

EXPERIMENTAL AERODYNAMIC CHARACTERISTICS FOR SLENDER BODIES WITH THIN WINGS AND TAIL AT ANGLES OF ATTACK FROM 0° TO 58° AND MACH NUMBERS FROM 0.6 TO
Leland H. Jorgensen and Edgar R. Nelson Ames Research Center Moffett Field, Calif. 94035

matiomal aeromautics and spáce admimistration - washington, d. C. - march 1976

- For sale by the National Technical Information Service. Springitield. Virginia 22161

NOMENCLATURE

All forces and moments except C_{L} and C_{D} are referred to the body axis coord. late system.

Symbol Definition

$A_{T} \quad$ reference area $=$ body base area $=34.26 \mathrm{~cm}^{2}\left(5.31 \mathrm{in} .{ }^{2}\right)$
$\mathrm{A}_{\mathbf{w}} \quad$ exposed wing planform area (2 panels)
AR aspect ratio for wing extended into center of body B_{1}
$\mathrm{AR}_{\mathrm{e}} \quad$ aspect ratio for two exposed wing panels joined together
a,b semimajor and semiminor axes of elliptic cross section
$\mathbf{C}_{\mathbf{A}} \quad$ axial-force coefficient, $\mathbf{C}_{\mathbf{A}_{\text {bal }}}-\mathbf{C}_{\mathbf{A}_{\text {base }}}$
$C_{A_{b a l}} \quad$ balance axial-force coefficient, $\frac{F_{A}}{q_{\mathbf{I}}}$
$C_{A_{\text {base }}} \quad$ base-pressure force coefficient, $\frac{\left(\mathbf{p}-\mathbf{p}_{\text {base }}\right)}{q}$
$C_{D} \quad$ drag coefficient, $\frac{\text { drag }}{q A_{\mathbf{T}}}$
$C_{L} \quad$ lift coefficient, $\frac{\text { lift }}{q A_{T}}$
$C_{m} \quad$ pitching-moment coefficient about balance center 4d from body base, pitching moment

$$
\mathbf{q A}_{\mathbf{r}} X
$$

C_{N} normal-force coefficient, $\frac{F_{N}}{q A_{T}}$
$\mathrm{C}_{\mathrm{n}} \quad$ yawing-moment coefficient about balance center, 4d from body base, $\frac{\text { yawing moment }}{\mathbf{q A}_{\mathbf{T}} X}$
$C_{Y} \quad$ side-force coefficient, $\frac{F_{\mathbf{Y}}}{q A_{\mathbf{T}}}$
$c_{r}, c_{t} \quad$ wing root and tip chords
F_{A}, F_{N}, F_{Y}
L/D
ℓ
${ }^{\ell} N$
M free-stream Mach number
p
$p_{\text {base }}$
q
r
Re Reynolds number based on d
\mathbf{s}
X
$\frac{{ }^{x_{a c}}{ }_{N}}{d}$
x_{m}
α
ϵ
ϕ axial, normal, and side force, respectively
lift-to-drag ratio
body length
nose length
free-stream static pressure
base pressure
free-stream dynamic pressure
body base radius $=3.30 \mathrm{~cm}(1.30 \mathrm{in}$.
wing semispan from body centerline
reference length $=\mathrm{d}=6.60 \mathrm{~cm}(2.60 \mathrm{in}$. plane, $\left(\frac{C_{m}}{C_{N}}+\frac{x_{m}}{X}\right)$ angle of attack. deg
wing semiapex angle, deg
distance (in diameters) from body base to aerodynamic force center in normal-force
distance from body base to balance moment reterence $=4 \mathrm{~d}=26.42 \mathrm{~cm}$ (10.40 in .)
angle of bank about body longitudinal axis. deg

Configuration Code

Because the data are computer plotted. both the conventional symbol and the plot symbol are given.

Pla:
Symbol S Sombol Component
$B_{1} \quad$ Bl basic circular body (tangent ogive nose of fineness ratio 3 with cylinder aftersection of fineness ratio 7)
$\mathbf{B}_{2} \quad$ B2 budy with elliptic cross section of constant $\frac{a}{b}=\mathbf{2}$
$\phi=0^{\circ}$
$\mathbf{P H I}=0$
body banked 0° about longitudinal axis (see fig. l(a))
$\phi=90^{\circ} \quad \mathrm{PHI}=90 \quad$ body banked 90° about longitudinal axis (see fig. 1(a))
Fineness Ratio
$\mathbf{C l}_{1} \quad \mathbf{C l} \quad$ circular cylinder $\quad 7$
\mathbf{N}_{1} NI tangent ogive nose 3
$\mathrm{N}_{2} \quad \mathrm{~N} 2 \quad$ tangent ogive nose $\quad 3.5$
$\mathrm{N}_{3} \quad \mathrm{~N}$
$\mathbf{N}_{4} \quad \mathrm{~N} 4$
tangent ogive nose
$\mathrm{N}_{5} \quad \mathrm{~N} 5$
tangent ogive nose with rounded tip
$\mathrm{N}_{6} \quad \mathrm{~N} 6$
tangent ogive nose with tip strakes 3
$\mathrm{N}_{7} \quad \mathrm{~N} 7$
tangent ogive nose with side strakes
3
w, wi
tangent ogive nose 2.5
$W_{1} \quad W$
wing of $A R \approx 4, c_{t} / c_{r}=0$
$W_{2} \quad W 2 \quad$ wing of $A R \approx 4 . c_{1} \cdot{ }^{\prime} c_{T}=0.276$
$W_{3} \quad W 3 \quad$ wing of $A R \approx 4 . c_{t} / c_{r}=0.533$
$W_{4} \quad W 4$
wing of $A R \approx 5, c_{t} / c_{r}=0.273$
$W_{5} \quad W 5 \quad$ wing of $A R \approx 3 . c_{t} / c_{r}=0.280$
T T tail. consisting of horizontal and vertical parts (see fig. l(c))

EXPERIMENTAL AERODYNAMIC CHARACTERISTICS FOR SLENDER BODIES WITH THIN WINGS AND TAIL AT ANGLES OF ATTACK FROM 0° TO 58°

AND MACH NUMBERS FROM 0.6 TO 2.0

Leland H. Jorgensen and Edgar R. Nelson*
Ames Research Center

SUMMARY

An experimental investigation was conducted in the Ames 6- by 6-Foot Wind Tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat-plate wings and a thin tail consisting of horizontal and vertical parts. Three wings had aspect ratios of 4 and taper ratios of about $0,0.25$. and 0.5 . Two additional wings. which had taper ratios near 0.25 and aspect ratios of about 3 and 5 , were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an $a / b=2$ cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7 , and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of $2.5,3.0,3.5$, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used.

