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IMPLICIT APPROXIMATE~FACTORIZATION SCHEMES FOR THE
LOW-FREQUENCY TRANSONIC EQUATION
William F, Bollhaus and Joseph L. Stepger

Ames Research Center
and
U.S. Army Air Mobility R&D Laboratory
Moffett Field, California 94035

SUMMARY

Two- and three-level implicit finite-difference algorithms for the low-
frequency transonic small disturbance-equation are constructed using approxi-
mate factorization techniques. The schemes are unconditionally stable for the
model linear problem. For nonlinear mixed flows, the schemes maintain stabil-
ity by the use of conservatively switched difference operators for which sta-
bility 1s maintained only if shock propagation is restricted to be less than
one spatial grid p- 1t per time step. The shock-capturing properties of the
schemes are studi. r various shock motions that might be encountered in
problems of engineering interest. Computed results for a model airfoil prob-
lem that produces a flow field similar to tl.at about a helicopter rotor in
forward flight show the development of a shock wave and its subsequent propa-
gation upstream off the front of the airfoil.

I. INTRODUCTION

Frequently, one emp.oys simplified equations that extract the essential
physics from a more corplete set of equations that model some physical phenom-
enon. These simplifications, while limiting the range of applicability, often
gsignificantly reduce the complexity and expense of computing solutions. When
such approximations are made, the numerical algorithm used to solve the sim-
plified equations should be matchad to the same range of applicability.

Of interest here ix the solution of the transonic flow field about a thin
airfoll executing some arbitrary small amplitude oscillatory motion in a uni-
form stream. The small disturbance and transonic assumptlons allow simplifi-
cation of the governing gas-dynamic equations to (ref. 1, p. &)

K2M, 20, + 2kMZdo, = Vebyy + byy (1)

where V., =1 - Mm2 - {y + l)Mmm¢x, 9 <1g the disturbance velocity potential,
y 1is the ratio of specific heats, and m is a function of M, (see refs. 2
and 3). The coordinate system is fixed with respect to the airfoil, and x
is alined with the free-stream direction. The flow is defined to be locally
subsonic or supersonic, relative to the fixed coordinate system, for V. > 0
or V., < 0, respectively. A measure of the degree of unsteadiness of the
motion is given by the redyced frequency k; for am airfoll of chord length
+y with free-stream velocity U_,, and executing some periodic motion of
frequency w,
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k= (2)

The variables ¢, t, y, and x have been nondimensionalized by cU,, l/u, c,

and c, respectively. In the derivation of (1), “c¢ is assumed that the flow

ts inviscid and transonic (M, = 1) and that velocity disturbances due to the

airfoil are small compared to U,. Further simplification can be achieved by
restricting the range of reduced frequencies, as we shall sece.

The traces of the characteristic surfaces in tlz plane of the airfoil for
the linear form of (1) are shown in figure 1. Waves that advance in the flow
direction propagate downstream relative to the airfoil with velocity
(Mo + 1)/M k in the nondimensiunal coordinate system. Waves that recede
(relative to particle paths) travel upstream against the flow with velocity
M, - 1)/M k. Fluid particles travel with velocity 1/k ({.e., U, in the
dimensional system). For low-frequency transonic flows (r:f. 4),

K~ 1 - M2~ 12/3 ¢cc ] (3)

where T is the airfoil thickness-to-chord ratioc. So dist ‘hances traveling
along the advancing waves propagate rapidly away from the airroil, while those
traveling along the receding waves remain closer to the airfoil and dominate

the solution there., TFor low-frequency motion, (1) reduces to the low-frequency,
transonic, small-disturbance equation

2ka2¢xt = Vedyx + dyy (4)

which is subject to the restrictions (3). The numerical solution of {4) is
useful, for example, in aerodynamic flutter analysis and the treatment of high
speed helicopter rotors.

An efficient computational algorithm for eitter (1) or {(4) should have a
time step restriction for stability that is no more restrictive than the time
step required to adequately resolve the unsteady flow fleld. Since, for low-
frequency motions, the solution is dominated by disturbances traveling along
the receding waves, the time step should be related to the time scale of
receding wave propagation, as well as the wave length of these disturbances,
Explicit schemes for transonic flows have time step restrictions for stability
that are based on the advancing wave time scale. Hence, for low-frequency
motion, they have time step restrictions for stability that can be orders of
magnitude more severe than required for accuracy. This problem of stiffness
was overcome in reference 4 by the use of semi-implicit difference schemes
applied to (1) and (4), with a resulting time step restriction based solely cn
the receding wave time scale.

Results obtained using the semi-implicit scheme applied to (4) have been
compared with solutions to the complete Eulerian gas-dynamic equations in
references 2 and 3. The solutions compared favorably for cases in which the
assumptions (3) were valid, and the simplified theory resulted in a consider-
able savings in computer run time and storage. However, it will be shown in
what follows that considerably larger time steps than allowed by the semi-
implicit scheme stability requirement
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2 2
At 3 kM, Ox (5)

[V = M2 = (v + 1M, 6y ]

can be taken without sacrificing accuracy for truly low-frequency motions.
Note that (5) is especially restriciive near the airfoil leading and tralling
edge singularities, where |¢x| iz large.

Two fully implicit schemes are reported here that have no time step
restriction based on a linear stability analysis., One scheme, an alternating-
direction implicit algorithi,, is applied to (4) in a manner similar to the
Douglas~Gunn algorithm for the heat equation (ref. 5). The other scheme, an
apprrximate faccrorization scheme, also factors difference approximations to
(4) such that simple matrix solutions are required first in one spatial direc-
tion and then the other. In Section I1, both schemes are investigated in
terms of stability and accuracy for a model linear equation, In Section TII,
the shock capturing characteristics of the schemes are investigated, and con-
ditions to preve t nonlinear instability and shock-capturing overshoots are
found. In Section IV, the difference schemes are presented for the complete
equation (4). Finally, in Section V the algorithms are applied and results
compared for the simulated motion of a helicopter blade tip.

