@ https://ntrs.nasa.gov/search.jsp?R=19760011713 2020-03-22T17:16:34+00:00Z

Prepared for the Final Report
GEORGE C. MARSHALL '

SPACE FLIGHT CENTER
Huntsville, Alabama

Contract Number NAS8-29929 Technical Description of

Space Ultra Reliable Modular
pecember 31, 1975 Computer (SUMC), Model Il B

IBM Number 76W0001?.

r(NASA-CR-TlH-HBL}) - TECENICAL DESCRIPTIION CF N76-18‘8(‘)1 N

SPACE_ ULTRA RELIABLF MODULAR COMPUTER

(suMey , M(_)DEL 2 B Final Report. (IBM Federal

Systems Div.) 235 p EC $8.00 CsSCL 09B Unclas
h

G3/60 - 14315

Prepared for the Final Report
GEORGE C. MARSHALL "

SPACE FLIGHT CENTER

Huntsville, Alabama

Contract Number -NAS8-29929 Technical Description of
Space Ultra Reliable Modular

December 31, 1975

seemner . Computer (SUMC), Model Il B

IBM Number 76W00013

EM Federal Systems Division, Space Systems/Huntsville, Alabama

Section

1

2

W o Wl w il
oy

TABLE OF CONTENTS

Title

INTRODUCTION

SYSTEM DESCRIPTION

-

NNI\JNNI\JNNMI\JI\JNNNNNNMNNMNNNNNNMNNMNNM

L b

.

W M et

s o=

. « 8 s s s s s . . .
e N e IR B = W IS, IR R I, B S SR I B SR FUR N
. = » . . . P
[TL -

-
L N

W b

BUMC-ITB Characteristics
System Archeticture
System/360 Compatibility
Exception Monitoring
Program Status Word
System Structure

Main Storage

Addressing

Central Processing Unit
Arithmetic and Logic Unit
Program Execution
Machine States
Interruption
Input/Output Modes
Buffered I/0

Direct I/0

Input/Qutput Interruption
Direct Memory Access

I/0 Channel Rate
Input/Qutput Operation
Buffered I/0 Status Word
Service Interrupt

TSE I/0 Devices

Soft-Stop

Microprogram Control Word
SUMC-IIR Support Software
SUMC-IIB Assembler
Linkage Editor

Tape Formattor

SUMC~YIB Simulator
SUMC-IIB Test Equipment
General Features

Factory Test System

Field Test System

‘MECHANTCAL DESIGN

General Packaging

Power Supply Slice

CPU/IC and Memory Slices
Interconnection Techniques
Hybrid Logic Modules

Basic Memory Modules (BMMs)
Power Regulator Hybrid Module

TABLE OF CONTENTS (CONT'D)

Section Title Page
4 FUNCTIONAL IMPLEMENTATTON 4-1
4.1 Data Flow 4-7
4,1.1 ALU Mux 4-7
4.1.2 ALU 4-9
4.1.3 Mux/Reg 4-18
4,2 Registers 4-22
4,2.1 MROM Register 422
4.2,2 Instruction Register 4-22
4,2.3 Register Chip 4-22
4.2.4 Scratch Pad Memory (SPM) 425
4.3 Timing 4-26
4.3.1 Sequencer Support (PRM=0) 4-28
4.4 Control £-29
4.4,1 Sequencer Control Unit 4-29
4.4.1.,1 Sequence Control 429
4.4.1.2 Sequence and Iteration ""Counters" 4-33
4.,4,2 Read Only Memory (ROM) 4-33
4,4,2,1 IROM 4-34
4.4.2,2 MROM 4-34
4.5 Data Path Support 4-35
4.5.1 FCU 4-35
4.5.1.1 CONT, SUB2, SCAR 4-35
4,5,1.2 8uUBl 4-36
4.5.1.3 Cl6 4-36
4,5,1.4 SUBIL 437
4.5.1.5 Cc(N+4) 4~37
4.5.1.6 SQRD 4-37
4,5,1.7 F25A 4-38
4,5.1.8 SEL 4-38
4.5.1.9 SPMSG 4-39
4,5,1.,10 Quotient Generation 4-39
4.5.1,11 ALU 18 4-39
4.5.1.12 MQRI, . 4-39
4.5.2 Mux/ALT Extension (FALU) 4--39
4.6 SPM Address Mux 4-41
4.7 Archeticture Supporting Functions 4=42
4.7.1 Effective Address (EA) Branch 4-42
4.7.2 Condition Code 4-45
4.7.3 Exception Monitoring 4—-48
4.7.3.1 Addressing Exceptions 4-48
4.7.3.2 Memory Specifications 4-48
4.7.3.3 Storage Protect 449
4.7.3.4 Parity 4-49
4.7.3.5 Overflow 4-49

ii

http:4.5.1.12
http:4.5.1.11
http:4.5.1.10

Section

TABLE OF CONTENTS (CONT'D)

Title

I~

Program Status Word (PSW)

Timer

Supporting Hardware

Program Counter

Memory Subsystem Description
Memory Operation

Memory Data Flow

Address Decoding

Exceptional Condition Monitoring
Timing

Interfaces

SUMC-TIB I/0 Description
System I/0 (Integrated Channel)
Buffered I/0

Direct Memory Access

External Interrupt

Direct I/O

Direct Memory Access

(Separate Interface)

4.11.2.1 I/0 Loading

[

»

.
Lo R R e o R I

.

otk Bt bl e et e ek et |t et e ek O G0 00

%bb#-ﬁ*#bb-ﬂ*#b-&‘-ﬁ‘-&‘b-&-#b
HHI—"—JHHHOOOOOOO

. . e .

B ol et pd o o
v 4 e .
I RO e

4,12 SUMC-ITB Tester Interface
4.12,1 Computer Control
4.12,2 Disgplays
4,12.3 IROM/MROM Simulator
A2.4 Communications

SUMC-ITB POWER FUNCTIONAL DESCRIPTION

5.1 General Description
5.2 Functional Description
5.3 Partitioning
ABBREVIATTONS

iii

)
@
‘O‘g

TTETTT e eees
SN~V L tn Ln L L en B
P =0 RNOYODWLN OO W

LIST OF FIGURES

Figure No. Title Page
2-1- SUMC-ILIRB 2-3
2.1-2 SUMC-ITB Block Diagram 2-6
2,2-1 Program Status Word Format 2-10
2.3-1 Five Basic Instruction Formats 2-13
2.,3-2 Representative Flow Diagram of the 2-15

8/360-370 Effective Address Calculation
2.3-3 I/0 Channel Code Word 2-24
2.3-4 TSE Commands Words 2-26
2.3-5 Direct I/0 Command Word 2-28
and CPU to I/0 Command Word
2.4-1 Microprogram Control Word Format 2-31
2.6-1 Factory Tester 2-38
2.6-2 Field Tester 2-39
3.1-1 SUMC-ITB Computer 3-2
3.1-2 Memory Slice 3-3
3.2-1 Power Supply Slice 3-5
3.3-1 CPU/I0 Slice 3-7
3.3-2 MROM/Memory Slice 3-8
3.5-1 Universed 100-Lead Logic Module 3-9
3.5-2 148-Lead Logic Module 3-10
3.6-1 Basic Memory Module 3-12
3.7-1 Power Transistor Hybrid 3-14
3.7-2 ' Internal Voltage Module 3-15
4.0-1 SUMC~ITB Block Diagram ’ 4~5
4,2-1 Microprogram Control Word Format 4-23
4,2-2 Register Chip 4-24
- 4,2-3 SPM Write Pulse Generation 4~25
4.3-1 CPU Timing 4-27
4,4-1 IROM Word Format 4-34
4.7-1 ARCH Module 4-43
4.7-2 EA Branch Logic b4y
4.7-3 Overflow Generation 4-47
4,74 Partial PSW Format . 4-49

iv

Figure No.
4.10-1

4.10-2

.10-3
L10-4
.10-5
.10-6
.10-7
.10-8
.11-1

RS S o B - B o - R

J11-2
.11-3
11-4
J11-5
.11-6
J11-7
.11-8
JI1-9
.11-10
L11-11
J11-12
.11-13
11-14
.11-15
J12-1
.12-2
.12-3
J12-4
.12-5
4-12-6
5.2-1

T T S T - ST L - e

LIST OF FIGURES (CONT'D)

Title
Main Storage Subsystem
SUMC~IIB I1/0 Block Diagram
(wi;h Integrated DMA)
Chip Select Logic
FSU Memory Module
Basic Memory Module Block Diagram
8K x 1 Applieation
Riesling Storage Page Block Diagram
Memory Timing
SUMC-IIB I/O Block Diagram
(with Integrated DMA)
I/0 Interface
Buffered Input Seqguence
Buffered Output Sequence
DMA Input Sequence
DMA Output Sequence
External Interrupt Sequence
Direct I/0 Command Word
Direct IN Sequence
Direct OUT Sequence
Test and Reset Command
Commands Without Handshaking
DMA Block Diagram
DMA Store Sequence
DMA Read Sequence
SUMC-TTB/TSE Interface
TSE IROM Read
ISE MROM Read
CPU Command/Data Qut
CPU Command Out/CSE Data Response
CSE Interrupt to CPU

SUMC—iIB Power Supply Functional Diagram

460
4-63
b-64
465
466
4-69
4-72

. 4=73

475
4-76
4-79
4~80
4-82
4-83
LBl
4-85
4-86
4-87
4-91
4-92
4-93
4-100
4-102
4-103
4-104
4-105
4-106
5-2

Table No.

2-1-1
2.1-2

2.3-1
2.3-2
2.3-3
2.3-4
4,0-1
4.0=2
4,1~1
4,12
4,1-3
5,14
4.1-5
h1-6
4.1-7
4,1-8
419
4.1-10
4,1-11
4.1-12
4.1-13
h.4-1
botim2
4.5-1
4.5-2
4.5-3
b5
4, 5~5
4.6-1

LIST OF TABLES

Title

SUMC-TIB Characteristics

Typical Fxecution Timer of SUMC-IIB
Instructions

Permanent Storage Assignments

I/0 Data Rates

Buffered 1/0 Device Table

Tester Interrupis

Module and Chip Usage on SUMC-ITB
LSI Chip Usage

ALU Mux A

ALY Mux B

ALU Functions

¥MDS Control

Multiply Algoritim

Multiply, Algorithm Example

Divide Example

ALY B Source for MDS Functions MROM A Field
BALY A Inputs

Repister Load Control

PRM Operation

MAM Operation

MQM Opesration

Sequencer and Iteration Counter Actions
Foreing the Tteration Counter

ALT Control

FCU Operation

EALU Gontrol

ALU B-Mux Control

FALU B Input Comtrol

SPM Address Source Control

i

2-17
2-21
2-22
2-27
42

bt

48

5-9

4-10
4-11
4-12
4-13
4-15
4-16
5-17
4-18
5-19
5-20
4-21
4-30
4-33
4-35
4-36
4~37
4-38
440
441

[l S S T ~ S L S - S N

Appendix A
Appendix B

Table No.
4,
&,
.7-3
A4
.9-1
.10-1
.10-2
.10-3
11-1
WJ11-2
4.
4,
4,

7-1
7~2

11-3
12-1
12-2

LIST OF TABLES (CONT'D)

Title
8/360 EA Branch Conditions
2-Bit vs 4-Bit Condition Code
Condition Code Generation
Miscellaneous Field Bits M7-M10
Program Counter Control
Memory Operation and Data Size Control
Memory Read/Write Control
Byte Select Truth Table
I/0 Channel Code Word
DMA Signal Definition
I/0 Interface Line Definition
Tester Tnterface Lines

Multiplexer A and B Controls

APPENDICIES

SUMC-HTC Module and Chip Description

Complete Listing of SUMC-IIB Instructions

vii

Page
b=4y2
b-45
446
451
4-52
4-55
4-56
4-61
4-77
4-94
4-95
498
4-101

SUMC-IIBE DEVELOPMENT (FINAL REPORT)

1.0 INTRODUCTION

The end result of contract NAS8-29929 is the SUMC-IIB computer, also called
the IBM-HTC. This computer is a general purpose digital computer implemented
with flexible hardware elements and microprogramming te enable low cost
customizing to a wide range.of applications. It executes the $/360 standard
instruction set to maintain problem state compatibility. Memory technology,
extended instruction sets, and I/0 channel variations are among the available
options. “
The design provides the following features:

Y Modular

- Minimum number of part types (LSI chips and functional
modules)

~ Fasy expansion of data flow
- Easy changing of architecture
e High reliability via LSI and hybrid packaging
] Small size via LSI and hybrid packaging
® Uses mature logic technology
- TTL (Schottky) processing
- Master slice chip organization
- Customized via single metallization mask
- Design support by Engineering Design System (EDS)
{(logic recording, groundrule checking, chip wiring,
test pattern generation, and dynamic simulation
(chip through system)).
- Good delay power product
e High logic testability.
@ Choice of multiple memory technologies.

e Add memory without changing the design.

@ FEasy addition of custom instructions.

1-1

http:range.of

e Flexible I/0 structure
= All I/0 can be on a single channel for simple cabling.
— DMA can be separated for faster response.
- CPU can be locked out for burst I/0.

- Buffered I/0 permits simple device design for.external
controlled 1/0.

e Extensive "Built—in~Tests" (hardware and microprogram).

¢ Memory store protection.
Thie report provides a detailed description of the SUMC~IIB computer. Section
2 summarizes the system design; Section 3 describes the packaging; Section 4
presents a detalled description of the computer organization and functional

design, with Appendix A giving a detailed description of the logic modules
used in the design. The functional design of the power supply is in Section 5.

1-2

SECTION 2

SYSTEM DESCRIPTION

The SUMC-IIB is a microprogram controlled, general-purpose computer imple-
menting the IBM System/360 instruction set. This feature allows the SUMC-IIB

to be Problem State compatible with a widely known ground-based computer

system. Potential is thus offered for software development simplification
through reduced programmer training and utilization of existing software .,
packages. Problem-state programs written for the System/360 Standard Instruction
Set will execute identically on the SUMC-IIB and System/360 or System/370.

The basic SUMC~IIB supports 83 of the 87 instructions in the IBM System/360
Standard Instruction Set, which is a 32-hit fixed-point instruction set. The
four instructions not supported are associated with I/0. The SUMC-IIB provides
three instructions which control the timers, I/0, and storage.protection, which
are not a part of the Standard S/360 instruction set. The four I/O instructions
not supported and the three additional instructions provided are not used when
writing programs in the problem state. They are used by a supervisory program
or operating system. Thus, application program modules for the SUMC-IIB computer
can be written and debugged on any $/360 - S/370 computer without any special
support software.))

SUMC-ITB with the S/360 Standard Instruction Set uses 1024 words of microprogram.
A fully developed, optional, extended instruction set is available for the
SUMC~IIB which requires an additional 512 words of microprogram. The extended
instruction set includes three types of instructions; short precision fixed-
point, double precision fixed-point, and standard precision floating-point.
SUMC-IIB support software supports these optional instructions. The short
precision option consists of 53 additional instructions which deal with 16-bit
fixed-point operands. These instructions generally execute faster than their
counterparts in the basic SUMC-IIB instruction set, which primarily operates on
32-bit operands,

The double precision fixed-point option consists of 10 additional instructions
which operate with 64-bit fixed~point operands.

The floating-point option uses microprogrammning and fixed-point arithmetic
hardware to implement the 22 standard length (32-bit) $/360 floating-point
instructions. Full compatibility with $/360 is maintained on these instructions.
The four double-length floating-point registers required by S/360 floating-point
are implemented (along with the 16 general registers) in the scratch pad memory,
SPM.,

Problem-state programs can be written in Fortran, PL/1l, HAL or any compiler or
assembler language which does not use double precision floating-point or decimal
instructions. System/360 exception monitoring is fully supported except for the
storage protect feature of SUMC~IIB which is implemented differently from the
optional System/360 storage protection. The differences are explained in
Section 2.2.

2.1 SUMC-IIB CHARACTERISTICS

The hardware developed for SUMC-IIB is modular at three levels, chip, module,
and slice. Partitioning of the hardware at all three levels was done to
maximize the general utility of the part. Details of the chips and modules
are contained in Appendix A. Four functional slices have been developed for
SUMC-IIB: CPU/IO, PROM/MEMORY, MEMORY, and POWER SUPPLY.

2-1

All of these slices have compatible structures to allow them to be fastened
together in a "stack." The ends are closed with covers and the computer is
mounted with one edge of each slice attached to a cold plate for efficient
cooling. Memory can be added by attaching additional memory slices (See
Figure 2.1-1.

As illustrated by System/360 many computer meodels can be designed around a
single architecture, depending upon the performance requirements of the
intended application. The SUMC-IIB uses a 16~bit data flow, 134 gate TTL
logic chips, N-channel MOS memories, a microprogram control store and hybrid
packaging to provide the computer characteristies listed in Table 2.1-1. The
hardware organization and data flow can be seen in the block diagram of
Figure 2,1-2.

Performance caleculations such as KOPS (thousands of operations per second)

are application sensitive for a given computer and are architecture sensitive

when comparing different computers. Therefore, the SUMC-ILB performance is
indicated by Table 2.1-2 which shows the performance of representative instructions
in the baseline and optional instruction sets. Appendix B is a complete list

of the instructions and execution times.

5.48 IN

R

141

MEMORY. ~\~ .
\~

MROM/MEMORY

CPU/10

FIGURE 2-1. SUMC-IIB

Table 2.1-1. SUMC-IIB Characteristice

Central Design
Processing

Unit

‘Machine Type
Organization Number System

Instruction Word
Length
Fixed-Point Data
Word Length

General Register

Instruction Set
I/0 Interrupt

Execution Time

Main Storage Density
Access Time
Monolithic Cycle Time
N-channel Addressable Unit
MOS Capacity
Storage Protect
Small modular‘1 Density
core memory Access Time
Cycle Time
Addressable Unit
Capacity

Storage Protect
Input/Output Externally Initiated
Program Initiated
Data Interface
Data Transfer Rate
External Channels

1 .
Designed for Core Memory

2-4

Generzl-register, functionally
partitioned in four segments

1. Data Flow

2. Sequence Control

3. Timing and miscellaneous functions
4. Architecture-Dependent functions

General-purpose, stored program
parallel Binary, fixed-point, integer.

16, 32 and 48 bits

8, 16 and 32 bits (most operations
use 32 bits)

16 32-bit registers in hardware

IBM System/360 standard instruction set
Single hardware level with multilevel
interrupt capability through software
mechanization or additional external
hardware.

Instruction

(8/360 formats)

Add

(Register—-to-Register)

(32 x 32 bits) 2.0 ps
Add

(Register~to—-Storage)

(32 x 32 bits) 2.8 us
Multiply

(32- x 32-bit

operand) 30.4 us

16,384 x 18 bits per slice (32768 bytes)
550 ns

550 ns

8-bit byte

65,536 bytes

Has storage protect feature

4096 x 17 bits per slice (8192 bytes)
600 ns

1.33 ps

8-bit byte

65,536 bytes

flas storage protect feature

Direct memory access, buffered I/0Q
Direct I/0, external interrupts
16-bit parallel, data and address
150,000 to 750,000 words second
Multiplexing to 16 or more distinct
channels .

Table 2,1-1. SUMC-IIB Characteristics, (Continued)

TO .-

Logic Circuits Class Monolithi¢ integrated
Type Low-power, bipolaf, transistor—transistor
logic (TTL); large-scale integration (LSI)
Package LSI chips mounted on cermaic, thick-film,

multilayer modules.

Power System Primary Power 28 + 4 VDC 9
(Hybrid) Input Power o 100 W for 8192 bytes of core memory
o 94 W for 16,384 bytes of monolithic

memory
o 230 W max., 24 to 32 VD03
o Output regulated voltages and signals
45 VDC 2% @ 25 A
+8.5 VDC 5% @ 3 A
-3.15 VDC 272 @ 50 mA
¢ Power-On—-Reset - logic level reset at
Power On/Off
¢ 9,09 MHz Clock - cleck signal to
processor logic
Features Overvolitage and overcurrent protection,
transient power/signal protection, power
sequencing, hybrid circuit modules,
external pluggable module

Physical Volume 280 in Includes F.S.
Weight 13.9 1b and 16K - Bytes
Size 5.2 x 5.50 x 10,75 in | of storage
Construction Pluggable structural Slices
Cooling Cold plate/heat sink, can be adapted
for indirect air, conductive cooling
Enviromment Degigned to meet MIL-E-5400, Class 2X

2. Caleulated

3. Maximum power supply capability of 150 watts at 65% efficiency.-

2~5

9~Z
*T-T*z @an31g

wexsetq y2o1g gIT oHns

¥ tte) ¥ 6t et
o L“'S_‘I‘HUCTION [-1G {32 I-G—L“ ot E
—7 8 a1
T ' 8
y o 5
CTL_ | PARTIAL FGU o] EALY Y o v
PSW = 1ROM E'l: (%‘
CTL 12 &)
CTL L 4 5
(1
INT_] o ICMUX/REG
e~ 18 {815} CTL CTL AC
| SPM ACK |
‘ . SEQUENCE
. 07 'IRE Yvsy ¥ ¢lY 4) f6a-10) Oft Ll coN- |a]
CTL W ivEn @) [Tram] [wom [mam T 3 4 TIMER | TROLLER
/Y PRMD
8 CTL CTL CTL 'PRMIQ
1 ' ‘ et [)
L] v L4 SPM ADDR —
| ear] [mor [mar] MUX SEQ MRC:A
[f ¥ et MUX/REG 1024x64 BITS
MOR LA
MROM K v orL
auT, MROM REG |«
! oo e !
ctm.-»l e | .EA BRANCH
i - o "MROM QUT (64 BITS)
CYRL —oli/0 MUX REG ‘SAR ggsa f 1. MACHINE CONTROL (CTL)
[L v ¥ JR ;MROM-
[amox] our
* - {16)
TAGS {12} -t | o-hux > _‘;E’TFE“ {36) Jr(ta)
JNPUT/OUTRUT, { 10 BUS QUT {16) <] " STATE
1 osus e —
,'J,?,";SE . AN STORE
TAGS (5 INTERFAGE < r— 4K %36 BIT WORDS]
TESTSUPPORT | 73 i /0 CONTROLj—ETL; vy TRI-
uiemenT | | VL6 g : At oot ["som] STATE: {387
TEST BUS_IN {16, e 5
DMA i TIMING & cr,
Esn:Hn) controt [*

Table 2.1-2, Typical Execution Times of SUMC-IIB Instructions

Execution Time (p sec)
Instruction Short Standard Extended Floating#*#*
(16 x 16) (32 x 32) {64 % 64) (32 x 32)

Add/Sub/Logic* (RR) 1.7 2.0 6.1 20.8+
Add/Sub/logic (RX) 2.2 2.8 6.1 21.8+
Multiply (RX) 7.8 30.4 - 33,8+
Divide (RX) 15.1 51.8 - 48.6+
Branch and Link - 3.4 - -

Shift (Avg 3-6 bits) 3.3 3.7 - -

Compare (RX) 2.6 3.1 6.4 16.2+

o -
*No logical operations are provided in the extended precision or floating-point instructions.

**The + in the execution times are for exponent alignment and/or normalization (typically in the
range 1 to 3 p seconds extra).

2.2 SYSTEM ARCHITECTURE

The System/360 architecture has been defined as baseline for the SUMC. The
following discussion delineates the SUMC-IIB consistency with the baseline
architecture and represents the architecture to be applied to the Tug appli-
cation.

2,2.1 System/360 Compatibility

The SUMC-IIB is problem state compatible with the IBM System/360 Standard
Instruction Set. Short floating-point imnstructions are supported along with
16-bit and 64-bit fixed-point instructions in an optional microprogram extension.
Decimal instructions and long format floating-point instructions are not currently
supported. Problem state programs written for the S/360 standard instruction set
will execute correctly on the SUMC-IIB without change. Programs written in high
level languages for $/360 such as FORTRAN and PL/1 can be executed on the SUMC-IIEB
provided that long format floating-point and decimal variables are not used.

The SUMC-IIB is Supervisor State compatible with the IBM System/360 with the
following exceptioms.

® 1/0 - The I/0 portion of the SUMC~IIB provides the means of communication
between the system I/0 and test support equipment (TSE) and the CPU/
main store (MS). In the SUMC-IIB the I/0 is implemented as a 16-bit
parallel channel providing direct I/0, buffered I/0, and external
interrupts, and stand-alone (SA) direct memory access (DMA) interface.
There is only one I/0 instruction, the SI0O (Start I/0) instruction,
which controls direct I/0. All other I70 is device controlled. The
SIO instruction fetches a 16-bit I/0 command from main memory and
transmits a 16-bit data word to/from one of the general registers.

o Timer - The SUMC-IIB has a real time clock and an interval timer, each
containing both hardware and microprogrammed elements. Both are
accessed by using the TMRS instruction. The S/360 interval timer in
memory location 80 is not supported.

The interval timer is a 16-bit decrementing counter, that is decremented
every 112.64 microseconds. It has a maximum of 7.38 seconds. The
real time clock is a 32-bit incrementing counter, that is incremented
every 112.64 microseconds. It has a maximum value of 5 days, 14 hours,
23 minutes and 5 seconds. ‘The TMRS instruction is used to read either
of the timers into a general register. When the TMRS instruction is
used to load either of the timers from main storage, the old value of
the timer is placed into a general register so that the timer may be
read and loaded without an intervening step. Problem programs may
read either of the timers directly, but only the supervisor is per-
mitted to load the timers., Duration of the timer can be extended by
programuing.

s Storage Protect -~ The size of the storage protect blocks in the SUMC-IIB
is 1024 bytes (512 halfwords) and the bit configuration of the instruction
SSK (Set Storage Key) operand has been changed. The instruction ISK

2-8 .

(Insert Storage Key) has not been implemented in the SUMC-IIB. A two
bit storage protect key is used for each block; bit 30 of the designated
register indicates Central Processing Unit storage protect and bit 31
indicates Direct Memory Access storage protect.

The SUMC-IIB supports all S/360 exception monitoring for the instructions imple-
mented,

2.2.2 Exception Monitoring

The exceptional conditions are primarily programming errors; all exceptions
cause a program interruption., The errors monitored are:

1. Operation Exception. Execution of an unassigned operation code
was attempted.

2. Privileged Operation. A privileged operation was encountered in
the problem state.

3. Protection Exception. An instruction tried to store into a protected
location.

4, Addressing Exception. An address specifies data, an instruction or a*
control word outside of the available storage.

5. Specification Exception. A data, instruction or control word address
does not specify an integral boundary for the unit of information.

6. Parity Error. A memeory parity error has occurred.

7. Fixed Point Overflow. 4n overflow has occurred during zn arithmetic
operation.

8. Execution Exception. The object of an execute instruction was
another execute imstruction.

9. Fixed-Point Divide Exception. The quotiént cannot be expressed
in a 32-bit signed fixed-point number.

10. Data Exception. Data of the second operand in a CONVERT TO BINARY
instruction is not in packed decimal format.

If the fleoating-point instructions are supported there are four additional
exceptions monitored to maintain S/360 compatibility (exponent-overflow,
exponent-underflow, loss of significance, and floating-point divide).

2.2.3 Program Status Word

A double word, the program status word (PSW), contains the information required
for proper program execution. The PSW includes the instruction address,

condition code, and other fields to be discussed. In general, the PSW is used

to control instruction sequencing and to hold and indicate the status of the
system in relation to the program currently being executed. The active or
controlling PSW is called the "ecurrent PSW." By storing the current PSW during
an interruption, the status of the CPU can be preserved for subsequent inspection.
By loading a new PSW or part of a PSW, the state of the CPU can be initialized

or changed. Figure 2.2-1 shows the PSW format.

2~9

System Mask Key AMWP Interruption Code
0 78 1112 15 16 31
ILC CC Programn | Unused instruction Address
Mask
32 3334 35 36 39 40 47 48 83
0-7 Systemn Mask 14 Wait State (W}
0~ /O Mask i5 Problem State (P}
1 16-31 Interruption Code
2 - 32-33 Instruction Length Code {1L.C)
3 \Unused 34-35 Condition Code (CC)
4 { Don't Care 36-39 Program Mask
5 36_ Fixed Point Overflow Mask
G 37-1 Unused
77 Timer Mask . gg Don't Care
13 Musthed 4047” Unused
13 Machine-Check Mask (M} 48-63 Instruction Address

Figure 2.2-1. Program Status Word Format

Interruptions are taken only when the CPU is interruptable for the interruption
source. The system mask, program mask, and machine check mask bits in the PSW
may be used to mask certain interruptions. When masked off, an interruption
either remains pending or is ignored. The system mask may cause I/0 and timer
interruptions to remain pending, and the machine-check mask may cause machine
hard stops. The program mask may cause fixed point overflow interruptions to
be ignored. Other interruptions cannot be masked off,

An interruption always takes place after one instruction execution is finished
and before a new instruction execution is started. However, the occurrence of

an interruption may affect the execution of the current instruction. To permit
proper programmed action following an interruption, the cause of the interruption
is identified and provision is made to locate the last executed instruction.

2.3 SYSTEM STRUCTURE

2.3.1 Main Storage

The SUMC-IIB has a 16,384 byte (4,096 word) storage that is expandable to 65,536
bytes (16,384 words). Each word is 4 bytes (32 bits) long. The system transmits
information between main storage and the CPU in units of eight bits (plus parity),
or a multiple of eight bits at a time. Each eight bit unit of information is
called a byte, the basic building block of all formats.

When the length of a field is not implied by the instruction operation code, but

is stated explicitly, the information is said to have variable field length.
This length can be varied in one-byte increments.

2-10

2.3.2 Addressing

Byte locations in storage are consecutively numbered starting with 0; each
number is considered the address of the corresponding byte. A group of bytes
in storage is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly defined by the operatiom.
The addressing arrangement uses a 16-bit binary address to accommodate a
maximum of 65,536 byte addresses. This set of main storage addresses includes
some locations reserved for special purposes. Several techniques are being
evaluated for extending the addressing capability beyond the current 64K-bytes.

An addressing exception is recognized when any part of an operand is located
beyond the maximum available capacity of an installation. The addressing
exception causes a program intervention.

2.,3.3 Central Preocessing Unit

The Central Processing Unit (CPU) contains: the facilities for addressing main
storage, for fetching or storing information, for arithmetic and logical pro-
cessing of data, for sequencing instructions in the desired order, and for
initiating the communication between storage and external devices.

The system control section provides the normal CPU functions necessary to execute
the instructions.

The CPU provides 16 general registers for fixed-point operands.

The general registers can be used as index registers, in address arithmetic and
indexing, and as accumulators in fixed-point arithmetic and logical operations.

The registers have a capacity of one word (32 bits). The general registers are
identified by numbers 0-15 and are specified by a four-bit R field in an instruction
Some instructions provide for addressing multiple general registers by having
geveral R fields,)

2.3.3.1 Arithmetic and Logic Unit

The arithmetic and logic unit can process binary integers of fixed length and
logical information of either fixed or variable length.

e Fixed-Point Arithmetic - The basic arithmetic operand is the
32-bit fixed-point binary word. Sixteen-bit halfword operands
may be specified in most operations for improved performance or
storage utilization. To preserve precision, some products and
all dividends are 64 bits long.

Additions, subtractions, multiplications, divisions, and compari-

sons are performed upon one operand in a register and another operand
either in a register or from storage. Multiple precision operation is
made convenient by the two's-complement notation and by recognition
of the carry from one word to another. A word in one register or a
double word in a pair of adjacent registers may be shifted left or
right. A pair of conversion instructions —— CONVERT TO BINARY and
CORVERT TO DECIMAL -- provides transition between decimal and binary
radix (number base) without the use of tables. Multiple register
loading and storing instructions facilitate subroutine switching.

2-11

@ Logical Operations — Logical information is handled as fixed or
variable length data. It is subject to such operations as comparisonm,
translation, bit testing, and bit setting. When used as a fixed
length operand, logical information can consist of either one, four,
or eight bytes and is processed in the general registers.

2.3.3.2 Program Execution

The CPU program consists of instructions, index words, and control words
specifying the operations to be performed. This information resides in main
storage and general registers, and may be operated upon as data.

e TInstruction Format - The length of an instruction format can be one,
two or three halfwords. It is related to the number of storage
addresses necessary for the operation., An instruction comsisting
of only one halfword causes no reference to main storage. A two half-
word instruction provides one storage address specification; a three
halfword instruction provides two storage address specifications. All

instructions must be located in storage on integral boundaries for
halfwords., Figure 2.3-1 shows five basic instruction formats.

The five basic instruction formats are denoted by the format codes
RR, RX, RS, SI, and SS. The format codes express, in general terms,
the operation to be performed. BRR denotes a register-to-register
operation; RX, a register-and-indexed storage operation; RS, a
register-and-storage operation; SI, a storage and immediate-operand
operation; and 88, a storage-to-storage operation. An immediate
operand is one contained within the instruction.

For purposes of describing the execution of instructions, operands
are designated as first and second operands and, in the case of
branch—-on-index instructions, third operands. These names refer

to the manner in which the operands participate. The operand to
which a field in an instruction format applies is generally denoted
by the number following the code name of the field, for example,

Ri> Bys Ly, Dy

In each format, the first instruction halfword consists of two parts.
The first byte contains the operation code (op code). The length
and format of an instruction are specified by the first twe bits of
the operation code.

e Address Generation ~ For addressing purposes, operands can be grouped .
in three classes: explicitly addressed operands in main storage;
immediate operands placed as part of the instruction stream in main
storage; and operands located in the general registers.

To permit the zready relocation of program segments and to provide for the
flexible specifications of input, output, and working areas, all instructions
referring to main storage have been given the capacity of employing a full
address.

The address used to refer to main storage is .generated from the following three
binary numbers.

2-12

Figure 2.3-1.

First Halfword 1
Byta 1 l Eyte 2

Sacond Holfword 2

Third Halfword 3

1 1
1 Register chiste:- | {
: Operond 1 Qperand 2 % :
—A——r—
1
| 1
r Op Cede I R}] Ry I &R Format I i
o j 78 112 1 ']
1 ! ! : i
H]
i Register ' Address : |
' Operond 1 ! Operand 2 . H
1 e A v . :
Op Code I R1 | Xy I By | D, RX Format i
o 7. 1z 31 120 n]
1]]] 1
| 0 1 !]
H Register Reguster Address : 1
' Operond 1 Operond 3 Operand 2 ' 1
[} | et -]
Op Cede [Ry | Ry I B, l 02] RS Formot I
la e nix (LR 110 b1 t
1 0 L 1
H . ' H t
1 | immediate : Address z]
: ! Operand Operfmd i : :
1 —— - v '
Op Code i2 | Bl D] S| Format :
o LN | 518 17 n h
: 1 | : :
! i Length ! Address T Address ' :
: QOperand 1 Operond 2 Operand 1 : Opcr::nd' 2 i
1 D et —" V=
D
[Op Code I L] | L | B, D] | B, I 2] 5% Format
Y 71 13 FITEEE) 3 I

INSTRUCTION LENGTH RECORDING

INSTRUCTION =~ - INSTRUCTION
LENGTH FORMAT

One halfword ’ RR

Two halfwords RX

Two halfwords RS or SI

Three halfwords Ss

Five Basic Instruction Formats

2~13

Base Address (B)

Base Address (B) is a 16-bit number contained in a general register specified
by the program in the £ield of the instruction. The B field is included in
every address specification. The base address can be used as a means of static
relocation of programs and data. In array-type calculations, it can specify the
location of an array and, in record-type processing, it can identify the record.
The base address provides for addressing the entire main storage. The base
address may also be used for indexing purposes.

Index (X)

Index (X) is a 16-bit number contained in a general register specified by the
program in the X field of the instruction. It is included only in the address
specified by the RX instruction format. The RX format instructions permit double
indexing; i.e., the index can be used to provide rhe address of an element with
an array.

Displacement (D)

Displacement (D) is a 12-bit number contained in the instruction format and is
included in every address computation. The displacement provides for relative
addressing up to 4095 bytes beyond the element or base address. In array type
calculations the displacement can be used to specify one of many items associated
with an element. In the processing of records, the displacement can be used to
identify items within a record. ’

In forming the address, the base address and index are treated as unsigned 16-bit
positive binary integers. The displacement is similarly treated as a 12-bit positive
binary integer. The three are added as 16-bit binary numbers, ignoring overflow.
Since every address included a base, the sum is always 16 bits long. The address
bits are numbered 16-31 corresponding to the numbering of. the base address and

The program may have zeros in the base address, index, or displacement fiaslds.

A zero is used to indicate the absence of the corresponding address component.

A base or index or zero implies that a zero quantity is to be used in forming the
address, regardless of the contents of general register 0. A displacement of zero
has no special significance. Tnitialization, modification, and testing of base
addresses and indexes can be carried out by fixed point instructions, or by BRANCH
AND LINK, BRANCH ON COUNT, or BRANCH-ON-INDEX instructions.

The logic for forming the effective address (EA) is shown in flow chart form in
Figure 2.3-2, The basic address in an indexed, base displacement is calculated as:

FA =D+ (B) + (X)

where () denotes "the contents of".

2--14

INSTRUCTION RECGISTER

- i X* B D
1
o 12 1516 1920 31
A

YES

Ba Da

32 3536 47

O

RR
* RX FORMAT ONLY
b—>

IES

?
RD
P

k% S5 FORMAT ONLY

(P)->EA

P—>EA
Ds—>F

NOTE: B AND X ARE THE NUMBERS OF THE
BASE AND INDEX REGCYSTERS BUT (B)
AND (X) ARE THEIR CONTENIS.

Bs=07

NO

(Bo)+P—>P 5

<}.__.....4

()—>EA,
S —
<t

()

TC INSTRUCTION
EXECUTION

Figure 2.3-2, Representative Flow Diagram of the S§/360-370
Effective Address Calculation

2-15

Sequential Instruction Fxecution

Normally, the operation of the CPU is controlled by instructions taken in sequence
An instruction is fetched from a location specified by the instruction address in
the current PSW. The instruction address is held in the SPM. The instruction
address is increased by the number of bytes in the instruction fetched to

address the next inmstruction in sequence. The instruction is then executed and
the same steps are repeated using the new value of the instruction address.

A change from sequential operation may be caused by branching, status switching,
interruptions, manual intervention, or by the execute instruction.

Branching

Thenormal sequential execution of instructions is changed when reference is

made to a subroutine, when a two way choice is encountered, or when a segment

of coding such as a loop is to be repeated. All these tasks can be accomplished
with branching instructions. Provision is made for subroutine linkage, permitting
not only the introduction of a new instruciton address but also the preservation
of the return address and associated information.

Loop control can be performed by the conditional branch when it tests the outcome
of address arithmetic and counting operations. For some particularly frequent
combinations of arithmetie and tests, the instructions BRANCH ON COUNT and BRANCH
ON INDEX are provided. These specialized branches provide increased performance
for these tasks.

2.3.3.3 " Machine States

Running or Waiting State

In the running state, instruction fetching and execution proceed in the normal
manner. The wait state is normally entered by the program to await an interruption
for example, an I/0 interruption. In the wait state, no instructions are processed
the timer is updated, and the I/0 and external interruptions are accepted, unless
masked. Running or waiting state is determined by the setting of bit 14 in the
PSW.

Masked or Interruptible State

The CPU may be interruptible or masked for I/0, timer, machine-check, and some
program interruptions. When the CPU is interruptible for a class of interruptionms,
these interruptions are accepted. When the CPI is masked the 1/0 and timer
interruptions remain pending, whereas program interruptions are ignored. The
interruptible states of the CPU are changed by changing the mask bits of the PSW.

2-16

Supervisor or Problem State

In the problem state, I/0 and a group of control instructions are invalid.

In the supervisor state, all instructions are valid. The choice of problem

Oor supervisor state is determined by bit 15 of the PSW. The supervisor state
(priviledged) instructions are: LOAD PSW, SET SYSTEM MASK, START I0, TIMER SET,
SET STORAGE KEY, and SET PROGRAM MASK.

2.3.4 Interruption

The interruption system permits the CPU to change state as a result of conditions
external to the system, in input/output units, or in the CPU itself. Five classes
of interruption considitions are possible: I/0, program check supervisor call,
external, and machine check.

Fach class has two related PSWs called "old" and "new" in unique main storage
locations (Table 2.3-1). In all classes, an interruption involves merely storing
the current PSW in its "old" position and making the PSW at the "new" position
the current PSW. The "0ld" PSW holds all necessary status information of the
system existing at the time of the interruption. If, at the conclusion of the
interruption routine, there is an instruction to make the old PSW the current PSW,
the system is restored to the state prior to the interruption and the interrupted
routine continues,

Permanent Storage Assignments

ADDRESS LENGTH PURPOSE

0 0000 0000 Double-Word Initial Program Loading PSW

8 0000 1000 Double-Word Unused

16 0001 0000 Double-Word Unused

24 0001 1000 Double~Word External old PSW

32 0010 0000 Double~Word Supervisor call old PSW
40 0010 1000 Double-Word Program old PSW

48 0011 0000 Double~Word Machine check old PSW
56 0011 1000 Double-Word Input/Output old PSW

66 0100 0000 Half-Word Buffered I/0 Status Word
72 0100 100-0 Word Channel Address Word

(Buffered I/0 Table)

76 0100 1100 Word Unused

80 0101 0000 Word Unused

84 0101 0100 Word Unused

38 0101 1000 Double~Word External new PSW

96 0110 0000 Double~Word Supervisor call hew PSW
104 0110 1000 Double-Word Program new PSW
112 0111 9000 Double-Woxrd Machine check new PSW
120 0111 1000 Double-Word Imput/Output new PSW

Interruptions are taken only when the CPU is interruptible for the interruption

source.

may be used to mask certain interruptions.
either remains pending or is dignored.

hard stops.

