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FORMULATION AND CLOSURE OF COMPRESSIBLE
TURBULENCE EQUATIONS IN THE LIGHT
OF KINETIC THEQRY

by Shunichi Tsugé and Kenshi Sagara*
Nielsen Engineering & Research, Inc.

SUMMARY

On the basis of a kinetic hierarchy system developed previously by
the authors, fluid-dynamic moment equations are derived governing the inter-
action between turbulent and thermal fluctuations., Truncation of the hier-
archy under the hypothesis of “ternary" moleailar chaos provides a unique
closure condition on the set of equations. The (multipoint) kinetic theory
is shown to reduce the inherent complexity of the conventional formalism
of compressible turbulence theory and to minimize arbitrariness in formu-
lating the closure condition. This assertion is based on two factors
characteristic of kinetic theory: First, all the turbulent correlation
terms appearing in tn.: averaged equations of viscous compressible flow are
expressed as expansion coefficients of a single function, viz,, the two-
particle correlation in the 2py-spac:. Second, the closure condition is,
then, equivalent to deriving and solvirg the equation governing the two-
particle correlation. Actually, the rirst feature reflects favorably on the
fact that turbulence corrections to thie gasdynamic equations representing
the Reynolds stress and the turbulent heat flux, are each formed by single
terms, Each of the expressions remain invariant in form whether the flow
is compressible or not; such invariance is n»>t to be expected in the conven-
tional formalism of turbulent correlations. A superficial similarity of our
formalism to a formalism based on the concept of mass-averaging breaks down
at the second point at issue where our closure equations have a unique form
without recourse to modelinv. An & posteriori way of reproducing the whole
set of equations (except for thermal-agitation terms) on a proper reinter-
pretation of the conventional fluid-dynamic equations is indicated. 1In
fact, a bilinear transformation of fluctuating quantities shows that the
two formalisms are identical with regard to terms of double correlations.
The essential difference between the two systems lies in the appearance of

higher order correlations; turbulence corrections by the kinetic theory

*
Department of Physics, University of Tokyo, Tokyo, 113 Japan.



include no such terms in principle, in contrast to the triple and the gquad-
ruple correlations intervening in conventional expressions of Reynolds
stress and turbulent heat flux, respectively.

1. INTRODUCTION

1.1 Macroscale and Microscale Fluctuations
in Nonequilibrium Gases

Due to its enormous number of degrees of freedom in motion at the
molecular level, a macroscopic body of a gas exhibits various kinds of
fluctuations around each "mean" value, viz., each thermodynamic variable
of the gas, such as the density, the pressure, the fluid-dynamic velocity,
etc. Roughly speaking, we can subdivide the whole fluctuation into two
classes; micorscopic and macroscopic fluctuations, The microscopic fluc-
tuation, for example, the thermal agitation, is characterized by the fact
that its relative intensity has the form of a(éN)_l/E , where 6N is the

number of molecules in the body of a gas under consideration, and a is

a certain function of the thermodynamic gquantities. This quantity is, then,

vanishingly small in the continuum limit where thermodynamics and fluid

mechanics are spoken of except under anomalous conditions (e.g., the entropy

or the specific volume fluctuations at phase equilibrium; a = =), On the
other hand, a feature of the macroscopic fluctuation is that its intensity
is independent of 0N. Therefore, in the continuum limit, this fluctuation
alone is detectable by means of macroscopic measurements. Another feature
of the macroscopic fluctuation is that its existence is limited to the non-
equilibrium state, whereas thermal agitations prevail in the equilibrium
state as well as the nonequilibrium state. Among wel.-known fluctuations
of the macroscopic type are fluid-dynamic turbulence, unstable phenomena

in plasmas, and the mild (low temperature) ignition of a hydrogen/oxygen

system.

In the present work we confine ourselves to a study of one of the
interactions between microscopic and macroscopic fluctuations; namely,
that between microscopic thermal fluctuations and the macroscopic fluctua-
tdons due to fluid-dynamic turbulence. Our objective is to derive equations
governing the interaction of the basic turbulent field with the two fluc-
tuations in the fluid-dynamic space for the case of a classical ideal gas

1 ] v *
in first-order translational nonequilibrium,

*
Particular thanks is due to Mr. Murray Tobak of NASA/Ames Research Center
for helpful comments during preparation of the manuscript.
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1.2 pjfferences in Generation and Propagation
of Fluctuation Correlations

The microscale and macroscale fluctuations differ not only in their
dependence on the scale of the system but also in the ways they generate
and propagate correlations. The thermal fluctuation is generated by a
spontaneous deviation from the mean value charaterizing the equilibrium
state and is dispersed by relaxation. Microscopically, the generation and
propagation of the fluctuation is via molecular co! ision, and the corre-
lation formed by this mechanism relaxes as1 exp(-czt/e), where ¢ 1is a
small parameter proportional to the mean free path, and ¢ is the iso-
thermal speed of sound. Then the characteristic time for the relaxation
is tI ~ ¢/c®, a time proportional to the mean free path.

Only recently, the existence of a second mode of propagating correla-
tion has been revealed in addition to the one via direct molecular colli-
sions: Correlation generated and propagated by collective motion of macro-

3 state that in contrast to the

scopic bcdies of the gas. Gradz and Sastri
direct correlation propagation, which persists only for a few mean free
times, the second mode of correlation must propagate at least over a hydro-
dynamic time, judging from the fact that the correlations are shown to

obey certain “"conservation" equations of two-point fluid mechanics, In
fact, decay of the second mode of velocity-velocity correlation in a gas

at rest obeys a diffusion equation4 and therefore behaves like exp(—xg/et).
I - L?/e¢ (where L is

a hydrodynamic length) and therefore decays much more slowly than the first

This second mode, then, has the time constant t

mode with tI ~ ¢/c®., This implies a striking feature of the second mode:
It must be detectable by macroscopic (fluid-dynamic) measurements. Further-

4 that the correlation of the second mode is even

more, it has been shown
amplified if the flows under consideration are unstable with respect to

the clessical criteria of hydrodynamical stability. Fluctuation evolution

in a Tlasius boundary layer, calculated along the line of two-point kinetic
theory, has exhibited agreement with the experimental results of Schubauer-
Klebanoff.5 Hence, we conclude that the second mode of correlation has a

certain implication as a turoulent correlation,



1.3 Description in Terms of
Microscopic Density

A crucial factor of a kinetic theory in dealing with fluctuating
phenomena is the quality of statistical processing that has to be invoked
to make the problem tractable. For example, it has been shown that instan-
taneous turbulent fluctuations are wiped out4 in defining the Boltzmann
function as an expectation value for the number density. Also, the thermal
fluctuations are missedl even in the most general formulation of the BBGKY
formalism. To avert this difficulty, it is advisable to start with an
exact distribution function where no probability concepts have yet been
invoked and where therefore every fluctuation is self-contained. To this
end, we shall start with 3 distribution which bas been proposed in plasma
kinetic theory,6 and has become known as the microscopic density. 1It is
defined by

N
P - (s)
f(z,t) =m Elz - 2 (t) (1.1)
s=
where m is the mass of a particle, and 2z = (-,w) denotes a phase-space
point, z(s)(t) gives the locus of the sth particle in the phase space,

6 1is Dirac's delta function, and the summation is over all particles N
under consideration. The microscopic density has a favorable feature in
comparison with the Liouville density function which has heretofore formed
the basis for the BBGKY hierarchy: The microscopic density is defined in
the (six-dimensional) phase space, in contrast to 6N space of the Liouville
density, and has a definite physical meaning such that the expression

