
N A S A C O N T R A C T O R

R E P O R T

N A S A C R - 2 5 7 8

TRANSONIC AIRFOIL DESIGN
USING CARTESIAN COORDINATES

Leland A. Carlson

Prepared by

TEXAS A&M RESEARCH FOUNDATION

College Station, Tex. 77840

for Langley Research Center

NATIONAL A E R O N A U T I C S AND S P A C E A D M I N I S T R A T I O N • W A S H I N G T O N , D. C. • APRIL 1976

https://ntrs.nasa.gov/search.jsp?R=19760012994 2020-03-22T16:58:43+00:00Z



1. Report No. 2. Government Accession No.

4. Title and Subtitle

TRANSONIC AIRFOIL DESIGN USINftCARTESJAN COORDINATES..

7. Author (s|

Lei and A. Carlson

9. Performing Organization Name and Address

Texas A&M Research Foundation

College Station, TX 77840

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546
15. Supplementary Notes

Monitored by Jerry C. South, Jr

3. Recipient's Catalog No.

5. Report Date
April 1976

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

501-06-05-08-00
11. Contract or Grant No.

NGR-im-nm-157
13. Type of Report and Period Covered

CONTRACTOR REPORT
14. Sponsoring Agency Code

, Mail Stop 360 Final Report
Langley Research Center, Hampton, VA 23665

16. Abstract

A numerical technique for designing transonic airfoils having a prescribed pressure distribution
(the inverse problem) is presented. The method employs the basic features of Jameson's iterative
solution for the full potential equation, except that inverse boundary conditions and Cartesian
coordinates are used. The method is a direct-inverse approach that controls trail ing-edge closure.
Examples show the application of the method to design aft-cambered and other airfoils specifically
for transonic flight.

17. Key Words (Suggested by Aulhor(s)) 18. Distribution Statement

Supercritical airfoil design
Relaxation
Cartesian coordinates
Inverse problem

19. Security Classif. (of this report] 2

Unclassified

Unclassified - Unlimited
Subject Category 02

0. Security Classif. (of this page) 21. No. of Pages 22. Price"

Unclassified 33 $3.75

For sale by the National Technical Information Service, Springfield, Virginia 22161



TRANSONIC AIRFOIL DESIGN

USING CARTESIAN COORDINATES

By Lei and A. Carlson
Texas A&M University

SUMMARY

A numerical technique for designing transonic airfoils having a prescribed
pressure distribution (the inverse problem) is presented. The method employs
the basic features of Jameson's iterative solution for the potential equation,
except that inverse boundary conditions and Cartesian coordinates are used.
The method utilizes a direct-inverse approach that leads to a logical method
for controlling trailing edge closure. Examples show the application of the
method to design aft-cambered and other airfoils specifically for transonic
flight.

INTRODUCTION

A numerical method for the design of transonic airfoils should not only
be accurate but also be as simple as possible in concept and approach. It
should use coordinate systems, input variables, and boundary condition treat-
ments that can be easily understood by the user. In addition, it would be
desirable if the method yielded the airfoil design shape for a given set of
conditions with little or no iteration and used or computed nose and tail
shapes that are aerodynamically and structurally reasonable. Finally, it
should be able to handle both shocked and shockless flows and be suitable
for not only complete design but also airfoil modification.

Previous design methods and programs have either worked with the hodograph
(1 2) (3)equations, ' used direct optimization techniques, or tried the inverse

/4_7)
approach. ' Of these, probably the best known are the hodograph methods of
Nieuwland^ ' and of Bauer, Garabedian, and Korn. ' While these methods yield
excellent accurate results, they are restricted to shock free solutions which
may have adverse drag, pitching moment, and boundary layer separation charac-

/g\
teristics at off-design conditions. ' Further, they are difficult from the
user standpoint in that they involve complex mappings and transformations and
require complicated initial input conditions. In Nieuwland's method, the user



must a_ priori specify the trailing edge Mach number and flow angle, while in
the Korn theory a set of logarithmic terms must be given involving singulari-
ties inside the airfoil. As a consequence the hodograph methods may require
a large number of trial solutions before an acceptable airfoil design is
achieved/ ' and they are not suitable for simple airfoil modification since
there seems to be no straight forward way of changing only part of the solu-
tion.