2-17

The system mask, program mask, and machine check mask bits in the PSW
When masked off, an interruption

The system mask may cause I/0 and timer
interruptions to be held pending, and the machine-check mask may cause machine

Other interruptions camnot be masked off.

An interruption always takes place after ome instruction execution is finished
and before a new instruction execution is started. However, the occurrence of

an interruption may affect the execution of the current instruction. To permit
proper programmed action following an interruption, the cause of the interruption
is identified and provision is made to locate the last executed instruction.

External Interrupts

External interrupts from two sources can occur: timer interrupts (when the interval
timer underflows) and interrupts from the interrupt key on the test console. These
interrupts are serviced between instructions.

These two types of external interrupts may be masked off. Timer interrupts are
masked by bit 7 of the system mask (PSW bit 7), as usual. A 1 enables timer
interrupts; a 0 masks them and the interrupt remains pending. External interrupt
key interrupts are masked by system mask bit O (PSW bit 0) which is also used to
mask I/0 interrupts (refer to paragraph 2.3.5). If a key interrupt is disabled,
it remains pending and the channel is Hung. Other bits of the system mask are
ignored and need not be zero upon PSW load or in the $SM instruction.

In SUMC-IIB, the two types of external interrupts are not presented simultaneously
if they occur simultaneously of if they are enabled simultaneously. In either
case, the timer interrupt is taken and the key interrupt remains pending. The
timer interrupt has interrupt code X'0080' and the external key interrupt has
interrupt code X'0040'.

Program Check Interrupts

The following program exceptions are monitored in SUMC-IIR.

Operation

Privileged operation
Execute

Protection (storage only)
Addressing

Specification

Data

Fixed-point overflow
Fixed-point divide

These exceptions were discussed in paragraph 2.2.2., More than one cause of a
program interruption may occur at once, but only one program interrupt is taken.
In SUMC-IIB, the following priorities apply when this occurs:

Instruction Fetch:
Addressing and specification exceptions may co-occur. If the instruction
address (address of the first halfword of the instruction) is out of the bounds
of implemented memory, an addressing interrupt will occur. If, however, specifi-
cation is bad (not on halfword boundary) and the second, third, or fourth halfword
of the instruction has a bad address, a specification interrupt occurs.

Instruction Execution:

2-18

Occurrence of an operation exception (invalid op code) rules out other
interruptions. However, privileged operation, protection, addressing, and
specification may co-occur. Privileged instructions are dealt with below.
Barring other factors, also discussed below, the priority of these interrupts is:

Addressing
Specification
Storage Protection

a) Privileged operations

There are six privileged instructions in the SUMC-IIB, If a privileged operation
exception occurs together with a memory reference exception (one of

the three above) the following exception has priority and causes the

interrupt: '

i) SS8K - privileged operation

ii) 8SM - memory reference, in the above order

iii) Diagnose - privileged operation

iv) SIO - memory reference, in the above order

) TRMS ~ For the interval timer, the memory reference takes priority.
This is also the case for a bad RTC address. 1If only the second
halfword of the RTC address is bad, the privileged operation
exception will take precedence over the addressing exception
(the RTC address meed not be fullword aligned). A memory
reference exception can take place even in cases of timer
read only, but only for the first halfword address. (The
second halfword is not read when the RTC is to be read only.)

vi) LPSW - If the new PSW address is mnot on a halfword boundary
or is an invalid address, the addressing or specification
exception will have priority over privileged operation. If
the new PSW address is not on a double wrod boundary, the
privileged operation interrupt will occur if in problem state.

b) In the instruction D and M, a memory reference exception (for the second
operand) takes precedence over a specification exception caused by improper
(odd) register specificaiton for the first operand.

c) In S8 instructions, memory reference exceptions for the second operand
take precedence over those for the first operand.

The only program interruption which can be masked off is fixed-point overflow.
If bit 36 of the PSW (first bit of the program mask) is zero, no interruption
occurs. Only one bit of the program mask is used, the ot?er bits are ignorec
and need not be zero upon PSW load or in the SPM instruction.

2-19

2.3.5 Input/Output Modes

The SUMC-IIB I/0 provides three types of device initiated information transfer
as well as program controlled transfers, The three types are:

o Buffered I/0
o Direct Memory Access (DMA)
o External Interrupts

Program initiated 1/0 is provided by Direct I/0., Two interfaces are provided to
the SUMC-IIB; a general I1/0 channel and a direct memory interface. A four-bit
device identification code permits up to 16 system devices to be attached directly
to the I/0 channel. The DMA interface must be shared by device cooperation or

be used by only one device as it appears to the computer like a single device
interface. As an option the DMA function can be handled over the channel rather
than as a separate interface.

1

2.3.5.1 Buffered I/0

Buffered I/0 allows a device to transfer single or multiple words of data to/from

a table in main memory without the device knowing the location of the table. The
CPU hardware is used to keep track of table word count and address incrementing.
When the table is full/empty the device is notified by a signal on the ZERQ COUNT
line. Separate input and output tables are maintained for each buffered device code
16 codes}.

It should be noted that even though the CPU hardware is shared to handle the
buffered I/0 transfers, the program is not interrupted and the time consuming save
operations associated with program interrupt are not required. Buffered I/0
operations are handled between instructions and do not use any register visible
to the programmer. The table starting address and size are controlled (initia-
lized) by programming.

2.3.5.2 Direct I/O

Direct I/0 provides a means for the programmer to send a command or data word to
an I/0 device or request a data word (or status) from a device. Each direct I/0
instruction sends a 16-bit command word out on the System I/0 channel and can send
or request a data word to/from the addressed I/0 device. The channel is attached
and relinquished for each Direct I/0 instruction.

2.3.5.3 Input/Output Interruption

An T/0 interruption provides a means by which the CPU responds to conditions in
the I/0 units.

An I/0 interruption can occur only when the mask bit associated with I/0 is set

to one. The status and address of the I/0 unit involved are recorded in bits
16-31 of the I/0 old PSW.

2-20

2.3.5.4 Direct Memory Access

Direct Memory Access provides the fastest means of transferring data to or
from main storage. Both waiting time and transfer rates are faster than other
T/0 modes. The CPU hardware does not participate in the DMA operations and,
therefore, they can take place in the middle of an instruction. If the CPU

is not requesting memory service at the time of a DMA request there will be

no impact on CPU performance. In the case of conflicts between CPU and DMA,
memory service is alternated go that neither will be locked out.

DMA operations are not under direct program control, however, a programmer may
prevent the DMA from modifying any particular block of memory by setting the
DMA storage protect imdicator for the block. The DMA feature is provided with
a separate interface to operate concurrently with buffered or direct I/0.

2.3.5.5 1/0 Channel Rate

The I/0 channel burst-mode data rates are shown in Table 2.3-2.

Table 2.3-2. I/0 Data Rates

Mode Rate (Maximum)
Direct I/0 100K 16-bit words/second
Buffered I/0O 150K 16-bit words/second
DMA T/0 750K 16~bit words/second

2.3.6 Input/OQutput Operations

The SUMC-IIB I/0 interface provides a 16-bit parallel channel for support of two
classes of I/0 equipment. These are:

1. System I/0 devices and
2. Test support equipment (TSE) I/0 devices.

A particular I/0 device is classified based on whether it is attahced directly

to the HTC or indirectly via the TSE. Further provision has been made to allow
both program and device initiated information transfer which includes T/0 commands ,
data words, and external I/0 interrupts.

This portion of the manual describes the programmed control of I/0 devices by the
channel and central processing unit (CPU) including formats for the various types
of I/0 control information. Although certain information, formats, etc., may be
applicable to both system and TSE I/0, each type is described individually for
simplicity.

2-21

Buffered 1/0 allows a device to transfer single or multiple words of data to/from
a table in main memory without knowing the location of the table. The CPU keeps
track of table word count and address incrementing. When the table is full/empty
the device is notified by a signal on the ZERO COUNT iline. Separate iInput and
output tables are maintained for each buffered device code (16 codes).

The Channel Address Word (CAW) at memory location 72, points to the first location
of a table that consists of sixteen (16) eight (8) BYTE entries that contain the
input storage address and count, and output storage address and count of each of
the (possible) 16 Buffered I/0 devices (see Table 2.3-3).

The programmer controls Buffered I/0 by initialization of the I/0 address and
word count in the Buffered I/0 Control Table.

To initialize a buffered I/O sequence the programmer must:

1. Set the CAW (location 72) to the address of the start of the
Buffered I/0 table.

2. Set the device I/0 word count (in the buffered I/0 table) to the
number of 16-~bit data words to be transferred.

3. Set the device I/0 word address (in the Buffered I/0 table) to
the memory address of the beginning of the data to be written
out (or to a location for the data to be written in).

4. Start the I/0 device so it will request a buffered 1/0 "interrupt".

This is usually done by giving a direct out command to the device via
a SI0 instruction. a

Table 2.3-3. Buffered I/0 Nevice Table

INPUT oUTPUT
DEVICE 2 BYTES 2 BYTES 2 BYTES 2 BYTES
NO.
*0 T/0 WORD I/0 WORD I/0 WORD 1/0 WORD
COUNT ADDRESS COUNT ADDRESS
1] - 1" 18
, 2 1 " " 1"
3 n i " 1"
4 1 1 1" 11
5 " T " 1"
6 " n Lf i
7 1]] 1 1t
3 " 1] i 1t
9 " " 11 "
15 n " 1 t
*CAW = ADDRESS OF THIS LOCATION

2-22

The I/0 word count is updated by one and the I/0 address is updated by two in

the I/0 Control Table for each 16-bit (two byte) word that is transferred te or fro
memory by the CPU, unless the L/0 word count is in TWOs complement form. If the
1/0 word count is in TWOs complement form, the I/0 word count and I/0 word address
are not updated at the end of a Buffered I/0 transfer. Therefore, the I/0 address
and word count start from the initial value each time the I/0 device initiates a
data transfer. This method of data transfer is useful for devices that send a
burst of data periodically. Once a device initiates a transfer, the I/0 channel

is tied up until the device releases it.

If an I/0 device requests a data transfer and the I/0 Word Count is zerc, an LfO
error interrupt will be generated. The I/0 Channel Code word is furnished as the
interruption code in the I/0 old PSW upon most I/0 interrupts including error
interrupt. The SUMC-IIB channel code word is shown in Figure 2.3-3.

It should be noted that even though the CPU hardware is interrupted to handle

the buffered I/0 transfers, the program is not interrupted and the time consuming
Save operations associated with program interrupt are not required. Buffered I/0
operations are handled between instructions and do use any register visible to the
programmer.,

2.3.6.1 Buffered I/0 Status Word

The Buffered I/0 status word (location 66) is set to the current Buffered I/0
address during Buffered I/0 operations and is cleared to zero when a Buffered 1/0
cperation is completed successfully.

If an addressing exception, memory protect exception, or parity error occurs
during Buffered I/0, a program exception interruption will be generated with
the Buffered I/0 status word set non zero; the contents will indicate the
address of the Buffered I/0 word in use at the time the error occurred.

2.3.6.2 Service Interrupt

Interrupts permit a device to interrupt the normal program sequence. A single
level of interrupt is provided. Programmed priorities may be implemented. 1In
the interrupt sequence an I/0 Channel Code word is sent from the device and
stored as the Interruption Code in the old I/0 PSW (see Figure 2-6).

The new I/0 PSW is used as the current PSW on all I/0 interrupts except Buffered
I/0. A Buffered I/O interrupt is not visible to the programmer. He will never
see bit 1 set in the I/0 interrupt code.

A Direct Memory Access (DMA) error will cause a normal I/0 interrupt, except

the only bits set in the old I/0 PSW interrupt code will be bits 3 or 4
indicating DMA error 1 or 2 (see Figure 2-6).

2-23

T I.0 | EX- DMA N CPU DEVICE FUNCT

INT ERROR| U | USE | ADDRESS CODE
BIT 0 T2 3 4 5 & 7 8 11 12 15
TOTSE
BITS USE
0 LOGIC 0 - I/0 SERVICE
LOGIC 1 - TSE INTERRUPT NORMAL CONVENTION
i LOGIC 1 - BUFFERED INPUT
LOGIC 2 - BUFFERED OUTPUT
2 LOGIC 1 - EXTERNAL INTERRUPT USE ONLY FOR
LOGIC 0 — BUFFERED 1/0 BIT 0 = 0
3 DMA ERROR NO. 1
4 DMA ERROR NO. 2
5 UNUSED
6-7 CPU USE
8-11 TAG (DEVICE ADDRESS) OR INTERRUPT CODE
12-15 DEVICE FUNCTION CODE (MUST NOT BE ZERO)

NOTE: The device or tester is responsible for generating the code word
in the format shown above, but inverted bit-by-bit (at the cable).

Figure 2.3-3. 1I/0 Channel Code Word

2-24

-

2.3.6.3 TSE I/0 Devices

The TSE has a Typewriter and Paper Tape Readery; which are both direct I/0. All
commands are sent to the TSE eduipment and all data received by using the SIO
instruction. The command word (see Figure 2.3-4 for TSE commands) is placed at
the effective address (EA); the output data word is placed in the register
designated by R1l; and the data word read will be in the register designated by R3
‘after instruction completion. To write data to the typewriter:

'l." Send a command to put the typewriter i the output mode.

2. Send each character (byte) to the typewriter by placing it right
- justified in Rl and sending a write: typewriter command.

. 3.0 Check the condition code after each SIO instruction to ensure the z/o
’ interface was mot busy and .the instruction was completed successfully.

4, The Typewriter will give a typer cycle complete interrupt (see Table2.3-4)
© after each character is complete and it is ready to receive another command.

NOTE:

It .is possible to preclude the typer cycle complete interrupt by
immediately generating another Direct Out command to send the next
character to the typewriter. The SI0 instructions may be strung
. together in this manner and all I/0 interrupts will be locked out as
"'. the typewriter will have control of the I/0 channel for the whole
" period. HNote that this type of coperation will prevent the Clock
and the Timer from being updated while the channel is tied up.

The typewriter input cycle is exactly the same as the output cycle
except the typewriter must be placed in the input mode and each
character of input is the register designated by R3 at the completion
of each STI0 imstruction. To read from the paper tape:

1. Send a Start Tape command.

2. When a tape character has been read and is ready to be transmitted
to the CPU a Tape Data Ready I/O-TSE interrupt will be generated.

3. Read each character by sending a read tape command. Each character
will be right justified in the register designated by R3 after the
STI0 instruction.

4. When the last desired character is read in, a stop tape command
is sent to the tape reader.

NOTE :

It is possible to preclude the Tape Data Ready Interrupt by immediately
generating another Direct in command to fetch the next character from
the tape. The SI0 instructions may be strung together in this manner
and T/0 interrupts will be locked out as the Tape Reader will have
control of the I/0 channel for the whole period. Note that this type
of operation will prevent the Timer and Clock from being updated while
the channel is tied up.

2-25

0 7 8 15

Write Direct: 1 1 1 1 1 1 1 1} Command Code
Read Direct: 6 o o0 0 0 ¢ ¢ 0} Command Code
3 9 10 11 15
Command Code: 0 Unit Addr Function Code
Command Code

Typewriter Output Mode 1111 1111 0110 0001

Typewriter Input Mode) 1111 1111 0110 0010

Read Typewriter 0000 0000 0110 0011

Write Typewriter 1111 1111 0110 0100

Start Tape 1111 1111 0100 0001

Stop Tape Advance 1111 1111 0100 0010

Read Tape 0000 0000 0100 0011

Read 16 right-most bits of panel ! 0000 0000 0000 0100

address register

Read 8 left-most bits of panel 0000 0000 0000 0101
address register

Read 16 left-most bits of panel 0000 0000 0000 0111
data register

Read 16 right-most bits of panel 0000 0000 0000 0110
data register

Display Registers 1111 11311 0000 1000

Figure 2.3-4, TSE Commands Words

2-26

Table 2.3-4. Tester Interrupts

INTERRUPT CODE CAUSE
Enter Soft Step 1000 0000 0000 0001 Depression of STOP switch
Read SPM 1609 0000 0000 0010 Depression of READ SPM switch
Write SPM 1000 0000 0000 0011 Depression of Write SPM switch
Read Main Memory 1000 0000 0000 Q100 Depression of READ Memory switch
Write Main Memory 1000 0000 €000 0101 Depression of WRITE Memory switch
Exit Soft Stop 1000 0000 0000 0110 Depression of START switch
External Interrupt 1000 0000 0000 0111 Depression of external interrupt
switch
Tape Load 1000 0000 0000 1000 Depressioﬁ of IPL Program
Load switch
PSW Restart 1000 0000 0000 1001 Depression of PSW restart
switch
Attention *# 1000 1000 0110 1011 Depression of attention key
on typewriter
Clear Memory 1000 0000 0000 1010 Depression of clear memory
switch
Tape Data Ready = 1000 0000 0100 1011 Reading a character on
paper tape
Typer Cycle Complete * { 2000 0000 0110 1011 Completion of typing an input

or output character on the
typewriter.

*These interrupts are visible to the SUMC-IIB program.

The other interrupts in this

table are intercepted and acted upon by the microprogram.

2-27

Direct I/0 provides a means for the programmer to send a command. or data word
to an I/0 device or request a data word from a device. Each Direct I/0
instruction sends a 16-bit command word out on the System I/O chanmnel and may
send or request a data word to/from the addressed I/0 device. Figure 2.3-5
shows the format of the command word. The channel is attached and relinguished
for each Direet I/0 Instruction. ’

0 4 5 6 7 8 15

1-1 1 111 COMMAND DIRECT OUTPUT

0-0 o 0 0 COMMAND DIRECT INPUT

0-0 0 1] 1 y, Q—— X RESET INTERFACE (Halt I/0)
0-0 1 1 0 X === X TEST INTERFACE

Figure 2.3-5. Direct I/0 Command Word and
CPU to 1/0 Command Word

The start I/0 Imstruction (SI0) is used to generate all Direct I/0 commands.

If the I/0 Interface is busy, the condition code is set to I without performing
the I/0 operation. A condition code of 0 indicates successful completion of
the SI0 Imnstruciton.

The Direct I/0 command word is also used for CPU to I/0 commands. Figure 2.3-5
shows those commands. Reset Interface immediately halts any I/0 operation and
clears the I/0 channel by sending the Service Acknowledge signal and holding

it on for 10 microseconds minimum.

Test Interface tests for channel busy and sets the condition code (1 if busy,
0 if not busy).

2-28

Electromechanical devices such as typewriters, perforated tape readers,
and punches will have a special operation under Direct I/0. Direct
Out (DO) will be as follows:

The HTC I/0 places the command word and data word on the
line normally.

The addressed device takes the command and data word and starts
to perform the indicated operation (type a character, etc.).

The D0 sequence is terminated’ and the channel freed up. (ALL
standard so far),.

Programmer option: Normally during system operation the program
weuld perform useful work while the device is executing the com~
mand.

When the device has completed its task and is ready for the next task
{such as tvpe another character), it will generate a standard I1/0
interrupt to indicate device ready.

If the program had more tasks another DO would be generated and the sequence
repeated.

2.3.7 Soft-Stop

The SUMC-ITB ncrmally operates in the wait and running states, handling interrupts,
executing instructions, etc.j or it can operate in Yscft-stop" mode. In soft-stop,
instructions are not executed and interrupts are ignored. SUMC-IIB just waits

for requests from the test support equipment (TSE). When the system reset button
or the stop buttom is pressed, SUMC-IIB is put into the soft-stop mode.

In soft-stop:
a) TSE requests are enabled.
b) The real time clock is incremented, but the interval timer is mot decrementec

¢} All interrupts are ignored except parity, whiech causes the microprogram to
hang up.

d) Buffered I/0 requests are ignored.

2.4 MICROPROGRAM CONTROL WORD

The microprogram control word for the SUMC-IIB is comprised of five major fields
and many sub-fields as shown in Figure 2.4-1. A brief explanation of the control
word follows.

2-29

Scratch Pad Memory-Control, Bite 1-10 (81.-810)

Scratch pad memory control controls the SPM address to be read or written
(81-86), the source of the address (57-59) (sources are IR BITS 8-11, 12-15,
16-19, and MROM BITS S1-6) and whether a read or read/write cycle (S10) is to

be taken.

ALU Control, Bits 11-22 (A1-Al12)

. v . ~
Arithmetic Logic Unit (ALU) input and function contrel are specified by
these bits. These bits control the source of the two ALU input multiplexers
(A and B) and the function performed by the ALU. Bits 11-14 (Al-A4) control
the "A" multiplexer (MXA) source which can be one or more of the following:

SCRATCH PAD MEMORY (SPM)

PRODUCT REMATNDER REGISTER (PRR)
INSTRUCTION REGISTER BIT 20-31 (IR) 20-31
MEMORY ADDRESS REGISTER (MAR)

ZERD

Bits 15-17 (A5-A7) control the "B" multiplexer (MXB) source which can
be one or more of the following:

STORAGE DATA REGISTER (SDR)
SPM
MATN READ ONLY MEMORY (MROM)

ZERO

Bits 18-20 (AB-A10) control the ALU function which can be any one of
the following:

LOGICAL AND
SUBTRACT (B-A)

SUBTRACT (A~B)

MULTIPLY, DIVIDE, SQUARE ROOT (MDS) *
LOGICAL OR

LOGLCAL EXCLUSIVE OR

* Square root is not supported in the SUMC-IIB microprogram.

2-30

SPM

st s6 S7 9 $10
SPM ADDRESS CONTROL R/W
ALU
Al A3 A4 A5 A7 A8 AT A1l A12
MXA MXA MXB CONTROL FC cL
REGISTER
R1 R4 RE RG RO R10 R11 R13 R14 Ri5 R16
MAM MAR PRM PRR | mam/mar PC/IR
CONTROL
c1 c4 ' cs c6® c17
SEQ-IC CONT
CONTROL INVERT TRANSFER
MISCELLANEOUS
M1 M4 M5 ME M7 M10
MEMORY o MISCELLANEOUS
CONTROL CONTROL

*.06 — NOT USED FOR 16 BIT HTC

ORIG
OF POOR QU

NAL PAGE 15

L

Figure 2.4-1. Microprogram Control Word Format

2-31

Bit 21 (All) is the force carry bit. Bit 22 (Al12}) is used to save
the carry out (overflow) from one arithmetic operation to the next.

Register Control, Bits 23-38 (R1-R16)

3its 23-26 (R1-R4) are used to control shifting in and the source of
the Memory Address Multiplexer (MAM), Both left and right shifts of i, 2 and
4 are available. Possible sources are MAR, 0, ALY and IO/TSE buss.

Bit 27 (R5) is used to control the setting of the Memory Address
Register from the MAM,

Bits 28-31 (R6-R9) are used to control shifting in and the source of the
Product Remainder Multiplexer (PRM). Both left and right shifts of 1, 2 and
4 are available. Possible sources are the ALU, IR and the MQR.

Bit 32 (R10) is used to control the setting of the Product Remainder
Register (PRR) from the PRM,

ﬁits 33-35 (RL1-R13) are used to control shifting in and the source of
the Multiplier/Quotient Multiplexer (MQM).

If anything is gated into the MQM, the Multiplexer/Quotient Register (MQR)
is set to the resulting cutput of rhe MQM,

Bits 36-38 (R14-R16) are decoded eight ways to provide control of the
program counter, instruction register and reading the hardware timer. Section
4.9 lists the complete usage of the field.

Sequence Control, Bits 39-55 (C1-C17)

Bits 39-42 (C1-C4) control the action of the Sequencer and Iteration
Multiplexers. This conditionally controls the sequence of microinstructions
depending on a variety of test conditions that may be specified.

Bit 43 (C5) reverses the branch (sequence) conditions specified by
Bits Cl-C4,

Bits 44~55 (C6~C17) contain the transfer address of the next micro-—
instruction for conditionms when the next instruction to be executed is not
sequential (may be conditional). This field may also be used to emit con-
stants, etc., when a transfer address is not required,

Miscellaneous Control, Bits 56-65 {(M1-M10)

Bits 56-59 (M1l-M4) are used to control the action of the Main Storage
Device (MEMORY) including such functions as Read, Write, Fullword, Halfword,
etc,

2-32

Bits 60-61 (M5-M6) are us
2 command has been generated,
received from the I/0 channel

ed to control I/0. M5 is turned on to signify
M6 is turned on to acknowledge a signal being

Bits 62-65 (M7-

c

othetr fields to vary specific instructions, Examples are:

Load Timer
Load IC

Load PSW, etc.

. _A full definition is giyen in subsecti~> .7
2.5 SUMC-ITB SUPPORT SOFTWARE

&

2,5.,1 SUMC-IIB Assembler

The assembler language used for the SUMC-IIB is a symbolic programming

language similar to the IBM 360 assembler language. It enables the programmer
to use System/360 machine functions, as if he were coding in System/360 machine
language. The assembler program translates symbolic instructions into
machine-language instructions, assigns storage locations, and performs auxiliary
functions necessary to produce an executable machine-language program,

" COMPATTBILITY

The SUMC-IIB Assembler uses the $/360 instruction set with the following
exceptions:

1. The SUMC-IIB I/0 is different from $/360 and only uses the SIO
instruction. The SI0 instruction format has been changed from SI to
an RS format., The S§/360 TIO, HIO, and TCH instructions are not
supported by the SUMC-IIB assembler.

2, A new instruction, Timer Read and Set (TMRS) has been added for
the SUMC-IIB. The TMRS instruction has an RS format and the storage
operand must be aligned on a halfword boundary.

3. The SUMC-IIB assembler does not support the long or extended precision
8/360 Floating Point Feature instructions, the Decimal Feature instructions,
the Direct Control Feature instructions, the Channel Command Word {CCW)
assembler instruction, or the Insert Storage Key (ISK) instruction.

4. All extended instructions, i.e., instructions in the short precision
option, the double precision fixed-point arithmetic option, and the
single precision floating point are supported by the assembler. However,
only the floating point are in the S$/360 instruction set.

2-33

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a collection of mnemonic symbols which
represent: ’

1. System/360 machine-language operation codes.

2. Operations (auxiliary functiomns) to be performed by the assembler
program.

The language is augmented by other symbols, supplied by the programmer, and used
to represent storage addresses or data., Symbols are easier to remember and code

than their machine~language equivalents. Use of symb
. ymbols greatl :
effort and error, greatly reduces programming

Machine Operation Codes

The assembler language provides mnemonic machine-instruction operation codes
for all machine instructions implemented for the SUMC-IIB with extended mnemonic

.operation codes for the conditional branch instructiom.

Assembler Operation Codes

The assembler language also contains mnemonic assembler-instruction operation
codes, used to spécify auxiliary functions to be performed by the assembler.

These are instructions to the assembler program itself and, with a few exceptions,
result in the generation 6f no machine-language code by the assembler program.

Macre Instructions

The assembler language enables the programmer to define and use macro instructions.
Macro instructions are represented by an operation code which stands for a sequence
of machine and/or assembler instructions. Macro instructions used in preparing an
assembler language scurce program fall into two categories: system macro
instructions, provided by IBM, which relate the object proegram to components of the
operating system; and macro imstructions created by the programmer specifically for
use in the program at hand, or for incorporation in a library, available for future
use,

THE ASSEMBLER PROGRAM

The assembler program, also referred to as the "assembler," processes the source
statements written in the assembler language.

Basic Functions

Processing involves the translation of source statements into machine language,
the assignment of storage locations to instructions and other elements of the
program, and the performance of the auxiliary assembler functions designated by
the programmer. The output of the assembler program is the object program, a
machine~language translation of the source program. The assembler furnishes a
. printed listing of the source statements and cbject program statements and

2-34

additional information useful to the programmer in analyzing his program, such
as error indications. The object program is in the format required by the linkage
editor component of the SUMC-IIB support software.

The amount of main storage allocated to the assembler for use during processing
determines the maximum number of certaia language elements that may be present
in the source program,

PROGRAMMER AIDS

The assembler provides auxiliary functions that assist the programmer in checking
and documenting programs, in controlling address assignment, in segmenting a
program, in data and symbol definition, in generating macro instructions, and

in controlling the assembler itself. Mnemonic operation codes for these functions
arc provided in the language.

Variety in Data Representation: Decimal, binary, hexadecimal, or character
representation of machine-language binary values may be employed by the programmer
in writing source statements. The programmer selects the representation best
suited to his purpose. ;

Base Register Address Calculation: As discussed in "IBM System/360: Principles
of Operation,"” the System/360 addressing scheme requires the designation of a
base register (containing a base address value) and a displacement value in
specifying a storage location. The assembler assumes the clerical burden of
calculating storage addresses in these terms for the symbolic addresses used by
the programmer, The programmer retains control of base register usage and the
values entered therein.

Relocatability: The object programs produced by the assembler are in a format
enabling relocation from the originally assigned storage area to any other
suitable area.

Sectioning and Linking: The assembler language and program provide facilities

for partitioning an assembly into one or more parts called control sections. Control
sections may be added or deleted when loading the object program. Because control
sections do not have to be loaded contiguously in storage, a sectioned program

may be loaded and executed even though a continuous block of storage large enough

to accommodate the entire program may not be available.

The assembler allows symbols to be defined in one assembly and referred to in
another, thus effecting a link between separately assembled programs. This
permits reference to data and transfer of control between programs.

Program Listings: A listing of the source program statements and the resulting
cbject program statements may be produced by the assembler for each source program
it assembles. The programmer can partly control the form and content of the
listing.

Error Indications: As a source program is assembled, it is analyzed for actunal
or potential errors in the use of the assembler language. Detected errors are
indicated in the program listing.)

2-35

2.5.2 Linkage Editor

The Linkage Editor Program prepares the output 6f the SUMC-IIB assembler for

execution, The Linkage Editor prepares a load module that is to be brought into
main storage for execution.

The linkage editor used for the SUMC~IIB is similar to the 0S/360 Linkage Editor.
The Linkage Editor provides several processing facilities such as creating overlay
programs, and aiding program modification., (The Linkage Editor is also used to

build and edit system libraries.)

2.5.3 Tape Formattor

The SUMC-IIB Tape Formattor Program modifies and reformats the load module
generated by the Linkage Editor such that it will be executable on the SUMC-IIB.

The program will provide a data set which will contain the executable program
in a paper tape format that is acceptable to the Initial Program Load Sequence.

Data in the same format can be stored on magnetic tape for use with the Field Tester
which uses magnetic tape for an IPL device.

2.5.4 SUMC~IIB Simulator

The SUMC~IIB simulator is known as the Emulator System (ES) and is designed to
provide dynamic program analysis, modification and control of programs written
for execution on the SUMC-IIB computer. The ES functionally duplicates the
operation of the Central Processor Unit (CPU) of the computer at the programmable
register level and provides for associated I/0 device handling as well as
extensive user control over the simulation. The ES aids in furnishing a near
real-life situation and greatly assists the problem programmers in debugging the
operational program(s) written for the SUMC-IIB machine.

The ES opeiates under 08/360 and 0S/370 and is designed as a series of subroutines
available to a User written Fortran Control Program (UCP). These subroutines

form the interface between the simulated program and the user to enable the

user to analyze, modify and control the simulation run. The ES simulates the
SUMC-TIB computer at the programmable register level rather than the micro logic
level. The simulated program execution js directed by the UCP while information
from the simulated memory map is comveyed back to the user. Thus the flexibility

of static or closed loop dynamic simulation is available.
Complete instruction-by-instruction or branch instruction only lists can be

printed from the simulator run. Execution times and storage mapping are also
available from the simulator.

2-36

2.6 SUMC-IIB TEST EQUIPMENT

2.6.1 General Features

Two basic test systems have been developed for the SUMC-IIB processor. These
are a factory test system used to support the design, manufacturing and product
improvement effort related to the SUMC-IIB processor and a field test system
designed to support the installed unit in the field.

The factory test system consists of a basic CPU tester, a read only memory (ROM)
simulator, a paper tape reader, an IBM Selectric I/O typewriter, a 32-bit display

interface and an auxiliary MROM/IROM display panel. The factory tester is shown
in Figure 2.6-1.

The field test system consists of a basic CPU tester and a 16-bit display interface.
Optionally available with this system is an IBM S/360 compatible Magnetic Tape

Unit, a 100 to 165 character per second line printer and a CPU power and cooling
unit. The field tester is shown in Figure 2.6-2.

2.6.2 Factory Test Systenm

The factory test system provides the total capability required for detailed check-
out of the SUMC-IIB processor and its associated memories. Key elements of this
system were given in Paragraph 2.6.1 and are discussed in the following paragraphs.

Basic Tester

The basic tester provides the capability to interface with and to exercise the
SUMC-TIIB processor. The capability is provided to manually control the processor
through such features as Single Instruction operation, Single Micro-instruction
operation, Stop on Compare and Display on Compare. In addition, capability is
provided for manually loading or reading both the CPU Main Store and the Scratch
Pad memory. Also provided are a Main Memory clear feature and several operator
controlled interrupts such as PSW Restart and an External I/O interrupt.

32-Bit Display Interface

The factory tester display interface is designed to provide a display capability
for a full 32-bit SUMC machine with an I/O interface that is compatible with that
of SUMC-IIB. The displays provided are the following:

® Main Memory Storage Address Register (SAR)

® Main Memory Storage Data Register (SDR)

§ Memory Address Register (MAR)

2-37

Figure 2.6-1. Factory Tester

| CENTROMCS

6E~2

Figure 2.6-2. Field Tester : N -
I

@ Product Remainder Register (PRR)

® Multiplier Quotient Register (MQR)

¥ instruction Register (IR)

@ Iteration Counter (IC)

® Sequence Counter

® Program Counter (PC)

@ Scratch Pad Memory (SPM) Address Register

® Scratch Pad Memory (SPM) Data Register

@ Program Status Word

These displays operate in conjunction with the basic tester logic to
provide complete visibility into processor operation.

Read Only Memory Simulator

The factory tester contains a 4K by 99-bit read/write memmory for use

as a ROM simulator. This memory is segmented into two parts; one for
simulating the Micro-instruction ROM and one for simulating the Instruction
Address ROM. These memories may be collectively or individually substituted
for the actual internal processor ROM. This feature provides a means for
debug of the processor microcode before this code is committed to PROM

Burn-In.

Auxiliary MROM/IROM Display Panel

This feature provides for the bit for bit display of the contents of the
Micro-instruction and Instruction Address Read Only Memories. This feature
is only operable when the processor is in the "fan-out" test fixture.

Paper Tape Reader

The factory tester contains a paper tape reader which is used to load both
the CPU Main Memory and the MROM/IROM simulator memories. Load of CPU
Main Memory is under program control while load of the simulator memories
is under tester control. The tape unit provided in this system is a
Remex Model No. RRS1150 BC1/651/G-B/U000. This unit can load data at

a maximum rate of 150 characters per second .

IBM Selectric I/0 Typewriter

The factory test system provides an IBM Model 1052 I/O Typewritér for
use as a real-time program interface device and as an I/0 printer. This
device will operate at a maximum rate of 15 characters per second.

2.6.3 Field Test System

The Fieid Test System provides the capabili
ty to functi
to operate the S C—IIB processor in gha field whare Aegg?%ig E::E s

2-40

capability is not required. This system consists of the basic tester,
an optional Magnetic Tape Unit, an optional line printer and an optional
power and cooling stand for the processor. The complete system with all
of the options would provide a basic test and debug capability equal to
that of the factory test system, but without the ROM simulator or the
32-bit display capability. TFor this system the displays are consistent
with the SUMC-TIB's internal 16-bit structure. Key features of the field
test system are given in the following paragraphs.

Basic Tester

The basic test fumctions provided in this system are identical to those
provided by the factory test system and described in Paragraph 2.6.2.

Display Interface

The display interface for the field test system provides for a 16-bit
SUMC-ITB processor interface. The displays provided are identical to

those listed in Paragraph 2,6.2..

Magnetic Tape Unit

This optional feature of the field test system provides a 9-track IBM;S/360
compatible NRZI magnetic tape capability. This option may be selected
with one or two tape decks as desired or required by the application.

Line Printer

This optional feature consists of a Centronics Model 306C line printer
adapted to the SUMC~IIB interface. This feature provides a high speed
(up to 165 characters per second) hard copy output capability.

Power and Cooling Stand

This optional feature provides a central source for PrOoCessor power
and cooling when such is not readily available at the test site.

241 ;..

SECTION 3

MECHANICAL DESIGN

3.1 GENERAL PACKAGING

The computer unit is formed by assembling modular sub-assemblies called
slices, with the appropriate end plates, then bolting this assembly to a
heat exchange interface (cold plate or air plenum). The basiec SUMC-IIB

is formed from three slices: power supply, CPU/IO, and MROM/Memory.
Figure 3.1-1 shows the basic unit and Figure 3.1-2 typifies the individual
slices. Memory expansion can be provided by attaching additional memory
slices to the end of this basic structure. Each add on slice is contained
in a volume of .047 ft.”, increases the width of the upnit by 1.4 in. and
has a weight of 3.44 1b,

The SUMC-IIB with 16K-bytes of memory is contained in a volume of 0.17 ft.3m
has case dimensions of 10.74 in. long, 5.48 in. high, and 5.32 in. wide,
and has a weight of 13.87 1b.

All slices are pluggable by way of flexible interconnection harnesses,
Multilayer interconnection boards (MIBs) are used to support and electrically
interconnect components., Each MIB is constructed from several layers of etched
copper~clad epoxy-laminates which are bonded together under heat and pressure,
using polymer impregnated epoxy glass. Layer-to~layer interconnection is made
through copper plated holes.

Thermal control of the unit is maintained by attaching each slide directly

to an auxillary heat exchanger or cold plate. The internal heat is primarily
transferred through the shortest possible conduction paths to maintain
desirable junction temperatures. The SUMC-IIB has been analyzed to determine
.the typical and worst case component temperatures., The results indicate that
the computer can meet its thermal design goals and that none of the hybrid
modules will be thermally overstressed,

The HTC is designed to meet the requirements of MIL-E-5400, Class 2X equip~
ment, The following typical environmental design boundaries are defined:

© Temperature

Continuous Operation®* -54°C to +71°%
Intermittent Operation%* -54°C to +95°%
Non-Operating -62°C to +95°¢C

*The upper limits apply only whenothe computer is attached to an appropriate
heat exchanger maintained at +55°C maximum.

31

*I-T*c 2In3Ta

1o3ndwo) FII-DRAS

7

]

P,

.

.

d 10
JVNIDINO

ALITVOD 900

ST @9vd

MAIN FRAME

)

Py

t-j'.—'dk——.-c

Figure 3.1-2,

Memory Slice

MIB

SUPPORT CIRCUITRY HYBRID MODULE

FLEX/MIB

FLEX CABLE
{SLICE TO SLICE)

FLEX CABLE
{BOARD TO BOARD)

BASIC MEMORY MODULE

o Vibration
10G sine level from 20 to 2000 Hz.
12.6G rms random from 20 to 2000 Hz,
Qualification of the SUMC-IIB 1s planned but has not been conducted. The
following sections describe In more detail the construction and characteristics
of the modular subassemblies utilized, the interconnection technique, and

the hybrid modules.

3.2 POWER SUPPLY SLICE

The structure is an aluminum frame machined to an I beam cross section from
rectangular plate stock. This produces a center web section for mounting a

MIB, high power dissipating components, and an I/0 connector. Appropriate cutouts
are provided in the web for components mounted on one side to intercomnect with
the MIB bonded te the other side.

The MIB is fabricated with a layer of flexible printed wiring cable laminated
internally during the layer bonding process. During profiling this flexible
material is exposed by a milling operation., With the flexible portion located

in the middlie of the MIB, the component mounting plane can be folded 180° to allow
half of the plane to be bonded to the center web and the other half to be attached
to the frame with fasteners. Various components are mounted to either side of

the MIB such as transformers, hybrid packages, and discrete devices. The
components dissipating the most power are mounted directly to the frame using

a thermal mating compound interface for optimum heat conduction. The slice is
shown in Figure 3.2-1.

Prime power inmput is made through a Bendix JT series subminiature_cylindrical
filter connector which is intermateable with MIL-~-C-38999 and MIL-C-27599
connectors. The contact pins have printed circuit tails to interface directly
with the MIB eliminating the need for an internal harness.

Regulated power is distributed internally through a 120 pin Burndy type ML
connector plug. This connector is mechanically attached to a 'U' shaped suppert
bracket with threaded fasteners. The contact extensions are soldered to pads
provided on the MIB surface and potted for additional reinforcement. This
connector arrangement is located on the end of a flexible printed wiring cable
laminated as an integral part of the MIB.

3.3 CPU/IO AND MEMORY SLICES

The mechanical components include a flexible/multilayer interconnection board
(flex/MIB) and a main frame similar to those described in the Power Supply

section. Minor differences occur in the flex/MIB support due to the low profile
and decreased weight of the components. A 40 mil copper heat frame is bonded

to the flex/MIB between the board surface and the bottom surface of the components.
When the populated flex/MIB is folded and attached, the copper heat frame makes

3-4

g1 @9Vd TVNIDIIO

:
.

gure 3.2-1. Power Supply Slice

directly contact with the center web of the main frame. With the use of
thermal mating compound to fill the void between the components and the
copper frame, the conductive heat transfer path from chip junction to main
frame has been optimized.