Nineteen configuration combinations were tested at Mach numbers of $0.6,0.9,1.5$, and 2.0 at angles of attack from 0° to 58°. The Reynolds numbers, based on body base diameter, were about 4.3×10^{5}.

The data demonstrate that taper ratio and aspect ratio had only small effect on the aerodynamic characteristics, especially at the higher angles of attack. Undesirable side forces and yawing moments, which developed at angles of attack greater than abou 25°, were generally no greater than those for the bodies tested alone. As for the bodies alone and in combination with the wings, the side forces and yawing moments for the body-wing-tail combuations increased as the nose fineness ratio increased and/or as the subsonic Mach number decreased. It is virtually certain that the undesirable side forces and yawing moments originate with, or are caused by, the body nose.

INTRODUCTION

In the last several years high angle-of-attack aerodynamics has increased in ir, portance because of the demand for greater maneuverability of missiles and aircraft (both manned and remotely

[^0]piloted). Some recent introductory investigations in this field are reported in references 1 through 12. Most of the research reported in these references has been concerned with bodies and has been directed more toward missile applications than aircraft. The relatively small data base that existed several years ago for bodies alone and with strakes has been considerably enlarged, and work in this area seems to be continuing at a reasonable rate. However, there is still great need to enlarge the relatively small data base for bodies in combination with wings, tails, or both at subsonic, transonic, and supersonic Mach numbers. This data base, of course, is more applicable to arrcraft than missiles.

To help enlarge this data base for basic bodies with wings, an investigation was recently conducted (ref. 12) to measure the force and moment characteristics for bodies of circular and elliptic cross section in combination with thin wings which had taper ratios of 0 to 0.5 and aspect ratios of 3 to 5 . The bodies used were the same as those studied in references 8 and 10 , and there were variations in nose fineness ratio, bluntness, and nose strake arrangement. All models were tested in the Ames 6-by 6-Foot Wind Tunnel at Mach numbers of $0.6,0.9,1.5$, and 2.0 and angles of attack from 0° to 58°.

In the present investigation the tests in reference 12 have been repeated for the same bodywing models but with a tail added. Thus, the effects of body and wing variations on the aerodynamic characteristics of the body-wing-tail combinations can be studied, particularly at high angles of attack.

The purpose of this report is to present and discuss briefly the basic data that show the effects on the rerodynamic characteristics of wing taper ratio, wing aspect ratio, nose fineness ratio, nose bluntness, and nose strake arrangement with the tail present. The effect of removing the tail is also discussed.

TEST FACILITY

The experimental investigation was conducted in the Ames 6- by 6-Foot Wind Tunnel - a variable pressure, continuous flow, closed-return type facility. The nozzle ahead of the test section consists of an asymmetric sliding block that permits the Mach number to be continuously varied from 0.6 to 2.3 . The test section has a perforated floor and ceiling so that boundary-layer flow can be removed for transonic testing.

MODEL AND BALANCE

Figure 1 shows the model components that were tested in various model combinations. These components include bodies, noses. wings. and tail.

The basic circular body (B_{1}) depicted in figure $1(a)$ consisted of a circular-arc tangent ogive of fineness ratio 3 followed by a cylindrical aftersection of fineness ratio 7. Body B_{2} (fig. 1(a)) had an elliptic cross section of $a / b=2$ and the same length and axial distribution of cross-sectional area as B_{1}. Hence, the fineness ratio of $\ell / d=10$ for B_{1} was also the equivalent fineness ratio for B_{2}. These
bodies were previously tested, and the results are reported in reference 10 . The basic circular aftersection of B_{1} (designated as C_{1}) was also tested (ref. 8) with ogive noses of fineness ratios of 2.5 to 5 (noses $\mathrm{N}_{7}, \mathrm{~N}_{1}, \mathrm{~N}_{2}$, and N_{3} in figure $1(\mathrm{~b})$). The circular aftersection C_{1} was also tested (ref. 8) with a blunted nose (N_{4}) and noses $w: \% h$ strakes (N_{5} and N_{6}).

For the present test the bodies, noses, and tail in figures $1(a)$ through $1(c)$ were combined with five flat-plate wings (figures $1(\mathrm{c})-1(\mathrm{e})$) that formed two families of wings. One family (W_{1}, W_{2}, and W_{3}) had an aspect ratio of about 4 and taper ratios (c_{t} / c_{r}) of 0.0 .276 , and 0.533 (fig. $1(c)$). The other family (W_{4}, W_{2}, and W_{5}) had aspect ratios of about 5,4 , and 3 , respectively, and the taper ratios were all about 0.28 (fig. $1(\mathrm{~d})$ and $1(\mathrm{e})$).

All of the wings were designed to have the same planform area ($16 \mathrm{~d}^{2}$) if the wings extended into the body B_{1} to the axial centerline. Based on the phantom wing chord at the body centerline, the taper ratios for wings W_{1}, W_{2}, and W_{3} were $0,0.25$, and 0.50 , respectively. They were also 0.25 for W_{4} and W_{5}. Pertinent planform dimensions of the exposed parts of the wings are given in the following table.

TABLE 1.- PLANFORM DIMENSIONS OF WINGS

Wing	AR	$\mathbf{A R}_{\mathrm{e}}$	ϵ, deg	(s-r)/d	c_{r} / \mathbf{d}	c_{t} / d	c_{t} / c_{r}	A_{w} / d^{2}	$\mathrm{A}_{\mathbf{W}} / \mathrm{A}_{\mathbf{r}}$
W_{1}	4	4	45.00	3.5	3.5	0	0	12.250	15.598
W_{2}	4	3.784	59.03	3.5	2.9	0.800	0.276	12.950	16.488
W_{3}	4	3.653	71.57	3.5	2.5	1.333	0.533	13.412	17.076
W_{4}	5	4.761	64.36	3.972	2.622	0.715	0.273	13.254	16.876
W_{5}	3	2.810	51.33	2.964	3.295	0.924	0.280	12.506	15.924

$A R=$ aspect ratio for wing extended into center of body \mathbf{B}_{1}
$A R_{e}=$ aspect ratio for two exposed wing panels joined together
d $=$ diameter of body B_{1}
$A_{\mathbf{w}}=$ exposed wing planform area (2 panels)
$A_{T}=$ reference area $=$ body base area

The exposed area of the horizontal portion of the tail is $4.4 \mathrm{~d}^{2}$. or about 36 percent of the exposed area of wing W_{1}. The exposed area of the vertical tail fin is $3 d^{2}$. or about 24 percent of the exposed area of wing W_{1}.

