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TRANSIENT EFFECT OF LUBRICANT ON

ELASTOHYDRODYNAMIC FILM THICKNESS

BY K. L. WANG and H. S, CHENG
Department of Mechanical Engineering
and Astronautical Sciences

Northwestern University
Evanston, Illinois

SUMMARY

The inlet solution of Elastohydrodynamic lubricated rolling contact problem
was obtained considering lubricants with transient viscosity. The effect of
the viscoelastic retardation time of lubricant on the center film thickness
was investigated.

1. The effect of transient viscosity in response to a sudden pressure
was found to be insignificant in determining the film thickness in elastohydro-
dynamic contacts.

2. For the transient effects to become important in film thickness cal-
culation, the retardation time would have to be at least three decades higher

than those suggested by Harrison and Trachman in reference 9.



INTRODUCT ION

In lubrication of concentrated contacts such as rolling-element bearings,
gears, and cams, it has been found by recent work on elastohydrodynamic (EHD)
lubrication that the contacting surfaces are usually separated by a con-~
tinuous oil film., The level of this film thickness in elastohydrodynamic (EHD)
contacts can be predicted by EHD Theories developed by Grubin (ref. 1), Dowson
and Higginson (ref. 2), Archard and Cowking (ref. 3), Crook (ref. 4) and
Cheng (ref. 5). Similar to the hydrodynamic theories in journal bearings,
the minimum film thickness in EHD contacts was found not only to decrease with
load and increase with speed and shear viscosity but also to be affected
strongly by the pressure-viscosity dependence of the lubricant. 1In fact, it
is because of this drastic increase in viscosity at high pressures, that
contacting surfaces are separated by the hydrodynamic action of the lubricant.

With regard to the accuracy of predicting the film thickness, the present
EHD theories is only limited to moderately heavy loads and moderately high
speeds. Recent work (refs, 6 and 8), have shown that there still exist large
discrepancies between the isothermal EHD Theories and X-ray experiments for
heavily loaded contacts. The inclusion of heating effects in the inlet of
EHD contacts (ref. 7) accounts for some of the discrepancies, but the thermal
theory does not predict a load dependence as strong as that measured by X-ray
experiments.

In searching for other possible reasons for this discrepancy, Bell and
Kannel (ref. 8) suggested that the use of pressure-viscosity coefficients based
on static measurements is invalid, because the increase in viscosity due to
pressure rise in the high speed and heavily loaded cases may not behave in

the same manner as measured in the static experiment. They developed a



Grubin-type inlet EHD theory assuming a short time-delay in the rise of viscosity
with pressure. However, in their theory the selection of the time-delay con-
stant is completely arbitrary, and what rheological mechanism governing the
time~-delay constant for a particular lubricant has not been studied.

More recemtly, Harrison and Trachman (ref. 9) proposed a Transient
pressure-viscosity model which enables one to predict the effective viscosity
in the contact as a function of time. Using this theory, they have shown that
the calculated effective viscosity as a function of rolling speed correlates
very well with that measured by Johnson and Cameron (ref. 10) in the friction
experiments.

The object of this work is to incorporate Harrison and Trachman's tran-
sient pressure-viscosity model into the isothermal EHD Theory developed by
Cheng (ref. 6), and to ascertain whether this transient pressure-viscosity
effect will have a strong influence on the film forming capability in heavily

loaded EHD contacts.



TRANSIENT VISCOSITY

Doolittle's Empirical Relation

Viscosity is a measure of fluid resistance to deformation and it depends ¢p

the state of fluid. Doolittle (ref. 1l) adopted the idea that shear viscosity
depends on the free volume of the fluid, which is defined as the free volume is
the space when the liquid is expanded to a state from the state of absolute
zero temperature, If Vo is the specific volume of liquid at absolute zero
temperature and V is the specific volume at normal state, then the relative

free volume is defined as

f=—202 1

By performing a series of experiments, Doolittle found the following

empirical relationship between viscosity and relative free volume,

N, = A Exp(B/€) @)

or

1n ﬂs =B/f + 1n A 3

where A and B are material constants differed for each different liquid and B
is usually very close to unity, This simple relationship will be used in later

analysis to calculate the viscosity for a given state of free volume,

Free Volume Viscosity and its Relation with Shear Viscosity

The liquid structure can be interpreted by assuming that it is composed by
a large number of crystal-like group of molecules, These groups of molecules
undergo continuous breaking and reforming. Also, the atoms which should be in
the neighborhood of some other atoms could be missing and thus produce a hole

in that plate. The presence of holes adds an additiomal structural contribution



to the volume response of liquid when pressure or temperature is changed rapidly.

If the pressure or temperature is suddenly changed, the liquid volume will under-

go contraction or expansion and ali molecules will rearrange themselves and pro-

ducing more holes or filling up some holes., The latter process takes time to

reach a new equilibrium state. By means of this structural relaxation process,

the state of liquid after changes can be determined only when time scale is given.
In order to describe this time-dependent behavior of liquid volume change,

the following two simple models (Fig. 1) are used.

Model A Model B

Fig. 1 Models for compressional viscoelasticity

Model A is a generalized Maxwell element with one relaxation time constant
and model B is a special Kelvin element. Model A is convenient to correlate
with experimental results and model B is good for later mathematical analysis.

In model A, when a constant deformation Yo is imposed, the stress p(t)

follows



p(t) = [K_+K, exp(-t/m) | v )
where T = - is called relaxation time and in which Tb is the volume viscosity,
2

K, is the difference of instantaneous bulk modulus K and equilibrium bulk

modulus K .
o
By setting t = 0 in the time dependent modulus in equation (4), one can
easily get the instantaneous bulk modulus K, = Ko +K,. When t = o, this time
dependent modulus becomes the steady bulk modulus Ko as can be seen in equation.
In model B, if a pressure P, is imposed at time t = 0, the volume creep

¥(t) can be written as

v(t) = {%mf %; [1 - exp(-t/;)] } P, ()

T is called retardation time, defined by T = ol where ﬂf is the free-volume
£

viscosity and K. is the free volume bulk modulus.