Another design technique is to use a direct method (airfoil prescribed)
to analyze the flow about a given airfoil and then, based upon this result, to
modify the airfoil in an attempt to satisfy the design conditions. Usually
this approach requires extensive experience on the part of the user and a large
number of iterations. It can, however, yield good results. Recently, Hicks,

(3)Murman, and Vanderplaats have automated this procedure for non-lifting air-
foils by combining a transonic, small perturbation analysis program with an
optimization program based on the method of feasible directions. While very
promising, the method tends to yield airfoils having multiple upper surface
supersonic zones, which at off-design conditions may lead to multiple shocks
and other adverse effects. In addition, it needs to be extended to lifting
airfoils before its full usefulness can be ascertained.

The last design formulation is the inverse method in which the airfoil
surface pressures or velocities are specified and the airfoil shape subse-
quently determined. Admittedly this approach requires knowledge of what would
be a desirable pressure distribution, but this characteristic is probably un-
derstood by the designer as well as, if not better than, any other. Further-
more, the designer can a priori select a pressure distribution that will yield
a given lift and moments have a reasonable supersonic zone, behave desirably
with, respect to boundary layer separation, and satisfy other transonic flow
criteria. Of course, the resultant airfoil design shape may or may not be
physically and structurally reasonable.

The inverse approach was initially pursued by Erdos, Baronti, and ETzr
weig^ ' and by Steger and Klineberg. ' Both groups used the transonic small
perturbation equations and formulated the problem in a direct-inverse manner.
That is, the leading edge shape was specified and that region solved directly,
while on the remainder of the airfoil the pressure was prescribed and the shape



computed. Erdos et al used the perturbation potential as the basic unknown
everywhere in the flowfield, but Steger and Klineberg used the perturbation po-
tential only in the direct region. In the inverse zone, they posed the prob-
lem in terms of the perturbation velocities. Since each approach solved the
flow directly up to an arbitrary point, each could be used, if desired, to ana-
lyze a problem in a completely direct mode. Now if the pressure distribution
from such a direct computation were used as input for an inverse calculation,
the original airfoil shape should be recovered. Yet, Erdos et al obtained in
that case a discontinuity in body slope at the location of the shock wave,
which they attributed to the singular nature of the point of intersection be-
tween the shock and the surface boundary. Steger and Klineberg experienced
similar phenomena but determined that they were numerical in origin and that
they could be eliminated with careful formulation. Unfortunately, since the
two methods used different dependent variables in the inverse zone, the self-
consistency of an approach using only the perturbation potential was not estab-
lished.

This problem was subsequently investigated in detail^ ' and it was estab-
lished that the discontinuity observed by Erdos was strictly numerical in ori-
gin and that inverse results consistent with direct calculations could be ob-
tained using the perturbation potential. In addition, it was demonstrated by
using experimentally measured pressures as input that inverse transonic calcu-
lations are capable of reflecting the consequences of viscous-inviscid inter-
action on the airfoil displacement surface shape. Finally, it was determined
that the inverse approach using the small perturbation equations tended to be-
come inaccurate for thick and blunt-nosed airfoils.

Quite obviously the latter problem can be eliminated by formulating the
inverse problem with the complete potential flow equation. Unfortunately, this
makes the problem more difficult in that unlike the small disturbance case the
location of the airfoil surface boundary condition in the computational plane
is unknown. Tranen^ ' applied the complete equations to the inverse problem
by modifying the conformal mapping relaxation solution technique of Garabedian
and Korn to use the pressure distribution boundary condition. Since this tech-
nique maps the computational grid to match the airfoil surface, Tranen was
forced to apply the boundary conditions at the surface of some assumed airfoil.