Figure 2(a) shows the planform views of the 19 configurations that were tested in this study. All of these configurations are identified by the codes shown in figure 1, and these codes are used throughout the report.

All model parts were constructed of stainless steel, and all models were sting mounted (fig. 2(b)) through the base on a six-component, strain-gage "Task" balance. The balance force center was located inside each body at a position 4 base diameters forward of the base.

TESTS AND DATA REDUCTION

All model configurations shown in figure 2(a) were tested at angles of attack from 0° to about 58° on two model-support setups. One setup (fig. 2(b)) was used to test the models at angles of attack from 0° to about 27°, and the other (fig. 2(c)) was used for angles of attack from 27° to 58°. The models were tested at Mach numbers of $0.6,0.9,1.5$, and 2.0. The Reynolds numbers, based on body diameter d, were about 4.3×10^{5} for all of the body-wing-tail combinations. Several runs were also made with the bodies alone at $\mathrm{Re}=3.8 \times 10^{5}$ and 6.5×10^{5}.

Six-component aerodynamic force and moment data were measured at each test condition, and all data were reduced to coefficient form and referred to the body axis coordinate system. The average base pressure from four base pressure tubes (at the sides, top, and bottom of the base) was used to compute the base drag. The base drag was subtracted from the total axial-force balance measurements, so that the data presented are for forces ahead of the body base. Rolling-moment coefficienis were generally small and are omitted. Normal-force aerodynamic centers were computed from the normal-force and pitching-moment coefficients and are presented in lieu of the pitching-moment coefficients.

Lift coefficients and values of L/D referred to the wind axes were also computed and are presented. They were computed from the expressions:

$$
\begin{align*}
& C_{L}=C_{N} \cos \alpha-C_{A} \sin \alpha \tag{1}\\
& C_{D}=C_{N} \sin \alpha+C_{A} \cos \alpha \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{L}{D}=\frac{C_{L}}{C_{D}} \tag{3}
\end{equation*}
$$

The reference area A_{T} for all coefficients is the body base area ($34.26 \mathrm{~cm}^{2}$), and the reference length X for all moment coefficients is the body base diameter (6.60 cm). The coefficients, of course, can be easily recomputed based on wing area and an appropriate wing chord length, such as the root chord or mean aerodynamic chord. For example, the force coefficients based on exposed wing area can be obtained by dividing the presented values by the appropriate values of $A_{\mathbf{w}} / A_{\mathbf{r}}$ tabulated in the previous section.

RESULTS AND DISCUSSION

In figures 3 through 24, experimental results for the numerous body-wing-tail configurations show the effects on the aerodynamic characteristics of wing taper ratio, wing aspect ratio, nose fineness ratio, nose rounding and nose strake arrangement. In figures 25 through 36 experimental results show the effects of removing the tail and the tail plus wing from selected body-wing-tail combinations. Each effect is discussed briefly with the aid of plots of $C_{N}, x_{a N_{N}} / d, C_{\mathbf{Y}}, C_{Y} / C_{N}, C_{n}$, C_{L}, and L / D versus α for $\alpha=0^{\circ}$ to 60°. Plots of C_{A} versus α are also presented but are not discussed. Because the models were sting supported from the rear, it is likely that the C_{A} data include effects of support interference. Any support effects are also included in the C_{L} and L/D data (obtained from C_{N} and C_{A} by eqs. (1)-(3)) but to a much smaller extent. Any effects of tunnel-blockage interference are unknown at present and are ignored.

Effect of Wing Taper Ratio

Data that show the effect of wing taper ratio on the aerodynamic characteristics for the winged circular body and tail ($B_{1} T$ with W_{1}, W_{2}, and W_{3}) are presented in figures 3 through 6 . Similar data for the winged elliptic body and tail ($B_{2} T$ with W_{1}, W_{2}, and W_{3}) are presented in figures 7 through 10. Body alone data (refs. 8 and 10) for B_{1} and B_{2} are also shown for comparison.

For the change in taper ratio from 0 to about $0.5\left(W_{1}\right.$ to $\left.W_{3}\right)$, there are generally only small effects on the aerodynamic characteristics. This is especially true for C_{N} and C_{L} at the subsonic Mach numbers ($\mathrm{M}=0.6$ and 0.9) and high angles of attack (greater than about $\alpha=15^{\circ}$). At the supersonic Mach numbers and high angles of attack, there is generally more variation in the \mathbf{C}_{N} and C_{L} data, the coefficients being highest for the wing with the highest taper ratio ($W_{3}, c_{t} / c_{T}=0.533$). This wing, however, has greater exposed wing area thar the wing with no taper ratio $\left(W_{1}\right)$. For example, $\mathrm{A}_{\mathrm{W}} / \mathrm{A}_{\mathrm{T}}=17.076$ for W_{3} as compared with $\mathrm{A}_{\mathrm{W}} / \mathrm{A}_{\mathrm{T}}=15.598$ for W_{1}. If the C_{N} and C_{L} data were based on A_{w} instead of A_{r}, the differences at high α would be much less. Throughout the Mach number range most of the variations in C_{N} and C_{L} at low angles of attack probably can be attributed to flow separation effects from the wings.