IT. ALGCRITHMS FOR THE MODEL LINEAR EQUATIONS

We begin by considering the model linear equation for (4)
Ot = Bdxx * ¢yy (6)

An implicit differencing of (6) 1s sought to remove any time step restrictions
other than those imposed by considerations of accuracy, and, for reasons of
efficiency, computer-time consuming inversions must be avoided. The system of
equations generated by implicit difference operators is perhaps most effi-
ciently solved by structuring the difference operators so that they can be
factored into easily inverted products. For simple difference equations one
can sometimes construct fast direct solvers in this way, but zs the complexity
of the equations increases, approximate factorizatilons are usually sought,
This 1s the conr.2pt of splitting and alternating directions (see, e.g.,

refs. 5, 6, and 7} which has recently been applied to the Eulerian gasdynamic
equations (ref. 8). (The terminology "approximate factorization" is adopted
from Yanenko (ref. 6, p. 27) and is perhaps the most descriptive name for this
general class of procedures.) In this section two such procedures are devel-
oped which shall be referred to as a three-level approximate factorization
(AF) scheme and a two-level alternating direction (ADI) scheme.

a) Approximate Factorization Algorithm

An implicit differencing of (6) for B8 > 0 is

-+l nt1 o+l
Sxefi i T Bty i T Cyy®y Lk o
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where

6. = (axAt) (L= EZD (L - BRD) [0(at) + 0(ax)] (8a)

Sex = (AT2(ELN - 2+ ETL) [o(ax?)] (8b)
= -2¢p=1 - et 2

Syy = (ay)T2(EGL - 2+ E¥Y) [o¢as®)] (8¢)

Here the shifting operators are definec by

+1.n
Be 45,k 7 5,k
tl . n . .0

1l n _ ,n
Ey ¢j,k B ¢j,kt1

with t = nAt, x = jAx, and y = kAy. In the above, &y¢ 1s kept first-order
accurate for simplicity — a second-order-accurate version will be described
later. Note that (8b) can ke rewritten &y, = (Ax)"z(E;*{‘1 - 1301 - E;l).

Various factorizations of (7) are poesible, but one that makes use of the
common factor in &yy and 6y¢ and requires only simple bidiagonal and tri-
diagonal Inversions is

n+l

+1 -
(1 - acEy - DI - B - by JelTy

= _ el +1 _ n
[t - B! + ab(Eg 1)6yy]¢j’k(10)

where a = 8 %& and b = AtAx. The approximate facterization (10) differs
from (7) by the added cross turm

+

1 +1 n
[ab(E, - Doy JIET - 110y | = 0(axat oy (11)

which, compared to the other terms, is of second order, Further, if a steady
state is reached, the added cross term is zero.

The advantage of the AF form is that the inversion process is quite
simple. As indicated in sketch (a) only bidiagonal and tridiagonal inversions
are required, and the intermediate solution results can be overloaded into the
same double array, A difficulty with the AF method is the need to supply
the value (1 - E;l - bﬁyy)¢gii x a5 @ boundary cendition during the inversion

]

of each upper bidiagonal. For example, if ¢g¢i K is given on the boundary,
¢g+i remains unknown, unless one can estimate $x on the downstream boundary.
’

A simple approvach is to use data at level n in place of the unknown n+l
boundary data. However, this particular approximation can impose conditional
stability criteria, although not very stringent ones, especially if the local
value of Ax 1is large.
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Solution Procedure for equatirn (10) usipng a double array, ¢9

. \, jak
Form right-hand side {overstore ¢j K into ¢? k)
E,o= 6 40,
17 yytik I+
bk j . ¢j et by, - £) . §= 0l |
Inversion of first factor (overstore ; into ¢n ) k= 1,K
Jk Jok
z ntl nl n+l
with  Gp 0 = Gy gm0y~ B, T J
Tridiagonal inversion (overstore ; i into ¢; k)

n+l nt+l n+1 ntl _ s n+l
v ™ Ta Ohmer ~ 2 e = dy 900

Sketeh (a)

The algorithm (10) is unconditionally stable for £ > 0 by a linear sta-
bility test (see Appendix A, part a, for details). If 8 < 0, the algorithm is
modified so that &4y 1s the first-order three point backward difference
operator, and stability is again unconditional. The AF algorithm for £ < 0
is given by

n+1

[1-a0 - eI - EQY - yy]¢ = [1 - e} + abQ1 - Egl)ayy]qﬁ_;,k (12)

and the solution process is much as in sketch (a) — a lower-bidiagonal inver-
sion replaces the upper-bidiagonal inversion, and boundary conditions are
simplified.

Second-~order accuracy in time can be obtained by using the followilng

three level finite-difference operator for 4.,

S = atdx)"H[3-Epr2-E]-Eghy(1-ExD) . [0(ac?) + o(ax?)] (13)
The operator f13) was derived by Taylor series expansion so that only the fac-
tor (1 - Ey ) appears at the n+l 1level, and the factorization 1s much as

before. The three-level scheme can be programmed seo that only two levels of
computer storage are required,

The extension of the AF algorithm to three dimensions is easily accom-
plishaed. For the equation
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Pt = Bbyx * byy + 0y, (14)

Yy
an unconditionally stable approximate factorization using »sperators (8) with
§,, simllarly defined is given by

[1- at! = DILQ - bs, ) (1 - bs,,) 11¢“+‘

= 31 +1
= [1 - g}l + a(et Db(8yy + §,, = bSyu6,,) + b28

The inversions are again straightforward, although a complicated cross term
has to be computed at level n. In many problems the term b2 Sy d,. could be
safely neglected and always without losing second-order accuracy.