1 j’ 0
- £ dx dv
X 4v AX AV

gives the "exact" mass density at an instant t in the phase space z.
This is an immediate consequence of the fact that each integrated delta
function (l.1) is unity or zero de sendir on whether the given particle is
located inside or outside, respectively, the volume Ax Av,
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In terms of this distribution, macroscopic variables are defined such

that
b = [?f @V = m Z o[ - ra (t’] (1.2)
s
2 - [vEd-n Y VO F-x®0]  ao
- )

give, respectively, the density and the mass flux density which are subject
to thermal as well as turbulent fluctuations. However, the presence of the

delta function and the unknowakle nature of initial wvalues of 'Q(S) and

V‘s) make it difrficult to solve for 8 and gi with instantaneous fluc-
tuations restored (except by numerical experiments, e.g., the Monte Carlo
method). The simplast way to make the formulation tractable is to intro-
duce a smoothing or av:raging procedure whose operation on the microscopic
density yields the .Joltzmann function, or more exactly, the one-particle

distribution function of the BBG:Y hierarchy

+hol

(1.4)

In other words, £ is the mean mass density in the phase space. Since, as
noted above, neither turbulent ncr thermal fluctuations survive the average,

all the instantaneous fluctuations must be included in

o
AE = £ - (1.5)

Accordingly, the density and the mass-flux density fluctuations are given,
respectively, by

Ap=8-p=J'Afd'\'7' (1.6)

o -—
Am, =m, = mi = J.vi Af dv (1.7)



where p and m are the average density and the average mass-flux density

obeying the (Boltzmann) formalism of the classical kinetic theory:
p -ff &v (1.8)
m, -J-v.f av (1.9)
1 1

Statistical behavior of the fluctuations is spoken of only through
their correlations; for example, a tensor defined by

—

Am, Amj =J'vivj Af Af AV dv (1.10)

describes the average characteristics of the fluctuation in the mass-flux
-> A
density at a seven~dimensional point (x,X,t). In order to calculate the

factor

~ Oa -~
Af Af = ££ - ££ (1.11)

appearing in (1.10), a simple mathematical identity

N N -
Z 6[2 - 28 (t) Z 5[2 - 2(8) (t)]
s=]1 8=1
N ~
= Z 5[2 _ (s) (t)] 6[2 - 2(8) (t)]
s#s

N
+ 8(z - 2) E: 6[2 - z(s)(tﬂ

s=]

needs to be noted.

s

—



" Let the average, defined by (1.4), be taken over the identity; then alcung
with definition (l.1) the following equation results:

o 0. . . A
£(z)£f(z) = fII(z,z) + mé(z - z)£(2) (1,12)
where fII is defined by
—K -
£o(2,8) = nﬁ; 6[2 - 2(8) (t)] 5[2 - 2(8) (t)] (1.13)
s#s

is called the two-particle distribution function in the BBGKY hierarchy.
Customarily, the %wction fII is decomposed further as

fII(z,ﬁ) = £(z) £(2) + y(z,2) (1.14)

where 3 is called the two-particle correlation. Then equation (1.11)
reads, in view of (1.12) and (1.13),

Af(z) A£(Z) = y(z,2) + mb(z - 2)£(2) (1.15)

The physical meaning of each term on the right-hand side can be seen from
(1.10) with (1.15). Assuming £ tobe a Maxwellian distribution, we have

Amim?\z = I-vi\';z Af AR &V a% 3
-Ivi{‘rlw(z,ﬁ) dv ad > (1.16)
+L8@® - (0a)2s ;
n P if



where n is the mean number density and a = ‘(R'r)l/2 is the isothermal
speed nf sound., Then the second term on the right-hand side of equation
(1.16) turns out to be the thermal agitation,7 whereas the first term
represents the macroscopic fluctuation correlation in nonequilibrium situ
ations that is directly connected with the turbulent correlation.4 Thus,
the macroscopic and microscopic fluctuations are uncoupled in (1.16), but
they will be shown to interact with each other through the equations of
fluid dynamics.

In Section 2 we summarize our methodological basis for what follows;
a hierarchy system which is based on the master Boltzmann equation instead
of Liouville's master equation of the BBGKY hierarchy. Specifically, we
discuss the one-point and two-point eguations of the hierarchy which, to-
gether with the assumption of "ternary" molecular chaos, forma closed set.
In Section 3, factors causing a crucial difference from the conventional
turbulence formalism are extracted and discussed, Fluid-dynamic moment
equations out of the one-particle equation are described in Section 4 with
special reference to the coexistence of compressibility and turbulence,
Differences in several nontrivial aspects from the Chapman-Enskog's or Grad's
classical schemes are pointed out. In Section 5, the connection of these
equations with those derived on a macroscopic basis is discusszed: The two
formalisms are shown to yield the same equations in the lowest order
correlations. In Section 6, the two-particle eguation which plays a central
role in the closure problem is detailed in its equivalent form of moment
equations of two-point fluid dynamics. These equations are shown to be
reconstructed except for thermal agitation terms on the basis of phenome-
nological gasdynamic equations if dependent variables are identified with
those defined in terms of microscopic density(Section 7).

2. A HIERARCHY SYSTEM ON THE "MASTER"
BOLTZMANN EQUATION

2.1 Master Boltzmann Egquation

As is well-known, Liouville's equation, the master equation of the
BBGKY hierarchy, has an implication as the equation of continuity in the
(6N-dimensional) I space, A parallel procedure of generating a hierarchy
system in the (6-dimensional) u space tirns out to be practicable, starting
with the equation of continuity in this space. 1In reference 1 such an



equation for classical ideal gases has been shown to have the form of the
Boltzman equation in which the Boltzmann function £ is replaced by the
microscopic density % Gefined in (L.1);

Q d ,=9\¢ 2 FTETY
B(f) = (5? + v-—-) £-J z|z £(2)f(z)] =0 (2.1)

ox

where J is the conventional Boltzmann operator for the short-range .ater-
molecular force

—y
l?|~ |?€->‘<| ° o>3 (2.2)

and where 2 stands for a field particle on which the integration is
effected. Equation (2.1) may be called the "master" Boltzmann equation as
distinguished from its averaged version (eq. 2.3 below) governing the

Bolizmann function.

A salient feature of the master Boltzmann equation (2.l1l) is that no
statistical processing such as the molecular chaos assumption nor even the
probability concept (e.g., the distribution function as an expectation
value for number density) has had to be invoked 'in deriving the equation.1
It is simply an exact continuity equation, in the yu space at each instant,
of fluctuating number

-10
é% j’ m 1f dz
o)

of molecules in a specified volume 6z. The temporal resolvability of this
equation is limited by the nature of the operator J that is unable to
resolve temporal evoiution within the collision duration time 11 = r/a,
where r is the characteristic radius of curvature of a field particle at
molecular encounter. Therefore, 1 1is interpreted as the time-resolvability
limit of the equation. It is vanishingly small for a rigid spherical mole-
cule (o =+ »), «nd increases as ¢ is decreased (softer collision). We can
show that the thermal agitations survive this fluctuation-filtering action
of the operator J on condition that 1 be smaller than the mean collision
time. In fact, spontaneous stress fluctuations caused by thermal motion

9




of a gas are shown to relax asl exp(- pt/u), (p, the pressure; j, the vis-
cosity coefficient), so that the characteristic time 1% of thermal agit.u-
tions, t* ~ p/p ~ €/a, where ¢ denotes the mean free path, is seen to
be of the order of the mean collision time. Then the condition +* >> T,
or equivalently 4 >> r (the necessary and sufficient condition for bhinary
nolecular collision), ensures that thermal agitation will be re ~ ‘red by
equation (2,1) for a certain class of "hard” molecular encounters including
Maxwellian molecules (o = 5).

