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IMPLICIT APPROXIMATE-FACTORIZATION SCHEMES FOR THE

LOW-FREQUENCY TRANSONIC EQUATION

William F. Bollhaus and Joseph L. Steger

Ames Research Center
and

U.S. Army Air Mobility R&D Laboratory
Moffett Field, California 94035

SUMMARY

Two- and three-level implicit finite-difference algorithms for the low-
frequency transonic small disturbance-equation are constructed using approxi-
mate factorization techniques. The schemes are unconditionally stable for the
model linear problem. For nonlinear mixed flows, the schemes maintain stabil-
ity by the use of conservatively switched difference operators for which sta-
bility is maintained only if shock propagation is restricted to be less than
one spatial grid p , it per time step. The shock-capturing properties of the
schemes are studi t 	r various shock motions that might be encountered in
problems of engineering interest. Computed results for a model airfoil prob-
lem that produces a flow field similar to t.,at about a helicopter rotor in
forward flight show the development of a shock wave and its subsequent propa-
gation upstream off the front of the airfoil.

I. INTRODUCTION

Frequently, one emp oys simplified equations that extract the essential
physics from a more corplete set of equations that model some physical phenom-
enon. These simplifications, while limiting the range of applicability, often
significantly reduce the complexity and expense of computing solutions. When
such approximations are made, the numerical algorithm used to solve the sim-
plified equations should be matched to the same range of applicability.

Of interest here is the solution of the transonic flow field about a thin
airfoil executing some arbitrary small amplitude oscillatory motion in a uni-
form stream. The small disturbance and transonic assumptions allow simplifi-
cation of the governing gas-dynamic equations to (ref. 1, p. 4)

k2M.2^tt + 2kM^ 2Q.t = Vc'axx + 'pYY 	 (1)

where VC = 1 - M, 2 - (y + 1)M^ m^x , fi is the disturbance velocity potential,
y is the ratio of specific heat's, and m is a function of M. (see refs. 2
and 3). The coordinate system is fixed with respect to the airfoil, and x
is alined with the free-stream direction. The flow is defined to be locally
subsonic or supersonic, relative to the fixed coordinate system, for Vc > 0
or VC < 0, respectively. A measure of the degree of unsteadiness of the
motion is given by the reduced frequency 	 k; for an airfoil of chord length
•, with free-stream velocity U., and executing some periodic motion of
frequency w,
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k	
Um
	 (2)

The variables ^, t, y, and x have been nondimensionalized by cU m , 1 /4), c,
and c, respectively. In the derivation of (1), '.c is assumed that the flow
is inviscid and transonic (Mm x 1) and that velocity disturbances due to the
airfoil are small compared to Um. Further simplification can be achieved by
restricting the range of reduced frequencies, as we shall see.

The traces of the characteristic surfaces in tP? plane of the airfoil for
the linear form of (1) are shown in figure 1. Waves that advance in the flow
direction propagate downstream relative to the airfoil with velocity
(Mm + 1)/Mk in the nondimensiunal coordinate system. Waves that recede
(relative to particle paths) travel upstream against the flow with velocity

(Mm - 1)/M k. Fluid particles travel with velocity 1/k (i.e.,, Um in the
dimensional system). For low-frequency transonic flows (r,ef. 4),

k " 1 - M.2 — T2/3 << 1	 (3)

where T is the airfoil thickness-to-chord ratio. So dist bances traveling
along the advancing waves propagate rapidly away from the airroil, while those
traveling along the receding waves remain closer to the airfoil and dominate
the solution there. For low-frequency motion, (1) reduces to the low-frequency,
transonic, small-disturbance equation

22kM,n 0xt	Vc^xx + ^yy	
(4)

which is subject to the restrictions (3). The numerical solution of (4) is
useful, for example, in aerodynamic flutter analysis and the treatment of high
speed helicopter rotors.

An efficient computational algorithm for either (1) or (4) should have a
time step restriction for stability that is no more restrictive than the time
step required to adequately resolve the unsteady flow field. Since, for low-
frequency motions, the solution is dominated by disturbances traveling along
the receding waves, the time step should be related to the time scale of
receding wave propagation, as well as the wave length of these disturbances.
Explicit schemes for transonic flows have time step restrictions for stability
that are based on the advancing wave time scale. Hence, for low-frequency
motion, they halve time step restrictions for stability that can be orders of
magnitude more severe than required for accuracy. This problem of stiffness
was overcome in reference 4 by the use of semi-implicit difference schemes
applied to (1) and (4), with a resulting time step restriction based solely cn
the receding wave time scale.

Results obtained using the semi-implicit scheme applied to (4) have been
compared with solutions to the complete Eulerian gas-dynamic equations in
references 2 and 3. The solutions compared favorably for cases in which the
assumptions (3) were valid, and the simplified theory resulted in a consider-
able savings in computer run time and storage. However, it will be shown in
what follows that considerably larger time steps than allowed by the semi-
implicit scheme stability requirement
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At 5 — 2kM,
o Ax	

(5)

11 - M.2 - (Y + L)Mmm0xI

can be taken without sacrificing accuracy for truly low-frequency motions.
Note that ( 5) is especially restric'; ive near the airfoil leading and trailing
edge singularities, where J0x j 1E large.

Two fully implicit schemes are reported here that have no time step
restriction based on a linear stability analysis. One scheme, an alternating-
direction implicit algorith #,,, is applied to (4) in a manner similar to the
Douglas-Gunn algorithm for the heat equation (ref. 5). The other scheme, an
apprrximate factorization scheme, also factors difference approximations to
(4) such that simple matrix solutions are required first in one spatial direc-
tion and then the other. In Section I1, both schemes are investigated in
terms of stability and accuracy for a model linear equation. In Section III,
the shock capturing characteristics of the schemes are investigated, and con-
ditions to preve , t nonlinear instability and shock -capturing overshoots are
found. In Section IV, the difference schemes are presented for the complete
equation (4). Finally, in Section V the algorithms are applied and results
compared for the simulated motion of a helicopter blade tip.