The I/0 and TSE signals are brought in/out through two 128 pin Bendix JT series
cylindrical connectors which are intermateable with MIL-C-38999/27599 connectors.
These connectors are supported on an auxiliary frame bonded to the flex/MIB

and the contacts have round pins in place of the usual solder cup to interface
directly with the CPU flex/MIB plated through holes. Figures 3.3-1 and 2 show
these CPU/IO and MROM/MEMORY slices.

3.4 INTERCONNECTION TECHNIQUES

Slice-to-slice interconnections are made through several 120 pin Burndy type
ML connector receptacles. For example, the internal pluggable interface
described in the power regulator section mates with a receptacle on the CPU/IO
MIB. Captivated hardware on the plug support frame threads onto the MIB
mounting fasteners to provide the rechanical force required to engage and
disengage the connectors. Similar pluggable interfaces distribute the power
and signals throughout the unit.

3.5 HYBRID LOGIC MODULES

LSI components are packaged in hybrid modules of two different configurations.
The basic module has a ceramic substrate with single layer thick film platinum-
gold (PE-Au) conductor patterns providing the interconnection media between

two chips and the module I/0 leads. The chips are electrically and mechanically
attached via an array of solder bumps on the active surface of the chip. Chip
joining is accomplished by a solder reflow process to a matching pattern on

the ceramic substrate. One hundred copper alloy I/0 leads are lap soldered

and epoxy supported to a surface pattern symmetrically spaced around the perimeter
of the substrate. This module is shown in Figure 3.5-1. A ceramic cap is
epoxy-bonded to the substrate, providing a hermetically sealed enclosure for

the chip. The hermeticity provided has been demonstrated to be compatible with
the MIL-STD-883, methods, test procedures, and test criteria.

The second module is of similar construction except the conductor patterns are
applied in multiple layers providing the interconnections between four or five
chips and 140 module I/O leads. The perimeter of the substrate has increased
to provide the necessary area for the additional lap solder joints. An example
of this module is shown in Figure 3.5-2. Unlike the two-chip module, this

type of module has chip-to-chip interconnections to make functional units

such as data flow modules, I/0 interface modules, etc. Five different '"personalities"

of this substrate type are used in the SUMC-IIB.

Figure 3.3-1. CPU/IO Slice

Figure 3.3-2. MROM/Memory Slice

e o AV

Logic Module

Figure 3.5-1. Universal 100-Lead

W!fﬁi?ff!IIi!13?iii‘:ii!!il!!i:

R R EEREERERET

SR EERRELEERETRREE

Figure 3.5-2. 148-Lead Logic
Module

These hybrid modules become over sized flat packs attached to the solder tabs

on the surface of the flex/MIB. The thermal support frame has suitable openings
etched to allow the module I/0 leads to be formed and hand soldered to the MIB
surface. After testing and cleaning all solder joints, the exposed MIB surfaces
are conformally coated to provide environmental protection. The coating
material can be removed using a soldering iron for pilece part replacement.

3.6 BASIC MEMORY MODULES (BMMs)

Each memory module contains four high-performance memory chips and two sense-amp
chips attached to a metallized alumina ceramic substrate with chromium-copper-
chromium (Cr-Cu-Cr) conductor patterns providing the interconnections between the
chip solder pads and the module I/O pins. The conductor patterns are tinned and
protected with a polyurethane coating. Thirty-six copper 1/0 pins are swaged in
place and soldered. A rectangular ceramic cap is attached, with an epoxy preform,
to provide a hermetically sealed enclosure for the chip circuitry. This module,
without its cap, is shown in Figure 3.6-1.

a
(3]
e
o
i
2 iy
: $
; I3
. Sa
b
L
s

Figure 3.6-1.

3.7 POWER REGULATOR HYBRID MODULES

Three of the six hybrid modules used in the SUMC-IIB power regulator contain
power semiconductors. There are four silicon NPN power transistors in one
hybrid (Figure 3.7-1) and four silicon NPN power rectifiers in the second
hybrid. A third diode module is populated with 14, one amp diode chips.
Basically these modules have ceramic substrates with thick film conductor
patterns providing the interconnections between the semiconductor chips and
the I/0 leads. The chips are attached to the substrate by an eutectic
bonding procedure. Connections between the semiconductor and the conductor
patterns are made using redundant wire bonds. Copper-alloy I/0 leads are
soldered and epoxy supported to an array of surface patterns located on the
long sides of the substrate. A ceramic cap is sealed with an epoxy preform
providing a hermetically sealed enclosure.

The three remaining modules are control hybrids namely, the Series Dissipative
Regulator (SDR), the Pulse Width Modulator (PWM), and the Internal Voltage (IV).
Figure 3.7-2 is typical of the control modules. The SDR module contains two
series dissipative regulators capable of delivering up to seven amperes of
current at output voltages of from 5 to 15 volts. Positive or negative outputs
may be obtained from either regulator. Fold back current limiting is provided
for both outputs. Fault detectors monitor both outputs and issue a warning
signal if an undervoltage condition is sensed. The PWM module contains the
control, timing and drive required to implement a voltage regulator using a
pulse width modulated technique. The IV module performs the turn-on and turn-
off sequencing of the HTC power supply and provides +12, -6, and -3.15 volt
regulated outputs,

These modules contain several chip semiconductors and integrated circuits
which are bonded and interconnected similar to the power hybrids. In addition,
required resistors are screened and fired using thick film pastes with
appropriate resistive values. The regulated voltages and other values are

set using active trimming procedures. The I/0 pins are lap soldered and epoxy
supported to surface patterns on two sides of the substrate. Epoxy preforms
are used to bond a ceramic cap for hermeticity.

3-13

Figure 3.7-1. Power Transistor
Hybrid

ol o o

“ﬁdﬁu ﬂJgLuJuJJ.,a Jm .m .JJ

e 8 g o ',»‘;-'-‘40
ikl

i I,I (T J.mﬂﬂlmﬁ.r

Vivi <t
: 3

. 29
»
‘F
e
»

b
.b
»

s
L

g'[—g

Figure 3.7-2. Internal Voltage
Module

SECTION 4

FUNCTIONAL IMPLEMENTATION

The SUMC-ITB is implemented in three flexible levels of modularity: (1) functional
slices (CPU/IO, Power Supply, MROM/Memory, and Memory only); (2) functional modules
such as data flow, storage interface logic, storage array, and 1/0 interface; and
(3) functional chips such as MUX/ALU, register, MUX/register, and timer. Each
modular element is implemented to enhance general utility, wherever practical.

This section of the report describes the functional implementation of the computer
except for the power supply which is described in Section 5. Appendix A of the
report describes the modules and chips used in the logic of the SUMC-IIB.

Table 4.0-1 lists the 13 logic module types used in the computer and identifies

the complement of chips in each module type. There ave 15 different chip types
with a total of 71 chips used in the SUMC-ITB. Chip usage has a high of 25 for

the MUX REG thip which 1s used in three different types of module. See Table 4.0-2.
The REG chip is used nine times in four different module types. A total of 23
logic modules are used in the SUMC-TIB.

The organization of the SUMC-IIB can be seen in the block diagram of Figure 4.0-1,
Reference to this diagram will add perspective to the detailed discussions
constituting the remainder of this section.

The SUMC-IIB uses several technologies for the logic, memories, and registers.
The principal technologies will be summarized here.

L5I Logic

Most of the logic in the computer is implemented in TTL, master slice chips,
packaged in multichip modules as described below:

¢ Mature TTIL Technology

® 100 Internal Gates

© 34 Qff-Chip Driver Gates

¢ Low Delay/Power Product

e 45 Signal I/0s

o Standard 5400 TTL Compatibility
e Master Slice Customizing

e Flip~Chip Attachment _

[Ane

Table 4.0-1,

Module and Chip Usage on SUMC-IIB

Module/Chip ALD Quantity Part Number
Sh. Module Req'd Chip/Module

1. Data Flow (148) 4 7929343~1
(a}) Mux ALU AR 2 7928744
(b} Mux Reg. BC 3 7928751

2., SCU (148) 1 7930435
{(a) Seq. Mux DD 3 7928747
(b) Seq. Control EF 1 7929711

3. TSE/SDR (148) 3 7929333~1
(a) Mux Reg. BC 4 7928751

4, SIL (148) 1 7930436~1-.
(a) Mux Control 1 HH 1 7929702
(b) Mux Control 2 RS 1 7930274
(c) Mem Timing KS 1 7930272 .
(d) Mem Control Js 1 7930270 .
(e) Reg. FG i 7928752

5, 1I/0 Interface (148) 1 7929342-1
(a) Seq. Mux DD 3 7928747
(b) AOTC GK 2 7929708

6. Register (100) | 3 7929369-1
(a) Reg e 2 7928752

7. FCU/EALU (100) 1 _ 7929368-1
(a) Mux ALU AB 1 7928744
(b) FeU B ¢ o 1 7928746

8. BSPM Address Mux/Timing (100) 1 7929367-1:
(a) Timing QQ 1 7929707
(b) Mux Reg BC 1 7928751

Table 4.0"'1-

Module and Chip Usage on SUMC-IIB (Continued)

Module/Chip Quantity Part Number
Module Req'd Chip/Module
9. Arch (100) 1 7929336~-1
(a) Arch LL 1 7928753
(b) Reg FG 1 7928752
10. Timer (100) 2 7929335-1
T 2 7929710
11. I/0 (100) 1 7929339-1
(a) I/0 - PP 1 7929706
(b) Register FG 1 7928752
12. AQTC (100) 3 7929341-1
(a) AOTC GK 2 7929708
13. Mem Support (100) 1 7930437
(a) Men Timing KS — 1 7930272 _
23

NOTE:

The number in parentheses in the left column identifies, whether the module uses
a 100 lead universal .2-chip carrier or a 148 lead multi-layer substrate,

15
5
8

—

Chip Types (71 Total)

148 Pin Module Types (10 Total)
100 Pin Module Types (13 Total)

Table 4.0-2 LSI Chip Usage

Chip Name No. of Times Used No. of Module Types Used In
MUX REG 25 3
MUX ALU 9 2
REG 9 4
AOTC 8 2
SEQ MUX 6 2
TIMER 4 1
MEMORY TIMING 2 2
SEQ CTRL ' 1 1
MUX CTRL 1 1 1
MEM CTRL 1 1
FCU 1 1
TIMING 1 1
ARCH 1 1
I/0 (CIRL) 1 1

7n

¥ (18 Y16 -
[_."‘STFIUCTION REG {32} [4—
—-7 8
:I ; v EET I et
N EALU . ¥
CTL, | PARTIAL Fou . .
i T 1ROM
T (12}
cTL ¥
|
T, | »} IC MUX/REG
—1R (815) CTL et [spm ACK
I 20K
4 SEQUENCE
1071 VYsY ¥ yysy ¥ "}1 Yv ¥ | f64-18) OFL i 'cON= L !
Oy [iven (@ [eam | [mom 1} [mam e Ry TIMER _} TROLLER
& PRMO .
8 CTL CTL cIL PRMO)
g 'R | v ¥ v ¥ semappR | Tt [i
L erm || [wmorn | [mas_] Mux Lol SEQ MROM
I T ? 5 oL MUX/REG 1024x64 BITS
' MOR T) ¥
MROM crL
ouT MROM REG [~
¥ MUX |<— M5+8
CTRL ,I PC [EA BRANCH .
N - 'MROM OUT {64°BITS)
>, ’ MACHINE CONTROL (CT
CTRL 0170 MUX REG SAR e % ¢ u
[LR 1R MROM.
T [amux] our
° > 19 surrer
TAGS (12} spmn—ip | MUX g et 136} Y8
INPUT/QUTRT ({10 BUS OUT (16} -4—oi STATE
L 1O BUS I {16} et 1/0/TSE MAIN STORE
MUX (16}
INTERFAGE| . — 1k x36 81T WORDS
) { TAGS (5), tfuuuipn] 4..{;/0 coNrRoLl<—l_t!r,l-j v 1 TR
-;(Elﬁrpsh:':;gﬁ.r 'TES'T BUS OUT [16) et . A olo [“Som | STATE |{36F
i . TEST BUS IN (18, commmusemagee e
OMA ¥ TIMING &) €71,
ISDR ; CONTROL

IrTVAD 9004 40
[@OVd TVNIOTIQ

Figure 4.0-1,

SUMC TIB Block Diagram

SPM Registers

The general registers, floating point registers, and some work space for micro-
program use is Implemented in a register chip as follows:

e Organized 64 words by 9 bits
© 60 ns access

e TFull 5400 TTIL Eompatibility

o 750 mw/chip

e 28 pin DIP

& Inverts data

PROMs (MROM & TROM)

The ROMs used to hold the microprogram (MROM) and for OP code decode (IROM)

are of the field programmable type commonly called PROMs. The circuit used for
this function is organized 512 words by 8 bits and comes in a 24 pin DIP. Several
manufacturers offer pin compatible parts for this PROM including MMI, Fairchild,
and Harris. The part has a typical access time under 100ns and power dissipation
about 600mw. All interfaces are fully 5400 TTL compatible.

Memories

The principle main store technology for the SUMC-IIB is the basic memory module
(BMM) developed for the SUMC program and described in detail in IBM Report Number
74-585-006 dated 30 June 1974. This memory module contains four array chips and
two driver/sense amplifier chips in a configuration which can be used either
4K-words by two bits or 8K-words by ome bit. The module has an access time less
than 200 ns, a cycle time less than 250ns and an operating power around 500 mw
depending upon usage.

Core memories and Read Only Monolithic memories are also available for applications

which would prefer them although the specific SUMC-IIB configuration has not been
fully developed to date.

4-6

4.1 DATA FLOW

The SUMC-IIB data flow consists of four Data Flow modules. Each module contains
a MUX/ALU and three 4-bits, MUX/REG's.

The right input to the ALU is driven by Mux A choosing the contents of the PRR,
SPM, MAR or IR bits 20-31. The left input to the ALU is driver by Mux B, selecting
the contents of the SDR, MROM bits C7 thru Cl7, SPM or SPM shifted right arithmetic
one (called 1/2 SPM).

The standard arithmetiec and logic operations are performed under direct microprogram
control in a single pass through the ALU, Special operation such as multiply and
divide are performed under control of the Functional Control Unit (FCU) as explained
in paragraph 4.5.1. These special operations require several passes through the

ALU for completion and are data sensitive.

The working MUX/REG's are identified below:

A, PRM - Product Remainder Multiplexer
PRR - Product Remainder Register

B, MAM - Memory Address Multiplexer
MAR - Memory Address Register

C. MQM — Multiples Quotient Multiplexers
MQR - Multiplies Quotient Register

Each register input is supplied by the associated three input multiplexer, with

one of the three inputs providing shift capability. These registers are invisible

to the computer programmer but are used by the microprogram for instruction execution,
address manipulation, and "housekeeping" functions. The contents of the registers
are not carried over from one instruction to the next.

4.1.1 ATU Mux

Four properly interconnected Data Path modules provide the SUMC-IIB with a 16-bit

ALU which has A and B inputs provided from two independent multiplexers. Multiplexer
A is a four-input mux with control derived from MROM bits Al, A2 and A3. This three-
bit subfield selects the data to be applied to ALU input A as shown in Table 4.1-1.

4=1

Table 4.1-1 ALU MuxzA

MROM
Al A2 A3 ALU MUXA Operation
0 0 0 PRR + SPM (Logical OR)
0 -1 i PRR
0 o 1 PRR + MAR (Logical OR)
0 1 0 PRR + IR20-31 (Logical OR)
1 0 0 SPM
1 1 1 Zero
1 0 i MAR
1 1 0 IR20-31

Multiplexer B is a three input mux with one input having the capability to be
shifted right one and the MSB replaced with an input from the module (SPMSG)*,

A three-bit MROM mux control subfield (A5, A6 and A7) combined with the MROM ALU
control subfield (A8, A9, and Al0Q) selects the ALU input B.

When the ALU operation is not multiply, divide, or square root (MDS) ALT input
is selected as shown in Table 4.1-2,

*The SPMSG input is wired to SPMO (Sign bit).

4-8

Table 4,1-2 ALU MUX B

MROM
A5 Abk AT ALT MUXB Operation
0 1 1 SDR + MROM C7-C17 (Logical OR)
0 0 0 SDR
0 1 0 SDR + SPM (Logical OR)
0 0 1 SDR + 1/2 SPM** (Logical OR)
1 ! 1 MROM C7-C17
1 0 0 Zero
1 0 SPM
1 0 1 1/2 SPM **

* The physical control signals SEL3N and SEL4N which are generated in the FCU
actually control operation of the ALU. Paragraph 4,5.1.8 explains the SEL
signals.

*¥*1/2 SPM is the current output -of the SPM shifted right arithmetdic 1.

Mux B controls for MDS Functions are defined in the following paragraph.
4.1.2 ALU

The ALU performs the arithmetic operations identified in Table 4.1+3.

4-9

Table 4.1-3 ALU Functions

-MROM
A8 A9 Al0 ALU Function
0 0 0 Logical AND
0 0 1 Subtract (B-A) *
0 1 0 Subtract (A-B) *
0 1 1 Special MDS
1 0 0 Logical OR
1 . 0 1 Logical Exclusive OR
1 1 0 Add
1 1 1 MDS

The SUMC-IIB contains special logic to simplify execution of the multiply,

divide, and square root operations (MDS). When A8-AlO0 are 111 or 011, MROM A6

and A7 become extensions of the function code. Control of the ALU operation,

as well as selection of data for the B side of the ALU, is exercised by the

special MDS logic. MROMAS and A7 specify multiply, divide, or square root operation
operations as shown in the Table 4.1-4.

4-10

Table 4, 1.4 MDS Control

MROM
Ab A7 MDS Functions
0 0 Square Root Sign
0 1 Multiply
1 0 Divide/Square Root
1 1 Divide Sign

To utilize (u program) this special logic the multiply, divide and square

root algorithms must be understood. In the SUMC-ITB the special MDS operation
(011) operates idemtically with the MDS (111), The MDS controls described
below are for multiply and divide operations of 16-bit numbers because the

data path can handle that size. The microprogramming of the computer must
perform double precision operations to handle the 32-bit parameters required by
the S/360 architecture.

ATU Control for MDS

1) Square Root Sign (SWRT SIGN)
Since square root is not implemented in the SUMC-IIB this operation
will not be described.

2) Multiply Algorithm
For each step of the algorithm three bits of the multiplier
(MQR 14, 15 and 16) are tested and the multiplicand (held in
SPM) is scaled and added to (or subtracted from) a running
sum of partial products held in the PRR. Each step results
generation of two bits (starting with the least significant)
of the product. These two bits are shifted into the MAR as
they are generated. To scale each step of the algorithm all
three registers (PRR, MAR, MQR) are right shifted two bits at
each pass except the last; one the last the MAR is shifted only
one bit to adjust the location of the binary point., WNote that
the product generated is 31-bit two's complement number with the
sign and most significant half in the PRR and a significant bit
of data in the sign location of the MAR which holds the low
order half of the number. The LSB of the MAR is always zero,

To implement multiply and divide, the EALU (ALU 16 and 17) are
used as least significant extensions of the ALU. Control of
multiply is shown in the Table 4.1-5. For pProper operation MROMA4
must be a 1 to select MAR O and 1 for A inputs to ALU 16 and 17.
Also MROMAS must be a 1 to prevent selection of memory data for
the ALU. See Table 4.1-6 for a Multiply example. ’

4-11

I

A EPLT "D, L™,

WMILTIPLY ALZOTIthin

"ALU B ALUB ALUA
MQR INPUT INPUT ALU CARRY* | ALU FUNCT INPUT
14 15 16 0-15 16 17 18 18 0,-17 16 17
0 0 0 0's 0 0 MAR 0 ADD MAR MAR
2 0 1
0 0 1 1/2 SPMpk# SPM 15 0 ADD
0 1 0 1/2 SPMs%= SPM 15 0 ADD
0 1 1 SPM 0 0 ADD
1 0 0 SPM 0 1 SUB
1 0 1 1/2 SPM** SPM 158 1 SUB
1 1 0 1/2 SPM:e SPM 15 3 1 SUB
v N ¥
1 1 1 O's 0 1 SUB

o

Heok

1)

2)

Forces a carry into ALU 17 to get 2's complement for subtract.

C16 is the normal carry from bit 16 to bit 15.
1/2 SPM is the SPM with a one-bit right arithmetic shift.
Notes:

MROMA Codes FOR MULTIPLY ALGORITHM

1 2 4 5 6 7 8 9 10 11 12
1 0 1 0 01 1 1 X 0
PRR MAR : .
SDR| MPY MDS CL

Other controls for

two bits. All three registers are loaded,

unitl IC = 0(7 passes for a 16-bit by 16

programming the mulitiply algorithm:

PRM, MAM, and MQM all shift right
NO SPM write occurs. 'The microprogram step’ is repédted
-bit multiply),

ET-%

Tabla &,.1-A Multinly Alpovithm Fxamnle

0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 15
0 ¢ 0 1 0 o0 o0 o 0 o 0 0 0 0 o] 0 Multiplicand (1/8) SpM
4] 2] 1 0 0 0 90 0 0 1] 0 0 0 4] 0 0 4] Multiplier {1/4) MQR
0 0 0 0 0 1 0 0 ¢ 0 [o Q ¢ [0 0 Preduct (1/32) PRR/MAR
14 15 16
- 12 13 it 1 1. Zero PRR, MAR, MQR and MQR16
.10 11 12 2 2. Multiplier MOR
8 9 10 3 3, Multiplicand SpPM
6 7 3§ Fa 4. Test MQR 14-15-16 and execute per Table 4 .1-5
4 5 6 [5. Shift PRR, MAR and MQR right 2
2 3 4 4 6. Repeat above 6 more times (Total of 7)
S 1 2 7 7. For 8th pass no shift
8
First Pass 0 6 0o o o o o o o 0 0 0 0 0 0 0 0 Note: If Multiplier or Multiplicand is negative number,
Shift Right 2 " they must be 2's eomplimented befo re multiply is started.
n
L1}
n
Sixth Pass "
Shift
Seventh
Pass {160) ¢ 0 o o o ¢ ¢ 0 0 0 0 0 0 0 ¢ o0 0
PRA-SPAM 1 1 1 0 0 0 Q 0 0 0 1) 1] 0 0 1] 9 0 0
2's Comp 1 1 1 1 o 0 0 0 v} 0 0 0 0 0 [0 o 0 0o
Shift
Right 2 1 1 1 1 1 I 0 90 0 6" ¢ 0 0 1] 0 o] o o 0
Eighth
Pass {001)
PRR + 1 1 1 1 1 1 1 0 0 0 0 0 4] 0 0 0 0 ¢ 0 0
1/2 sSPM 0 0 4] 4] 1 4] 0 0 0 0 *] 0 0 0 0 0 0 0 o©
0 0 0 0 o 1 0 i) 0 0 o 0 o] 0 0 1] 0 0 0=1/32 Product

ALU 18 bits wide

B ovd Ty NIDIHO

EIIIVOD 4004 d0

3) Divide/SQRT Algorithm
Since the SUMC-IIB does not implement square root (SQRT), only the
divide feature will be described. Each step.in the divide process
forms one bit of the quotient. The divide function divides a 32-bit
dividend held in the PRR/MAR registers by a 16-bit divisor held in
SPM. The 16-bit quotient is formed in the MQR. Dividend, divisor
and quotient are two's complement numbers. MAR 0 contains a significant
bit of the divident. The micro-program for divide sign must be executed
once before the normal divide microprogram step. The divide step is
executed 15 times to form the quotient. TFor divide (all MDS operations)
the ALU is 18 bits wide. The output of ALU 16 and 17 enters the MAM and
PRM as shown in MAM and PRM operations.

The divide algorithm is a non-restoring algorithm. Each time the
algorithm step is executed the following operations take place:

a) The sign of the PRR is compared with the stored sign of the SPM
(Divisor). (The SPM sign is stored at CKZ time when the MOR load
is enabled.

b) If the signs are the same, the divisor (held in SPM) is shifted right
one bit and substracted from the PRR/MAR. Shifting of the SPM is
under control MROM All (shift if ROM A9 = 0). If the signs are
different the divisor is shifted right one and added to the PRR/MAR.

c) A bit (called Q) is generated which is a 1 if the ALU sign is the

same as the divisor sign. The ALU sign is a result of the subtraction/

addition of step b).

d) The PRM and MAM are shifted left one-bit and. loaded into the PRR and
- MAR., At the same time the MQR is shifted left one-bit and the
) function Q is entered into its least significant bit. (Step (d) is
controlled by normal use of the ROM R field).

After 15 iterations of the divide step the quotient is in the MQR.

If the quotient is negative a ome (1) must be added to the quotient by
a subsequent microprogram step. Also if a remainder is to be formed
the divisor must be added to or subtracted from the PRR depending on
the sign of the divisor. (Add if positive.)

4) Divide sign
The divide sign microprogram step must be executed one time before
executing the diw¥ide algorithm step just described. The operation
of the special MDS logic for divide sign is identical to divide
algorithm except that the function Q is 1 when the stored sign of the
SPM {(divisor) is different from the sign of the PRR (divident). It
should be noted that the divisor must be read from SPM sign stored.
During each step of the divide or divide sign the SPM sign is re-stored.
See Table 4.1.7 for a typical Divide example utilizing a 16-bit dividend
anf an 8-bit divisor. This example requires 7 iterations of the Divide
Algorithm and one of the Divide Sign,

4-14

MOR
Qs =0
Ql=1
Q2=1
Q3 =1
Q4 =0

PRR/MAR Shift Left 1

PRR/MAR Shift Left 1
1/2 SPM

PRR/MAR Shift Left 1
1/2 spM

PRR/MAR

1/2 sSPM

PRR/MAR Shift Left, 1
1/2 sPM

1/2 spMm

9/16

Divide Example
10/16

000000060

Table 4, 1-7.

0, 1001000
0.101000

Dividend (PRR & MAR)

Divisor (SPM)

Q5 =0

PRR/MAR Shift Left 1

1/2 SPM

06 =1
N7 =1

PRR/MAR Shift Left 1

PRR/MAR Shift Left 1
EPM

PRR/MAR Shift Left 1
1/2 SPM.

1/2 spM

Remainder

- OO O

4-15

Force Carrz

The MROMALL bit has two uses. It is normally used to force a carry into ALU
bit position 15 (to give a 2's complement or increment a register). This
function is performed if MROMA9. MROMA10 = 0 (all functions other than M.D.S.).
For MDS functions, ROMAll is used in determining the source of data for the

B input to the ALU as shown in Table 4.1-8.

Table 4,1-8 ALU B Source for MDS Functions MROM A Field

8§ 9 10 6 7 11 ALU B SOURCE

1 1 1 0 1 x FUNCT OF MQR 14-16

1 1 1 1 0 0]y 1/2 SPM*

1 1 1 1 0 1]} SPM sk

s ALUB 16 = SPM 15, ALUB i7=0

i ALUB 16 = ALUB 17 =0

Overflow Latch

The MROMA12 bit can be used to generate Cl6 (the carry into ALU15) under the
following conditions. For ALU operations other than MDS, Cl6 is a 1 if MROMAI2 = 1
and there was a carry on the previous microinstruction cycle, A function

OFL is generated in the ALU which is a 1 if the carry into and out of the sign-bit
are not the same.

4-16

For MDS operations, the MROMA12 bit must be zero to allow proper generation of
Cl6 through normal carry propagation from the lower order bits of the ALU.

Multiplexer (EALU 16-17) (Ref. Section 4.4)

This one-bit subfield (ROMA4) selects the A input to ALU bits 16 and 17, by
controlling the mux input gating as follows:

Table 4.1-9 EATU A Inputs

MROM ALT Input
A4 Bit 16 Bit 17
0 PRRO PRR1
1 MARO MARI

Since the PRM and MAM operations use the ALU 16 and 17 outputs, this bit is used in

conjunction with the MROM R-bits as well as with MROM A-bits, The B input to ALU
16-17 is as follows:

For operations other than MDS it is controlledby ROMA 6 and 7.

MROM A EALU B IN ALU B IN

6% 7% 16 17 ‘0 - 15

0 1 SPM15 0 1/2 SPM

¢] 0 0 0 All zeros

1 0 0 0 SPM

1 1 0 0 MROM (C7-C17)

4-17

® For MDS operations the B input to ALU 16-17 is somewhat complex,

- For multiply they are as previously described in the Multiply
Algorithm Table 4.1-5,

For the divide/square root algorithm, divide sign, and square
root sign, the inputs are controlled by MROMA1l as shown:

FALU B Tnput
MROMA11 Bit 16 Bit 17
0 SPM 15 F25A%%

1 " pasaws 0

Vhere F25A = 1 when the sign of the PRR equals the stored scratch
pad memory sign for square root sign and 0 otherwise.

* Physical control signals are SEL3N and SEL4N from the FCU Chip.

**F25A Input to EALU is wired to logic 0 for SUMC-IIB.

4.1.,3 Mux/Reg

The four intercomnected data flow modules provide the SUMC-IIB with three 16-bit
working registers (PRR, MAR and MQR). Each register input is supplied by a 3
input multiplexer, with one of these inputs providing the shift operations
required for the SUMC-IIB.

The following MROM register subfields are used to control loading data into the

three registers. The MROM bit identified by Table 4.1-10 and the trailing edge
of CKZ causes the respective register to be loaded,

Table 4.1-10. Register Load Control

REG CONTROL BIT OR FIELD

PRR MROMRIO =]

MAR MROMRS = 1

MQR MROMRI1 , MROMRI2 . MROMR13

The MROM subfield identified below for each mux is used to control the select

inputs and shifting inputs to the three respective multiplexers (see Table 4.1-11,
4.1-12, and 4.1-13).

4-18

o)
;:Jg
§§?
S
[N
2
&

61-%

A = ALUO

TABLE 4.1-11 PRM Operation M = MAR
I=1IR
R = MQR
MROM BITS PRM OPERATICN
R6 R7 R8 RS9 0 1 2 3 4 5 b 7 8 9 10 11 12 13 14 15 OPERATION
0 0 0 0 0 0 0 0 0 (] 0 0 0 0 0 0 0 0 0 0 ¢ (Null)
o 1 0 0 A0 Al A2 A3 A4 A5 A6 A:'? A8 A9 . AlD A1l AlZ Al3 Al4 Al5 ALU
1 0 1 0 Al A2 A3 A4 A5 A6 AT A8 A9 AL0 A1l Al2 Al3 Al4 AIS AlLb Left 1 Logical Long
1 1 1 0 A0 A2 A3 A4 AB A6 AT AB A9 AL0 All Al2 Al3 Al4 Al5 Alb Left 1 Arithmetic Long
1 0 0 1 AZ A3 A4 A5 A6 AT A8 A9 ALD Al AlZ AI3 Ald Al5 Al6 Al7 Left 2 Logical Long
1 1 0 1 A4 A5 A6 AT A8 A9 A0 ALl Alz Al3 Al4 AIS Al6 Al7T M2 M3 Left 4 Logical Long
1 1 1 1 A0 A5 A6 AT A8 A% Al0 All AlZ Al3 Al4 AlI5 Alé Al7T M2 M3 Left 4 Arithmetic Long
1 0 1 1 0 A0 Al A2 A3 Ald A5 A6 AT A8 A9 A0 A1)l Al2 Al3 Ald Right 1 Logical
0 0 1 1 A0 A0 Al A2 A3 A4 A5 A6 AT AB A9 ALD All AlZ Al3 Al4 Right 1 Arithmetic
0 1 0 1 0 0 0 0 A0 Al A2 A3 A4 A5 A6 AT A8 A9 Al0 Al Right 4 Logical
0 0 ¢ i A0 AD AD A0 AD Al A2 A3 A4 A5 A6 AT A8 A9 Al0 All Right 4 Arithmetic
0 1 1 1 Al5 AD Al A2 A3 A4 AB A6 AT A8 A9 Al0 All Al2 Al3 Ald Right 1 Rotate
] 0 1 0 Al A2 A3 A4 AB AH AT AB A9 A0 All Al2 Al3 Al4 Al5 O Left 1 Logical
0 1 1 o AD A0 A0 Al A2 A3 44 A5 A6 AT A8 A% AlO0 All AlZ Al3 Right 2 Arithmetic
1 1 0 0 0 0 0 0 0 o 0 0 i8 19 I10 1Ii1 112 7113 Il4 115 Instruction Register
1 0 0 0 RO RL R2 R3 R4 RS R6 R7 R8 R9 RI10 R11 R!2 RI13 RI14 RI15 MOR

0z-%

Table 4, 1- 12 MAM Operation A= ALU
M = MAR
MROM BITS MAM QUIPUT

Rl RZ R3 R4 n 1 2 B 4 5 & 7 8 9 1 11 12 13 14 15 OPERATION
0 0 0 0] 0 0 0 0 0 i} 0 0 0 0 0 0 0 0 0 0 (Null)
0 1 o 0 Al6 Al7T M2 M3 M4 M5 M6 M7 M8 MY MI0 MI11 MI1Z MI13 Ml4 MI5 MAR
1 0 1 o Al7T M2 M3 M4 M5 M6 M7 M8 M9 MI0 MIl M1Z MI3 Ml4 MI5 O Left 1 Logical
11 1 0 Alg M2 M3 M4 M5 M6 M7 M8 M9 M0 MIl MIZ M3 Ml4 M15 0 Left 1 Arithmetic
1 0 0 1 M2 M3 M4 M5 M6 M7 M8 M9 MI0 MI1 MI12 MI3 Ml4 MI5 0O 0 Left 2 Logical
101 0 1 M4 M5 M6 M7 M8 M9 MI0 MLl M12 Mi13 Ml4 MI5 O o 0] Left 4 Logical
1 1 1 1 Al6 ME M6 M7 M8 M9 M0 MIl Ml2 MI3 Ml4 M15 0O 0] ¢ Left 4 Afithmetic
1 0 1 1 Al5 Al6 Al7T M2z M3 Ml4 ME M6 M7 MBE M9 MIO MI1 Mlz M3 Mi4 Right 1 Double
0 0 1 1 0 Ald Al7 M2 M3 Me M5 M6 M7 MS A9 MO MLl MI2 M13 M4 Right 1 Logical
0 1 0 1 Al2 Al13 Al4 Al5 Al6 Al7T M2 M3 M4 MS M6 M7 M8 M9 M0 Mll Right 4 Double
0 0 0 1 0 0 0 o Alé AIT Mz M3 M4 o M6 M7 M8 M9 MIO MII Right 4 Logieal
0 1 1 1 ¢ Alé AlT M2 M3 M4 M5 M6 M7 M3 0M® M0 MI1 MIZ MI3 M4 Right 1 Logical
[V 1 0 Al7 M2 M3 M4 M5 M6 M7 MS M9 MIO M1l MI2 MI3 MI4 MI5 MQRO Left Rotate Double
e 1 1 0 Al4 Al5 Al6 Al7T M2 M3 M4 M5 M6 MI M8 M9 MI0 Mil Ml2 MI13 Right 2 Double
1 0 U 0 A0 A AZ A3 A4 A5 A6 AT AS Av Al0 ALl AlZ Al3 Al4 AlS ALU
i1] 0 TO Tl T2 T3 T4 T5 T6 T7 P8 T¢ T10 TI1 TIl2 T13 Ti4 TI15 IO/TSE/P. CIR®
*If M5 + M6 = 1, The IO/TSE is selected.

e~

A= ALU
R = MOQR
Q = Quotient

Table 4.1-13 MQM Cperation

MROM BITS*) MOM OUTPUT
R11 R12 RI]3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OPERATION .

0 Q Q ‘]] 0 0 0 0 0] 0 0] 0 0 0 o 0 0 (Null)

0 1 0 RO R1 R2 R3 R4 RS R& R7 R8 R9 R10 R1l11 R12 R13 RI4 RIS MQR

1 1] 1 Rl R2 R3 R4 RS R6 R7 RE R9 . R10 R1l1 R12 RI3 RI14 RIS Q Left 1 Quotient
1] 1 1 0 Q RO R1 RZ R3 R4 R5 Ré R7 BB R9 R10 RI11 R1l2 RI3 Right 2 Logical
1 0 1] AD Al A2 A3 Ad A5 Ab AT AB A9 Al0 All Al2 413 Al4 AlS ALU

1 1 0 PO P1 Pz P3 P4 P5 P& ™ 8 ™9 "0 Pll1 Tl12 P13 Pl4 PI5 PSW

#* MOQR Load Enable Controlled By; RI11 « R12 « RI13

003 J0
IVNIPIYQ)

ALITVNYD
ST @ovg

4.2 REGISTERS °

In addition to registers which are integrated into nultiplexers (such as the
MUX REG just deseribed in the data flow discussion), there are several.
registers used in a relatively stand-alone manner. The Instruction Register
(IR) and control word holding register ame examples which use the two-chip
register module. Another example is the 64 word =x 16 bit register stack
called the scratch pad memory (SPM) which holds the $/360 general and floating-
point registers as well as a number of registers used by the microprogram.

The Register Module contains two 16-bit register chips, which provide eight
individual 4-bit registers. Each register is controlled by its gate and clock
inputs. Register loading occurs at the trailing edge (fall) of the clock when
the gate input line is at a logic one state.

4.2.1 MROM Register

The MROM Reglster utilizes two Reglster modules (four chips) to configure a
64-bit register. Loading of this register is controlled by clock CKX. The
output of this register specifies which control lines are to be active during
each micro cycle. Each bit specifies the status of a control line during each
micro cycle, ~“The 64 bits are divided into the five major subfields identified
in Figure 4.2-] and operate either individually or in small groups to control
some part of the machine,

4.2.2 Instruction Register

;

The Instruction Register (IR) for the SUMC-TIB uses a single Register module
to provide two 16-bit registers independently controlled by micro code (MROM).
Register loading . is-controlled by CKX and the following MROM control bits.

LOAD ACTTION | MROM 14-16
IR (Left) 01 1
IR (Right) 1 00

4.2.3 Register Chip

The register chip is divided into four 4-bit: registers each with its sSeparate
gate, clock and reset inputs,

The chip provides a NOR output whose four inputs are tied internally to register

outputs from two of the 4-bit registers. Figure 4.,2-2 shows the NOR configuration
and general chip functioning.

4-22

SPM

S1 s6 S7 59 $10
SPM ADDRESS CONTROL R/W
ALU
Al A3 A4 A5 A7 A8 A0 . AN A12
MXA MXA MXB CONTROL FC cL
REGISTER
R1 R4 R5 R6 R R0 RI11 R13 R14 R15 R16
MAM MAR PRM PRR | MQM/MQR PC/IR
CONTROL .
c1 c4a o5 ce* C17
SEQ-IC CONT —
CONTROL | INVERT TRANSFER
MISCELLANEOUS
M1 M4 MS M6 M7 M10
MEMORY 1O MISCELLANEQUS
CONTROL CONTROL

% .06 — NOT USED FOR 16 BIT HIC

Figure 4.2-¥ Microprogram Control Word Format

4-23

¥

NOR

Input A e 4-Bit
B swss . S =¥ - 3-8
—— e A
Ck A
Gate A
Reset A
g
Input B 4-Bit
Reg.
Ck B B

- >
Gate B N

Reset B

-
B 1 Output
g A
Input
C
-
= L Output
={ B
Input
D

Figure 4.2-2 Register Chip

Vyuy

= Qutput
Ck C
Gate C -1 4-Bit
Reset C Reg.
= C
CkD
Gate D
Reset D | 4-Bit
Reg.
—r——
D

o
1
Foren

VYV vy

QOutput C

Qutput D

4.2.4 Scratch Pad Memory (SPM)

The SPM is a 64 word by 16 bit register stack. Addressing of the.S?M is partially
controlled by a SPM address multiplexer located im the SPM ADDR/Timing Module

(see subsection 4.6), MROM bits S1 and S2 directly control the two address.MSBs
but the four address LSBs are controlled by the MUX. These two source combine

to provide a 6-bit SPM address. The SPM is configured so t@at it reads the
location specified by the address except when a write pulse is generated.
Generation of the SPM write pulse occurs in the timing chip and causes the PRM
data on the SPM input lines to be stored in the location specified by the a%d?ess.
Writing into SPM occurs at CKX time. The write pulse is generaﬁed.on the.timlng
chip when MROM $10 equals a logical 1, AND CKS occurs, AND the "write valid .
signal equals a logic 1. The write valid signal is generated by the Arch Module's
exception monitoring logic as described in 4.7.3. Figure 4.2-3 shows the
functional implementation of gates in the timing chip which generate the SPM
write pulse.

MROM S10
CKZ) -~ SPM

L Write
Write Valid

NOTE: Gate contained on MISC Module Timing Chip

Figure 4.2-3. SPM Write Pulse Generation

Output data from the SPM is the complement of data written into the SPM, therefore
the output of the SPM is inverted before it is made available to the data path.
The Write Valid signal is generated in teh ARCH module. This signal goes to ZERO
when the ARCH functions detect errors which might result in bad data being loaded
into the SPM. The same signal is used to enable memotry write operations.