It is interesting to note that the side-force coefficients ($\mathrm{C}_{\boldsymbol{Y}}$) for the body-wing-tail configurations are generally no greater and sometimes even smaller than for the bodies alone. ${ }^{1}$ As discussed previously (refs. 8,10), the undesirable side-force and yawing-moment coefficients that develop for the bodies alone at subsonic Mach numbers decrease with increase in subsonic Mach number and disappear with increase in Mach number into the supersonic flow regime. The same finding has been observed for the bodies with wings (ref. 12), and this finding again can be observed for the body-wing-tail models. However, for the body-wing-tail models the relative influence of $\mathrm{C}_{\mathbf{Y}}$ to C_{N} is much smaller. In fact, the ratio ($\mathrm{C}_{\mathbf{Y}} / \mathrm{C}_{\mathbf{N}}$) appears to be negligible throughout the Mach number and angle of attack ranges studied.

[^1]
Eifect of Wing Aspect Ratio

Data are presented in figures 11 through 14 that show the effect of wing aspect ratio on the aerodynamic characteristics for the winged circular body with tail ($B_{1} T$) with W_{5}, W_{2}, and W_{4} of $A R \approx 3,4$, and 5 , respectively. Similar data for the winged elliptic body with tail ($B_{2} T$ with W_{5}, W_{2}, and W_{4}) are presented in figures 15 through 18. Body-alone data (refs. 8 and 10) are also shown for comparison.

As for the case of taper ratio, there are no large effects of aspect ratio on the aerodynamic characteristics, especially the longitudinal characteristics. The undesirable side forces and yawing moments, which appear at the high angles of attack, are no larger and sometimes smaller than those shown for the bodies alone.

Effect of Nose Fineness Ratio

In figures 19 through 22, data are presented that show the effect on the aerodynamic characteristics of changing the nose fineness ratio from $\ell_{N} / \mathrm{d}=2.5\left(\mathrm{~N}_{7}\right)$ to $\ell_{\mathrm{N}} / \mathrm{d}=5\left(\mathrm{~N}_{3}\right)$ for the circular cylinder (C_{1}) with W_{2} (aspect ratio 4) and the tail (T).

As might be expected, there is little or no effect of nose fineness ratio on the longitudinal characteristics. However. there is a strong effect of nose fineness ratio on the characteristics of $\mathrm{C}_{\mathbf{Y}}$ and C_{n} versus α for the wing-body-tail configuration at α greater than about 25° and $M=0.6$ and 0.9. For example, in figures 19 and 20 it can be seen that the largest values of C_{Y} and C_{n} develop with the noses that have fineness ratios of $3.5\left(\mathrm{~N}_{2}\right)$ and $5\left(\mathrm{~N}_{3}\right)$. These effects are similar to those reported in reference 9 for similar noses alone and in reference 8 for the same noses with the circular body. They are also similar to those reported in reference 12 for the winged body with the noses but without the tail. It thus can be concluded that the undesirable side-force and yawingmoment characteristics originate with, or are caused by, the body nose, and high fineness-ratio noses are the least desirable.

Effects of Nose Rounding and Strakes

Data are presented in figures 23 and 24 that show the effects of nose rounding nd strakes on the body-wing-tail aerodynamic characteristics for $\mathrm{M}=0.6$ and 2.0. Results are compared for the circular cylinder C_{1} plus wing W_{2} and tail T with the basic nose N_{1}, the rounded nose N_{4}, the nose with tip strakes N_{5}. and the nose with strakes extending over its length N_{6}. All noses had a fineness ratio of about 3 .

The results for the configuration with the rounded nose ($\mathrm{N}_{4} \mathrm{C}_{1} \mathrm{~W}_{2} \mathrm{~T}$) are not significantly different from those for the configuration with the basic sharp nose ($\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{~W}_{2} \mathrm{~T}$), but both noses have a tineness ratio of 3 . A different conclusion concerning the effect of bluntness is obtained if the results for the configuration with the rounded nose ($\mathrm{N}_{4} \mathrm{C}_{1} \mathrm{~W}_{2} \mathrm{~T}$) are compared with those (figs. 19 and 20) for the configuration with the sharp fineness-ratio 3.5 nose ($\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{~W}_{2} \mathrm{~T}$). As previously discussed, undesirable side forces and yawing moments appeared with $\mathrm{N}_{2} \mathrm{C}_{1} \mathrm{~W}_{2} \mathrm{~T}$ at $\mathrm{M}=0.6$ and 0.9 (figs. 19 and 20). However, with the :1ose apex of $\mathrm{N}_{2} \mathrm{C}_{1} \mathrm{~W}_{2} \mathrm{~T}$ blunted by rounding to give a fineness ratio of 3 (contiguration $N_{4} C_{1} W_{2} T$). the side forces and yawing
moments essentially disappeared. The same thing was found (ref. 12) for these same configurations without the tail present.

There is an increase in C_{N} and C_{L} at high α and $\mathrm{M}=0.6$ resulting from the use of N_{6}, the nose with the side strakes extending over the nose length (fig. 23). This increase in C_{N} and C_{L} disappears at supersonic speeds (see fig. 24 for $M=2.0$). The same result is reported in reference 12 for the configurations without the tail. There was no significant effect of the tip strakes from nose N_{5} on any of the aerodynamic characieristics.

Effects of Removing Tail and Wing

Data are preserted in figures 25 through 36 that show the effects on the aerodynamic characteristics of removing the tail, and the tail plus wing from selected body-wing-tail configurations. In figures 25 through 28 , data are presented for $N_{1} C_{1} W_{2} T . N_{1} C_{1} W_{2}$, and $N_{1} C_{1}=B_{1}$, configurations with the basic circular body. In figures 29 through 32, data are presented for $N_{3} C_{1} W_{2} T$, $N_{3} C_{1} W_{2}$, and $N_{3} C_{1}$, configurations with the circular body and fineness-ratio 5 nose. Finally, in figures 33 through 36 , data are presented for $B_{2} W_{2} T, B_{2} W_{2}$. and B_{2}, configurations with the elliptic body of $\mathrm{a} / \mathrm{b}=2$ at $\phi=0^{\circ}$.

Generally, the magnitudes of the side-force and yawing-moment coefficients (C_{Y} and C_{n}) are about the same for the bodies alone as for the bodies with the wing and the wing plus tail. These undesirable coefficients are the largest for the body with the highest fineness-ratio nose (nose N_{3} of $\ell_{N} / d=5$). It is thus virtually certain that the undesirable C_{Y} and C_{n} characteristics originate with. or are caused by, the body nose. Fortunately, as observed previously (refs. 8, 10, 11, and 12), these undesirable characteristics decrease either with decrease in nose fineness ratio or with increase in Mach number. They essentially disappear at the supersonic Mach numbers.