b) The Alternating-Direction Algorithm
A two time level differencing ' (6) is given by

u+l - n+l n

where the previous operators (B) are used; or, to maintain second-order
accuracy

3 - g;t

= (axat)"r( - EgD |[—5—| (1 ~ XD, [o(at?) + 0(rx?)] (17

An approximate factorization of (16) is obtained from the Douglas-Gunn
alternating-direction algorithm with the identity operator replaced by &, as
follows

At “nt+l _ At n
[Gx - ayy]¢j’k = [5x + 5 gyt AtBSxx}¢j’k (18a)
At n+l _ +n+] At
O B LI OB NC (180)
where
-1
65 = (1 - E ")/bx (first order)
or
3 - E;ﬂ 1 - B!
§, = (second order)
X 2 aAx

The first step of this procedure is a consistent approximation to (6) and, in
fact, is identical to the scmi-implicit method of reference 4,

) A-6373



To show cthat (18) represents an approximate factorization to (16), insert
§3'6x = 1 (the constant of summation is taken as zero) between (84~ (At/2)5yy]

and $; k in (18a), and then eliminate Gx$; K using (18b) with the resulr
] 1]

At -1 Bt ao yom¥l LAt n
(g = 7 Syyd6xt L8y = 5 BoI oy 1 + 5 Boyyty | ]

= (8, + %5 Syy + Atsaxx)q;;’k (19)

Algebraically rearranging terms

n+l

At At

X

At At At

2
n - - n+l
= (Gx + 2 6y}r + 2 Baxx)q’j,l’- - (r,] Séyyaxldxx(l - Etl)(t'

3,k (20

Pl

With At divided out the error term is 0(ut2¢yyxt) as for the AF scheme.
In the inversion procedure for (18), $n+1 must be supplied as a boundary
condition in step (l8a). From step (18b) this means that

= - At n+l — 4D
3k T %50 T 7 Sk Sy T 4y )

must be supplied on the boundaries, but to second-order accuracy %gfk cat be

taken as ¢9Té on the boundary. This is typical of the Douglas-Gunn metlud —
implementation of other, even rearranged, approximate factorizations may

require that the functlon and a derivative be specified on the boundary.

For B > 0, (18) is unconditionally stable by a linear stability test
(see Appendix A, part b). TFor B < 0, 8yx 1s backward differenced to main-
tain stability, and the first-order three-point backward difference is used.
The scheme generalizes to three dimensions 1n the usual Douglas-Gunn-like
faghion with the J, operator replacing the usual identity operator, Fipally,
it is remarked that this procedure generalizes to any number of operators in
time that contain the factor (1 - ETl). For ?xample, if, as in differencing
(1), an operator such as (1 - EEl)ﬁﬁﬁx,ﬁt)¢?Tg appears, the operator £(84,8,)
replaces the usual identity operator of the Douglas-Gunn algorithm, Of course,
stability 1is not generally ensured.

¢) A Numerical Verification of the Linear Algorithms

The following example 1s presented as a simple check on the accuracy and
stability of the implicit schemes. The motion is that of a parabolic arc
airfoil increasing its thickness from zero to C.1l, according to the relaticn
shown in figure 2, in the time it takes a fluid particle to travel [ifteen
chord lengths at the free-stream velocity U, . Since the motilon is not
periodie, t 1s scaled by /U, rather than 1/w. This is equivalent to

A-6373 7



taking k = 1 in (4) so that time is given in chord lengths traveled rather
than radians, Solutions of the linear version of (4) (L.e., ¥ = -1} are com-
pared in figure 2 in terms of pressure coefficlent, C, = -24,, at x = 0,525
as computed from the second-order ADI scheme and from linear theory (exact).
Equivalent results were obtalned with the second order AF scheme. Here the
x grid spacing was uniform at Ax = 0,05 chord lengths. The vertical mesh
spacing, also uniform, was 0.l. The time step was five times greater than
that permitted by the semi-implicit scheme {(see (5)), and no accuracy or sta-
bility problems were encountered.

IIT, ONE-DIMENSIONAL SHOCK WAVE MOTION
a) Model Problem

The shock capturing properties of the implicit finite-difference schemes
can be investigated using the inviscid Burger's equation, given here in terms
of the velocity potential

(6, + (952, = 0 (21)

along with boundary and initial conditions
$(0,t) = 0, ¢x(0’t) = ¢xL ’ ¢’x(£:t) = ¢xR

bxp, " ¥ o 05s2%s5x (22)

. %o + X - Xo ) Xy & % 58

8q

$p({x,0) =

The initial conditions are sketched in figure 3. The solution to (21) and (22)
1s ¢4 = ¢xL for x < xg and ¢y = ¢xR for x > x4, where xg 1s the

instantaneous location of the shock wave and is given by
Xg = Xg + (¢xL + ¢xR)t (here we exclude so-called "expansion shocks"). The
0

potential ¢ must be continuous for all x,t.

b) Difference Schemes

Evyuation (21) is written in difference form as

6xt¢?f}i *Dxfy = 0 (23)
where
_ n+l n
fj = f(¢xj ] ¢’xj)
8 Lo CRILITY OF THE A=6373
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and

by = eura) T Hgo 1038

The quantity f4§ 1s some difference approximation for (¢x)2, and the dif-
ference operator Dy remains to be specified. To avo}d iteration at the n+l
level, fj is linearized by expanding in terms of ¢§; + For the AT scheme,

¢x2 1s evaluated at time level n+l, and the following first- and second-order
linearizations can be made

£op = (4 = 97 o™+ 0ar) (242)

1 * 1%

(and by Taylor series expansion)

n+l)2

£, o= o™h2 = " )7 4 26" o™ - 4y + 0cac?) (24b)
AFj xj xj xj xj xj

For the ADI scheme, ¢y 1is averaged at the n and n+l time levels, which,
along with (24b), gives

£ (24¢)

1 n+l, 2 n .3 n okl 2
ADL, == [(¢ )2 + (¢, )2] = ¢ o =~ + 0(at%)
j 2 xj j ijj

(The use of the terms "AF" and "ADI" is strictly not correct in this one-
dimensional application, but the terminology is convenilent in relationship to
the subsequent development of the two-dimensional algorithms.)