2.2 A Hierarchy System

In this section we present one-particle and two-particle kinetic
equations of a new hierarchy system on the basis of the master Boltzmann
equation (2.1), with emphasis on the contrast with their BBGKY counterparts,
(We do not duplicate here a derivation of the equations, which is carried

out in some detail in reference l.) The equation of the lowest order, viz.,

.the one-particle equation, is obtained by averaging equation (2.1);

3 <+ A '\.‘
I o B

oxX

where (1.14) and (1.12) are incorporated, and where; on the right-hand
side of (2.3), we have util.’ed the fact that J[é(z - ﬁ)f] = 0, implying
that no effects due to thernal agitations are observed in the averaged

equation., In fact, this equation is exactlv the same as the one-particle
equation of the BBGKY hierarchy, and has the form of the Boltzmann equation
with no molecular chaos assumption invoked. Evidently this equation differs

P

from the classical Boltzmann equation by the presence of the term ¢y in
the collision integral so that the equation is not closed by itself, We i

need, therefore, to address ourselves to the next equation of the hierarchy
that governs the function . This inherent difficulty of indeterminacy

is not peculiar to the one-point equation. The two-particle eguation
includes higher-order terms as well; the three-particle distribution
function fIII intervenes in the equation in an unavoidable fashion. Then
a question arises: Wwhat is the simplest possible form of truncation rule
which retains the essential features of turbulence (¢ # 0)? Two points need

to be noted here. First, Sastri3 has pointed out that a truncation rule

10



(2.4)

J-LH( 11°6)8z = CL(£,£,) (2.5)

é; € -is a constant and

Ly Epofy + 1) = O(m: I,II,III,...) (2.6)

,*kxnetlc equation of N th

, BBGKY hierarchy that is exact in the sense
rat the Liouville eguatiun is so. Condition (2.5) limits the choice of
ito=an extent that the arbitrariness introduced in assumption (2.4),
thefeby intervening in the two-particle equation does not "contaminate" the
: exactness of the one-particle kinetic equation., The second point at issue
" is that every G so far obtained and eligible in the sense above leads to
7 ‘an identical form when truncated at the three-particle level, whereas they
- f;&l”differ at the four- (or more) particle level in effecting truncation., 1In
e fact, among the truncatlons meeting condition (2.5) are the well-known
cumulant truncation rule and the hypothesis of N-particle molecular chaos

’I’N = I Af(zn) = Q (2.7)

where Af nas been defined by (1.5) and where terms of macroscopic corre-
lation alone are taken into account. Both rules as well as some others3
are shown to yield an identical truncation rule at the three-particle stage

~

£___(z,2,%) - £8F - £9(2,%) - ty(Z,z) - Fy(z,2) =0 (2.8)

Thus, we have seen that the truncation at this stage and of thic form is
fairly general, although not perfectly so.

11




Once the principle of the closure has been established, constructing
an equation governing ¢ is rather straightforward., The two-particle
equation is provided by

ae2)B[22)] + ascdiuf)] = o (2.9)

which, in view of (2.1), (2.3), and (2.8), is written in an alternative
1
form

[-abE +TL + 0 %] viz,2) - x[z*l z] [f(zmz*,ﬁ)]

———d

- K[ﬁ"’ 2] [f(z)¢(afz)

= K[z+i z] [6 (z - E)fII (z,Z+)]

+ 1([2"121 [5(z - 2)f11(2,2+)] - 8(z - E)J[z"'l z] [fII(z,z+)] (2.10)
o

with the operator K defined by

K(z+

z)g(z,z+,...) = J(z+lz)[g(z,z+,...) + g(z+,z,...4 (2.11)

where z+ indicates a field particle on which int:gration operates. 1If
the terms on the right-hand side of equation (2.10) are set to zero, the
equation reduces to the two-particle equatinn of the BBGKY hierarchy that
is homogeneous in . 1In the case of a non-zero right-hand side, note that
the inhomogeneous terms have a common factor 6&(x - X), which implies that
they stand for effects due to thermal agitations. It should be stressed
that equation (2.10) is exact with regard to the terms arising from thermal
agitations: The closure approximation has been incorporated only in the

macroscopic part of the three-particle distribution function (see eq. 2.8).

Equations (2.3) and (2.10) constitute a closed set of governing equa-
tions for £ and ¢ where the effects due to thermal agitations, missing
in the BBGKY formalism, are taken into consideration. The remaining part
of the present work is devoted to a derivation of the fluid-dynamic moment

12
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equations which are correct to the first-order in A% (double correlation),

the mean free path €, viz,, the order of magnitude of transport coeffi-

1

cients, and n = {(n: the mean number density) representing the first-order

effect of thermal agitations.

3. EFFECTS OF TURBULENCE IN THE
KINETIC THEORY FORMALISM

3.1 Expansion in Hermite
Polynomials
In order to accomplish transition from.the kinetic to the fluid-dynamic

equations we expand f and ¢ in a fingle and a double series of Hermite
polynomial ¢, respectively, and discuss equations governing their expan-
sion ccefficients. A systematic method of moment expansion has its origin
in the so-called l3-moment method of Grad.'9 Since the expansion is around
the (local) Maxwellian distribution (eq. 3.3 below) expansion in three-
dimensional Hermite polynomials is considered to be most relevant. The 13-

moment expansion9 for £ and its two-particle counterpart4 for ¢ are the

following:
flz) = £ (2)]1 + Zikgp(2) + =1 7p(3) 3
z) = £,z 7p X3kt 55c’ (3.1)
(3,3 gW.K) .
¥(z,2) = (p) T (2) £ (2) Sepresage (903 ) (3.2)
(J,K) = (O,O)C c Julne
with
o —’2
fo(z) = p(2vc2)—”/2exp(— %T ) {3.3)
T=ctV-w (3.4)

where ¥ is the Hermite polynomial defined in terms of the non-dimensional
peculiar velocity E; also pjk’Qj’ p, P, ¢ and W are the stress deviator
tensor, the heat flux density, the density, the pressure, and thke two ref-
erence velocities to be determined later. Each of these quantities except

p is to be generalized properly to include effects due to turbulence,

13



Two remarks in connection with expression (3.1) are in order at this point
First, we postulate the turbulent mean pressure p to have the same mathe-
matical expression as it does in the laminar case regardless of its physical
relevancy,

p=%J'c=(;((2) +3)fd?z’ (3.5)

2 2
where }f( ) - ??éj? = gf - 3 is the contracted Hermite polynomiai of the
second order. Second, we postulate also that

p.. =0 {3.€)

be retained together with the condition of vanish.a¢ first-order terms .
(See 3.1) Postulate (3.5) in which (3.1) is substituted for f deter-
mines the parameter ¢ as

p
== 3.7
c 0 ( )

Also, expansion (3.1) substituted in (1.9) determines the parameter w of
(3.4) as

m,

= —L
w, = > (3.8)

With regard to expansion (3.2), there are no such degrees of freedom re-
maining, so that the summation in (3.2) should span over all possible terms

including nonvanishing first-order as well as contracted second-order terms.

All of the expansion coefficients in (3.1l) and (3.2) are solved in view

of the orthonormality property of the Hermite polynomials as

- rca (2) e
Biy ) #ij f dv (3.9)
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A4l 3qp(3) o 5=
Q. -J(2 c j-(?i £ dv

i
where
207 = M5} - euef -9
and
R{K LG8 = [Ta ey Xy & o

3.2 Instantaneous Fluactuations

Expressions (1.8), (1.9), (3.5), (3.9) and (3.8) for p, m, P, pij’
Qi exhaust the set of 13 mean variables necessary for describing a fluid
state. To each of these variables corresponds an instantaneous fluctuation
some of which have been already given by (1.6) and (1.7). The whole set of

the instantaneous fluctuations is given by

fA B ri A
P
(1)
Am, w. + CD{
i i i
r =)
sp =) e +3 210 (3| af av (3.12)
. =2 4p(2)
t_\pij C H’lj
1 A (‘-’)
AQ. = c* A
\.. l..J L2 1 J

whose form should be self-explanatory in view of the corresponding expres-

sions for the mean values,

It should be noted that all the variables appearing in equation (3.12)
have in common the characteristic of being proportional to number density.
In fluid mechanics, however, there is another class of quantities whose
members are independent of number density, for example, the velocity or the
temperature. We have learned that quantities proportional to the density
are more fundamental than those which are density-independent in the sense

that fluctuations of the former guantities are directly defined in termsof Xf.