£

The instantaneous bulk compressibility %— can be obtained by setting t = 0
[o2]

in time dependent bulk compressibility of equation (5). Also, the reciprocal

of the steady bulk modulus is equal to %— +-%f by simply inserting t = « in
® £

equation (5).

A comparison of the modulus between two models yields

1 _1 .1
¥ " tx (6)
o © f
K, = K +K, N

Apply oscillatory bulk deformation and pressure to both models, one can
get the complex bulk modulus as a function of frequency.
For model A

iwT

K=K + iw) = —_L
Ry + Ky(iw) = K+ K, 3=

€))



For model B

i _1 . 1
K- Km+Kf(1+ 107) ®
relate equation (6) and (7)
K K
£ -]
L -2 (10)
Ko K2
relate equation (8) and (9)
2
~ /Km i
nf—nv\k_;) (1)

Thus, there are two fixed equations (equation (10) and (11)) governing
the relationships between the parameters of these two models.

By measuring the propagation velocity and absorption coefficient of ultra-
sonic waves propagated through liquid, Litovitz and Davis (ref. 12) obtained
a method for calculating volume viscosity ﬂv. They found that volume viscosity
is direct proportional to shear viscosity ﬂs, and it has the same temperature
and pressure dependence as the shear viscosity. Since free volume viscosity ﬂf
is proportional to volume viscosity ﬂv for a given state of liquid by adapting

equation (1ll1l) where assuming the ratio X is known, it can be concluded that
2

the free volume viscosity ﬂf is proportional to shear viscosity ﬂs.

Transient Response of Shear Viscosity to a Single Pressure Step

A method originally derived by Kovac (ref. 13) for solving bulk creep
behavior will be used here to calculate the transient shear viscosity of fluid
after a finite imposed pressure step. Following his analysis, liquid having

will change to final equilibrium volume v, if there

initial specific volume v 2

1

is enough time for change. With given value of P, the governing equation by

using model B is



v -V, = le/Ko (12)

If the instantaneous volume change is vy - v, which is equal to le/Kw, equa-

tion (12) can be written as

(v1 - vi) + (vi - vz) = le/Km-+ le/Kf (13)
it follows
v, =V
A 2 g_ : (14)
Y1 £

The time dependent part of volume change in model B can be solved from
the differential equation considering force balance in parallel spring and

dashpot combination

n
_ _fdv
P = v o K (15)

dv _
-a—t-—V -V (16)

for a finite change of pressure, TE can't be considered as a constant since
ﬂf is a function of dependent variable v. The governing equation becomes non-
linear and it is difficult to solve, However, it was assumed in a previous
section that free volume viscosity T& is proportional to shear viscosity TE

and both depend on free volume in the Doolittle's empirical equation
In TE = 1n A' + B/f (17)

where constant B remains the same and close to unity. Define a parameter s

such that

s = 1n (_g) = B(1/£, - 1/) (18)



where f2 is the final relative free volume for imposed pressure P and TE is
2
the final equilibrium free volume viscosity. Equation (17) can be written in

terms of parameter s.

exp (-s) - _ 4t
s(l - s fZ/B) ds = - Ty (19)

where T2 is a retardation time defined as
Ty =z 20

and it will be evaluated at final equilibrium state. The term sz/B in equation
(19) is much less than unity so that (1 - sf2/B)_1 can be expanded and equation
takes the form
exp (-s f2 -dt
£xp(8) 45 + exp(-s) == ds = St (21)
s B 72

For a given value of P, this equation can be solved numerically for s and by

the relationship

'_ﬁﬁ
Il

exp(-s)
T, P

thus

Tg ng exp (-s) (22)

It will give the time-dependent transient shear viscosity for liquid subject

to a single pressure step.

Transient Response of Shear Viscosity to a Continuous Pressure Change

In EHD problems, the lubricant moving through the gap between two rollers
will experience a continuous pressure change from atmospheric pressure up to

4 x 105 psi within a very short time, Since this externally applied pressure



is a continuous one instead of a instantaneous pressure jump, the analysis used
in the previous section cannot be used here directly. However, by approximating
the continuous pressure input as a series of pressure steps as shown in Fig. 2,
the previous method for solving the transient shear viscosity can be used re-
peatedly and successively within each single step. In this case, equation (21)

can be written as

exp(-s,) f.
1 4o 4 oexp(es,) 42 as, = - 4E (23)
s, J J B 1 Tio
i J
and
=T exp(-s.) (24)
Sj sj2 J

where variables with subscript j means it belonging to the jth pressure step.

Pin

Py

v

j-1j j+1 X
Fig. 2 Approximating the Pressure Distribution by Pressure Steps
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s. for pressure step j varies from initial wvalue sjl to final value sjf' From

relationship

Ty T T 9

= J2Y _ j2 j-1,

s:q 1n (.nS > 1n <,nS T > (25)
j1 j-1 51

»2

since viscosity is continuous between each adjointing steps

m =" (26)
51 %3-1,f
Equation (25) becomes
n il
5.y S: 1.2
Si1 = In (ﬁ—l————> + 1n <?EJ~_J_> @7n
®j-1,2 j-1,f

= F(Pj’ Pj—l) + Sj—l,f

thus, initial value of sj for jth step can be derived from equation (27) once

Sj-l £ is found in the previous stage. Referring to Harrison and Trachman (ref. 9)

retardation time for most oils can be expressed as a function of the equilibrium

shear viscosity Tg and the pressure as follows

2 50 Tg
T, = < (28)
3.5 x 100 + 9P

for the jth pressure step, it becomes

50 T% exp(a-Pj)

3.5 x 10° + %,

T., = (29)

j2
finally, after substituting equation (27), (29) into equation (23) and approxi-

mating dsj by

n

ds, (30)

ji

one obtains,

11



0.5 x[exp(sjl)(sz + 1/Sj1) + exp(sjf)(fj2 + 1/ij)]

s (31)
T, (3.5 x 107 + 9p,)
i J

(s.. - 8,;) = -
jf jt 50 T, exp (o Pj)

Equation (31) is solved for sjf by using Newton's method.