In Section II it was determined that central and backward differences for
bxx Were required to maintain stability for the cases £ > 0 (subsonic) and
B < 0 (supersonic), respectively. In differencing (23) then, central and
backward differences should be used for f when ¢, < 0O (subsoniec) and
¢x > 0 (supersonic), respectively. As shown by Murman (ref. 9), care must be
taken in switching from one difference operator to another, otherwlse the con-
servative form and 1ts correct weak solution may not be maintained. Switched
differences can be ysed while maintaining proper conservation form by express-
ing D, 1in the form

Pty = kl B EJ')[fj+(1/2) - fj-(llz)J + Ej-l[fj—(llz) - fj-(s/z)]L/Lx (25)

with €5 =0 or ] for (¢§+1 - ¢?_1) less or greater than zero. 7In Murman's

terminology
Ej—l =0, Ej = (0 = gubsonic point
ej—l =1, aj = | = gupersonic point (26)
Ej—l =1, Ej = 0 = ghock point
Ej—l =0 , Ej = 1 = parabolic (or sonic) point

A-6373 9



The procedure used here to maintain conservation form with switched dif-
ferences can be summarized as follows: write the difference equation in con-
servation form as in (23), linearize as in (24), then apply the switching
operator Dy as in (25). Violation of .nis procedure can iesult in noncon-
gervative difference schemes which yield erroneous shock speeds, as demon-
strated in Appendix B.

Using time linearizations consistent with the order of &y, firot- and
second-order accurate implicit differences for (21) are given by

First order AT and ADI

n+l n+1 n+l n n

n
¢j - ¢j_] -AxAth(¢vxj¢xj ) + ¢j - ¢,j_1 (27a)
Second order ADI (two level)
n+i nt+l nt+l _ n  n+l n _ n n
3¢j - 1‘%—1 + 4’3—2 = 2AxAtl:x(¢xj¢axj ) + 3¢j 4¢j_1 * 4y, (27b)
Second order AT (three level)
n+l o+l _ n n+1 n
3oy = 4y = -ZAxﬂth[¢xj(2¢xj - ¢xj)]
(27¢)
n n n n-1 n-1 n-1

Note that the first-order AF and ADI schemes are equivalent. Also, the term
"gacond order" itn (27b) and (27¢) applies only for locally subsonic regions
because the upwind difference used in Dxfj for locally supersonic flows is
only first-order accurate.

For purposes of comparison, the semi-implicit scheme of reference 4 is

n+l o+l

R -AxAth(¢2j)2 + ¢2 - ¢§_1 (28)

and it is subject to the stability criterion At £ Ax/(2|¢xlmax)-

¢} Shock Characterization

To investigate the shock-capturing characteristics of the numerical
schemes, four types of shock motions are considered, as summarized in table 1.
The terms "subsonic' and "supersonic'" are relative to the coordinate system
and not to the moving shock.

10 A-6373



TABLE I.- CLASSIFICATION OF SHOCK MOTIONS

B
. Shock Cha. acteristlic Spatial differencing
1. Supersonic-to-supersonic () >0, ¢ >0 Backward
1 *R 1’
2. Subsonic-to-subsoni¢ b <0, ¢ <0 Central 1
L R |
3. Supersonic-to-subsonic (down- ¢ +¢. >0,¢ <0 Mixed
stream moving) XL ®R XR
4. Supersonic-to-subsonic ¢+ ¢ <0,6 < 0O Mixed
(upstream moving) ¥, ¥R xR

A parameter that has a significant effect on the shock capturing proper-
ties of any one of the schemes is the number of Ax 1increments the shock
wave travels in a time At

T & == — (29)

where the correct shock speed for (21) is dxs/dt = (¢XL + ¢xR), and a uniform

grid is assumed., A valur . * 1 corresponds to the case where the shock
moves a distance of one ¢ ir.d polnt per time step. Another parameter of
interest is the Couranc number

At
v 2le, |5 (30)

and the stability restriction for the semi-implicit scheme is ]v[ < 1,

d} Computed Pesults

Now consider the implicit schemes (27) applied to the model problem (21)
with inirial conditions (22) for the first type of shock motion listed in
table I, the supersonic-to-supersonic case. In this case the term (¢X2)x is
approximated by backward differences throughout. Results of ‘he first-order
(27a), second-order ADI (27b), and second-order AF (27c) schcuaes are compaved
in figure 4. Results from each of the schemes are shown at two values of T
for the same time. The shock profiles shown remain essentially unchanged for
all greater times. The exact solution is given by the dashed lines, and the
shock locatlon is indlcrAted by Xge

Results for the second type of shock motlon, the subsonic-to-subsonic
case, are shown in figure 5. 1In this case the term (¢x2)x is approximated
by central differences throughout. Again the shock prafiles shown remain
essentially the same for all larger n. The first-order results are similar

A-6373 H



in appearance to those for :ne supersonic-to-supersonic case. The second-
order results contain os.:illations that increase with T.

A sequence of shock profiles for an upstream-moving, supersonic-to-
gubsonls shock is shown in figure 9. For the supersonic-to-subsonic cases,
mixed differences are used for (¢x~)y. The sequence of shock profiles {is
periodic, repeating every fifth time step, because T = 0.2, All the schemes
capture the shock sharply, but again oscillations are apparent in the second-
order schemes. Similar results are shown in figure 7 for a downstream moving,
supersonic~tc-subsonic shock.