425

4.3 TIMING

Timing within the SUMC-IIB consists of a set of three clocks (CKX, CKY, and

CKZ) and the load pulse for the sequence register. Other timing signals

required in the CPU are derived from the clocks and the appropriate functional
signals by the "User". A basic CPU cycle or microeycle is from the fall of

CKZ to the fall of the next CKZ. At this time the basic data path registers

are loaded with the results from the current computer cycle and the MROM register
is loaded with microprogram control word which will control the CPU for the

next machine cycle. Figure 4.3-1 shows the basic CPU timing.

The computercycle time is dependent upon the operation being performed as
delineated below.

. Logical and add/subtract operations take four clock cycles of
110 ns each (440 ns).

] MDS functions take five clocks or 550 ns.

. Operations overlapped by memory cycles will be stretched until
completion of the memory cycle.

@ Microprogram sequence decisions based on the ALU output (called
late decisions) stretch the normal cycle by three clock or 330 ns.

@ A computer modification has been defined but not implemented which will
allow the logic operations to be performed in three clocks or 330 mns.

The timing chip provides a load pulse for the SCU register contained in the SCU
module (see paragraph 4.4.1). This load pulse is generated once each micro eycle
when a MROM prefetch is valid (Reference Table 4.4-1). The load pulse is generated
twice each micro cycle in which an MROM conditional branch does not specify
"plus=one" for the sequencer. Generation of this second load pulse is controlled
by an early/late decision signal. With this signal in the reset state, an early
decision load pulse is generated and with it in the set state a late decision
load pulse is generated. The signal reset is controlled by the trailing edge of
CKZ thus causing an early decision load pulse to occur every micro cycle except
when the MROM Cl -- C5 indicates the sequencer is to hold, then the early load
pulse is inhibited. The signal set condition is controlled by the trailing edge
of the early load pulse and the prefetch decision controclled by MROM Cl - C5.
{Again refer to Table 4.4-1) The late decision load pulse is generated only for
conditional branches and when the data field requires the ALU output.

A state called LIMBO provides time for late sequencer decisions (References

Figure 4.3-1.) LIMBO also provides a means for a memory cycle to stop the CPU
until the cycle has been completed. This is controlled by a memory busy signal
from main store. With the signal present the CPU timing will stop in LIMBO until
the signal is removed and then continue. An external input also provides the test
support equipment a means of stopping the CPU timing.

4-26

LZ-%

TIVE
- MOR CYCLE JILLUS) 65] DELAYED DEGISION [ILLU2)

Figure 4.3-1. CPU Timing -

FIGURE A% CrUTIMING

sz osc wr [~ [R Ny U U e Y S S O e Y e B e D e M M1
Poa——y
ok m H I |
| t 1F NOT LIMDO
eex I = ™7
1 |
cxy ! [| I | t [l
! !
f | !
YPOMVALID [S I v : Y
| 1 |
A VAUD 1 L) i Y i Y \
| 1
IROM VALID | 1w ¥ i Y l
l .- ! |
seu | cracea |Wex|Vaun Y on memn f | _cmni dmux [vaucy :
T
I
| |]
50U R£0, LD 1 i 1 i |] I|
! ! IFgea st
| I | NOT AIGHY |
FRECETEH (MADI i i + i
eanLY SV S RO 10 P U JU 71 !
e i T L -y R ,
I a3 ’ UX AL SEQ+188F0]
e | WK ALY | fclu IV i | eTAL 1 I cis Y :
| | |
—— I . Y ¥ wm "y e ¥ ¥ Y | | ,'
T T
H ' ! 1
— t Y.y "y Jom ¥ ¥ i y! ! -
I | bl ! i l [
DR X I 1 184 | 48 Vl : : | Y 1
! | ! ! i yl'
0.4, RL0.LD. | | | 1 i !
| " . ADDR| Semet
- | 2| B | ! iy Rl ,'
e |
! L .
) ! '
i
& -
gp P 1 -
g HOTS, DP,w DAYA PATH (FAR, #1I ETEH LIMBO = 330 vy
FOR ALLDELAYED
. DECISIONS.
8
=

ALITVAD %004 40

4.3.1 SEQUENCER SUPPORT (PRM = 0)

The timing chip generates a PRM = 0 signal which indicates all PRM bits are
logic zeros. This is accomplished by taking the PRM = 0 signal from each Data
Path module and combining these into one signal. Each PRM = 0 signal from a
Data Path module indicates that a group of four PRM bits equal zeroc. The timing
chip provides for 8 inputs (to support a 32-bit data flow). Unused inputs for
the SUMC-IIB are tied to a logic onme.

4-28

4.4 CONTROL

The basic control of the SUMC-IIB is provided by a microprogram residing in
a réad-only memory called MROM. Sequencing logic selects the next micro-
program contrcl word (micro-code) based upon the current control word and
current machine conditicons. Four possibilities exist:

[Select the next sequential control store word

) Hold the present control word and use it again in the next
computer cycle. (This would be accompanied by decrementing
the iteration counter and breaking the "hold loop" when the

counter goes to zero.)

] Transfer to the location identified by the transfer field of
the current control word

. Or under certain error conditions the sequencer is forced to
MROM word zero.

44,1 SEQUENCE CONTROL UNIT

The Sequence Control Unit (5CU) governs the flow of micro instruction execution
in the machine. The SCU is composed of the following parts:

. MROM Address Register - Holds the address of the next micro
instruction.

. Sequence Multiplexer - Selects the input to the MROM Address

Register.

e Sequence Control Logic - Provides multiplexer comtrol of the
micro instruction address register and iteration counter
multiplexer.

® Iteration Counter - Six bit counter for micro loops.

o Iteration Counter Multiplexer - Loads iteration counter from

MROM bits Cl2 thru Cl7, PRM bits 10 thru 15, IR bits 10 thru 15,
or the present contents of counter incremented hy -1 or -4.

4.4.1.1 Sequence Control

The control chip decodes five MROM bits in order to determine what action is
required by the sequencer and iteration multiplexers. Table 4.4~1 specifies
the MROM control bits and their associated actions. The fifth control bit
MROM C5 is used to reverse the branching conditions for sequencer only i.e. for
1010 and C5=0 the microprogram will branch if the PRM output is zero and step
through if not equal to zero (as shown in the table).. If, however, C5=l.the
transfer will be taken for PRM outputs not equal to zero and the microprogram
will increment if PRM = 0., Control action is controlled by the five MROM bits
and not by clock signals.

4-29

oe-%

Table 4.4-1.

Sequencer and Iteration Counter Actions

MROM TEST SEQUENCER ITERATION/ PREFETCH
C1-Cs CONDITION ACTION COUNTER COMMENTS
00000 INT = 0 +1 HOLD P !NT is an "OR’ of the following conditions: {1} 1/O interrupt, {2} Fixed
INT = 1 MT = SEQ HOLD YES " Point Overflow Error Latch, (3) Interval Timer Interrupt Latch.
00001 INT = 0 MT - SEQ HOLD
INT = 1 +1 HOLD
00010 - MT — SEQ HOLD -, YES - Unconditional Branch
00011 - +1 HOLD Unconditional +1
00100 REQ = 0 +1 HOLD REQ = I/O data request line
REQ = 1 MT — SEQ " HOLD YES
o011 REQ = 0 MT — SEQ HOLD
REQ = 1 +1 HOLD
00110 IC = 4 HOLD -4
1IC < 4 MT — SEQ HOLD
00111 IC =2 4 MT = SEQ -4) YES
IC < 4 HOLD HOLD This condition is not useful.
01000 Ic> 4 T+ -4
IC< 4 MT — SEQ HOLD
01001 IC> 4 MT —~ SEQ -4 YES
Ic < 4 A HOLD
. 01010 - +1 IR = IC YES IR = Instruction Register bits 10-15,
01011 - +1 IR = IC
01100 IC= 0 HOLD -1
iC =0 MT = SEQ HOLD YES
o1101 iC# 0 MT - SEQ -1
IC =0 HOLD HOLD This condition is not useful.

Te=%

01110

o111

10000

10001

10010
10011

10100

10101

10110
10111
11000
11001

11010
1101

Table 4.4-1.,

Sequencer

IC#F 0

IcC =20

IC= 0
iIcC=10
JINT.IRR=1**
115.1RR=1
{OTHERWISE
“INT.IRR=1** |
11B.1RR=1
OTHERWISE
PRM Bit0 =0
PRM Bit 0 =1
PRM BItO =20
PRM Bit 0 =1
PRM = O
PRM ¥+ 0
PRM = O
PRM = 0

and Iteration Counter Actions {Cont'd)

|
l.

+1

MT — SEQ
MT = SEQ
+1

+1

MT ~» SEQ
IROM.—+ SEQ"
+1

MT — SEQ
IROM — SEQ*
PEM — SEQ
PRM — SEQ
MT — SEQ
+1

+1

MT -+ SEQ
+1

MT — SEQ
MT =» SEQ
i

+1

+1

+1

+1

a
HOLD ¢
-1

HOLD

HOLD
HOLD

HOLD
HOLD
HOLD

HOLD
HOLD

HoLD
HOLD
HOLD
HOLD

HOLD
HOLD

HOLD
HOLD

MT — iC
MT — 1C

PRM — IC
PRM — IC

YES

YES

NO

NO

NO

NO

NO

IROM bit 15 = 0 indicates RR mnstruction format. |ROM output must be
stable at the beginning of the cycle; i.e., Instructior Ragister Left must have
been set at least twe cycles earlier.

IROM output need not be stable at the beginming of the cycle; i.e., Instruc-
tion Register Left may have been loaded by the previous microword.

* Substitutes 1ROM bits 13-14 for MROM bits M1-M2 for memory control.
IROM bits 2-12 are gated into the sequene register.

*#INT.IRR=1 is domirant over | 15.IRR=1
PRM bits 4-15 are gated into the sequence register.

PRM positive.

PRM negative.”

PRM bits 0~15 all C.

MROM bits C12-C17 are gated into the iteration counter.

be accomphshed by the MROM miscellaneous field, M7-M10 = 0111.

YESYRM bits 10-15 are gated into the iteration counter. This function may also

z >

1100

11101

11110

11111

NOT HCINT
HCINT
NOT HCINT
HCINT

ALU Overflow = 0
ALU Overflow = 1
ALU Overflow = 0
ALU QOverflow = 1

Table 4.4~1. Sequencer and

Iteration Counter

MT — SEQ
+1
+1
MT — SEQ

+1
MT — SEQ
MT = SEQ
+1

i

Actions

s

HOLD\
HOLD
Houp | NO
HOLD

HOLD
HOLD
Holp | NO
HOLD

L
]

\

HCINT = hardware interval timer interrupt latch, I this latch s
set, the INT input to the sequencer is also activiated.

An ALU overflow 1s defined to have occurred if the carry-into-AlLU
bit O differs from the carry-out-of-ALU bit 0.

I = IROM Output

MT = Modified Transfer Field -
(C1-CY = 0000).

The field is modified ;for effective address (EA) branches
If an EA is not spucified the MT = the C7-C17 of the MROM.

The control chip determines when a prefetch can occur as specified by Table
4.4-1. When the MROM Cl thru C4 bits specify a condition in which a prefetch
can occur the appropriate action for the sequencer and iteration multiplexers

are taken and the SCU Register load pulse from the Timing chip loads the SCU
register. This then causes the MROM to fetch the word specified by SCU register
(MROM Address), thus making the MROM word available to the input of the MROM
register. This completes the prefetch of MROM thus making the new word available
for the next computer cycle. ¥or conditions which require a branch decision or
a wait for data (i.e., PRM), the sequencer action is plus one and the interation
counter action is "hold" anticipating the final condition. The final decision

is made at the end of the micro cycle but prior to the loading of any data path
registers. The time for this decision occurs by stopping the clock prior to CKZ.

4.4,1.2 Sequence and Iteration "Counters"

Two of the sequence Mux/Reg chips are used for sequencing. Each chip provides

a 6~bit path. The 12-bit output of the sequencer mux/reg is utilized to provide
MROM addressing capability of 4,096 words. Sequence register load is controlled
by a signal from the timing chip. This load signal is generated by logic which
determines when a MROM fetch is to occur.

The sequence register also provides a reset capability which is utilized to start
the computer at MROM Location Zero for power on reset, system reset from TSE,
and error latch reset.

One sequence Mux/Reg chip is used for the iteration counter (IC) providing a 6-bit
wide path. Like the sequence register the IC register load is controlled by a
signal from the MISC module.

The PRM inputs to the IC mux will be force selected under the conditions specified
in Table 4.4-2. These conditions override those specified in Table 4.4-1 for

IC actiomn.

Table 4.4-2, Forcing the Iteration Counter

MROM IC Inputs

M7 M8 M9 M10

0 1 1 1 PRM

4.4.2 READ ONLY MEMORY (ROM)

4s already indicated, machine operation is controlled by a microprogram held in
a ROM. The ROM is divided into two parts: Instruction Read Only Memory (IROM)
and Microprogram Read Only Memory (MROM). The IROM provides instruction decode
and consist of 256 16-bit ROM locations. The MROM consists of 1024 64-bit ROM

locations (Expandable to 2048), The MROM field is utilized for machine control.

4-33

4.4.2.1 TROM

The IROM 256 x 16-bit words are under control of eight address lines (IR-07)
from the instruction register. The TROM provides instruction decode, special
memory control and the instruction length code.

The following is a description of the 16-bit word.

1 12 112 113 114 115 T16
IL MROM ADDRESS MEMORY | MR | IL.
CONTROL

Figure 4.4-1, IROM Word Format
® MROM Address (I2-I12) points to a MROM location via SCU which
contains the micro code for the instruction specified by the IR.

. MEMORY CONTROL (Il13-I14) specifies memory operation, data width,
and alignment when an IROM Branch occurs.

- 0o memory operation

fullword on fullword boundary

‘+halfword én halfword Baﬁﬁ&éfi"

~ byte on byte boundary -

[MEMORY REFERENCE (I15) specifies that the instruction references
memory. This bit will be off for all RR instructions and it will
be on for RX, RS, SI and S8S instructions.

. IL bits Il and T16 contain the instruction length code required
for the PSW (see paragraph 4.7.4).

IROM outputs are open collector circuits thus providing access to the test
support equipment (TSE) through a DOT-OR for IROM simulation and verification.
Control of the DOT is provided by the TSE, when connected.

4,4,2,2 MROM

The MROM 1K x 64-bit words are under control of ten address linmes (SEQ 3-12)
from the SCU., Control of the address lines are specified in paragraph 4.4.1.

For MROM definition reference MHTC Microword Word" document IBM Number 74W-00087.

The MROM outputs are open collector circuits thus providing for TSE simulation
and verification as described for the IROM.

4-34

4.5 DATA PATH SUPPORT

The Funection Control Umit (FCIU) provides the control signals to the ALU. In
addition to the standard ALU functions, the FCU supplies the necessary control
to perform Multiply, Divide and Square Root steps. When MDS (Multiply/Divide/
Square Root) is specified in the micro word (MROM), the FCU controls the ALU
operation to carry out a step in the routine. Therefore, the micro program
only needs to loop on this operation until the multiply (for example) is
complete.

The EALU (Extended ALU) provides a two-bit extension of the standard ALU to support
MDS and shift functiomns.

4.5.1 FCU
The FCU chip provides control for the ALU contrel, MDS and non MDS functions.
Control for the ALU is provided by the output signals from the FCU specified in

Table 4.5-1,

Table 4.5-1. ALU Control

ALU Functions CONT SUB 2 SCAR SUB 1 Clé
AND 0 1 1 1 ' 0
OR 1 0 1 0 8]
XOR 0 0 1 0 0
ADD 0 0 0 0 0
SUB (A-B) 0 0 0 1 1
REV. SUB (B-A) 0 1 0 0 1

4,5.1.1 CONT, SUBZ, SCAR

CONT, SUB2 and SCAR ALU control signals are generated from MROM A8, A9 and AlO
as specified in Table 4.5-2.

435

Table 4.5-2, FCU QOperation

MROM FCU QUTPUTS
A8 A9 Al0O CONT SUB2 SCAR
0 0 0 0 1 1
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 0 0 1
1 1 0 0 0 0
1 1 1 0 0 0

4.,5.1.2 8UB1

SUBL control is a function of the MDS and non MDS function. The following equation
identifies the generation of SUBL. —

SUB1*

I

A%-A?-A9-AIOHMQR14 + EAﬁ-&E?)- (A% -A10)-

ALUOS:®SOS + AB8-ALD
%A = MROMA

805 signal is SPMO stored, with the store operation controlled by trailing edge
of CKZ and MQRL equal one.

ALUOS is ALUO stored, with the store operation controlled by trailing edge of
CKZ and MROMR1O equal one.

4,5.1.3 Clé
Cl6 signal is the carry into ALU15. For ALL operations other than MDS, Cl6 is a
1 1f MROM Al2 = 1 and there was a carry (C) on the previous micro cyecle. For MDS

operations, the MROM Al2 bit must be zero to allow proper generation of Clé as
shown by the following equation.

4-36

C16% =[(AT0-A11) + (A11+A9) + (€S + A12)

+ (X7 + X6) + (SUB1L +A12)] . EX? + X6 +SUB1Lﬂ

¥A = MROMA

CS signal is C, from ALU, stored, with the store operation controlled by the
trailing edge of CKZ.

X6 and X7 signals are generated by ALU extension for ALU bits 16 and 17 with
(X6 + X7) equals to the carry out of the extended ALU.

4.5.1.4 SUBIL

SUBIL is a function of SUBL as shown by the following equation. It provides the

control for ALU extension for bits 16 and 17. Table 4.5-3 identifies the Ffunction:

for the ALU extension.
SURIT* = SUB1*A9+A10
*A = MROMA

Table 4.5-3. EALU Control

ALU Extension
SUBIL
Add : 0
Sub (A-B) 1

4.5.1.5 C(N+4)
C(N+4) signal is the carry into ALU 17. For ALU operations other than MDS,

C(N+4) equals zero. TFor MDS operations (CN+4) is generated as shown in the
following equation.

C(N+4ys = A9-A10 * (SUBI + SQRD) . (SQRD + MAR?2)
%A = MROMA

4.5.1.6 SQRD

SQRD signal is the input to the ALU extension B mux. The following equation
identifies the function. SQRD equals zero for all operations except square root
sign.

SORD* = A6 A7 *A9°A10

*A = MROMA

4-37

4.5.1.7 F25A

F25A signal is the second input to the ALU extension B mux. Where F25A equals

a one when the sign of PRR equals the stored scratch pad memory sign for square
root sign and equals zero for all other functions. The following identifies F25A
generation,

F25A = SQRD e« 5UBI1
F25A = 5QRD-SUB1

4.5.1.8 SEL3N/SELAN

SEL3N/SEL4N signals are utilized in mux B input selection for the ALU B inputs.
These signals along with MROMA5 provide the following selections for mux B.

Table 4.5-4. ALU B-Mux Control

MROM
Ab SEL3N SEL4AN ALU MUX B SELECTION
0 0 0 SDR + MROM (C7-C17) (Logical OR)
0 1 1 - SDR
0 0 1 SDR + SPM (Logical OR)
0 1 0 SDR + 1/2 SPM (Logical OR)
1 0 0 MROM (C7 - C17)
1 1 1 Zero
1 0 1 SPM
1 1 0 1/2 SPM

The following equation identifies SEL3N and SEL4N generation.

SEL3N* = (A1l + A6 A7 + A9 +A10) (A9-Al0 +AB)

[(MQRMG—‘)MQR%) + (MQR15PMQR16) + Ab +A7 + A9 +m]

SEL4N%® = EAT-A? + A1l +E+E1'bj [A9~A10 +E’?’]

[(MQR15 & MQORI6) + (A6 +AT +AD +E‘6):| .
*A = MROMA

4-38

MQR16 signal is generated by storing MQR14 at the trailing edge of CKZ when
MQRL equals a one. ’

4.5,1.9 SPMSG

SPMSG is a signal generated to provide the MSB position of the B Mux when selecting
1/2 SPM, SPMSG equals zero for special MDS and equals SPMS for all other functioms.
The following equation identifies the generation of SPMSG.

SPMSG*® = (SPMO * A8) +SPM0 (A9 + A10)
*A = MROMA

4£.5.1.10 Quotient Ceneration

Q is current bit of the quotient generated during a divide step. The following
equation identifies the generation of Q.

Q= |:(A7 +‘ SUBlw) + SQRD:I '_ (ALUO + §'Q'R_D)]

where A7 = MROMA7, and + means exclusive or

4.5.1.11 ALU18

ATU18 is generated for use with Square Reot function as defined by the following
equation

ALU18 = MAR2 + SQRD
4.5,1.12 MQRL

MQRL Load Enable is a signal generated which controls the loading of the MQR.
The following equation identifies the generation of MQRL.

MSRL. = MROMR11 . MROMR1Z . MROMRI13

4.5.2 Mux/ALU Extension (EALU)

The Mux/ALU extension provides for ALU bits 16 and 17 which are used in all MDS
and some shift cperations involving the PRM and MAR (see Section 4.1).

The A input to the ALU extension is controlled by MROMA4 in the following manner.

MROMAS ALU INPUT
16 17

0 PRRO PRRI

1 MARO MARI

The B inputs for the ALU extension are controlled as shown in Table 4.5-5.

4-39

http:4.5.1.12
http:4.5.1.11
http:4.5.1.10

Table 4.5-5. EALU B Input Control -

ALU B INPUT
SEL3N SEL4N 16 17 5-15
1 0 SPM15 F25A% 1/2 SPM
1 1 0 0 All zero;s '
0 1 F25A% SQRD#* SPM
0 0 ‘ 0 0 1/0.

*For the SUMC-IIB these ALU inputs wired to ground.

EALU control is exercised by the SUBIL signal, from the. FCU, as indicated. below
(see Paragraph 4.5.1.4).

EALD Control
Operation (SUBIL)
Add 0
Sub (A-B) 1

Carry into ALU 17 is controlled by C(N+4) signal, from the FCU, (see paragraph
4.5,1.5).

4-40

4,6 SPM ADDRESS MUX

The SPM Address Mux provides for multiplexing the four low order bits of the SPM
address. The four multiplexed bits plus MROM 'S1 and S2 bits are used to address
the 64 word SPM. .Multiplexer control is accomplished by the SPM address control
bits, MROM S7 thru .S9.

The timing chip derives the computer timing from one of the following sources:
oscillator or external oscillator. The basic oscillator is physically packaged
as part of the power supply. The external oscillator and selection for which
oscillator is to be used is supplied from the test support equipment (when
connected) otherwise the intermal oscillator is selected.

4.6.1 SPM ADDRESS MUX
The three control bits, MROM S§7-89, selects the source for ‘the least significant

four bits of the SPM address. Many of these address inputs are intended to
support S/360 general register addressing requirements. (sée Table 4.6-1.)

Table 4.6-1. SPM Address Source Control

SPM ADDRESS BITS
$7-59. 3 4 5 6
000 0 0 0 0
001 IRS IR9 IR10 $6
010 s3 4 S5 56
o1 MQR12 MQR13 MQR14 MQR15
100 . IR8 1RO IR10 IR11
101 S5 s6 IR16 IR17
110 IR12 (R13 IR14 IR15
111 IR16 IR17 IR18 IR19

SPM Address MSB's 0 and 1 are controlled directly by MROM Sl and S2 respectively..

4—41

4.7 ARCHITECTURE SUPPORT FUNCTTIONS

The Architecture (Arch) module implements functions which are sensitive to the
machine architecture being emulated. This module is a two chip carrier which
contains Arch and -Register chips for S/360 emulation. Figure 4.7-1 identifies
Arch module functions, The architecturally dependent portion of the SUMC-ITB
is comprised of:

0 EA Branch - For effective address generation, the three least
significant bits of MROM address are modified according to
ingtruction format (e.g. RR, RS, SI) and the Base and Index
operations required for the EA. This provides a multiway branch
to the proper EA generation microprogram routine. :

. Condition Code (CC) and PSW Logic — Partial PSW function and
condition code setting is provided by this logic.

e Mask Gates — Overflow logic and PSW masks.

4.7.1 EFFECTIVE ADDRESS (EA) BRANCH

MROM M7, M8, M9, and MIO bits are decoded to determine when an EA Branch (0100)
is to be generated. EA Branch generation is accomplished by modifying the three
Transfer Field LSBs (MROM Cl5, C16, and C17). The LSBs are modified as specified
in Table 4.7-1 when MROM M7, M8, M9, and M10 equals 0100 respectively. For all
other conditions of MROM M7, M8, M9, and M10 the EA Branch equals the MROM
Transfer Field MROM C6-C17.

Table 4.7-1 §/360 EA Branch Conditions

Branch Conditions (MROM M7-MLQ Equal 0100) Modified
RR o 110
RX, RS, SI, and NO BASE and NO INDEX 000
RX, RS, SI and BASFE and NO INDEX 001
RX, and NO BASE and INDEX 010
RX and BASE and INDEX o011
SS and NO BASE 100
SS and BASE 101

Figure 4.7-2 functionally describes the derivation of EA Branch.

b-42

Spare
e &
IR 0-1 - Spare Spare .
EA BT B - Reg)
1219 Spare . N el —SPAXE.
Branch Cl5>Cl17 Spare S
e £ = Lpare = . D pare
MROM Clk ; . SPATE o
C15=>C17 Gate ’
——— s £
- Reset o
MROM 1 o sl Spare (01013
M7 M10 Decode Id. Timer . (0001) PRM 4]
e £ —_—
POR T .| Error Reset, (0011) i PRMS5 | 2 PSW 4
i ERM T j G = PSW 6 .
ol Ld, Prog. Mask ‘ - | psw 7 o
= _ i CKZ
PRM = 0 . Condition CcC Gnd. L .
el PSW 2-3 -
BPRMD . = Code £ £
C{ALUY - . Spare p——
CcC m-——-—-t: Spare o
N PSW 8=»11 . . Spare Reg =) Spare
OVFL ; Parity B Spare -
CKZ . . o Parity Ex .
—E | PSW13 £
—_— - 3
ALY OVFL-INT - s
0—=4 Overflow i i
————
ALU-OFL ___ o Spare
PSW4 - Spare Re . Spare =
(=R o) Spare . & ey SpRYE o,
5] 'b_g o i | s
are . 2
5 I R
8 E CH{. Y R £ 1==od
Arch Chip = ?]
]
L - e
S NOR |- —tJ
ep! -
5 H
L85 Reg. Chip i
443 Figure 4.7-1

ARCH Module

=%

IR O

@

i‘—"_"“‘"«

IR 16

I

IR 11:

IR 18

IR 19

iR 12

IR 13

IR 14

N

MROM C15

MT C15

IR 15

Figure 4.7-2.

EA Branch Logic

‘ MROM C16
Fam c s
A } --\\
MROM C17
SS |
—¢h N\
. BASE \
BAh_. B
/ INDEX Zx
mm\ _
/‘ MROM M7 o
e
/ MROM M8
MROM M9 =)
MROM M10 ¢
N

4,7.2 Condition Code

To support a S/360 compatible condition code, the conditions must be capable
of being set as described in Table 4.7-3., The selection of a particular set
conditions is determined by MROM M7, M8, M9 and MI10. For each condition only
one of the four bits shall be set at any one time. The setting of any one of
the four bits is controlled by a priority selection of the condition code
bits. Priority level are bit 3, 0, 1, and 2 with bit 3 having the highest
priority and bit 2 the lowest. Example; if PRM equals a plus and an overflow
condition from the ALU occurs for MROM M7-M10 code only the overflow (bit 3)
will be set.

The condition code is maintained in the Program Status Word (PSW) described in
Paragraph 4.7.4 in both a four-bit code and a two-bit code. The two-bit code

is specified by Table 4.7-3 and the four-bit code is derived from the two-bit

code as specified in Table 4.7-2.

Table 4.7-2. 2-Bit vs 4-Bit Condition Code

2-Bit Code 4-Bit Code

0 1 0 1 2 3
0 0 1 -0 0 0
0 1 0 1 0 0
i 0 0 0 1 0
1 1 0 0 0 1

The PRM=0 is generated by the Timing chip and made available for use at the Arch
Module.

PRM = minus and PRM = plus are determined by testing the PRM O bit; PRM 0 = 1
is minus indication and PRM 0 = 0 is plus indication. "Carry'" is generated by
the ALU and made available to the Arch module.

The previous condition code (CC) setting is derived from the value of the two-
bit code contained in the PSW,

The overflow condition (OVFLO) is the ALU overflow from ALU ORed with a PRM
opverflow. The PRM overflow is generated for one and four left arithmetic shifts.
For a left one arithmetic shift PRM overflow is generated if ALU 0 and 1 bits
disagree. For a left four arithmetic shift PRM overflow is generated if ALU 0
disagrees with any ALU 1, 2, 3, or 4 bits. Figure 4.7-3 functionally describes
the PRM OVFLO functions. The OR'ed condition of the ALU and PRM OVFLO signals
is made available for use with the SCU (Reference paragraph 4.4.1).

4-45

Table 4.7-3. Condition Code Generation

9%—4

MROM 5/360 Condition Code
M7 M8 M9 M10 0 1 2 3
1 1 0 0 PRM=0 PRM=- PRM=4 ;
PALU
1 1 0 1 PRM=0 PRM=- PRM=+4 | OVELO
l
1 1 1 0 PRM=0,NC | PRM#0,NC | PRM=0,C PRM#0, C ALU
ALU
1 0 0 1 PRM=0,CC=0| PRM=- PRM=+4or ' OVFLO or CC=3
CC#0 !
1 1 i 1 PRM=0,CC=0| PRM=- PRM=+or OVFLO or CC=3
CC#0 (PRM Shift Left 1
Arith.) + ALTU
1 0 i 1 PRM=0,CC=0| PRM=- PRM=4or OVFLGC or CC=3
CC#0 (PRM Shift Left 4
. Arith.) + ALU
i
1 0 0 0 PRM=0, CC=0| PRM=-~ PRM=+or |
CC#0 f
1 0 1 0 PRM=0, (PRM#0 or PRM=0, | (PRM#0 or CC#0), C
CC=0, NC CC#0}, NC | CC=0,C .
0 0 1 0 Load the condition code register from ALU 2, 3
OVFLO - ALU-6verflow condition (arithmetic operations) or PRM
overflow (Shift operations)
C - Carry out of ALU 1
NC « No carry out of ALU 1

CC - Previous condition code setting of 2 bit form

Ly

ALTO0

ALUL _

(1))

MROMMT7
MROMMY9

MROMM]10!

————. (PRM OVFL)

ALU2

ALU3

AL.U4

Y

Figure 4.7-3.

QDDA

c -

e

0

5

<

m &

@

ALU OVEL

Overflow Generation

(ALU OVF1)

OVFL

The Data Path Condition Code input provides a means for external input to the
condition code logic. This input is in the form of the two bit condition
code with the input from ALU 2 and 3. This two-bit code is then utilized to
provide the associated 4-bit code.

4,7.3 Exception Monitoring

S/360 architecture entails a'significant amount of exceptions monitoring as
described in 5/360 Principles of Operation, pages 156 thru 161.

Five exceptions are monitored by the SUMC-IIB hardware: (1) Addressing,

(2) Memory Specification, (3) Storage Protect, (4) Parity, (5) Overflow. Each
of these exceptions will set its respective error latech. The setting of the
Addressing, Specification, Storage Protect or Parity error latch will prevent
subsequent writing into main memory or SPM and will cause a reset signal to be
generated that forces the timing chip to initialize the machine to MROM locatior
zero. This initialization and write inhibit is accomplished by a Write Valid
signal. The write valid signal equals a logic one when the above error latches
are reset. The setting of any of the above error latches will cause the write
valid signal tc equal a logic zero thus inhibiting writing into both SPM and
Main Memory. This change of state also fires a single-shot which causes the
timing chip to initialize by forcing a reset to the sequence register (MROM
Address) located in the SCU. The WRite Valid at a logic zero also prevents any
further change of state in the above four error latches.

The setting of the overflow latch generates an interrupt signal which can be
tested by the SCU utilizing MROM bits C1-C4 (Reference Section 4.3).
This interrupt signal shall be negative.

The error latches are reset by clock CKZ ANDed with the decode of MROM bits
M7-M10 = 00il.

4.7.3.1 Addressing Exceptions

Addressing exceptions are momitored by Storage Interface Logic (SIL). A CPU
address exception latch is provided to the CPU from SIL. Setting of the latch
is controlled by an error clock signal from SIL.

An addressing exception occurs when memory is addressed with an address greater
than implemented memory.

4.7.3.2 Memory Specification

Memory specification exceptions are monitored by SIL. When a half-word or
full-word memory operation is requested the memory address is checked to verify
that the LSB or two LSBs are zero, respectively.

4-48

The CPU memory specification latch is contained on the SIL Module. Setting
of the latch is controlled by an error clock signal from SIL.

4.7.3.3 Storage Protect

Storage protect errors are monitored by Storage Interface Loglc (SIL). A CPU
storage protect error latch is provided by SIL and is set under the control of
the error clock signal from SIL.

Storage protect errors occur when a store operation is requested in a memory/
location within a block whose store protect bit is ON.

4.7.3.4 Parity

Parity errors are monitored by Storage Interface Logic (SIL). A CPU parity
error signal is provided to Arch for input to the parity error latch. This
latch, contained on the register chip, is set by the trailing edge of clock CKZ.

4.,7.3.3 Overflow

Overflow exception occurs when MROM bits M7-M10 request the condition code to be
set by an overflow (see Table 4.7-3), then an overflow exception is generated

if the overflow program mask is set to a logic one (PSW bit 4; see Paragraph
4.7.4). The overflow exception will set the overflow error latch. This latch -~
contained on the Arch chip is set by the trailing edge of clock CKZ.

4.7.4 Program Status Word (PSW)

The SUMC-IIB PSW is maintained partly in hardware and partly in a SPM location
used only by the microprogram. Whenever the PSW is to be "manipulated”, a partial
PSW (which is 16 bits long) is read into the data path through the MQM so that

the 64-bit PSW can be assembled (see paragraph 2.2.3). The format of this

partial PSW is shown in Figure 4.7-4,

0 1 2 3 4 7 8 11 12 i5
iL cc PROGRAM CONDITION ERROR_LATCHES
MASK COLE STORE PROT.; OVFLO|SPEC{ADDR

Figure 4.7-4, Partial PSW Format

The two-bit instruction length code (IL) comes from IROM bits 1 and 16 (for PSW
0 and 1 respectively). These two bits are loaded into a registér at the fall
of CKZ if the MROM R14, R15, R16 bits are not 000 and an IROM Branch is taken
by the SCU (see Table 4.4~1).

4-49

For convenience to the microprogram, the condition code is maintained in both
a two~bit and four-bit form. The two-bit form matches the needs of the PSW
format and the decoded form matches the branch on condition -instruction's
condition mask format (see the HTC Principles of Operation, IBM No. 74W-00026).

The condition code and program mask registers are loaded from the PRM at the
fall of CKZ when MROM M7-M10. = (110,

The four errors (address, specification, storage protection, and overflow)

were described in paragraph 4.7.3. Each of these conditions has a latch which
is set when the corresponding error is set and a program or microprogram branch
is taken. After the PSW has been read into the data flow the error latches are
reset by microprogram action (MROM M7-M10 = 0011).

4 complete listing of the actions taken by the M7-MIO field is given in Table
407—4-

4,8 TIMER

The hardware timer supports the microprogram maintenance of a real-time clock
an an interval timer. Both are accessed by the programmer via the TMRS instructior

The interval timer appears to the programmer as a 16-bit decrementing counter
which is decremented every 112.64 microseconds. It has a maximum interval of
7.38 seconds. The real~time clock appears as a 32-bit incrementing counter which
is incremented every 112,64 microseconds. It has a maximum value of 5 days,

14 hours, 23 minutes and 5 seconds. The TMRS instruction is used to read either
of the timers into a general register. When the TMRS instruction is used to

load either of the timers from main storage, the old value of the timer is placed
into a general register so that the timer may be read and loaded without an
intervening step. Problem programs may read either of the timers directly, but
only the supervisor is permitted to load the timers. Duration of the timer

can be extended by programming. When the interval timer goes to zero an external
interrupt (timer) is generated. When the real-time clock overflows, however,

no action is taken by either the hardware or microprogram. It merely resets to
zero and continues counting.

4.8.1 Supporting Hardware

The SUMC-IIB timer hardware consists of two Timer chips of 8 bits each, which are
wired as a 16-bit ripple counter. The 6 MSB's are loadable from the MAR bits

10 thru 15, and an eight-bit gated output is made available to the data path by
the PRM. The clock source is provided by the basic machine oscillator which has
a 9.09 MHZ frequency.

The timer hardware sets an interrupt request latch when the counter overflows

from all 1's to 0's and CKZ occurs. This interrupt provides an input to the
SCU (Reference paragraph 4.4.1).

4-50

TE~%

Table 4.7-4,

Miscellaneous Field Bits M7-M10

MROM
M7 M8 M9 M10 Operation-
0 0 0 0 No Operation
0 0 0 1 Load Hardware Timer
0 0 1 0 Load Condition Code Register from ALU 2 and 3
0 1 0 1 Spare
0 1 0 0 EA Branch Condition (Ref Para. 4.7.1)
0 1 1 0 PSW load: Condition Code, Program Mask (Ref. Para. 4.7.4)
0) 1 1 1 IC Load from PRM -(Ref. Para. 4.4.1.2)
0 0 1 1 Reset PSW Error Latches (Ref. Para. 4.7.3)
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1 Condition Code (see Table 4,7-3)
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

The eight MSBs of the timer are read into the data path (PRM bits 8-15) by

a decode of MROM bits R14-R16 = 101, The six MSB's of the timer are loaded
from PRM 8-13 when MROM bits M7-M10 = 0001 (gated at CKZ). Since the timer
load is not synchronized with the timer counting, each load is preceded and
followed by a read to see 1f a "tick" occurred in the least significant bits.
If so one is added to the load value and a new load is generated. The sharing
of the function between microprogram and hardware is invisible to the programmers.

4,9 PROGRAM COUNTER

The SUMC-IIB has a 16-bit counter which operates under microprogram control

to point to the next instruction to be executed. The counter uses two timer
chips in a timer module and is controlled by the MROM R14-R16 field as indicated
in Table 4.9-1.

Table 4.9-1, Program Counter Control

MROM
R14 R15 R1é6 Action
0 0 0 NULL (No-Op)
0 ‘ 01 1 Load Program Counter from PRM
0 1 0 Increment Program Counter (+2 Bytes)
0 1 1 Load IR Left
1 0 0. Load IR Right'
1 0 1 Read Hardware Timer
1 1 0 Special P. C. Increment #*
1 1 1 Unused

* The special program counter code increments the PC by the samé
as code 010, but it also controls the ALU B MUX ‘to select zeros if I REG
16-19 = 0000 (no base reg); otherwise it selects SPM as indicated by the MROM
A5-A7 field.

For branch and link type instructions it is necessary to be able to read the
program counter into the data path and store it. The SUMC-IIB uses an AOTC
module which is an 18-bit, two way multiplexer to select either the program
counter or the I/0 register as an input to the MAM, The multiplexer selects the
PC if MROM M5, M6 = 00; otherwise it selects the I/0 register.

4-52

4,10 MEMORY SUBSYSTEM DESCRIPTION

The memory subsystem consists of storage interface logic on the CPU slice
and one to four independent sections of storage, herein called storage pages.
See Figure 4.10-1. Each section of storage contains 16,384 bytes of memory
and the necessary support circuitry to make a functioning memory system for
the SUMC-ITB. The storage interface logic provides an interface for direct
memory access (DMA) and for CPU access. The CPU interface provides full-
word, half-word, and byte operatioms, but the DMA uses only half-words.

The full-word operations are provided in microcode by two half-word operations.
the logiec is designed for expansion to accommodate a 32-bit data flow
interfacing with the standard 32-bit memory. The storage page is designed
to interface as a technology independent memory element and two technologies
have been impleménted. Wiring is provided for a 32-bit data interface which
can be controlled by the storage interface logic to be either 16 or 32-bits
wide. (In the SUMC-IIB it operates as 16~bits). No changes to the storage
page are required for 32-bit operation. The storage logic on the CPU slice
generates and checks parity for all storage operations and implements a
storage protaction feature which protects blocks c¢f 512 half-words against
incorrect storage operations. Separate protection is provided for CPU and
direct memory access.

For CPU operation the memory mode is controlled by the miscellaneous field ot
the microprogram control word (bits Ml thru M4). Bits M1l and M2 specify:

no cperation, byte operation, half-word operation, or full-word operation.
Bits M3 and M4 specify: read, read—and-hold, write, and write-move. Details
of the memorv operations are shown in Tables 4.10-1 and 4.10-2. In addition
to the memorv modes which cause the memory to fetch or store, there are two
memory "operations' which do not actually cycle the memory. The no-op code
(ML and M2 both equal to zero) is used in combination with bits M3 and M4 to
specify these non-memory cycling operations. One operation results in the
storage data register (SDR) being loaded from the PRR without a memory
operation taking place. The other results in the storage protect register
being loaded from the PRR,

4,10.1 Memoxry Operation

CPU initiated memory operations are controlled by the micro contrel word
whose contents are sampled at clock CKZ time of each CPU cycle. Any
indicated memory operation will take place during the subsSequent micro cycle.
When the memory starts to operate, a memory busy signal is generated to indi:ate
that the memory is in use. During a (PU initiated memory cycle, when the

CPU is ready for a CKZ timing pulse AND memory busy is active, the computer
will go into a state called "limbo" and walt for memory busy to f£all. Thus
the microcycle is stretched to accommodate the memory operation. During CKZ
time M1 thru M4 of the microcode word are examined to determine whether a
CPU memory operation will take place in the subsequent microcycle or not.