Only after the relaxation process had converged could a new shape be computed;
and, usually, because of the difference between where the boundary conditions
were and should have been applied, the resultant shape was not completely com-
patible with the input pressure distribution. Tranen solved this problem by
resorting to, for each case, a series of inverse-direct-inverse-direct, etc.
calculations in which the pressure distribution was modified prior to each in-
verse calculation. This was done in an attempt to achieve convergence, which
occurred when the C distribution from a direct computation agreed with that
used as input in the previous inverse run.

Tranen's work is significant because it successfully applies the complete
equations to the inverse design problem and because it designs the entire air-
foil. Since the method is entirely inverse and since in the inverse region
the surface boundary condition specifies the derivative of 4 in the streamline
direction, an initial value of <j> at the nose must be assumed. Unfortunately,
the solution is sensitive to this value. Furthermore, to achieve convergence,
Tranen1s approach requires large scale iteration involving an unspecified modi-
fication of the input pressure distribution.

The purpose of this report is to present and discuss a new numerical
method suitable for the design and/or modification of subsonic and transonic
airfoils. In order to achieve accuracy, the method utilizes the full inviscid
potential flow equations; and in order to remain simple, it solves the problem
in a stretched Cartesian grid system. The resultant working computer program
has several unique features. First, it can be used in either the direct (anal-
ysis) mode in which the airfoil shape is prescribed and the flowfield and sur-
face pressures are determined, or in the direct-inverse (design) mode in which
an initial nose shape is given along with the pressure distribution on the re-
mainder of the airfoil and the flowfield and actual airfoil shape are computed.
Second, it uses for the first time in a design program the rotated difference
scheme introduced by South and Jameson, ' which always has the correct
zone of dependence in supersonic zones but does not require the coordinate sys-
tem to be closely aligned to the flow direction. Third, unlike previous meth-
ods, the present program determines the airfoil shape simultaneously with the
flowfield relaxation solution. Thus, when the converged solution is achieved,
an airfoil design compatible with the input pressure distribution is known,



and iteration is not required.
This report primarily discusses the design mode of the program, presents

the numerical features peculiar to the design problem, and shows how the
method can be applied. A discussion of the analysis aspects of the method
along with the numerical methods utilized, finite difference formulation, and
numerical stability are presented in Reference 12.

SYMBOLS

a isentropic speed of sound
a,b coordinate stretching constants
c chord length
Cp pressure coefficient, (p-p^J/OspJ^,2)
C|_ lift coefficient
CMLE coefficient of moment about the leading edge
f,g coordinate stretching functions
M Mach number
p pressure
q velocity
U,V velocity component in the x-, y- direction respectively
x,y Cartesian coordinates
a angle of attack
Y ratio of specific heats
r circulation
e polar coordinate
?,n computational coordinates
p density
$ potential function, Eq. (1)
<j> perturbation potential, Eq. (2)
Subscripts:
«> freestream condition
b body
TE trailing edge

i,j grid location
3fC»n»x,y differentiation, i.e., fv = —* 3X



PROBLEM FORMULATION

The exact equation for the potential function for two dimensional com-
pressible flow can be written in Cartesian coordinates as

(a2 - 4>x
2)$xx - 2$x$y$Xy + (a

2 - $y2)$yy = 0 (1)

where the subscripts denote partial differentiation. By defining a pertur-
bation potential, <)>, such that

(2)v '$ = xq^cosa + yqjsina + qj,

where the velocity components are given by,

U = $x = qjcosa + <f>x) (3a)

V = $y = qjsina + fy) (3b)

the governing equation for the perturbation potential becomes

(a2 - U2)<(,xx -2UV<(,xy + (a2 - V2)<f>yy = 0 (4)

with
2 = -

The appropriate boundary condition at infinity i

- a)) (6)

a2 = aj - ri [U2
 + V2 - q.2] (5)

where ei is the polar angle, and r is the circulation, which is determined by
the change in potential across the Kutta-Joukowski cut at the trailing edge
of the airfoil, i.e.

r = (<f>y=o+ - *y=0- ̂ railing Edge
 (7)