II. ALGORITHMS FOR THE MODEL LINEAR EQUATIONS

We begin by considering the model linear equation for (4)

^xt 
a 

"xx + $yy
	

(6)

An implicit differencing of (6) is sought to remove any time step restrictions
other than those imposed by considerations of accuracy, and, for reasons of
efficiency, computer-time consuming inversions must be avoided. The system of
equations generated by implicit difference operators is perhaps most effi-
ciently solved by structuring the difference operators so that they can be
factored into easily inverted products. For simple difference equations one
can sometimes construct fast direct solvers in this way, but as the complexity
of the equations increases, approximate factorizations are usually sought.
This is the conrapt of splitting and alternating directions (see, e.g.,
refs. 5, 6, and 7) which has recently been applied to the Eulerian gasdynamic
equations (ref. S). (The terminology " approximate factorization" is adopted
from Yanenko (ref. 6, p. 27) and is perhaps the most descriptive name for this
general class of procedures.) In this section two such procedures are devel-
oped which shall be referred to as a three-level approximate factorization

(AF) scheme and a two - level alternating direction (ADI) scheme.

a) Approximate Factorization Algorithm

An implicit differencing of (6) for 0 > 0 is

n+l	 n+l	 n+i

dxt^3, k c 
Bdxx^j 

k + syy^9.k	
(7)
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where

6xt = (AxAt) -1 (1 - Et 1 )(1 - EX1)
	

[0(At) + o(Ax)]
	

(8a)

	

6xx = (A..)-2(E-1 - 2 + E")
	

[0(Ax2)I
	

(8b)

6 yy	 (Ay) -2 (Ey 1 - 2 + E+1)
	

[0(A I)I
	

(8c)

Here the shifting operators are defined by

Et1^n = ^n±1
t j,k	 j,k

	

+1 n	 n
Ex 4j k = 0jtl,k

+1 nn
Ey $	 k = ^j,k+1

with	 t = nAt, x = jAx, and y = kAy. 	 In the above, 6x t	is kept first-order
accurate for simplicity — a second-order-accurate version will be described

later.	 Note that (8b)	 can be rewritten	 6 xx	 (Ax)-2 (EX1	- 1)(1 - E-1).

Various factorizations of (7) are poFsible, but one that makes use of the
common factor in	 6xx and 6x t	and requir,:s only simple bidiagonal and tri-

diagonal inversions is

[1 - a(EX 1 -	 1)]L1 - E-1 - b6yy]^j+k	 L1 - EX1 + ab(EX1- 1)6yy],j,k (10)

where	 a = S	 x	
and	 b = AtAx.	 The approximate factorization (10) differs

7
9

from (7) by the added cross term

[ab(Ex 1 -	 1)6 yy][EC 1 - 1],	 k = 0(Axdt3$xyyt)	
(11)

which, compared to the other terms, is of second order. 	 Further, if a steady

state is reached, the added cross term is zero.

The advantage of the	 AF	 form is that the inversion process is quite

simple.	 As indicated in sketch (a) only bidiagonal and tridiagonal inversions
are required, and the intermediate solution results can be overloaded into the r

same double array.	 A difficulty with the	 AF	 method is the need to supply

the value (1 - E'	 _ b6	 )fin+1	 as a boundary condition during the inversion

pp bidiagonal.
	 For e	

p	
n+l

of each u	 is given on the boundary,upper bidia onal.	 For example, if	 ^n+1 k	 g	 y' q

6n+1	
remains unknown, unless one can estimate	 K	

on the downstream boundary.

A simple approach is to use data at level	 n	 in place of the unknown	 n+l g

boundary data.	 However, this particular approximation can impose conditional
stability criteria, although not very stringent ones, especially if the local 1	 .

value of	 Ax	 is large.
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k - 1,K

r

Solution Procedure for equatirn (10) using a double array, on
j,k

Form right-hand side (overstore j,k

fj 	dyy

n	 n

^J,k - ^
j,k - ^j-1,k + ab(Ej+1 -

Inversion of first factor (overstore

$J,k = Gj,k + a0j+l,k)/(1 + a)

withn
+1 	 n+1

^J+1
*
 k = ( ^J+1

'
 k - ^J,k

into 6n,k)

P
k
	,J+1

f j )	 j	 J,1

Oj^k into $j,k)

j - J,1

n+1
bdyyyJ+l,k)

j = 1,J

Tridiagonal inversion (overstore ^ +k into mn,k)

^n+1 
--
 b	 (0n+1	 _ 2^n+1 + ^n+1 ) _	 + ^n+1

j,k	 (Ay) 2 	 j,k-1 	j,k	 j,k+l	 j,k	 3 l,k	
k = 1,K

Sketch (a)

The algorithm (10) is unconditionally stable for 0 > 0 by a linear sta-
bility test (see Appendix A, part a, for details). If 0 < 0, the algorithm is
modified so that 6xx is the first-order three point backward difference
operator, and stability is again unconditional. The AF algorithm for B < 0
is given by

[1 - all - Ex l )][ 1 - Exl - M ], +k = [1 - E-1 + ab(1 - E-1)6yy], k (12)

and the solution process is much as in sketch (a) — a lower-bidiagonal inver-
sion replaces the upper-bidiagonal inversion, and boundary conditions are
simplified.

Second-order accuracy in time can be obtained by using the following
three level finite-difference operator for -'xt

6 xt = (2AtAx) -1 C3 - Et 1 ( 2 - Ex)](1- E t 1 )(1- Ex') ,	 [0(At2) + 0(Ax 2 )]	 (13)

The operator (13) was derived by Taylor series expansion so that only the fac-
tor (1 - E-1 ) appears at the n+1 level, and the factorization is much as
before. The three-level scheme can be programmed so that only two levels of
computer storage are required.