15
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It is sometimes required, however, toO express the fluctuation formulas
with respect to the density-independent quantities., For example, laser-
doppler velocimetry picks up the velocity fluctuation rather than that of
the mass-flux density. Similarly, some measuring devices perceive the tem-

perature fluctuation instead of the pressure fluctuation.

The density-independent quantities can be defined only indirectly. ]
We shall show this for the velocity and the temperature. The instantaneous : g

(%
velocity u; is defined as

c0

(3.13)

|
0|20

Separating this expression into average and fluctua‘ing parts, we have

=]
[

= pu; + Ap dug (3.14)

f

i P Aui + uy Ap (3.15)

As for the temperature, it would be most natural to define this quantity as

equi-partitioned kinetic energy per moleaule due to purely thermal motion,

dhr e

namely, that excluding the turbulent energy. Then we have

PRI

3.8_1(1 ° .0 =
3 kT = g,f S(vy; - ui) f dv (3.16)

o)
where k is Boltzmann's constant and n 1is the fluctuatiny number density,

Splitting this expression into average and fluctuating parts leads to

1 )
pRT + R Ap NT = p - 3 p(L\ui) (3.17)

RT \p + Rp AT = \p (3.18)

le



where

In
3l

(R

and where formulas (3.5) and (3.12) have been used.

3.3 Physical Meanings of RgJ,i)

With these preliminaries on the instantaneous fluctuations, we can
show a more direct physical meaning for R(J’K) than is implied in (3.11).

As is seen from (1.15), the R's are linearly related to

-

AD B = |a(z)b(2)Aaf AF dv av (3.19)

namely, the fluctuation correlation between two thermodynamic quantities

A and B at physical-space points X and X. Formula (3.19) is an
immediate consequence of averaged product of ¢xpression (3.12) at the dif-
ferent points z and 2. Quantities AA and AB  stand for fluctuations
of macroscopic quantities standing on the left-hand side of (3.12), whereas

a and b stand for those counterparts appearing within parentheses on the

right-hand side. A straight-forward calculation of (3.19) in which Af AF
is replaced with the right-hand side of (1.15) yields

ap 2p = RO 4 s ® - R) h
oot = r(OY a7 RO 4 s @ - B
Kmiaﬁ; = Rile) + mip—laio’l) + §_lﬁiRil,0) (3.20)
# (p) mgf RO 4 m(p i + oy O F - R)
RID_&ES_ = % Réi’o) + c:‘R(O’o) + mps (X - .)-{) )

fContinuved on next page )
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and

a1 (1,2) , 1 -1 _(0,2) , sl
Amilp =3 RiTpe t3 e mRULT HCTRy

—
+ miceé()? - %)

The above formulas show that fluctuation correlations. in general, are com-
posed of two factors: thermodynamic fluctuations, which are characterized
by the presence of the delta function, and nonthermal, nonequilibrium fluc-
tuations R, that are connected with a nonchaotic situation (y £ 0)

(c.f. 1.16). On the other hand, terms on the left-hand side of (3.20) are
rewritten in terms of Aui and AT by the use of (3.15) and (3.18). Term-
by-term comparison of these expressions with those on the right-hand side of
(3.20), where the thermal agitation te.ms are neglected as of higher order,
leads to the following relationships:

(0,0) A

R 2 = /
Bp 4p N

(1,0) _ A
R i’ =p AuiAp

(1,1) = ~ %+
R l’£ pp Aui“\u'[;

) (3.21)
r(2:9) = 3. AT a3
R(li’z) = 3ppR Aui‘.\"i‘
- Y

r(2:2) = g.5r%aT Al

3.4 Notes on the Pressure Concept in
the Presence of Turbulence
We have introduced the average pressure p in the form of (3.5) for
he sake of conformity with the erpansion (3.1) which refers to the pecu-
liar velocity ¢ defined by (3.4). 1In fact, from the formal point of view,

this seems to be the most natural definition of the pressure extended so as

18




‘,:M.J,effents dus to ;urbulence as well as the thermal motion of gas. molecules,

" to allow for turbulence. According to. th;s definition, however, P 1ncludes»

50 that we can’ show

o ‘. #

wol

"~ .7 provided that p is to represent the 1nstantaneous pressure ircluding -
‘thermal effects alone. In order to obtain the relationship between p and

[}
T™=p (3.22)

we proceed as follows. A key to the correct form of 8 is provided by
-(3.18) which is exactly the fluctuating part of the ideal gas relation

(o] o0 o]
P = RpT = knT (3.23)

Since we have the definition (3.16) of the fluctuating temperature at hand,
equation (3.23) leads to the definition of B as

B =f%(v. - u,)%% & (3.24)

Averaging this expression and utilizing equations (3.22), (3.21), (3.4),
and (3.5), we have

= 21 .(1,1)
p=T + 3P [R i,l] (3.25)
X =X

This relationship tells us that the quantity p defined by (3.5) includes
effects due to turbulence in addition to the "genuine" pressure 7 which
is defined by (3.22) and includes thermal effects alone. With this rela-
tionship, equation (3.17) is interpreted favorably: 1In fact, the egquation
reads

19



- = pRT + R 4p AT

or

(3.26)
T = pRT + %[R(z’o)]

X =X s

P -

which is nothing but equation (3.23) averaged. The difference between

m and p, which is ascribed to random motion due to turbulence, is of
0(M®A®) in comparison with the pressure (where M is the characteristic
Mach number). Therefore, the difference is negligibly small for incompres-
sible flows, but can reach an appreciable magnitude in certain hypersonic
situations.

Correction formulas (3.25) and (3.14) tell us that the local Maxwellian,
when written in terms of the average velocity and temperature, takes the
form

ﬁh -u - p_zR(%’oﬂ <
J J J

1 (2,00 . 1 (1,1)
2(RT + 5 R'“*Y) + 22 RULoC
[ 3p= 3P‘RJ,J]

fo ~ exp -

All the correction factors appearing in the expression disappear for incom-
pressible flows because of non-fluctuating density [R(J’O) = 0] and of
vanishing Mach number R(§’;)/p2RT ~ 0(M?) << 1.

b

4, TURBULENT GASDYNAMICS ON THE BASIS OF
THE CORRECTED BOLTZMAWN EQUATION

4.1 Moment Equations

The only difference between the modified Boltzmann equation (?.3) and
the conventional one is the presence of the term ¢ in the colli n
integral. Thus, no difference is observed in the three moment equations
(of conservation) corresponding to three summational invariants as moment
functions. This situation is readily seen from the following expression
of the general moment equation for equation (2.3) with the moment function

a(z):

20
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Ba—tfaf d7+§,a(—rj’avrf d‘v‘-[ ‘\"t’+vr§xi de--zl-f[[a]] [f(z)f(%)

+ w(z,%)] dK dv dv (4.1)
where the notation
[[a]] = a(z') + a(2') - a(z) - a(2) (4.2)

has bcen introduced. 1In deriving expression {41.l1) we have assumed that
quantities appearing in the collision integral cf eguation (2.3) are sym-
metrical with respect to z and 2. This condition is met with ¢ since
we have put §'=‘§. to secure collision encounter. The three conservation

equations corresponding to the following choices

for which we have

are shown to have the form:

%%+§;3:-=o (4.3)

J
omy d
it § =
3¢ 5;; (p mymg + péij T pij) =10 (4.4)
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These equations are formally identical to their classical counter:par:t:s9 so
far as the actual forms of pij and Qj have been left unspecified.

