View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

TECHNICAL NOTE 2249

THE SPANWISE DISTRIBUTION OF LIFT FOR MINIMUM
INDUCED DRAG OF WINGS HAVING A GIVEN LIFT AND
A GIVEN BENDING MOMENT

Robert T. Jones

Ames Aeronautical Laboratory

December 1950

539


https://core.ac.uk/display/42884344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2249

THE SPANWISE DISTRTIBUTION OF LIFT FOR MINIMUM INDUCED
DRAG OF WINGS HAVING A GIVEN LIFT AND A
GIVEN BENDING MOMENT

By Robert T. Jones
SUMMARY

The problem of the minimum induced drag of wings having a given 1lift
and a given span is extended to include cases in which the bending moment
to be supported by the wing is also given. As in the classicdl problem
of induced drag, the theory is limited to lifting surfaces traveling at
subsonic speeds. It is found that the required shape of the downwash dis-
tribution can be obtained in an elementary way which is applicable to a
variety of such problems. Expressions for the minimum drag and the cor-
responding spanwise load distributions are also given for the case in
which the lift and the bending moment about the wing root are fixed while
the span is allowed to vary. The results show a 15-percent reduction of
the induced drag with a 15-percent increase in span as compared with
results for an elliptically loaded wing having the same total 1lift and
bending moment.

INTRODUCTION

In the problem of minimum induced drag as originally treated by Munk
(references 1 and 2) the span of the wing and the total 1ift were supposed
to be given and the distribution of 1ift over the span resulting in a min-
imum of drag was sought. The solution of this problem thus provided a
convenient lower bound for the induced drag of a wing of given dimensionms.

In the practical design of wings the requirements for low induced
drag and the requirements for structural strength are opposed. Here the
bending moment developed by the 1ift becomes an important considera-
tion - more important in many cases than the actual spanwise dimension
of the wing. Such considerations lead to the problem of determining the
minimum drag with limitations imposed on the bending moment as well as
on the total lift. It is the purpose of the present paper to show how’
the methods of the earlier analysis can be extended in a very simple way
to the solution of problems involving the bending moment of the load
distribution.
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A complete list of symbols employed in the analysis will be found in
the appendix.

GENERAL FORMULAS FOR LIFT, DRAG, AND BENDING MOMENT

Reference may be made to the original papers of Prandtl and Munk
(references 1 and 2), or to any of the standard text books on aerodynamics,
for the fundamental developments of wing theory which form the basis for
the calculations of induced drag. In these developments the over-all 1lift

is given by +s
pV f T dy ¢B)
-s

+s
p f Wy I dy (2)
-8

In these formulas the wing span is supposed to extend along the y axis
between -s and +s, T is the local circulation or vortex' strength, and
V is the constant velocity of flight. The induced downwash velocity wy
is variable along the span and is connected with the vortex distribution

I' (v) through the relation

L

and the drag is given by

Dy

+s
1 ar/d
wily) = 4~ ';é;ﬂ'd” (3)

With this value for wyi the expression for the drag may be converted to
a double integral involving the spanwise distribution of 1ift as repre-
sented by the circulation strength T

+s +s '
Dy = & DLW 4y an )
3 S yn 5

This integral may be reduced to a more symmetric form if it is integrated
by parts on the supposition that I falls to zero at the wing tips. Thus!

+s +s
-0 r(y)r(n)
D1 = 2 G-mz & )
-S -S

lThe validity of equations (3), (4), and (5) can be demonstrated by
referring to the limiting values of complex integrals taken along a path
a short distance above the singular point on the real axis. In the case
of equations (3) and (4) this process yields the Cauchy principal value.
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In mathematical terms the problem is to minimize the double integral,
equation (5), while holding fixed values of

+s
L= pV/ T dy (6)
-s

and

S
B = pr (y-sg) T dy n
s

(o]

where B 1is the bending moment specified about the point s,. For the
time being s, will be taken as the origin, or wing root (sp = 0),
although later another example will appear.

Although the derivation of the formulas for induced drag mhakes use of
the concept of the lifting line, it is important to note that the results
are not actually restricted to this approximation. According to Munk's
well-known stagger theorem the induced drag of a lifting surface will be
equal to that of a lifting line if the spanwise load distributions are
the same.

It should be noted further that the induced drag of a wing having a
given lift and a given spanwise load distribution is not affected by the
compressibility of the air at subsonic speeds. At supersonic speeds an
additional drag associated with the formation of waves arises and the
induced drag, which is associated with the vortex wake, becomes only a
part of the total pressure drag.

THE DISTRIBUTION OF DOWNWASH FOR MINIMUM DRAG

In general, if the drag is to be a minimum, a small variation in the
shape of the curve of spanwise loading will produce no first-order change
in the drag. The variation in shape may take the form of a small addition
to the original loading; it is then necessary to find conditions under
which the drag added by a small additional loading is zero.

The solution of this latter problem is rendered especially simple
by the mutual drag theorem (reference 1), which arises from the evident
symmetry of the integral to be minimized (equation (5)). The theorem
states that if the 1ift distribution (represented by T (y)) is the sum
of two distributions T;, and Ty, the drag of T; arising from the
downwash field of T, is exactly equal to the drag of T, arising from
the downwash of Tj.
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Consider now an initial distribution designed to achieve minimum
drag. (See fig. 1.) The drag added by a small additional loading will
be composed of three parts, namely:

1. The drag of the additional 1ift acting alone

2. The drag of the original loading arising from the downwash
field of the additional loading

3. The drag of the additional loading induced by the downwash field
of the original loading

Item 1 is of second order in terms of the magnitude of the added 1lift for
smooth distributions, that is, so-called "weak variations." (The fact
that this second-order term is invariably positive insures that the drag
will be a minimum and not a maximum.) Items 2 and 3 are equal by the
mutual drag theorem. The first-order variation in drag can then be com-
puted by considering only the drag of the small additional 1lift acting in
the induced downwash field wj(y) of the original lift.

The conditions of fixed bending moment and fixed total 1lift are met
by allowing only those curves of 1lift wvariation that produce no change in
these quantities, that is, curves having zero area and zero moment. It
can be seen that such curves of variation must have at least three ele-
ments to meet the conditions of zero area and zero moment. Furthermore,
any curve meeting these conditions can be subdivided into groups of three
elements so that the individual groups also satisfy the conditions.
Hence, as the representative of such restricted curves of variation we
may adopt three small elements having areas 173, lo, and 13 (fig. 1).
These elements, together with their positions y;, y2, and y3 and the
local values of the downwash w;_ , etc., due to the original loading
must satisfy the following three equations:

for §L = 0, - Z1+12+Z3=0
for B = 0, Zlyl + ZzYz + Zg}'g =0 (8)
for 8Dy = O, leil + Zzwiz + Z3W13 =0

It can be seen that these equations will be comsistent if wj, ~ atby,,
Wi, ~ atby, and Wig ~ atbys, where a and b are comnstants to be

determined from the given conditions. Since such equations must be satis-
fied for all positions yji, y», etc., it is concluded that, in general,

v, ~a+ by ¢))
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Hence, for a minimum induced drag with a given total 1lift and a given

bending moment the downwash must show a linear variation along the span.?
(See fig. 2.) »

The foregoing method may be readily extended to a more general class
of problems involving bending moments or rolling moments. Suppose, for
example, a braced wing is considered, as in the dotted outline of fig-
ure 3. In this case the bending moment  developed by that portion of the
1ift acting inboard of the point of bracing attachment may be of no con-
cern, but it may be desired to limit the bending moment developed by that
portion of the spanwise load curve extending between this point and the
tip. In this case sy will not be zero. At least three elements are
required to preserve stationary values of the lift and bending moment,
and it is evident that at least two of the elements must lie to the right
of the point s,. The three simultaneous equations are (see fig. 2):

Z_]_ + Zz + 23 = 0
L2(y5-80) + 13(y3~s0) = 0 : (10)

Liwe. + Zow, + laws =0
111: 212 313

Here y, and y3 are to the right of the point s, and y; 1lies to the
left of this point. TFor these equations3 to be consistent w; must have
the form

Wi, o~ a; wi2 ~ atb(yz~sy) 3 Wis ~ atb(ysz-s)

Hence, in general, the downwash will be a constant over the portion of the
span for which the moment is not specified, as illustrated in figure 3.

If no restriction whatever is placed on the moment there is obtained the
solution of Munk's original problem, namely, that the downwash should be
constant over the entire span.

21t may be noticed at this point that, whereas the discussion has empha-
sized the idea of minimizing the drag, the analysis actually makes no
distinction between the 1lift, bending moment, or drag, in that station-
ary values of all three are demanded. Thus equation (9) may be consid-
ered a necessary condition for the solution of the following problems:
(1) given the total 1lift and the induced drag to find the distribution
of lift over the span that will result in a minimum bending moment,
and (2) given the bending moment and the induced drag to find the dis-
tribution resulting in the maximum total 1ift.

3See reference 3 for a discussion of solutions of such equations.
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Determination of Span Loading and Induced
Drag From the Downwash Distribution

The case of bilateral symmetry with moment specified about the
root section will serve as an example of the calculation of the actual
span loading and induced drag. It will be evident from the foregoing
that the downwash distribution will consist of two straight-line
segments with a reversal of slope at the plane of symmetry. It is then
necessary to compute the spanwise variation of T corresponding to
such a curve of downwash.

To perform this calculation by standard methods of airfoil theory,
use is made of the idea that at a great distance behind the wing the
vortex sheet forms a two—dimensional field of motion, with the discon-
tinuity in the lateral velocity across the sheet given by dI'/dy, and
the downwash w given by twice the value of the induced downwash wy
at the wing. Hence, the quantity 1/2 (dI/dy) - 2iw; can be evaluated
by means of the familiar complex velocity function v - iw of the two-
dimensional potential theory using for v its value just abbve the
vortex sheet. In this theory if the vertical component of velocity w
is given along the line representing the trace of the span, then the
velocity vector at any other point in the field £ = y + iz may be
obtained from the relation (reference 4)

L L +e w(n) / s2-n2
2 _ ;2
=7

v - iw = =

n/f_""—““_— n-¢g

dn (11

As noted above,

~%§ = yv(y + 0i) - v(y - oi) = 2v(y + oi) (12)

Introducing w=a +by for y >0 and w =a-by for y <0 into
equation (11) yields, after integrationm,

.g.g = -2a —L— + 4s b (l cosh . 5. J > (13)
y /Sﬁ_yz m s Iy‘ Sz_yz

and hence

— bs 2 2b 2 -1 S
T =2 (a 4-75-) /s —y2 + = 7 cosh ©~ —

The spanwise loading thus contains the elliptical distribution as one
component.
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Equation (13) for the spanwise distribution of circulation enables
the determination of the over-all 1lift, bending moment, and drag in terms
of the unassigned constants a and b. The use of equations (2), (6),
and (7), together with the wing semispan s, yields the following values:

st2 (ﬂa + —g— bs)

L=
= ovad [ 2 1 '

B = pVs ( 3 3 + - bs> (14)
=2 b

Di—-ZVL-l-VB

It is convenient to specify the bending moment of the lift in terms of
the lateral position of the centroid, or center of pressure, of the load
curve. The lateral centroid as a fraction of the semispan s may be
denoted by y' (i.e., y' = 2B/Ls). Then, solving for a and b,

<L 1.2
a= pVs2 9 ( T 37 )

(15)
N T T2
bs = ovsz 9 ( 27 "3 )
The expression for induced drag in terms of the 1lift and the lateral
center of pressure becomes '
2
D; = L (-% w2y'2 - 12ny' + 9 ) (16)
T %~V2 (28)? ,
This equation yields the minimum drag for the given position of y'. If

the lateral center of pressure is specified so as to coincide with that
for an elliptical loading (i.e., b = 0; y' = 4/37), then the above
formula reduces to

2
D; = L (17)

™ 5 V2 (28)2

The optimum distribution of loading for a given position of the centroid
y' may be obtained from equation (13) with the aid of equations (15).
The result is
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vl
Drag for a Given Bending Moment with Unrestricted Span

2_y2 2
oV _ (12 _ Y Y. 8Ty v _ 24\y -1 s
2s T (—-1r 6y ) — + (18y - )sz cosh ————~‘ (18)

The foregoing calculations show, as was to be expected, that the
elliptic loading yields a smaller drag than any of the others within a
restricted span. However, if the restriction on the span is removed,
still lower values of the induced drag can be obtained without any
increase in the bending moment at the wing root. The lower values are
obtained by permitting the span to increase and at the same time adopt-
ing a more tapered form of the loading curve.

Equation (16) which contains the three variables lift, span, and
center of pressure can be easily rearranged to show the variation of
drag with span when the bending moment and the 1lift are held at fixed
values. In this case, the lateral position of the center of pressure
yv's will be fixed, while the form and extent s of the load curve will"
vary. In order to provide a convenient basis for comparison the span
and shape of the load curves will be related to the elliptic loading.

If s/se denotes the ratio of the semispan of the wing to that of an
elliptically loaded wing having the same total 1ift and bending moment,
then equation (16) can be rewritten:

L2 S \H s \3 s \2 '
D; = 8 (f) - 16 (—f) +9 (—f) (19)
T %VZ(Zse)2

The quantity in the bracket is the ratio of the induced drag to that of
the corresponding elliptically loaded wing. This ratio is plotted in
figure 4 to show the decrease of drag possible by increase of the span.
The forms of load curve required for the minimum drag at various values
of s/s, are shown in figure 5.

It will be noted that a 15-percent reduction of the induced drag
below that for elliptic loading can be achieved with a 15-percent
increase in span. Further increases of span between 15 percent and
50 percent (s = 1.15 to 1.50) yield no significant reductions, however.
At still larger values of s the drag becomes lower, and approaches zero
at an infinite value of s. For extreme values of s/s, the curves begin
to show negative loadings at the tips and eventually the bending moment
at certain points along the span will exceed that at the wing root.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Sept. 25, 1950.
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APPENDIX
DEFINITIONS OF SYMBOLS

total 1lift

element of 1lift

induced drag

bending moment

air density

circulation

induced downwash velocity at wing
downwash velocity, at infinity ( w - 2wy)
lateral velocity

velocity of flight

distances along wing semispan
point of origin for bending moment

length of wing semispan

lateral position of load centroid as a fraction of

constants
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FIGURE 2~ DOWNWASH DISTRIBUTION FOR
MINIMUM DRAG WITH RESTRICTED BENDING

MOMENT ABOUT CENTER SECTION
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