12



GOVERNING EQUATIONS FOR FILM THICRNESS
In formulating the elastohydrodynamic equations, the following assumptions
are used:

1. The rollers, as shown in Fig. 3, are subject to pure rolling.

2, The deformation is purely elastic,

3. The Hertzian width is much smaller than the width of the disks and
the side leakage is neglected. Also, the Hertzian width is small in
comparison with the disk fadius so that the deformation can be cal-
culated by the half-plane solution.

4, The lubricant is isothermal and the inertia of lubricant is negligible.

Equations governing deformation and pressure are

2 %2 *g
* - -
h=h" X2 ﬂg. L 1n -‘%—_3;?" P(E)dE (32)
* k3
dp _ h-h p/op
E'E =12 ﬂsU < h3 > (33)

In non-dimensional form, above two equations become

P
d / - -
T- {8) v, B2l (34)
dx H H '
167, 2 2 ;f
r g B
H=1+—a (3 - Tlr ; P(Dln Lf—f—*l— d§) (35)
H S g -x"|

The dependence of the equilibrium viscosity on pressure is assumed to be
of the Barus form
TE = T exp(oP) (36)
2 o

it follows from Equation (24) that transient viscosity Tg becomes

13



ﬂs = 'no exp(cP - 8) (37)

Density change as a function of pressure is assumed as follows:

cP 3\
o= ¢, (1+7%47) 38)

where po is the ambient density, ¢ and d are constants from ASME Report (ref. 14).

Equations (34), (35), (36) and (38) coupled with equation (31) can be solved

by numerical method outlined in Appendix B and C.

14



RESULTS AND DISCUSSION

Typical numerical results were obtained for a run with a load parameter
EHZ equals to 0,012 and.non—dimensional center film thickness Hc equals to 10-5.
A typical value of G(G = 3000) is chosen to illustrate the transient effect
of the lubricant. The resulting speed parameter U for this case is equal to
1.0307 x 10_11 which is very close to the value obtained by Cheng (ref. 6)
without considering the transient viscosity. The results of inlet film thick-
ness and pressure distribution for this run are plotted in Fig. 4. The ratio
of transient viscosity to equilibrium viscosity as a function of the inlet
position is plotted in Fig. 5. As can be seen in this figure, the viscosity
ratio remains very close to unity over most of the inlet region. This shows
that for typical conditions encountered in an elastohydrodynamic contact the
response of lubricant viscosity to pressure is almost immediate in the inlet
region. Since the film formation of an elastohydrodynamic contact takes
place almost entirely in the inlet region, the transient characteristics of
viscosity produce little effect on film thickness. However, in the center
region, where the pressure is high, the lubricant viscosity does not respond
to the pressure rise immediately. Since the frictional force in an EHD
contact is largely governed by the viscosity in the center region, the tramnsient
effects become significant in the EHD traction calculation, as shown by Harrison
and Trachman (ref. 9).

In order to determine at what level of retardation time T, the lubricant

2
viscosity effects will become significant, a set of arbitrary multiplication
factors M = 102, 103, 104 and lO5 is introduced for T,. Results for load

2

from 0.003 to 0.012 and normalized center film thickness Hc

parameter PHZ’
from 10-6 to 10"5 are shown in Table 1 and also are plotted in Figs. 5(a)

= 2
to 6(d) as a function of the rolling speed U. It is found that for M = 10

15
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Table 1. OBTAINED NUMERICAL DATA

H7'c = h*/R _I_’HZ = phz/E’ , Values of Mu1t3iplication Factor M . 5
10 10 10 10
0.003 5.022901x10™ 12 5.003904x10" 1% 5,885855x10"1%  1.087195s107 1!
0.00001 0.006 7.212976x10" 1 7.455977x10" % 9.650420x10"1%  2.136174x10711
0.012 1.035142x10" 1 1.101366x10" 11 1.701148x10711  4.167230x107 11
0.003 1.860423x10" 12 1.867464x10" 2 2,011805x10"%%  3.008025x107 12
0.000005 0.006 2.717763x10" 12 2.755632x10" 1% 3,190001x10"*2  6.026983x10” 12
0.012 _ 3.956260x10 1 4.078289x10" 1% 5,167988x10"1%  1.183219x107}!
0.003 ’ 4.991350x10" 13 6.983666x10" 13 5.104673x10°13  6.361610x10
" 0.000002 0.006 7.454592%10" 13 7.487535x107 13 7.915600x10°1>  1.167518x10712
l 0.012 1.097072x10" 4 1.105953x10" 12 1.230753x10" 12 2,195556x10" 12
0.003 1.835414x10" 1 1.830617x10° 2 1.ssssuax107 2.055017x107 13
0.000001 0.006 2.,788145x10™ 13 2.796191x10° 3 2.861793x10"1%  3.573406x107 13
0.012 4.038028x10" 13 4.066247x10° %> 4,253334x10" 1

6.173326x10" -




Figure 3 - Geometry of lubricated rollers.

17
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the film thickness Hc is not reduced significantly comparing to that without
considering the effect of tramsient viscosity. Significant reductions occur
as M increases beyond two decades,

The ratio of center film thickness calculated with the transient effect
to that without this effect are plotted as a function of multiplication factor
M in Fig. 7. It can be seen that significant reduction of film thickness
begin to occur when the multiplication factor M approaches 103. It is somewhat
unlikely that the level of retardation time of the lubricants under typical

EHD condition can reach values several decades higher than those predicted

by Harrison and Trachman (ref. 9).