As has been seen above, the way in which nonvanishing ¢ affects the
fluid dynamic equations (4.3) through (4.5) is via pij and Qj’ whose
actual expressions are to be determined from moment equations with moment
functions UPig) and }Q§3), respectively.  Since these moment functions
are not summational invariants of collision, the moment equations neces-
sarily include effects due to . After some manipulation, we have moment

equations, namely, equation (4.1) for a = J-Pl(i) and a = ﬂ;”,

respectively:
op m 0Q, 3Q oQ m.
i g l-E 2 A 2 r =)
Te t eGP Pul PSS Y, T 0 3| T Pur x|
Do hdel o 2 0 d (M L o |IM
T Pyr 5xr P -'zéljprs 3xs P 4 Exj P T ox; | p
25 0D |Zeff. _eom +4 [p(2,0) _ g(1,0)
3 %35 5xr P m \Pii T p [Fi3 i,3
_ (2,0) , 1 (1,1)
36,850 + 38,42 (4.6)
and
0Q. m m m m
i, O | 2 o (il +2 O x| +2 o |_xr
3t+x pQ:L +5qr5x P +5qrdx‘ +Sqlx p
r r i
9 P
ir . 2 o |p ir _O ) |p
+ RT 3 2P rOx [p] T p 0x (pbsr +psr) TH B [p
=-48B (g 4+ L (3,00 _ op{2,1) 4 g{2,1) (4.7)
i " p |4 i ir,r
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where B is related to the viscosity coefficient | and the heat conduc-
tivity coefficient A as

and (4.8)

All K's in equations (4.6) and (4.7) represent the correlations at the

same point (x = X); therefore, the relation R(J’K) = R(K’J) holds.

4.2 Generalized Navier-Stokes
and Fourier Laws

Equations (4.6) and (4.7) have elucidated, at the level of the 13-
moment approximation, the manner in which the stress and heat flux are
affected by the presence of 1y, namely, the two-particle correlation.
Neglecting the quantities of the order of transport coefficients in the
left-hand sides of equations (4.6) and (4.7), that is, reducing the level
of description to that of fluid dynamics, we obtain the following expres-

sions for the stress and heat flux:

L +% -Ri(§’°) + Ri‘fjel’ +1 6in(2’0) -1 oijaéf;’-) (4.9)
and
Q, = (9 +-215 [-Ri”'o) +2r(%01) Rj(_i:]l:) (4.10)
where (pij)NS and (Qi)F are given by the classical Navier-Stokes and

Fourier Jaws, respectively, as

d (M a ™ 2 y [Py
o) = -uls = )t |—=] =56, —| —
Plj NS TX_J_< P ) ox. < p 3 1 ox_\ p



and (4.11)

& J
(Q)p = -] 3, [g%]
i

Further simplification of expressions (4.10) and (4.11) is feasible it

" that the correlations between quantities containing

we mAake use of the fact
a nonsummational invariant are smaller than those between summational *nvar-
iants by a factor proportional to transport coefficients €. We have, for

example,

r{2:00 o1, g(2,00 , . (2,0)

ij 353 i3
and

rﬁ?’o)

21l __~0

R(z’o) (€)

With this decomposition rule and the simplifying appro:ximation, equations
(4.10) and (4.11) read

- L lznsy 1 (1,1)
Pij = Piylns * 5 |Ri)j 3 %343R r (4.12)
- B a2 1)
Q; = () + g5 R{™ (4.13)

Substituting equation (4.12) into equation (4.4 ) with the relationship

(3.25) between T and p in mind, we readily see that the term ﬁﬂRgl’l)

behaves just like the Reynolds stress appearing in the equation of inéé%-
pressible turbulent flows. The "turbulent" Navier-Stokes relation (4.12)
might look deceptively simple, however, when we are reminded that the rela-
tion holds as well for compressible flows. 1In fact, we have imposed no
restriction on the compressibility in the course of the derivation. Also,
the fact that the turbulent heat transfer (the second term of 4.13)is
expressed by a single term is not to be expected in the conventional

formalism. Actually, in the conventional approach, the averaged Navier-
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Stokes and the enargy equations, in which mean and fluctuating parts are

separated, are written in the forms:

0 ) T 5 =
e T i s Lt - R
and
Seaf 1 2 e . & t 2
St [2 pu;~ + ph - v] + 8;; PY [ 5~ thl +u P4 + QJ =0
with 3 and Q ¥ iven b
le “ i g9 Y
i . o - ;
pij (pij)NS o _JuiAuj + diAp Auj g ujL\p Lag Ap Auipuj '4.14)
and
Q T (Q.) +1 ou (bu_)® - 1422 Mu, +u.bh Bp +p Bu Ah
i ih  CRE N o s e | aanbe P S 'y
+ h Ap Au. + Ap Ah Au +-L (Au.)®Au. + 1 u ‘w(j: =
Py TEP S i T 2 PR BN T o PUSE Ay
+ i Ap Au, (Aul)® (4.15)
2 P SN .

and Ql*-
10,11

where h u1s the specific enthalpy. These expressions for pij
are the axact versions of those appearing in tne textbooks cn turbulence.
Note that the Reynolds stress includes triple correlation terms and that
the turbulent heat transfer includes terms up to guadruple cocrrelation.
It is natural, then, to ask whether the two pairs of transport relations
(4.12), (4.13), (4.14), and (4.15) are essentially or only seemingly
different. This question is investigated in some detail in the fcllowing

sections.
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5. RELATION BETWEEN KINETIC AND MACROSCOPIC
FORMALISMS OF TURBULENCE EQUATIONS i
5.1 Comparison of the Two Formalisms
The system of equations derived above, viz., equations (4.3) through k.
(4.5) supplemented by {(4.12) and (4.13), is. shown to have an intuitive &
interpretation in terms of & priori gasdynamic equations whose dependent i ‘S
o o o o i
variables are the Klimontovich variables, p, uj(= mj/p), p, defined in —
previous sections by
o o
O  Om.
=90 4 —_Jd o :
Lo = 3% + X. 9 (5.1)
J
o o o
am~ :7 m. o
. = —%y— + = .
p
o o ge 80
o : l.
Ls Ea% y-l-1p+%_01 +53k{%m;;:3 +W,31 :k
P P p
fs (Bay)
j ‘**jk’NS Q _
+ = + (Qk)F 0 (5.3)
P
In the above, v is the adiabatic index and takes the value 5/3 for mona-
- - . : o Q .
tomic gases now under consideration, and (pjk)NS and (Qk)F are defined,
respectively, by
33, 38, 38 -
o &,
(Pydys = ~H sxk T o—l - % %5k &E (8 ) %
: J *x r :
O B o}
(Qk)F == [vég] T (5.5)

We shall show “hat our kinetic turbulence equations are equivalent to the

averaged version of eguations (5.1' through (5.3) if, in the course of
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averaging, triple or higher-order correlations are disregarded arnd the

transport coefficients (u and ) which depend on the temperature are inter-

preted as material constants,and are therefore not subject to fluctuations.
No explanation is needed for the continuity equation: Simple aver-

aging of (5.1) gives (4.3). With regard to the Navier-Stokes equation,

we proceed as follows. By the turbulent Navier-Stokes {(TNS) equation we

mean hereafter momentum-conservation equatibn (4.4) in which pij is

replaced with d.e generalized Navier-Stokes relation (4.12), namely,

+%R(lel)] =0 (5.6)
5

am. ~y W, m.
+ \5 . + p. . N
( ) l,'

ot ij P i3 ij’NS

First, we note that the limitation as to the equivalence of (5.6) and (5.2)
is not existent when the flow is incompressible (g = p: a material
constant), in which case averaged equaticn (5.2) leads exactly to equation
(5.6) in view of relation (3.14) with Ap = 0. For compressible flows,
however, the identity is reached oniy conditionally because of the density
variation. Then a straightforwarc averaging of (5.2), written in terms of

m. instead of uj yields

1.h.s. of (5.6) + 0(e A%,A%) =0 (5.7)

where A stands for fluctuating quantities. It is easily checked that
the terms A° and 22 include a common factor Ap, so that equation (5.6)
is exactly retrieved for incompressible flow. For compressible flows,

identity of the two formalisms is fulfilled only within the approximation

(5.8)

If, in the course of deriving (5.7), the variable u, is used instead of
mi/p, we obtain equation (4.14). Apparently the form of (5.6) is more

cenvenient than that of (4.14) in its invariance with respect to

compressibility.




