluded

from this study:
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1) The total reflected intensity 011 the sea surface should be measured

along with the reflected intensity and spectra of the atmosphere

obtained by ground-based, upward oriented sensors for normalization

of the atmospheric effect and determination of the backscattered reflect-

ance for recognition of multiple scattering optical situations.

2) Detailed studies on multiple scattering processes and the influence

on optical properties aredesperately needed. This process has been

disregarded in light attenuation and transmission studies

in the sea because the small pattt-length of water measured by the

instrumentation allows this simplification.

3) Two other basic evaluations are needed to allow significant

determinations to be made frojn the vast airborne data collections

from JOINT-1 and SUH: the atmospheric processes and the

effectiveness of lit thermal measurements. They are seen to be compli-

mentary.

4) A reconsideration of the evaluation should be made when all

JOINT-1 support data becomes available including semi-empirical

modelling of optical properties to the DR measured spectral reflectance.

5) The great difficulty of "fitting" reflectance spectra and inherent

optical properties (discussed in Section 7.2) for an interpretation of

dissolved and particulate composition of water masses may never prove a

satisfactory course of action although the Monte Carlo technique

may prove an exception to this (Gordon and Brown, 1173). One

alternative is recognizing in ocean color signal as a parameter itself,

for example, the relationship of the lilt ratio values can be compared

much more easily to apparent optical properties. For example, Jerlov

Jr
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(1974) showed inverse relationships between color index values defined

as the ratio:

and the depth of 30% incident blue light and loo surface irradiance

of quanta (350-700 nm). Bressette (1974) has also shown that

green and yellow-reel backscattered reflectance to an aircraft

was 'inversely proportional to the Secchi depth in Chesapeake Bay. In

these cases a color index was used to optically classify water

masses and in an area where there is a limited range of variability.

G) The ultimate application of a differential radiometric correlation

method such as the one described in this study is routine coverage of

oceanic regions of interest and importance by earth satellites so

development of hydrographic parameters, recognized by semi-

conservative ocean color parameters, can be synoptically monitored.

It is recommended that further studies consider satellite application

in their design.

7) With all the radiometric sensing of Chl. work to date, it must

be realized that: the correlation between any remotely measurable optical

signature of chlorophyll in the ocean, whether entire spectra or

color ratios, is far from established. It is recommended then, that

ground truth correlations always be included for radiometric

determination of chlorophyll.

1
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APPUND1X A

Corresponding Vertical Temperature and Light Penetration Profiles

From the SAHARA llP{ ELLING EXPEDITION

The analyzed profiles of the near-simultaneous recordings of air-

borne expendable bathythermographs. (AXsrs) and photometers . (AXPMs) for-

21 August, 1973 are presented in this section. 'These results,'pius

additional temperature profiles were used in the comparison of the

vertical-plane sections presented in Figure 5.3, The profiles can be

identified with the positions in Figure 5.3 by tho time labels.

Figure A.1 is a schematic of the expendable probe operation after

deployment from the research aircraft. During the dro p the probe is

stabilized by a rotochute. On impact at the sea surface the stabilizing

apparatus is released and the antenna emerges. After activation of a

sea battery the sensor probes begins its descent with signal from the

probe assembly transmitted via a single cable. The probe, with its	 r

zenith viewing photocell descends at a rate of 1.5 m/s for a maximum

cable length of 300 m. It is observed from the position of the probe

and-buoy at time of probe release that the initial recording of light

incident on the detoctor is that at a depth of 1 m. Figure A.2 describes

the evolution of the signal by the probe. The photocell converts incident

downward irradiance to a resistance via the prob e; electronics. This

signal is carried by the cable to the surface and changing resistance

will cause .a change of frequency produced by an audio oscillator. The

resulting audio frequency modulates a VHF transmitter and the signal
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is received in the aircraft and either recorded directly on tale

(much as an R1 radio broadcast), o r the frequency is converted and

recorded as an analog; signal for real-time interpretation. Further

details on the conversion of the expendable probes from bathythermo-

graphs to photometers are described in a University of Delaware

C.M.S. technical report. No absolute calibration of frequency.to

light intensity was accomplished in this experimental study.

The profiles of AXPMs and AXBTs are presented in Figure A.3 a-h

with	 light intensity expressed as o I n , where n = depth of initial

probe recording, and temperature as a function of depth in meters

respectively.
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Analyzed RadiomcL• ric Sea-Surface Temperature, Differential Radiometer

Ratio and Apparent Ocean Color Chlorophyll Concentration Maps from the

` JOINT-I Oceanographic Aircraft Mission 

This section presents the analyzed data of the JOINT-I flights

with the exception of six flights appearing in the text 'o£ this

paper (Section 5.2.2).	 Bach figure number includes three analyses

of the same flight.	 The first is ocean color chlorophyll concentr: tion

(mg/m3) followed on the next page by differential radiometer (DR)

ratio values at the left and sea surface temperature (SST) in °C.

on the right.	 The flight tracks are shown by two ininute position

points on each map. Tile approach to the analysis of the data is given in

Section 5.2.1.	 A representative description of these 3 analyses for

-' .G flights is given in Section 5.2.2	 'Fable 4.2	 gives additional
y

. basic information of each flight. 	 -- -

These results are included with those of the text for a

report of the complete time-series of tlie.JOINI-I oceanographic

aircraft mission.
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