If a memory operation is to take place, it will be initiated at the fall of
clock CKZ.

ORIGINAL PAGE Ig 4-53

Yo%

M 0-15 CPU SLICE | MAIN STORE SLICE
. 652~ e BYTE 1-4
LOGIC :
SAR HROH - H1-4 — ENABLE
CTRL ADDR
CPU_ADDR 14,15 ,
= ADDR 2-13 J- |12 3 1 cHIP
2 7 1 *°| MeEcane
: 16 < ADDR 4
M4 ADDR D>— \ 51| 3:8 < PAGE>SEL L CH SEL
STORE PROK-LLLR 0-5] l B 132
KEGS PAGE _SEL , . y
LsCTRL—E' = NO PAGE HERE <f—— 18 N EY 21 FSU ARRAY
DA DATA D> ") =B M| NS e
az{r = N - P
600D PARITY | |4 18 ENEL_IN 77
-R16 £>— PG '
PRR 0-15 D 5 —{poLLop —d
© _J
R/W N8 @]
= & -
e 18 = |4 5
CPSDR - : . - e—pm | ~ 2 D e
MLAL ADR 115 o | ‘ M oyr 16 A s
— = <)]
" FRRTTV 1. 18\ 18 ENBL OUT
CPU ERRORS <F————— ERROR LOGIC NO PAGE L CHECK lé l
DFA ERRORS <f——rl - < ke 16 BUSY <] e
LOCKouT D__-l——h HALFYORD ADVANCE <t———] TIMING
DMSTORE Do . MER OUT R/ B] <——RIESLING
DFRDY —y TINING > START 10 1/0 , STARTD'_hJ /,\
DMACK <3—] 8 —I=> R/Y CLOCK D>— FSU
CLOCK D] <1 'BUSY MAIN STORAGE SUBSYSTEM

sy <t—~ T PRy

16732 32 INT

Figure 4.10-1. Main Storage Subsystem

Table

4.10_].-

Operation

Memory Operation and Data Size Control

Description

co

No Operation

This code in conjunction with control bits M3 and 4 specify
a true NO-OP and two other operations not causing either a
read or write,)

M3-4 = Q0 is a true NO~-OF.

M3-4 = 01 NO-OP

M3-4 = 10 causes the SDR to be loaded from the PRR but no
memory write is initiated. This facilitates loading the IR
from the data path.

M3-4 = 11 causes the storage protect mask register to be
Toaded from the PRR. MAM O - 5 specify the sector to be

01

Full-word

protected (for up to 64K-hvtes of memory)

The memory operation initiated at "Z" time is for 32-bit
information and the address shall be on a full-word boundary
(MAM 14 and 15 = 0). On the 16-bit machine this code will
only be used for the lower (odd) half-word and the storage
interface logic (SIL) must force a 1 in address position 14.

10

Half-word

The memory operation is for half-word (16~bit) information

and shall be on a helf-word boundary (MAR 15 = 0)., For a
32-bit machine this data shall be aligned properly for a
half-word either in the SDR (read) or the PRR (write). If

the machine is fractional the half-word will be left justified
(bits 0 - 15); if integer the bits will be right justified
(bits 16 - 31).

11

Byte

The memory operation initiated is for an eight bit operand
and will be right justified in either the PRR or SDR.

4-55

Table 4.10-2 Memory Read/Write Control

M3-4 Operation Description

60 Read Initiates a memory read operation at "CKZ" time using the
address at the MAM output. Information will be in accor-
dance with M1l and M2, and will be loaded into the SDR by
the SIL at the subsequent CKZ clock even if CPU timing has
to be suspended. The SIL will generate a busy signal
starting at CKZ time and ending with the following CKZ
time. If a destruction readout (DRO) memory is used, a
restore is implied as a part of read.

01 Read-and~Hold Identical to read except that the memory operation is not
terminated at the subsequent CKZ time, and no restore is
performed in a DRO memory. This is the first part of a
read/modify data/write. Memory operation is terminated
after the subsequent write operation.

10 Write This is either a stand alone write operation or the con-
clusion of a read/modify data/write. The SAR is loaded
from the output of the MAM and the SDR is loaded from the
PRR (at CKZ time). If the write is the completion of a
read/modify data/write, the SAR will not be loaded. The
CPU need not be held up waiting for completion of the
write unless there is another memory operation in the follow
ing program word. Information in the PRR is in accordance
with M1, M2, and alignment might be required of the SII
before storing. If a write operation is indicated in the
MROM word following a read the contents of the SDR will be
ambiguous for both the read and write operations.

11 Write -Move Identical to the write operation above except that the
8DR is not loaded. This can follow a read to provide a
move.

4-56

On both read and write operations, the contents of the memory address
multiplexer are loaded into the CPSAR. If the operation is a store, the
contents of the PRR will also be loaded into the CPSDR, however, the ML thru
M4 bits and least significant two address bits must be examined to determine
what multiplexing is required. If a byte operation is being performed, the
data in the PRR is right justified and must be moved to the appropriate
location according to the byte address bit. Address specification is checked
by the control logic in the storage interface logic module for all read or
write operations except byte. If a half-word operation is indicated the least
significant address bit must be a zero. For the 16-bit machine a special
meaning is given to the code corresponding to the full-word operation, how-
ever, as in §/360 the address for a full-word memory operation must have zeros
for the two least significant bits of address. In the 16-bit machine the
full-word memory operation code is used to read or store the least significant
half-word of a full-word operand. The storage interface logic will force a 1
in address bit 14 to cause the proper half-word operation to take place. In
the case of a store, the data is made available to the storage page on a 32-
bit bus from the CPU to the storage page. In the case of the 16-bit machine
the 32 bits are made up by a replication of the 16 bits from the CPSDR.

Address and specification errors will inhibit the memory cycle by suppressing
the "byte" signals going to the storage page. Storage protection errors are
detected too late to completely stop the storage page operation so a write is
converted to a read. Contents of the SDR are undetermined at the end of a
storage protect violation. Storage protection is checked on a read-and-hold
operation as well as a store operation since a read-and-hold must be followed
by a write.

The sequence of events leading to a DMA memory operaticn is significantly
different from that of a CPU operation. However, once the actual operation
starts they are identical. Tn the SUMC-ITB direct memory access can either
be handled via the I/0 Channel (see Figure 4.10-2) or by a separate DMA
Interface. A sophisticated I/0 unit such as a multiplexer or selector channel
would operate on the separate DMA interface. The separate interface is
considered standard. The DMA feature cannot be supported both as a stand-
alone interface and integrated into the T/0 channel., The I0Q/DMA interface
shares a single input bus for address and data. The address is sent first

to indicate to the computer that a memory operation is desired and is stored
in the IO register. A store operation will be identified by a true state

on the store line, After the address has been steored, data will be provided
(if a store operation is desired). After both address and data are ready

DMA service is requested of the SII and the next memory cycle will be given to
the DMA. TIn case of overlapping requests for service from the CPU and direct
memory interface, service will be alternated. The direct memory interface

can lock the CPU out of memory by use of a signal called "lockout". The
lockout signal must be true prior to initiation of the memory operation (rise
of the address valid signal). When lockout is used the CPU will not be given
memory service until the lockout line is dropped. Lockout does not become
effective until service is requested by and granted to the DMA, Only read

and store half-word operations can be performed through the direct memory
interface, Once, however, a memory cycle is initiated for direct memory access,
it will be performed in identically the same manner as a CPU request would be
except address specification check is performed for a correct half-word
address, i.e. address bit 15 = 0. o

4-57

~ 5] =
& 5 = q:A
x =] =
]l E
4 - o IOREG [0 15) \
—i080 (015) <F— & |3 o~
3 ADDRESS
LOCKOUT - 1|>c - LOCKOUT
REG |43~
"
-
. - CLKZ MUX REG
{SEQ)
& Al sf\ch &
|l ¥
7 7 .
3 cap V) 3| 16} 16| t6 MEMOUT (0 15)
~BRANCH, OUT"] \
3:8 T TCOMMANDS N
i §° (DECODED) —
e - g .
~I0DREQ » !g > ee |{DREOL < 2|4 STORAGE
~TDREQ ————P] & o B 9w . LUGIC
1081 [0-7) —mmm—i] § .
—TBHE T} E . (OTSE (0 15)
~EXTINT o> g SEXTINT s DATA
“TINT ————n] & . .
~10BI {8-16) ———>] X
E mn
~TB! (815} ———— > E
CLOCKS r
__..7£_’ . rd
TMERTT L T YYY v
> DMARDY
-IOCLKB i e ——SPECER
10 CONTROL CHIP et +PARER
¢ e PROER
 ¢——————————"ADDRER
DFf j——= DMACK /
B t *
—~TSEL & o {2 CHIP CARRIER)
—1OGLKB
Lt
vile d OFE [;
~ la— MROMMB
—TSERVREQ - A 9 CLKZ
< CLKY"
<t cMD (M5 -
L REQ
a e et (L3 e
~TCMDO] 2 [t INT
TSERVACK <——1 5 |« e —eemt> DMA PARITY
- TDACK 4—no & < {——————————5 DMA PROGRAM
- o - - p—————————p= BUSY
A
TO STORAGE 4 &
B St
DM;%S:;E DRIVERS
{FP)
*NOT REG ON S/360 AN
INSTRUCTION SET
¥
- -
5 z] SREE
s 8« Q3 g4 a
£ T = o4 a >
! & Fecox
D < .8 L I

OF POOR qy "

Figure 4.10-2.. SUMC-IIB I/0 Block Diagram (with Integrated DMA)
4-58

4.10.2 Memory Data Flow

The basic flow of data in the storage subsystem can be seen in the block

diagram of Figure 4.10-1. For the CPU the source of data is the PRR, and

the source of the address is the MAM. For the IO/DMA interface option the

DMA address and data inputs are by the I0 channel as described in the I0 Section
4.11. TFor the separate DMA port option an Address Bus, Data In Bus, Data Out Bus
and controls are provided at the I0 connector.

The storage data interface portion of the CPU contains two separate data paths
to memory, one for CPU use, labeled CPSDR, and one for direct memory use, labeled
DMA Data. Because the CPU operations involve byte, half-word, and full-word
operation, shifting of the data is required into the storage data register.

For byte storage operations the data in the PRR is vright justified and must

be relocated in the storage data register according to the least significant
bits of the storage address. Similarly for a byte read, the byte coming from
the memory interface must be placed in the lower bits of the storzge data
register for right justification on the bus into the CPU. This register and
multiplexer is implemented by using four of the mux register chips used in

the Data Flow Module., Each chip provides a six way by four-bit multiplexer

and register with outputs both from the register and the multiplexer. Controls
for the multiplexer are located in the storage interface logic module within
the storage interface section of the CPU. The address register fcr the CPU

is also located in the storage interface logic module.

The storage interface portion of the CPU is implemented with four modules:

(1) The TSE/SDR module contains four mux registers chips. These chips are
interconnected to provide data selection and alignment for read and write
operations. (2) D-Mux module utilizes two AOTC chips to provide multi-
plexing the CPU or DMA data onto the Memory Imput Bux. (3) A-Mux module
contains two AOTC chips to provide multiplexing the CPU or DMA memory addresses
onto the memory address bus. The A-Mux and D-Mux modules are identical.

(4) The Storage Interface Logic (SIL) module contains five chips: 1 Register,
1 Memory Control, 1 Memory Timing, 2 Mux Contrel. The module provides CPU
address storage, the logic necessary to control all data multiplexing, partial
decoding of address, and the handling of exceptional conditions.

4,10,3 Addreéss Decoding

The storage page is designed to work as a 16-bit, byte addressable memory when
working with a 16-bit CPU, and as a 32-bit, byte addressable memory when
working with a 32-bit CPU., Therefore, the page 1s organized as four 4K-byte
sections, 1In the 1lé6-bit machine one or two bytes of memory can be operated
simultaneously, but in the 32~bit machine one, two, or four bytes can be
operated at the same time.

Referring to Figure 4.10-1, the address handling can be seen to be divided between
the SIL function on the CPU page and the supporting logic on the storage page.

The address logic is shown in Figure 4,10-3. The byte select logic in the SIL
module is controlled by an input "16-BIT" to perform as a 16-bit memory. (See
Table 4,10-3) Only two Byte signals are used in the 16-bit machine. The Chip
Select Time signal is generated in the timing chip on the storage page and is
used by the SIL module to time the generation of the Byte 1 ~ 4 signals.

4~59

A14
Al5

~CEBIP ENABLE

REV. A

| TIME
_-JL—JJL——BYTE 1| +E
=—3:8 [——> CHIP SELECT 1
FULL BYTE | .
HALF SELECT |BYTE 2 BYTE 1
LOGIC LOWER| *
BYTE —> : HALF | -
RY.TE 3 I ; 8
BYRE & |
I . +E
/P L : 378 —> 9
= i 1
[- PR s i 1 BYTE 2 ¢
SR Se ! LOWER| -
O w | : HALF .
| i
PAGE SELECT , : —> 16
SIGNALS I %
+E | ;
nwyn - ENBI. 1H H +E TS 17
¢ 3:8 [Emr i 3 T | >
E “‘“‘“‘“‘? : BYTE 1 °*
AO - : ! UPPER| ~
Al ! ; HALF | .
A1 EFBL 4L | S 24
| |
— +E
! 3:8 |—> 25
! BYTE 2 °
A2 UPPER]| °
A3 =1 DRIVERS HALF | -
A4 ERENGEP!
|
cpU | STORAGE PAGE
|
NOTES:
1. The upper two inputs on the 3:8 decoder are emnable

2.

inputs (one positive enable and one negative enable).

Figure 4.10-3

Chip Select Logic

4~60

Each chip select line goes to 3 of the 96 chips.

REV A. HALFWORD T ETL 7] DATA WORD
(NORMAL)
BYTE Bl - B2 B3 B4
Al4, 15 00 01 10 . 11
Table 4.10-3. Byte Select Truth Table
16 Bit 32 Bit
- o™ . m ~t — o~ o ~
<3 jea] =
= B B |8 28 &
MI M2 Al4 Al5 | m & R @ 2 & B & | OPERATION
0 0 0 0 X X X X X X X X
0 0 0 1 X X X X X X X X
NO OF
0 0 1 0 X X X X X X X X
0 0 1 1 X X X X X X X X
0 1 0 0 0 o0 -1 1 1 1 1 1
0 1 0 1 SPEC ERROR SPEC ERROR
FULL WORD #
P01 1 0 SPEC ERROR SPEC ERROR
13
:
L 0 1 1 1 SPEC ERROR SPEC ERROR
1 0 0 0 1 1 0 0 1 1 0 0
1}
§ 1 0 0 1 SPEC ERROR SPEC ERROR
i HALF WORD
10 1 0 0 0 1 1 o o0 1 1
i 0 1 1 SPEC ERROR SPEC ERROR
101 0 0 1 0 0 0 1 0 0 0
101 0 1 0 1 0 o 0 1 0 o0
BYTE
1 1 1 0 0 0 1 0 0 0 1 0
!
1 1 1 1 o 0 0 1 0 0 0 1

I

*For the full word operation code in the 16-bit machine, the
storage logic forces a ONE in address location Al4 and proceeds
as for half word operation.

NOTE: Byte 1 - 4 signals are gated with the chip select ‘time
signal for memory timing. For address and specification

errors the Byte signals are suppressed.

4-61

Each AOTC chip contains a three-bit decoder with 2 enable lines. One of these
decoders is used to generate the Page Select signals. TIwo different imple~
mentations of storage page have been developed for the SUMC-ITB. The first

used the FSU 1.5K-bit chips packaged 8 per module. Figures 4.10~1 and 4.10-3

show the overall storage subsystem and the chip select signal generation as

they are used for the FSU memory technology. Four decoders are used on the storasze
page to generate the 32 chip-select signals. Each select signal goes to three of
the three bit chips thus implementing the byte organization required by $/360.
Figure 4.10-4 shows the organization of the eight chip FSU module.

Each chip is 512 words by 3 bits. The data in and data out lines are tied
together on the substrate to permit module wiring on a single layer. By use
of the chip select lines and dotting of data lines the FSU module can be used
as 4, 1KX3 sectionsj; 2, 2KX3 sections or a 4KX3 section. The SUMC-TIB menory
uses the 2K x 6/3.

The second storage page implementation uses the faster 2K-bit chips in 8K x 1
bit basic memory modules (BMMs). This module was developed for SUMC use under
contact NAS8-30460 and is described in detail in IBM Report Number 74-585-006
dated 30 June 1975 written by F. C. Tietze. The BMMs are then packaged, two
"pages" per memory slice as described in IBM Report No. 75W000 dated 15 April
1975.

The BMM is made up of four storage chips and two driver/sense amplifier chips
as shown in Figure 4.10-5. Figure 4.10-6 shows the typical BMM addressing to
use the module in the 8K x l-bit configuration. The overall memory "page"
(16K bytes = 1/2 SLICE) is shown in block diagram form in Figure 4.10-7.

4.10.4 Exceptional Condition Monitoring

The storage subsystem performs selective checks to detect abnormal prilciuled s
conditions when memory service is requested either by the CPU or DMA, For
both CPU and DMA operation the memory subsystem (SIL) makes address checks,
parity checks, storage protect violation checks and specification violation
checks. An address specification error will be generated if the address
provided by the CPU or DMA exceeds the capacity of storage provided. The
main store has parity generation and checking logic for each byte. Oa a read
operation the 4 byte-parity bits are ORed together to provide a single line
which indicates the current status of the parity checkers. A storage protect
violation signal will be generated if either the CPU or DMA tries to write
into a location which has been protected against storage operations from that
gsource. Specification violations are as follows: When a full-word operation
is requested, the two least significant bits of the memory address must be
zeros. If the requested operation was for a half-word, or was from the DMA
the least significant bit of the address must be zero. Violation of either
of these conditions will result in a specification check error signal.

Since both the CPU and direct memory access can have simultaneous requests

for service, only the storage subsystem knows whether a current memory operation
i1s associated with the CPU or the DMA., Therefore, error signals are gated
internal to the storage interface so that signals going to the CPU will only

be associated with CPU memory operation and those going up to the DMA will be
associated only with DMA operations.

4~62

S

cS1
{Select)

REV A

cs2 y
I

CS3

Cs4

Figure 4.10-4,

RESET
ADDR (A5-A13)
R/W -

FS5U Memory Module

4-63

I1/0 1-3 1/0 7-9
1 cu1 CH5
7 7
. T CH2 CHS

N
1 cu3 CH7
1 crd4 CHS
1/0 1/0
46 10-12

CS5

CSb6

Cs7

Cs8

10 ADDRESSES ©-

Yio <

Xio-

Y2o —

2K x 1

MEMORY CHIP

DATA

ouT 1

DATA

DATA
& 2K x 1 N1
T MEMORY CHIP
X20- - SENSE
AMPLIFIER
WRITE ENABLE 1 o— 1
READ STROBE 1 o
WRITE ENABLE 20~
READ STROBE 20— SENSE
AMPLIFIER
P 2
&
2K x 1
MEMORY CHIP DATA
‘ iN2
X3©
2K x 1
MEMORY CHIP
X4 0

4 x 2 CONNECT X1 & X3
CONNECT X2 & X4

8Kx1 CONNECTINT&INZ
CONNECT OUT 1&0QUT 2

Figure 4.10-5.

X1.4 ARE CHIP SELECT LINES
Y1, 2 SELECT 1K ARRAYS WITHIN

EACH 2K CHIP

4—64

Basic Memory Module Block Diagram

ouT2

[

10 ADDRESSES D]
(A0—A3) —] 10INTERFACE
DRIVERS
A12 . SN >
ID
A1t >—¢ J fl 1D
1D
: {>o0—¢- 1D
- CLOCK i |
A10
)
1D
READ }
STROBE
DATA IN
‘WRITE -

[

A0~ A9

BMM

RS1

Rs2

DN

Diz

WE1

WE2

ouT1

ouT 2

+5V

DATA
ouT

Figure 4.,10-6. 8K x 1 Application

4-65

Page Select

Figure 4.10-7.

Riesling Storage Page Block Diagram

Read/Write Zj
Start CONTROL it
Clock ;; AND I
Byte Select 1-4 - TIMING =
a
Enable: In o
o
. 7 5]
Mem In 0-17 Input Data g Read Enable
hr
Buffer El, | Load SDR Clock
-Chip Select
¥ Pull-
- . Ups
Addr 2-4 . Decode Read Strope
'K {
o o~ Tri~State
P ! BMM Array - - Buffer
ol o Register .
b -] 3
18 Modules —L—h —-——;-8—-&-
B
Addr 5-13 Interface
Drivers .
S—
? 8 4 A '
+8.5V I
. Voltage +3.3V
+5.0V ' Regulator
"300‘]

BUSY

ADVANCE

Men Cut Q=17

The AOTC chips contain parity trees which are used in the generation of parity.

If the input to the ninth bit of the parity generator is tied to a one, the

output of the parity network for that chip will be the proper value to store as

a parity bit in the memory. If the ninth input is a ground (zero) signal, false
parity will be generated, The SUMC-IIB provides the ability to force a parity
error by tying the ninth input bit to the complement of the Load IR Right signal.#®

Thus, whenever the load is a 1R RIGHT signal and a store operation is indicated,
false parity will be stored. This will be used by the diagnose instruction to
allow the parity generation and checking network to be checked for proper operation.
To ensure proper storing of false parity, both the micro program control word

which initiates a memory operation and the following it must indicate a Load IR
Right.

Parity checking is performed on a2 byte basis with these parity signals sent to
the SIL module where they are ORed together before being sent either to the CPU
or the DMA.

Storage protection is provided to prevent inadvertent writing over permanent data

or instructions which should not be modified during the mnormal program operation.

The storage protect feature divides the memory into segments of 512 half-words.

Each segment can be protected or not under program control (priviledged instruction).
Thus the CPU slice has four lé-word registers to hold the storage protect words

for 64K-bytes of memory. The CPU can load the storage protect register by initiating
special memory operations (refer to Table 4,10-1)., If the no-op code is used in
combination with the write-move mode of operation the contents of the PRR will be
loaded into the appropriate storage protect register. When a store operation is
requested by CPU or DMA, the most significant bits (bits 2 thru 5) are used to
address the storage protect register, If the address corresponds to a protected
area, a storage protect violation signal is generated and sent back to the SIL
module. Write operations will be converted to read operations when a storage
protect violation occurs. The storage protect violation signal is valid at the

rise of chip select time. Due to the way the SDR multiplexer is controlled, the
contents of the SDR at the end of a memory operation involving storage protect
viclation will be some cowmbination of the data lcaded im from the PRR at the
begimming of the write and the data read from the array in the converted read
operation. At this time, the contents of the SDR, at the end of such an operation,
will not be specified.

On a CPU operation, the exceptional conditions result in forcing an MROM branch
to location zero and setting an error latch in the CPU. While this error lateh
is set, scratch pad memory store operations and memory read or write operations
will be suppressed by a signal called Write Valid being in a zero state. When
Write Valid is a zero, it forces all memory operations which are requested to
perform as ifi ML and M2 bits of the microprogram word were zeros, Hence, some
form of no-op will be performed. Thus the SDR can be loaded and the storage
protect registers can be loaded but the memcry cannot be cycled in either a read
or a write mode.

%Load 1R Right is a decode of MROM R14, R15, R16 = 100.

4-67

4.,10.5 Timing

To facilitate changes to the memory technology without changes to the CPU logic,
an asynchronous interface is provided. The CPU requests memory service by the
state of the ML - M4 bits of the microprogram word at CKZ time. The fall of

CKZ starts the memory operation and the memory informs the CPU that the operation
is complete by dropping its busy signal. For a read-and-~hold operation the
advance signal indicates completion of the read portion. The busy does not fall
until a subsequent write coperation occurs. If the CPU is ready for data before
the data is ready, the CPU will hold in a state called LIMBO until the memory is
ready. Conversely, the Memory will hold the data until the CPU uses it. See
Figure 4.10-8,

4.,10.6 Interfaces

The storage interfaces are listed and described below. The drive capability of
the memory interface is shown in Table 4.10-2.

Start Starts a memory cycle
Busy Indicates a memory operation is in progress
Advance Fall of advance is used to restart the CPU

timing during a storage operation

Addr (2-13) In conjunction with page select and byte signals,
provides addressing of the storage pages.

Pg Sel (1-4) Uniquely selects one of four pages dependent upon
the two most significant address bits A0 and Al
Byte (1-4) Selects the proper byte or bytes for a particular
memory operation {(dependent upon Al4 and AlS)
Write Logic 1 indicates the current memory operation
is to be a STORE operation. Logic 0 indicates
a READ,
MEM OUT (0-15) Contains the data for a store operation
CLK A 9 MHz clock signal for use by the storage pages

as required.

4-68

69-%

SOURCE
CPU
MEMOH;Y
MEMORY
CPU

CPU

CPU

CPU

CPU

CLK

FIGURE 4.10-8.

SlaNAL

- S8TAR]

+ BUSY

+ ADVANCE

Abuvnesy

DATA

— PAuk SELELT

BYTE ENABLE

+WRITE

=8.08 hHZ

MEMORY TIMING

TIME

: < 100 NS AFTER RISE OF BUSY

(FALLS DURING DOWN TIME OF CLOCK)

(FALL INDICATES COMPLETION OF MEMORY CYCLE)

< 250 NS BEFORE DATA IS VALID ON READ

> 0 NS AFTER FALL OF BUSY

b < 260 NS <~>50 N
|

[————& <350 NS

[

[< 200 NS

] {
f¢——> < 300NS

BEFORE OR COINCIDENT wiTH — START

> 0 NS AFTER FALL OF BUSY

I@" < 200 NS

BEFORE OR COINCIDENT WITH - START

Table 4.10-2, Memory Interface Drive

NAME EQUIVALENT TTL LOADS
Start 8
Busy 4
Adv. 4
Addr. (2-13) 4
Pg Sel (1-4) 7
Byte (1-4) 8
Write 8
Clk S/N 54128W
Mem Out 4 D

4-70

4.11 SUMC-IIB I/0 DESCRIPTION

The I/0 section of the SUMC-IIB provides the means of communication between
system 1/0, test support equipment (TSE), and the CPU/main store (MS). In the
SUMC-IIB the I/0 is implemented as a 16-bit parallel channel providing direct
I/0, buffered 1/0, external interrupt, and (optionally) direct memory access
(DMA). The standard DMA facility 1s provided as a separate interface. Figure
4.11-1 is an T/0 block diagram showing the integrated DMA. Figure 4.11-2 shows
the interfaces between the I/0 and all other hardware.

The I/0 channel is switched between system I/0 and TSE, under TSE control. Under
normal operation the tester will not switch the input multiplexer unless the I/0
has acknowledged the tester's service request. With manual intervention, however,
an operator can gain system control by use of a manual override switch.

The DMA is handled directly between 1/0 and main store. The only impact on the
CPU is the slowing of program execution due to DMA "stolen" memory cycles.

If the CPU and DMA are both making continuous recuests for service, the MS will
give cycles alternately to the CPU and DMA. For this purpose, a read/modify/
store operation is considered to be one memory cycle.

The TSE to computer interface is made up of two separate paths. Commands and
data from the CPU come directly from the CPU via the TSE MUX, Since this path
is required for monitoring registers within the computer there is no need for
an additional data path. Data and channel code words to the CPU go via the I/0
interface and follow the format of the System I/0. Using the I/0 interface
allows a single input in the data path to serve both the TSE and System I/0.

4.11.1 System I/0 (Integrated Channel)

This section describes the interface of the SUMC-IIB with other system equipment.
The interface provides a 16-bit parallel channel which can be used in several
operating modes. A four-bit device identification code permits up to 16 system
devices to be attached directly to the I/O channel but sub-multiplexing can be
provided on a single device ID for additional devices, if necessary. An alternate
approach to system I/0 is to attach an Input Output Adapter IOA to the I/0

channel and handle all I/0 through it. This approach could facilitate analog

1/0, serial I/0, and implement interrupt masking and priorities. Such an IOA
could provide a S/360 standard interface to peripheral devices.

The integrated I/0 channel provides three types of device initiated information
transfer: (1) Buffered I/0, (2) Direct Memory Access (DMA)*, and (3) External
Interrupts. Program initiated I/0 is provided by the SI0O Instruction (Direct I/0).
For device initiated I/0, the channel is tied up from the time the device

requests service until it deactivates the service request line. Therefore, it is
important that each device use the I/O0 mode best suited for its I/0 usage and not
tie up the channel for unnecessary time. A device must deactivate all channel
control lines INPUT, DMA, etc., before detaching from the channel. The service

#Available as part of the integrated I/0 channel or as a stand alone interface.

4-71

= 8 . =
& @ 3 . 2
& f 2
= o = 10REG (0 15) \
=080 (0-15) <T— Y |7 >
e - £ i ADDRESS
. LOCKOUT
«~LOCKOUT]'>c >
REG| 3.z
Rl
-
K CLKZ MUX REG
1SEQ)
A ap sf\ch & 2
b b y -
M A A A .-
3 cMo_(HS) a|l 5] 18] 1. MEMOUT {0 15)
=BRANCH_oOuUT® \
3:8 COMMANDS
‘ 6° (DECODED) _
G 8 -
~0DREQ » P ber [PDREQL < 2y STORAGE
~TDREQ ———~ AT] ol) LOGIC
PA0BLIOT ———{> X .
LSTBHO 7 ———— > = - IOTSE {0 15}
~EXTINT : E +EXTINT » DATA
<TINT e < « .
~OBE [8-15) P> X
= tr
~T8} (815} ———— > 5
CLOCKS
TIMER ——pl—3-i 3:8 |€ =
3 /A VYVY v
e DMARDY
-IDCLKB 4~ SPECER
10 CONTROL CHIP [—ee——— +PARER
l————————"PROER
) e ADDRER
DEF [—r— CMACK /
- & -
—TSEL . > {2 CHIP CARRIER}
) —10CLKB
e Ly —
- vil g DFF [
= |geamame MRGM M6
~TSERVREQ > A < CLKZ
<} CLKY
- CMD [M5) > cru
. P e REG
) p— S —————
~TCMDO -t £ & |y INT
- S ———
~TSERVACK d—— 5 |l OMAPARITY
ADACK z I e DMA PROGRAM
- - E e . > usY /
A
TO STORAGE 4 YV
LoGIc J
DRIVERS
. DMSTORE
{£P)
*NOT REQ ON $/360
INSTRUCTION SET
« O ECy v
2 £8 5699
4 j=]
5 7z c 88z
4 - .8 # 11w
1 T
| W / DRIG]NAL‘ PAGE 18
1o craL POOR ovrar mwr

Figure 4.11.-1.. SUMC-IIB 1/0 Block Diagram (with Integrated DMA)
472

¥ hat

ERROR RESET

MAIN

STORAGE
INCLUDING
STORAGE
INTERFACE LOGIC)

MODE CTRL (3}

&f @OV TYNIDIHO

RIFIVOD 9004 J0

=

THIS GROUP OF LINES COME

N FROM THE DMA DEVICE
WHEN DMA IS SEPARATED,

TEST
SUPPORT
EQUIPMENT

EXT OSC & CTRL
 WRITE VALID ALL CLOCKS N
o MAM {015) . FOMCTAL 12} i
4 PRA (015} IROM ADDR {8} :
«CK2. 08¢ MROM ADDR (12} :
o M1, 113, 14 cPU g oM (161 .
CPSOR (0-15) a o MAOM (54" :
ST BZY : | MUX SEL (3} N
CPUERROR , 4 - TMA [0-15)
’ TMB (0-15)
a.._ﬂ = [Y E ,g. - al 2‘{ LOAD IRL .
3 a] x| &) <] G =] o|Zjuw TDACK >
af 3 Yy vy vyvyic
_ IDTSE (0-15)** » B (0-15)
«1OREG (0.15)°* _ -TDREQ
MEM IN (0-15}** N | -TINT
< STORE"* : -TSEL
o LOCKOUT* : -TSERVREQ
___DMA READY"* R TSERVACK
DMACK™ > e .ISERVACK
DM STORE™" —— > JODACK
DMERROR , 4 . (t)h{.r'l':ll’-’t.JT — 5 .JoCMDO

——————- -BRANCH OUT
[ZERO CNT
pre——————— -RESET
[———— -I0BO (0-15}

| ——— . -10BI {0-15}
e -INPUT
l——— . -DMA™"
——— . EXTINT
'€— ——— -lODREQ
. -ISERVREQ
g -LOGKOUT*"

*FOR AUX TEST PANEL ONLY
"*FOR INTEGRATED DMA ONLY

request line shall be controlled by the devices so that a new service request
is not generated until the I/0 deactivates service acknowledge.

4.11.1.1 Buffered I/0 allows a device to transfer single or multiple words of
data to/from a table in main memory without knowing the location of the table.
The CPU hardware and microcode keep track of table word count and address
incrementing. When the table is full/empty the device is notified by a signal
on the -ZERO COUNT line. Separate input and output tables are maintained for
each Buffered device code (16 codes). The microcode uses four, 16 word tables
located by the programmer in memory to keep track of input storage address and
count, and output storage address and count for the 16 devices. The fixed memory
location 12 (§/360 CAW) is used as a pointer to the location of the 84 word
Buffered I/0 table. Buffered I/0 sequences are shown in Figures 4.11-3 and
4.11-4, The device provides an I/0 Channel Code word to the CPU to identify the
service desired (see Table 4.11-1),

The programmer controls buffered I/0 by initialization of the address and word
count memory locations and can start an I/0 device by use of a direct output
command which is described later in this section. Alternatively the device can
use an external interrupt to notify the program that the buffer table has been
filled/emptied. (Interrupt is also described later in this section.)

It should be noted that even though the CPU hardware is interrupted to handle
the buffered I/0 transfers the program is not interrupted and the time consuming
save operations associated with program interrupt are mot required. Buffered
1/0 operations are handled between instructions and do not use any register
visible to the programmer.

4,11.1.2 Direct Memory Access provides the fastest means of transferring data
to or from main storage. This description is for the DMA as an integrated
feature of the I/0 channel. DMA as a separate interface is described in
paragraph 4.11.2. Both waiting time and transfer rate are faster than other
I/0 modes. The CPU hardware does not participate in the DMA operations and,
therefore, DMA operations can take place in the middle of an instruction. If
the CPU is not requesting memory service at the time a DMA operation takes
place, there will be no impact on CPU performance. In case of conflicts between
CPU and DMA, memory service is alternated so that neither can lock the other
out (except for the I/0 use of LOCKOUT which will be explained later). DMA
service is device initiated by seizing the channel (connect). After seizure,
one or more words can be transferred. The channel is tied up until the device
releases it by deactivating service request.

After the device comnects to the channel, DMA operation is a series of independent
read and write cycles. Read and write operations can be mixed but with the
following stipulation. The ~INPUT line must be stable from the fall of -IODREQ
(indicating address valid) to completion of that memory cycle. An input (store)
cycle is complete when the second ~IODACK pulse rises (ends). And an output

4=74

{(D—I) - SERV REQ
(I—D) -SERVACK
(D 1I)-DMA

(D. .I) ~-EXTINT
(D- 1) ~INPUT

(D) -IOBI (0~15)
(1)
(D—1I) -IODREQ
(I~ .C) INT

(I--»C) REQ

(C- ~I) ACK (MS5)
(I D) -IODACK
(C} PRR (0-15)

(C—I) CMD (M5)

(I —D) -ZEROCNT

&~ SIGNAL SOURCE;
1

-
%]

IOREG (0-~15)

(D)
(1)

(©)

Connect

N

Disconnect

Vo
S

Buffered I/O is the absence of DMA and Interrupt

/Data and data valid

can be
iransfers

CODE WORD / \ DATA
repeated for block
PN T e o
: WORD _/\ DATA \)
Code)
N Valid Data Valid 71
> _/ ';v

-

fGot it

—
"

/E ero Cn{_\

N

N

command

/CMD VALN

DEVICE
1/O PART OF SUMC-IIB
CPrU

L (I 1}

FIGURE 4.11-3

BUFFERED INPUT SEQUENCE

(D
(1
(D
(D
(D
(D
(1)
(I
(C)
(D
(I
(1

(C
(I

I) ~SERVREQ

D) -SERVACK

I) -DMA

I) -EXTINT

I) ~INPUT

I) -IOBI (0~15)
IOREG (0-15)

D) -IOBO (0-15)
PRR (0-15)

I) ~-IODREQ

C) INT ##%

C) REQ

I) CMD (Ms) #

D) -ZERO CNT *

I) ACK (Mé)
D) -IODACK

Signal Source: (C) = CPU

Connect

l

sconhect

Buifered I/0 is the absence of DMA and interrupt

L T -

Commmand

————— 1 Code - ‘
' \ Valid / S \ Data | Request *%

/Zerol Cnt \c':c / |Data \

_/

Got' It /Mh[tipl

e Data Reques

give blgck transfers

=N

|

\

Val

/ Got It \

Data

Valid

* Zero count is generated by the CPU before
transfer of the word which will fill/empty the
memory buffer area,

(I} =1/0 paxt |
- of SUMC~IIB
(D) = Device

device

%k Rise of ~-TODREQ indicates receipt of data by the

/

Figure 4.11-4. BUFFERED

OUTRUT
SEQUENCE

'TIA_.BLE 4. 11-10

I/0 CHANNEL CODE WORD

T I/0

CPU

EX- |UNUSED DEVICE FUNCT.
INT "USE | ADDRESS | CODE
BIT 0 1 2 3 5 6 7 8 11 12 15
IOTSE
BITS USE
LOGIC 0 - I/O SERVICE

0 NORMAL CONVENTION

LOGIC 1 - TSE INTERRUPT
[LOGIC 1 ~ BUFFERED INPUT USED ONLY
1 L4
(. LOGIC 0 - BUFFERED OUTPUT FOR BIT 0
LOGIC 1 - EXTERNAL INTERRUPT -0
2 \
"LOGIC 0 - BUFFERED I1/0
3-4 ' DMA ERROR
5 UNUSED
- CPU USE
-15 TAG (DEVICE ADDRESS) OR INTERRUPT
GCODE

Note: The device or tester is responsible for generating the code word in

the format shown above, but inverted bit-by-bit at the cable,

477

(read) cycle is complete when the memory drops DMACK (about 100 ns after the
device raises - IODREQ).

On a store operation the device first provides the address and signals its
validity by dropping - IODREQ. The I/O stores the address in the IOREG (see
Figure 4.11-1), signals receipt of the address with -IODACK and completes

the "handshaking" with the device. When ready, the device places the data on
the bus and again signals with -IODREQ. The I/0 issues DMA RDY to the memory
subsystem. When the store operation is complete the memory raises DMACK to
signal that the data has been stored, and the handshaking is completed (see

Figure 4.11-5).

The direct memory read is very similar to write from the device's point of view
but is somewhat simplified at the I/0 to memory interface (see Figure 4.11-6).
The device provides the address as before and the I/0 stores it and generates

a DMA RDY signal to the memory which (in conjunction with STORE = 0) initiates
the memory read. If the memory is idle the read will begin immediately. If
busy the read will not be started until the current memory operation is complete.
When the memory has performed the read and the data are on the MEMOUT lines, the
DMACK line is raised to the I/0. Meanwhile the I/0 uses -IODACK to acknowledge
receipt of the address. When the device is ready it requests the data by again
dropping -IODREQ. If the memory has read the data it will be waiting and the
1/0 will respond immediately with -IODACK. If memory is not ready the —TIODACK
signal will be held up until DMACK signals the memory read is complete. The
device acknowledges receipt of the data by raising -IODREQ and the I/0 responds
by raising -IODACK to the device and dropping DMA RDY to the memory. Since the
I/0 has a register for DMA data, device delays in requesting data do not hold

up the CPU but the shared I/0 bus is tied up.

By switching the ~INPUT line from high (read) to low (store) between memory
cycles, a device can perform a read/modify/store operation but the CPU is not
kept out of memory between the read and store cycles no matter how fast the
modify operation is. (The memory will alternate memory cycles between the CPU
and I/0 when there are conflicting requests.)

A line named -LOCKOUT is used to keep the CPU from using memory when it might
interfere with DMA operation. The device must drop -LOCKOUT before starting the
memory cycle., +LOCKOUT is sent to the memory. This signal has no effect on

the memory until a DMA operation is requested by the device and granted by the
memory. Thereafter, the CPU will be locked out of memory (memory busy is sent
to the CPU) as long as the +LOCKOUT is held up.

All DMA operations are 16 bits wide. Any device can, of ‘course, read a 16-bit
word and only use part of it. Storing partial words, however, imposes greater
problems. A device can read a half-word, modify the word, then store it in the
same location effecting a part-word store. If, however, the CPU stores something
in that location after the read but before the restore it will be destroyed.