24
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SUMMARY OF RESULTS

The inlet solution of Elastohydfodynamic lubricated rolling contact problem
was obtained considering lubricants with transient viscosity. The effect of
the viscoelastic retardation time of lubricant on the center film thicknesg
was investigated.

1. The effect of transient viscosity in response to a sudden pressure
was found to be insignificant in determining the film thickness in elastohydro-
dynamic contacts.

2, For the transient effects to become important in film thickness cal-
culation, the retardation time would have to be at least three decades higher

than those suggested by Harrison and Trachman in reference 9.
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APPENDIX A

NOMENCLATURE
semi-major axis of an elliptical contact
constant in Doolittle's relation
constant used in relation for free volume viscosity
semi-minor axis of an elliptical contact
constant in Doolittle's relation
coefficient in density function

coefficient in density function

-2 %
16 PHZ/H

—_ %
48 T/ 2

1 - vz 1 - vz
1 1, 2y
27 E, E,

Young's Modulus for rollers 1 and 2

fractional free volume

equilibrium state fractional free volume
equilibrium state fractional free volume for pressure step j

aEl

film thickness

inlet film thickness at x = ~b
dp *
reference film thickness at ax - 0, h = hc

center film thickness at x = 0

center film thickness for the case without transient viscosity effects
minimum film thickness

n/h”

*
h /R
hc/R

<hc)s/R ’8



jl

jf

grid point numbers for the x coordinate

grid point numbers at x = X,

iteration number

complex bulk modulus

used in Eq. (h), (i) and (j)
low frequency bulk modulus

high frequency modulus

bulk modulus associated with molecular rearrangement of free volume

Kf for jth pressure step

complex relaxational modulus
high frequency value of Kr

pressure

1
Py /E

P/Py,

e

see Eq. (g8)
R1R2/(R1 + R2)
radius of roller 1 and 2

:

In <Tf'2'>

M.

i}

initial value of sj in pressure step j

il
o (22) = In (ﬁ)

final walue of sj in pressure step j

29



al

u1s%

%1

QI

e
1

s

j2

3

time required for lubricant pass through jth divided region
T\o(u1 + u2)

2E'R
velocity of rollers 1 and 2

specific volume

specific volume at zero absolute temperature
initial specific volume

final equilibrium specific volume
instantaneous volume response

coordinate along the film

. d
reference coordinate at Eﬁ =0
coordinate separating the inlet region into two subregions
coordinate separating the outlet region into two subregions

x/b

coordinate at the termination of the film
OLPHZ

pressure-viscosity coefficient

shear viscosity of the lubricant
free volume viscosity

equilibrium state free volume viscosity

equilibrium state free volume viscosity for jth pressure step

shear viscosity for jth pressure step

30



al

equilibrium state shear viscosity
equilibrium state shear viscosity for jth pressure step

inlet viscosity
volume viscosity

density of the lubricant

ambient density

*
density at x = x

u:a/n0
Tb
relaxation time —
K
2
M
retardation time ——
K
f
_ e
Re
T]f.
N 2
Ke.
J

Poisson's ratio of rollers 1 and 2

dummy variable for x

see Eq. (f)
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APPENDIX B
NUMERICAL ANALYSIS
The region interested is the inlet half of the contact zone, which can be
further divided into two sub-regions as shown in Fig. 8. In the first sub-
region, pressure distribution is obtained by direct integration of the Reynold's

Equation with introduced dimensionless function q where

1
q=1-= (a)
equation (29) can be written as
d —% =\
dq _ 48U (In 'T\ ) ( -0 /0) b)
i *2 dp 3
X H H
it can be integrated
— x d(lmn 1) —% —
48 s’ (H-0/p\ ;7
(%) = =55 'r( ( ) dg (c)
12 Ve dp H3

For a given viscosity as a function of pressure, the pressure distribution can

be obtained by solving the equation

- 1
ﬂs (P) = ——— (d)

1 - q(x)
In the second subregion, the pressure distribution can be obtained by

solving the combined equations (29) and (30).

£ R —%
_%——-E- [l+c (’E—-%[ P(E) ln—l-g——:—x—]-d-i>-:p—]=0 (e)
T, dx - E 0
— 2 4 — %9
where C1 = 16 PHZ /H and C5 = 48U/H ~. 1In the discretized form, it becomes
‘i’k = 0.
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¥ = 2k kU _¢li+c 2 .
ko &, - %)) -2
s 1 *x -1
k- =
2
k-2
1 ; 1 rd
1) P.QCk- 3,9) - 2—] )
J 1
j=1,3,5... Pi- 5

These are a set of n equations to be solved by Newton-Raphson Method for PK.

Where Q(K- %,j) are the quadrature formulae for the singular logarithmic Kernel
(ref. 6).
3
1 . 1 . . : :
Qk- 3.9 =3 ) [K (R, 3)+ K _(-1,9)- K (K , D= K_(K_ - 1,1 ] (8)
m=1
where
v
X _ 1 i -
Ky(k,3) = g5 53V, - Vo) - v uj(lnlujl 1) (h)
] ]
) 2v,
i 38,
J
P o ol - :
Ry(k,1,) = 7 (Vg - W) m gt ugpnfug o] - 1) 6]
h|
also
8, =€, - E,
3 gJ+1 g.1
b T
2
u, 3
Vi = —3—2 (lnluj| -3
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_ u.2 u.2 + 2
Vo= =) m vy Ugyp =) (k)
along with above equations, a set of n equations based on n grid points between

- {x {0 can be rewritten again

£

j d
and
TE = T% exp (o Pj - Sj) (m

N
The following are the outlines of numerical procedures for solving the
governing equations:

1. Given a set of H, EHZ’ G values

2. Assume a pressure profile for -« (x (0
3. calculate H(x) for -= {(x (0

4, Calculate density, viscosity for -« & (o

5. Integrate the following integral in the first inlet region
* 401 H- 5 /%
1) = | $dns) B p /oy g%
dp H3

6. Calculate U
* ¢
= _H 2.q\xa)
T 48 I(xas
7. Solve equations (f), (1) by Newton-Raphson method.
8. Check the convergence for pressure, If not, repeat calculating pro-
cedure from step number 3,

9. Final solutions are in the forms of ﬁ, P, and H.
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APPENDIX C

NUMERICAL PROGRAM

The complete computer program coded in FORTRAN IV is listed in this

Appendix for solving the Transient Viscosity EHD problem.
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PROGRAM wANG (INPUTIOQUTPUT s PUNCHy TAPES=INPUTs TAPE6=0UTPUT)
ErDO1
NASA=£EHU  INLET FILM FOK LINE CONTACT FUR |.OAD UP TO 4004000 PSI
DIMENSION DP(64)9A(30932)9C(30) 1SUMA(60) 9K AR(20) +FAC(10)
COMMON P(6D)9H (80) s A(60) yPHLZBAL20) 2@ (60260)2UBA(20) sHSA(20)
COMMON VISD(6u) sLEN(6D) SDEND (60) 1PLUR(2UY 9SA(60) sSMA(60) 20X (60)
COMAQN VIS1(35),yvIS2(35)+vIiS3(3S),VIS(60)
COMMON AFAIPHZOsrSBeUBsEDsENsNRoINN e KF s KUgKR
COMMON P14P2,0PVsBTAsIT,UBG
READ BASIC INPUT DATA
NR=5
ANW=6
READ (NRs 1)
WRITE (Nwyl)
READ (NHRyZ2)NRUN
DO 1090 NRR=] ¢NRUN
READ ((IRsZ) KGy KAy X0y KFe KRy NXERINAVIS
READ(NR9Z2) NS1y i8S29 NS3s NS4s NSSy NSHs NSTe NS8y NS9s NS10
RCAD (iNR92) ITHy 1TFRs IT7E
READ (NRe3) EPSHe EFSPy EPSE
KKF=KF =1
READ (iwe3) (DX K 9K=19KKF)
X (1)-‘-"5-0
DD 99 K=ZeKF
X(K)=x(K=))+DXA(K=1)
RZAD (Nry3) (P(K) yK=19KA)
WRITE(WNWe4) Ky (L)Y K=1? KA)
FPRASP (RA)
p0 106 K=KAWKF
PUK)=SIRT (1 4y=a(r) #22)
RKAZKA=]
TEMMP=P (KA)/PKA
BO 25U K=leKKa
PIK) =TEARSP (R)
PI=3,141593
READ LOADs SPEci) AND LUB, PARAMETERS
KEAD (NH93) (PLU3ILN) s N=l,y B)
KEAD(NR3) (FACIN) 9N=18)
REAQ (HRy2) Nmly NPHgzM
KEADINR93) (Hsilndy N=1se NRM)
READ (MR93) (PHzdA(N)s N=19 NPHZM)
IFINAVIS JEQe L) w0 T0 1nl
READ (NRy3) (VIoliK)9K=1l,31)
WRITE (Liwy2%)
WRITE(Mwy20) (VESI(K)sK21,31)
DO 1g2 K=1931
VIS2(X)=ALOG(VISL (X))
CONT InUc
WRITE (Nwe )
WRITE(NA2) KGy KAs KQs» KFe KRs MKER
wRITE (Nw,83)
WRITS (Nwe2) [THs ITPe ITE
WRITE (NWy9)
wRITE (N2420) ErSreEFPSPy EPSE
2RITE (Nwy,19)
ARITE(NwY29) (A(K) sK=]19KF)
IFtNKER oEQe v ¥ GO TO 9l
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91
92

CALL KERCAL
NS

IF (N3] «EWe 07 GC TO 92

WHITE(NWQII)_ ) _
WRITE(NWSZG)  ((Q(Ked)s J=le KF)y K=1ls KU)
GO 1O 92 -
READ (NR121) (LG (K ) 9 =1 9KF ) 9K=1eKO)

wRITE (NWe12)

WRITE(iN#e20) (PLUBIN) sN=1,48)

WRITE (Nwel3)

WRITE(NWe20) (HSAIN) sN=1eNHM)

ARITE (Nwy14)

WRITE(NWIZD) (Presatin) eN=1eNPHLMID
GO 1900 NPHZ=19yNFHZM
KEADINRIZ) (KAAR (M) aN=1sNHM)
FHZH=PHZZA(NFHL)

WRITE (Nwyl9)Prsd

AFA=ELURBIL) $r-ndn

ED=PLUB(2) #Proused/P]

FL=PLUS (3)®*rrisd¥ 2, /P1

IF(NAVIS JEQe v) GO TO 93
HTASPLUS (%) %2

Pl=pLUs (D) / 1l 3
E2=p L UB(E) /Pnly
pPv=(22~fl) s 3v,
pPva=yrve2ed T
vIs3(ly=ivisZ(e)-v152(1) sarAspPY) sOPVE
VIS3(31)=(VISZ2(31)+nTARDPY =vIS2(30))/70PVv2
Un 1n3 KX=243)
VIS3IIKISIVISZ(R+1)=YIS2(K=1))/DPVP
NSl

TF (NS «FESe 0 ) CF T0 93

wRITE (Nw,25)

WRITE(HNE9Z29) (VISR (K)3K=1,431)

wR1TE (Nay3) ®1, Fz, NPV, DPV2
CO 1530 NHZ1Y HV
L) 933 #=1s4
FACT=pAC{H)
HSH=R5SA (hm)
Ka=<aak tnm)