The extension of the AF algorithm to three dimensions is easily accom-
plished. For the equation
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^xt - 4xx + Qyy + ^zz
	

(14)

an unconditionally stable approximate factorization using ')perators (8) with
dzz similarly defined is given by

[ 1 - a(E+1 - 1 )1[(1 - b6 yy)(1 - b b z Z ) - EX1]^j+k

	

[ 1 - E-1 + a(E+l - 1)b(dyy + daz - M 6zz) + b2Syy d zz i ^ n k	 (15)j,

The inversions are again straightforward, although a complicated cross term
has to be computed at level n. In many problems the term b 2 6yy6z, could be
safely neglected and always without losing second-order accuracy.

b) The Alternating-Direction Algorithm

A two time level differencing f (6) is given by

axt^j,k =
	 (Bdxx + 6YY)(mj+k 

+ ^j,k)
	 (16)

where the previous operators (8) are used; or, to maintain second-order
accuracy

(3 - EX1

6 xt = (AxAt) -1

(1 - E^1)l	

2	 (1 - Ex l ) ,	 [0(At2) + 0(Px2 )]	 (17)

An approximate factorization of (16) is obtained from the Douglas-Gunn
alternating-direction algorithm with Lhe identity operator replaced by d x as
follows

(dx	 A2 6YY)^n+k - ( 6x + 2t aYY + AtBdxxj^J^ k	 (18a)
j,	 j>

16 - At 
S6 

]fin+1 = d ^n+l - At (id ¢
n	 (18b)

( x	 Z	 xx j+k	 x j + k	 Z	 xx j,k

where

6x = (1 - Ex l )/Ax	 (first order)

x (	 I'(1 Axxl^d	 (second order)

The first step of this procedure is a consistent approximation to (6) and, in
fact, is identical to the semi-implicit method of reference 4.

6	 A-6373
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To show that (18) represents an approximate factorization to (16), insert
n	 6x16x1 (the constant of summation is taken as zero) between [ 6x - (At/2)6yy]

and $i

-

+k in (18a), and then eliminate 6 x pj+k using (18b) with the result

At	 1 [(6	 At	 n+1	 At	 nOx - 2 6yy)6x	 x - 2 Sdxx ) ^J,k + 2 06x0j,k^

(6x + 2t6YY + At86xx)@^ 
k	 (0)

Algebraically rearranging terms

At	 At	 n+1
(6x - 2 6yy - 2 86xx)4J k

e

(6x + 2 6Y1 + 2 S6xx)mj -

With At divided out the error term is

In the inversion procedure for (18),
condition in step (18a). From step (18b)

(
At

l2
`' / 86yy6''

0(ut2(Pyyxt)

^n+1
must

this means

{I6xx(1 - Et 1 )pJ+k 	(20)

as for the AF scheme.

be supplied as a boundary
that

^s .

n+1	 n+1	 At ,_1	 n+1	 n
^j k = 4j k - 2 "x 6xx ( ^J k - ^j k)

must be supplied on the boundaries, but to second-order accuracy ¢j ,	car be

taken as ^°• +k onthe boundary. This is typical of the Douglas-Gunn meti,ed —
implementation of other, even rearranged, approximate factorizations may
require that the function and a derivative be specified on the boundary.

For a > 0, (18) is unconditionally stable by a linear stability test
(see Appendix A, part b). For a < 0, 6xx is backward differenced to main-
tain stability, and the first-order three-point backward difference is used.
The scheme generalizes to three dimensions in the usual Douglas-Gunn-like
fashion with the 6x operator replacing the usual identity operator. Finally,
it is remarked that this procedure generalizes to any number of operators in
time that contain the factor (I_- E -1 ). For xample, if, as in diff.erencing
(1), an operator such as (1 - Er 1 ).C t(6x,60) +k appears, Cie operator t(6x,6t)
replaces the usual identity operator of the Douglas-Gunn algorithm. Of course,
stability is not generally ensured.

C) A Numerical Verification of the Linear Algorithms

The following example is presented as a simple check on the accuracy and
stability of the implicit schemes. The motion is that of a parabolic arc
airfoil increasing its thickness from zero to 0.1, according to the relation
shown in figure 2, in the time it takes a fluid particle to travel fifteen
chord lengths at the free-stream velocity Um . Since the motion is not
periodic, t is scaled by c/U. rather than 11w. This is equivalent to
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taking k - 1 in (4) so that time is given in chord lengths traveled rather
than radians. Solutions of the linear version of (4) (i . e., y - -1) are com-
pared in figure 2 in terms of pressure coefficient, Cp - -20x, at x - 0.525
as computed from the second -order ADI scheme and from linear theory (exact).
Equivalent results were obtained with the second order AF scheme. Here the
x grid spacing was uniform at Ax - 0.05 chord lengths. The vertical mesh
spacing, also uniform, was 0.1. The time step was five times greater than
that permitted by the semi - implicit scheme (see (5)), and no accuracy or sta-
bility problems were encountered.

III. ONE-DIMENSIONAL SHOCK WAVE MOTION

a) Model Problem

The shock capturing properties of the implicit finite -difference schemes
can be investigated using the inviscid Burger's equation, given here in terms
of the velocity potential

	

(0x)t + (0x 2 ) x = 0	 (21)

along with boundary and initial conditions

0(O,t) - 0 ,	 0x(0.t) = 0x  ,	 0x(t,t) = 0x 

J

0XL , 

x '	 0 < x 

< xso	

(22)

	

0xL 
• xs 

o 
+ ¢x 

R (
x - xs o ) ,	 xs 

0 
s x s R

The initial conditions are sketched in figure 3. The solution to (21) and (22)

is Ox =_ 	
for x < xs and Ox = ON for x > xs, where xs is the

instantaneous locatiosi of the shock wave and is given by
X9 = xs n + ( 0 

XL
+ OxR ) t (here we exclude so-called "expansion shocks"). The

potential 0 must be continuous for all x,t.