There are numerous comparisons about the relative influence of the wing, tail. and body on the longitudinal characteristics that may be made from the data in figures 25 through 36 . Only a few general comparisons concerning the C_{N} and C_{L} characteristics are cited herein as examples.

From the data comparisons, computations can be made which show that the wing develeps greater than about 70 percent of the total C_{N} and C_{L} at α less than 20°. However, with increase in α from about 20° to 60°, the contributions to C_{N} and C_{L} from the wing decrease from about 70 percent to 45 percent.

Over this high α range (20° to 60°) the tail develops about 40 to 55 percent of the wing lift at $\mathrm{M}=0.6$ However. at $\mathrm{M}=2.0$. the tail only develops about 26 to 30 percent of the wing lift. It is interesting to note that the exposed horizontal tail area is 34 percent of the exposed area of wing W_{2}. Thus, from a relative standpoint, the tail is more efficient than the wing at $M=0.6$ and less efficient at $\mathrm{M}=2.0$.

The data also can be used to demonstrate the well-known fact that a body is generally an efficient lifting component only at wery high angles of attack. For evample. at $M=0.6$ and $\alpha=20^{\circ}$. body B_{1} develops only about 4 percent of the total C_{L}; whereas. at $M=0.6$ and $\alpha=60^{\circ}$. it develors about 24 percent.

CONCLUSIONS

1. Generally, changing the wing taper ratio from 0 to 0.5 had only small effects on the aerodynamic characteristics.
2. As was true for taper ratio, changing the wing aspect ratio from 3 to 5 resulted in no large effects on the aerodynamic characteristics.
3. Undesirable side forces and yawing moments for the body-wing-tail configurations were generally no greater than for the bodies alone. As for the bodies alone, they developed at subsonic Mach number for angles of attack above about 25°. Also, as for the bodies alone, the side forces and yawing moments increased with increase in nose fineness ratio. Fineness ratios greater than 3 produced the largest side forces.
4. The undesirable side forces and yawing moments decreased with increa.e in Mach number and virtually disappeared at supersonic Mach numbers.
5. Nose-tip rounding of a fineness ratio 3.5 ogive nose to give a fineness ratio 3 nose reduced the undesirable side forces and yawing moments. However, use of a sharp nose of fineness ratio 3 resulted in just as drastic a reduction in the side forces and yawing moments.
6. It is virtually certain that the undesirable side forces and yawing moments originate with, or are caused by, the body nose.

Ames Research Center

National Aeronautics and Space Administration Moffett Field, California 94035, July 14, 1975

REFERENCES

1. Pick, Ceorge S.: Side Foices on Ogive-Cylinder Bodies at High Angles of Attack in Transonic Flow. J. Spacecraft and Rockets, mol. 9, no. 6. pp. 389-390, June 1972.
2. Clark, Wiliam H.: Peoples, John R.; and Brigs, M. Michael: Oocurrence and Inhibition of Large Yawing Moments During High Incidence Flight of Slender Missike Configurations. AIAA Paper 72-968, 1972.
3. Coe, Puil L., Jr.; Chambers, Joseph R.; and Letko, Wiliam: Asymmetric Lateral-Directional Characteristics of Pointed Bodies of Revolution at High Angles of Attack. NASA TN D.7095, 1972.
4. Jorgensen, Leland H.: Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like and Other Bodies at Augles of Attack From 0° to 180°. NASA TN D-6996, 1973.
5. Jorgensen, Leland H.: Estimation of Aerodynar.ics for Slender Bodies Alore and With Lifting Surfaces at a's From 0° to 个 $^{\circ}$. AIAA Journal, vol. II, no. 3, pp. 409-412, March 1973.
6. Jorgensen, Leland H.: A Method for Estimating Static Aerodynamic Characteristics for Slender Bodies of Circ:ilar and Noricircular Cross Section Alone and With Lifting Surfaces at Angles of Attack from 0° to 90°. NASA TN D.7228, 1973.
7. Fleeman, E. L.; and Netson, R. C.: Aerodynamic Forces and Moments on a Slender Body With a Jet Plume for Angles of Attack up to 180 Degrees. AIAA Paper 74-i 10, 1974.
8. Jorgensen, Leland H.; and Netson, Edgar R.: Experimental Aerodynamic Characteristics for a Cylindrical Body of Revolution With Various Noses at Angles of Attack From 0° to 58° and Mach Numbers from 0.6 to 2.0. NASA TM X-3128, 1974.
9. Keener, Ear R.; and Chapman, Gary T.: Onset of Aerodynamic Side Forces at Zero Sideslip on Symmetric Forebodies at High Angles of Attack. AIAA Paper 74770, 1974.
10. Jorgensen, Letand H.: and Netson, Edgar R.: Experimental Aerodynamic Characteristics for Bodies of Elliptic Cross Section at Angles of Attack from 0° to 58° and Mach Numbers From 0.6 to 2.0. NASA TM X-3129, 1975.
11. Jorgensen, Leland H.; and Nelson, Edgar R.: Experimental Aerodynamic Characteristics for a Cylindrical Body 0^{-}Revolution With Side Strakes and Various Noses at Angles of Attack From 0° to 58° and Mach numbers from 0.6 to 2.0. NASA TM X-3130, 1975.
12. Jorgensen, Leland H.; and Howell, Michael H.: Experimental Aerodynamic Characteristics for Slender Bodies With Thin Wings at Angles of Attack From 0° to 58° and Mach Numbers From 0.6 to 2.0. NASA TM X-3309, 1976.

Figure 1.- Model components; $d=6.60 \mathrm{~cm}$ (2.60 in .).

Figure 1. Continued.

(c) Body B_{1} with aspect-ratio 4 wings of various taper ratios and tail arrangement.

Figure 1.- Continued.

NOTE: TYPICAL LEADING ANO TRAILING EDGE SECTIONS SHOWN IN FIG. 2

HORIZONTAL AND VERTICAL TAILS CAN be at tached at positions SHOWN IN FIG. 2

ALL LINEAR DIMENSIONS IN TERMS OF BOOY DIAM, d

 $W_{2} i 4 \quad 3.78459 .03 \quad 3.500: 2.900 \quad 0.800 \% 0.276$

AR - ASPECT RATIO FOR WING EXTENDED INTO BODY ARe ASPECT RATIO FOR TWO EXPOSED WING PANELS JOINED TOGETHER

(d) Body B_{1} with wings of aspect ratio 3, 4 , and 5 (referring to wings W_{2}, W_{4}, and W_{5}).