The first-order results of figure 7 are replotted in terms of ¢ wvs. x
in figure 8. The dashed lines indicate the exact solution at different time
steps. The exact shock location at time level n 4s indicated by the inter-
section of two dashed lines and 1s marked by xsn on the abscissa. The loca-

tion of the shock relative to the mesh at n = 19 1is repeated at n = 24, and
that at n = 20 1s repeated at n = 25, etc., Points identified as shock
points -t level n according to (26) are denoted by Sn. The soluticn to the
difference equation (27a) for the case treated in rigure 8 1is

¢j = ¢j for xj < xsn

(31)
¢j = ¢j - ﬁxs(%xR - ¢XL) for xj 2 xsn

where Axg, the distance the shock travels in time At, 1s given by
dxg = At(¢xL + ¢x ). Hence, in updating ¢ from time level n to n+l, the

gsolution remains unchanged for all (supersonic) poir'; to the left of the
shock polnt. The shock point, and all (subsonic) points to the right of 1t,
move to the dashed line that is the exact solution for n + 1. The test to
determine §,, assures that the shock point remains downstream of the shock
for the value of T used here,

e} Nonlinear Instab?lity «nd Owcershoots

For large values of T, however, the shock-capturing procedure breaks
down, and an instability occurs as illustrated in figure 9. Here the solution
downstream of the exact shock location is correct for each n: -, because of
the test for 8§, the shock point can move only one grid poin’. downatream per
time step, while for T = 2, the exict shock location moves dowvnstream at a
rate of two grid points per time ste.. An increasingly large discontinuity in
¢ develops, which appears ac a growing overshoot in ¢x, and the process
diverges. Reducing T +to L.l slows the divergence rate, as illustrated in
figure 10. For T = 1.0, the process is neutrally stable, as shown in
figure 11, and the ¢, vs. x shock profile travels unattenuated after
n = 3. TFor the case 7 = 0.9, shown in figure 12, no instability occurs. The
sequence 1s periodic with the solutiwm repeating every tenth time step. An
overshoot develops at n = 1 that decays with n until it repeats at n = 11,

12 A-6373
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For this type of switched-differencing-induced overshoot to occcur, two
conditions must be met: (1) the point immediately downstream of the shock
must be a shock point, and (2) the (downstream moving) shock must move past
this point in the next time step., Referring to flgure 3, these conditions can
be expressed, regpectively, as

g, T ey
$ - ¢ <0 =%, ~x, >AX|TT—— (32a)
Jorr dam Js ° b, 7 ¥x
L R
*¥, = x, <At + 32b
1 5, (¢KL. ¢xR) (32b)
or, equivalently,
X, - X
k| 8o
1(&xfﬁ;) < sAx <P (320)
X x
L R

This indicates that the occurrence of overshoots depends on the speed of the
shock and its location relative to the mesh. As the shock propagates through
the grid, (32¢) may be satisfled at some time levels and not at others. It
follows from {32c¢c) that these overshoots can never occur if

+
T:é.g. .+. <u
- Ax ¢xL ¢xR O, ~ Ox

This is a mbre restrictive condition than the 7T £ 1 requirement for stabil-
ity. 1Inequalities can be derived from the upstream-moving shock case in a
similar way.

(33)

L R

The type of instabllity and overshoot discussed here cannot occur in the
semi-implicit scheme, becanse, for a downstream-moving supersonic-to-subsonic
shock, the linear stability condit?:.n is more restrictive than the inequality
(33). It is also interestinx to note that For the nonconservative (in time)
scheme detailed in the apper ..x, no overshoots or instabilitiles occur.

For the implicit schemes presented here, the shock-capturing process
imposes time step limitations for both atability (due to the time lineariza-
tion of the nonlinear term) and accuracy. The restriction T < 1 could be
eliminated by fitting the shock as an internal boundary. Alternately, the
followii simple correction process could perhaps be implemented. First,
update ¢ at n+} by applying the implicit scheme as before. However, before
proceeding to the next time step, any points crossed by the shock in time At
would be corrected, i.e., they would be forced to lie on extrapolated curves
from the upstream or downs.ream direction depending on the direction of shock
travel. This procedure has been successfully applied in the one-dimensicnal
case but has not yet been attempted in two-dimensilons.
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IV. NUMERICAL ALGORITHMS FOR THE LOW-FREQUENCY TRANSONIC EQUATION

The factored schemes introduced iu Section II are combined here with the
nonlinear mixed difference operators of Scction IIT to form a complete algo-
. rithm for solving (4).

a) Alternating Direction Algorithm

An implicit differencing of the low-frequency, transonic, small-
perturbation equation (4), using two time levels, can be denoted

+1 1 - + 1
Blﬁx:¢§,k =5 (1 + Etl)(%xfg’i + 6YY¢?T%) (34)

where B, = 2kM_2, Dy 1is defined by (403, and the difference operators for
Syy and 4y are specified by the relations
( g*l -1
E;: -1 1~ E
_ y y 2
5yy = - (35a)

Tt T Yk YT Yke1) Tkt T Yk

(1 - B! 1 - E;! : : :
e = " i %im i [2 +u(l - EZ1] = (an)™11 - ETD8,  (35D)

*

Here u = 0,1 for the first- and second-order differences, respectively. The
unusual choice of (xj4; = %i-1) used with the &yt operator is required to
maintain conservation form %or variable meshes. The operator (35b) is not the
usual spatial second-order-accurate relation derived from a Taylor series
expansion, but, for a sufficiently smooth grid variation, the difference is
nevertheless second-order accurate. For example, Introduce £ = £(x) with
one to one mapping x = x(£) such that £;-£:.y = AE 1s constant over the
grid, and for the three-point backward spatial operator