b) Difference Schemes

Ek,uation ( 21) is written in difference form as

where

6X0 n
+1

+ Dx f^	 0	 (23)

f^ = f(0X
+1

, 0n )Xi
	 i
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and

for (^x)2, and the dif-
avofd iteration at the n+1
g+3
	 For the AF scheme,

)wing first- and second-order 3

Xi	 J (1 2	 j- 1/2)

The quantity fj is some difference approximation
ference operator Dx remains to be specified. To
level, fj is linearized by expanding in terms of

Ox 	 is evaluated at time level n+1, and the foll
linearizations can be made

n
+1 )2 = ^n 4n+1 

+ D(At)	 (24a)
fnF	 (fi

^	 i	 J j

(and by Taylor series expansion)

	

fAF	 (0X+1)2 = ($X )? + 2 n 0+1 - ^n ) + 0(At 2 )	 (24b)

i	 ii	 3

For the ADI scheme, Ox is averaged at the n and n+l time levels, which,
along with (24b), gives

fADI^	 z [(,n+1)2 + (,X ) 2 ] ° ^n ^
n+1 

+ 0(At2)	
(24c)

J	 .i	 J

(The use of the terms "AF" and "ADI" is strictly not correct in this one-
dimensional application, but the terminology is convenient in relationship to

the subsequent development of the two-dimensional algorithms.)

In Section II it was determined that central and backward differences for
Oxx were required to maintain stability for the cases (i > 0 (subsonic) and
S < 0 (supersonic), respectively. In differencing (23) then, central and

backward differences should be used for f when $x < 0 (subsonic) and
Ox > 0 (supersonic), respectively. As shown by Murman (ref. 9), care must be

taken in switching from one difference operator to another, otherwise the con-
servative form and its correct weak solution may not be maintained. Switched

differences can be used while maintaining proper conservation form by express-
ing Dx in the form

D	 =	 .	 ]x f ^	 ^
(1 - c)[f	 - f

J	 ^+(1/2)	 J-(1/2)] 
+ c J-7 [f 	- 

fj - (3/2) 3 1/A "j - (3/2)
/Ax 	 (25)

with cj = 0 or 1 for (fin+1 - ^ n_ l ) less or greater than zero. :n Murman's

terminology

	

C	 = 0 , c. = 0 ° subsonic point

	

e	 - 1 , c = 1 > supersonic point
9-1	 9	 (26)

ej-1 = 1 , E  = 0 > shock point

cJ-1 = 0 , C  = 1 ° parabolic (or sonic) point
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The procedure used here to maintain conservation form with switched dif-
ferences can be summarized as follows: write the difference equation in con-
servation form as in (23), linearize as in (24), then apply the switching
operator Dx as in (25). Violation of his procedure can result in noncon-
servative difference schemes which yield erroneous shock speeds, as demon-
strated in Appendix B.

Using time linearizations consistent with the order of d xt , f.irot.• and
second-order accurate implicit differences for (21) are given by

First order AF and ADI

^n+1 _ ^n+;	
AxAtDx(4n n+1) + ^n - ^n_ 1	 (27a)

Second order ADI (two level)

3 
n+l _ 

4 
n+1 + ^n+l = _2AxAtD (fin ^n+1 ) + 3^n - 4^n- + fin-	 (27b)j	 J-1	 j-2	 x xj xj	 j	 j l	 j 2

Second order AF (three level)

3($^
+1
 - $^+1) = -2AxAtDx[$x s( 2QX

+1
	- ^% )^

n	 n	 n	 n- 1 	n-1	 n-1	
(27c)

	

(s^j-1 - b^j + ^j+1> + zhj-1- 3^j	 + ^j+1

Note that the first-order AF and ADI schemes are equivalent. Also, the term
"second order" Ln (27b) and (27c) applies only for locally subsonic regions
because the upwind difference used in Dxfj for locally supersonic flows is
only first-order accurate.

For purposes of comparison, the semi-implicit scheme of reference 4 is

^n+1 _ ^n+1 = _AxAtDX 411 ) 2 + ¢n - ^ n	(26)
j J-1

and it is subject to the stability criterion AL < Ax/(21^xlmax)-

c) Shock Characterization

To investigate the shock-capturing characteristics of the numerical
schemes, four types of shock motions ara considered, as summarized in table I.
The terms "subsonic" and "supersonic" are relative to the coordinate system
and not to the moving shock.
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TABLE I.- CLASSIFICATION OF SHOCK MOTIONS

__ Shock. Chn•.acteristic Spatial differencing

1. Supersonic-to-supersonic ¢ > 0, ¢	 > 0ox BackwardxL

2. Subsonic-to-subsonic
^ xI

< 0,
¢xR < 0

Central

3. Supersonic-to-subsonic (down- ¢	 + ¢,	 >0,¢ < 0 Mixed
stream moving) XL hR xR

1
4. Supersonic-to-subsonic ¢	 + ¢	 < 0,¢	 <	 0 Mixed

(upstream moving) xL xR xR

A parameter that has a significant effect on the shock capturing proper-
ties of any one of the schemes is the number of Ax increments the shock
wave travels in a time At

T =At dxs
- Ax dt

where the correct shock speed for (21) is dx s /dt - (¢	 + ¢x ), and n uniformxL	 R
grid is assumed. A value , 1 corresponds to the case where the shock
moves a distance of one e geed point per time step. Another parameter of
interest is the Courant number

v	
2I¢xlAx	 (30)

and the stability restriction for the semi-implicit scheme is M < I.

d) Computed Pesults

Now consider the implicit schemes (27) app1'c gd to the model problem (21)
with initial conditions (22) for the first type of shock motion listed in
table I, the supersonic-to-supersonic case. In this case the term (¢x2)x is
approximated by backward differences throughout. Results of he first-order
(27a), second-order ADI (27b), and second-order AF (27c) sch_,nes are compared
in figure 4. Results from each of the schemes are shown at two values of T
for the same time. The shock profiles shown remain essentially unchanged for
all greater times. The exact solution is given by the dashed lines, and the
shock location is indicated by xs.