The same method is shown to be applicable to correlate the & priori

energy equation with the energy equation of the present formalism. The
1 ~tter eguation, which is equation (4.5) with turbulent Navier-Stokes and
sourier laws (4.12) and (4.13) incorporated, is written as

2 2
R 107] d I™M™ s ™0™ L [.(,1)
Sppbad bty Ot bl 23 -1 . 2 IR M
3t [2 P 2 p J xj 292 i 2 P P ¥ o] (DLJ)NS B p Rl,j
1 (1,1) 5 o(1,2) :
3 % 5Rr x ] *Q)e Ty By 0 (3.9)

The former equation, with average taken and relationships (3.20) incorpo-
rated, reads under approximation (5.8),

i j ox 22 31 Y- 1Py P (pLJ)NS
A4 (1,1) _ 1 (1,1) 1 . {1,2)
e [Ri,j 3 %3Re s J MU T I Yoy

| . [
(3y = 5)¢9 (1 ,(1,1) o) Jd (1,1) 1 -(1,2) =
56 = 1) 1;2‘[5 Ry, ] + 32;‘[;? R. 2 ~p R ] =0 (5.10)

where, in deriving the equation, 7 = g has been eliminated through the use
of (3.25). This equation tells us that for a monatomic gas (y = 5/3) the
equation reduces to equation (5.9) and further, that the factor 5/6
appearing in the generalized Fourier law (4.13) is to be interpreted as

v/3(y - 1) in the case where the gas is not monatomic.

It should be remarked that equation (5.9) (and eg. 5.10 as well) is
written in terms of the "pseudo" pressure p, so that it is ncot in perfect
conformity with the turbulent Navier-Stokes equation (5.6) that is described
in terms of the "genuine" pressure 7T and has a form easier to understand
in connection with laminar cases. The parallel expression for the energy

is feasible by introducing the internal energy per unit of volume:
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. . L
E = 5 P 5 T + 2p Ri,i (54 11)
Then equation (5.9) takes the form
> |1 n3 5 fﬁ?m~ Ti .mi | VN1 1
-a—-——l+E +-2 (11 + (E+7) +—2 [(p..)oo += R T2
t [2- p ij szz P [o 1j'NS P 1,3
5 (1,2)
+ . - =0 5412
Q) p *+ 55 By (5.12)

This expression is apparently consistent with that of (5.6) and also with
the laminar case: It consists of physically identifiable terms provided
that we interpret E + 7 as the enthalpy per unit of volume. This obser-
vation allows the following interpretation for the turbulent gas. Turbu-
lent flow of an ideal gas, in its average description, can be considered
as an equivalent imperfect gas with thermal and caloric equations of state
given by (3.26) and (5.11), respectively.

5.2 Essential Difference Between
the Two Fcrmalisms

As we have seen above, the kinetic and macroscopic methods have led
to the same eqguations of turbulence so far as the lowest order in corre-
lation terms is concerned. However, it seems to be equally important to
stress the difference between the two formalisms with regard to the appear-
ance of higher-order correlations, because this point proves to be the
esscntial feature of the kinetic-theory formalism that is not to be attained

by the conventional formalism.

First of all, let us recall that the classical turbulent corrections
to transport relations (4.14) and (4.15), which are exact within their
regimes, include triple and quadruple correlations, respectively. These
have their origin in the terms ?3i3j and ?Sigj in the Navier-Stokes
and the energy eguations, respectively. On the other hand, TNS equation
(5.6) and turbulent energy equation (5.9), both of which are consequences
l{(l?l)

1,)]
R§2’l) through generalized Navier-Stokes and Fourier laws (4.12) and (4.13),

of the kinetic theory, include only double correlations and

respectively. It can be shown easily that the one-particle equations,
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namely, the Navier-Stokes and the energy equations of fluid mechanics,

should not include correlations higher than double correlations, in

principle. In other words, this is true independently of the multi-par- i
ticle stage at which truncation is effected. To prove this, only two facts

need be remarked. First, a general property of the BBGKY hierarchy is

that each hierarchy equation concerns only two distribution functions of

consecutive hierarchies. 1In fact, the equation of each hierarchy has the

form

Dfn = an+l (5.13) )

where D and J are certain streaming and collision operators,

respectively. For n =1, the equation reduces to equation (2.3). The

other fact which is necessary is that triple correlation A% is directly o
connected with a nonreducible part of the three-particle distribution b

function

s 2 [f@ - e[ Be) - s B - e

in such a manner that

A 2 r ~ A - = A
\ / A - ah
A AB AC J a(z)b(z)c(z)xIIIdv dd dav

therefore, nonvanishing terms of A® are directly cornected with nonvan-
ishing $TII’ and do not appear in equation (5.13) for n = 1. Thus, we
conclude, as a general rule, that terms of order A\

|

do not appear in any
of the moment equations stemming from equation (2.3). Actually, formulas
(4.12) and (4.13) do not include such terms although no approximation to
rule out higher-order correlations has been ceffected. These retain a level
of accuracy comparable with fornulas (4.]14) and (4.15) of the conventional
expressions where triple and quadruple correlations intervene in unavoidable

fashions.

The above statement does not imply, however, that formulas (4.12) and

(4.13) are not at all affected by the form of the function (assumed

III
or solved). It does affect them implicitly through the double correlations
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(1,2)
o 1) i
with n = 2, where the term

Rﬂl’l) and R whose actual forms are to be solved from equation (5.13)

fIII appears on the right-hand side of the
eqguation,

6. CLOSURE EQUATIONS

6.1 Comparison with Conventional Closure

M. Rubesin12 first pointed out the close similarity between the system
of equations (5.6) and (5.12) and a system involving mass avcraging,l3
Mass averaging is an artifice which formally eliminates density fluctuations
from the momentum and the energy equations, thereby enabling application
of the modeling conventionally used in incompressible turbulent flows. In
the present formalism an equivalent artifice is forbidden by the structure
of the theory. Here, all the fluctuation terms appearing in the one-par-
ticle system emerge fraom a single function ¢ as ceefficients of its
expansion, and the governing equation focr ¢ 1is alrcady at hand (eq. 2.10).
Therefore, invoking a special kind of averaging instead of the straight-
forward one we have employed would make equations (3.25) and {3.14) over-
determined. For the same reason, it would be redundant tou introduce
1,1)
=e of
] 1,3
of (4.13), such as, for example

cpecial heuristic arguments concerning the Reynolds stress R(
(4.12) and the turbulent heat flux R(i’z)
the mixing length concept and a turbulent Prandtl number of unity. The
evolution of these quantities hinges totally upon solution of the partial
differential equations in (?i?,t) space derived from kinetic equation

(2.10) by the moment expansion.