CRITEA(MWSIR)Y Hus
G=rLus(l)
Cl=lfheusPFrsias Sy
C3Fab ¢ /P S*®R2

Ca=ClsPl

U= (RSo#l 73/ (1,260c8e0 ,68PHZR4s (w0,27)) )52 (10,/7,)
eRITE Cuas23)ysy -
1T=1 ’
CALL ACAL (KO)

NSl

IF(NS) «E@le )} GG TO 199

WRTTE (Mae%S)

WRITE Cywe4) Ky FIK) 2 K=1y KO)

CALL DVD (1grUy24i)
CAl.LL vDIC (FaCTyra)
CaLl DVO (ly Kuslsy o)
US=JEr(KE)

KKA=KA+]
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1
1

VE~NC s

STUP
FORMAT (72H

FORMAT (161
ForMarl(agl
FormaT (7l
FORMAT (/bR
FORMAT (/6H
FORMAT (5h
FORMAT (5h
FORMAT (1gh
FORMAT (&K
FORMAT(TH
FORMAT (BH
FORMAT(7H
FORMAT (9H
FORMAT (5H
FORMAT (8K
FORMAT (4
FORMAT (SR
FORMAT (1xy
FORMAT(SE S
FORAAT(/ B
FOIRMAT (/1N
FORAATC 7

5).
J.3)
Xe1291x9213,6))
H(K) /) )
P(KY »)
KGy &H KAs SH KOs SH
ITHy SH ITPs 51 ITE)
EPSh s1gH EPSP ’
XH(K) )
Q{KeJ) )
PLUB(N))
HSA (V) }
PHZBA (NI
PHZB8=4£13.08)
SUMA (K))
S3A4)
HSU=’EI3.6)
9E13.6)
5.7 "
A [T=s ISy SH UB=,£13,6)
H UBORLIIMN=4EL13,.6/)
B Vislik) /)

FORAAT (/78R VISI (K} /)

FOrMAT (33
END

H MULTLP _ICATION FACTOR FOR TAU 2=+E13,.6)
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117
118
119
132
133
135

141

176

136

CALL OVD(KKAsKUszs 1)
TP=H(KA)=DS/DEIN(KA)

IF(TP LUTelau) GG TO 116

po 115 K=lska

H(K)=H(K)=TP

suma(ly=v,0

00 13% K=leka

IF(K=1) 117,117,118

21 {H(K) =US/DEN(K) ) /H(K)®##3
GO TO 119

213 (HIK)=DS/DENIRY ) /HR(K)#u3
IF(k=1) 133,133,13¢

SUMA (K) SSUMA (K=1) 0+ 5% (X{K) =X (K=1))#(Z1+Z2)¥VISD(K)
22=41

CNMT INUE

SOA=]ei=]l ed/VIS(KA)

Lo 125 K=lska
SH=SHARSUMA(K) /SUMA (KA)
§S5=SA(K)

IF{99=1.0) 1P5ylal,14l

WRITE (Nwsa) (NISUMA(N) sN=1KA)
WRITE (wae&) CGyevISDIN) sn=lekA)
ARITE (tvwa®) Uy LEN(N) 9N=19KA)
wRITE (NWea) (NeriN)sh=19KA)
wRITE (wvw20) US
PK)=PMU(5Qe553)

CALL HCAL {(xu)

NS3
IF(NS3 «Efde y) GC TO 125
KK*=KA=%
WRITE (hiwe D)
ARTTE (Nay%) (KyHIK) s KEKK4yKA)
wRITE (Nxyeh)
wRLITE (MM ea) (Ke FAIK) Y K=19 KF)
wRITE(Nwy16)
WRITE (MAe4) (RaSUNMA(K) 9yK=S] 9KA)
TONTINUE
UB=5GA/ (CICSUMA(KA))
IFU IT oGTe 1) UeS(UB*UBP)®Qe5
N=KO=KhA
NS6

IF(rSeE «EQe y) GC TO 136

wRITE (Nwe3) Cly C3s Cav Ube DSy SRA
WRITH (Nde%) (KeVIS(K)aK=194KD)

WRITE (nNwed) (e VISD(K) 9K=1eKO)

wRITE (Nweh) (RKaLEN(K)yK=ls KO)

wRITE (ivwt4) (ArLEADIK) oK=1Y KO)
CONTINUE

KRKA=RA+]

KKO=KU=1

DO 17¢ K=KKAWKD

HH= (R (K} +H (K=1))%y,5

KKEK=KA

po lev uzxay KKO

JJFJ~KA+]

IF{JJEQerA) O TC 158

A(RKaJdJ) = C3%Up»ueS% Ca4%(N(KeJ)+N(K=19J))
D TQ 194¢ °
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158 SPQ=Q.
D0 137 L=lska
137 sSpQ=SPE+(QIKsL) +G (K=1eL))#P (L)
A(KKsJJ) = C3%Upuy «S#CH4SPQ/P (KA)
138 IF(J EdeK) GO [0 156
IF(J.EQer=1) GU 10 157
GO To led
156 SIGN=1e9
GO To 155
157 SIGN==]ey
159 A(KKsJJ)SAIKKY JJ) *HHE#3/ (X IK) =X (K=1))/VIS{N)
1% (=(P(R)=P(K=1)) #VISD(K) #0,5+SIGN) =~C38UB#(,5#DSH*DEND(K)/
2 DEN(K)#42
16y CONTINUE
CRKK)YS=Hh##3/(A(K) =X (K=1))¥(P(K)=P(K=1))/VIS(K)+C3#UB%* (HH=DS /
10ER(K))
L7V CONTINUE

NS4
IFINSe «EQe ) GC TO 174
po 171 nk=1l,n
WRITE ANy #)KK9U (KK)
N WRITEANWS*) (UJsAIKKIJJ) s JJ=14N)
174 caLlL MATInNY (As Ne Co 1y DET)
wRITE(NWe3)NET
NS 5