Results for th, second type of shock motion, the subsonic-to-subsonic
case, are shown in figure 5. In this case the term (¢x2)x is approximated
by central differences throughout. Again the shock profiles shown remain
essentially the same for all larger n. The first-order results are similar
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in appearance to those for :ne supersonic-to-siipersor,ic case. The second-

order results contain os ,--illations that increase with T.

A sequence of shock profiles for an upstream-moving, supersonic-to-
subsonic shock is shown in figure 6. For the supersonic- to-subsonic cases,

mixed differences are used for ($x 2 )x. The sequence of shock profiles is
periodic, repeating every fifth time step, because T - 0.2. All the schemes
capture the shock sharply, but again oscillations are apparent in the second-
order schemes. Similar results are shown in figure 7 for a downstream moving,

supersonic-tc-subsonic shock.

The first-order results of figure 7 are replotted in terms of $ vs. x
in figure 8. The dashed lines indicate the exact solution at different time
steps. The exact shock location at time level n is indicated by the inter-
section of two dashed lines and is marked by xs 

n 
on the abscissa. The loca-

tion of the shock relative to the mesh at n = 19 is repeated at n - 24, and
that at n - 20 is repeated at n - 25, etc. Points identified as shock

points : , t level n according to (26) are denoted by Sn. The solution to the
difference equation (27a) for the case treated in figure 8 is

$n+1 = $n
	 for x < xj	 i	 i	 at,

(31)

$j+1 = $i _ 
Axs (xR - $x

L^ for x  ? xsn

where Ax, the distance the shock travels in time At, is given by

Axs = At($xI + $x ). Hence, in updating $ from time level n to n+1, the
R

solution remains unchanged for all (supersonic) poir' to the left of the
shock point. The shock point, and all (subsonic) points to the right of it,
move to the dashed line that is the exact solution for n + 1. The test to
determine Sn assures that the shock point remains downstream of the shock
for the value of T used here.

e) Nonlinear Instab i lity and Ovo,:shoots

For large values of T, however, the shock-capturing procedure breaks
down, and an instability occurs as illustrated in figure 9. N pre the solution

downstream of the exact shuck location is correct for each n! 	 i , because of

the test for S n , the shock point can move only one grid poin'_ downstream per
time step, while for T = 2, the exact shock location moves downstream at a
rate of two grid points per time str,,. An increasingly large discontinuity in
$ develops, which appears ac a growing overshoot in $x, and the process
diverges. Reducing T to 1.1 slows the divergence rate, as illustrated in
figure 10. For T = 1.0, the process is neutrally stable, as shown in
figure 11, and the $x vs. x shock profile travels unattenuated after
n = 3. For the case T = 0.9, shown in figure 12, no instability occurs. The
sequenue is periodic with the solution repeating every tenth time step. An
overshoot develops at n = 1 that decays with n until it repeats at n = 11.
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For this type of switched-differencing-induced overshoot to occur, two
conditions must be met: (1) the point immediately downstream of the shock
must be a shock point, and (2) the (downstream moving) shock must move past
this point in the next time step. Referring to figure 3, these conditions can
be expressed, respectively, as

I	 -m	 <0° x -xs >Ax 
L	 R

(32a)
i s+1	 is-1	 is	

o	 `L - 1xR

	

x
i
 - xso < At(^^ + ¢xR)	 (32b)
s

or, equivalently,

T(Ax/At) < xis - xso < T

}

	

Ox  - 
q xR	Ax	

(32r_)

This indicates that the occurrence of overshoots depends on the speed of the
shock and its location relative to the mesh. As the shock propagates through
the grid, (32c) may be satisfied at some time levels and not at others. It
follows from (32c) that these overshoots can never occur if

+

xL	 xRT _ At /^	
+	 <	 (33)

	

Ax 1̀  xL 	xR	
OxL - ^xR

This is a more restrictive condition than the T <- 1 requirement for stabil-
ity. Inequalities can be derived from the upstream-moving shock case in a
similar way.

The type of instability and overshoot discussed here cannot occur in the
semi-implicit scheme, because, for n downstream-moving supersonic-to-subsonic
shock, the linear stability condit'.n is more restrictive than the inequality
(33)• It is also interestir.A ro note that for the nonconservative (in time)
scheme detailed in the apper _x, no overshoots or instabilities occur.

For the implicit schemes presented here, the shock-capturing process
imposes time step limitations for both stability (due to the time linearize-
tion of the nonlinear term) and accuracy. The restriction T < 1 could be

i	 eliminated by fitting the shock as an internal boundary. Alternately, the
follows: simple correction process could perhaps be implemented. First,
update ^ at n+1 by applying the implicit scheme as before. However, before
proceeding to the next time step, any points crossed by the shock in time At
would be corrected, i.e., they would be forced to lie on extrapolated curves

FI

	

	
from the upstream or d.owns.ream direction depending on the direction of shock
travel. This procedure has been successfully applied in the one-dimensional
case but has not yet been attempted in two-dimensions.
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IV. NUMERICAL ALGORITHMS FOR THE LOW-FREQUENCY TRANSONIC EQUATION 	 A

The factored schemes introduced in Section II are combined here with the
nonlinear mixed difference operators of Suction III to form a complete algo-
rithm for solving (4).

a) Alternating Direction Algorithm

An implicit differencing of the low-frequency, transonic, small-
perturbation equation (4), using two time levels, can be denoted

Sldxt$j+k = 2 (1 + Et l )(DxfJ , k + dyy$J+k)	 (34)

where 0 1 = 2kMm 2 , Dx is defined by (40), and the difference operators for
6yy and 6xt are specified by the relations

6yy - fyk+l - yk	 yk - ykl l,(yk+1 2 yk-1,	
(35a)