Figure 1... Continued.

(e) Body B_{2} with wings W_{2}, W_{4}, and W_{5}.

Figure 1.-Concluded.
$\stackrel{\square}{a}$

(a) Planform views of configurations tested.

Figure 2.- Planform views of configurations tested and typical model-support setups in the Ames 6-by 6-Foot Wind Tunnel.

(b) Test Model ($B_{2} W_{s}$ T) on support setup for $\alpha=0^{\circ}$ to about 27° in the Ames 6-by 6-Foot Wind Tunnel

Figure2. Contimued.

IVmis Conatury

sment	configlation description	c_{1} / c^{\prime}	Rex $10^{\text {s }}$
Q		0.176	4.300
8		(4.300
8	$81 . \mathrm{NICl}^{\text {c }}$		4.300

(a) $\mathrm{Xac}_{\mathrm{N}} / \mathrm{d}$ and C_{N} versus α.

Figure 3.- Effect of wing taper ratio with circular body and tail; $\mathrm{M}=0.6$.

Figure 3.- Continued.

sme	configuration description	c_{1} / c_{r}	$\operatorname{Re} \times 10^{-8}$
Q	㡲 Y1 T-N1 CI M T	0	4.300
8		0.276 0.533	4.300
8	㫙 -Ni Ci		4.300

(d) C_{L} and L / D versus α.

Figure 3.- Concluded.

smea	configuration	OESCRIPTION	$\mathrm{c}_{\text {P } / c_{r}}$	$\mathrm{Re} \times 10^{5}$
Q	明 \forall_{1} T $=$ N1 C1	$V_{1}{ }^{\top}$	0 0.276	4.300
8			0.276 0.533	300
8				4.300

(a) $\mathrm{xac}_{\mathrm{N}} / \mathrm{d}$ and C_{N} versus α.

Figure 4.- Effect of wing taper ratio with circular bod;' and $t: i a: M=09$.

Figure 4.- Continued.

(c) C_{A} and C_{n} versus α.

Figure 4.- Continued.

(d) C_{L} and L / D versus α.

Figure 4,-Concluded.

Figure 5.- Effect of wing taper ratio with circulai body and tail: $M=1.5$.

Figure 5.-- Continued.

Figure 5.- Continued.

(d) C_{L} and L / D versus α.

Figure 5.- Concluded.

swer.	configuration descriptien	$c_{\text {dre }} c_{\text {c }}$	Rex 10^{-9}
Q		0. 0.276	4.300
5	时 W3 T: Ni Ci 3 T	0.838 0.633	. 3000
,	日l -Nl Cl		3.000

(a) $\mathrm{x}_{\mathrm{ac}_{\mathrm{N}}} / \mathrm{d}$ and C_{N} versus α.

Figure 6. - Effect of wing taper ratio with circular body and tail: $M=2.0$.

smed	configration description	c_{8} / c^{\prime}
Q	V1T $=\mathrm{Nl} \mathrm{Cl} \mathrm{VIT}$	
8		0.276 0.533
8	$1-\mathrm{NICl}$	

$\mathrm{Re} \times 10^{-3}$

(b) $\mathrm{C}_{Y} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 6.- Continued.

snech	configration description	$c_{\text {¢ }} / \mathrm{c}_{\mathrm{r}}$
8		0.
8	givioni ci vo	-0.633

$\mathrm{Re} \times 10^{-5}$

4.300
4,000
4.3000
3.800

(c) C_{A} and C_{n} versus α.

Figure 6.- Continued.

Figure 6.- Concluded.

$$
x_{x^{x_{0}^{\prime}}}^{x^{\prime}}
$$

(a) $x_{a c_{N}} / d$ and C_{N} versus α.

Figure 7.- Effect of wing taper ratio with elliptic body and tail; $M=0.6$.

(b) $\mathrm{C}_{Y} / \mathrm{C}_{\mathrm{N}}$ and $\mathrm{C}_{\boldsymbol{Y}}$ versus α.

Figure 7.- Continued.

v^{4}
(c) C_{A} and C_{n} versus α.

Figure 7.- Continued.

Figure 7.- Concluded.

SYMEa	configuration description	-1/c,	Ru* 10
8	82 VIT	\bigcirc	4.300
8		0278 0.533	1.300
8	8_{82}^{82} PHI-O		6.500

(a) $x_{\text {ace }} / \mathrm{d}$ and $\mathrm{C} N$ versus α.

Figure 8. Effect of wing taper ratio with elliptic body and tail: $\mathrm{M}=0.9$.

Figure 8. Continued.

SYMEC	COF IGURATION DESCRIPTICN	c_{1} / c_{1}	Ric $10{ }^{\prime}$
8	02×1 T	0	4.300
8	82 $82{ }^{\text {¢ }}$	0.278 0.833	1.300
8	昌2 P4100		6.500

(c) C_{A} and C_{n} versus α.
Figure 8. Continued.

(d) C_{L} and L/D) versus α.

Figure 8. Concluded.

Figure9. Continued

4

(d) C_{L} and L / D versus α.

Figure 9.-- Concluded.
smeal configlantion description
smeal configlantion description
8
8
O
O
Re\times10.8
Re\times10.8
4.300
4.300
3:%om
3:%om

(a) $x_{a c} / d$ and C_{N} versus α.

Figure 10.- Effect of wing taper ratio with elliptic body and tail, $\mathrm{M}=\mathbf{2 . 0}$.

(b) $\mathrm{C}_{\mathrm{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 10.- Continued.

$\operatorname{Re} \times 10^{-5}$
 4.300
4.300
4.300
3.800
0^{4}

(c) C_{A} and C_{n} versus α.

Figure 10.- Continued

Figure 10.- Concluded.

SMECL	Configuratign description	An ${ }_{\text {a }}$	$\mathrm{Re} \times 10^{-3}$
8		2.810	4.300
8		3.784 4.781	4.300
\triangle	Bl - Ni Cl		4.30 C

(a) $x_{a c} / \mathrm{d}$ and C_{N} versus α.