(1 - E;D-ED (1 - B2 - E21)¢
e P 3 4, + 002D ][ey - 00D)]
441 j-1 208, + 3 (AE)ZxEEE + ...
(36)
where XJiJ(E) is expanded abovt Xj(E) via Taylor series.
In (34)
nt+l _ 2 1 m, n+1 nt+l
£, .= Il = M5 -5 (v + LM,¢ ¢ (37)
3k [ =3 "j,k]"j,k
whare
n _r.n N _
be = Uiy - oy ka2 = Xoqy2)]

.k
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Linearizing as in Section TII gives

nt1 no, [Bf

TR Lk LI (38)

¢
34’x]j.k *1,0 Fi,k

Two-time level averaging then gives

= =|,n n+l 1.0+l n
£ x f[¢xj,k,¢xj,k] 2( it fj'k]

-1 ' 2,0
= j k¢ + (1 - MO (39)
1,k ARy
where
Vo= 1= M2 - (y + Mgel
j)k X
1,k
The D, operator is applied as in Section III
I = .- -1 - ¥ - F
Paly e = 200gpy = %50y I“ Ej)[fjm/z),k fj-(l/z),k]

I [T | (40)
where ey = 0 or 1 for (V +(1/2),k + Vi (1/2),k) > @ or < 0. (The same
smooth grid restriction (3%) applies to the case ¢4 = 1,

Incorperating the above differences in the ADTI algorithm gives
X _sweep
-1 ~ntl n - = n
Brlae)™e (“’j k "’j,k) Pxfy e Syt
y _sweep (41}
-1 n+l  andl) 1 ntl  n

where ?j k= f’¢n ,¢n+1k). On the =x sweep, a matrix is generated thac is
loyer tridiagonal for sugersonic points (Ej—l = £§ = 1) and tridiagonal for
subsonic points (sj_1 = g4= 0). TFor parabolic points (ej-1 = 0, e§ = 1) all
the entries are zefo cn the row, and for shock points (53_1 =1, gy = o,

there are four nonzeroc entries on the row. TFor the present work, a quadra-
diagonal solver was used that solves the equations like the Thomas algorithm
for a tridiagonal matrix. On the y sweep, the only =x differences are in
84+, which is backward differenced. Hence, the scheme is marched from upstream
to downstream solving a tridiagonal matrix for each x = constant line of vy
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prid points. The test for ey 18 only vequired for the x sweep. Had the
y sweep been taken first here, as in Section II, the test would have been
required on both sweeps, thereby reducing the computer efficiency of the
method.

b) Approximate Factorization Algorithm

For the AF scheme the conservativ. time-space differencing was carried
out in the transformed potential

§ = -Box + (v + LML (42)
so that the resulting equation
~ = - -2 “~

has the same nonlinear term modeled in Section III. Tae n2e of such a trans-

form is unnecessary for the basic scheme described below but does lead to some

corputational simplifications, The transform also a‘uids a difficulty with

n-1 n+l
%g_ sk xjk

in which the switching of difference operators fir numerical -td 1lity does

not correspond to the correct sonic line. For e<ample, use orf this lineariza-

tion in (37) leads to a coefficient of ¢n+l vhat changes sign at a differ-

ent point than &J K *1,k

certain contrived time-linearizations such as (4™ 3 ) = (2 ¢ - ¢

Variable grid differencing was implemented in the AT scheme by coordinate
stretching transforms, although the algorithm is given here in the untrans-
formed plane. Using the second-order time linearization (24b) and mixed dif-
ferencing (25) described in Section II1I, the second-order AF algorithm is
given by
n+l

-~ n ~_ ._‘ - _1
[1+ AtFj,k/(BMé)][6M£nk1(l - E2hH 2Acgj ayy]¢

= 2 M2 [(- Exl + 6 - 1:+1)¢j et (27! - 3 + 1:+1)¢j k]

+ ZAEFg,k{[AEE31/(3M£)]3yY +-% Al - Egl)]$?,k (44)
where
t = t/k

_ - _1 E
ne = yk—l) ) N (nk+1 + ”k)/2

Ehal
1
~
4
1
"
——
]
—
fay 4
I}

(B 4p * 672
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o - e a2 n - i +1 - - - -II - n
Fyae ® (0 o8 @y i = 9,080 - (- ey =gy DETG (- 85y 0
) ~1
FRU R PRl
and
3yy = nk+1<u+1 - 1) - ot (1 - Ey )

The above algorithm only re?uires two double-indexed storage arrays with
intermediate values held in j For efficiency, the operator FE x should
be simultaneously computed alonb rows for the right-hand sidL and Lhc first
inversion. In forming 53 K along rvovs, the ternm €§41(¢j+l,k - ¢j k) is com-

putad gnd then shifted Lack to obtaln Ej(¢j.k - ¢J—l,k) and

E§~1(¢3'1'k - $3—2,k)' If only a first-order-accurate differencing for $xr
is needed (l.2., (8a)}), the simplified contrived time lineavizatior (24a)
should be used.

V. SAMPLE TWO-DIMENSTONAL COMPUTATION

Ir. this section results f[rom the ADI and AF schemes are compared for the
case of an airfoil executing unsteady motion characteristic of a helicopter
rotor in forward flight. Particular attentlon is directed toward comparving
tha shock ¢ anturing properties of the first- and second-order methods for
various typus of shock motlon in light of the one-dimensional results pre-
sented in fiection TII. For the computations reported in this section, a uni-
form x mesh spacing of Ax = 0.02 chord lengths was maintained over a dis-
tance extending f{rom one chord length upstream of the alvfoll to the alrfoll
trailing edge. The x mesh spacing outside this interval was stretched
smoothly out to the boundavies, which were located more than thirty chord
lengths from the alrfoil, The mesh spacing in the stream-normal direction was
uniform at Ay = 0.04 (y unsecaled), starvting at the airfoll surface and
extending for a distance of 0.2 chovd .angths. It was stretched smoothly
beyond this point out to cthe grid boundary, which was located a distence of
fifty chord lengths from the atrfoil.

The motion of a hlade element near the tip of an advancing helicopter
rotor can he simulated by an accelevating, and, subseguently decelerating,
airfoil (refs. 2 and 10). A motion that is simpler to treat computationally,
but which produces a similar flowfield, is that of a thickening-thinning alr-
foil as shown in figure 13. A pavabolic-arve airfoill thickens from zero to
0.1 in the time dnterval in which a fluid particle travels [ifteen chord
iengths (relative to the afrfoil) at the free-stream veloclty U,. The airfoil
then thins te a flat plate after thirty chord lengths of travel, (Here k =1
as in Section IIe, so time is given in chord lengths of free-stream travel.)
During the thickening phase of the motion, u shock wave Forms and propagates
downstream. As the airfoil thins, the shock reverses, moves upstream, and
propagates off the front of the airfoil chasing the expansion wave that
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precedes it. The initial formation and downstream propagation of the shock
wave 1s indicated by the pressuve distributions shown in figure 14. The
second-order ADI and AF schenes show no plottable difference.

An indication of the s!lock speed can be obtained from the jump relations
for (4). For a normal sho:zk, tge speed is given by
(1/72eM2)[1 - M2+ (1/2) ¢y + 1)»1“(ch + CPR)/Z] (where Cp = -2¢x), and, in

transonic small-disturbance theory, C,* is given by setting Ve = 0 i1n (1)
or (4), L.e., 1 - Mi + (1/2)(y + l)MﬂEp* = 0. Hence, when the average C

across the shock is equal to ", the shock 1s stationary; otherwise the dif-
ference between (CpL + CPR)/2 and Cp* indicates the direction and speed of

the shock. Thus, at t = 11.5, the shock is traveling downstream, while at

t = 18.25, 1t 1s nearly stationary. As in Section JII, this downstream-moving
supersonic-to-subsonic shock is properly captured, and the ADI and AF schemes
give equivalent results,

The subsequent upstream novement of the shock wave is shown in figure 15.
At t = 26.875, there is only a small region of supersonlc flow (for which
Cp < Cp*), and the shock is traveling rapidly upstream. Here, as in Sec-
tion IIL, the upstream—moving supersonic-to-subsonic shock wave produces over-
shoots in the second-order scheme results. At later times, the shock is a
subsonic-to~subsonic type, and it is accelerating in the upstream direction,
as indiecated by the Inereasinpgly large vatio of |(Cp + Cp )/2CP*| as A
function of time. Here, as in Section IIY, the filrst=order“schemes produce
some "smearing" whi'e the second-order schemes develop overshoots. Halving
the time step reduced the amplitude of these oscillations in the second-order
solutrions and produced no plottable difference in the first-order solutions,

Another view of the solution is afforded by the mid-chord pressure coeffi-
cients as a function of time as shown in figure 16, There is a lag of about
two chord lengths between the maximum flow expansion point and the maximum air-
foil thickness. The effect of the shock wave propagating upstream past the
mid-chord point is evident at about t = 26.

It is interesting to compare the relative efficiencles of the implicit
and semi-implicit schemes for the present example and to try to extrapolate the
results of such a comparison to cases of more practical interest. In the
present calculations, At was fixed at At = 0.125, where time is given here
in chord lengths of free-stream travel relative to the alrfoil., Considerably
larger time steps could have been taken over much of the period of the motion,
the major restriction being adequate resolution of the rapid shock motion
upstream of the airfoil. The time step restriction for the semi-implicit
scheme Is given by

2M2Ax

At £ Min,

(45)
Bk - owz + XL e

P,k

where the minimum is taken over all gpatial grid points j,k in the [low-
field. In the present calculations, the most restrictive At accovding to
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(45) would be At = 0.0328 at t =~ 16. Since the implicit schemes require
about fifty percent more work per time step, the efficiency ratio of the
implicit schemes relative to the semi-implicit schemes is roughly 2.5 for this
case. In more practical cases, i.e., for blunt leading-edge alrfolls at angle
of attack (e.g., see ref, 3), the leading edge singularity 1s much stronger,
and a much finer Ax is required in the nose reglon. (The solution is not a
valid approximation to the Euler equations in this region because of the vio-
lation of the small-disturbance assumptions under which the theory is derived.
However, experience indicates that for sufficiently fine grids near the lead-
ing edge, these inaccuracies are confined to a small region, whereas for
coarser grids, they can affect the solution over the entire surface of the
airfoil.) Small Ax and large C, both contribute to a considerably more
severe time-step restriction for such cases, significantly increasing the
efficiency ratio in favor of the implicit schemes.

CONCLUDING REMARKS

Implicit two- and tnree-level approximate factorization finite-difference
schemes for the low-frequency transonic small-disturbance equation have been
constructed that have no time-step limitation based on a linear stability
analysis. At this point neither scheme appea.n to be superlor to the other
either in terms of accuracy or efficiency, and the development and application
of both will continue. Both schemes maintain stability for mixed flows by the
use of conservatively-switched differences, i.e., central or backward differ-
ences are used as the local flow conditien is subsonic or supersonic. An
instability, caused by the time linearization and switching test, occurs when-
ever a shock wave travels more than one spatial grid point per time step. A
mild time-step restriction is thus imposed that is usually orders of magnitude
less severe than the one associated with explicit schemes. The implicit
schemes should prove useful in the analysis of unsteady airfoill motioens,
ineluding pitch, plunge and free-stream Mach number oscillations; and the
extension to three dimensions, as outlined in Section II, should present no
additionsnl difficuley.
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APPENDIX A

a) Stability of the AF Scheme

To investigate the stability of (10) simplified boundary conditions are
taken as either (a) spatial periodicity, or, because the all periodic case
leads to a singular factor [(1 - EZ!) - béyyl, (b) spatial periodicity in x
and specified function on the vy boundaries If $ is the JxK vector
ordernd gbj K [(j =1, ), k=1, k] then (10) can be written