4-78

CONNECT DISCONNECT
(D—T)-SERVREQ ~ |\,
(I—DSERVACK . | _ ; /
(D—sI)~DMA. A
(D—Iy~-INPUT N
(I->8) STORE / AN
(D-—I)-IOBI (0-15) \ | ADDRESS \. | DATA ADDRESS AND DATA WILL
- o REPEAT FOR MULTIPLE
: 5 ~TRANSFERS - - —
3 (I) IOREG (0-15) —(ADDRESS \TR NSFER
———— | }ADDRESH DATA
(D—T1)-IODREQ . LID - ;;
(I) IOTSE (0-15) /| ADDRESS /| | DATA L:
{I—>S) DMARDY
(S->I) DMACK i % PFORE{
| OMPLETE
GOT I o
(I—DIODACK }q) 1{ S
SIGNAL SOURCE: (D) = DEVICE MEMORY FIGURE 4.11-5
(I} =1/0 PART OF HTC STORE =
(S) = STORAGE PART OF HTC CYCLE DMA INPUT SEQUENCE

—1\ CONNECT DISCONNECT
(D I)-SERVREQ |\
(I D) -SERVACK N\ /
(D I) -DMA \ | ST
(D, 1).-INPUT e e S A
(I S) STORE T e e R B e
= L
(D 1) ~-IOBI (0-15) \ LDDRESS / " ADDRESS ANL} DATA WILL
REPEAT FOR|MULTIPLE
&= t TRANSF ERS
% (I) IOREG(0-15) AADDRESS~_ _ _ __ _ _ 1%} _DATA S
(I D) -IOBO (0-15) " DATA 4
(S I) MEM OUT / WV Bara K
{0-15) % . N\
l . *
- DRESS 44 DATA |
(D 1) ~IODREQ PIVALT \ - QUES%T(‘—GOT IT
(:(
(I S) DMARDY >4 ' ’ \ { e
(S I) DMACK J _ 4 _/DATA
\ . sor i VALID

(I D) ~IODACK IT T A

SIGNAL SOURCE:. (D) = DEVICE MEMORY FIGURE 4.11-6

(I} =I/0 PART OF SUMC~-IIB READ

(S) = STORAGE PART OF SUMC-IIB DMA OUTPUT SEQUENCE .

* If data request comes before Data Valid ~-IODACK will ha dalawad

Storage assignments (table size) should be made to avoid this problem, however,
LOCKOUT can be used to prevent this. Due to the sensitive nature of the LOCKOUT
signal it will not generally be made available to I/0 devices. Interface units
having access to the lockout features will be able to keep the CPU out of

memory during a read/modify/store operation and for high speed bursts of I/0 data.

During a DMA operation, the I/0 provides DMA error processing. The I/C provides
two gated signals to the CPU, One signal is the DMA parity error and is gated
by MROM M6. The second is the logical OR of three DMA error signals (Store
Protect, Address, or Specification) also gated by MROM M6. Any DMA error signal
causes the following:

] CPU Interrupt
e Reset I/0 Register
e Terminate DMA Qperation

4.11.1.3 External Interrupt permits a device to interrupt the normal program
sequence, Interrupt handling is done by microcode so it is an architectural
function. The SUMC-IIB transfers control to the supervisor by storing the old
PSW and loading a new one (as done by $/360). A single hardware level of I/0
interrupt is provided. Programmed, or microprogrammed priorities can be imple-
mented. All I/0 interrupts can be enabled/inhibited by the set system mask
instruction or similar microcode (described in Direct I/0 subsystem).

In the interrupt sequence an I/0 Channel Code word is sent from the device to

the computer for use by the interrupt handling microprogram and the subsequent
interrupt program associated with the interrupting device. The interrupt sequence
is shown in Figure 4.11-7 and the I/0 Channel Code Word format is shown in

Table 4.11-1,

4,11.1.4 Direct I/0 provides two types of service: (1) command and .data trans—
fers with I/0 devices and (2) CPU to I/0 control operations. All of the

operations involve the CPU generating a command word in the PRR and identifying

it by microprogram bit M5. The command words are shown-in Figure 4.11-8. The
first four and system reset are programmer initiated by use of the Start I/0
instruction. Zero Count is embedded in the buffered I/0 microcode sequence and
cannot be programmer initiated. Branch Out and Set Interrupt Mask are part of the
microcode for non-I/0 instructions. Branch Qut is a special branch instruction
used to end an interrupt program and is not supported in System/360. Set Interrupt
Mask is part of Set System Mask and Load PSW instructions.

Only the Direct Input and Output instructions place command words on the output
but for I/0 devices. Direct Input and Output follow the sequences of Figures
4,11-9 and 4.11-10, respectively. Test and Reset Interface follow the sequences
of Figures 4.11-11 and the remaining four command types use the non hand shaking
sequence of Figure 4.11-12,

4-81

atAaf!

DISCONNECT

| CONNECT
(D— 1 ~ SERVREQ |\
(I—D) < SERVACK | \ /
(D—o1I) =~ EXTINT N\
N\ CCOE WORD
(D—31) - IOBI (0-15) o
A CODEIN T T T T T i A
0-15) .
b(z._;C) IOREG () - | Wworp
% CoDpE

N(D—~»I) ~ IODREQ _ VALID

(I—>C) + INT

(C—I) . ACK (M6) GoT 'Fi
(I—D) - IODACK TN L

SIGNAL SOURCE: (P) = DEVICE FIGURE 4&.11-7

(I) =1/0 PART OF SUMC-IIB
(C) = CPU EXTERNAL INTERR1

SEQUENCE.

PRR WORD

5 6 7 8 15

0] 4
l 1-1] 1 1 1 commanp! | DIRECT OUTPUTZ
0-0] 0] o ! o COMMAND I] DIRECT INPUT2
o0 U0 T 1 [1 T xomoos X RESET INTERFACE
(ftalt I/0)

lool 1] 1] 0 [x mmmmmmees X TEST INTERFACE?

| 0-0] 1 IR e —— X | ZERO COUNT

Lo-o] 1] 0] 1 | S X] BRANCH OUT

Loo] o o] 1 [x-comas x| M | SET INTERRUPT MASK3

l 0-0f 0} 1] 0| X wicmacens X SYSTEM RESET

NOTES:

1, The least significant 4 bits of the command are the device address,
The most significant bit of the 8 bit command shall be a 1 for an
I/0 command and a 0 for a TSE command. The signals on the I/0
bus out will be the logical complement of that in the CPU due to the
inverti;:lg drivers.

2. Fo¥ direct in, direct out, or test interface, the I/O logic will place
a 1 in ALU transfer field bit location 0 before raising the ACK line
if the channel is busy. Direct input or output will be terminated if
the channel is busy, and will place the l16 bit command word on the
Bus Out if not busy,

3. If M equals 0 all I/O and TSE interrupts will be inhibited. Inhibited
interrupts will remain pending and the I/O channel will be hung.

Figure 4.11-8. Direct I/0 Command Word

4-83

(C—>I) PRR (0-15) / COMMAND WORD \

(C—5I) CcMD (M5) CMD VAL AT RISE \“_
(I—sD}IOBO (0-15) W?@MD worp s/
(I——»D}IOCMDO A COMMAND ST
y VALID
DATA

(D—s1) TODREQ OT IT _VALID
{I>C)REQ } GOT IT DATA

/ &‘ VALID }

O — 7 T T T T SY- - - -
I (I) IOREG (0-15) CMD A DATA Y IDATA
* /
(C—3I) ACK (M6) A GOT IT

(D—sI) -IOBI (0-15) I ____ DAT /
(I—D)-IODACK
> GOT IT

Signal Source: (D) = Device

= £ _
EIC)) = i:/SUPart of SIMC-LIB FIGURE 4.11:9

DIRECT IN SEQUENCE

If Channel is busy the command word and command
valid signals will be suppressed and the busy bit (IOTSE 0}
set to one before the REQ line is raised to the CPU.

(C 1) PRR (0-15) / COMMAND WORD \ DATA

N
(C I} CMD (M5). 1 EMD VAL AT RISE \
/_____

- . y
(I) - I0BO (0-15) Rempworpx _ / — — _— _ _ 1'NXopara [/
(I D)- 10CMD ANCOMMAND /
(ﬁrALID
o 1 : READY
R - IODREQ S GOT IT FOR DATA GOT IT
ot
i
K
(I C) REQ GOT IT Ny / GOT IT
- - - - T =T \
I) IOREG (0-15 DATA
@) (0-15) |\ CMD \\ PPN 17,
(C I) ACK (M6) . N o P pATA VAL
F
(I D)-IODACK N¢ X “NPATA VAL
READ MEM
If Channel is busy the command word and command E EN
valid signals will be suppressed and the BUSY FIGURE 4.11-10
signal set to one before the REQ line is raised to
DIRECT OUT SEQUENCE

the CPU.
% If BUSY the CPU will drop CMD and terminate the

sequence,

(C) PRR (0-15) /

(C) CMD (M5) - ji

(I) REQ

Ve

11A: TEST INTERFACE

(I} Busy

11B: RESET INTERFACE

98-%

(I) ~-CMD

(I) ~ISERVACK

(D) ~ISERVREQ

Signal Source:
(C) = CPU

(L)

H

1/0 Logic

(D)

1]

Device

FIGUR®ES 4.11-11

Test and Reset Command

L8~%

(C) PRR (0-15) /

C-I CMD (M5)

(Iy COMMAND

ats

* The "Command'' line shows the timing relationship of the decoded PRR data for:

Zero Count, Branch Out,System Reset or Set Interrupt Mask. Duration of the pulse is one

microinstruction cycle.

Source:

(C)

1]

CPU

i}

(1) I/0 Logic

FIGURE 4.11-12

Commands Without Handshaking

Each time a Direct Input or Qutput instruction is executed, the I/0 hardware
will place a logic one or zero in bit location zerc of the transfer field input
to the ALU MUX depending upon whether the I/0 channel is busy. A one indicates
busy and the I/0 sequence is terminated. The busy gignal is also used for test
interface. ’

The Direct I/0 command word is alsc used for CPU to I/0 commands. These six
commands were shown in Figure 4.11-8 and are explained below.

© Reset Interface immediately halts any I/0 operation and clears
the I/0 channel by lowering -IDCMDO while working -ISERVACK low.
Both lines will be held down until all devices have reset as
evidenced by no active service requests (either I/0 or tester).

e Zero Count sends a zero on the ~ZEROCNT line until the device
currently performing I/0 raises the -ISERVREQ line (DISCONNECT).

© Branch Out sends a zero on the -BRANCH OUT line for a duration
determined by the microcode. The pulse is used by an IOP with
hardware interrupt priority to facilitate unstacking interrupts,
The command is generated by the CPU at completion of an extrernal
interrupt program. This command is not used in support of §/360.

@ Test Interface tests for channel busy. A 1 in the @ bit location
of the transfer field at rise of ACK indicated busy.

e BSelt Tnterrupt Mask sets or clears a one bit interrupt mask with bit
15 of the Command Word. A one enables. interrupts. This mask allows
more freedom in writing the microprogram for interrupt handling
(especially register save). Interrupts should be re-enabled as soon
as possible because a request for another interrupt with the interrupts
masked OFF will lock up the channel.

® System Reset command and MROM M5 equal a logic ome activates the
system reset line at the I/0 interface. The reset is a negative
polarity pulse with a minimum duration of 4.5 u sec presented at
the I/0 interface.

Electromechanical devices such as typewriters, perforated tape readers, and
punches will have a special operation under Direct I/0, as shown below.

~ The SUMC-IIB I/0 places the command word and data word on the line
normally as shown in Figure 4.11-10.

— The addressed device takes the command and data word and starts
to perform the indicated operation (type a character, etc.)

4-88

- The DO sequence ig terminated and the channel freed up.
{All standard so far.) ’

(a)Programmer option: Normally during system operatiom, the
program would go do useful work while the device is executing
the command,

- When the device has completed its task and is ready for the next
task (such as type another character) it will generate a standard
I/0 interrupt to indicate device ready.

~ If the program had more tasks another DO would be generated and the
sequence repeats.

— If there were no more tasks the program would not respond with
another DO unless it were to turn the device off or otherwise
change its mode of operatiomn.

(b)Alternate option: Under abnormal conditions, when there is neither
useful program work nor other I1/0 operations going on, the programmer
nay immediately generate another DO instruction.

- The T/0 will generate the command word but since the device is
not ready it will not acknowledge the command and both the channel
and CPU will be hung-up until the device has finished the first task
and is ready for the next.

~ Then the device acknowledges the command (with ~IODREQ) and the
sequence proceeds.,

— Bule: If the next command is waiting when the device is ready the
interrupt sequence is suppressed.

The Direct IN (DI) sequence is similar to DO except that the normal sequence
would be to use a DO to "start reading'. When the device had the first word
ready, and held in a buffer, it would generate a ready interrupt and the
computer would respond with a direct in. Each time the device has a2 new
character (word) ready a ready interrupt is generated and the computer responds
with a DI instruction. The input operation is terminated either by the
program not sending the DI or by sending a DO to change mode, etc.

4,11.2 Direct Memory Access (Separate Interface)

This paragraph describes the DMA as a separate interface which is considered
standard. The integrated form is available as an option. This direct access
to main store provides the maximum data rate transfer between the computer and
device. The CPU hardware does not participate in the DMA operations, and,
therefore, DMA operations can take place in the, middle of an instruction.

4~89

If the CPU is not requesting memory service at the time a DMA operation

takes place, there will be no impact on CPU performance. In case of conflicts
between CPU and DMA, memory service is alternated so that neither can lock
the other out (except for the DMA use of LOCKOUT). DMA service is device
initiated by the -DMA READY signal. (See Figure 3.11-13)

On store operations the device places the address and data on their associated
input buses, drops INPUT Signal and signals its validity by dropping the -DMA
Ready signal. When the store operation is complete the memory control logic
raises the DMACK line to signal that the data has been stored and the handshaking
is completed. Reference Figure 4.11-14 for this DMA input sequence.

The DMA read is accomplished by the device placing the address of the location
to be read on the address bus and signaling it validity by dropping DMA Ready
signal. The memory support logic causes a memory read with the contents of the
addressed location placed on the DMA data bus out. Valid data on this bus

is signaled by the +DMA acknowledge line. Reference Figure 4.11-15 for this
DMA output sequence.

A line named ~LOCKOUT is used to keep the CPU from using memory when it might
interfere with DMA operation. The device must drop —LOCKOUT before starting

the memory cycle. This signal has no effect on the memory until a DMA operation
is requested by the device and granted by the memory. Thereafter, the CPU will
be locked out of memory (memory busy is sent to the CPU) as long as the LOCKOUT
is held down. The DMA lines are identified in Table 4.11-2.

During a DMA operation the following error conditions are checked and the
results indicated to the device.

@ DMA Parity Error

e DMA Store Protect Error

& DMA Specification Error

@ DMA Address or Specification Error

The Parity and Store Protect errors are latched in the CPU once they are detected.
The Specification and Address errors are present as long as the DMA address Is
present on the interface. .

4.11.2 I/0 Loading

The following identifies the loading characteristic of the imput output signals
for the I/0, DMA and TSE signals. .

1/0 and DMA OQutputs utilize a S/N 54128W line driver.

)

e I/0, DMA, and TSE Data and Address inputs present an equivalent
of one TTL load.

e I/0, DMA, and TSE presents an equivalent of no more than 3 TTL
loads.

» TSE Outputs provide an equivalent output of a S/N 5404W.

4-90

T6-%

/O CHANNEL

e DIRECT
TSE TSE » BUFFER
ouTpuT A INPUT o INTERRUPT
+ vb - | DMA RDY
CPU gSANNEL
PARITY ER - ’ < 16 DIB S
- H DMA
"ADDR ER*] —{ < 16 AIB (INPUTS
DMA < SPECER >< vemory la INPUT
QUTPUTS DACK iINTERFACE LOCKOUT
LOGIC =
L o ER RESET
16 DOB
oo WITe
MEMORY

FIGURE 4.11-13. DMA BLOCK DIAGRAM

*ADDRESS OR SPECIFICATION ERROR

oY

A

dd

DATA INPUT BUS 7 DATA VALID

ADDRESS INPUT BUS ._/ ADDRESS VALID

INPUT ___///

-

DATA READY “

DATA ACK

FIGURE 4.11-14. DMA STORE SEQUENCE

£6~4

: 3
/ ; {
ADDRESS INPUT BUS ADDRESS VALID \
DATA VALID

¢ 200 NSEC
DATA OUTPUT BUS _/_
DATA READY /

DATA ACK

FIGURE 4.11-15. DMA READ SEQUENCE

Table 4.11-2,

SIGNAL

DMA Signal Definition

DEFINITION

+ADDR (0-15)

4+DATA IN (0-15)
(SUMC~IIB Input)

-DATA OUT (0-15)
(SUMC~TIB OQutput)

~DMA READY
{SUMC-IIB Input)

-DMA Input
(SUMC-1IB Input)

~LOCKOUT
(SUMC-IIB Input)

+DMA ERROR RESET
(SUMC-IIB Input)

+DMACK

(SUMC-IIB Output)

-DMA Parity Error

~DMA Store Protect
-DMA Specification
Error

-DMA Address or

Specification Error

The 16 address lines associated with a memory
operation. These lines must be stable 100ns
before the fall of -DMA READY,)

The 16 data lines used by the controller to provide
data to the SUMC-IIB for storage operations. These
lines must be stable at the fall of -DMA READY.

The 16 data lines from the SUMC-IIB to the
controller for read operations. These lines will be
valid at the rise of +DMACK until DMA READY is removed.

The one-to-zero (high-togground) transition of this
line initiates a DMA operation at completion of the
current CPU memory operation. Individual line
definitions define the timing relationships of data
and control lines to this line.

A zero on this line (100ns before fall of -DMA READY)
indicates a store operation i% to be performed.

If this signal is held at ground, the SUMC-IIB will
not grand CPU memory cycles at completion of the
current DMA cycle; but will hold the memory for DMA
use. The controller can change back and forth between
read and write operations under lockout conditions.

When this line is at ground the parity and store
protect error latches will be reset. This signal
must have a ground condition for at least 100 ms.

A one-to-zero transitiom on this line indicates
completion of the DMA cycle.

Indicates bad parity occurred on Memory Read.

Indicates memory location is protected against write
operation.)

Indicates a Byte memory operation is requested
(least significant address bit = 1),

Indicates a memory location was addressed with an

address greater than memory implemented or the least
significant address bit was a ONE.

4—94,

Table 4.11-3,

I/0 Interface Line Definition

A minus (-) sign in front of the signal name indicates that a logic 1 is
represented by a ground level.

SIGYAL NAME

DEFINITION

-ISERVACK

-TSERVACK

-I0DACK

-I0CMDO

-BRANCH OUT

-ZERO COUNT

-10BO (0-15)

-IOBI (0~15)

-INPUT

—DMA*

~EXTINT
-ITINT

~IODREQ

A unique line which indicates that an I1/0 device has
control of the channel for an externally controlled
I/0 operation, a

Like —~ISERVACK except dedicated to the tester.

For input from an I/0 device, indicates reception of
data; for output to an I0 device, indicates valid data
on bus (used by both I/0 devices- and tester).

Informs device that a command is on the out bus (used
by devices and tester).
1

A pulse on this line indicates that the CPU has branched
from an interrupt routine (not used to support S/360
architecture).

A pulse on this line indicates that the current word
being transferred to (from) an I/0 buffer will £ill
(or empty) the buffer.

Data Out bus. For data output I/0 devices, this bus

is valid during the time -IODACK is active. For command
word output, this bus is valid between the activation

of ~IOCMDO and -IODACK.

This is a time multiplexed bus used to input data,
direct memory access storage address, device identity,
and interrupt codes. :

For externally controlled I/0 (DMA* and Buffered 1/0),
activation causes an input sequence.

For externally controlled I/0, specifies a direct memory
access operation,

Specifies that the attachment is for an external interrupt

Like —EXTINT but dedicated to the tester.

For input from a device, indicates good data on the
input bus; for output to a device, requests the channel
to place data on the output bus.

#When the DMA is integrated into the channel.

4-95

Tab le 4] 11— ‘3.

I1/0 Interface Line Definition (Continued)

SIGNAL NAME DEFINITIGN

~TSERVREQ Unique line with which a device requests control
of the channel for an externally controlled I/0
operation,

—TSERVREQ Like -ISERVREQ but dedicated to the tester.

~LOCKOUT * When DMA service is granted the CPU is inhibited from
memory service if this line is dowm.

~TBI (0-15) This is an input bus used to send data and interrupt
codes from the tester.

~TDREQ For input from the tester, indicates good data on the
input bus; for output to the tester, requests the
channel to output data to the tester.

-TSEL This signal switches the IO/TESTER MUX to the tester
use, This line will not interrupt amother I/0 operation
without manual intervention by the operator.

IOREQ All T/0 data, addresses and command words go through
the I/0 Reg except data to be stored by DMA%, .

REQ For input, this line will inform the CPU that there
is good data on the input bus; for output, this line
requests the CPU to place data on the output bus.

-INT Informs the CPU that I/0 service is required either
for external interrupt or Buffered I/0.

CMD Informs the tester and I/0 portion that a command is
to be output,

~ACK For input from the tester or an I/0 device, indicates

reception of data; for output to the tester or an
I/0 device, indicates wvalid data,

Used when the DMA is integrated in the I/0 channel.

4-56

4,12 SUMC-IIB/TESTER INTERFACE

The SUMC-IIB/TSE Interface provides computer control, the capability to display
various registers, the capability to utilize read/write memories to simulate
the processor MROM and IROM, and a communications path between the computer and
select external devices {TSE, typewriter, tape reader). This interface is
depicted in Figure 4.12-1; the line descriptions are given in Table 4.12-1.

4,12.1 Computer Control

The start/stop line provides the capability to start or stop CPU operation at any
given time. The TSE utilizes this start/stop line and the pressure of bit

R15 to provide the single instruction mode of operation. The TSE utilizes the
start/stop line and the MROM Address lines to provide the single micro instruction
mode of operation.

The reset line provides the TSE with the capability of resetting the processor.
4 pulse on this line causes the CPU to reset the MROM address to zero. The
oscillator control line provides the TSE with the capability to select either
the internal or external oscillator.

4.12,2 Displays

The SUMC-IIB/TSE interface utilizes two 6-input multiplexers to multiplex

out the contents of the different registers. Table 4.12-2 describes the data
selected through each multiplexer and the control inputs required. These
multiplexers are paired and controlled by three control lines from the TSE.
The contents of the Program Counter is "trapped" from the MAR at a particular
point in each instruction. The point at which the MAR contains the valid
program count 1s ldentified by the Load IR left signal from the computer.

4.12.3 IROM/MROM Simulator Memory Interface

The SUMC-IIB/TSE interface provides the capability to interface with two
external read/write memories. The interface will consist of the IROM and MROM
addresses, the IROM and MROM data, and the MROM/IROM select lines. The sequence
required for an IROM read is given in Figure 4.12-~2; the sequence required for
an MROM read is given in Fipure 4.12-3, '

4.12.4 Communications

The SUMC-IIB/TSE interface provides a Direct I/0 capability for communication
from the processor to the TSE, and an external interrupt capability for
communication from the TSE to the processor. Three different data transfer types
will be utilized for communications between the program and the TSE (including
typewriter and tape reader); they are:

4-97

Table 4,12=1 Tester Inlerface Lines

Yine Name Description Number Logic
System Resct Forces'the sequencer to zero 1 +
Oscillator Con- Sclects I' or an external source 1 +
trol ’
Clock CKX 1 -
Clock CKY 1 -
Clock CKZ -
MROM Select 1 selects CPU MROM, 0 1

sclects CSE MROXN
IROM Select 1 selects CPU IROM, 0 1

CSE IROM " -
IROMK Address 8 -
MROM Address) 12 -
IROM Data 18 +
MROM Data 96 +
Mux Control Selects TMA and TMD outputs. 3 +
TMA (0-15) Used to gate MAR, SAR, IR, 16 +

MQR, SPN, and IC
TMB (0-15) Used {o gate PRR, SDR, IR, 16 +

PS5V, CC, MQR16, and SPM

data .
MROM R15 Used to trap program counier 1 -
MROM MS (CAID) I/0O control line 1 +
MRON M6 (ACK 1/O control line 1 +

R

TBI (0-15) TSE data out 16 b Jb'ggc
TDREO I/0O contzrol line 1 .-‘Q
TINT 1/0 contyrol line 1 -
I'SEL I/0 control line 1 -

1 _ 00

Table 4,12-1,

Line Name

Tester Interface Lines (Cont'd)

Description Number Logic
Connect A negative level will indicate 1
the Tester is connected.
Start/Stop A positive level iudicates run, i
a2 negative level indicates
stop.
SCU Load Pulse Used by the Tester o read

data out of the NMROM

ORIGINAL PAGE IS
OF POOR QUALITY

4~99

Start/Stop

Conmnect

Reset

\
-

External Oscillator and Control (29

v

Clocks (3)

ROM Control (2)

SUMC-ITB - IROM (16) > - TESTER

< MROM. (64} SN
Mux Control (3)

A

TMA (0-15)

TMB (0-15)

SC;{_];,oad_Eilglse

R15 (MROM). S

CMD (M5)

i ACK (Mb) .

-

- TBI (0-15)

ememmee = TDREQ]

TR
1
]

M
t
-
b
2
=

——— . o e S n o i

Figure 4,12-1. SUMC-IIB/TSE Interface

4-~-100

Table 4, 12=2, Multiplexer A and B Controls

Output
1Control
Mux A (TSE 1) Mux B (TSE 2)

000 None None

001 SAR SDR

010 SPMA/IC SPMD

011 MQR PSW

100 MAR PRR (CMD/DATA)
101 None None

110 SA rc

111 . IR (LSB) IR (MSB)

4-101

z01-%

CKY —

IROM Read Pulse ___

Start/Stop

- - o .

400 ns

* This assumes the memory looks for a falling edge

Figure 4,12-2, TSE IROM Read

— - . e

e01-%

SCU Register Load —md

MROM Read Pulse

Start/Stop

TSE MROM Read

!

- ety

50 ns{50 nsl

350 ns

Y014

TMA, TMB
(PRR)

CMD

NS

Data

TSEL

2N

TDREQ

ACK

Figure 4.12-4.

CPU Command/Data OQut

SOT-%

TMA, TMB

(PRR) N\ Command
CMD _—

TSEL

TDREQ

ACK

TBI (0-15)

Figure 4.12-5.

CPU Command Out/CSE Data Response

\ Resp

SN

- o em -

' 50 ns

B |- S R

90T1-%

TSEL *

\ .
TBI (0-15) N
AN

TINT

TDREQ \\

ACK ///

% TSEL must not fall unless servreq is down

Figure 4.12-6. CSE Interrupt to CPU

(1)

(2)

(3)

CPU Command/Data Qut

The CPU Command/Data Out transfer results in the transfer of a

" command word and a data word to the TSE. Both the command word

and the data word will be contained in the PRR., The command
data will be read out through the SUMC-IIB/TSE multiplexer under
control of the TSE. The command and data will both be trans-—
ferred to the TSE and the sequence completed prior to completing
the command response. A sequence diagram for this transfer is
shown in Figure 4.12-4,

CPU Command Out/TSE Data Response

The CPU Command Out/Tester Data Response results in the transfer
of a command word to the TSE and a data response word to the CPU.
The command word will be contained in the PRR and will be read
out through the SUMC~IIB/TSE multiplexer under control of the TSE.
A sequence diagram for this transfer is shown in Figure 4.12-5.

TSE Interrupt to CPU
The TSE Interrupt to CPU transfer results in the transfer of a

16 bit interrupt code to the CPU. A sequence diagram for this
transfer is shown in Figure 4.12-6.

4-107

SECTION 5

SUMC-II B POWER SUPPLY FUNCTIONAL DESCRIPTION

5.1 General Description: The SUMC-IT B Power Supply consists of six modules
along with several transformers, discrete resistors, and capacitors packaged
on a flexible multi-layer printed eircuit board. The unit is capable of
supplying the voltages and power levels listed below in Table 5.1-1 while
operating from a 28 Vdc source in, accordance with MIL-STD-704A, Category A.

Table 5.1-1. Power Supply Outputs

Type Dutfut Voltage Current (Rated) Current (Max)
Main Loop +5 Vdc 25 Amps 28 Amps
SDR#* 4+8.5 Vdc 3 Amps 4 Amps
SDR#* -5 Vde#* 0.75 Amps 1.0 Amps
SDR* =3.15 Vde 0.06 Amps

The Power Supply will operate at efficiencies of 60% or better when delivering
the above rated currents.

5.2 Functional Description: The electronics of the Power Supply are described
in three parts; start circuitry, internal voltages, and main locp. These three
functional areas are readily described and understood as entities. A summary
following the three main functional descriptions discusses how the three elements
interact., (See Figure 5,2-1)

1., Start Circuitry: Application of prime power (+28 Vde) causes activation
* of the Start Regulator. The +12 Vdc output of this regulator is

supplied to the Start Oscillator and transformer (T4). The ac wave—
form across T4 is rectified and filtered to provide + and ~ 16 Vdc to
the Internal Voltage Circuitry. Safeguards in the Start Regulator
prevent cperation if the prime power input is below 19 Vdc or over
36 Vde. An input to the Start Regulator inhibits Start Oscillator
operation oace the Main Loop is up and stable. Both the Start Regulator
and Start Oscillator are referenced to prime power return. The + and
—16 Vdc outputs are referenced to output ground.

2. Internal Voltage Circuitry: The analog and logic circuitry in the
Power Supply réquire voltages of +12, +5, and -6 Vdc. The +12 Vde
and -6 Vdc power is developed by SDRs that are supplied their head
voltages from the Start Circuitry during start and by rectified and
filtered windings of the Magnetic Assembly once the Main Loop is up
and stable. The internally used +5 Vde is developed by an SDR that
uses the +12 Vde internal voltage as its head.

~ Series Dissipative Regulator
** — Not Implemented in Present Configuration

5-1

-5

S8
50
&
o= START FUNCTICN
Sy & SUPPORT VOLTAGES
&
3 =
&
T2t e START

iG

I
e

MAIN LOOP FUNCTION

+5Vde FEEDES CK

asc

l

ERROR | TIMING

AMP LOGIC
REF

MAIN

LaoP

POWER
TRANSISTORS

bl e -
gl AN OVER
| -2 i N CURRENT
+ 28 Vde E z \
[y
71 iy AN
START
“— REG - AN
N
. 12v8 +12vs N
- SDR
z N\
&1 [stAaRT | .
@l josc wsvs N\
= T4 +5VS
& SDR
o AN
" N
T2
4 I -EVS
- .6VS S
START SoR
TRANSFORMER I
- - 3,16 Vde OUT
- 316V
REG,
INTERNAL VOLTAGES VALID N\

ASSY

+5Vde
our
+8.5Vde
+B5V QuT
SOR I
LT
-5Vdo
-5V our
SDR
¢

PORN -

M
SN n

Figure 5.2-1. SUMC-IIB Power Supply Functional Diagram

POIN__yn.

One output voltage, -3.15Vde, because of the low current require-
ment (60 mA), is developed in the Internal Voltage Circuitry.

A precision voltage divider is provided (between the internal

-6 Vdc and output ground) with an output of -3.15 Vdc. The
voltage divider output is then buffered by a unity gain
operational amplifier.

The Internal Voltage Circuitry is configured such that the Main
Loop is not allowed to start until the internal voltages are up
and running. An inhibit from the +12 VSDR to the -6 VSDR keeps
the -6 VSDR from firing until the +12 V is up. Because of the
voltage divider action described above, the -3.15 Vde will not be
in spec until the -6 Vdc is up. Thus, monitoring the -3.13 Vdc
output for over/under voltage insures that the +12 Vde and -6 Vde
internal voltages are up and correct. Interestingly, the +5 Vdc
need not be monitored as a safeguard since the logic inm the

Main Loop will not run if it 1s not present.

All of the elements in the Internal Voltages Circuitry are
referenced to output ground.

Main Loop: The Main Loop of the Power Supply can best be envis-
ioned in servo terms. There is an energy source that dumps

varying amounts of energy into the Main Loop output capacitor

(+5 Vde output filter) under control of the Error Amplifier. The
Error Amplifier samples the output voltage and an internal reference
voltage, driving the energy source at a level that keeps the
reference and output equal,

The energy source in the Main Loop consists of the following
elements:

1} Oscillator

2) Timing Logic (Pulse Width Modulator)
3) Interstage Drive Transistors

4) Interstage Transformers

5) Main Loop Power Transistors

6) Magnetic Assembly

The Oscillator free runs continuously at a 25 KHz rate. Its output
is developed into base drive waveforms for the two Interstage

Drive Transistors. The amplitude of these base drive waveforms is

Interstage Drive Transistor Base Voltage Waveforms

Q1 Base r_j ' I 4-{__+.-Pulse Width
Q2 Base [1 []

5-3

constant, driving the two Interstage Drive Transistors between
saturation and cut off. The resultant current flow in the
Interstage Transformers causes base drive to develop in the Main
Loop Power Transistors, driving them alternately from saturation
to cut-off. The Power Transistors and Interstage Transformers
are configured such that a bootstrap effect in the transformers
forces a beta (gain) of five in the Power Iransistors, rendering
the circuit essentially insensitive to Power Transistor gain
variations.

Each time one of the Power Transistors fires, the resultant ENergy
in the Magnetic Assembly secondaries is rectified and stored in the
output capacitors. As the output load is varied, greater or lesser
amounts of energy must be dumped into the output capacitors to
maintain the required +5 Vdec Main Loop output voltage. The error
amplifier, responsible for controlling the output level, initiates
changes in the pulse width of the base drive to the Interstage
Drive Transistors. As the load increases (more current output) the
pulse width is increased, transferring more emergy to the output.
Conversely, as less current is required, the pulses become more
narrow,

.

Two additional secondaries on the Magnetic Assembly develop head
voltages for a +8.5 Vdc and a -5 Vde SDR.

Interaction: The interaction of the three functional groups dis-
cussed above is described in the following power-on sequence.

a) <428 Vdc Prime Power is applied

b) If the Prime Power is in spec, the Start Regulator powers
the Start Oscillator

c) The Btart Oscillator provides 416 Vdc head voltages for the
Internal Voltages

d) +12 Vde Internal Voltage regulates and releases -6V SDR

e) -6 Vde SDR Regulates

£) ~3.15 Vdc Output comes in spec

g) -3.15 Vdc valid and start from the Start Regulator cause
the Start Control to release the Main Loop and begin out-
putting the system Timing Signals; Power On Reset Not (PORI) ,
Inhibit Main Store Not (IMSN), and Power Off Inhibit Not (POIN).

h) The Main Loop, +8.5 Vdc SDR, and -5 Vde SDR regulate

1} Secondaries on the Magnetic Assembly are rectified and filtered
to provide *16 Vdc to the Internal Voltages once the Main Loop
is running.

j) An additional secondary on the Magnetic Assembly is rectified
and filtered to keep the Start line high. This level is also
fed to the Start Regulator Inhibit input to shut off the Start
Oscillator.

5

5.3

give no consideration to hybrid package partitioning.

Partitioning:

The descriptions above are strictly functional and
Table 5.,3-1 identifies

each hybrid package by the functional elements it contains.

HYBRID .

Internal Voltage

Pulse Width Modulator

Series Dissipative Regulator

Power Transistor
Power Diode

24 Diode

5-5

Power Supply Partitioning

FUNCTIONS

Start Regulator

Start Osc

+12 VS SDR

-6 VS SDR

-3.15 Vdc Reg

Part of Start Control

Reference

Error Amp

Timing Logic

Interstage Drive Transistors
Over Current

Part of Start Control

+8.5 Vdc SDR
-5 Vde SDR

Main Loop Power Transistors
High Current Rectifier Diodes

All remaining diodes

SECTION 6

ABBREVIATIONS
A Amperes
ACK Acknowledge — handshaking signal
ADDR Address
ALU Arithmetic Logic Unit
A-MUX Address MUX
B Base —-field of instruction
cC Condition Code -~ part of PSW
CL Carry Latch -bit in MROM word
CPU Central Processor Unit
CTL Control signal
D Displacement -part of imstruction
DF Data Flow
DI Direct Input
PIO0 Direct Input or Qutput
DMA Direct Memory Access
D-MUX Data MUX
Do Direct Output
EA Effective Address of storage operand
EALU Extended ALU -used for MDS operations
ES Emulator System -Part of support software
FC " Force Carxy ~bit in MROM word
FCU Function Contrel Unit -Controls ALU
HTC Hybrid Technology Computer = SUMC~IIB
ic Iteration Counter
IL Instruction Length -Part of PSW
INT Interrupt signal
1/0 Input or Output
iR Instruction Register
IROM Instruction decoding ROM
K Thousands (K=1024 in memory address)
LSB Least Significant Bit
LSI Large Scale Integration
MAM Memory Address MUX -part of DF
MAR Memory Address REG -part of DF
MDS Multiply, Divide or Square Root operation in ALU
MEM Memory = Main Store
MOS ' Metal Oxide Semiconductor - technology
MQM Multiplier Quotient MUX -part of DF
MQR Multiplier Quotient REG —part of DF
MROM Microprogram ROM ~holds control program
MS Main Store {(same as memory)
MSB Most Significant Bit
MITX Multiplexer

NS
OFL
0S

PC
PCIO
PRM
PROM
PRR
PS
PSW

Q

REG
ROM
RR

RS
R/W
RX
SAR
SDM
SDR
SEQ
ST
STO
SIL
SPM
S8
SUMC
SUMC-ITA
SUMC-IIB
S/360
TMRS
TSE
TTL
VDG
W

X
XFER
us

Nanoseconds = 10 ~ seconds

Overflow

Operating System - supervisor program
Program Counter

Program Controlled I/0

Product Remainder MUX -~ part of DF
Programmable (in the field) ROM
Product Remainder REG -part of DF
Power Supply

Program Status Word - current machine status
Quotient

Register

Read-Only-Memory
Register—to-Register-Instruction Format
Register—-to-Storage~Instruction Format
Read Write

Register Indexed - Instruction format
Storage Address Register

Storage Data Multiplexer

Storage Data Register

Sequencer

Storage Immediate - Instruction Format
Start I/0 - Instruction

Storage Interface Logic

Scratch Pad Memory - Arithmetic REGs
Storage-to-Storage—Instruction Format
Space Ultrareliable Modular Computer
SUMC technology model = HTIDU

SUMC Flight model = HTIC

System/360 - IBM computer system
Timers - Imstruction

Test Support Equipment
Transistor-Transistor-Logic Technology
Volts Direct Current

Watts

Index field of instruction

Transfer

Microseconds = 10 seconds

6-2

APPENDIX A

APPENDIX A

SUMC-HTC MCDULE AND CHIP DESCRIPTION

Federal Systems Division, Electromics Systems Center, Huntsville, Alabama

A-1

APPENDIX A
TABLE OF CONTENTS

Section Page
List of Figures v v v v 4 v v v v v v w w e e e . Jidd
List of TablesS. . . v v v v v v 4 et v e e e e e e e e iy

1 INTRODUCTION. v 4 4 o o v o o o o o « & = o o o + o v v v 1
2 MODULE DESCRIPTIoNS - 1 . 1] [* L] - L] - * [] . L 3 - - . L] L] . 4

Data Flow Module v . v v v v v v v . .
ALU MUX. o v v v 4 v 4 o v o e s s s e ee e

2
MIX/REG. v v v s v 4 4 v o o o o o o o o o + » . .
SCU Module o v v v v v e 0 6 bt e v e e e e e e
Sequence Control . . & v 4 4 4 v v v 4w 4
Sequence Multiplexers/Register . . ., v v v o « . . 12
TSE/SDR Module + v v v v v v 4 o o & O
MUK/REEe o v v ¢ ¢ 4 4 ¢ o v ¢ o o o s o = o s o 4 12
Input/Output Interface Medule., . . . 4 + + » . . . 14
AOTC MUX @ v vin v v v s 4 e o o o s e s o o o o4 14
Sequence MUX/REZ . 4+ v v 4 4 v v 4 s 4 S u v . . . 16
Storage Interface Logic., + v v v 4 v v v o « « . . 16
Mux Control 1. v . . v . v v v v . . 17
Mux Control 2. . ., . 4 o v v v v v 4 e e e .. 17
Memory Contxol 2 & v v v v v v v o v o o 17
Memory Timing. . . . & . 4 v v v 4 4o 4w o o v o o o 17
R o

.
LW b

.
B B bt bt
. n

N
D WO L

-

MN NN NN N

-

-t

-

Lhintnutninw £~ 80 i o
N

-
-

n oW~

BB BO NN NN

-
.