Fipure 11. Effect of wing aspect ratio with circular body and tail, $M=0.6$.

(b) $\mathrm{C}_{\mathrm{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 11.- Continued.

Figure 11.- Concluded.

rea	configuration description	AA.	$\mathrm{Re} \times 10^{-1}$
9	O1 VST = N1 Cl Vs T	2.810	4.300
8	时 \forall_{2} I: N1 Cl \square_{2} T	3.784	4.300
8		4.761	4.300

(a) $x_{\mathrm{ac}_{\mathrm{N}}} / \mathrm{d}$ and C_{N} versus α.

Figure 12. Fffect of wing aspect ratio with circular hody and tail, $M=0.9$.

(b) C_{Y} / C_{N} and C_{Y} versus α.

Figure 12. Continued.

Fipure 12. Continued.

Figure 12. Concluded.

smea. 8	configration description		$\operatorname{Re} \times 10^{6}$
			4.300
		4.781	- 4.3000

(a) $\mathrm{Xac}_{\mathrm{N}} / \mathrm{d}$ and C_{N} versus α.

Figure 13. Fffect of wing aspect ratio with circular body and tail. $M=1.5$.

smba con iguration description AR 2.810 3.184 and .7
 $\operatorname{Re} \times 10^{-8}$

(b) $\mathrm{C}_{Y} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 13. Continued.

srmba	CONFIGIRATIGN	description	AA.	Rer $10{ }^{5}$
8	81 VS I-NI Cl	v5 I	2.810	4.300
8	$81{ }^{81}$	${ }_{4}{ }_{4}{ }^{T}$	3.784	4.300
8			4.761	4.800

c^{π}

(c) C_{A} and C_{n} versus α.

Figure 13.- Continued.

(d) C_{L} and L / D versus α.

Figure 13.- Concluded.

smbal	configlanticn descriptign	An.	Rex 10^{-8}
Q	O1 \square_{5} T - NICl $\mathrm{V}_{5} \mathrm{~T}$	2.810	4.300
是		3.764 .761	4.300
8	日l $\sim_{\text {Ni }}$	4.76	3.300

(a) $\mathrm{xacN} / \mathrm{d}$ and C_{N} versus α.

Figure 14. Effect of wing aspect ratio with circular body and tail, $\mathrm{M}=\mathbf{2 . 0}$.

(b) $\mathrm{C}_{\mathrm{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 14. Conti

Figure 14. Concludal.

[^2]

Figure 15. Continued.

(c) C_{A} and C_{n} versus α.

Figure 15. Continued.

Figure 15.- Concluded.

(b) $\mathrm{C}_{Y} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 16. Continued.

Figure 16.- Continued.

(d) C_{L} and L/D versus α.

Figure 16. Concluded

sreal 8	configuration description 	$\begin{aligned} & \text { AR, } \\ & 2810 \\ & 3.784 \\ & 4.781 \end{aligned}$	$\begin{aligned} & \operatorname{Re} \times 10^{-9} \\ & 4.300 \\ & 4 ; 300 \\ & 4.300 \\ & 3.800 \end{aligned}$

(a) $x_{\text {ace }} / d$ and C_{N} versus α.

Figure 17. Effect of wing aspect ratio with elliptic body and tail. $M=1.5$.

Figure 17. Continued.

Figure 17. Continued.

(d) C_{L} and L / D versus α.

Figure 17.- Concluded.

smeal	configuration description	${ }^{\text {AR }}$	Rex $10{ }^{5}$
R	搨 $\mathrm{VF}_{5}^{\text {T }}$	2.810	4.300
8	$82{ }^{81}$	4.781	300
8	日2 PW1-0	-	3.800

(a) $\mathrm{X}_{\mathrm{ac}}^{\mathrm{N}}$ $/ \mathrm{d}$ and C_{N} versus α.

Figure 18. Effect of wing aspect r .tio with elliptic body and tail, $\mathrm{M}=\mathbf{2 . 0}$.

Figure 18. Continued.

Figure 18.-- Continued.

(d) C_{L} and L / D versus α.

Figure 18. ('oncluded.

Figure 19. Effect of nose fineness ratio on wing-body-tail characteristics, $\mathbf{M}=\mathbf{0 . 6}$.

Figure 19.- Continued.

Figure 19.- Concluded.

smear	configration descripticn	$\mathrm{l}_{\mathrm{N}} / \mathrm{d}$	$\mathrm{Re} \times 10^{6}$
8		30	4.300
8	${ }^{N}{ }^{2} \mathrm{Cl} \mathrm{Cl}^{2} \mathrm{t}$	3.80	4.300
8	N7 Ci v2	28	4.300

(a) $x_{\text {ace }} / d$ and C^{2} versus x.
Figure 20 Effect of nose fineness ratio on wing-body-tail characteristics, $\mathrm{M}=0.9$.

(b) $\mathrm{C}_{Y} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 20. Continued.

Figure 20.- Continued

Figurr 20. Concluded.

Figure 21. Iffect of nose fineness ratio on wing-body-tail chardeicristics. $M=1.5$.

1:igure 21. Continued.

(d) C_{1} and $\mathrm{L} . / \mathrm{D}$ versus α.

Figure 21. Concluded.

Rex 10^{-9}
4. 300
4:300
4:300

(a) $x_{\text {ac }}{ }_{N} / d$ and C_{N} versus α.

Figure 22. Effect of nose fineness ratio on wing-body-tail characteristics, $M=2.0$.

Figure 22.…Continued.

(c) C_{A} and C_{n} versus α.

Figure 22. Continued.

(d) C_{1} and $\left.L / I\right)$ versus α.

Figure 22.- Concluded.

Figure 23. Feffect of nose rounding and strakes on wing-body-tail characteristics. $M=0.6$.

Figure 23.- Continued.

	confielration description	$\mathrm{Re} \times 10^{-8}$
	81 V2 T-NICl V2 T	4.300
		4.300
	N6Cl y2 T	4.300

(c) C_{A} and C_{n} versus $\boldsymbol{\alpha}$.
Figure 23.- Continued.