In the case of incompressible flow, these equations have been worked
out in reference 4, There, the e1qiﬁions are shown to be separable into
two groups of variables (X,t) and (&,t), and thereafter reducible to two
Orr-Sommerfeld equations with different physical implications. The gene-
ralization now at issue is two-fold; inclusion of compressibility which

R(J’O) and inclusion of thermal-fluctuation

allows for a nonvanishing
effects which give rise to inhomogeneous terms in the correlation equations.
The two-particle roment equations including these generalizations are

developed in what follows.
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6.2 Two-Particle Moment Equations

L general expression for the moment equations of equation (2.10) has
been derived by the authors (eq. (65) of ref. 1). The kinetic equation,
after being multiplied by a moment function Q(z)ﬁ(%) and ‘integrated with i

—_— i

respect to v and ¥, is written in the form

A ¥ R At D8 , Da\ o e =
<<15%* T Bt POCEgly Tiog  FESER TS <“E = B?) VS Skag ot :
. N -~ L
e —\da — A W(Z ~
vy i SN T :

- N

_<<[[6]]af(%)w(z,i>\/. = é[?{ - k|G (6.1)
(N i

—

with

G %</ {_ [EI(Z),’_J‘(Z)]] - [u(z) +q(%)] [[B(z)]]
s [L‘»(z) +r‘--(%] [[a(z)ﬂ}fII(z,E)>> (6.2)

where the following abbreviations are employed:

OO IR AR R EEC LA

Bz _ oz, a(mk/,“)z X 5(lﬁk/5)z D _d ™
) oX) ckk > Dt 't pooo%

b

It may be relevant to point out here that term G on the right-hand side
of equation (6.1) gives the effects due to thermal agitations and that the

term is nonvanishing unless Lhe product Y is a summational invariant as
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well as a and £ themselves. For example, the two-point fluid-dynamic

equation describing momentum-momentum correlaticn is subject to an inhomo-
genesous term ascribed to thermal agitations. These situations are actually
the case in the following set of equations which exhausts the whole range

of possib. choices of a and P when both are summational invariants:

(0,00 . ar‘l:0 3gl0.1)
SR iy r Ly 3 558 6.4
Bt ax - % Voo
r ox
r ¢
(1,0) (2,0)
o o w0 T oS YoMy R S5, 9t 3 (1,1)
ax. | 3 ER t % T35 iy
Dt i s ox ¥
S
(1,018 5\ & 40,0) b £ E)
+ R ’é_—xs(—b—>+R o (6.5)
(1,1)
&R iL

9. J1,(2,1) "4 (0 1)] S i (2 1), o, Bl 12,23
+ ‘_‘R + C R 2 + —r- ’ + —A——’R ., ’
Ot axi [3 L L axs is,% 9% T

g G NY ) RIS S ¥ ) PR o o § I B i ) W & i | N O i )
2 o i,st Lyl id% ~
S X X

(Y e (L5000 .00 M) = > ok 9
Dt(p> LA DE\ 3, = 6B §(x - X)p(p; )y (6:6)
(2,0) (0,0) ®
DR s 2 [0 SCzR(l,O)] : Bilady e s
Pt *s R 8 9% 8 p IX
S

a

S (0,0) m m
+ 2| _ts ,(2,0) (2,0) _ R 9 _(_s (1,0) D
[ B T Tis p Pes| x P 2R . PBE\ D

a2 0 o(1,0) _
3c 'a—x"Rr = 0 (6.7)
r
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(2,2)
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S

(2,3) 25(2,1)
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iy
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S

Sulil) Yo ) L, | st RS g

p axs 8 axs 3 st,

(0,2) m 8
i - gl ) s st ,(2,2) (2,2)
__—p—pstj §'><—_<T>+2[TR s

4 st
B r(2:0) 5 ¥r 5 0 W 2R(l'2)p£<lk) + 2R(2,1)2_<m_r>
L T oA gk ¥
X
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X X
&
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r(TK) _ p(T.K) (2 (6.10)
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In the above equations we have also employed the following express .ons:

L(2,K) - (2,0 |1 g p(2,K) (6.11)
13' - ljf 3 7ij
r(i'm = R(3 K) (6.12)

2 (K)

where the moment corresponding to the second variakle is a summa-

tional invariant. Equations (6.4) through (6.9) are regarded as the evo-

R(J’K) between summational invariants.

lution equations for correlations
As the actual expressions show, these are not closed by tr=mselves, but

include correlation terms involving the r's associated with nonsummational
invariants. In deriving terms on the right-hand side, viz., terms of ther-

mal agitations, only linear terms in R or € have been retained.

In order to have a closed set of equations we need tu construct equa-
tions for the r's; that is, the fluctuation correlations between the stress
tensor/heat flux vector and summational invariants. To extract the essen-
tial feature of equations governing the r's, an inductive approach seems
to be more palatable than a deductive one. For this purpose we derive

equations governing two correlations of (4.11) and (4.12) for K = O:

og{2:0) 8
ij, 2 ) (3,0 _ %5 3,00 , [ 1,0 (1,00
St ® axs J.Js, 3 s e LR i 6j t B j .18

-2 (1,0) .
3 6iJ'R s ] - 9 ](_2 ;) + c2r(0/0) %R(z'o):l[ ai e
ax_ I/ x5\ e
s
m - m my m,
i spiasll . & B a__+ (2,00 3 (T3}, (2,0 -l
axi p v Ui ax “is -axs p jS axB p

.2 (2,0) 3 (10)n (1,0) (™
3 613 st ax‘s<-b_) R Dt( >+ & j 51?(;))

(Continued on next page)
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m
gii-0) -2—(—54\+ L [R(O'O)p-. + pr.(z.’o)]

m ij ij

_ - »> 2 7,0) _ o(1,1) .1 (1,1)
= -6B 6(x - x)[ppij + rij R i,5 + 3 5in .5 (6.13)
(Concluded)
3,0) )
SDr(.'
i, 0 [7cst3'°> + .,<2v°>5.] R IE Y '
Bt 9 a is is axs i,s

m
(3,00 2 [Ms (2,0) (2,0)] p(™s
* 2ﬁst, 9x,\ p i 6is+2Ris Dt\ p

_ 10 o(1,0) 3 'ﬂg> e 9], 5o2p(0,0) 3c2 | o2 @ (2,0)
i P axs axi axs is

48| _(3,0) (0,0) (1,0) - * 2 (3,0)
+ -—m—[pr i + 2R qi + R B pis] 4B §(x —Xx) [ZinR §
(2,1) (2,1)
- 2R+ Ris's] (6.14)

These equations are simplified by imposing an order-cf-magnitude estimate

r ~ OlR® RE) (6.15)

which will be proved & posteriori. 1In fact, retaining only terms of

O(1,R/¢) and leading terms of delta function in the eqguations, we have
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(1,0) (1,0) (1,0)
(2,0) 2 (R Nl 2, 3 (®s
ij H 3xj p X p 3 'ij axs p
(0,0) (210) o
R R - -
- > plj (pij)NS + 3 (p”)NS 5 §(x - x) pp:l_J
(1,1) 1 (1,1)f _ > _ 2 .
- R 03 + 3 Gin B m §(x x)(pij)Ns (6.16)
(3,0) _ A g [c2r(2:00)  2p(0/0)
4 -7 X o - ) Q - (QL)F
(3/2)Rc? °7i /
r(1:0) -
s - . .
+ —— 3(pis)Ns 1 = 8 (x x)(ZPQi¥ (6.17)

These are the two-particle versions of the Navier-Stokes and the Fourier
laws generalized to include effects due to thermal agitations. These

results also assure that postulate (6.15) actually holds. It should be
remarked, however, that not all terms in eguations (6.16) and (6.17) are

equally important. For example, when (6.16) is substituted for ri?’o)

in
equation (6.5), all the terms except the first on the right-hand side of
(6.16) find respective terms that are larger by the factor ole” ') or
(XR-J). On the other hand, there are no terms to compare with regard to
the first term of (6.16), therefore, this term alone should be retained.
This is also the case with eguation (6.17), as well as with the expressions

(2,K) (3,K)

for general riJ Having carried out the simplification,

and r

we are led to the following equations:

(1,K) (1,K) (1,K
. /R ks e
(2K o8 i it J -2 2 (—S— (6.18)
1] .Xj (9] (in f L) € s Y |
4\
(3K o o (%1<(2'“)) (6.19)
* (3/2)Rc® “%i F



The connection of these expressions with the Navier-Stokes and the Fourier

laws of transport process should be sclf-explanatory.