IF(NSB4EGC.y) GU 10 19§
WRITEA(NSs4) (Khy CIKK)y KK=1y N)
19y PKA=z=pP (KA)
cvsl,,
KKD=KrO=1
0O 18U K=xAskKQ
KK=K=KA+]
PP IK) =C (KK)
IFLASS (UE (K))=2P3P) 1764176,175
175 €v=gan i
176 F(R)Y=P(K)}+DP (K)
bl CONTIUE
KKA=KA=1
po lal K=1l, KKA
181 P(K) =P (K)#P(KA) /rKA
IF(CYvetuelany w0 TO 219
IF (IT«GT.ITP) GL TO 999
1T=17+1
NS7
IFINST «EQe ¢) GC TO 200
210 wRITE(Nw4+6)
WRITE (Nwad) (Ky F(K)y K=1y» KO)
WRLTE (Mxy5)
WRITE(Nwsa) ( ReR(K)9 K=19 KO
WRITE(N#As16)
WRITE (NA9 %) (KeSUMALIK) sK=13KA)
2uvu WRITE (Naa22) IT4LB
© WRITE (Nwe26) FaC ()
IF (CVeEGele0) GC TO 999
UBP=UB
G0 To 107
99 CONTINUE
Jdu CONTINUL
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SUBRQUTINE HCAL (KK) _

COMMCN P{6D)sH(6L) 9 X(60) sPHZBAL20) 9Q(60210) sUBAL2G) 9sHSA(20)
COMMON VISD(60) - LEN(EQ) sDEND(60) 9 PLUB(20U, 9SA{60) 9SMA(60) sDX(6y)
COMMON VIS1(35;,vIS2(35),V1IS3(35),VIS(6U)

COMMON AFAIPHZOsrSBrUBEDsENINRINWIKF %0 1KR

COMMON PlsP2.s0PVaBTAsITHUBG

P1=3,1415493

Cl=16e#PHLB#u2/H58

DO 19 K=]19KK

H(K)=0e

Do 1 J=lekF

HIR)=H(K) P () #)IKyJ)

FIR)=1e0+C1# (Y SRA(K)#82=H(K) /PI)

COMTINUE -

RE Tuki

£
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SUBROUTINE KERCAL
COMMCHN P{69) sH{6y) 9 X(60) sPHZBA(Z20) »Q(60960) sUBA(20) 2+HSA(20)
COMMQN VISD(0U) yLEN(60) sDEND(60) 9PLUR(20) 9SA(60) ySMA(6D) 4DX(6Y)
CUMMON vIS8]1(35),vIS2(35),vIS3(35),VIS(6i)
COMMOIN AFASPHLSvFSIIURIEDIENINRINWIKF o KOs KR
CONMMON PlsP2+s0PVvIBTASIToUBL
00 1 I=1ly KF
DU 1 J=1,s KF
Q(ITI) =040
KKF =kF=2
DO 8 K=1l, KO
G(Kel)=9eN
FS5=A(K)
L0 8 J=19% KKFY 2
U=x (J)=F5S
UC=A(J+C) =FS
AUZARS (U)
AUZ= ABS(U2)
IF (Al)) D9 Dly Su
AUSALOGLAY)
IF (AUZ2) 82y 6y 52
AZ=ALOG ALY
DJISA(J+1) =2 (y)
F2z=3,Uspy
Unsysy
ulu=y2#ye
FREUQ® (AL~1,9)w(0.5
FREZUCH {A)2=1,5) 80,5
FREBTUY (FR=Ud/0.y) =U2% (FK2=U2Q/0.Q)
QIR U) = (=34 *FR=FK2) /2 e)~FKA/F2) /DJ=Ut (AU=1,0) + QUK J)
Q{Kgdel)= (L2 R (FK+FK2)*+2,0%FKB/F2) /UJ
QURIJ+2) S (=FR=3.0%FK2)72.0~=rKB/F2)/0J+U2% (AUZ=140)
COMNTINIE
N0 339 K=1ls KO
po 3ye J=le KF
Nyl =d (Ked) =W (KR, J)
HETURN
END

43



12
13

lv

11
15
le

20

95
96

1¢u
388

SUBROUTINE VDTD (FACTyKA)

DIMENSION F2(eQ)eTAU(BY)

COMMON PLEQ) sHIB,) 9 X{6)) sPHZRA(Z2() sQ(60960) sUBA(20) +HSAT2])
COMMON VISU(6y) sLEN(S0) sDENU (60) 9 PLUB(ZU) 9SA(60) ySMA(60) s DX (6y)
COMHON VIS1(35)sVvIS2(35)yVv1IS3(35),VIS(60)
COMMON AFAsPHZD 9 SB o UBJENyENgNRyNW o KF ¢ KU 4KR
COMMON P1eP2,UPVeSTAYIT,UBG

IF(ITsEUL1)  Ub=LbG

IF (ITeGTed) 0 To 1

SIn=v,0v001

S=SIN

SU=AFA%P (1)

IMAX= 5g

DENI=1e 0+EN%U ey .S/PHZB/ (14 U+ED®0,015/PHLB)
FPS= 0.\)(]1

00 5 N=lekO

F2(N)= (LeNd=DLw {N) ) /DEN(N)

TAUGN) = G UBMUAIN) JUBRPHZBYR2# {PLUR(T) /PHZB+O%P (N) ) /EXP (AFA®P (N))
TAUIN) = TAUIN)/FACT

CONTINUE

wiEITe (Nwss) (TAL(N) 9N=1,4KO)

IF (IT«GTel) w0 To 12

WRITE (Nwelduy)

GO 10 13

S=5a1(})

Su=sva (1)

po 190G n=leky

I:l

ES=EXP (=9)

ESHEEXP (=SM)

TI=ES#(F2(N)Y+1,°/9)

T2=ESi# (FEIN) +1eu/5M)
PSI=0e5%(T1e12)#(S=SM)eTAUIN)