6xt - I 1 At tl J lx 1

	 _X

6xt —IL2 + p (1 - EX 1 )1 _ (At) -1 (1 - Er l )6x 	(35b)
111 j+l	 j-lJ

Here p = 0,1 for the first- and second-order differences, respectively. The
unusual choice of (x j+ l - xi_ 1 ) used with the 6x t operator is required to
maintain conservation form Tor variable meshes. The operator (35b) is not the
usual spatial second-order-accurate relation derived from a Taylor series
expansion, but, for a sufficiently smooth grid variation, the difference is
nevertheless second-order accurate. For example, introduce E = E(x) with
one to one mapping x = x(C) such that E j - Cj _ l = At is constant over the
grid, and for the three-point backward spatial operator

( 1 - Ex 1 )(3 - Ex 1) $ N _ ( 1 - Ex l )(3 - Exl)$j	
x ^$ + 0(A4 2 )][^x - 0(AE2)]

xj+1 - xj-1	 j	 2AExC + 3 (AE)2xEEE + ... 	 E

(36)

where xj+l(E) is expanded about xj(C) via Taylor series.
In (34)

fi+k = L1 - Pim - 2 (Y + 1)4,n+1 
^ $ n+1	 (37)

j,k	 j,k

where

$xj,k = 1$]+(1/2),k	 a'j-(1/2),k7/Fxj+(1/2)	 xj-(1/2)I
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Linearizing as in Section III gives

fn+1 - fn 

+aTx

(3f l n	 n+1	 n

	

ilk	 ilk	 lJ j kxj'k - ^xJ,k + ..
	 (38)

Two-time level averaging then gives

	

f	 = f n
	 n+1	 = 1( n+1 + fn l

ilk	 ^xj,k,$xj,k	 2lfi,k
	 J,kl

IV	 ilk	 j,Y.

where

Vj k = 1-Pa ( Y +1)rf'y
ilk

The DX operator is applied as in Section III 	

lDxf
i l k = 2(x j+1	

xj-
1)

- 11(1 	 e j )rf j
+(1/2),k - fj-(1/2),k]

+ 
eJ-1VJ— (1/2),k - f,-(3/2),k])
	

(40)

where ej = 0 or 1 for (Vi+(1/2),k + V'i'-(!1R2.) 	 > 0 or < 0. (The same
smooth grid restriction (3b) applies to'the case ej = 1.)

Incorporating the above differences in the ADI algorithm gives

x sweep

6 1 (At) -1 6 x (^j'k - 
^J, k) = Dxfil k + dyy^ilk

y sweep
	

(41)

R1(pt) - lgx(i, k - ,^J+k) = 2 byy (^J+k - ^j k)

where fj k = f(^n	
-n+1 )	

On the x/ sweep, a matrix is generated that is
J,
k, 

j,k
lower tridiagonal for supersonic points (cj_ 1 = cj = 1) and tridiagonal for
subsonic points (c j-1 = ej = 0). For parabolic points (cj- 1 = 0, ej = 1) all
the entries are zero r,n the row, and for shock points (cj_ 1 = 1, e j = 0),
there are four nonzero entries on the row. For the present work, a quadra-
diagonal solver was used that solves the equations like the Thomas algorithm
for a tridiagonal matrix. On the y sweep, the only x differences are in
dx., which is backward differenced. Hence, the scheme is marched from upstream
to downstream solving a tridiagonal matrix for each x = constant line of y
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I

grid points. The test for cj is only required for the x sweep. Ha
y sweep been taken first here, as in Section II, the test would have been
required on both sweeps, thereby reducing the computer efficiency of the
method.

b) Approximate Factorization Algorithm

For the AF scheme the conservativ time-space differencing was carried
out in the transformed potential

$ _ -Bzx + (y + 1)em
	

(42)

so that the resulting equation

6 1 $xt = -($
2

x
/2)x + $YY
	

(43)

has the same nonlinear term modeled in Section III. Tae use of such a trans-
form is unnecessary for the basic scheme described below but does lead to some
computational simplifications. The transform also a ••jids a difficulty with

certain contrived time-linearizations such as (07"1 ) 2 " (2$xi 
k -

 It' n-1 )$x31k
in which the switching of difference operators fir Aumerical stability does
not correspond to the correct sonic line. For e ,,ample, use of this lineariza-
tion in (37) leads to a coefficient of $n+l	 chat changes sign at a differ-
ent point than V, k. 	

xJ.k

Variable grid differencing was implemented in the AF echeme by coardinate
stretching transforms, although the algorithm is givton here in the untrans-
formed plane. Using the second-order time linearization (24b) and mixed dif-
ferencing (25) described in Section III, the second-order AF algorithm is
given by

[1 + AtFj 
k/(3MZ)][ 6Mmnk1

(1 - E-1 ) - 2AtE-18 
1Y +k

= 2 Me n-l [(-5E-1 + 6 - EX1)$ k + (2E-1 - 3 + EX1)$n-1

+ 2AtFj k^[At^jl/(3t))sYY + 2 nk 1 (1 - EX1)4 $j k	 (44)

where

t = t/k

n 	 = (yk - Yk-1)-1 nk = (nk+l + nk)/2

=
(xj	

- xj-1 )
-1	

, i =	 (E j +1 + Ej)/2
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Fi,k ' (1 - tj ) ^J+1 (
 

j+l ,k - J^^ k ) E+l - (l - c^	 ^J-1 ) c l a a 'k - fin_	 )J l,k

tJ-1^j-1 (^J-1,k - T^-2,k

and

syy 
a n

k+1 (EYl - 1) - tik (1 - E-1)

The above algorithm only requires two double-indexed storage arrays with
intermediate values held in ^J-k. For efficiency, the operator F3 ,k should
be simultaneously computed along rows for the right-hand side and the first
inversion. In forming F^ k along roes, the term 4 { . l(^^+1,k - X11	 Is com-

puted and then shifted hack to obtain 12(^p^ k -	 _1 k) ,nul
C
j- 1 ( ^J -1,k - ^^-2,k)	 If only a first-order-accurate differencing for ^xr

is needed (i.e., (Sa)), the simplified contrived time linearization (24a)
should be used.

V. SAMPLE 1940-DIMENSIONAL COMPUTATION

11'. this section results from the ADI and AF schemes are compared for the
case of an airfoil executing unsteady motion characteristic of a helicopter
rotor in forward flight. Particular attention is directed toward comparing
the shock o.-irturing properties of the first- and second-order methods for
various typal of shock motion in light of the one-dimensional results pre-
sented in ilection III. For the computations reported in this section, a uni-
form x mesh spacing of Ax = 0.02 chord lengths was maintained over a dis-
tance extending from one chord length upstream of the airfoil. to the airfoil.
trailing edge. The x mesh spacing outside this interval was stretched
smoothly out to the boundaries, which were located more than thirty chord
lengths from the airfoil. The mesh spacing In the stream-nornta:l direction was
uniform at Ay = 0.04 (y unsealed), starting at the airfoil, surface and
extending for a distance of 0.2 chord -.=ugths. It was stretched smoothly
beyond this point out to the grid boundary, which was located a distance of
fifty chord lengths from the airfoil.

The motion of a blade element near the tip of an advancing helicopter
rotor can be simulated by an accelerating, and, subsequently deeelcratin;,,
airfoil (refs. 2 and 10). A motion that is simpler to treat computationally,
but which produces a similar flowfie.ld, is that of a thickening-thinning all--
foil as shown in figure 13. A parabolic-arc airfoil thickens from zero to
0.1 in the time interval in which a fluid particle travels Fifteen chord
lengths (relative to the airfoil) at the free-stream velocity Um . The airfoil.
then thins to a flat plate after thirty chord lengths of travel.. (Here k = 1
as Ln Section IIc, so time is given in chord lengths of free-stream travel.)
During the thickening phase of the motion, a shock wave forms and propagates
downstream. As the airfoil thins, the shock reverses, moves upstream, and
propagates off the front of the airfoil chasing the expansion wave that
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precedes it. The initial formation and downstream propagation of the shock
wave is indicated by the pressure distributions shown in figure 14. The
second-order ADI and AF schemes show no pl,ottable difference.

An indication of the s':ock speed can be obtained from the jump relations
for (4). For a normal shock, the speed is given by
(1/2k 2)[1 - MZ + (1/2)(y + 1)i,C(CpL + Cp R)/2] (where Cp - -2^x), and, in

transonic small-disturbance theory, Cpp* Is given by setting Vc = 0 in (1)
or (4), i.e., 1 - 1,e + (1/2)(y + L)P1^C* = 0. Hence, when the average C

	

p	 p
across the shock is equal to Cp * , the shock is stationary; otherwise the dif-
ference between (C

P
L
 + Cr )/2 and C

p
* indicates the direction and speed of

  1 K	 p 

the shock. Thus, at t = 11.5, the shock is traveling downstream, while at 	 f
t - 18.25, it is nearly stationary. As in Section III, this downstream-moving
supersonic-to-subsonic shock is properly captured, and the ADI and AF schemes
give equivalent results.

The subsequent upstream ,novement of the shock wave is shown in figure 15.
At t = 26.875, there is only a small region of supersonic flow (for which
Cp < Cp*), and the shock is traveling rapidly upstream. Here, as in Sec-
tion III, the upstream-moving supersonic-to-subsonl-c shock wave produces over-
shoots in the second-order scheme results. At later times, the shock is a
subsonic-to-subsonic type, and it is accelerating in the upstream direction,
as indicated by the increasingly large ratio of I(Cp + Cp )/2Cp * I as it
function of Lime. Here, as in Section III, the first Lorder ltschemes produce
some "smearing" whi:'.e the second-order schemes develop overshoots. Halving
the time step reduced the amplitude of these oscillations in the second-order
solutions and produced no plottable difference in the first-order solutions.

Another view of the solution is afforded by the mid-chord pressure coeffi-
cients as a function of time as shown in figure 16. There is a lag of about
two chord lengths between the maximum flow expansion point and the maximum air-
foil thickness. The effect of the shock wave propagating upstream past the
mid-chord point is evident at about t = 26.

It is interesting to compare the relative efficiencies or the implicit
and semi-implicit schemes for the present example and to try to extrapolate the
results of such a comparison to cases of more practical interest. In the
present calculations, At was fixed at At = 0.125, where time is given here
in chord lengths of free-stream travel relative to the airfoil. Considerably
larger time steps could have been taken over much of the period of the motion,
the major restriction being adequate resolution of the rapid shock motion
upstream of the airfoil. The time step restriction for the semi-implicit
scheme is given by

21,12 Ax

At < Min j k+ 1 m
	 (^' )I - M^+^' '	M.0
pj,k

where the minimum is taken over all. spatial grid points j,k in the flow-
field. In the present calculations, the most restrictive At according to
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(45) would be At o 0.0328 at t x 16. Since the implicit schemes require
about fifty percent more work per time step, the efficiency ratio of the
implicit schemes relative to the semi-implicit schemes is roughly 2.5 for this
case. In more practical cases, i.e., for blunt leading-edge airfoils at angle
of attack (e.g., see ref. 3), the leading edge singularity is much stronger,
and a much finer Ax is required in the nose region. (Tile solution is not a
valid approximation to the Euler equations in this region because of the vio-
lation of the small-disturbance assumptions under which the theory is derived.
However, experience indicates that for sufficiently fine grids near the lead-
ing edge, these inaccuracies are confined to a small region, whereas for
coarser grids, they can affect the solution over the entire surface of the
airfoil.) Small Ax and large Cp both contribute to a considerably more
severe time-step restriction for such cases, significantly increasing the
efficiency ratio in favor of the implicit schemes.

CONCLUDING REMARKS

Implicit two- and three-.level approximate factorization finite-difference
schemes for the low-frequency transonic small.-disturbance equation have been
constructed that have no time-step limitation based on a linear stability
analysis. At this point neither scheme nppea,c to be superior to the other
either in terms of accuracy or efficiency, and the development and application
of both will continue. Both schemes maintain stability for mixed flows by the
use of conservatively-switched differences, i.e., central or backward differ-
ences are used as the local flow condition is subsonic or supersonic. An
instability, caused by the time linearization and switching test, occurs when-
ever a shock wave travels more than one spatial grid point ner time step. A
mild time-step restriction is thus imposed that is usually orders of magnitude
less severe than the one associated with explicit schemes. The implicit
schemes should prove useful in the analysis of unsteady airfoil motions,
including pitch, plunge and free-stream Mach number oscillations; and the
extension to three dimensions, as outlined in Section II, should present no
additionzl difficulty.
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a) Stability of the AF Scher

To investigate the stability of ki0) simplified boundary conditions are
taken as either (a) spatial periodicity, or, because the all periodic case
leads to a singular factor [(1 - EX 1 ) - b6yy], (b) spatial periodicity in x
and specified function on the y boundaries. If I is the JxK vector
ordered 0j k [(j = 1, J), k - 1, k] then (10) can be written

AB;
n" - 

Cm + I
The matrices A, B and C are either block diagonal or block tridiagonal with
circulant blocks (because of periodicity in x) and can be simultaneously
diagonalized by unitary transforms. Hence, in an R 2-norm one need only
examine the eigenvu? ues for stability. For the periodic boundary condition
case, the difference operators generate circulant matrices with known eigen-
values (refs. 11 and 12), and the matrix stability test is equivalent to the
von Neumann test. Thus (10) is transformed

(1 + a - as iej)rl 	 e-iej + 4C sin21 2 j $n+l

e ie j + ac( eiej - 1 )r 4 sine ['k@ ^n
	

(A1)

where c - b/(Ay) 2 and 6 j - 27rj/J, e k = 21rk/K,
function is specified at end points,in y. This

1e (	 /
e	 j) + ac (1-e j)I4 sin2l`` 2

ek]

e	

]+ all-e
10 j/

	-iej 
+ac ( 

/\	 le
= 1-1-e

Now

or ek = 2uk/(K + 1) if the
can be regrouped as

(1 - e
-iej

) +4c sin21( e2j+k

) r4 sing (e2 )
]j ^n	 (A2)

a(l- e-iej\(1 - eiej) = 4a sin2 l 	 ? land 4c sin 2 1 ek
1
 > 1/	 1	 l2

so (A2) has the form

n+1 _ a + is n	 a2 + c2--11 w  n

^j,k	 a + is ^j k	
a2 

+ c2 e ^j,k

Since a 2 a > 0, ^^J ,kl > l^j,kl, and unconditional stability is assured,
although in the periodic case when j = J and k = K, (A3) is formally
indeterminate.
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b) Stability of the ADI scheme

To demonstrate stability of ('8), assume a periodicity condition in x
and Dirichlet conditions in y - however, assuming periodicity in x would
make [6 x - R(At/2)6xx] a singular o +p rator, so its inversion in (18b) is not
formally possible. Eliminating ;n,k in (18b) using (18a) and the inversion
of [6 x - (At/2)6 yy] leads after some rearrangement to

At an+l =	 At	 At	 At	 -m
(6x - 2 Rdxx)^	 ^6x - 2 6YY) 1 ( 6x + 2 6YY]( 6x + R 2 6xx

l
1

))	
(A4)

Again the coefficient matrices can be simultaneously diagonalized by unitary
transformations, and stability depends only on the eigenvalues. In the trans-
formed variables, $

12
(Ax) -1 (l - e

-ie 
j) + I ( zt] lAX

l
 4R sinZ1— 

0 1 
2) ;J±k

	

(Ax) -1 (1 - e-10 jl - 2 4 sine t 2 / 	 -10	 At (! l 2
	 0	 na	

1	 -10	 At	 2 
0k [(-Ax) 1l l - e j ) - Z ^X

J
4R sin z z ll $ +k

	

(Ax) - 1 - e j ) + Z- 4 sin ( 1 	 \`	 l	 1 LL
2

(A5)

For sin 2 (0j/2) * 0 the left-hand coefficient can be divided out, and one can
readil'. show that a ratio of eigenvalues appear which has the same type of
inequa) cy as (A3). Thus for all roots such that sin 2 (0j/2) > 0, stability
is unconditional. For the singular case, when sin(0j/2) = 0, the system is
formally indeterminant.
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APPENDIX B

A scheme is considered here that illustrates loss of conservation form by
the use of proper conservative spatial differencing but with an improper time
linearization. An interesting property of the scheme is that arbitrarily
large time steps can be taken without generating the type of instability dis-
cussed in Section III.

An implicit, first-order accurate approximation to (21) is given by

(1 - Ex 1 :(0n
+1

 - fin)

OX L(1 - ei)( j+1- ^j-
1)(EX1-1)+

cJ
-1($i-4^J_2)(1-Ex1)^(1-Gx1)^j+1	 (B 1)

and where dj	 yi
+I . 

To avoid
the first-order accurate

+roximation It can be shown by a
to the model data shown L.

which uses the notation defined in Section III

solving a nonlinear system at each time level,

approximation $j --^j is made. With this apl
flt,y summation argument that, for (B1) applied
fi gure 3, the shock speed is

^rdxs 	
+ 0,

	

°L	 R

dt 3 	At /	 (B 2)
1 + Ax1$xL - ^xR

whereas the correct shock speed for (21) is

dxs

	

dt = "x +
L	 R

Ax	 (133)

Thus (B1) satisfies the correct shock conditions only for stationary shocks
(OxL = —^ xR), shocks with zero strength (^xL = ^ xR), or when At/Ax -} 0.

,n interesting feature of this nonconservative (in titre) scheme is that
as At/Ax	 the shock speed approaches zero, as shown in figure 17. In
fact, T + (?xL + N)/(^xl, - N) as At/Ax -> W . Hence, from (33), no insta-

bilities are expected to occur for large At, and numerical experiments con-
firm this. This feature is attractive in applications in which only the
steady-state solution is of interest, and using (B1) with the first-order AF
scheme does indeed provide a very effective relaxation algorithm.
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