3 CHIP DESCRIPTIONS . & & & 4 4 4 4 v v v v v 2 o o e v v .. 18

Multiplexer-Arithmetic Logic Unit. 18
Multiplexer-Register v v v v v.v o o . 20
Function Control Unit, S ¢
Architecture (ARCH) Chlp D
Input/Output Control . . v v v o v 4 v v v o o . . 26
Sequence Control Chip. . + v v v v v & v & « « . . 28
Sequence Mux Chip.~ 28
Register Chip. « v v ¢ v v v v v v 4 v o v v v v .29
Timing Chip. . . v & v v v v v v b e e e e e 29
Timer Chip v v v v v v . .32
Mux Control 16/32. i . . v . v v « . .32
Mux Control No. 2. . v v v v v v v 4 v v v o « . . 36
Memory Control . v v v 4 v v 4w 4 4 o o o o o « . . 38
Memory Timing, . . , I 1
And/Or—True/Complement (AOTC) Chip « + =% o o . , 41

s Lo W W
- e & ¢ & s .

a

L] -
el ol el el o U= e s BN B N, B N

W wwiwwiww
oo

if

12,

14,

Data Flow Module. . . .
Sequence Control Module
TSE/SDR Module,
I0I Module. . + + .+ &+ &
Architecture Chip . . .
HTC I/0 Block Diagram .
Register Chip . « . « &
Timing Sequence . . . «
Timer Chip.
Mux Control Chip. . .+ «
Mux Control Chip No. 2.
Memory Control Chip . .
Memory Timing Chip. . .
AOTC Chip + « + & « + &

[) -
-
+
. (]
.«
.
. »
.
. -
L L

114

LIST OF ILLUSTRATIONS

Page

. * [. . . L - . - LR} . 3
. .+ s . . . = s - *« - . 110
. . = s & & & @ . LI T] . -13

. : . L] . . LI) « &+ o - 115

. s e - [. « s « e 3 - L) 027
e 14

.« 3 L] . . s 3 = . s . . L) 031

. « o & 2 « ® . e . s - . . 033

+# & 8 » a LI] . . LRI S . . - 137

LIST OF ILLUSTRATIONS {(continued)

1. Module and Chip Usage on SUMC-HTC. % + 4 v v v o & 2 s s « o o « 2
2. ALU Mux A OPeratiom. v + v v « o o o o o o o s o o o o o o o o o &
3. ALU'Mux B OperatiofN. + + o« o % o o o o o o o o 2 « o o o + o v 4 5
4. ALUFUNCEIONS. + & + 4 o 4 ¢ = o o ¢ « 4 o o « + s s « s o o o . 5
S. MAR Operatione « v « « o 4 s 4 o 4 ¢ o 6 4 4 bt 4 s et e e e .. b
6 PRR Operation. + o « + o o s o o o o o o o o o o o o o o« « o o o 7
7. MQR Operations. + o « v + o & o o & = 2 & o o s o s s o o o o + . 8
8., Register Load CONETOLS 4« + o + o o ¢ o o o s o « o s s s s « « o 9
9. Sequencer and Iteration Counter Actions. . . « o« o o o o o « . , 11

10.. IC Toad £rom PRM & 4 v 4 v 4 & v o o o o & v s o s o s o o o o o 12

11, TSE/SDR MOdUle & v v v v o v v & 6 4 4 4 o e v v o o o o o oo .14

12, AOTC MUX & 4 4 4 ¢ o 4 o o o o o s o o o s o s s s o o = o « o . 14

13, CAOTC 3:8 Decoder v v v o o o o v 4 o o o 2 o o o v v 0 u. . . . 16
14, IOI Register Loade & ¢ « o « ¢ « o & o « o & o o o o« o o o » + . 16

15, ALU FunctionS. + « o o o o o s & 2 « o o o o s o s o o o o « « . 18
16. Multiplexer SelectionNS o+ o v o 4 o o o o « « 4 o o o o o o« o o o 19
17. Partial Sum and Partial Carry Definition «. +. « + « . . . 19
18. Took~Ahead Carry Signals . v & ¢ v v v 4 v ¢ v o 4o o o o o o « . 20
19. Multiplexer Selections . v v v v v v 4 4 v o v w o o o o o o o . 21

20, FCU Qutput Signals to the MUX-ALU. ¢ © 4 v v 4 ¢ o o e o o o o 4 22

21, FCU Qutput Signals to the Extended ALU . 4 v v o v & o o + « o« o 22

22, Miscellaneous FCU OQutput SignalsS . v v 4 4 v v o 2 o s o o o o 2 22

23, ARCH Code Definition . v v v v 4 v v v o o 4 v 4 v o 4o s o o o 4 24

24. Forms of Condition Code: v 4 4 & 4 4 4 4 o o v o o v o & o o o . 24

25. Condition Code Definitiome & 4 o v « 4 4 4 o 4« o o o o « o o+ « . 25

26. Effective Address Branch Modifier Definition . « o« « « o v o o . 26

27. Address FunctionS. + 4 v v v v v v v o v b 4 e e e e e e e e . 34

28, Byte Signal GeneratioR « +« ¢ 4 ¢ v 4 v 4 4 4 b e e e e s e . .36

23, Multiplexer ComEXOLl. . v v v v v v v v v 4 v s e e e e e e .. L

30, AOTC 3:8 Decoder + & v v v 4 6 4 4 v v st e e e e e e e e .. b4

iw

SUMC-HTC MODULE AND CHIP DESCRIPTION

Section 1

INTRODUCTION

This appendix describes the modules and chips in the SUMC-HTC, The
building blocks for HTC consist of .six module types and 15 chip types.

Five of the modules are unique 148 pin multi-chip carriers utilized
for specific functions. The sixth module is 2 two chip 100 pin carrier
which brings all chip I0s to module pins. These modules are defined in
subsections 2.1 through 2.5. The 15 chip types utilized by HTC are
defined in subsections 3.1 through 3.15.

HTC utilizes five multi-chip carries plus eight of the two chip
carries. Table 1 identifies the thirteen modules and their associated
chips, Also included is module and chip quantity plus the associated
IBM part numbers.

Table 1. Module and Chip Usage on SUMC-HTC

QUANTITY PART No.
MODULE/CHIP MODULE/MACHINE | CHIP/MODULE

1. DATA FLOW (148) 4 79293431
fa) MUX ALU 2 7928744
(b} MUX REG. 3 7928751

2, SCU (148) 1 79273341
(a) SEQ. MUX 3 7928747

(b) SEQ. CONTROL 1 7928748

3. TSE/SDR (148) 3 79273331
{a) MUX REG. 4 7928751

4. SIL (148) 1 79273381
{a) MUX CONTROL 1 1 7929702
{b) MUX CONTROL 2 1 7929709
(c) ,MEM TIMING 1 7029704
{d) 'MEM CONTROL 1 7929703
e} REG. 1 7928752

5. /O INTERFACE (148) 1 7929342-1
{a) SEQ. MUX 3 7928747

(b} AQTC 2 7929708

6. REGISTER (100) 3 7927369-1
{a} REG ' 2 7928752

7. FCU/EALU {100) 1 7927368-1
@ MUX ALU 1 7028744
(b) FCU 1 7028746

8. SPM ADDRESS MUX/TIMING (100) 1 7927367-1
@ TIMING 1 7929707
{b) MUX REG 1 7928751

9. ARCH (100) 1 7927336-1
{a) ARCH. 1 7928753
({b) REG 1 7928752

10. TIMER {100) 2 7927335-1
(a) 2 "7929710

11. 1/0 {100} 1 7927339-1
@) 1/0 1 7929706

12. AOTC (100} 3 7927341-1
(a) AOTC 2 7925708

13. MEM SUPPORT {100} 7927337-1
@) MEM TIMING 1 7929704

Section 2

MODULE DESCRIPTIONS

2,1 DATA FLOW MODULE

The RHIC Data Flow Module consists of five logic chips packaged in
a 148 pin multi-layer module. This module contains a four bit ALU, MAR,
PRR and MQR. The four bit ALU is implemented with two Mux/ALU chips.
The remalning three chips are Mux/Reg chips, one chip each for the MAR,
PRR and MQR. Figure 1 functionally identifies the Data Flow Module.

2.1.1 ALU Mux

The Data Flow module provides a 4-bit ALU whose inputs A and B are
provided from two multiplexers, Multiplexer A is a four-input mux whose
control is derived from MROM bits Al, A? and A3. This three-bit subfield
selects the data which are applied to ALU input A. ' The combination of data
which may be selected for input A are shown in Table 2.

Table 2. ALU Mux A Operation

MROM
Al AZ A3 ALU MXA OPERATION
0 o 0 PRR + SPMA (LOGICAL OR)
0 1 1 PRR
0 0 1 PRR + MAR (LOGICF}L OR)
0 1 o PRR + IR20-31 (LOGICAL OR)
1 0 0 SPMA
1 1 1 ZERO
1 0 1 MAR
1 1 0 R

Multiplexer B is a three input mux with one input having the capability
to be shifted right one and the MSB replaced with an external signal (SPMSG).
A three bit contrfol field MROMAS, SEL3N and SEL4N selects the ALU input B as

specified by Table 3.

* 1 SPM = SPM input shifted right one with SPMSG input shifted into the MSB position.

Elziol ~1o1 =9|@8lsls =
glglzl 315l oz=ala x
I alom|o Q
0 N o CKZ
| <] T]T =
__J = QIO
r—_“—_“————-i N M e ORI N e— -EH—-~ __“&-——ﬂ -ﬁ
I |
I i
! - ' PRR 0-3
SPMA (4) : > > 08,1 prr A RRO-3
MAR (4) L - '
|| Muxa PRM :
IR - i
} > vy . " PRM 031_;
| _ . i MROM
MROM A1— A3 (4) o < l =E
SDR (4} I o |
MROM (4}) ALU . :
} >
SPM (4) T 23 OB | maR 4 MAR O3
SPMSG L] wmuxs o |
MROM A5] _ 1 MAm I
SEL3N I - . MAM 0-3_
SEL4N ! ! MROM
4]
I ! R15
CH. A 0-1 1]
CH. C 03 I LA
' i P |
MAM A BITS (18) ! 0-3 0B : MQR 0-3
MROM R1— R4 (4} | MQR |
CH.C0-3 1 o MOM H
MOM A BITS (18) | N |
MROM R11~R13 (3) | I
| |
: I ATUO3
I
i

|
i
!
I
|
i
I
i
I
]
l
I
i
I
]
l
i
|
|
|
I
i
!
|
!
I
|
i
!
|
|
]
L

Figure 1. Data Flow Module

Table 3. ALU Mux B Operation

MROM
AB SEL3N SEL4N ALU MXB OPERATION
0 0 0 SDR + MROM
0. 1 1 SDR
0 0o 1 " SDR + SPM (LOGICAL OR)
0 1) 0 SDR + % SPM*{LOGICAL OR)
1 0 0 MROM C7-C17
1 1 1 ZERO
1 o} 1 SPM
1 1 0 % SPM*

* 1% SPM = SPM Input Shifted Right one with SPMSG input shifted into the MSB position.

2.1.2 AWU

The ALU performs the arithmetic operations specified by the five
control lines as shown in Table 4.

Table 4. ALU Functions

ALU FUNCTIONS CONT SUB 2 ,SCAR SUB1 cig"
AND o 1 1 1 0
OR i o 1 o 0
XOR 0 0 1 0 0
ADD 0 0 0 0 0
SUB (A-B) C 0 0 1 1
REV. SUB (B-A) 0 1 0 0 1

* C16 Signal is the carry into ALU 15.

2,1.3 MUX/REG

The Data Flow Module provides three 4-bit registers (PRR, MAR and MQR).
Each register input is supplied by a 3 input multiplexer, with one of these
inputs providing shifting capability. The MROM subfield identified below
for each mux is used to control the inputs to the three respective
multiplexers (Reference Tables 5,6, and 7).

Table 5. MAR Operation

MROM BITS MAM
R1 R2 R3 R4 0 1 2 3 . OPERATION
0 0 0 0 0 0 0 0 NO SELECT
0 1 0 0 A16 A17 M2 M3 MAR
1 0 1 0 A17 M2 M3 MAMA1 LEFT 1 LOGICAL
1 1 1 0 MAMA(S}) M2 M3 MAMA1 LEFT 1 ARITHMETIC
1 0 0 1 M2 M3 MAMA1 MAMA2 LEFT 2 LOGICAL
1 1 o} 1 MAMA1 MAMA2 MAMA3 MAMA4 LEFT 4 LOGICAL
1 1 1 1 MAMA(S)X MAMA2 MAMA3 MAMA4 LEFT 4 ARITHMETIC
1 0 1 1 MAMAS A16 A17 M2 RIGHT 1 DOUBLE
0 0 1 1 MAMAG A16 A17 M2 RIGHT 1 LOGICAL
0 1 0 1 MAMA10 MAMAQ MAMAS MAMAS RIGHT 4 DOUBLE
0 0 o} 1 MAMA14 MAMA13 MAMA12 MAMAS RIGHT 4 LOGICAL
0 1 1, 1 MAMA15 A1 A17 M2 RIGHT 1 LOGICAL
0 0 1 ! 0 A7 M2 M3 MAMA16 LEFT ROTATE DOUBLE
0 1 1 0 MAMA17 MAMA18 A16 A17 RIGHT 2 DOUBLE
1 0 0 A0 At A2 A3 ALU (CH. B}
1 1 0 co ct c2 C3 (CH.C)

A=ALU
M= MAR

MAMA = SPECIAL INPUTS FOR SHIFTING CAPABILITY

Table 6. PRR Operation

MROM BITS PRM

R6 R7 RE R9 0 1 2 3 OPERATION
0 0 0 0 0 0 0 0 NO SELECT

(1 G 0 AQ Al A2 A3 ALU
1 0 i 0 Al A2 A3 PRMA1 LEFT 7 LOGICAL LONG
1 1 1 0 PRMA(S) A2 A3 PRMA1 LEFT 1 ARITHMETIC LONG
1 o 0 1 A2 A3 PRMA1 PRMAZ2 LEFT 2 LOGICAL LONG
1 1 0 1 PRMAI PRMAZ PRMAS3 PRMA4 LEFT 4 LOGICAL LONG
1 1 1 1 PRMA({S)X PRMAZ2 PRMA3 PRMA4 LEFT 4 ARITHMETIC LONG
1 0 1 1 PRMAS AD Al A2 RIGHT 1 LOGICAL
G 0 1 i PRMASG AD Al A2 RIGHT 1 ARITHMETIC
0 1 0 1 PRMA10 PRMA® PRMAS PRMAS RIGHT 4 LOGICAL
0 0 ¢] PRMA14 PRMA13 PRMA12 PRMAG RIGHT 4 ARITHMETIC
C i 1 1 PRMA15 AQ Al A2 RIGHT 1 ROTATE
0 0 1 0 Al AZ A3 PRMA1G LEFT 1 LOGICAL
0 1 1 | 0 PRMA17 PRMA18 AO Al RIGHT 2 ARITHMETIC
1 0 0 0 BO B1 B2 B3 CH.B |
1 1 0 0 co Cl Cc2 Cc3 CH.C

A=ALU

PRMA = SPECIAL INPUTS FOR SHIFTING CAPABILITY

fable 7. MGR Operstion

MROM BITS
811 R12 R13 0 1 2 3 OPERATION
0 0 0 0 0 0 0 NO SELECT
0 i O RO Ri RZ R3 MQOR"
i 0 1 Ri1 R2 R3 MOMAY LEFT 1
0 1 1 MOMA1T7 MAMA18 RO R1 RIGHT 2 LOGICAL
i
1 it 0 AD At A2 A3 ALU (CH. B)
1 1 0 co 1 €z c3 CH. C

A=
R =

MQMA = SPECIAL INPUTS FOR SHIFTING CAPABILITY

MLU
MQR

The following MROM register subfields are used to enter data into the
three registers. The MROM bit identified by Table 8 and the trailing edge of
CKZ causes the respective register to be loaded.

Table 8. Registor Load Controls

PRR MROMR10 = 1
MAR MROMRS = 1
MQR MROMR15 = 1

2.2 5CU MODULE

The SCU module contains oae Sequence Control chip and three Sequence
Mux/Reg chips interconnected on a 148 pin multi-layer substrate, This module
provides for sequencing and iteration control, Figure 2 is a functional block
diagram for this module,

2.2.1 SEQUENCE CONTROL .)

The control chip decodes five MROM bits in order to determine what
action is required by the sequencer and iteration multiplexers. Table 9
specifies the MROM control bits and their associated actions. The fifth
control bit MROMCS is used to reverse the branching conditions for sequencer
only i.e. for 1010 and C5=0 the sequencer will transfer the MT inputs to the
sequence register if the PRM output is zero and will increment the contents
of the sequence register if PRM is not equal tb zero (Reference Table 9).
If, however, C5=1 the transfer will be taken for PRM outputs not equal to
zero and the register will increment if PRM=0.

The control chip provides the capability to determine when a MROM pre-
fetch can occur as specified by Table 9, When the MCROM Cl thru C4 bits
specify a condition in which a prefetch can occur, the appropriate action
for the sequencer and iteration multipliers are taken and the SCU Register
load pulse from the Timing chip loads the SCU register. This then causes the
MROM to fetch the word specified by SCU register (MROM Address), thus making
the MROM word available to the input of the MROM register. This completes the
prefetch of MROM thus making the new word available for the next MROM cycle,
For conditions which require a branch decision or a wait for data (i.e., PRM),
the sequencer action is plus one anticipating the final conditicn. The final
decision is made at the end of the microcycle prior to the loading of all
data path registers., The time for this decisiom occurs by providing a signal
from the sequence control to the timing source for stopping the clock prior

to loading the data path registers. The use of prefetch is an option and is
controlled by external module wiring.

&3

IR
10-15
scu
v v
"MROM ! > L] GATE
M7-M10
L] | i LOAD
! - . RESET
MROM ; >l REG
C1—C5 |
-
MROM
PRMQ . ™lc12-c17 { T
1
- PRM IC 1-6
. ! — |
INTA=D { 10-15 !
1 i
-
, — SEQ »{CTRL
PRM ZERO | CONT i £
1—8 ! I
Lot 110 !
ACK , iSEQ 1-12
> i
OVFL |
—> SEQ |
AUX 1 > MUX/ 7
IROM 15 REG
- —51 GATE
MROM R16 _
. Lo LOAD
MT Fol] e
cis-ciz___ | LT < DERET
i r—Eﬁ
%
MROM |~~~ 0 ~|irom
C6-C14 PRM
4_15

Figure 2. Sequence Con-rol Module

10

6T

1z

0Z

Table 9. Sequencer and Iteration Counter Actions
MROM | TesT SEQUENCER ITERATION, TREEETCH
C1-C5 CONDITION ACTION COUNTER ’ COMMENTS
000a0 INT = 0 +t HOLD - 4|‘ 15 &0 “OR’ of the following condivons- [1) 17O sterrupt, {2} Fixed
INT = 1 T = SEQ HOLD TEj Point Overflow Error Latch, [3) Interval Timer 1nte-rupt Latch
odooi INT = 0 MT = SEQ HOLD
INT = 1 1 HOLD
40010 - MT -+ SEQ HOLD yES Uacondsitonal Sranch
aoot - +1 HOLD Unconditional +1 N
00100 REQ = 0 + HOLD REQ = /O data request lire
REQ = 1 MT —+ SEQ HOLD YEs
00101 REQ =0 MT — SEQ HOLD
REDQ = 1 +1 HOLD
40110 IC = 4 HOLD -4
IC < 4 MT — SEQ HOLD VES
a0 1 > 4 MT — SECQ -4
I < 4 HOLD HOLD This sondition 1s not wseful
01000 IC= & + -4
IC < 4 AMT — SEQ HOLD
01001 Ic> 4 MT - SEQ -4 YEs
c< 4 | HOLD
]
01010 - ~1 i - |c,'.ﬂ_. s | IR = Instrection Register bits 10-15
01011 - +1 IR = I1C:
01180 Ic=a HULLD -1
01101 o= 1 M - o9 PO ves - conel
IC=0 HOLD HOLD This conditien s not useful
01119 IC# 0 =1 -1
IC=0 MT — SEQ HOLD |ygs
o1 IC=1o0 MT — SEQ -1
icC=0 +] HOLD i "
s .
10000 INT« IFE=L | +1 HOLD IROM bat 15 = 0 indieates RR mstrucuon format FROM output mus: be
Ziseree=L | Mr—=sea HOLD | YES | stable at the beginning of the cycla, v, Intr-uction Register Left must hasz
OTHERWISE :+ TEOM-Sspn* BoLp been set at least 1o cycles earbier N
10001 INT P IRR = 4 5y HOLD TROM ourput need not be stabie 2t the beginning of the cycle, te , Insiruc-
I+ ireg =2 . Hr —> sSEQ HOLD Ng ton Register Left may have bagn loaded by the previous microwera,
GracR1sE { Tremr-y sEQ ¥ koL 2 * Substitutes IROM bus 13-14 for MROM bits M1-M2 for memory control.
| IROM bits 2-12 are gated into the sequeng register.
. : AF TNTe@E2L 5 domirant over T1seIpE=A
10010 - | PRM — SEQ HOLD PRM bitz 4-16 ara gatad rato the sequence register
10011 - ' PR - $EQ Hoto | M2
10100 PRM-BLD=0 | MT — SE0 HOLD PRM posiuve
PRM 8it0=1 -1 HOLD NO PRAM negatwve .
10t PEM Bit 0 =0 -1 HOLD N
PRM Bt 0= AT — SEQ HoLD —
1010 PRM = 0 TH HOLD PRM bits 0-15 21l 0
PRM = 0 M7 - SEa HOLD | nrp .
1mms PRM = 0O MT - SEO HOLD N
PAM = 0 ' -1 HOLD
1ic00 - +1 MT — IC o MROM bits C12-C17 are gated ento the iteration counter.
11001 - +1 MT = IC
1110 - + PAM — ICy _ N\ PRM bus 10-15 are gated into the steratean counter This funclion may also
11011 - +1 "PRM — IC| YES be accomplshed by the MROM miscellaneaus fisld, MZ7-M10 = 0111,
11400 NOT HCINT MT - $SEOQ HDL[‘ZN HCINT = hardware interval timer inzerrupt latch {f this latch i
- HCINT - +1 HOLD NO set, the INT input to the sequencer ts also activrated,
i NOT HCINT +1 HOLD
M HCINT MT = SEQ HOLD)
1itg ALU Overflow =0 +1 HOLD - An ALU overflow 15 defined to have accurred if the carry-into-ALU
ALU Overflow = 1 MT - SEQ HOLD N it 0 differs from the carry-out-of-ALU it D .
11 ALU Overflow =6 | MT = SEQ Howp | Mo
ALL Overflow =1 +1 HOLD
ORIGN - g T

I = IROM Qutput
MI = Modified Transfer Field - The field is modified for effective address (EA) branches

{C1~-CY

= 0000).

If an EA 1s not specified the MT = the C7-Cl7 of the MROM.

2.2,2 SEQUENCE MULTIPLEXERS/REGISTER

Two of the sequence Mux/Reg chips are used for sequence control. Each
chip provides a 6 bit path. The 2 bit output of the sequencer mux/reg
is utilized to provide MROM addressing capability of 4,096 words. The
Sequence register load is controlled by external Gate and Load signals.

The sequence register provides a reset capability which forces the
register to an all zero state.

The remaining sequence Mux/Reg chip is used for the iteration counter
(1IC) providing a 6 bit wide path., Like the sequence register the IC register
load is controlled by external Gate and Load Signals.

The PRM inputs to the IC mux will be force selected under the conditions
specified in Table 10. These conditions override those specified in Table 9
for IC action,

Table 10. IC Load from PRM

MROM
M7 M8 M9 M1i0 IC-INPUTS

G 1 1 \ 1 PRM

2.3 TSE/SDR MODULE

The TSE/SDR Hodule contains four Mux/Reg chips interconnected on a
148 pin multi-layer substrate. This module provides two, eight bit, six
input Multiplexer/Register combinations. Figure 3 is a functional block
diagram for the above module.

2.3.1 Mux/Reg

Two. Mux/Reg chips are utilized for each of the 8 bit
Multiplexer/Register combinations. Outputs from both the multiplexer
and the register are made available from the module. Control for both
multiplexers is independently derived from select Hi and Lo signals
A, B, and D respectively. This three-bit field for each multiplexer
selects the data which is to be transferred to the mux output and
register input as specified by Table 11. The transfer of data to
each register is independently controlled by input signals SEL reg and
SEL Clk,

12

SEL REG H!

SEL CLK HI

CH. A (8)

CH.

B (8)

CH.

C(8)

CH.

D (8)

MUX

REG Lt » REG(8)

Hi

CH.

E (8)

{8 BIT)

CH.

F {8)

SEL HI (3)

SEL REG LO

SELCLK LO

CH.

A (8)

A

CH.

B (8)

CH.

C (8)

CH.

D (8)

MUX

CH.

E (8)

REG

-» MUX (8)

s 4 REG (8)

{8 BIT)
LO

CH.

F (8)

SEL LO (3)

a—-—————p—-—-—n—nh_-——-—_———u———_#q—-—uu—u———-—_ ——-—l—.—-—‘

Figure 3. TSE/SDR Module

13

& MUX (8)

Table 11. TSE/SDR Module

A B D SELECTION
0 1 0 CHANNEL A
1 0 0 CHANNEL B
1 1 0 CHANNEL C
1 1 1 CHANNEL D
0 1 1 CHANNEL E
0 0 1 CHANNEL F
] 0] ZERO'S

2.4 INPUT/OUTPUT INTERFACE MODULE

The Input/Cutput Interface (IOI) Module contains five logic chips
interconnected on a 148 pin multi-layer substrate. Two AOTC chips are
connected to provide a twe input 18 bit multiplexer, Each AOTC chip also
provides one 3 to 8 decoder. Three Sequence Mux/Reg chips provide a
three input 18 bit multiplexer register combination. Figure 4 shows a
functional block diagram of the I0I Module.

2,4,1 AOTC MUX

Multiplexer control of the AOTC mux is provided by SELTSE and SELIO
inputs. Table 12 defines output selection with respect to the control
lines.

Table 12 AODTEC Mux

SELTSE SELIO MUX OUTPUT
0 0 ZERO
0 1 SELECT 10
1 0 SELECT TSE
1 1 10 + TSE

The two 3 to 8 decoders provide the capagility as defined by Table 13.

14

h"——ﬂ

DECODER NO. 1 (8)
o

tO/TSE (18)

-

DECODER NQ. 2 {8)
>~

10 REG {18)
-

DECODER NO. 1 (3)
; — 338
81 (18) |
i +]
I0BI {18) }
I » MUX °
SEL (2) | _
I
DECODER NO. 2 {3) l
| » 3:8
|
]
|
i
|
|
| {16)
Qv
10Tsesp1 | o (18} REG
loTESP2 | - "
PRR J 1 mux
+ Lo
MEM | o 43
SEL _ I
l g
GATE I
LOAD H
RESET l
I
L IOl MODULE -

Figure 4. 10f Module

15

T A S e SR M G e S e e e S i e— e it o m—— — — j—p— o m—— moinf. Wt e e 1]

Table 13. AQTC 3:8 Decoder

CONTROL DECODER QUTPUT
INPUT 3 a 5
ENABLE 2 2 2

3%
(=]
[\8)
-
3%
[V]
N
[=2]
N
~J

(O mb e ek b oed omd ed
P A e T = T~ T S =
A = R R . B - -
W o= O OO =
B . I T Y =]
e T T T S o T
Lo T Y RPN A A e S S
L T R = T A
- el ek (D e el ed e
P T = T N U S 4
Pl = T R N Y
L . N S

* X = Irrelevant

2.4,2 SEQUENCE MUX/REG

Multiplexer control for the sequence mux is provided by inputs SELA,
SELB and SELC. These inputs select the data to be transferred to mux output

as specified,

Register control is provided by inputs Gate, Load, and Reset., Table 14
specifies the conditions for which the register will load or reset,

Table 14. 10! Register Load

GATE LOAD RESET OUTPUT
v 0 EQUAL INPUT
0 xT 0 NO CHANGE IN OUTPUT
X X 1 LOGICAL ZERO

*
Requires Negative Transition to Load Register

T X = Irrelevant

2.5 STORAGE INTERFACE LOGIC (SIL)

The SIL module contains five logic chips interconnected on a 148 pin
multi-layer substrate. This count consists of a mux control 1, mux control
2, memory control, memory timing and Register. This module provides an
interface for direct memory access {(DMA) and for CPU access. The CPU inter-
face provides full word, half word and byte operation, with the DMA utilizing
only half words.

16

2.5.1 MUX CONTROL 1

The Mux Control 1 chip provides byte decode and enable for the memory
subsystem. The chip also provides control signals required for multiplexer
selection, which controls the data flow for read and write operatioms,

2.5.2 MUX CONTROL 2

The ﬁux Control 2 chip provides command decode of CPU signals, storage
protect checks of CPU and DMA write operations, and control for loading the
SAR and SDR. The chip also process a CPU request for a memory operation.

2,5.3 MEMORY CONTROL

The Memory Control chip provides controls for CPU or DMA use of the
memory subsystem, memory start signals to the memory subsystem, DMA
request/acknowledge sequence and write operation control for the SDR multi-~
plexer, Various timed reset pulses are provided for Mux Control 1 and 2.

2.5.4 MEMORY TIMING

The Memoxry Timing chip as utilized by the SIL Module provides timing
for the above mentioned chips.

2,5.5 REGISTER
The Register chip provides a 16 bit register which is utilized for

the CPU storage address register. Register control is provided by the
above mentioned chips.

17

Section 3

CHIP DESCRIPTIONS

3.1 MULTIPLEXTR — ARITHMETIC LOGIC UNIT (MUX~-ALU)

The MUX-ALU chip, part number 7928744, is a 2-bit wide functional unit
consisting of two multiplexers (MUX—-A and MUX~B) and an arithmetic logic

it (ALU). (Refer to Figure 1)

. It has been designed to support a modular concept for which four
MUX-~ALU chips are interconnected to form an 8-bit MUX-ALU with look-
ahead carry. The ALU has been designed to logically combine two operands
A and B, producing the functions shown in Table 15,

Table-15. ALU Functions -

ALU CONTROL
SIGNAL VALUES ALU FUNCTION
c 7 2 3 2
0 0 0 0 0 A “PLUS" B
1 0 1 0 0 A “MINUS" B
1 1 0 0 0 B “MINUS™ A
0 1 1 0 1 A “AND" 8
0 0 0 1 1 A "OR" B
0 0 0 0 1 A “EXCLUSIVE OR" B

Table 15 also defines control signal levels used to specify each ALU
function,

The multiplexers, MUX-A and MUX~B have been designed to select the
source of operands A and B, respectively. Each multiplexer accepts four
data input channels and three channel selection signals. Channel HE of
MUX-B provides for shifting Channel E one bit position to the right. ‘This
capability facilitates multiply and divide algorithms, Table 16 defines the
multiplexer selection codes.

The two bit positions of the MUX-ALU can be designated Bit 0 and Bit
1, with Bit 1 being the least significant. Two output signals provide
the final ALU result for bits O and 1. These signals can be used as the
source of the four corresponding input signals to the next (higher order)
MUX-ALU chip. Table 17 defines the partial sum and partial carry signals.
An ALU OVERFLOW signal indicates a change in the sign bit due to a carry.
One output is the look-ahead carry which is implemented using the signals
defined by Table 18.

18

Table 16. Muftiplexer Selections

(A} MULTIPLEXER — A

A-SELECT CODE OPERAND A RESULT
0 {CHANNEL A) OR (CHANNEL B}*
1) {CHANNEL A) OR {CHANNEL F)
2 {CHANNEL A) OR {CHANNEL G)
3 CHANNEL A
4 CHANNEL B
5 CHANNEL F
6 CHANNEL G
7 ZERO

{B} MULTIPLEXER — B

B—SELECT CODE OPERAND B RESULT
0 {CHANNEL C) OR (CHANNEL D}
1 {CHANNEL C) OR {CHANNEL. E)
2 {CHANNEL C) OR (CHANNEL HE)
3 CHANNEL C
4 CHANNEL D
5 CHANNEL E
6 CHANNEL HE**
7 ZEROD

¥ The “OR” indicates that corresponding bits of the two channels.are logically comhbined to produce an
“OR” function.

**Channel HE is Channel E shifted right one bit position, i.e., one-half of Channel E.

Table 17. Partial Sum and Partial Carry Definition

{A) INPUT SIGNALS FROM LOWER ORDER CHIP
° PARTIAL SUM FROM BIT 2
e PARTIJAL CARRY FROM BIT 2

) PARTIAL SUMS FROM BITS 2 AND 3 COMBINED AS A
LOGICAL "AND" FUNCTION

. PARTIAL CARRY FROM BIT 3

{B} OUTPUT SIGNALS TO HIGHER ORDER CHIP
. PARTIAL SUM FROM BIT 0
° PARTIAL CARRY FROM BIT O

) PARTIAL SUMS FROM BITS 0 AND 1 COMBINED AS A
LOGICAL “AND" FUNCTION

o PARTIAL CARRY FROM BIT 1

19

Table 18. Look-Ahead Carry Signals

{A) INPUT SIGNALS FROM LOWER ORDER QUAD"
e X1 1S USED TO GATE THE GENERATION OF X6
e X2 IS CONNECTED TO X6 OF LOWER ORDER QUAD
e X3 IS CONNECTED TO X7 OF LOWER ORDER QUAD
e CARRY IN IS CONNECTED TO CARRY QUT OF LOWER ORDER
QUAD ’
{B} INPUT SIGNALS TO HIGHER ORDER QUAD

e X6 IS A CARRY INTO THE NEXT HIGHER ORDER QUAD FOR
THE CONDITION THAT ALL PARTIAL SUMS WITHIN THE QUAD -
ARE LOGIC "“ONES"” AND THERE IS A CARRY INTO THE QUAD

s X7 1S A CARRY INTO THE NEXT HIGHER ORDER QUAD FOR
ANY OF THE REMAINING CONDITIONS WHICH SHOULD
PRODUCE A CARRY FROM THE QUAD

" A QUAD is defined to mean a pair of MUX-ALU chips.

3.2 MULTIPLEXER - REGISTER (MUX-REG)

3

The MUX-REG chip, part number 7928751, is a 4-bit wide functﬁonal
unit consisting of a multiplexer (MUX) and a register (REG). It has been
designed to support a modular concept for which a larger MUX-REG,;a
multiple of 4-bits wide, can be implemented simply by using multiple
MUX~-REG chips (See Figure 1). !

i

The MUX has been designed to select the source of data to be&loaded
into the REG, The MUX accepts three data input. channels (A, B, and C),
four channel selection signals, and eighteen special shift signals to
provide the functions defined by Table 19. Channel A can be seleéted
unaltered or with a number of shift operations performed on it. Channels
B and C can only be selected unaltered. %

Loading of the REG is controlled by two input signals —= a GA’I‘E signal
and a CLOCK signal. 1If the GATE signal is a logical "zero" , loading of
the REG is inhibited. If the GATE signal is a logical 'one", the {REG will
be loaded on the falling edge of the CLOCK signal, ;

{

In addition to four MUX output signals and four REG output 51gnals, a
special ocutput signal is provided which indicates an all zero MUX ,output
condition. When the four MUX output bits are all equal to a logical "zero"
‘the spec:Lal signal will 'be equal to a logical "one"

3.3 FUNCTION CONTROL UNIT (FCU)

1
The FCU chip, part numbex 7928746, provides for control of the MUX-ALU
and the Extended ALU, In particular, the FCU facilitates the multlply,
divide, and square root algorithms,

20

Table 19. Multiplexer Selections

p
oot FUNCTION ‘DATA BITS"
W] 1 2 3
0 ZERO o 0] 0 0
1 ARITHMETIC SHIFT RIGHT 4 -| S14 513 S12 S6
2 LOGICAL SHIFT LEFT 1 Al A2 A3 516
3 ARITHMETIC SHIFT RIGHT 1 S6 Al Al A2
4 CHANNEL A AD Al A2 A3
5 LOGICAL SHIFT RIGHT 4 S10 sg S8 Sb
6 ARITHMETIC SHIFT RIGHT 2 517 S18 AOQ A1
7 LOGICAL SHIFT RIGHT 1 S1b AO Al A2
8 CHANNEL B BO B1 B2 B3
9 LOGICAL SHIFT LEFT 2 A2 A3 51 52
10 LOGICAL SHIFT LEFT 1 Al . A2 A3 51
11 LOGICAL SHIFT RIGHT 1 . sb AD Al A2
12 CHANNEL C co C1 c2 C3
i3 LOGICAL SHIFT LEFT 4 s1 s2 S3 54
14 ARITHMETIC SHIFT LEFT 1 57 A2 A3 51
15 . ARITHMETIC SHIFT LEFT 4 sn 52 53 sS4
* KEY: A2 = Channel A Bit 2
B1L = Channel B Bit 1
C3 = Channel C Bit 3
59 = Special Shift Signal 9

The FCU examines MROM A6 through MROM Al2 to determine the commanded

ALU operation. If the commanded operation is not a Multiply, Divide or
Square root (MDS), the control signals to the MUX-ALU and the Extended

ALU are simple functions of the MROM signals. For MDS operations, these
control signals are functions of certain parameters in addition to the

MROM signals. Table 20 lists the MUX-ALU control signals which are generated
by the FCU, Table 21 lists the Extended ALU control signals which are
generated by the FCU, Table 22 lists the remaining FCU output signals,

3.4 ARCHITECTURE (ARCH) CHIP

The ARCH chip, part number 7928753, provides certain features which
are needed for System/360 emulation. These features are Condition Code,
Effective Address Branch, Exception Monitoring, and Miscellaneous Decodes.

The ARCH functions are selected by MROM M7 through MROM M10 as
defined by Table 23. Figure 5 is a block diagram showing the ARCH features.

21

Table 20. FCU Output Signals to the MUX-ALU

CONTROL SIGNAL NAME

DESCRIPTION

Ci6
SUB2
SuUB1
CONT
SCAR
SEL3*
SEL4™

CARRY SIGNAL INTO ALU
ALU CONTROL SIGNAL 1
ALU CONTROL SIGNAL 2
ALU CONTROL SIGNAL 3
ALU CONTROL SIGNAL 4
MUX-B SELECT SIGNAL 2
MUX-B SELECT SIGNAL 3

* Signals used by both the MUX-ALU and the Extended ALU.

Table 21.

FCU Qutput Signals to the Extended ALY

CONTROL SIGNAL NAME

DESCRIPTION

SUBtL
C{N+4)
SQR
F25A
SEL3"
SEL4”

EXTENDED ALU CONTROL SIGNAL 2
CARRY SIGNAL INTO EXTENDED ALU
EXTENDED ALU CHANNEL E BIT 2
EXTENDED ALU CHANNEL E BIT 1
MUX-B SELECT SIGNAL 2

MUX-B SELECT SIGNAL 3

* Signals used by both the MUX-ALU and the Extended ALU.

Table 22.

Miscellangous FCU Output Signals

CONTROL SIGNAL NAME DESCRIPTION

MQR BIT 16 EXTENSION OF MOR GENERATED BY
STORING MQR BIT 14 TQ SUPPORT
MULTIPLY CPERATION

ALU 0 5TO ALU BIT 0 STORED

SPM 0 STO SPM BIT 0 STORED

Q QUOTIENT GENERATED DURING
DIVIDE OPERATION

ALU BIT 18 PROVIDED TO SUPPORT SQUARE ROOT
OPERATION

MQRI. MOR LOAD ENABLE SIGNAL

SPM SG GENERATED SCRATCH PAD MEMORY
SIGN SIGNAL PROVIDED TO SUPPORT
SPECIAL MDS OPERATION

22

>
IR 0-1
—_— >
12— 19 EA mT
B >
BRANCH C15 —= C17
P> i -
MROM
C15— C17
MROM RD. TIMER
—t
M7M10 LD. TIMER
o DECODE
POR _] ERROR RESET
> - Bt
CKZ
.
LD. PROG. MASK
> d
. >
PRM =0 . ce
PRMO > »| CONDITION PSW 2-3
C(ALU) CODE ‘
o o
cc
PSW 8 —p» 11
P
? OVFL
g
o PSW13
ALU OVFL-INT
0—p- 4
o OVERFLOW
ALU-OFL
o 1
PSW4
o e

Figtre 5. Architecture Chip

23

The Exception Monitoring feature provided by the ARCH chip consists
of an Overflow Error latch (PSW BIT 13) and interrupt (PSW ERR INT). The
latch is set at the fall of CLOCK Z by an overflow condition (either ALU
or PRM Shift Overflow as defined for condition code generation) and the
presence of PSW BIT 4, PSW BIT 4 set to a logical "zero" inhibits setting
the latch, The interrupt signal is generated directly from the latch., A
signal called RESET ERROR STORAGE is generated by the Reset Error Function
(Code 0011 from Table 23) and also by a Power On Reset Signal. This RESET
ERROR STORAGE signal is used to reset the Overflow Error latch and interrupt.
It is also used elsewhere in the machine to reset other errcr latches.