Figure 23.- Concluded.

snea	CONFIGLRATICN DESCRIPTICN	$\mathrm{Re} \times 10^{-5}$
8		4,3000
8		4.300 4.3000

(a) $\mathrm{X}_{\mathrm{ac}}{ }_{\mathrm{N}} / \mathrm{d}$ and C_{N} versus α.
Figure 24.- Effect of nose rounding and strakes on wing-body-tail characteristics, $\mathrm{M}=\mathbf{2 . 0}$.

Figure 24.- Continued.

Figure 24.- Concluded.

Figure 25.- Effect of removing tail and wing from a circular body $N_{1} C_{1}\left(\ell_{N} / d=3\right) ; M=0.6$.

R 1010^{6}
嘤

(b) C_{Y} / C_{N} and C_{Y} versus α.

Figure 25.- Continued.

(d) C_{L} and L / D versus α.

Figure 25.-- Concluded.

Figure 26.- Effect of removing tail and wing from a circular body $N_{1} C_{1}\left(\ell_{N} / d=3\right) ; M=0.9$.

(b) $\mathrm{C}_{Y} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 26.-- Continued.

Rex 10^{-5}
4. 1.300
4.300
4.300

(c) C_{A} and C_{n} versus α.

Figure 26.- Continued.

Figure 26.- Concluded.
smeal coviluration description
smeal coviluration description

(a) $x_{\text {ac }} /{ }^{/ d}$ and C_{N} versus α.

Figure 27.- Effect of removing tail and wing from a circular body $N_{1} C_{1}\left(\ell_{N} / d=3\right) ; M=1.5$.
$\operatorname{Ra} \times 10^{8}$變

(b) $\mathrm{C}_{\mathbf{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 27.- Continued.

Figure 27.- Continued.

(d) C_{L} and L / D versus α.

Figure 27.- Concluded.

symel confievation descripticn	$\operatorname{Re} \times 10^{-5}$
	4.309
	4.300 3.800

j^{z}

(a) $x_{a c_{N}} / d$ and C_{N} versus α.

Figure 28.-Elfect of , emoving tail and wing from a circular body $N_{1} C_{1}\left(\ell_{N} / d=3\right) ; M=2.0$.

Figure 28.- Continued.

(d) C_{L} and L / D versus α.

Figure 28.- Concluded.

$x_{0}^{\mathbf{u}}{ }_{0}^{2}$

(a) $\mathrm{xac}_{\mathrm{N}} / \mathrm{d}$ and C_{N} versus α.

Figure 29.- Effect of removing tail and wing from a circular body $N_{3} C_{1}\left(\ell_{N} / d=5\right) ; M=0.6$.

Figure 29.- Continued.

Figure 29.- Concluded.
swal configuration description
$8 \bar{g}_{10}$

(a) $x_{\text {acc }} /$ dand ${ }_{N}$ versus α.

Figure 30 . Iffect of removing tall and wing from a circular body $N_{1} C_{1}\left({ }_{N} / d=5\right) ; M=0.9$.

Pax 10^{-5}
4.300
$4: 300$
4.300

(b) $\mathrm{C}_{\mathrm{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 30.- Continued.

(c) C_{A} and C_{n} versus c .
Figure 30.- Continued.

Figure 30.- Concluded.

swea	CONFIERATICN DESCRIPTICN	Rex 10^{-8}

(a) $x_{a c} /{ }^{/ d}$ and C_{N} versus α.

Figure 31.- Effect of removing tail and wing from a circular body $\mathrm{N}_{3} \mathrm{C}_{1}\left(\ell_{\mathrm{N}} / \mathrm{d}=5\right)$; $\mathrm{M}=1.5$.

Figure 31.- Continued.

Figure 31.- Continued.

Figure 31.-Concluded.

Figure 32.- Effect of removing tail and wing from a circulur body $N_{3} C_{1}\left(Q_{N} / d=5\right) ; M=2.0$.

Figure 32.- Continued.

(c) C_{A} and C_{n} versus α.

Figure 32.- Continued.

(d) C_{L} and L / D ver: : $\boldsymbol{\alpha}$.

Figure 32.-Con $\%$ ided.

Figure 33. Effect of removing tail and wing from an elliptic body $B_{2}, M=0.6$.
$R 0 \times 10^{\circ 8}$
4.309
4.300
6.500

(b) $\mathrm{C}_{\mathrm{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 33. - Continued.

sweal conficurapion descripyion 8 8

4.3004.530
6.500
v^{3}

(c) C_{A} and C_{n} versus α.
Figure 33.- Continued.

(d) C_{L} and L / D versus α.

Figure 33.-- Concluded.

(a) $\mathrm{xac}_{\mathrm{N}} / \mathrm{d}$ and C_{N} versus α.

Figure 34.- Effect of removing tail and wing from an elliptic body $B_{2} ; M=0.9$.

$R 0 \times 10^{8}$
$R e \times 10$
4.300
4.300
6.500

(b) $\mathrm{C}_{\mathrm{Y}} / \mathrm{C}_{\mathrm{N}}$ and C_{Y} versus α.

Figure 34.- Continued.

Figure 34.- Continued.

(d) C_{L} and L/D versus α.

Figure 34 - Concluded.

Figure 35.- Continued

Figure 35.- Continued.

Fig. e 35 .-. Concluded.

Figure 36. Effect of removing tall and wing from an elliptic body $\mathrm{B}_{2}: \mathrm{M}=2.0$.

(b) $\mathrm{C}_{\boldsymbol{Y}} / \mathrm{C}_{\mathrm{N}}$ and $\mathrm{C}_{\boldsymbol{Y}}$ versus α.

Figure 36.- Continued

swea	con iquration cescription	$\mathrm{Ra} \times 10^{-5}$
	最 V2 ${ }^{\text {¢ }}$	4.300
		3,600

(c) C_{A} and C_{n} versus α.
Figure 36. - Continued.

SMER COFIGURATION CESCRIPTION

(d) $C_{\text {L }}$ and L/D versus α

Figure 36. - Concluded.

[^0]: *Project engineer, ARO, Inc., Mot . . it Field, Calif. 94035.

[^1]: ${ }^{1}$ The signs of the side-force coefficients are sometimes different from run to run and from test of body alone to body with wing plus tail. It is believed that the signs result from the random asymmetric flow separation and vortex flow from the nose (observed from oil-flow tests).

[^2]:

