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ABSTRACT
Electron energy distribution functions have been calculated in a

U235—p1asma at 1 atmosphere for various plasma temperatures (5000-8000°K)

6-2 X 1012 neutrons/(cms-sec)]. The distribu-

and neutron fluxes (2 x 101
tions are assumed to be a summation of a high-energy tail and a Maxwel-
lian distribution. The sources of energetic electrons coﬁsidered are the
fission-fragment induced ionization of uranium and the electron induced
ionization of uranium. The calculation of the high-energy tail is reduced
to an electron slowing down calculation, from the most energetic source

(~ 2.1 keV) to the energy where the electron is assumed to be incorporated
into the Maxwellian distribution {~ 15 eV). The pertinent collisional
processes are electron-electreon scattering and electron induced ionization
and excitation of uranium.

Two distinct methods have been employed in the calculation of the

distributions. One method is based upon the assumption of continuous

slowing and yields a distribution inversely proportional to the stopping
power. An iteration scheme is utilized to include the secondary electron
avalanche. ‘

In the other method, a governing equation is derived without assuming
continuous electron slowing. This equation is solved by a Monte Carlo
technique which simulates Coulombic collisional slowing analytically while
ionization and excitation events are simulated in a random walk fashion.
Consequently, the secondary electron avalanche is included explicitly.

Both methods yield comparable results at high energies (2 100 eV),
with disparities arising at lower energies due to the inappiicability of

the continuous slowing assumption. The distribution functions calculated
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in both models are observed to be linearly dependent upon the neutron flux
while inversely proportional to the plasma temperature. T@e electrons
'witﬁin the calculated high-energy éail induce ~1014 more excitations of
uranium per cm3 per second than are induced by Maxwellian electrons.
Since the threshold of_noq—Maxwellian behavior is ~ 15eV, the pfesent re-
sults suggest seeding the plasma with a species having a high excitation
threshold,‘e.g. helium, in order to better capitalize upon the excitatiom
characteristics of the high-energy tail in possible applications as a

lasing medium or a radiation source.
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CHAPTER I

INTRODUCTION

A. 7Definition of Problem

The objective of this study is the deduction of the effect of the
presence of fission-frapgments upon the eléctron energy @istribution
function in a uranium plasma. Parametric studies of the neutron~flux
(a measure of the fission-fragment density) and temperature dependence
of the distribution function are undertaken to provide insight into the
plasma conditions under which the fiséion—fragmgnts have the most pro-
nounced effect upon the distribution function. These calculations will
be obtained by two separate models; a simple model for survey calcula-
tions and a second, more refined model, by which the accuracf of the
former may be judged.

Primary emphaéis is placed upon the high-energy tail of the dis-
tribution function, i.e., at energies above the excitation threshold, as
it is anticipated that the results generated herein~will be used for the
calculation of excitation rates. At sucﬂ energies, the caléulation of
the distribution functioﬁ reduces to the problem of slowing down from a
source. The source of electrons to be considered here is cqmprised of
two distinct components, each distributedqin energy. Tﬁé firs£ consists
of those electrons generated by the fission-fragment induced ionization
of the background uranium during their slowing down process, while the
second consists of those secondary electrons produced through the ioniza-

tion of uranium by energetic electrons as they thermalize.



B. Motivation

The motivating forces behind this study can best be identified by
examining some of the anticipated applications of a uranium plasma. His-
torically, the first application envisioned was the-utiliiation of the
plasma as an energy source for an ion rocket engine termed the nuclear
light-bulb concept.(1‘4) The success of theAidea depends upon the ef-
ficiency at which the energy releaseq during the fiésioning of uranium
is transmitted to and absorbed by the hydrogen fuel. The energy trans--
mission process consists of a conduction chain and a radiation .chain.

‘In the conduction chain, the energy deposited within the plasma.by the
neutrons and fission-fragments is conducted away from its source to the

' hydrogen fuel. In the rédiation chain, a portion of the fission-fragment
energy is transmitted to electrons through the ionization of the background
uranium. The electrons in turn excite the background which transforms
the energy into radiation as the atoms de-excite. Then both the line
radiation and the blackbody radiation bass through a "window" into the
fuel wh@re-it is to be absorbed.

Two additional applications make extensive use of the radiation
chain, namely direct nuclear pumping(5"6)'and photo-chemical production(7)
by éx;racting energy from the uranium plasma in the-form of.light. In
the scheme of direct nuclear pumping, a population inversion is sought
ueither by seeking a situation where the uranium will lase or by tranéfer-
ring the energy from the uranium plasma to a second species which would lase,
In the latter scheme, less stringent requirements are placed upon-the‘exci-.

tation rates, as a population inversion of the uranium itself is unnecessary.
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The success of this scheme depends solely upon the ability to shape the
radiation spectrum via either the determination of the plasma opacity or
the' transluscent properties of the "window'.

A fourth application involves the high efficiency extraction of
energy from the uranium plasma through an MHD cycle.[gj This scééme may
be combined with either of the two previous schemes which would serve as
topping cycles to further enhance efficiency.

From these possible applications, the importance of the calculation
of the electron energy distribution function can be gguged. The success
of most of these schemes depends upon an accurate determination of the
excitation rates. A prime means of exciting atoms is through electron
induced excitation. Consequently, at the hedrt of the problem is the
need for a detailed knowledge of the number of electrons capable of in-
ducing excitation. Such a query can be satisfied only with a detailed
calculation of the electron energy distripution function réther than
assuming érroneously that the distributién is Maxwellian in radiation
calculations. (9
C. Description of Plasma

1. Classification of Plasma

The plasma conditions to be investigated include temperatures
ranging from 5000°K to 8000°K (the boiling point of uranium is 4407°K
at one atmosphere); a pressure of one atmosphere, and neutron fluxes
ranging from 1012 to 1016 neutrons/{cmz—sec). In determining the rate of
occurrence of fission reactions, the uranium is assumed to consist en-
tirely of the U235 isotope. Furthermore, the neutrons are assumed to be

in thermal equilibrium with the plasma so that the fission cross-section
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calculated by Bussard(ss) is applicable, i.e., the effects of neutron
spectrum hardening are negligible. 1In his calculation, the fission
cross sectiom weighted by the neutron flux distribuiion is averaged over
energy, thereby eliminating the energy dependence of the cross section in
favor of a characteristic temperature. i

Upon fissioning, a uranium atom is assumed to split into two fission-
fragments. The lighter fragment (96 amﬁ) is born at 98. MeV and a charge
of +16e, while the other is born at 67 MeV and a charge of #15e. The
distribqtion of .each fission-fragment is taken to be inversely proportional
to energy.(lo) The tendency of a fission-fragmenf to neutralize its
positive charge as it thermalizes is included by assuming the fission-
fragment's charge to be proportional to velocity.

In terms of the previously described energy extraction schemes, the
plasma conditions cited above are characterigtic of a subcritical uranium
plasma. Also, this temperatﬂre range encompasses the 6000°K temperature
of a proposed 5-MW experimental reactor.(ll? The conditions of .a critical
-plasma are somewhat hotter (center line temperature of 40,000°K(1?}Jand
of higher pressure (approaching 500 atmospheres). However, the results
for the-plasma conditions to be studied should be applicable to the outer
boundary layer of a critical plasma.

For the plasma parameters cited, the densities of the various plasma
constituents can be predicted by the Saha equations(ls) provided the
necessary partition functions are known. Due to the lack of experimental
data, the ratio of the partition functions is assumed to be unity (after

(12,

Krascella The results for the Saha predicted densities appear in

Fig. 1. A first order approximation of the perturbation to these densities



3x10'8 ] l
NEUTRAL
URANIUM
NI DENSITY
0 B
E =
O
™~ n
9]
L
_l -
Q
= L
e
5 -
. = ,/ |
o ”’
= //’
2 /
w s
Qa7 -’
10t - 7 ~
B ’\\ELECTRON 4
_ DENSITY -
/
L/ ~
/
4 .
"4
6 l !
2x10 5000 6000 7000 8000
TEMPERATURE, °K
Fig. 1. The density of the uranium plasma constituents plotted versus

temperature assuming a pressure of one atmosphere.



6
caused by the production of fission-fragment generated electrons is only
of the order of 1/10% for cases of interest here. Therefore, a further
correction for radiation effects is generally negligible.

With the electron densities and temperatures incurred, the plasma
defies classification in classical terms (see Fig. 2). There exists an
insufficient number of charged particles within a Debye sphere to provide
the necessary screening of a charged test-particle required.for the sat-
isfaction of the binary collision assumption of the classical kinetic plas-
ma, Similarly, the Landau distance of correlation is not sufficiently
large for the plasma to be characterized by the very strong correlations
of the classical collective plasma. Due to these difficulties, both a

(14} (15) which in-

biﬁéry collisional treatment and a unified treatment
- corporates collective interactions as well as the binary coilisions (see
-Appendix A) are applied to the Coulombic collisions.

2. Delineation of Collisional Processes

The dominant types of electron collisions present in the uranium
plasma are: the aforementioned elastic Coulombic collisions-~-electron-
electron and electron-ion scattering; and the inelastic collisions—-.
ionization and excitation of neutral and singly ionized uranium (see
Appendix B).

Since the inelastic cross sections have not been measured experi-

mentally, they must be calculated from formulae based upon tﬁe Gryzinski

model,cls) implementing the ionization and excitation data of Parks, et
al.(17)
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D. Methods of Solution

1: Governing Equation

The establishment of a governing equation for the distribution
function is complicated by the presence of both inelastic and Coulombic
collision types. For plasmas dominated by just one of these types, there
exists a plasma equation describing the collision mechanisms involved.
The Boltzmann equation, based upon the assumption that the duration of
a collision is much less than the time between collisions, depicts binary
colliéions, short range forces, and neutral scattering; whereas the
Fokﬁer—Planck equation with a cut-off distance depicts Coulombic col-
lisions which are not strictly binary in nature due to the long-range
force responsible for the Coulombic interaction.(ls)*

" Then, the governing equation must be a‘combinatiqn of these two
equation types in order to accommodate the presence of both cellision
types. Such an equation has been formulated by Dreicer(lg) for a partially
ionized gas. However, he included electroﬁ-neutral collisions which are
negliigible in the present case.

The distribution functions derived from both of these equations
either separately or combined are one particle distributions. Such dis-
tributions fail to describe the correlation effects anticipated in a
uranium plasma. They can only be described accuratefy by a many-bodied

distribution which satisfies the Liouville equation. The complexity of

this latter equation renders it impractical for direct use. However,

- - _ .
Upon employment of the Coulombic cross section, the Boltzmann equation
reduces to a Fokker-Planck type equation which is equivalent to the
Fokker-Planck equation umder special circumstances (see Montgomery and
Tidman (20)y.
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the correlation effects can be approximately described within a specified
‘error tolerance via the BBGKY hierarchy.(21) The Boltzmann and Fokker-
Planck equations represent a zero order kinetic equation in this hierarchy
accuracy of these equations is expressed in terms of the assumed small

plasma parameter g =

<< 1, where n, is the charged particle density
D

and AD is the Debye length. The zero order kinetic equations are ac-

nek

curate to order 1, the first order kinetic equation is accurate to order
g, the second order equation is accurate to order gz, etc. In the uranium
plasma, the assumption of g being small is not well satisfied. This pre-
sents a problem since the accuracy of even higher order equations becomes
uncertain. Consequently, two sets of governing equations will be separ-
ately imposed: they are a combination Boltzmann and Fokker-Planck equa-
tion and a combination Boltzmann and Lenard-Balescu equation, Tt is
argued that a comparison of the vesults will provide an estimate of the
error introduced by not employing a many-bodied distribution function.

The previous equations may he simplificd by noting the uranium
Plasma to be in a steady state. The presence of Lhe high-enevpy clectrons

produced both by Fission-fragments and other hiph-energy eleckrons creates

22)

{23
and Wanp® > at

a npon-equilibrium state. However, the results of Lo(
similar electron source rates indicate the source eclectrons relax into a
Maxwellian distribution, with the non-equilibrium effects restricted to
high energies. Then, the problem becomes one of investigating the re-

laxation of the high-energy tail into a Maxwellian distribution as de-

scribed by the collision terms of the aforementioned equations.

(Hiu}ﬂﬂél:
P4
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2. Review of Methods and Proposed Solution

Most methods appearing in the literature are applicable to one
equation type. Most notable of the methods are thoée of Rosenbluth,
et al.(24) for the Fokker-Planck equation and those of Nighen(ZE) and
Holstein(26) for the Boltzmann equation. They all expand the distributiom
function in terms of Legendre polynomials. Such methods are ideally
suitéd to anisotropic plasmas with E-fields or injected beamg.

In the present case, the assumption of an isotropic source and a
primary interest in the high-energy tail make the method of Pano(27’28)
much more appealing. However, provisions must be made to include a nascent
or fission-fragment generated source distributed in energy plus a secondary
electron source. The tractability of the resultiné'solution for the dis-
tribution function renders it an -important tool for survey calculations
and in the analysis of the distribution function.

In order to partially relax the assumption of continuous slowing
down inherent in Fano's method, a Monte Carlo simulation is alsé per-
formed which separates the Coulombic .collisions from the inelastic col-

(29) in earlier analytic

(30}

lisions in a manner analogous to that of Wells
studies. Unlike the Monte Carlo caiculation of Thomas and Thomas,
the variation of the mean free path length with energy between the point
of origin and the collision point is included in the calculation of the
distance of random walk. Due to the presence of a secondary electron
source, the ergodic hypothesis is not applicable so that a number of
particles correlated in time must be considered simultaneously rather
than repeétedly simulating an individual electron. The increased degree

of sophistication of this calculation is obtained at the expense of the
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ecanomy of the solution. Then, the practical application of this tech-
nique would require that it be used solely as a check upon the validity

of the analytic solution.
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CHAPTER IT

ANALYTIC SOLUTION

A. Introduction

In this chapter, a simple analytic formulation is sought for the
relaxation of superthermal electrons into a thermalized ensemble of elec-
trons which can be described by a Maxwellian distribution. The gpproach
employed follows that of Spencer and Fano(zs) for energetic electrons in
an infinite medium, which predicts a distribution proportional to the
inverse of the stopping power. Then, the resulting distribution will be
a superposition of a high-energy tail on a Maxwellian thermal distribu-
tion. From this formulation, the effect of varying several plasma para-
meters can readily be predicted, or conversely, variations in the dis-
tribution can easily be traced to their source. The ease of analysis
afforded by this method renders it an important tool for surveys, but the
more detailed calculation of Chapter III must be retained if high accuracy
is desired.
B. Derivation”

An analytic solution for the electron energy distribution function
in an infinite medium can be derived from the following, completely

general, expression for the conservation of electrons in energy space:

S(E)HdE + B“an Dout ~+ %(E)‘P(E)CQE (1)

The distribution function f(E) represents the number of electrons per unit

spatial volume per unit energy. The density of the electrons in the high-

&
The derivation given here is a modification of one by Safanov.(SI)
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energy tail can be obtained as follows:

oo
Yfeer ae = ne
ET

E>E
where ET is the threshold for non-Maxwellian behavior of the distribution

function. The source function S{E) is equal to the electron production
rate from all sources per unit spatial volume per unit energf; The rate
at which electrons recombiné is represented by vC(EJ. The rate of scat-

tering from and into the enexrgy intexrval dE about E is represented by

q

out and S PP respectively. For the energies of interest, the electrons

which are scattered intc the energy interval dE about E originate at
energies greater than E; that is, the upscattering of electrons can be
assumed to be negiigible. Then, the electron balanéé expressed in Eq. (1)
can be visualized as in Fig. 3.

The scaftering terms appeariﬁg in Eq. (1) may now be evaluated. An
expression for Gyt MEY be obtained by dividing f(E)dE, the numbexr of
electrons in thevenergy interval dE about E, by a characteristic deceler-

ation time TE, i.e.,

Fow = g = T e “

With the assumption of an infinitesimal energy loss per electron collision,
dE/TE may be replaced by the rate at which electrons coliisionally lose
energ& %%a This is equivalent to the assumption of continuous slowing
down. An additional implication of this assumption is that electrons
scattered from one infinitesimal energy element dE about E + dE must

be scattered into the adjacent element dE about E, i.e.,



S(E)dE

Your™ T~ =T
E E+dE
Y, (E)f(E)dE

Fig. 3. The particle balance of Eq. (1) imposed upon the energy
interval dE_ about E.
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f_ - j/ (E+ dE) S
n out ’ )
where 9B denotes the number of electrons/cm™ slowing into the energy in-

terval dE centered about E. Substitution of Egs. (3) and (4) into the

balance of Eq. (1) gives:

S(EYAE +f(E+de) 42

={—‘(E)é§\ +4etess
dt 3

E+dE dt

oxr

S - @Ry =- {P Evram) g} —TE) @\}A&G)
dt lE+dE 4t le

Invoking the fundamental theorem of calculus; Eq. (6) becomes

SCE) - UETEY= -4 {F(E)-ég,\ ‘ N
dE dtle
Integration of Eq. (7) yields
5 {5(511-7{(5')?(&’)} gE' =~ Y& g_g;\ }
E E ,

In the limit as E approaches infinity, the distribution function £{(E)

(8)

vanishes. Consequently, the distribution function must obey the following

Fredholm integral equation

(9)

Fe) =5 SE-2erfien bar'/ ae
E dt e

At high energies (at or above the inelastic collision threshold), re-

combination can be neglected. Defining the “cut-off energy" ET such that

recombination dhd upscattering are negligible for E > ET’ we obtain
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SOO

(E) &g’

WCCEI) = yE 7B (10)
(!;E\
dtie

Strictly speaking, Eq. (10) is valid only for the steady state of an

infinite, isotropic medium where continuous slowing down is applicable

and external forces or fields are absent. The assumption of continuous
slowing down has proved to be a valid assumptioq for elastic scattering
off of heavy targets where the ratio of the energy lost to the original
energy is simall, as is evidenced by the successful application of the Fermi

(44) to the slowing of neutrons by heavy noderators. This

age theory
assumption should alsc be valid for the Coulombic collisions where small
angle scattering (hence, small energy transfer) is dominant. 1In the
present case, however, iﬁelastic scattering, i.e., ionization and exci-
tation collisions, represents an equally important energy loss mechanism
which does not necessarily comply with the continuous slowing assumption.
This introduces some error into the model, thus, it can only be viewed as
a first approximation. A more rigorous but more costly Monte Carilo

treatment is then developed in Chapter {1] for more precise studies.

C. Humerical Solution

di
f

Numerical results for the distribution fiuncrion can readily be ob-

L.

. .. dE . sl - . .
tained if HE-and S{(L) are known. Provided the collisions are of a binary

dE -
nature, = can be decomposed into a sum of energy loss rates for each

type of collision, i.e.,

o L + 5 an
Coulombic ionization excitation
collisions collision collision
KIRREENZUD.PA&}E IS

OF POOR QUALITY
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Both ionization and excitation collisions qualify as binary collisions.
However, Coulombic collisions are not truly ‘binary, vet they have been
treated successfully as binary collisions in both applicatiobns of the

Fokker-Planck equation(lg)
(14,20) Thén,

and in derivations of Fokkexr-Planck type
equations. the decomposition of the energy loss rate in
Eq. (11) is applicable to the present case.

Numerous treatﬁentslfor QE-COulombic exist in the literature, such

dt
' collisions : .
as the Fokker-Planck model-(14) The energy loss rates for ionizatio

and excitation may be obtained by

@_E;\ = CE> 3 v (12)
a+ £ . loss

where v is the speed of a test electron relative to thermal electrons
[v corresponds to the energy E in Eq. (10}] and I is the macroscopic

inelastic cross section. The average energy loss per collision <E>

loss
is defined as
m&&(E’E) ’ ’ - .
(E? = °%E s = s hAE : £ dE (13)
o53 & -‘ . 7 6,([_:
) LES dE

vhere E is the energy of a test particle and E' is the energy lost by
the test particle as a result of a collision. The microscopic cross
section O(E) and the energy transfer differential cross section QE&%%ELL
for excitation and ionization events necessary for evaluating Eq. (13)
have not been heretofore measured experiﬁentally ﬁor calculated. Then,
these quantities had to calculated specifically for this study from a

Gryzinski model(16) using the data of Parks, et al.(17) for uranium atom

states (see Appendix B). 0
Rigmy,

o Al

" POOR, (1,18 15
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2. Iterative Solution of Source Term

The source term S(E) must include both secondary electrons and the
nascent electrons resulting from ionization of uranium by fission-fragments.
(Thermal electrons up-scattered in energy are excluded as they are neg-
ligible for most of the energy interval of interest.) Since the dis-
tribution of secondary electrons is dependent upon the distribution of
nascent electrons and the manner in which they thermalize, a total source
term S{E) cannot be known a priori. Consequently, S(E) and the distribu-
tion function f(E) must be calculated in an(iterative-manner as is de-
scribed below.

First, the production rate of nascen£ electrons designated by SO(E}
is calculated (See Section D}. These electrons relax into a primary
electron distribution fo(E] according to Eq. (10). s During the thermali-
zation process, the primary electrons further ionize the background
uranium generating a source of secondary electrons 51(E). These secon-
daries distribute themselves in energy as prespribed by Eq. (10), i.e.,
insertion of SI(E) in the equation yields fl(E), producing yet gnother
generation of secondary electrons SZ(E)° This process is continued un-
til the sum of the Si(E)‘s converge to S(E} and likewise, the sum of
the fi(E)'s converge to-f(E). The convergence of the sum of the fi(E)‘s
is readily obtainable within a few iterations, in agreement with earlier
observations of such a process by Fano and Spencer.(sz)
D. Sample Results

~ 1. Nascent Source
The starting point in the iterative scheme to determine the dis-

tribution function is the ¢alculation of the nascent electron source So'
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Since the electrons comprising S0 are the result of fission-fragment
induced ionization of uranium, it is essential that the fission—fragmént
distribution is known. A simple estimate of this distribution can also
be had from Eq. (10). The source of fission-fragments is so narrow in
energy, it can be considered a delta function, i.e., two distinct
fission-fragments are born, as the result of a single f£ission event, at
energies of 67 MeV and 98 MeV and masses of 140 amu and 96 amu, respectiv-

ely. Then, Eq. (10) becomes
’

70 _ S
LE) ™ 4E (14)
Lt

where S' represents the number of fission events/(cms—sec). Assuming a

14

neutron flux of 2 x 10 neutrons/[cmz—sec), an averaged fission cross

section of 57.6 barns,(ss) and a éaseous uranium density of 5.6 x 10'1.7c:m-3
at 8000°K, S' is evaluated to be 6.5 x 109 fission-fragments of each kind
are born[(cms—sec) in this example.

The fission-fragments experience electron capture over their entire
track, i.e;, q-= qu/V0 where q, and Vo represeqt the initial chargg
(vl6e) and velocity, respectively. Consequently, the energy loss dE/dx
(10)

is a maximum at the beginning of their track. A semi-empirical formila

for the energy loss of a fission-fragment at energy E is given by

. A _
dE - 2F, , (15)

dx — NE,) \E

where E0 is the energy at which the fission-fragment is born and A is its

range {see Eq. 3.50 of reference 10 for a semi-empirical expression for

A). Then, the fission-fragment distribution is
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AED St /M a6
e = 55 7E,

where M is the mass of the fission-fragment and the relationship

dE/dt = V dE/dx = v2E/M « dE/dx is utilized. The nascent electron séurce
appearing in Fig..4 is then obtained by averaging the fission-fragment
distribution over a Gryzinski energy transfex crbss—section‘for ioniza--
tion events, generalized for heavy, multi-charged ions.(16) The average
energy of the nascent electrons is found to be nN10 eV.

2. Distributioq Function

The results of successive iterations upon the distribution function
are also shown in Fig. 4. Convergence is easily realized in three iter-
ations. The final solution of the high-energy Fail (dot-dash -1ine)-is’
displayed along with a Maxwellian distribution (solid line) correspondiﬁg
to the plasma density and temperature freviously cited. Where the high-
energy taii intersects the Maxwellian, the source of electrons is no
longer dominated by the nascent electrons and their resulting avalanche
but rather by up-scattered electrons. Therefore, it is assumed in 'Fig. 4
that the actual distribution will more likély resemble a summation of the
Maxwellian and the high energy tail.

3. Energy Loss Rate

The energy loss rates necessary for the calculation of the distribu-
tion function via Eq. (10) are displayed in Table 1. It is evident from
the individual energy loss-rates that the Coulombic collisions are as im-
portant in slowing down as are the inelastic.collisions,“ionizaﬁion and
excitation, inspite of the vast difference in the average energy lost pér

collision. Although the energy loss per collision by Coulombic interactions



21

I I {
- 8000°K
14 . 2
10"} $=2xI10 neutrons/ficm - sec)
= ] g
' - 7 i
)
>
r()»
€T 45 ¥
Nl =
0 L
e 1 @
r3) s .0
o - +
© = O
- D
Z" [0}]
O B . H -
‘E:105 L - ‘ Eﬂ
O b
= | S -
L. W
= ] AN 410'° =
o . Z
[-— L
D _ v, - 8
m <t
T 0L =
= {0
2 ’
o
’ ; : 5 3
107! 10° 10 10 10
ENERGY, eV
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tail (-.-}. The initial term in the series representation of £(E)
is also plotted (--).
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is small, the cross section is relatively large so that the loss rate
for these events is comparable to inelastic loss rates.

For high energies, the largest permissable energy loss per collision
is a half of an electron's energy before a col}ision. The probability
of" such a hard collision, either Coulombic or ionization, is small.
Therefore, the assumption of continuous slowing is reasonable. However,
at lower energies the energy lost in an ionization event can be a
sizable fraction of the electrons qrigigal energy, and the continuous.
slowing approximation becomes less accurate.

For examplé, a crude estimation of the average energy loss per col-
lision yields values of 25.9 eV and 2.9 eV for ionization and excitation
collisions respectively for an electron at 32 eV, giving a AE/E of
approximately unity, far too large for continuous slowing. In contrast,
a similar estimation can be made for Coulombic collisions empioying‘the

expression for the electron collision frequency,clsj

o> > ganta (G () o

1/2 ) o
where %I- is replaced by the velocity of an electron at 32 eV and the
e

Coulomb logarithm is approximately 2.8. This yields a collision frequency

of n4.5 x 10 3sec™, or A0.044 eV lost/collision. Then AE/E is n0.001
which is quite consistent with the continuous slowing assumption. Thus,
as seen from Table 1, the results are expected to be more accurate for
high temperatures where Coulombic collisions contribute a large fraction

of the energy loss rate.



ENERGY LOSS RATE, ergs/sec

TEST
TEMPERATURE 0 e PARTICLE
(1 Atm.) COULOMBIC ) ENERGY,
TOTAL COLLISIONS ‘ eV
HHES TONIZATION EXCITATION IONIZATION EXCITATION
COLLISIONS COLLISIONS COLLISIONS COLLISIONS
2,26 .14 .60 1.45 .01 .06 826.2
4.23 .24 1.13 2.70 .03 .13 179.3
5000°K 5.53 .36 1.28 . 3.68 .03 .18 57.0
5.86 .45 1.14 T 4,04 .02 .21 . 26.0
.60 .60 - .- - - 3.0
2.13 .41 .43 1.03 .05 .21 826.2
3.94 .72 .80 1.92 .10 .40 179.3
6000°K 5.24 1.04 .91 2.62 .09 .58 57.0
5.71 1.29 .81 2.87 .06 " 68 26.6
1.40 1.40 - - - - 3.0
2.17 . .81 .25 .60 .09 42 826.2
4.00 1.40 .47 1.12 .19 .82 179.3
7000°K 5.42 2.00 .53 1.53 .19 1.17 57.0
6.11 - 2.45 .47 1.68 .13 1.38 26.6
2.17 2.17 - - - - 3.0
2.23 1.13 L1 .27 .13 .59 826.2
4,06 .1.93 .21 .50 .27 © 1.15 179.3
8000°K 5.57 2,75 .24 .68 .26 1.64 57.0
6.42 3.34 .21 .75 .18 1.94 26.6
2.52 2.52 - - - - 3.0
Table 1. Energy loss rates listed as a function of enexrgy for various temperatures. N
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E. Parametric Results

1. Temperature Variation

'The results of calculating the distribution function according to
the analytic prescription of Eq. (10) for various. temperatures are plot-
ted in Fig. 5. The most noticeable effect of temperature variation is the
increased magnitude of the deviation of the high-energy tail from the
Maxwellian with decreasing temperature. This effect is directly traceable

(33) empldyed.

to the energy dependence of the average fission cross section
As the plasma temperature and the corrésponding average energy of the
‘thermalized neutrons is decreased, the fission cross section increases,
-ultimately, yielding a larger nascent electron source rate (see Fig. 6).
"The degree of deviation from a Maxwellian as well as the energy range for
which the non-Maxwellian behavior is dominant is thereby enhanced with
decreasing temperatures. The point of intersection of the‘higﬁwenergy
tail with the Maxwellian éistribution denotes the lowest energ& for which
Eq. (16) is valid.

The effect of temperature variation upon the slopes of the. high-
energy tail is extremely subdued over most of its energy range. Only at
thg lowest energies, i.e., at the intersection of the high-energy tail with
the Maxwellian,is there any noticeable difference. Examination of‘thé
’energy'loss rates in Table 1 reveals a partial explanation for the be-
havior of the slopes. The energy loss rates for the‘range of tempera-~
tures considered are more disparate at low energies. The inelastic .cross
sections fall off drastically at low energies, accounting for the lo#

energy behavior of the energy loss rate while the temperature dependence

of the density results in the energy loss rate being-nearly independent
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Fig. 5. The distribution function versus energy at a constant neutron
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of temperature at high energies.

A second factor influencing the slopes is the secondary electron
source.- Not only are the magnitudes of the sources different for the
various temperatures considered but the shapes of the source distributions”
are different at low energies. The latter is caused by vafiationé in the
fraction of neutrals present in the plasma compound by difference in
electronic structure between neutral uranium and singly ionized uranium,
(This effect is observed only at energies near the threshold for ioniza-
tion.)

2, Flux Variation

The effect of neutron flux variation upon the distribution furction
1s considerably less complex than the effect of temperature variation.
Under the plasma conditions studied, the bulk of the thermalized electrons
i§ the result of the high plasma teﬁperatufe. The neutron flux does not
alter the thermalized densities by more than 1/10% from-the normal Saha
values; Then, the only effect a change in the neutron flux level can
produce is-a change in the production rate of high energy electrons.
Therefore, according to Eq. (10), tﬁe high-energy téil is directly pro-
pértional to the neutron flux level; which is consistent with the results
in Fig. 7 where the high-energy tail calculated at one flux level is
simply a scaled vertical translation of the tail at a different flux
level.

3. Cross-Sectional Dependence

A vital aspect of the interpretatiom of data is its credibility. The
largest inaccuracy existing in the calculation of the distribution function

lies with the uncertainty in cross-sections. Since no experimental data
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exists for uranium, a hydrogenic model formed the basis for calculating
the necessary cross-sections (see Appendix B). A comparison of the
cross’sections to measured values for cesium and helium reveals the
ﬁraﬁium cross sections to fall between them, but closer to helium.
However, due to the similarity in electronic structure of cesium and
uranium, the uranium cross sections would be expected to lié closer to
cesium than helium. To investigate this, another set of cross sections
are obtained by doubling the inelastic cross séctiéns. If the doubled
cross-section set is used in the calculation of the distribution function
in conjunction with the Coulombic energy loss rate predicted by the uni-
fied theory(ls) {see Appendix A), the possible errors geﬁerated by inac-
curate slowing theory can be‘gauged.

The result of just such a calculation is compared with a calculgtion
with the unadjusted cross-section set and the Fokker-Planck slowing theory
in Fig. 8. Fortunately, the éifferences indicated are not large, e.g., a
maximum deviation of 4% is obserxved ét n20 eV for 5000°K. Insight as to
the reason for the differences can be gained from the eﬁergy loss rates
appearing in Table 2 ﬁhich were employed in this calculation and those.
in Table 1 for the ﬁrevious calculations. Due to the doubling of the

inelastic cross sections, both the source and the inelastic energy loss
dE
dt ’

provided the inelastic events dominate, as they do at 5000°K. At 8000°K,

1

however, the increase in the source rate, a result of the ionization cross

rates are doubled. Since f(E) = S/ the factor of two is cancelled,

section being doubled, is not totally compensated by an increase in the
inelastic energy losses. This occurs because of the-relatively large

contribution by elastic collisions at higher temperatures.
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ENERGY LOSS RATE, ergs/sec
TEMPERATURE TEST
COULOMBIC PARTICLE
TOTAL COLLISTONS ENERGY,
TONIZATION EXCITATION IONIZATION | EXCITATION| eV
COLLIS IONS COLLISIONS COLLISIONS COLLISIONS
4.40 .14 1.20 2.90 .02 13 826.2
8.21 .24 2.26 5.40 .06 .25 179.3
5000°K 10.69 .36 2.55 7.36 .06 .36 57.0
11.29 .47 2.28 8.07 .04 .42 26.6
.87 .87 - - - - 3.0
3.33 1.13 .22 .54 .26 1.18 826.2
6.24 1.97 .42 1.00 .55 2.31 179.3
8000°K 8.54 2.88 47 1.37 .53 3.29 57.0
9.80 3.64 .42 1.50 .37 3.88 26.6
5.75 5.75 - - - - 3.0

Table 2. Energy loss rates listed as a function of energy for various temperatures
with the inelastic cross sections doubled and a unified theory treatment
of the Coulombic collisions.

1€
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The errors projected in this section are indicative of those antici-
pated to appear in the calculation of the distributioh function. The
inelastic cross sections display a shape characteristic of other elements,
most notably cesium, but are low in magnitude over all énergies of in-
terest by an estimated factor of two. The unified theory expression for
the Coulombié energy loss rate more accurately depicts cpllegtive and
binary interactions than the corresponding Fokker-Planck expressions,
yet the difference is not so la?ge as to discrédit the Fokker-Planck re-
sult. From these results, it is.seen that the anticipated inaccuracies
in the inelastic cross sections and the Cbulombic energy loss rate are
cémpensating inaccuracies, i.e.,. the inaccuracy éf the distribution is
less than the inaccurgcies associated with either the inelastic cross-

section set or the Coulombic energy loss rate.
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CHAPTER III

MONTE CARLO TECHNIQUE

A. Introduction

In the last chapter, it 'was pointed out that the assumption of comn-
tinuous slowing is questiomable, particularly at low energies. To treat
the problem in a more precise manner, an improved treatﬁent of inelastic
collisions is required. Due to the increased complexi?y of the present
treatment of the slowing process compared to the continuous slowing
treatment, a Monte Carlo simulatioﬁ was selected and is described here.
A straightforward approach is to follow the electrons via an analytic
prescription for Coulombic collisions for a time equal to the inverse of
the inelastic collision frequency. At that time they suffer a discfete
inelastic‘event which is treated by normal Monte Carlo techniques and
then the process is repeated. The present method is an improvement over
this technique in that provisions are made for the variation of the in-
elastic cross section between such events. Of course, the energy at
which the inelastic collisions occur as well as the energy loss suffered
are chosen in a random fashion according tb the appropriate probability
d;stribution.
B; Derivation of Governing Equation

The results of the previous section indicate the need to relax the
assumption of continuous slowing down for inelastic collisions. An ap-

propriate equation may be derived from Eq. (1), namely:

S - (18)
(E)dE + 27,2 Z/"”t
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I1llustration of collisional processes used in the development of
particle balance in energy space. The processes are: 1) inelas-
tic scattering out of the interval dE about E 2) elastic (Coul-
ombic) scattering out of the interval 3) secondary electron
production in interval 4) elastic scattering into interval

5} inelastic scattering into interval.
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where, aé before, recombination is neglected. The slowing terms in
enexgy space are readily obtainable from the diagram im Fig. 9.

The slowing down processes labeled 2 and 4 appeariﬂg in Fig. 9 are
characteristic of the continuous slowing down mo&el previously employed,
but here it will be restricted to the elastic écattering component.

Hence,

SEYLE +f (£ + 45) i‘f, E/ (19)

E+dE %/ %’”t +-F(E ‘

where the primed terms indicate inelastic scattering. Expre551ons for

(16)

q'i and q' . may be obtained with the Gryzinski type energy transfer

differential cross section g (E,€} introduced in Eq. (13). The term

q' of Eq. (19) represents scattering via an inelastic process (repre-
out P

sented by arrow 1 in Fig. 9) from the energy interval dE about E (the

shaded region (B) in Fig, 9) into any energy interval dE below energy E

(region A in Fig. 9).l Mathematically, this can be written as,

E_;"IO.Z ‘
' =nYiE . do(EE) F(E)&a &E (203
30/01'1 YNe d§ . )

o

where € is the energy lost per inelastic scattering éyent, n is the
density of the background species able to participate in the particular
event under consideration, and the relativg velocity is approximated by
the velocity of an electron of energy E, i.e., ‘J%Ej. The range imposed
upon the energy lost € varies from 0 to Emax which is determiﬁed by the
process involved. Since there are a number of ionization and excitation

processes competing in the slowing process, a sum over these processes is

necessary, i.e.,
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Similarly, the scattering process labeled 5 represents electrons of an

energy greater than E (i.e., electrons from region C) which scatter into

the eneréy interval dE about E, i.e.,

Wm.‘,l‘,
Z {_ S&a -)/ 2 (E+&) &8’(5+£ 5)10(E+£ &E(zz)
Me,

Substitution of Eqs. (21} and (22) into Eq. (19) yields Eq. (23):

SEYLE +T(E+4E) _a_f_l_g}

E+dE

+Z{ 5&? 2<E+€7 &Z‘E‘*& E)F(E+£)}&E

<

ma X,

{ -JI?,E S&E &&(& £) WD(EZ) 4E

(23)

Lt

The source term S(E) appearing in Eq. (20) may be decomposed into a
series as was done in Chapter II. The first term S0 in the series repre-
sents the nascent electron source while additional higher order terms
depict the various generations comprising the avalanche of secondary elec-
trons. A concise expre§51on for the total secondary electron source may
be derived from considerations of the ionization process labeled 3 in
Fig. 9. The secondary electrons born in the energy interval dE about E

are the result of ionization coliisions in which an incident electron
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loses an energy E + Ui where E is the secondary's kinetié energy and Ui
is the energy necessary for the secondary electron to overcome the ioniza-
t;on potential of the target uranium atom. Due to the'indistinguishabilify
of electrons, the least energetic of the resulting pair is defined as the
seconda?y electron and the other, more energetic electron is‘defined as
that electron which was termed the incident electron before lhe collision
occurred. Then, integration of the ionization reaction- rate over the
.energy range of electrons éapable of generating a secoﬁdary electron of
energy E followed by a summation over the varioqs bound electronic states

which can particiﬁate in secondary electron production yields the follow-

ing expression for the total electron source rate:

S(ENE = SBKEJ&E—\-S_;-isd(E)&E
'}_

£

oy,
..S (E)&E. + Z{n 5 I .‘1’2_(E.+E+U R iﬁ;fi*'EfUi,E-!-Ud-P({_.‘.E.‘..U%dE(ZAl}

E+u,

The calculation of the nascent source term Sa is outlined in Chapter II.

Then,

E&

]f VRSV
S (E)4E _*_): {n S&E’ ?._(ar:::-w) ig(&*—&-\- 'P(E+E+U‘}&E

E+U

+E{ Scﬂ.e 77-(5*8 &&(E+£6)~P(E,+& dE

(8

+F(E+AENdE ,'
At iz .

&

max..
=7 B ae w0 peYar +Fee i

(25)
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<
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The goverming equation .can be obtained from Eq. (25) by invoking the.

fundamental theorem .of calculus, i.e.,

S, (E)—\—& SLF(E) H
+Z S &i, ’{?_-LF_‘:_Q &G(E+ee)10(.e:+s,) dLE

Mg d4.€;

Ee

+2n g m LOEFETVE V) Preveruy
(E+U) m LE
. (26)
“f Yo (5 grmn s

The inelastic colllslon terms in Eq. (26) have been derived elsewhere.(zz)

However, their appearance with the continuous slowing .down treatment is
unique.
C. Simulation

1. Distinction Between Collisional Processes and Their Treatments

a. Coulombic Collisions

Equation (26). is not .amenable to an analytic solu;ion‘as was Eq. (7),
but it does lend itself-to a novel method of solution involving a Monte
Carlo simulation that integrates both analytic and random walk techniques.
An analytic description of the Coulombic collisions is employed in the
tracing of the ﬁistories of electrons. An individual eleétron is permitted
to evolvé for a time At as prescribed 5y the following equation.

t+at

S&t @E\ . = AE @n

Couvlombic
t dt coilision

dE
where Tt | Coulombic represents the electron energy loss rate due to Coulombic

collision
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collisions(l4’15)

and AE is the energy lost during the time At. Then, if
an electron has an energy E associated with it at time t, at time t + At
its energy is E - AE. The inelastic collisions are then superimposed on
the Coulombic slowing down in a discrete fashion as described below.
b. Inelastic Collisions
i. Choice of Collision Energy

Since the inelastic collisions are less frequent than the Coulombic
collisions, they are superimposed in a random walk fashion. The distance
of the walk is prescribed by a probability distribution dependent upon
the test particle's energy, the inelastic cross-sections, and the
Coulombic energy loss rate. Such a function can be obtained by first
examining the probability P(x) of a collision occurring in an infinitesimal
distance dx about x measured along the flight path of an electron. This
probability is a product of the macroscopic cross section I for inelastic
collisions and the length of the interval dx, i.e., Z(x) dx. The
functional dependence upon x is included as a reminder that the inelastic
cross section depends on energy which in turn is dependent upon the dis-
tance of travel within the slowing medium. The density of the target
particles is assumed to be constant within the medium.

The probability of traveling a distance x without a collision is the
ratio of the intensity of a beam of test particles displaced a distance x
to the initial intemsity at x = 0, i.e., I(x)/I(0). The attenuation of

such a beam is governed by the following equation:

4L = Yoo Lo ax (28)
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Integration of Eq. (28) yields,

T 2L ‘
h:_f_—(o) - -‘Vf«ﬂ(" So Z(’L’)' 41 ) (29)

Then, the probability of the first ineélastic collision occurring in dx

about x is

Paydr = {Mp(’" S:Z('L’) 41") Zcx)}&fp (30)

Since the problem is to be solved in energy space, an equivalent probability
of the first inelastic collision occurring in the energy interval 'dE about

E is desired, or

Ry dr = Rerde (31

thereby implying that the Jacobian necessary for such a transformation would

‘be %&-Which can be related to the energy loss rate by,
Coulom bic C'oo}brnbic,
V &E, collisions — &E\"°‘\‘5‘°“S (32)
AL lg At ig
Then, the transformation of Eq. (30) into the energy variable E yields
Eq. (33):
2 2E
C — '] T __‘:‘L _l__E
R®ae = MP(J 4=’ L(E) gepizy Bl e on
EO — E Ceu‘.ﬂw:hc.
&t . CQ“lS[ons

where Pl(E) is the probability that the first inelastic collision will
occur at energy E if the electron is injec?ed at energy Eo'
ii. Determination of Energy Lost
Once it has been established that a collision occurs at energy E,

the amount of energy lost must be determined. This too is prescribed by
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a probability distribution function. The probability of a particle which

collides at energy E losing energy € may be obtained by normalizing the
differential energy transfer cross section-%g-(E,e) to the microscopic

cross section o(E) for that process, i.e.,

P@yae = doe,e) ae (34)
ac oK)

The determination of the process, i.e., which of the uranium species,
collision types, and atomic levels are involved, must preceed the-energy
-loss calculation (see Appendix C for the algorithﬁs.employed).

2. Merging. of Treatments

a, No Inelastic Collision

The manner in which all of the above aspects of collisions are in-
coréorated to yield a complete description of the slowing down process
will now be illustrated with an example. Let us begin by assuming an
electron is born at energy E0 which corre5ponds to a time to on the energy
vs. time plot on the right hand side of Fig. 10. This plot, éenerated
according to Eq. (27), represents an 91ectron;s energy as a function of
time as it slows down solely due to Coulombic collisions in an inter-
mediate energy range well above Ep.  Since the introduc£ion of source
particles must occur frequently enough to approximate continuous intei-
jection, an individual electron is only permitted to evolve for some small
time interval At. The result of one such period is to let the electron
follow the slowing down curve to the point corresponding to time t, =t + At

1 70

2=t0+2At

and energy EZ' This process continues until that period in which the

and energy El' A second period leaves the electron at time t

electron falls below the energy ET for which Egs. (7) and (13) become in-
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Fig. 10.

Scheme for electron simulation. Figure contains plots of
enexrgy versus time as predicted by Eq. (27), of the collision
probability P 1 versus collision energy from Eq. (37) and of
the wudwmwwpwm% of losing energy AE in an inelastic collision
mbm versus final electron energy from Eq. (38).
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valid, or an inelastic collision occurs.
b. Inelastic Collision
The decision for the existence of an inelastic collision must be
made at the beginning of the electron's history, i.e., at Eo' It is based
upon the probability of an électroq traversing the energy range EO to the

lowest valid energy considered ET, or the non-collision probability:

P = %("S&E Y (E) ﬁ?

éLt

collisions
This probability is by necessity equal to one minus the integral of the

(35)

probability of a collision occurring at energy E, Eq. (33), with the limits

of integration being from E, to ET. Comparison of P, with a random num-

NC
ber chosen from the range 0 to 1 completes the decision process. If the

random number is greater than P then an inelastic collision must occur.

NC?

Conversely, if the random number is less than P

NC? the electron will not

suffer an inelastic collision.

For the sake of thoroughness, assume the electron collides. Then,
the energy at which the collision will occur must be selected. Normally,
the energy would be randomly selected from the inverse distribution of the
probability of colliding at energy E. However, if the probability dis-
tribution is too comﬁlex to invert, as it is here, a form of the rejection
technique(34) must be employed. This algorithm begins by mapping the
probability distribution onto a rectangle of unit area. The prescription
for obtaining an acceptable candidate for the collision energy E involves
the selection of two random numbers, Ty and Tys where r, represents an

evaluation of the probability distribution and the other, Tos is a candi-

date for E. If T4 is less than the distribution evaluated at T, then rq
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is accepted as the collision energy. However, if the converse is true,
the candidate is rejected and the process is repeated until an acceptable
candidate is found. (This process is analogous to throwing darts at a
rectangle with the coordinates df the impact point corresponding to Ty
and T,. When the impact point falls beiow,the probability distribution,
the corresponding energy is taken fb be the collision energy.)

As applied to the calculation of the energy of the next collisionm,

the technique commences with the following prescription for the renormal-

ized collision probability:

P — E) C Ecot) (36)
cou R(E)

where the expression for P. is obtained from Eq. (33) and the energies

1
Ecol and Eo are, respectively, a candidate for collision energy and the
initial electron energy. Inherent to the success of the algorithm is
that the maximum value of the probability distribution is readily ob-

gainable, i.e., the maximum must occur at Eo. Then,

cou‘omblc_

P.)= (-S "il‘ : ) Lee sele o
oL coL cot\’\:;:or:g Coulombic
3 &t Z (EQ) &Elco\\nsmns
A plot of Pcol versus Ecol also appears in Fig. 10. Eco

The choice of collision energy is completed by first randomly choosing

a candidate E3 from the energy range Eé to E Next the corresponding

T
Pcol = R is calculated and compared with a random number in the interval
0 to 1. 1If the random number is less than R, the candidate energy E3 is
accepted as the site of the collision. If the random number is greater

than R, the process is repeated until an acceptable candidate is obtained..
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Continuing the present example, the collision energy is assumed to
be E3' Then the electron slows from energy Eo to E‘.5
lisions. In the third time period, the period in w@ich the‘co}lision

via Coulombic col-

occurs, the electron would have proceeded from t%me t, and emergy E, to
time ty=t, + At and energy E4 if a collision had not occurred. The
occurrence of a collision does not alter the fac£ that the electroﬁ must
interact via Coulombic collisions for the full time period At (the in-
elastic interaction time is negligible compared to At). Then, after the
occurrence oﬁ the inelastic collision, Coulombic interactions are to be
resumed for a time At' in order to CSmplete the evolution of the electron
for the period At.

The determination of which of the background species is involved
and also which of the possible ionization and excitation events will be
involved in the collision must precede the calculation of the energy lost
as a result of the collision. The épecies selection 1s accomplished by a
comparison of a random number (henceforth in the discussion all random
numbers are assumed to be evenly distributed from 0 to 1) to the ratio
of the macroscopic cross section of a species to the total macfoscopic
cross section in the usual Monte Carlo fashion. Similarly, the type of
collision is chosen ﬁy comparison of a-random number with the ratio of
the microscopic cross section for a species process to the total
microscopic cross-section.

For economical reasons, the energy lost in an excitation collision
is approximated as the excitation energy. This approximation is a
reasonable one because the possible energy losses range from the excita-

tion energy of the process considered to the excitation energy of the net
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state affording a larger energy transfer. Furthermore, the difference in
energy of two adjacent excitation levels is usually small compared to the
excitation energy (see Table 4) and the probability of an emergy transfer
_event increases as the amount of'energf transferred decreases:.

In the case of an ionization coliision, the amount of energy lost
‘by the electron at energy E3 is also determined by a rejection technique.

In this case, the renormalized probability PAE'iS

(38)

P = P(aE)
AE .
R
where PT(AE) is the probability of losing AE energy through an ionization

collision and is obtained ffpm Eq. (34). 'The energy E represents the

M
minimum energy which can be lost and is non-zero because of the presence
of a threshold energy necessary to initiate the ionization proce;s.
In Fig. 10, a plot of PAE is presented as a function of the final
‘energy (rather than ;he energy transferred). As before, a candidate E5
is chosen as the .energy of the electron after the éollision and‘the cor-
responding renormalized probahility PA(ES) is subjected to the acceptability
criterion. Assuming R' to be larger than the random number chosen, the
tracing of the eIectron'caﬁ proceed from energy ES'
At this point a decision is made whether or not the electron will
incur further collisions and where in enérgy the next collision will occur.
This is done as previously described. After performing thesé tasks, an
attempt is made to permit the electron to proceed a time At' such tﬁa£
Fhe period will be completed. The electron is advanced to energy E¢

corresponding to time t6='t54-At', provided a collision does not occur at

an energy greater than E.. Should another collision occur in the same
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period, the previous process is repeated until the electron has been per-
mitted to evolve for the duration of the time period At, and so the
evolution continues for additional periods, moving in steps.of At along
the Cgulombic slowing down curve, to the next collision and eventually
past the threshold energy of validity Eqe

3. Computational Time Reduction

Five additional techniques are utilized to provide a substantial re-
duction in computational time without altering the accuracy of the code.
The techniques are described below in the order of their effectiveness.

The first technique is a unique, new method calléd‘convergence
propagation. A necessary criterion for its applicability is that £(E)
is dependent upon f(E' > E} (rather than f(E' < E)}. Then, capitalizing
upon this condition, the method is the dynamic expansion downward in
energy of fhe energy region over which the distribution is simulated.
The expansion of the simulation region occurs only when éonvergence has
been obtained in the current region. The savings in computational time
is realized by not having to simulate the distribution below eﬂergy E
until the wave of convergence has arrivéd at E (for a more detailed dis—
cussion of this technique, see Appendix C).

A second technique involves the fitting-of frequently evaluated,
complex functions with a number of duadratic equations{ each valid in a
unique subinterval of the dependent variable's'range. The coefficients
of these equations are determined by a cubic spline algorithm (from the
IMSL subroutine library). The savings are substantial, and bette; than

single precision accuracy is easily obtained for the functions.
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A third technique is strongly coupled to the convergence propagation
technique in that an optimum time step is chosen for each energy group in
the convergence scheme. The time for an electrop to traverse the various
energy groups varies by four orders of magnitude in the present problem.
Thus, it becomes essential to gear the frequeﬁéy at which convergence is
checked, i.e., At, to the group transit time of the current con&erging
group as the convergence wave propagates towards lower energies. Devia-
tions in the specification of At as the transit time are permitted by
examining the’ratio of the number of electrons in the group to the number
of source electrons introduced. If the source is the major input into
the group, then At is shortened from the transit tihe. Conversely, if
the source is mot the dominant input, then a larger time is used to per-
mit sufficient collisions to occur in order to get better statistics on
the input into the group due to inelastic collision@. -By this scheme,
the convergence check will be made as soon as a significant change has
been made in the .distribution function.

A fourth techniqué relies upon stacking source particles in energy
and staggering their associated time of introduction. At the time of
particle introduction or replenishment, m par?icles, where m = k*&(m,k, %
are integers), are introduced into an energy intexval,.where i particles
are assigned the same injection energy, there being k such energies. To
avoid thé m particles behaving as if only k particles had been introduced,
each is assigned a unique collision energy and associated time of injec-
tion., Since particles are replenished with a periodicity of At, an
assigned injection time t must lie randomly within the interval ‘

Ti - At <t X< Ti is the time at which the current replenishment occurs
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according to the internal clock. Many facets of the time consuming cal-
culation of the collision energy are thereby retainable for the other
2-1 particles at the same energy.

A fifth technique involves the utilization of an initial guess. The
proximity of the guess to the ultimate answer determines the efficiency
of this technique. However, the effectiveness of this technique as re-

ported by Wangtzs)

was not realized in the present Monte Carlo code. This
is attributed to the effectiveness of the convergence propagation tech-
nique.

D. Test Run

Immediate questions arising after the development of a Monte Carlo
code concern the accuracy and the rate of convergence to the solution of
the proposed problem. The criterion for convergence involves various
conditions such as: consistency, approximity to an experimentally ob-
served quantity or independent calculation, and stability of the solutiom.
Each of these tests are stringently applied to an arbitrarily chosen case
in the ensuing paragraﬁhs.

The case in question is for a neutron flux of 2 x 1016 neutrons/(cmz—Sec)
and a plasma temperature of 5000°K. A sample of the results is shown in
Fig. 11. The figure is a composite of four graphs, each depicting the
high-energy tail at successive times as recorded b& an internal clock.
Also appearing in each graph is the tail of a Maxwellian distribution cor-
responding to the electron density and temperature, and the corresponding
analytic solution for the high-energy tail. As in Chapter II, the total
distriﬁution function in either the Monte Carlo or analytic calculation

is the union of the Maxwellian and the corresponding high-energy tail.
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Fig. 11. Snapshots of Monte Carlo distribution (A's) at four different
times. Also displayed are a Maxwellian distribution (light
line) and the analytic solution (dark line).
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The relationship between the analytic and Monte Carlo result is atypical
of other temperatures and shall be explored in detail in Sectioﬁ F of
this chapter.. For the present, the analytic regult will serve solely as
a.standarg‘for comparison. The final result to be reported later is an
average of a dozen such snapshots of the distribution function.

1.. Consistency

Since a computed result may seem plausible and yet be erroneous,
especially with large computer programs such as the present Monte Carlo
code,.thb code must be established to be free of programming and logic
errors. This is accomplished by comparing, for consistency, computer
calculations with independent hand calculation. -

The aforementioned computer results are not those of the distribution
function, but rather additional, supplemental results relative to the dis-
tribution funcfion, recorded at the time of e;ch snapshot. A sample of
these results, corresponding to the last snapshot of Fig. 11, appears in
Fig. 12. BEach'entry in Fig. 12 is briefly éescribed below.

The energy lost by all the electrons within an.energy group centered
at the tabulated energies is recorded, providing information rega?ding the
slowing'mechanisms. The presence of zeros in the ionization and excita-
tion energy loss rate columns inéicates there weére né collisions of this
type during the last time period At.

Also, the W-value (the energy lost per ion pair formed) is calculated
during the same time period. This particular value is larger than the
-average value based upon results at eleven other time periods, i.e.,

160 eV per ionization event. The importance of this particular result

cannot be fully realized as there are no experimental measurements with



Dt X 10 ergs/ (sec-cm ) ENERGY, eV
COULOMBIC EXCITATION IONIZATION
COLLISIONS COLLISIONS COLLISIONS
2.9 0.6 0.0 823.7
5.8 0.0 73.6 £58.9
8.6 0.0 0.0 379.2
20,0 2.9 211.1 255.3
23.8 2.0 0.0 174.6
22.1 2.6 0.0 1i8.5
29.7 0.0 55.0 80.3
39,0 0.0 0.0 54.5
323.4 2.9 0.0 37.0
36.6 1.6 3.2 25.1
37.0 5.2 1.8 17.0
40.5 z.8 5.0 11.6
37.0 1.6 0.0 7.8
29.2 0.0 0.0 5.3
16.2 0.1 0.0 3.6

W-VALUE:

203.2 eV/(per ion pair

formed)

THE ELAPSED TIME:
4.8 NANOSECONDS

GROUP BALANCE |

Number of Particles out (x. 10 electrons/cm3

~
~

Number of Particles

in (x 103 electrons/cms)

Electrons scattered out % Secondary Electrons + Nascent Electrons + Electrons
Scattered In
267.2 = 2.5 + + 223.5
GLOBAL PARTICLE BALANCE | 3 3 s
Number of Particles out (x 10° electrons/cm”}s Number of Particles in (x 10” electrons/cm®)
Electrons Scattered out %~ Secondary Electrons + Nascent Electrons
267.2 = 33.0 +
Figure 12 Additional Computer Results ¢
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which to compare and the result is plagued by a large statistical un-
certainty. However, the result is consistent with the expectation that
it be larger than the ionization potential of 6.2 eV for ﬁeutral uranium.

The time elabsed on the interﬂal clock is presented in comparison
with an estimate of the time necessary to achieve a converged solution
by a straightforward Monte Carlo simulatiop. If the elapsed time is
larger than the estimated time, then the electron slowing calculation is
grossly in exror even if the initial guess is very poor. Then, a value of
3.6 for the rétio of the estimated time to the elapsed time is reassuring
concerning the validity of the electron slowing. This factor of 3.6 is
also a measure of the efficiency of the convergeénce propagation technique.

The data necessary to‘determine if partiqlé balances exist for the
lowest energy group and the entire ensemble of energy groups appears in
Fig. 12. A particle balance to within a tolerance of *15% is imposed upon
the current lowest group as a condition for advancing to the next group
in the convergence propagation écheme. If the lowest energy group complieg
with this condition, tﬂen a snapshot of the high-energy tail is recorded.
No provisions are made to guarantee a global particlé balance. Then, the
observance of such a balance to within *1% insures the validity of the
propagation of convergence technique and the accuracy of the integral of
the distribution function.

Further consistency checks can be performed with the data in Fig. 12
For example, the total Coulombic energy loss rate at 25.1 eV divided by
the number of particles within the group, f(E) dE (where it is correctly
assumed that all the electrons in the group suffer this collision-type)

Yields an energy loss rate of 41 ergs/sec. The average value obtained
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for a dozen snapshots is .45 ergs/sec. These values are within ten per-
cent of the calculated value, in Table 1, of .448 érgs/séc.

For inelastic collisions, the energy loss rate is tabulated as the
Tesult of two.- separate glgorithms; one establishes the colliéion frequency
while the other determines the energy loss. A separate run specifically
designed to check the average energy loss produced résults very similar to
thosg calculated in Section D of Chapter II. The mean value of the energy
loss for excitation collisigns, 2.98 eV, obtained from the code is com-
.parabie to an average value of 2.5 eV caiculated-in.Chapter II. Forx
ionization évents, the code generated values of 23.4 eV compared to.an
average value of 24.5 eV also calculated in Chapter II.

The accuracy of the collisio? frequency algorithm can also be
verified by comparing the number éf excitation collisions generated by the
code with the number of expected excitation collisions as calculated below.
Dividing the excitation energy loss rate at 25.1 eV of Fig. 12 by an
aferage energy loss of 2.98 eV yields a value of 3.43 x 1015 excitation
collisions per second. Alternately, since fhere are 8.3 x'losfelegtrons
at 25.1 eV and the collision frequency is 8.7 x 109 collisions/sec,

7.2 x 1015 excitation collisions are expected per second. These results
are in reasonable agreement, and the discrepancy can be attributed to
stati;tical fluctuations as the average excitation energy 1os$ obtained
from the Monte Carlo code is 3.2 x 104 ergs/sec compared tc the value of
1.63 x 104 ergs/sec reported for this particular snapshot of the dis-
tribution function. From these checks, the code:can be concluded to be
a consistent and acéurate representation of the physical processes. in-

volved.
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2. Approximity to Independent Result

Confidencg in the Monte Carlo calculations can also be gained by a
comparison with the results .of fhe earlier analytic ﬁodel. The two re-
sults are in exceedingly good agreement in Fig. 11. However, such excep~
tional agreement is atypical (see Fig. 18). WNevertheless, ;he assumption
of continuous slowing down, which is the basis of the analytic model, is
not too unreasonable under the plasma conditions considered here. There-
fore, the approximity of the two models' results is expeéted and its ob-
servance (see Fig. 18)‘reaffirms our confidence in the Monte Carlo calcu-
lations. Furthermore, the existence of é display of common trends (see
Section E) and a predictable disparity (see Section F) reinforce the
acceptability of the Monte Carlo solution.

3. Stability

The final criterion for the acceptability of the solution is its
exhibiiion of stability. The stability of the '"converged" solution is dis-
played in Fig. 11 over a short period of time while a longer-term time
history of the distribution evaluated at a single energy is shown in Fig.
13. In both instances, random oscillations about an average value are
observed. The display of this type of behavior in conjunction with the
observance of a global particle balance suggests that the solution has
converged. However, these criteria for convergence .are not acceptable
until they have been demonstrated to cdrrecﬁly pfedict the solution to be
stable for extended periods of time (at least several multiples of the
Coulombic slowing down time).

The necessity of observing the distribution then for tens of nano-

seconds imposes a severe financial strain. Thus, a less costly, but
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equivalent scheme of sustained observation, was ultimately employed. The
scheme relies on the knowledge that a necessary condition for terminating
observations is the elimination of any correlation in time of the last
observation with the initial observation. In Monte Carlo calculations,
this is equivalent to using a random number string of infinite‘éeriod

or several strings of large but finite period. Then, by repeating the cal-
culation several times, each time using a different random number string,
sufficient data will exist to determine if the solution has relaxed into

a stable configuration.

Such tests were performed for a distribution at 8000°K. This partic-
ular temperature was chosen because the final distribution differs most
from the initial guess, the amalytic solution. The results of a dozen
observations taken in six separate runs of the code, with different ran-
dom number strings for each run, are summarized in Tablg 3. Each average
of the dozen observations for the six runs falls within a standard devia-
tion of the average of all seventy-two observations, except for the values
at the two lowest energies. The reason for thHe bad statistics at low
energies lies in the cﬁoice of the machine particle distribution (see
Appendix C). Since these two distribution points are past the intersection
of the Maxwellian and are not meaningful, their behavior is irrelevant.
The observance of oscillations in the standard deviation are the result of
the coarseness imposed upon the calculation through the number of simula-
tion particles utilized, combined with the fact that an electron will, on
the average, suffer three inelastic events while slowing from 1 keV to

3.0 eV for an 8000°K plasma.
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These tests were repeated at 5000°K, but with only three separate
runs (and three random number strings). As before, an average of the
dozen observations recorded in a single run falls within a‘standard
deviation - of the average of all thirty-six obse&vations. Furthermore,
at 8000°K and 5000°K, the standard deviation calculated in each Tun
approxiﬁately equals the standard deviation of all observations at the
same temperature. Then, a single run yields sufficient data from which
to conclusively generaté the converged solution. -The converged‘solufion
is the average of the dozen observations recorded in a ;ingle Tun to
within a standard deviation, also calculated in the run (see Tabie 3 for
typical values of the standard deviation).
E. Parametric Studies

1. Temperature Dependence

The resulting distribution functions of Monte Carlo calculatioms
are displayed in Fig. 14 for various temperatures at a constant neutron
flux of 2 x lpl4 neutrons/(cmz—sec). The overall trends indicated by the
Monte Carlo results are qﬁite similar tb the earlier analytic solutions-
in Fig. 5. The distribution function appears to be dependent upon tem-
perature variations predominantly through the normaliiétion of the high
energy tail, except for a slight change in slope at low energies;

2, Neutron Flux Dependence

Similar}y, the distribution fUnctions calculated by the Monte Carlo
code reflect the same trends in parametric variations of the neutron flux
as do the analytic results, namely, the distribution function is directly
proportional to the neutron flux level. This is amply illustrated-in

Fig.'ls for a plasma temperature of 5000°K.



DISTRIBUTION FUNCTION, electrons/(cm>-eV) ENERGY,
| AVERAGE STANDARD MAXIMUM MINIMUM eV
 VALUE DEVI?TION, VALUE VALUE

.10 6.3 . .110 . .089 -823.7 -
.30 4.8 .329 278 558.9
.56 " 12.5 - .73 .455 379,2
.94 . 15.7 1.27 .73 - 255.3
1.47 8.5 1.69 ° 1.24 174.6
2.23 5.6 2.54 1.91 118.5
3.07 12.0 3.98 2.54 80.4
3.81 6.1 4.50 3.34 - 54.5
4.57 8.2 5.43 - 3.95 . 37.0
6.05 7.6 7.09 5.01 25.1
7.56 7.3 9.85 5.85 17.0
8.39 ©10.5 11.23 5.50 11,6
9.24 12.0 14.01 6.74 7.8
10.42 19.2 17.14 7.34 5.3
12.06 32.4 . 24,99 7.72 3.6

Table 3. Statistical data on ‘Monte Carlo results for 8000°K and a
neutron fiux of 2 x 1014 neutrons/(cm-sec) based on a
dozen observations each of six runs with different random

- number strings.
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3. Comparison of Coulombic Energy Loss Rate Models,

Previous to this, all distribution functions have been calculated
with a traditional Fokker-Planck expression for the energy loss rate for
Coulombic collisions. Due to the small nuﬁber of electrons in a Débye
sphere, collective interactions cannot be overlooked.. ‘The distribution
function has been recalculated with a Coulombié energy loss rate from the

‘unified.theory(ls)

which incorporates both binarf and collective inter-
actions into a single theory. The r;sults are presented in Fig. 16 for
a neutron flux of 2 x 1014 neutrons/(cmz-séc) and temperatures ranging
from 8000°K to 5000°K. Also, for completeness, the range of electron
energy has been extendgd closer than previous results to the maximum
energy at which a naécent electron can be born (~2.1 keV)

Again, the general trends of the previous calculations are still
preserved under a change of expressions for the energy loss rate. How-
ever, the absolute magnitude of the high—ene¥gy tail is affected by.the
change. This is illustrated in Fig. 17 .for ; neutron flux of 2 x 1014
neutrons/(cmz-sec) and a temperature of 8000°K. (This represents the .
"worst" case since at higher temperatures, the Coulombic energy loss rate
.comprises a larger‘fraction of the total energy loss rate than at any othér
temperature considered.) 1In éeneral, the energy lpss'rate for the unified
theory is approximately 1.5 times larger than the Fokker-Planck energy
loss rate, due to the additional slowing mechanisms (collective inter-
actions and hard impact collisions) considered in the former energy loss
rate. This factor decreases the distribution function by appfoximately

a factor of 2/3 as predicted by Eq. (10).
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as in Fig. 14, but this time using the unified slowing
treatment of Coulombic collisions instead of a Fokker-Planck
treatment.
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F. Comparison of Methods

Although both the analytic results of Eq. (10) -and the Monte Cario
51mu1at10ns of Eq. (13} have been presented and common trends observed
they have not been compared with each,other.‘ In Fig. 18, a series gf
graphs‘at various temperatures and a constant.neutron flux of 2 x 1012
neutrons/(cmz—sec) illustrate the differences.between the analytic (dashed
line) and Monte Carlo (A's) results. The corresponding tail of the
Maxwellian diséribution (solid 1line) is includg& in each of the gfaphs
of Fig. 18 in order to locate the intersection of the two distributions;
i.e., the range of validity of the slowing down distribution.

The most significant difference in the two sets of results is the
increas;ng gaﬁ between them with increasing temperature. This dis-
crepancy can be explained by first observing that if both solutions were
extrapolated to higher energies, eventually the analytic result would
intersect the Monte Carlo result and finally lie below it, as is easily
seen to be the case for 5000°K. From this, it can be concluded that at
the origin or highest energy for which the nascent sourée-exists (~2.1 kev),
the analytic solution will lie closer to but always below ?he Monte Carlo
solution, as the temperature is increased. At lower teémperatures, the
importancé of the inelastic collisions as an energy loss mechanism in-
creases, thereby, rendering the assumption of continuoué slowing (and the
analytic treatmént) to be invalid at low temperatures. Although the
inaccuracy may seem insignificant at the origin of the calculation
{~2.1 ke\), the propagation of the error amplifies the inabcuracy in a

peculiar manner as described in the ensuing pages.
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By examining Eq. (4), the discrepancy in the distribution function

at the highest energy can be traced to the energy loss rate. Neglecting
recombination, the equation can be rewritten at the point of origin of

the calculation subject to the boundary condition

‘F(E+&E‘,) =0 (39)

as,

constant = S(EVAQE = F(£) LE (40)
&t |

Eq. (40) demonstrates that an exaggeration of the energy loss rate

will result in the underestimation of the distribution function as is ob-
served to be the case with the analytic result in comparison to the Monte
Carlo result.

The reason that the analytic method overestimates the energy loss
rate lies in the continuous slowing approximation as demonstrated by the
following examples.

Consider an energy cell of width AE located at the point of origin
E + dE of the calculation, containing 100 particles distributed evenly in
energy, i.e., 10 particles are in the subinte;val labeled A, etc. (see
Fig. 19}. Furthermore, assume that an arbitrary fraction of the total
particles collide per At, e.g., 1/10. If the average energy loss per col-
lision is less than AE, e.g., AE/2, then the number of particles which

leaves the cell due to collisions according to both treatments is:

= dFE = . .
DaNAL.Yr:c %‘g{)(ﬁ) OV -LAE, ) feey (41)
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Fig. 19. Energy interval dE about E depicted at origin of calculation.
The interval is subdivided into ten smaller intervals
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1 100
(&xt)  AE/2 - 2E (42)
=.9/At (43)

and,

{ ] A L J
S DRI + + = 5/pat  (a4)
) onte canco  DTa BTy | Dte By At

where I/AtA represents the.one particle of the ten particles in subinterval
A that collides, losing sufficient energy to escape the interval AE within
the time At. Hence, both treatments yield the same result if the energy
transfer is indeed infinitesimal. However, if the average energy lost

per collision is larger than AE, e.g., 2AE, then

. 0 . 20 (45)
ANALYTiC "(!OA'I:) ZAE AE AT
and
S T S Lo 10 e
DMONTE careo At +ﬂi‘3+A1‘:c+ "'+-ﬂtj T At

The results of Eqs. (45) and (46) confirm that the analytic result errone-
ously overestimates the diffusion from the original cell by spreading out
the energy loss per collision over all of the electrons within the celll,
enabling more of them to leave.

At intermediate energies, both the number diffusing into an energy
interval dE about E and those diffusing from the interval will be erroneously
calculated in the analytic method. Because the cross sections ;re rela-
tively constant and the energy loss per collision small compared to the
electron energy, thg errors wWwill cancel, yielding an approximately correct

slope for the distribution function at intermediate energies. This is borm
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out by the result at 5000°K and a renormalized result (dot-dash line)

at 8000°K in Fig. 18.

At lower energies, i.e., near the point of intersection with the
Maxwellian, the assumption of continuous slowing down completely breaks
down. The inelastic cross-sections vary rapidly and the energy lost
per excitation collision becomes a sizable fract;on of the electrén energy.
Thus, the shapes of the Monte Carlo curves differ considerably from the
analytic results in the region at, and below, the intersection with the
Maxwellian. Fortunately, the worse departure occurs below the inter-

section where the calculation is no longer interesting.
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CHAPTER IV
CONCLUSIONS
A. Review

Preliminary to the calculation of the distribution function in a
uranium plasma is the assemblage of the excitation and ionization cross
sections for neutral and singly ionized uranium. As no previoqs calcu-
lations nor measurements exist for them, the hydrogenic -model of
Gryzinski(le) is applied to uranium utilizing the atomic state data of
Parks.(l7) Furthermore, the nascent‘electron source, heretofore an
undetermined quéntity, is modeled upon a semi-empirical formulation of
the fission-fragment thermalization process and the aforementioned cross-
section set. Then, these calculations in conjunction with the determination
of the species' densities via the Saha equations serve as the basis for
the distribution function calculation,

The distribution is decomposed into two parts: a Maxwellian (valid
at low energies) and a high-energy tail. The calculation of the tail is
performed via two distinct methods. The first method was based upon the
assumption of continuous slowing down and yielded an analytic solution
from which trends could easily be predicted. The second method involved
the Monte Carlo simulation of a governing equation in which the assumption
of continuous slowing down had been relaxed for inelastic collisions. The
second method affords a check upon the first method while serving as a
powerful tool for performing detailed calculations. The disparity in ‘the
two sets of results is tracable directly to the applicability of the con-

tinuous slowing-down assumption to the inelastic collisions.
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Incoxporated into the Monte Carlo simulation are several noteworthy
fechnidues developed or adapted specifically for the present case. Fore-
most of these are the adaptation of the rejection technique to increase
the sampling efficiency and the development of 'the convergence propagation
technique and the scheme of superimposing continﬁous'and discrete slowing.
Especially important is the latter technique as it represents the first
time that Coulombic collisions are considered in irradiated plasmas whi;h
are being examined for their excitation capabilities.

In an attempt to ascertain the effect of collective interactions
upon the Coulombic energy loss rate, twovtheories were employed. The
first, the Fokker-Planck theory, is a zero order t*eatment in the plasma
parameter g. The other, the unified theory; is .a first order theory. On
the basis of these two theories, it was concluded that the collective
interactions were'adequately incorporated into the calculation. .

From the results pfesented here, the distribution function is con-
Cluded to be non-Maxwellian above 15 eV. Parametric studies reveal the
amplitude of the high-energy tail to be Iinearly proportional to the
neutron flux level and inversely proportional to the temperature. The
degree of deviation of the high—energf tail from a Maxwellian_cgn-be V
gauged by the following example: for the plasma conditions of 8000°K and

6 neutrons/(cmz—sec), the calculated distribution induces 6 x 1014

2 x 10!
more excitation events/(cms-sec) than a Maxwellian distribution.
B; Accuracy of Results

From Section F of Chapter III. it can be concluded that the Monte

Carlo solution gives a much more accurate account of the collisional

processes than does the analytic solution, hence, a more realistic dis-
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tribution function. The Monte Carlo result can be considered statistically
uncertain to within fifteen percent based upon the results of Table 3.
Improved statistics can be affected primarily by increasing the number of
simulation particles. However, two other factors have a greater influence
upon the ultimate accuracy of the results; namely, the errOfs inherent in
the cross-section set and the Coulombic collision treatment;

The other researchers have successfully applied -the hydrogenic modél

(16) to calculations of cross sections (e.g., L0(22) employed

of Gryzinski
the model for Helium). However, comparisons of the calpﬁlated cross section
to ceéium, which is similar in electronic structure, reveal that the calcu-
lated cross-section set may be somewhat low. The uncertainty involved is
estimated to be a factor of 2.

The uncertainty’associated with the Coulombic energy loss rate is
difficult to predict. The error estimating scheme of the BBGKY hierarcﬁy(ZI)
is not applicable as the piasma parameter g is not small (i.e., g < 5.2). .
However, the ratio of %he unified slowing expression .(exact to arder g)

.to the Fokker-Planck expression (accurate to order 1) is found to be only
of order 3/2 in spite of the twe treatments' diversity. The FoKker-Planck
expression depicts a test particle's interactions with the backgfound.
within the annulus defined by bo <r < AD’ where b0 = and AD are the close
impact parameter and the Debye length, respectively; while the unified
theory depicts those interactions within the annulus 0'< v < . Because
each treatment is so different, yet their results are in good agreement,
it seems reasonable to conclude that the actual energy loss rate is close

to that predicted by these two theories. If additional correlation (or

‘collective)} effects enter, the energy loss rate would be even larger than
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that predicted by the unified theory. A liberal estimate of the energy
loss rate would be a factor of 5 léfger than the Fokker-Planck Tesult.

The uncertainty associated with the inelastic cross-sections can
increase the distribution by a factor up to two particularly at high T.
Similarly, the Coulombic energy loss rate could possibly introduce a fac-
tor of two in the opposite direction also prgferenéially‘at high T. Then,
the effects tend to cancel, and the final resplt Ean be more accurate
than either of the components of the calculation, i.e., the distribution
functions reported here (e.g., Figs. 14 and 15) are uncertain’to within a
factor estimated to be considerably less than two.

C. Implications to Uranium Plasma Program

The results presented in Section E of Chapter II and III clearly
demonstrate thé distribution function to be non-Maxwellian. The importance
of this is partially lost since the 5u1k of thehexcitation out of the
ground state is done by electrons below the intersection in eﬁergy of the_
tail and the Maxwellién. For 8000°K; a Maxwellian distribution will cause
apﬁroximately 1.4 x 1024 excitations/(cms-sec). Above 22 eV, ﬂowever, the
Maxwellian will cause 3.2 x 1013 excitations/(cms-;ec) while the high-energy

tail will cause 6.6 x 1014 and 3.9 x 1013 excitations/(cms-sec) for meutron

16 and 2 x 1014 neutrons/(cmz—sec), respectively. These

fluxes of 2 x 10
excitation rates may not produce inversions of the excited state densities
in a uranium plasma. However, if the plasma were seeded with a species with
a high threshold energy for the first excited state, e.g., helium, then
ideal conditions exist for predominately exciting the helium with the non-

Maxwellian tail. Then, clearly, the significance of the high-energy tail

is determined by the type of interaction under consideration.
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D. Futuxre Work

1. Further Applications and Development of Code

The presence dependence of the distribution should be‘investigated.
Crucial to this investigation is the size of the perturbation to the Saha
densities caused by the fission-fragments. The changes in the densities
of the various plasma species will‘determine if the distribution can be
extrapolated from the results presented here. If not, the calculations
must be repeated with the appropriate densities (and corrésponding tem-
peratures).

An additional effect that should be incorporated is spatial diffusion.
This effect is neglecied in this work as the projected size (1 meter) of the
device containing the uranium plasma makes the pla;ma an infinite one.
The electrons in the high-energy tail will preferentially leak out from
the system, thereby decreasing the perturbation of the high-energy tail on
the Maxwellian.

~ One must not neglect the need for impleﬁenfing improved inelastic

cross sections as theyzbecome available. Also, the Coulombic inter-
actions are in need of a model which can more precisély describe the
intgractions under the unique plasma paraﬁeters incurred. By far, tﬁese
two aspects are most in need of improvement.