Table 23. ARCH Code Definition

MROM BITS
M7 M8 M9 M10 ARCH FUNCTION
0 0 0 0 NO OPERATION
0 0 0 1 LOAD TIMER
1 0 LOAD CONDITION CODE WITH ALU
BITS 2 AND 3
0 0 1 1 RESET ERRORS
0 1 0 0 EFFECTIVE ADDRESS BRANCH
o 1 0- 1 READ TIMER
0 1 1 4] LOAD CONDITION CODE WITH ALU
BITS 2 AND 3 AND LOAD PROGRAM
MASK
0 1 1 1 NOT AN ARCH FUNCTION
1 X X X* LOAD CONDITION CODE AS
SPECIFAED BY TABLE 25,

* 1XXX indicates all binary code values from 1000 through 1111,

The Condition Code feature consists of a 4~valued code which is generated

in the two forms shown in Table 24, The conditions which generate the code
are ‘specified in Table 25.

fable 24, Forms of Condition Code

cove vawve 2L T T wn Fomm
2 3 8 g 10 1

0 0 0 1 0 0 0

‘ 1 0 1 0 1 0 0
2 1 0 0 0 1 0

3 1 1 0 0 0 1

24

Gz

Table 25. Condition Code Definition

M7 M8 M9 M10 0 1 2 3

1 0 0 0 PRM =0,CC=0 | PRM = - PRM = + OR
CC # 0.PRM #-
1 0 0 1 PRM=0,CC=0 | PRM = - PRM = + OR ALU OVFLO OR CC = 3
CC £0, PRM #-
1 0 1 0 PRM = 0 {PRM #0,OR PRM = 0 (PRM #0 OR CC #0}, C
cC =0, NC CC #0) NC cc=00C
1 0 1 1 PRM=0,CC=0 | PRM = - PRM = + OR ALU OVFLO OR
CC #0, PRM #- | PRM SHF L4 OVFLO
OR CC = 3
1 1 0 0 RRM = 0 PRM = - PRM = +
1 1 0 1 PRM = 0 PRM = - PRM = + ALU OVFLO
1 1 1 0 PRM = 0, NC PRM #£0, NC PRM = 0, C PRM £0, C
1 1 1 1 PRM =0, CC=0 | PRM = . PRM = + OR ALU OVFLO OR
CC £0, PRM £- | PRM SHF L1 OVFLO
. OR CC = 3
KEY: C = CARRY out of ALU '
NC = NO CARRY out of ALU
cC = Previous Condition Code Value

s = Comma indicates logical “AND"

Selection of the Effective Address Brancl function (Code 0100 irom
Table 23) causes the three low-order bits of the MROM Transfer Field to be
replaced by a modifier. This modifier is dependent upon the type of System/
360 instruction being emulated as specified by Table 26. The ARCH utilizes
IR Bits O, 1, 2, 12, 13, 14, 15, 16, 17, 18 and 19 to generate the modifier,

Table 26. Effective Address Branch Madifier Definition

$/360 INSTRUCTION TYPE MODIFIER
RR) 110
RX WITH NO BASE AND NO INDEX 000
RS WITH NO BASE 000
SI WITH NO BASE 000
RX WITH BASE AND NO INDEX 001
RS WITH BASE 001
St WITH BASE 001
RX WITH INDEX AND NO BASE 010
RX WITH BASE AND INDEX 011
SS WITH NO BASE 100
SS WITH BASE 101

3.5 INPUT/OUTPUT CONTROL (I0C)

The IOC chip, part number 7929706, is that integral part of the Input/
Output (I0) function which generates the sequence of signals to control I/0
data flow. Therefore, it must interface with a number of component functions
within the computer and outside of the computer, These functions include

the following:
1. Central Processing Unit (CPU)
2. Storage Interface Logic (SIL)
3. I/0 Device
4, Test Support Equipment (TSE)
5. I/0 Interface Module
6. Architecture Mcdule
7. Output Drivers

Figure 6 is a block diagram of the T/0 function.

26

- 5@ 3
& 2 2 28
& « =]
4 o & - IOREG (0 15} \
1000 {0151 <}— ¥ <3 =
@
{a)
LOCKOUT
-LOCKOUT Dc >-
REG | 3,
X} ik
CLKZ MUX REG
-CLK
(560}
A BQ ch A b
1, 1/
. A A
3 GhiD_) g I R R MEMOUT (0 15)
BRANCH, OUT* ~ .
si8 COMMANDS
) &’ IDECODED] .
e [&)
5] . o -
AODREQ amem—s] B > +DREQL < 2w > STORAGE
=) DFE v ol w LOGIC
-TOREQ ———=—$>} < Bl] S
1081 (0.7 ————>1 %
TR0 7)) ——— = 10TSE (0 15)
— &
Q
EXTINT pi Bl tEXTINT
STINT ——————— b <
108118 15— §
= n
T8 (815 ———> o
[+
CLOCKS o
TIMER —2—= 318 o~ 0 ‘}‘ ‘&
3 i Yy
e DMARDY
-IOGLKB ¢ .SPECER
e
10 CONTROL CHIP +PARER
| g—e————— PROER
q————— ADDRER
oFp ——— DMACK /
-TSEL e . {2 CHIP CARRIER)
.IQCLKB]
|cs—]
v g DFF [T
*+ e MROM MG
L < CLKZ
TSERVREQ o - . ‘
< CMD [M5) cPu
e REQ
p= L = T
A - [) .
ToMBO & = > DA PARITY
TSERVACK —a E = — % DMAPROGRAM
TOACK #———r 5 |t BUSY
1 |
TO STORAGE R
e
{FPI
*NU+ REQ DN $/380
INSTRUCTION SET
**REG IN ARCH E g O Oy
MoouLE 56 used) 2 =2 52928 |
= a s opDaz>
i z 522k
I E N T n

N
10 GTRE

SUMC-IIB I/0 Block Diagram (with Integrated DMA)

Figure 6.

Four clocks generated by the I/0 Interface Module are used to
synchronize the I/0 operations. An I/0 operation is initiated by a request
from one of three sources —— CPU, I/0 Device, or TSE. The IOC responds to
a request, if the channel is not in use, with an acknowledge signal to the
requesting source. The IOC determines which I/0 operation has been requested
and provides the appropriate sequence of signals needed to control that
operation.

Only one request can be serviced at a given time. If more than one
request is received at the same time, service'will arbitrarily be given to
one source and withheld from the other (by the absence of its acknowledge
signal) until the first has completed its operationm.

As a part of the Direct Memory Access (DMA) operation, the IOC provides
for DMA Error processing. Any DMA Error shall cause the following events

to occur:
1. CPU Interrupt
2. Reset of I/0 Register

3. Release of SIL for CPU operations

4, Suspending Release I/0 Device until a reset interface
command is sent by the CPU,

The IOC provides two gated output signals. One of the signals is the DMA
PARITY ERROR signal gated by MROM M6. The other is a logical "OR" of the
remaining three DMA Error signals (STORE PROTECT, ADDRESS, SPECIFICATION)
also gated by MROM Mb.

3.6 SEQUENCE ._ONTROL CHIP

The Sequence Control Chip is a specialized decoder chip which contrels
the Sequence and Iteration counters in the HTC computer,

Inputs to the chip include the C & M bits from the MROM, the contents
of the Iteration Counter, and some signals controlling conditional branching.

Outputs from the chip consist of select lines to the Sequence and
Iteration counter tc select either HOLD, LOAD, or STEP.

3.7 SEQUENCE MUX CHIP

The Sequence Multiplexer chip is a six bit 3 input mux reg with basic
arithmetic capability. It will select and store any of the 3 inputs and
can increment or decrement by 1 or 4, The chip part number is 7928747.

The inputs to the chip are:

a. Three sets of six-bit data

28

b. Four select lines to select one of the data inputs or to place the
register in an incrementing/decrementing mode.

c., Two lines to select increment/decrement by one or by four

d. Two lines to place the multiplexer in either increment or decrement
mode

e. A load pulse to load the register with the new multiplexer contents,

The outputs from the chip are:

a. Six bits of data from the storage register.
b. Six bits of data from the multiplexer.

¢. Carry/borrow out.

3.8 EEGISTER CHIP

The Register Chip consists of four independent four bit registers and
is part number 7928752 (See Figure 7).

Each register has four data inputs, four data outputs, a DC reset line,
and two load lines.

There is no inversion between data in and data out. The register loads
data in on the negative transition of either load line. The reset input is
positive.

3.9 TIMING CHIP
The Timing Chip is basically a programmable, synchronous, four-bit Grey
code counter. Each state of the counter is trigpered off alternate edges

of the input oscillator providing a frequency doubling effect for part of
the clock cycle. Figure 8 shows the clock operation.

Inputs to the chip consist of:

2. Two oscillator sources and a select line to provide square wave
frequency standard for the clock,

b. Two reset lines which reset the clock to the wait 2 state,

c. F?ur speed select lines which program the basic clock cycle length to
either 300, 400, 500 or 600 ns with a 10 MHz frequency source.

d. Two hold lines to hold the clock in either the wait 1 or wait 2 states.

e. A conditional line which can be used to extend the normal cycle length
by 300 ns. - .

29

1

e £ [
INPUT A)
> e
4-BIT
&= REG. -
CK A > A
GATE A N
RESET A
w e
INPUT B g o
o aBIT >
> REG -
CK B _ B
GATE B
RESET B

Figure 7. Register Chip

NOR OUTPUT
CK C -~
> A
GATE C _
EUTPUT RESET C o~
4BIT ’
P REG, —
" C
INPUT b
C L e
CK D
T e
GATED .
QUTPUT B RESET D - >
o 4-BIT ®
T REG. —
n

INPUT D

ﬁl‘

v

\:d

CUTPUT C

OUTPUT D

1€

[N
&=
S5
= E
oo
sh
oy
<51
EREQ. SOURCE | 1 J 1 } 1 | { | 1 | 1 } l‘ J 1] 1 J 1 | | 3 | I | 1] i | |
COUNTER STATE W2 0111]0701]0100{3100}7101]1113] 1110 | 1010 |1011}1001]1000] W3 0000 |6001J0011} Qo310 | 0110 | W2 0111 [0101)0100j1100[3201]
IN RESET e
e x - =
| - | S
CLKY | 1
SEQ LD 8 1 reqn
QUT RESET [
SET TO W1 37 .18 re+
SET TO W2 3y fs7 81 (87 o
~HOLD INW1' — I
—HOLD [NW2 e\ 1
LATE -

Figure 8. Timing Sequence

1 IF LATE LOAD IS REQUIRED

3,4,5,6 LENGTH BASIC CYCLE IN NS X 100
BASED ON 10 MHZ FREQUENCY SQURCE

3.10

OQutputs from the chip consist of:

a. The four bi&s of the counter

b. Three clock lines Z, X, Y.

¢. A delayed reset line triggered from the reset inputs.

d. Reset inhibit lines which are active when the clock is being held
in wait 1 or wait 2. .

e. A load pulse and extended cycle line used for loading the sequence
counter .

TIMER CHIP

The timer chip is an 8 bit ripple counter which is loadable and pro-

vides a gated output. Timer Chip part number is 7929710, Figure 9 is a
functional diagram of the timer chip.

3.11

Inputs to the chip consist of:

a. Eight bits of input data

b. Two load select lines to select a six or eight bit load,

c. A two-bit code to select either load, read, or reseét interrupt.
d. A clock input to gate the load and reset functions.

Output from the chip consist of:

a. Eight bits of data

b. An interrupt line which is set when the counter overflows from
all 1's to zero's.

MUX CONTROL 16/32

This chip provides the following functions:
& Byte Decode

® Byte Enable to memory

® Data read and write routing

o CPU specification cheek

® Special one~pulse circuit to load CP SDR on write functions,

32

READ ——0—
LOAD -9—}~0O

QUTPUT (8)

RESET

TIMER

| L | INTERRUPT 8-BIT & T-CARRY
CLOCK et - > /™ CoUNTER '
= :

%J%A A 4
0scC —
STEP 1 —+
CTRL

STEP 2 - INPUT (8)

LOAD 0—5 —roo
STEP4)

LOAD 6~7

Figure 9. Timer Chip

33

Chip operation is explained in the following paragraph in conjunction
with Figure 10.

The specification check circuitry checks that a CPU memory address is
on the correct boundary for halfword and fullword operations. Table 27
represents conditions of address, command and the state of the disabled
output,

Table 27. Address Functions

14SAR 15SAR FULL HALF 16 32 DISABLE {0=0K) SAR 14
0 0 1 0 10 0 1
0 1 1 0 1 0 1 1
1 0 1 0 1 0 0 1
1 1 1 0 11 1 1
0 0 0 1 1 0 0 0
0 1 0 1 1 0 1 0
1 0 0 1 1 0 0 1
1 1 0 1 10 1 1
0 0 1 0 o 1 0 0
0 1 1 0 o 1 1 0
1 0 1 0 0 1 1 . 1

T 1 1 0 0 1 1 1

Note that when FIILLWORD and 16 BIT lines are both 1, 14 SAR (Storage
Address Register 14) is changed tq a 1 if the line was a zero. This
operation does not exist for the 32 bit configuration. This configuration
of 14 SAR to 1 on full and 16 bit is required since the memory module is
32 bits wide and only 16 bits can be handled by the CPU.

Signals 14 SAR and 15 SAR are now decoded to provide four mutually
exclusive outputs (Byte 1 to 4). The decoder is inhibited to provide no
output if there is a specification error.

The outputs of the byte decoder are ended with the CPU commands (FULL
WORP, HALF WORD, BYTE) and two control lines CPU GOT MEM and DMA GOT MEM to
provide the Byte enable signals which to to the memory access 1, 2, or &
bytes of storage. Table 28 shows the valid combination of inputs which
provide the enable byte signals. Note in Table 28 that the DMA accesses
Halfwords in the 16 bit CPU and only full words in the 32 bit CPU. With
Byte 0 in (spec error) no enable outputs are generated.

The multiplexer data path latches are set to select various mux inputs

depending on CPU operations. This control logic has been specifically
designed to provide correct data positioning for byte read and write with

34

ot

CPU HALFWORD
CPU FULLWORD
BIT 14 SAR

BiT 16 SAR

16 OR 32
BIT CPU

CPU GOT MEMORY
DMA GOT MEM

32 FRACT/
INTEGER

CPU BYTE
CPU READ LATCHED
CPU WRITE LATCHED

CPU NOP

MUX RESET

- CPU SPEC OUT

W N =

> BYTE 1-»4 OUT
D e a——_— :
DISABLE BY 1-4 - > BY ENABLE
>\ 7" spec ENABLE [—» !
> > CHECK BYTE ENCODE | ‘L
SAR 14 DECODE .
eerrrrrrrrere——
puem g
> £
L
& -
& £
AN
D O
Vd
\d Y
- - # CONTROL 0-7
j .
»| MULTIPLEXOR
D A R it
>— > PATH ONE
7 PULSE —» L OAD PULSE
N o »| CONTROL CIRCUIT
: LATCHES CLOCK =t
pS -1
N— o
S >
> o » CONTROL 8-15
. |

I'd

Figure 10. Mux Control Chip

Table 28. Byte Signal Generation

t6 32 BYTE FULL HALF CPU Got DMA Got BYTE1,2,3,4 ENABLEDbyY 1,23, 4
1 0 1 0 1 0 Tor20or3o0ord lor2or3ord
0 1 1 0 0 1 o Tor2or3oréd lor2or3ord
1 0 1} 1 0 1 0 3 3,4

1 0 0 0 1 1 0 1 1.2

1 0 0 0 1 1 0 3 3.4

0 1 0 0 1 1 o 1 1,2

0 1 0] 1 1 1] 3 3,4

0 1 0 1 0 1 c 1 1, 2,3, 4

1 0 0 t] 0 o 1 1 1,2

1 0 0 0 0 0 i 3 3,4

0 1 ¢ 0 0 0 1 1 1,2, 3, 4

X X X X X X X 0 0

a 16 or 32 bit CPU and halfword read and write with a 32 bit fractional or
integer CPU. The mux control signals are designed to position data properly
when used with microcode instructions for an IBM/360 type computer. The

32 bit fractional CPU capability is added to allow correct operation with
CP-2 type microcode instructions (or any other 32 fractional CPU). For
$/360 type (integer) CPUs the data path always right justifies bytes or
halfwords on read operations no matter where data are fetched from storage.
On write operation data are presented to the mux right justified and the

mux control positions the data for byte or halfword store operations to the
correct position for the main storage system.

3.12 MUX CONTROL NO. 2

This chip performs the following functions:

e Command decode of CPU signals

¢ Storage Protect Checks of CPU write and read modify write
e Storage Protect -Check of DMA write

o Loading CP SAR

¢ Leading CP SDR

® Special CPU Operations

@ CPU request for memory generation

The chip is shown in block form in Figure 11.

36

MROM 1 y=—=—————i{
MROM 2 e
MROM 3 r—————i
MROM 4 >

WRIT VALID b
IROM 13 b
IROM 14 St

ZCLOCK >

USE IROM>

e

Y

LATCH RESET >

CPU

OPERATION

DECODER

—— CPU MUX REQ

» CF SAR

+ RD CPU

& CPU MEM REQ LOAD

» WRITE CPU

» BYTE

HALFWORD

FULLWORD

5 NOP

= READ MODIFY WRITE

4

v

WRITE DMA >

STPT CPU IN >

» END CPU READ MODIFY WRITE

- por—m———— CPU STPT ERROR
p——————% WRITE TO MEMORY

- P CPU READ LATCHED
e CPU WRITE LATCHED

STORAGE
. PROTECT —— e DMA STPT ERROR
o CHECK - — WRITE TO STPT STORAGE
AND . DEVICE
SPECIAL
CONTROL » FAKE RD. HOLD

STPTDMA IN

CLOCK >—

i

 BEREREE

ERROR RESET

CPU GOT MEM >

DMA GOT MEM >—

CORE STORAGE >

CPU RD LAST

LOAD PULSE >

4

REMEMBER
LATCHES

v

END FAKE »
RD. HOLD

Y

v

MUX RESET >

\J

FAKE RD. HOLD >
CPSDR LOAD

Figure 11. Mux Control Chip No. 2

- { OAD CP SDR PULSE

—————» WRITE BYTE MOVE

ORIGINAL PAGE IS
OF POOR QUALITY

37

All CPU operations are the result of storing MROM 1 to 4 or IROM 13
and 14 MROM.1 and 2 in latches at "Z" time and then decoding the output of
the latches. The CPU MEM REQ line is activated by and CPU operation requiring
access to main storage (Read, Write, Read and Hold). The CPU MUX REQ is the
OR of CPU MEM REQ and two special CPU operations; Write NOP and Write More
NOP. The WRITENOP function loads the CPSDR with 16 or 32 bits of data from
the PRR and requires no main store cycle. The Write None NOP is used to
load storage protect information into a 16 x 2 bit memory from the PRR bus.

The storage protect feature allows different protect "keys" for the
CPU and DMA. The presence of a storage protect bit is checked on all Write
operations and on Read and Hold and Write Move (NOP) operations. A storage
protect violation results in setting the appropriate error latch (CPU or DMA)
and changing the Write to Memory line to the read polarity.

All CPU operations are started at approximately the fall of Z clock anc
are terminated before the next Z clock, Since the MROM or IROM bits are
valid until the fall of Z, the CPU operation latches are reset before the
rise of Z, On a CPU read operation the memory data is present at the rise of
Z and the CPSDR load pulse is generated by “anding" CPU Rd Last and Z.

To provide the ability to support core memory or memory which is not
accessible in 16 or 32 bit data widths, the special control section contains
"provision for generation of a "FAKE" Read and Hold followed by Write when the
CPU requests a Write-Byte or Write-Move-Byte or Rgad.ﬁold—Byte.

The Remember Latches keep track of the "FAKE" operations to provide

lead CP SDR pulses at the proper time to insure that all data of interest
is retained for storing in the memory.

The CPU Read®Hold is checked for storagle protect violation because a
core memory Read-Modify-Write cycle must be terminated with Write.

3.13 MEMORY CONTROL (MEM CTRL)

This chip performs the following functions:

& Select CPU or DMA operation

¢ Check Various CPU and DMA errors

¢ Provide special reset pulses for CPU operation
¢ OStart Memory and CPU memory busy

® DMA request/acknowledge sequence

o Priviledgeq operation lockout of other Port

e ‘Write DATA SDR Mux control

38

Refer to Figure 12 for chip block diagram.

This chip provides two basic functions, which are:

1. Selection of who (CPU or DMA) is to use main storagé and

2, Generate various timed reset pulses for MUX CIRL 16/32 MUX CTRLZ.

The who got‘and priority loglc decide which port (CPU or DMA) is to get
the memory for a cycle and performs a lockout- function for the opposite port
if either DMA LOCKOUT is active or Rd e HOLD is active, These two signals
result in priviledged operations of memory by one port, excluding the other
port until the operation is completed., Included in this logic is the capa-~
bility for the Test Equipment to halt all memory operations at the end of the
present cycle,

The error latch logic detects abnormal addressing (requesting memory
locations outside of the installed capacity) and sends error signals to the
CPU for recovery. When an address outside of installed capacity is requested,
the start memory signal is terminated. DMA operation on an odd (15 SAR = 1)
boundary results in no start memory, sets DMA SPEC latch and sends an immed-
iate ACK. Also any DMA ADDRESS or SPEC error inhibits the DMA LOCKOUT signal.

The start memory latch is set only for Valid DMA read or write and
valid CPU read or write cycles. The CPU can request use of the memory cir-
cuits for loading the SDR (WRITE NOP) or loading the Storage Protect regis-
ter (Write Move NOP). These two operations inhibit.startirng of main store
and lockout the DMA port for a short time until the CPU operation has been
completed.

The special reset and pulse timing section develops eight ocutput
signals. Three signals are used to reset CPU latches and mux control latches.
Two signals are used to provide Data Load Clock (DLC) and Split Cycle Store
(SCS) for use with core memory: The remaining 3 signals are used for
initiating the end of a DMA SEQ, holding off start of memoxry until the DMA
ACK and DMA RDY signals are both zero and delaying starting memory when
using core storage until 150 NS after the fall of memory busy.

The CPU LRST signal resets CPUMEMBUSY and the latches on MUX CTRL 2

which store MROM 1 to 4, so that the logic can accept a new command from the
CPU.

3,14 MEMORY TIMING -

The memory timing chip provides the following functions:

® Timing Pulses for standard storage

® Timing Pulses for fast storage

® Read and Write byte width 1/0 bus enable

39

nd J0od 40
aDVd IVNIDIEO

8

]

o7

CPUMEMORY BUSY

DMA ACK

CPU GOT MEM

- DMA GOT MEM

& CPU GOT TO MUX

~ START MEM

= DMA ADDR ERR

 DMA PARITY ERR

- CPU ADDR ERR

- CPU SPEC ERR

e MUX RESET
————— LATCH RESET

f——————» DLC CORE

CPU MEM REQ & .
L CPU
CPU LRST) - BUSY <
TSE STOP
Now > DMA RDY >
w SEQ
| Ack
CPU MUX REQ - ;
DMA LOCKOUT .
DMA RDY > \WHO GOT —
CPU RDeHOLD »! PRIORITY & STOP o
LOCKOUT
STOP FROM TSE - -
DMA WT > o
o] START
LATCH
CPU WRITE LATCHED 4
CPU RD. LATCHED Iy A
MEMORY BUSY
NO STORAGE >
15 SAR >
.| ERROR
ERROR RESET > ATCHES,
CPU SPEC OUT # END
BUSY,
START
DLY START
START—
™ SPECIAL
ADVANCE - ESE&E fm——— CPU LRST
™ TIMING
CORE STORE »

Figure 12. Memory Control Chip

SOME

ONE GOT

————» SPLIT CYCLE STORE

DMA END SEO:l

® Special timing circuit for use in the Storage Interface Module
@ General purpose OR circuits
¢ Dotable control outputs for multiple storage assemblies

The chip is shown in block diagram form in Figure 13.

The ring counter is started by decoding two select signals and the
start signal. The timer is 'a 6 stage "switch-tail" ring counter which counts
from 000000 to 111111 and starts counting toward 000000. The two control
inputs, standard, and fast determine at what point the counter stops counting
and force the count to 000000 and reset the start latch.

The time decoder supplies 6 output signals used for contreolling a
standard or fast memory and 2 lines for feedback to the CPU. The width of the
various pulses is determined by worst case access time for the memory tech=

nologies and a clock rage of 9 to 10 MHZ. The memory busy and advance
signals are replicas of signals which exist for a core technology memory
and indicate when the memory is in operation and when data has been read or
written. These two signals are dottable so that more than one memory module
can be accessed (selected by select inputs). ‘

The bus enable logic takes the read/write line and ANDS the "START ME"
and ENABLE BYTE signals to develop input (write) and output (read) enable
signals for on module data routing. The output enable signals are latched
to provide read data to the CPU until the next memory cycle is started.

The special circuit is used to develop signals used by the MUX CTRL 2
chip to simulate a Read-Modify-Write cyecle when writing a byte and using a
cOTe Lype memory. s

3.15 AND/OR-TRUE/COMPLEMENT (AOTC) CHIP

The AOTC chip provides the following functions:
¢ True or complement outputs

¢ Two input, nine bit multiplexers

e Parity check/generation

¢ 3 to 8 decoder

Figure 14 is a block diagram of the AOTC chip. The multiplexer output
is available in either true or complement form and is controlled by a True~
Complement signal input. This signal set tora logic one will provide the
outputs equal to the selected input and with this signal set to a -logic
zero the output will be equal to the complement of the input.

The input to the chip is provided from two Sources, A and B. The input

41

[44

START MEM D] Y > [& STANDARD OUT (2 LINES)
SELECT 1 pme | START NG
S LECT RING - FAST OUT {2 LINES)
SELECT 2 Do - s COUNTER > 5 MEMORY BUSY *
TIME .
Y \ DECODE [% ADVANCE
CLOCK
STANDARD d— >
FAST > - END
’ CYCLE
&
RESET QUT START ME
ENABLE
L » OUT ENABLE {4 LINES)
READ/WRITE > & IN ENABLE {4 LINES)
ENABLE S BUS
BYTE 12 ENABLE
2 >
3 N -
7 > SPECIAL | ENDFAKE
4 St > CIRCUIT T RD®HOLD
*OPEN COLLECTOR OUTPUTS
d
e ,
4INPUTS {5 » OUT 1
Q j
d—\
d -
4INPUTS { > OUT 2
Q_/

Figure 13, Memory Timing Chip

DECODER IN (3)

—
ENABLE 1 (1) DECODER OUT (8)
— 3:8
ENABLE 2 (1)
—
A DATAIN (9)
-
B DATA IN (9) DATAQUT 9
—h
MUX)
GATE A > PARITY ODD
GATEB
-

Figure 14. AOTC Chip

43

selected for transfer to output is contrelled by Gate A and Gate B input
signals, Table 29 defines output selection with respect to these control

lines.,

Table 29. Multiplexer Control

GATE A GATE B QUTPUT
0 0 ZERO
0 T "SELECT B
1 T 0 SELECT A
1 1 A+B

The AOTC chip contains an odd parity tree which can be used either to
generate or check parity for 8 data bits., If the input to the ninth bit is
set to a logical one the output of the parity network will generate odd parity.
Parity is check on all data as it is selected to be transfered to the output
and the parity signal made available external to the chip. The AQTC 3 to 8
decoder is defined by Table 30. Control of the decoder is accomplished
by Enable 1 and Fnable 2 signals.

fable 30. AOTC 3: 8 Decoder

CONTROL OUTPUT

ENABLEZ ENABLE 1 INPUT 0 21 22 8 A 5 B o7
0 1 6 0o ofo6o 1 1 1 1 1 1 1
0 1 o 6 1|1 o % 1 1 1 1 1
0 1 o 1 o1 1 o 1 1 1t 1 1
0 1 o 1 1|1 1 1 0o 1 1 1 1
0 1 1T 0 o6 {1 1 1 1 0 1 1 1
0 1 1 0 11 1 1 1 1 0o 1 1
0 1 1 1 ot 1 1 1 1 1 o0 1
0 1 T 1 1|1 1 1 1 11 10
X 0 X X x*l1 1 1 1 1 1 1 1
1 X X X X141 1t 1 1 1 1 1 1

* X = Irrelevant

b4

APPENDIX B

APPENDIX B

COMPLETE LISTING OF SUMC-IIB INSTRUCTIONS

SUMC-IIB STANDARD INSTRUCTION SET

1.

NAME MNEMONIC
ADD AR
ADD . A
ADD HALFWORD AH
ADD LOGICAL ALR
ADD LOGICAL AL .
AND NR

"~ AND N
AND NI
AND. NC
BRANCH AND LINK BALR
BRANCH AND LINK BAL
BRANCH ON CONDITIOM BCR
BRANCH ON CONDITION BC
BRANCH OH COUNT BCTR
BRANCH ON COUNT BCT
BRANCH OW INDEX HIGH BAH
BRANCH ON INDEX

LOW OR EQUAL BXLE
COMPARE CR
COMPARE c
COMPARE HALFHORD CH
COMPARE LOGICAL CLR
COMPARE LOGICAL CL
COMPARE LOGICAL CLC
COMPARE LOGICAL CLI
CONVERT TO BINARY CvB
CONVERT TO DECIMAL CvD
DIAGNOSE
DIVIDE DR
DIVIDE D
EXCLUSIVE OR - xR
EXCLUSIVE OR X
EXCLUSIVE OR X1
EXCLUSIVE OR XC
EXECUTE EX
INSERT CHARACTER ic
LOAD LR
LOAD L
LOAD ADDRESS LA
LOAD AND TEST LTR
LOAD COMPLEMENT LCR
LOAD - HALFHORD LH
LOAD MULTIPLE LM
LOAD HEGATIVE LNR
tOAD POSITIVE LPR
OAD PSH LPSW

TYPE

RR
RX
RX

OPERAND

R1,R2
R1,D2(%2,B2)
R1,D2(%2,B2)
R1,R2
RT,D2(X2,B2)
R1,R2
R1,D2(X2,B2)
D1(B1),12 -
D1{L,B1),02(B2)
R1,R2
R1,D2(X2,B2)
M1,R2
M1,D2(X2,B2)
R1,R2
R1,B2(X2,B2)
R1,R3,D2(B2)

R1,R3,D2(B2)
R1,R2
R1,02(X2,B2)
R1,D2(X2,B2}
R1,R2
R1,D2(X2,B2)
D1{L,B1),D2(B2)
D1(B1),12
R1,D2({X2,B2)
R1,D2(X2,B2)

R1,R2
R1,D2(X2,B2)
R1,R?
R1,D2(¥2,B2)
D1{B1},12

D1(L,B1)D2(B2)

R1,D2(X2,B2)
R1,D2(X2,B2)
R1,R2
R1,D2(X2,B2)
R1,02(X2,B2)
R1,R2

- R1,R2

R1,D2(X2,B2)
R1,R3,D2(B2)
R1,R2]
R1,R2

D1(B1)

USEC

.
.

+2.0L

-+
(28]
lwa)

.0+1.1B
+1.1B
+1.1B

+1.18B

PN~ O, WwO 00000 OCO00D

N RN W W SRR WW PR WRN MNP WRTY
T
(g
-
~

PR — WO

20.2+10.87
40.7+1.,55
3.1+Diagnnstic
51.0

51.8

— 0o

.8+2.0L
A+Target

+1.9N

TN WNMND—=MN NN AWM

v . a

S WWMNNWOoOWWR oM

SUMC-IIB STANDARD INSTRUCTION SET (CONT'D)

NAME

MOVE

MOVE

MOVE NUMERICS

MOVE WITH OFFSET

MOVE ZONES

MULTIPLY

MULTIPLY

MULTIPLY HALFWORD

OR

OR

R -

OR

PACK

SET STORAGE KEY

SCT PROGRANM MASK

SET SYSTL# MASK

SHIFT LEFT DCUBLE

SHIFT LEFT SINGLE

SHIFT LEFT DOUBLE
LOGICAL

SHIFT LEFT SINGLE
LOGICAL

SHIFT RIGHT DOUBLE

SHIFT RIGHT SINGLE

SHIFT R1GHT DOUBLE
LOGICAL

SHIFT RIGHT SINGLE
LOGICAL

START 1/0

STORE

STORE CHARACTER

STORE HALFLORD

STORE HMULTIPLE

SUBTRACT

SUBTRACT

SUBTRACT HALFUORD

SUBTRACT LOGICAL

SUBTRACT LOGICAL

SUPERVISOR CALL

TEST AND SET

TEST UNDER MASK

TIMER READ/SET

TRANSLATE

TRANSLATE AND TEST

UNPACK

MNEMONIC

MVI
MVC
MVN
MVO
MVZ
iR
M
MH
OR
0
01
0C
PACK
SSK
SPM
SSM
SLDA
SLA

SLDL

SLL
SRDA
SRA

SROL

SRL
Si0
ST
STC
STH
STM
SR

S

SH
SLR
SL
SVC
TS
™.
TMRS
TR
TRT
UNPK

ORIGINAL PAGE IS
OF POOR QUALITY

TYPE

SI
SS
SS
sS
SS
RR
RX
RX
RR.
RX
Si
58
SS
RR
RR
SI
RS
RS

RS

RS
RS
RS

RS

RS
SI
RX
RX
RX
RS
RR
RX
RX
RR
RX
RR
S1
SI
RS
SS
SS
SS

OPERAND

D1(B1),I2
D1(L,B1),D2(B2)
D1(L,B1),02(B2)
p1{L1,B1),02(L2,B2)
D1{(L,B1),02(B2)
R1,R2

R1,D2(X2,B2)
R1,D2(x2,52)

R1,R?

R1,D2(%2,82)
D1(11),12
D1(L,B1),D2(B2)
D1{L1,B1),02(L2,B2)
R1,R2

R1

D1(B1)

R1,D2(B2)

R1,02(B2)

R1,D2(B2)

R1,D2(B2)
R1,02(B2)
R1,D2(B2)

R1,D2(B2)

R1,D2(B2)
D1(B1)
R1,D2(x2,82)
R1,D2(%2,82)
R1,D2(%2.B2)
R1,R3,D2(B2)
R1,R2
R1,D2(%2,82)
R1,D2(X2,B2)
R1,R2
R1,D2(X2,B2)

I

D1(B1)
p1(B1),I2
R1,R3,D2(B2)
D1(L,B1),D2{B2)
01(L,B1),02({B2)
01({L1,B1),D2(L2,B2)

bC
DD
F3

AW W O W NN WRI N WM

4.6+1.1L
5.1+2.0L
4.4+3.3L
5.4+2.0L

.3
- 142.60Q+1, 3R
3.0+.3Q+.3R

3.6+1.3q+1.3r
.0+,30+.3R

.1+30Q+3R
A+,.30+.3R

™N W

[F%]

.6+30+3R

L3+, 3040 3R
.9+1/0 Delay

NOTES:
B - 1 if branch is successful,-otherwise 0
L - number of first operand bytes processed
N - numberlof registers processed
q - shift count divided by 16
Q - shift count divided by 4
r - shift count modulo 15

- shift count modulo 3

sum of the decimal digits, except last d%git

- w =
[}

- 1 if timer is being set, otherwise 0
Z ~ 8 minus number of leading zero bytes

Add .5 if instruction type is RX and an index register is specified.

B-3

2. SUMC-IIB SHORT OPERAND (16-BIT) OPTION

NAME

ADD HALFWORD IMMEDIATE

ADD SHORT

ADD SHORT IMMEDIATE

ADD SHORT REGISTER

BRANCH UNCONDITIONAL

BRANCH UNCONDITIOMAL REGISTER
COMPARE HALFWORD IMMEDIATE
COMPARE LOGICAL SHORT

COMPARE LOGICAL SHORT IMMEDIATE
COMPARE LOGICAL SHORT REGISTER
COMPARE SHORT ‘
COMPARE SHORT IMMEDIATE
COMPARE SHORT REGISTER

DIVIDE SHORT™)

-DIVIDE SHORT IMMEDIATE
-DIVIDE SHORT REGISTER

LOAD ADDRESS SHORT

LOAD COMPLEMENT SHORT MEGISTER
LOAD FULL TO SHORT REGISTER
LOAD HALFWORD IMMEDIATE

LOAD HALFHORD REGISTER

LOAD WEGATIVE SHORT REGISTER
LOAD POSITIVE SHORT REGISTER
LOAD SHORT

LOAD SHORT IFMEDIATE

LOAD SHORT REGISTER

LOAD AND TEST

LOAD AND TEST SHORT

LOAD AND TEST SHORT REGISTER
MULTIPLY HALFWORD IMHEDIATE
MULTIPLY SHORT

MULTIPLY SHORT IMMEDIATE
MULTIPLY SHORT REGISTER
NORMALIZE

AND SHORT

AND SHORT IMMEDIATE

AND SHORT REGISTER

OR SHORT

OR SHORT IWMEDIATE

OR SHORT RLGISTER

MNEMONIC TYPE OPERANDS

AHI RI . R1,12

AS RX R1,D2(X2,B2)
ASI RI . R1,12

ASR RR R1,R2

BU RX D2(X2,B2)
BUR RRe« R2

CHI RI R1,12

CLS RX R1,D2{X2,B2)
CLSI RI R1,12

CLSR RR R1,R2

€S RX R1,D2(X2,B2)
CS1 RI R1,12

CSR RR R1,R2

DS RX R1,D2(X2,B2)
DS1 RI R1,I2

DSR RR R1,R2

LAS RX R1,D2(X2,B2)
LCSR RR RT5R2

LFSR RR R1,R2

LHI RI R1,12

LHR RR R1,R2

LNSR RR R1,R2

LPSR RR R1,R2

LS RX R1,D2(X2,B2)
LS1 RI1 R1,I2 -

LSR RR R1,R2

LT RX R1,D2(X2,B2) "
LTS RX R1,D2(X%2,B2)
LLTSR RR R1,R2

MHI RI R1,I2

MS RX R1,D2(X2,B2)
MSI RI R1,12

MSR RR R1,R2

NRM RR R1,R2

NS RX R1,D2(X%2,B2)
NSI RI R1,I2

NSR RR RT1,R2

0S RX R1,D2(X2,B2)
0SI RI R1,I2

OSR RR R1,R2

3.9

HSEC

— ot
STW A TR =PI et = PO P S TN TR PO PO LD et N — B PN P
. » - - - - - * - - - -

e)
MDD CINC U N DD W0 O — i OO Dt € RO o wd ot Ty ot] ol £ RO £

e

1.1041

RN NN R N,
. s s .
TOoOMmoIcC ™~

SUMC;-IIB SHORT OPERAND (16~BIT) OPTION (CONT'D)

NAME

SUBTRACT HALFYORD TMMEDIATE
SHIFT LEFT ARITHMETIC SHORT
SHIFT LEFT LOGICAL SHORT
SHIFT RIGHT ARITHMETIC SHORT
SHIFT RIGHT LOGICAL SHORT
SUBTRACT SHORT

SUBTRACT SHORT IMWEDIATE
SUBTRACT SHORT REGISTER
EXCLUSIVE OR SHORT

EXCLUSIVE OR SHORT IMMEDIATE
EXCLUSIVE OR SHORT REGISTER
TEST BITS

TEST BITS. IMMEDIATE

NOTE:

Q = Shift Count divided by 4
R=R

emainder from division by 4

MNEMONIC TYPE OPERAMNDS
SHI R1 R1,12

SLAS RS R1,02(32)
SLLS RS R1,D2(82)
"SRAS RS R1,D2(B2)
SRLS RS R1,D2(B2)

5§ RX R1,D2(X2,B2)
SSI RI R1,12

SSR RE R1,R2

XS RX R1,D2(X2,82)
XSI RI R1,12

YSR RR R1,R2

T8 RX R1,D2(%2,B2)
TB1 RI RY,I2

op
CODE

HSEC

2.8
2.6+.30+.3R
2.6+.30+.3R
2.6+.30+.3R
2.6+.30+.3R

2 G = NI N = DN N
QT OMN~NON

3. SUMC-IIB DOUBLE PRECISION (64~BIT) OPTION

NAHE
ADD DOUBLE _

ADD DOUBLE REGISTER
COMPARE DOUBLE

COMPARE DOUBLE REGISTER
LOAD COMPLEMENT DOUBLE REGISTER
LOAD DOUBLE

LOAD DOUBLE REGISTER
SUBTRACT DOUBLE
SUBTRACT DOUBLE REGISTER
STORE DOUBLE

MNEMONIC TYPE OPERANDS

AD RX R1,D2(x2,82)
ADR RR R1,R2

D RX R1,D2(%2,82)
CDR RR R1,R2

LCDR RR R1,R2

LD RX R1,D2(X2,B2)-
LDR RR R1,R2

SD RX R1,D2(%2,B2)}
SDR RR R1,R2

STD RX R1,D2(X2,B2)

B-6

RTINS O
e e I~ 7% - PN

4. SUMC-YIB FLOATING POINT DPTION

0P

NAME MNEMOKIC TYPE OPERAND CODE HUSEC -
ADD RORMALIZED AER - RR R1,R2 3A 20.8+A+N
ADD MORMALIZED AE RX R1,D2(X2,82) 7A 21.2+A+N
ADD UNHNORMALIZED AUR RR R1,R2 3E 19,8+A
ADD UNMORMALIZED AU RX R1,D2(X2,B2) 7E 20.4+A
COMPARE CER RR R1,R2 .39 16.0+A
COMPARE CE RX R1,D2(X2,B2) 79 16.2+A
DIVIDE DER RR* R1,R2 3D 48.5+N
DIVIDE BE RX R1,D2(X2,B2) 70 48.6+N
HALVE HER RR R1,R2 34 9,5+N
LOAD AND TEST LTER RR R1,R2 32 4.2
LOAD COMPLEMENT LCER RR R1,R2 33 4.6
LOAD NEGATIVE LNER RR R1,R2 31 4.6
LLOAB-POSITIVE LPER RR R1,R2 3p 4.4
LOAD LER RR R1,R2 38 3.1
LOAD LE RX R1,D2(X2,B2) 78 2.9
“MULTIPLY MER RR R1,R2 3C 33.7+N
MULTIPLY ME RX R1,D2(%2,82) 7C 33.8+N
STORE STE RX R1,D2(X2,82) 78 3.7
SUBTRACT NORMALIZED SER RR R1,R2 3B 21.7+A+H
SUBTRACT NORMALIZED SE RX R1,D2(X2,B2) 7B 21, 8+A+N
SUBTRACT UMNORMALIZED . SUR RR R1,R2 3F 21.0+A
SUBTRACT UNNORMALIZED suU RX R1,D2(X2,B2) 7F 20,8+A
NOTES: A = .3 usec per digit for exponent alignment

N =1.4 usec per digit for normalization

B-7