DPST=zued# ({=Tl=fs/S%42) 2 (S=SM)+(T1+T2))
IF (PST1eGTe Gayv) GO TO €0

D5==PSI/LRST

IF (ABSIES)=Ers) 11,411,135

IF (AHS\FSI)—E_IJS) 08495415

1IF (I-IrAX) 16932459300

I=1+1

§=5+0S

Go To 10

S=9¢ (}ol

GO To 12

IFN=RKO) 964909100

5:5405

SA (M) =S

SMSS+AFAR (P (In+1) =P (N))

SMA (N) =OM

CONTINUE

CONTINUE

VIS(1)=1a0

VISO(4)=4AFA

po 115 k=240

I (K=xA) 1092059311

P,(:P("\)

SK=SA(K)
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GO0 To 312
311 PK=(P(K)+P(K=1))%(,.5
SK=(SAIK) +SAIR=1))#0.5
312 VIS(K)=EXP{AFA#PR=5SK)
115 vxsu:x>= AF A= (53 IK) =SA(K=1))/(P(K) =P (K=1))
h53=-
IFINS3.EG.0) G0 To 120
4 FORMAT(T(1X,[2y 1Xx,E13,6))
15y FORMAT (8m SA(K)) '
7 FORIAT  (1X4E13.6+8XK9E13,6)
155 FORAAT (Z26H be Tau 2130
171 ForMAT (10A DIVERGENT)
130 FORMAT (39 rune2x9lHI95X92RESy 11X 3HESMe 10X92HTL,10X,2HT2,410x,
13HPSTI 10X e HHOPSI v 10X e2HDS 112X 9 1HS)
141 FURMAT (1X921398(1X9E12.5))
306 WRITE (Nwel71) -
12v CONTINUE
RETURN
ENU
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SUBROUTINE DVU(KLsK29 ISeKHAF)
COMIAUN P{6C) yH(6U) ¢ X (6U) 9PHZBA(Z20)+Q(60960) sUBA(20) yHSA(20)
COMMON JISD(bu)9LEA(60)sUEND(60)oPLUB(20)oSA(60)9SMA(60)va(6U)
COMMON VISI(35)4VIS21(35)4VIS3(35),VIS(6L)
COMMON AFAIPHZU YRS IURIEDIENINRINWIKF s KO KR
COMHON PlyP24DPVS8TAITsURG
IF(IS.EQal) 2yyuyeps
2,0 PR=P(K2)
IF (KHAF L EW.1) PR=(P(K2)+P(K2=1))#0.5
CENIK2) =] e U+ENTPK/ (14 0+EDHPK)
DEND(KE)=EN/ (L U+pPKHED) ##2
GO TO 2it
29 U0 210 K=K1eK2
FK=P (K)
IF(KHAF LEU,1) FPK=(P(K)+P(K=1))#(,.5
DENIK) = 1a0+EN¥PK/ (140+ED®PK)
21U DEND{%)ISEN/(2evsrRELD) #22
¢lS COnNTINUCL )
HRETURN
[P
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SURROUTINE MATINV (AsNsBsMeDETER)
DIMERSION A(34930)913(30) s IPIVO(30)9yPIVOIT(30)
MATRIX INVERS[ON WITH ACCOMPANYING SOLUIION OF LINEAR EQUATI!

. CC

QCo

o CC

OO

2 [

lat

33¢

‘}UQ

45:

554
6Qn

DETER =1.9
U0 27 J=l,N
1IPIvo LU=
DO 55, I=1lsN

SEARCH FOR PivOT ELEMENT

AMAX=(40

DO 105 J=1sN

IF (IPIVC(J)=1) 6yys105,y6g
DO 1py K=1lsN

IF (IPIVC(KY =1) 383s 100

IRDW=y
ICOLY =K
AMAXz=A(J9K)
CONT INUE
CONTINUE

6ug
IF (A5S (AMAX)=~ApS (A(Jisxk))) 8591005100

IPIvolIccLuU) =IPIVOLICOLU) «1

INTERCHANGE RUwWS T0 PUT PIVOT ELEMENT OnN DIAGONAL

IF (IROW=-ICOLU) 1409 260

DETER ==CETER

DO 200 L=1l,pN
AMAX=A(IROWsI)
ACIROW, LY =A(TICULUYL)
ACICOLUL) =AMAX

AMAX=HB (IROW)

8 (IROW) =B (ICOLU)
B{ICOLU)=AMAX
PIVOT(I)=A(ICOLUsICOLWY)
DETER =UETER*PIVCT(I)

140

DIVIDE PIVOT RO« BY PIVOT ELEMENT

ACICOLUYICOLU) =140
00 350 L=1lsN

ACICOLUSL) =ALICOLU,L)/PLIVOTI])
B(ICOLUI=B(ICOLU)/PIVOTI(I)

REDUCE NCN=PIVQOT RQWS

DO 550 L1=1sN

IF(LY=-ICcCLYU) 40us 5504 400

AMAK:A(LI!ICOLQ)
AfL1,ICOLW) =00
DO 45( L=1sN

A(LlyL)=ACL1sL)=ACICOLU,L)*AMAX

B{L1)=B(L1)=~8(ICCLU)*AMAX
CONTINUE

KRETURN

END
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FUNCTION PMU(QWsSSS)

COMMON P(ED) sH(BL) 4 X(60) yPHZRA(20) 9Q(60-60) sUBA(20) yHSAL20)
COMMON VISD(60) +LEN(60) 2DEND (60) s PLUB(21) sSA(60) 4y SMA(60) 2+DX(60)
COMMON VIS1(35/»vIS2(35)svIS3(35)9vISisd)

COMMON AFASPHZDySBsUBIEDIENJNRINWIKF s K9 KR

COMMON PlePZ4UPVIBTASITIUBG

PMU= (=ALQG (1,4,y=QG) +SS5S) ZAFA

Re TURN

END
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