2. Analysis of Other Plasmas

From the conclusions reached in section B, the code needs to be
expanded in order to accommodate the presence of seed species as well as
buffer gases. These additional species introduce important factors in

the calculation of a distribution function in a working uranium plasma

and the initially planned experiments. Their presence will dilute the
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-electron source and in the case of the seed gas decrease the stopping
power of the plasma. It is difficult té judge a priori if these opposing
trends will cancel each other. Furthermore, the introduction of molecules,
e.g., UF6 into the plasma will complicate the calcﬁiation of energy loss
rates with the introduction of vibrational and rotational excitation
processes. The ease with which these excitation processes occur will
increase the energy loss rate, decrgasing the high-energy tail. A more
detailed analysis is possible through the adéptation.of existing treat-
menté of electron slowing vi; mplecuiar excitation collision.(45]

The code might also be applied to other plasmas with a distributed
source of nascent electrons. The plasmas will have to be restricted to
those which satisfy the assumption that the high-energy tail is only a
perturbation to a Maxwellian -distribution. This exclﬁdes plagﬁas with
electric fields wherein the bulk of the plasma is describable by a

Druyvestyen distribution.
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APPENDIX A

ENERGY LOSS RATES

1. Fokker-Planck

For the majority of the calculations reported in Chapters II and III,
a traditional Fokker—Planck‘expréssion for the Coulombic energy loss rate
was employed. The limited applicability of the Fokker-Planck expression
due to the small number of electrons within a Debye sphere was pointed
out previously in Chapter I. However, the expressién was used in spite of
the expansion factor g not being negligible c6mpared to one, following
the lead of others in applying the expression under similar circumstances,
e.g., in MHD calculations of conductivity(46) and in modeling afterglows.(zg)

The precise equation utilized is:

&E. ?_kT

4’17, ﬂéa F: JZ7L (V
Z/ N ) & 95 )\D (e m§)

(47)

where n_, Mg, qg, and TS denote the background species s's density, mass,
charge, and temperature; m, q, and v denote the test particle's mass,
charge, and velocity; and the Debye length is AD. The function Fs

appearing in Eq. (47) is defined as:

4
Foon= %.,?_ { SMP(_U%ZZ) dz— (1 +32)ezpcd) “e
Calculations of the energy loss rate as prescribed by Eq. 647) appear in
Figs. 20 and 21. A discussion of the results appears in the next section.
2. Unigied Theory

In Chapter I, the speculation that.collective interactions play a

dominant role in the slowing of energetic electrons leads to the need to
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consider a higher order kinetic equation, i.e., the Lenard-Balescu(SS)
equation. The traditional treatments of charged particle slowing in the
Lenard-Balescu or wave theory, e.g., Sigmar and Joyce,(47) intreduce a
cutoff to eliminate a singularity in the analysis. The uncertainty as-
sociated with the introduction of a cutoff, ESPecially under the plasma
conditions present in the uranium plasma, render these treatments inap-
propriate. A theory which is independent of a cutofflwas developed by
Kihara and Aono.(ls) Since this theory depicts the full spectrum of
interactions, i.e., from collective interactions to close impact col-
lisions, it is exact to order g. Then, through its implementation, the
effect of neglecting collective interactions can be gauged.

The theory of Kiharo and Aono or the unified theory is based upon
the observations of Hubbard(SG) that the divergences appearing in traditional
wave and impact theories could be made to cancel each other. Symbolically,

this can be written as

' .
XW = X&rn,ea.:.i'+ XW'— XM (49)
whefe X &enotes a reaction rate, e.g., the nth moment féz;i s in either
the close impact or wave theory. The subtrahend Xdual’ an expression which
neglects the effect of collective interactions and the effect of orbital
curvatures, is responsible for the cancellation of the divergence in both
these theories. Although Hubbard's formulation also includes the full
spectrum of interactions, the resulting energy loss rate is not indepen-
dent of cutoffs,
The prescription for calculating a relaxation rate in the unified

theory is dependent upon casting a relaxation rate in both the wave theory
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and impact theory in the following forms

S&K K k) 50

k>0
and

K = Saug By D

L>0 -
where k is the wave number in the wave theory and b is the impact parameter

in the impact theory. The theory of unification then states that the non-

diverging relaxation rate is given by

o0 P '
X et ® SB(b)m,a(- 1o B/6) do+ chk)w(-‘fzﬁﬁ?&K(sz)
< [+

where bO is an intermediate length, less thap the Debye length and greater
than the close impact radius. A relaxation rate dalcﬁlated according to
(52) is independent of the intermediate length bo.
As an exercise in the unified theory, Itikawa and Aono(37) calculated
the relaxation of a test particle of arbitrary velocity in a plasma. Their

result is of the form

2.
&E— LS ) v
o 3’ =\ Ms Vg E( ),@7’[(“3 gTmsk G( ) (53)
2kT m_m
where fny=0.5772, vy = —E;E , and U, Tﬁ—gﬁy The term Gs contaips

the Coulomb logarithm dependence upon the veIOC1ty of the test particle.

The exact form of Gs 15(38)

Gg(u =20 (1+ &) Gy = P - & M §ssl) + QL0 0
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where u, = v/vs and

~ A
dwr.—u P

G = 55
G\(U) =R G(U) + 0 (55)
D) — u Py
Gy = = o
. . 2— v #12—
Pw=yr ) e ax 57)
Ca i 2 %
& 2 - ~(U" ¥ X+ 2AUt)
(V) = = US 5 2 A
q) ir ) ax -‘&t Ibzl c _ )
v 2
4 S , X,
) = - : (59
855'(U) 4 o&.’ﬁ y AR C;SS.(’K-) )
- 2 % ~u* _
Fio=fm e G (ﬁo)

2
Cow =7 In (A + B w))

A | )
+ kg o ;. o .

2] By { 2 lan )A;si )Jl (61)
OGN

/453.(’1) = 3(%) +ﬁss, 3 (oﬂss,%) (62)
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B = N + B AKX (63

2

1 C*
“im:—"l—-z?ce Set At (64)

?(%):ﬁ X € ©5)

X =V =Y Tme (66)
3

2

By = ks) _ _T; (67)
SS, —— g
K, % T

Due to the complexity of Eq. (54) in its entirety, a more tractable

expression for GS, as developed by Perkins, (39) was substituted in place

of the exact expression. Perkins! expression [Eq. (68)]is based upon the

asymptotic behavior of Eq. (54) i.e.,

Gs(u) = E(U) 8’5 (68)

where

= v ! = M (69)
I, 3in vt 2 % 2. dn v, VMo
= Inz2 — ¢ :L,ﬂ/n% VIV, (70)
. ~

and the subscript 1 denotes the electrons and the 2 denotes the ions.

Some error is introduced into the energy loss rate when Eq. (68) is em-
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ployed as v approaches Vo However, this error can be gauged to be
negligible for the electron energies considered through an analogous

40

.comparison of a Butler and Buckingham - type expamnsion to the Fokker-
Planck expression. -

The Coulombic enefgy loss rates prediéted by both the Fokker-Planck
theory énd the unified theory appear in Figs. (20) and (21) for piasma
temperatures of 5000°K and 8000°K respectively.- The disparity between
the two theories grows as the electron energy decreases unﬁii a maximum
is reached between 2 and 3 eV. This effect can be attributed largely’
to the better coupling of the electrons with plasma waves as the electrons
approéch the wave velocity. By increasing the témperature, the disparity
is observed to increase only slightiy. This is the result of the incre;sed
presence of collective interactions due to a further penetratioﬁ into the
classical collective plasma region of Fig. 2.

The history of a test electrog as it slows down in each of the 'slow-
ing theories is displayed in Figs. 22 and 23. The disparity in the slow-
ing profiles_is*attribute@ to the increased stopping power in the unified
theory due to the presence of collective interactions. A measure of this
disparity is the thermalization time, defined here to be the time to slow
frqm 1 keV.tol eV¥. From Figs. 22 and 23, Fhe Fokker—Plaﬁck theory is
observed to yield a thermalization time approximately 1.6 times larger
than that‘predicted by the.unified theory. The factor 1.6 represents
a first approximation to the inaccuracy introduced by the small number of
particles within a Debye sphere. Although this degree of inaccuracy would "
seem undesirable, the inaccuracy associated with the inelastic collisions,

which are equally important in determining the total energy loss rate, is
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Rig. 20. The Coulambic energy loss rates for an electron slowing off of

the various plasma species and the total loss rate versus energy
for both Fokker-Planck (FP) and Unified Theories (UT) in a 5000°K
plasma. The total and electron energy loss rates are denoted by
(- -—)FP and (-) UT. The singly ionized uranium energy loss rate
is denoted by (~ —)FP and (----)UT, while the doubly ionized
uranium energy loss rate is given by (***+*)FP and (-..-)UT.
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Fig. 21. The Coulombic energy loss rates for an electron slowing off of

the various plasma species and the total loss rate versus
energy for both Fokker-Planck (FP) and Unified Theories (UT)

in a 8000°K plasma. The total 'and electron energy loss rates
are denoted by (— -~ —)FP and (-)UT. The singly ionized uranium
energy loss rate is denoted by (— —)FP and (----)UT, while the

doubly ionized. uranium energy loss rate is given by (++++)FP and
(-+=-)UT.
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The energy of a test electron is plotted versus time as it slows
according to FP and UT theories in a 5000° plasma .denoted by
(--) and (~Ges-) respectlvely. The energy gained by each of
the plasma species i's also plotted versus tiime with the same
delineation of species and theories as in Fig. (20).
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delineation of species and theories as in Fig. (21).



87
even larger. Then, for the present calculation, the agreement between

the unified theory and the Fokker-Planck theory is satisfactory
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APPENDIX B
CROSS SECTIONS

Appearing in Fig. 24, are the ioniza?ion and eXcitation cross. sections
for electron bombardment of neutral, singly, and doubly ionized uranium.
The cross secfions have been calculated from formulae based upon a sym-
metrized version of the Gryiinski model as reported by Burgess and
Percival,(16) implementing the ionization and excitation data of Parks,
etxai.(l7] Because of the'léck of a well-definéd staté cérre5ponding to
the ionization potential of the various uranium species,‘it has been
assumed that a limited number of the outermost e}ectronsB usually 8 or
less, participate in both ionization andjexcitaﬁion processes. The ex-
citation cross section represents a sum of cross sections for transitions
frow the ill-defined ground state, consisting of any of the outermost
electrons empioyed in the representation of a state corresponding to the
idﬁization potential, to a multitude of excited states, 27 total exciéed
states for each species (see Table 4). The transifions are goverhed by
the seléction rule |A%] = 1. The multiplicity of ghe allowable transi-
tions eliminates the resonance behavior.typically‘exhibited in excitation
cross sections, e.g., c:es:i.u;rn.(413

As can be seen from Fig. 24, the cross sections exhibit an abrupt
rise at the threshold energy as is characteristic at the onset of a
quantum mechanical process. For energies below theé threshold, the cross
sections approach zero, but because it is not of)immediate interest, this
threshold region has not been explored in greater depth. The appearance
of discontinuities in the slopes of the cross-sections are indicative of

one electronic state's participation in an event being overshadowed by
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SPECIES

+ 4

STATE u v U
E '3 E £ E 2
.14 5 .54 5 1.22 5
.16 5 .67 5 1.49 5
.22 5 .86 5 1.90 5
.22 41 .87 4 1.90 4
.27 5 | 1.11 ‘5 2.04 3
.27 4{ 1.13 4 2.44 5
.37 31 1.31 3 2.58 4
.38 5| 1.49 5 2.72 3
.38 4 1.49 4 3.40 5
.50 2 | 1.77 2 3.40 2
.52 3| 1.77 1 | 3.53 4
_ .54 5| 1.90 3 3.53 1
EXCITED .54 4| 2.04 0 3.80 3
STATES .54 1] 2.17 5 3.94 0
.65 ol 2.17 4 4.89 5
.76 2 | 2.44 2 4.89 2
.80 3| 2.72 1 5.16 4
.84 1| 2.85 .3 5.16 1
.86 41 3.12° o 5.70 3
1.07 0| 3.40 4 5.98 0
1.36 2 | 4.07 2 7.73 2
1.49 3| 4.35 1 7.77 4
1.51 1| 5.57 0 8.28 1
2.04 0] &5.84 3 9.86 0
3.80 2| 7.88 3 9.98 3
4.89 1 8.83° 2 14.94 2
- - | 10.10 1 | 16.30 1
4.48 2 | 13.72 0 | 20.10 4
o 7.88 0| 17.65 4. | 41.69 1
L LON 30.69 1| 37.48 1| 52.42 1
41.83 1 | 48,62 1 | 73.47 0
63.15 0| 70.07 0 [127.38 2
107.28 4 |124.94 2 - -
118.01 2 - - - -

Table 4. The urafiium states and their corresponding quantum numbérs (17)
employed in the cross-section calculation (after Parks, et al. )
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another state; e.g., the discontinuity in the slope of the U" ionization
cross section at 18 eV represents the-appearance of an.inner—electron
ionizatibn process which, at_high enérgies, overshadows the ionization of
the.outér—most electron. At very large energies, the fine structure of
the atom gives way to an 1/E energy depen&éncé.

The exci?ation cross sections are fbﬁnd to be larger in magnitude
" than the corresponding ionization cross-sections. A similar trend is ob-
served for cesium(41} which is quite similar in electronic structu¥e.

These observations can be attributed to a cross section, in general, being
iqverseiy prbportional to thé energy transferred. Then, the sgallef-energy
transfer afforded by excitation collisions result in the increased probabil-
ity of their occurance over ionization collisions.

A coﬁparison of the magnitudes of the uranium cross sections presented
here to cesium ionization and excitation cross sectibns(41) reveals that
the uranium cross sections are smaller by an order of magnitude than the
cesium cross sections which are measured accurate to within a facfor of 2.
This trend can_ be éxplained by exaﬁining their ionization potentials;
namely, ICs= 3.89 eV as opposed to 6.22 eV for neutral uranium. The
similar electronic structure of the two elements as well és the relatively
close proximity of their ionization potentials suggest ;hat the uranium
cross sections should be somewhat smaller due to uranium's larger ioniza-
tion potential (implying a larger energy transfer). This is in qualitative
agreement with the present results. However, a comparison with helium
CToSs sections(42) reveals the uranium cross gections to differ from the
cesium cross sections by a wider margin than anticipated. The uranium

cross sections are an order of magnitude lower than cross sections of
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cesium agd.other elements with similar ionizaéion potentials. Yet, the
.‘Gryzinski model was found to be inaccuratg by at most a factor of two for’
' helium.(zz) Then, without further experimental data for guidance, a crude
estimate‘éf the efror introduced by applying a hydrogenic model for cross.
séctions to uranium can be ascribed to be a factor of two too low.