JRIY SRy Ry

The matrices A, B and C are either trlock diagonal or block tridiagonal with
circulant blocks (because of perlodicity in x) and can be simultaneously
diagonalized by urnitary transforms. Hence, in an Z2,-norm one need only
examine the eigenvulues for stability. TFor the periodic boundary condition
case, the differenc.: operators generate circulant matrizes with known eigen-
values (refs. 1l ard 12), and the matrix stability test is equivalent to the
von Neumann test. Thus (l0) is transformed

(1 +a- aeiej)[l - e-iej + 4C sin ( J]&“H

} -18 18 %) :n
= {1 - a i + ac(e 3 1)[}4 Bin2L§']]¢j,k {Al)

where c¢ = b/(Ay)? and 6 = 213/J, 8, = 27k/K, or 6 = 2nk/(K + 1) if the
function is specified at eud points in y. This can be regrouped as

[(l ) e"i j) * ac(l - e [Z' sin? II" a(l- e 93) (1 - e-iej) +he sin? _]}~n+1
) ll ) e-iej ¥ ac(l - e ej)[l‘ 51“2[%]] 5’?,1( (A2)

- 16 8
a(l-e 1ej)(l - e j) = 4a sinz[Jz-] > |and 4c sin2[67k] 21

Now

so (A2) has the form

-n+l _ 4+ dc -n _ _[fa% 4 ¢ oiuwzn
¢j,k_a+ic ¢j,k_|/az+c ¢j k (A3)

~n+l

Since a z a » 0, |¢ | > |¢3 kl' and unconditional stability is assured,

alrthough in the periodic case when j =J and k = K, (A3) is formally
indeterminace.
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b) Stability of the ADI scheme

To demonstrate stability of ('8), assume a periodicity condition in x
and Dirichlet conditions in y — however, assuming periodicity in x would
make [6, - B(At/2)84y] a singular operator, so its inversion in (18b) is mot
formally possible. Eliminating ¢3,E in (18b) using (18a) and the inversion

of [6; - (at/2)8yy] leads after some rearrangement to
At ekl (. At =i At At
O =7 Bd® = 85 -3 ‘Syy] [[Gx 2 ‘gyy] [5x 8 |
(Ad)
Again the coefficient matrices can be simultaneously diagonalized by unitary

trans formations, and stability depends only on the eigenvalues. In the trans-
formed variables, ¢

- 2 9 .
(Ax)'l(l - e 193) + [ﬁ] f,_l_ 48 sinz[_éi_] n+1

2] {bx .k
: ()" 11-e  d)-4E 4 sin2[—] 2
e e oo )4 et 5,
(Ax)'l(l- e J) +-§" 4 sinz[_.;i] X 3

(A5)

For sin2(93/2) # 0 the left-hand coefficient can be divided out, and one can
readil. zhow that a ratlo of eigenvalues appear which has the same type of
inequal cy as (A3). Thus for all roots such that sinz(BjIZ) > 0, stability
is unconditional. For the singular case, when ain(ej/2) = 0, the system is
formally indeterminant.
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APPENDTIX B

A scheme 18 considered here that {llustrates loss of conservation form by
the use of proper conservative spatial differencing but with an improper time
linearization. An interesting property of the scheme 1s that arbitrarily
large time steps can be taken without generating the type of instability dis~
cussed In Section III.

An implicit, first-order accurate approximation to (21) is given by

-1 . n¥1 n

1 - EClet! -
( X \Qj ¢j)
o oht _Ned Y s o gl - =1yt

e Loy - by DER - Dde, (By-d, ) -EHTL- 5] (81)
which uses the notation defined in Section IIT and where 31 = ¢?+1. To avoid
solving a nonlinear system at each time level, the first-order accuyrate
approximation @ = ¢n 1s made. With this approximation it can be shown by a

fluv summation argument that, for (Bl) applied to the model data shown 11
fi,ure 3, the shock speed is

¢, + o,
dxS R
= (B2)
dt At
1 + ™ (¢1x - d)x‘j
L R
whereas the correct shock speed for (21) is
dxg
— =4+ (B3)
de XL, Xp

Thus (Bl) satisfies the correct shock conditions only for stationary shocks
(¢xL = ~¢xR), shocks with zero strength (¢XL = ¢xR), or when At/Ax -+ 0,

q Interesting feature of this nonconservative {in time) scheme 1is that
as At/Ax + «, the shock speed approaches zero, as shown in figure 17. 1In
fact, 7 ~» (¢XL 4+ ¢XR)/(¢xL - ¢xR) as At/Ax » =, Hence, fram (33), no insta-

billities are expected to occur for large At, and numerical experiments con-
firm this. This feature is attractive in applications in which only the
steady-state solution is of interest, and using (Bl) with the first-order AF
scheme does indeed provide a very effective relaxation algorithm.
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Figure 3.- Sketch of initial data for model one-dimensional problem.
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(c) SECOND ORDER ¢4, AF (THREE LEVEL)

Figure 4,- Shock profiles for supersonic-to-supersonic case.



(C) SECOND ORDER ¢4, AF (THREE LEVEL)

Figure 5.- Shock profiles for subsonic-to-subsonic case.
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(c) SECOND ORDER ¢éxt, AF (THREE LEVEL)

Figure 6.- Shock profiles for upstream-moving, supersonic-to-subsonic case,
T=0.2, v=2.4.



(a) FIRST ORDER

(b) SECOND ORDER ¢, ADI (TWO LEVEL)

(C) SECOND ORDER ¢4, AF (THREE LEVEL)

Figure 7.- Shock profiles for downstream-moving, supersonic-to-subsonic case,
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Figure 9.- First-.  Jer results for T = 2.0, v = 8.0.
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Figure 11.- First-order results for T = 1.0, v
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Figure 12.- First-order results for T = 0.90, v = 3.6.
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