6.3 Interaction Equations

Equations (6.18) and (6.19) express fluid-dynamic correlaticns between
nonsummational quantities in terms of those between summational invariants;
therefore, together with equations (6.4) through (6.9), they form a closed
set. For incompressible flows (p, a material constant), terms incl uding
the density fluctuation disappear [R(J’O) =lﬂ , and the system reduc=2s to
a closed set of equations (6.5, (6.6), and (6.8) for K = 1. Eliminating
r(l’z) from the latter equations, we have equations gove.ning the inter-

action of turbulence with thermal agitations in incompressible flows;

o (1s1)
—al = (6.20)
ox,
i
ou, ou
B - v(v? + 09 gidald ;& R(i’lﬁ) t ok giiall
1,/ 9%y s b o%y igk
1 o (251 J (1,2) Pl , — =
sl [ 2 —x— y === 5 - o :
3 [ox; B & ox L v 0 - X1(p; iy {evel)
where uy is the mean velocity and is identified with ,—Jni in this

situation. Equations (6.20) and (6.21) differ from the correlation equa-
tions of the previous thcory4 by the presence of the term with thc delta
function on the right-hand side of (6.21) This term, lacking in the BBGKY
formalism, provides the only mechanism for generating correlation in a
perfectly quiescent shear flow. Also, this term, which is ascribed to the
effect of thermal agitations, is seen to be very small becausc of the
presence of the factor n °, which is of 0(10° ) under normal temperature
and pressure condition. Under realistic conditions, therefore, this effect

in initiating turbulence is masked by cther macroscopic mechanisms, such

as noise or free-stream turbulence. Taking the thermal motion into account
makes sense only in evaluating the maximum transition I.-ynolds number _n a
shear flow. This evaluation has been attempted for the Eiasius flow only

qualitatively in reference 4, because the form cf thermal agitation cffects
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.. s not known at that stage. 1In this regard, equations (C.€) and (6_.8)

C(: gf particular interest, These equations governing R{i:})(x,ﬁ) and

. 7% (x,%) which reduce for x = X to the Reynolds stress and the turbu-
1e;t heat flux, respectively, quantitatively describe their nature as
mechanisms driving the shear stress and the heat flow at the moulecular level.
in principle, these eguations allow us to determine evolution cf the
Reynolds stress and the turbulent heat transfer beginning with fluctuations

at the molecular levei and ending witn fully developed turbulence.

7. MACROSCOPIC DERIVATION OF ”
CORRELATION EQUATIONS
A we have shown in Secticn 5, the one-particle equations for a com-

pressible tuvkmienct flow which were originally derived on the basis of
kinetic theoxry, could be derived alsc from cthe phenomenological equations
of Zluid dynamics. Therefore, it might well be expected that our two-point
equations, viz., equations (6.4) through (6.9), (6.8), and (6.19), should
similarly be interpreted in terms of fluid-dynamic equations {(5.1) through
(5.3) governing "fluctuating" guantities ?, 8, and 8. We note that these
equations are c dered as deterministic only in the sense that they have
as many differen. solutions as number of different choices of the initial
values [?*5);7(Sq , (s: 1,..,N) at the molecular level. Therefore it
would be more realistic to categorize the equations as stochastic because
specifying 6N initial values is not practicable. Then, transition to the
deterministic scheme of gasdynamics is effected through averaging ac various
hierarchy levels, the lowest of which has led to the one-particle equations
{(5.6) and (5.9). In order to construct the two-particle hierarchy out of
the stochastic fluid-dynamic equations we prcceed as follows: 1let all the

fluid-dynamic correlations be deccmposed in the form

(J,K) _ (@) = aK) T . B
Rij..,lm.- fq ._‘(x,,)q'm“(x,))d (7.1)

This expression being substituted in equation (6.6) we have, except for the

terms of thermal agitations,



Dq = . 1
jd)‘ qi(l) S 4 = \%‘ gLl 4 c’qw» = qéi) il
X /
)

Dt 9 axs
1 3 L 2
+ qé ) _:_.(7%> + q(o) g%-(ig>l + (terms with x++3%
X, \p pJ i
and i<+>2 int:erchanc_:;ed\K =0 (7.2)

| i

First we note, in view of equations (7.1), (3.2) and (1.15), that

qi(“j”__(?{,n) =ch:pi(‘;)” L dv (7.3)
we have, then, from (3.12),
0
q( l - A N
qél) = am; - pimy Af $ (7.4)
1 (2 2
3 ( ) = p - c o /

With these linear relations for fluctuations, equation (7.2) is written in

an equivalent form

7 (1)a  , ~(1) _ !
ﬁqi Li f q‘l Li> d» = ¢ (7:5)

\
where LJ. has been defined by (5.2). By a similar procedure we can show

that the whole system of correlation equations (6.4) through (6.9) is simplv

cquivalent to

10



S : fw Lo+ AQbLQ =0 (a,3; 0 through 4) (7.6)

with
Aw_ = Ap A
_ =1 . ;
Aw, =Am, - p m Ap 7.7)
Aw = Ap - c° Ap
4 /
A set of equations f1 = 0 and Su* = 0, consisting of 5 and 15 indepen-

dent equations, respeétively, forms a complete set to determine 20 unknowns,
namely, p, m, or w.s P, and the lowest 15 components of the tensor R(J’K).
For incompressibie flows the equations with component « = 4 (the energy
(O,K)( = 0)

are not considered as dependent variables; accordingly we have 4 + 10

equaticn) aere deleted. On the other hand, ‘( = const.) and R

unknowns and the same number of equations.4 If, further, the flow is homo-
geneous and isotropic, the first set of equations turns out to be trivial,
whereas the second set is equivalent to the Karman-Howarth equation

describing the final stages of decay.l4

Summarizing, the closure problem of the compressible, shear turbulence
equations reduces, under the assumption of ternary molecular chaos, to
solving equations (7.€) in conjunction with (4.3) through (4.5) supplemented

by (4.12) and (4.13). These two systems are coupled through only two

(1,1) (1,2)
b}

equations. Despite their seeming complexity, the closure equations may be

variables R which inte:rvene in the latter groups of
solved by the method of separation of variables in (§,t} and (?,t) as is
inferred from their rearranged form (7.6). The practicability of this

4
method has been ensured in the case cf incompressible flows.  Obtaining

solutions, however, is beyond the scope of the present report.

Nielsen Engineering & Research, Inc.
Mountain View, California
February 1976
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TABLE I

pHYSICAL IMPLICATIONS OF r(TK) wor (7,K) £ (2,2)

Expansion Incompressible . ;

Coefficients Flows Physical Meaning
(0,0) ; : .

R 0 Density-density correlation
(1,0) ,

RS 0 Turbulent correction to the mean
velocity as distinguished from
the mean mass-flux density divided
by the density (cf. eq. (35))

“Lgidy L) N i shi ideai £ 54
i3 onvanishing Reynolds stress (cf. eq. (54))
(2,0) , . :

R 0 Turbulent correction to the mean
temperature as distinguished from
the pressure divided by the density
(cf. eq. (36))

-1 (2)1) 3 s * . 3

P "Ry Nonvanishing Trrbulent heat f£lux density (c£,
eq. (57))

(3PR) 2R(2,2) Nonvanishing* Temperature-temperature correlation

* . . . -
But has no practical meaning because the temperature 1s a redundant
variable in incompressible flow equations.
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