The ability of an ionized particle-to focus approaching electrons,
thereby, enhancing the cross éection is also taken into account in these
calculations in the manner prescribed gy Burgess and Percival. This effect
can best be seén by compa;iné the excitation cross section of U and U".
One would expect the tighter bound elécfrons of U" to be harder to ex-
cite. However, £he charge on u* not only draws in electrons phat would
normaliy pass on by, but it also gives‘tﬁém additional energy as they are
accelerafed in the potential field. This more than compensates for the

tighter shell structure of U*.
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APPENDIX C
COMPUTER CODE

A digital computer code was developed to sqlve Eq. (26) employing
the simulation technique described in Section C of Chapter I1II. The
simulation techniq;e was augmented by various variance reduction tech-
niques to enhance the rate of convergence of the solution. In order to
further reduce computational time, several computational "tricks" were
employed. All of which are to be described in the ensuing pages.

The computer code can best be despribed through references to the
flow chart in Fig. 25. Although the flow chart provides an over-simpli-
fied view of the program, the spirit of the calculation is preserved by
it. Numerals have been placed adfacent to thé flow diagram to aid in
the identification of various'sections of the code. Let us begiﬁ to
follow the flow of the logic with Section

Input

The first section contains the input parameters. One such parameter
is the random number starter. By altering this number, a different ran-
dom number string is used as the basis of the Monte Carlo simulation.
.Such freedom is essential to statistical testing of the results.

The plasma properties such as density, temperature, neutron flux,
and identification of background species through mass and charge con-
stitute a second set of input parameters. These parameters permit pafa—
metric studies of the effect of the plasma environment upon the relaxa-
tion of nascent electrons into a Mexwellian distribution. Some of the
parameters are correlated, such as temperature and density. These para-.

meters must be self-consistent upon input as they determine into which
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Fig. 25. Flow Chart of Monte Carlo Code.
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specific targét Maxwellian the nascent electrons will relax. Although
the plasma species can be changed through the input data, the change is
not complete without providing a new subroutine containing the appropriate
cross-section set.

Another input parameter consists of an initial guess for the dis-
tribﬁtion function. Previous attempts at Monte Carlo simulations of dis-
tribution functions conclude this to be a key element in reducing com@u—
tational time.{zs) The present program was not very sensitive to this
feature. This can be attributed. to the propagation of convergence tech-
‘nique:whose application is made possible by the near linearity of the
problem.

Also, the nascent electron distribution function is required as an
input parameter. The nascent electrons constitute only a portion of the
total electron source. The remaining source, namely the secondary elec-
trons, is calculatéd within the program and is consistent with the col-
lision rate. As before, the nascent source must be self-consistent with
the other input parameters.

Finally, the convergence criterion and the number of desired itera-
tions of the converged solution must be supplied as input parameters.

The convergence criterion in conjunction with the number of simulation
particles determine the accuracy of the solution and will be explained in
more detail later. The parameter for the number of iterations provides

a means of data smoothing. It essentially determines the number of
snapshots of ‘the distribution in time which are to be used in formulating
the basis of an average. An averaging process is necessary to rid the re-

sults of fluctuations which are characteristic of all Monte Carlo simula-
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tions (see Figs. 11 and 13).
. 2. Initialization
a. Fitting Functions of Frequently, Calculated Exﬁressions
The second section of the program contains those operations termed
initialization. These operations can be divided into two types, time-
saving and preliminary calculations. The distinction between them is
that the preliminary calculations must precéde the remaining sections
of fhe code, whereas, the time-saving calculations are more conveniently
calculated at the earlier stages of the program so that duplicate calcu~
lations may be avoided. The tabulation of integrals and the cubic-Spliﬁé
fitting of frequently needed, complex functions (i.e., the expression for
E(t) plotted in Fig. (10)) are examples of time-saving calcﬁlations.
b. .Allocation of Machine Particles
The preliminary calculations entail the distribution of the machine
particles amongst the energy regions for which values of the distribution
.function will be calculated. The choices of average machine particle
density‘and density distributiqn affect the precision of éhe calculated
‘electron distribution function both globally and locally. The ideal man;
ner in which to distribute the machine particles would be to mimic the
expected electron distribution. However, the range of the variation in
electron density and the fact that calculétion of the extréme lower end
“of the dis£ribution is unnecessary make such an approach impractical.
Since the motivation of this work is to provide a basis for calculating
excited state densities, the emphasis should be piaced upon excitation
rates, which suggests. the distribution should mimic the total macroscopic

excitation cross section, i.e., the range of energies where the highest
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degree of accuracy is obtained contains the most particles which con-
tribute to the excitation rate. This insures a high degree of accuracy
in any calculation of excitation rates based upoﬁ the results for the
distribution function obtained from this codé. Due to the ‘wide range of
values of the cross section over the energy range of the célculation;
these va;iations negded to be toned down. The distribution finally ar-

rived at is

M(E) = ¢+ dn T(E) 7

where ¢ is a constant determined from the average error permitted and
L(E), the total macroscopic cross section at energy E, approximates the
excitation macroscopic cross section. For 1700 maéhine particles, Eq. (71}
yields a minimum of 50 particles per group and a maximum of 135 particles
per group.

3. Convergence Propagation

The thifd section of the code depoteé the implementapion of the
convergence propagation technique. The method is to take advantage of
the dependence of £(E') upon only £(E>E'), since the interaction of
f£(E') with £(E<E') is negligible compared to its interaction with the
Maxwellian pﬁrt of the distribution. Hehcé, it is inefficient ﬁq simu-
late the lower end of the tail of the distribution while simultaneously
simulating the upper end of the tail, if the results for the upper end
have not yet converged to the final solution; Thus, the calculation be-
gins at the upper energy region unfil convergence is ébtainedj and then
the simulation is expanded lower in energy, one region at a time. Such

an expansion in energy is analogous to the propagation of a wave, from
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one group to another, whence the name.

Convergence of a group is established by matching the flow of par-
ticles into a group with the outward flow from the group within a specified
tolerance level. Care must be taken not to set the tolerance level be-
low the noise level of the Monte Carlo simulation. The noise level is
a manifestation of the fluctuations characteristic of all Monte Carlo
simulations and can be approximated by the square root of the machine
particle density within an'energy‘group. If precautions are not taken
and the tolerance level is set below the noise level, a superficial con-
vergence is obtained through the compounding of random flucfuations in.
particle flow, producing an unphysical resuit.

4, Secondary Initialization

a. Initial Distribution

Appearing in the fourth section of the program is a belated
initialization phase. Here, the current lowest energy group is initial-
ized to a guess distribution. In so doing, the bomputationél time re-
quired to obtain convergence is minimized to the degree to which the guess
approximates the solutionl Computational time is furthef reduced by in-
troducing into an energy group k » m particles at m discrete energies and
randomly staggering their associated times. This permits the repetitive
use (k times) of the various probabilities (Eqs. (35) and (37)) necessary
for the determination of the velocity of the next collision and the par--
ticle weights. The assignment of particle weights is straightforﬁard; i.e.,
the number of electrons introduced into an energy interval, determined by
the guess distribution, are evenly distributed over the machine particles

assigned to the interval.
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b, Varying Time Step At

The time period for which the particles are permitted to evolve is
also determined in this section, permitting the period to be varied as
dictated by convergence and efficiency requirements. Since the time
width of an energy group {or the time for an electron to traverse an
energy group) is progressively smaller for decreasing energies, the time
period can be determined solely by the lowest energy group involved at
any moment during the calculation. The upperbound on the time period must
be less than the time width of this group in order to fully utilize the
initial guess. A lowerbound is established by the graininess of the
guess (or the numbexr of discrete energies m at which the guess particles
are stacked). For intermediate values, the time period is determined by
requiring the number of source particles introduced into the group to be

a fraction of the total number of particles within the group. Hence, we
have ,.t/j, | < SSEIEIZZJ
F(E)

at =4 &) ESEVY
5S(E) 2L =y <9

T/2 ISE)T (g

where T is the time width of the current lowest energy group, £(E) is

(72}

the initial guess for this group, S(E) is the nascent source rate, and
At is the calculated time period (the same At as in Fig. 10). The
nascent source rate is used to approximate the total source rate in
Eq. (72} to speed up the calculation. This is possible since only At,

not the calculation itself, is affected.
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S. Processing

a. Particle Update

In the fifth section of the program, the actual processing of par-
ticles is performed. Initially, a computational clock is incremented
by the time step At which is calculated in tﬁe previous section of the
codé. Symbolically, this is representative of the next step, namely-the
updating process whereiﬁ all particles will be permitted to evolve for the
period At. The evolution of the individual particleé is affected as pre-
viously o;tlined in Section C of Chapter III, Wherg the particle simula-
tion is desc£ibéd in detail. Tﬁe simulation‘algorithm is programmed as
outlined in the flow chart in Fig. 26.

The flow chart indicates that £he coding requirements to handle each
of the three collisional types and hencg, the césts of bomputation, gets
progressively larger when proceeding from Coulombic interactions to ex-
citation collisions and even larger in going to ionization events. An
explanation for thié trend follows. The inelastic collisions require ad-
ditional coding to arrive at the electronic state in the target that will
participate in the collision. The energy lost due to an excifation col-
lision. can be estimated to be the eﬂergy of excitation, thereby minimizing
costs. For am jonization collision, the energy lost must be calculated by
a rejection technique (subroutine EPS). Furthermore, supplemental coding -
is necessary in the advent of the birth of a secondary electron energetic
enough to influence the calculation. 'Thig portion of the code is dominated
by the time spent in calculating the energy where the secondary electron
first.collides. A similar calculation of the next collision enérgy must

also be performed after the occurrence of either type of inelastic col-
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lision. This calculation is one of ‘the most frequently.and most costly
performed operations in the Monte Carlo program. The algorithm employed
is a form of the rejection technique. The 1og;c of the technique was
described in Section C of Chapter III. Due to the possibility that a
candidate for the collision energy may be rejected, the algorithm is a
potential infinite loop (sée Fig, 27)l The number of circulations through
the loop caq-be minimized by retaining one of the random number éair con-
nected with the rejected candidate. Specifically, the random numbet T,
is compared in the rejection decision proéess to the probability of a

collision at the candidate energy determined by r Then Ty is subtracted

1
from one and used as Ty in the next loop.. The process can be viewed in
fﬁe dart analogy (see Section C of Chapter III) as reflecting the point
of impact éf a rejected dart from the upper right hand‘corner to the low-
‘er left hand corner where the dart will more likely- fall below the prob-
ability distribution, resulting in the acceptance of the candidate for
collision energy. The mapping of.r2 onto 1 dqes po£ generate a trﬁé
reflection. Howéfer, the collision frequencies were not altered by the
above scheme. A similar scheme was also employed in the rejection tech-.
.nique used in calculating éhe energy lost due to ionization colli;ions
with the same degree of success. Furthermore, the scheme proved to be
more efficient than that used by Carter, ef al.(43)
During, and after the particle has been updated, several observa-

~ tions are recorded pertaining to its activities. These include the
initial and final location in energy space, the energy lost as well as
the type of collision resp;nsible, and the proéucti&n (if any) of secon-

dary electrons. These observations serve as the raw data for the conver-
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gence test and the final results.
b. Secondaries

The registering of the production of a secondary .electron entails
the creation of a néw particle with the same weight -as its parent. Like
its parént, it must complete its evolutionary period At from the time of
the collision, i.e., the time At' in Fig. 10. By offsetting the time of
. each secondary‘at birth by the quantity At'-At, the entire batch of
secondaries ;an be updated as a group for time Af after the original
particles are‘processed'with no distinction made in the updating process
as to the particles origin. Similérly, succeeding generations of secon-
daries can be generated and processed, culminating in the cessation of
the avalanche of secondaries.

¢. Source
i. Vacancies

After secondaries are introduced into the electron population, the
nascent electrons are generated as source particles. Since the machine
. barticle population in an energy group is fixed, the injection of source
particles into the particle population requires two algorithms to accom-
modate -both vacancies and an excess of electrons in each group. Vacancies
are filled with the nascent electrons in the same manner that a vacant
group-is initially filled with a guess distribution. However, the par-
ticle s?acking proceduré is complicated by tﬁe f;c; fhét‘thé'pumber of
Vacanciés is not always factorable into the product of two integers k and
m, where k is the number of particles éo bé stacked at the m discrete
enefgies within the energy group, as was prev%ously dome. Nevertheless,

the number of vacancies is resclvable as k *m+ %, where % is also an in-
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teger, thereby permitting a partial realization of the advantages of
stacking particles.

ii. Excess

Should there be an excess of-electrons in a group, a source particle
must displace the excess particles in order to be accommodated into the
group (see Fig. 28). Immediately, the question arises as to which par-
ticles in the group constitute the excess destined for extinction. This
can be resolved by seeking those particies whose removal will yield the
least perturbation on the calculation, i.e., those with the least weight.
Once assembled, they are eliminated while retaining knowledge of the
weight of the ensemble and the fraction .which were to have collided.
This information is combined with the weight of the source particle to
be introduced and the corresponding probability of incurring a collision
to generate a hybrid source particle to be added to the energy group. In
this manner, none of the information retéined by the "killed" particles
is lost.

6. Qutput

In the sixth and final section of the program, the individual
particle observations previously defined are accumulated for the calcula-
tion of the following quantities: flux into and out of the currently
lowest energy group, secondary electron production rates, energy loss
rates, the W-value (defined to be the energy lost by electrons perli?n
pair formed), and, of course, the distribution functi;nﬁéorrespohding :
to the time disflayed upon the internal clock for the energy range for
which convergence has been established. The particle fluxes and secondary

pProduction rates are combined with the nascent source rate to yield the
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particle balance in energy space which serves as the convergence criterion.
Tlﬁe particle balance, energy loss rate, -and W-value .are secondary output,

displayed as a check upon the validity of the results and for future use.’
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