As mentioned in the Introduction, in the design mode the shape of the
nose region (typically 6-10% of the chord) is specified and the pressure is
prescribed over the remainder of the airfoil. This procedure is used for sev-
eral reasons. First, the nose region must be very accurately known in order
to correctly fabricate an airfoil. Thus, by prescribing the nose shape, a
possible major source of error is eliminated from the design procedure. Sec-
ond, the boundary condition in the inverse region specifies the derivative of
the perturbation potential in the tangential direction, and a starting value



must be known. With the present scheme, this value is determined by the di-
rect solution in the nose region and need not be estimated or iterated for.
Third, in some cases the designer may wish only to modify the aft portion of
the airfoil. This can be done with the present scheme since the switch point
from direct to inverse can be set by an input variable anywhere from about 6%
chord to the trailing edge. Finally, and perhaps most importantly, specifi-
cation of the nose shape gives the designer a physical entity whereby he can
control the degree of closure of the trailing edge. This feature will be dis-
cussed later.

With this philosophy, the appropriate airfoil boundary condition in the
direct region near the leading edge is

In the inverse region where the pressure is specified, the pressure coef-
ficient expression can be solved for either <J>X or <|>y, since the tangential de-
rivative involves both. If the inverse region included the leading edge re-
gion, the logical choice would be to use <ty near the nose, since the flow there
is primarily in the y direction, and <j>x downstream. However, since in the
present problem the nose is not normally part of the inverse region, the ap-
propriate inverse boundary condition is

(*x)t = -COSa+4-—U—-/I -Ul

Equation (9) is nonlinear in that <|>x, Ub
2, and Vb

2 all involve values of <|> at
various grid points. The treatment of this nonlinearity will be discussed in
the next section.

Equation (8) is applied on the assumed nose shape, and in the inverse re-
gion Equation (9) is applied at the location of the current airfoil surfaces.
The latter are determined by integration of the Equation (8) in the inverse
region.

To facilitate the application of the.infinity boundary condition, Equation
(6), the coordinate stretching represented on Figure 1 was selected. Here



the x-y plane is the physical plane and ?-n represents the computational plane,
and each is subdivided into three regions. The stretching is symmetrical
about the origin and is given by

x = x4 +' A2Tan[|-U - ?4)] + A3Tan[|-(c - £4)3] (10)

in region III and by
x = c(a + b£2) (11)

in region II. The constants a and b are determined by the requirements

x = x4 at £ = £4 (12a)

and

£-T* «t {.£4 (12b)

The constant fy controls the grid spacing in the vicinity of X4, which is us-
ually near the leading and trailing edges; while A3 determines the physical
location of the grid adjacent to the grid edge.

In the y-direction the stretching relationship is given by

y = A1Tan(|n) (13)

where A-, controls the grid size near the airfoil. Here, only a one parameter
stretching is used in order to facilitate the transformation from computational
to the physical ordinates, which .is required each time the unknown airfoil
surface is computed from Equation (8).

Notice that these stretchings map the infinite x,y plane

-00 < J( < 00

~°° i. y — °° 04)
into the finite computational plane

- (1 + 54) 1 5 1 (1 + £4)

- 1 in 1 1 (15)

where £4 determines the amount of the computational plane confined to the vi-
cinity of the airfoil.

The governing equations formulated in terms of the £-n variables are then
written in finite difference form and solved iteratively using numerical

8



relaxation. The finite differences are formulated using a rotated scheme,
first proposed by South and Jameson, ' ' which always has the correct zone
of dependence in supersonic regions but does not require the coordinate sys-
tem to be closely aligned to the flow direction. Essentially, the finite
difference expressions are arranged to exhibit the basic features of a local
rotation to the streamline directton.

With respect to the rotated difference scheme, it should be noted that
the present approach is somewhat different from that used in Ref. (10) and
(11). While still using rotation and viewing the relaxation process as a
time-like procedure, time terms in the streamwise direction are not introduced
implicitly as a consequence of the manner in which the difference expressions
are formulated. Instead they are added explicitly and, as in Ref. (10) and
(11), used as damping terms to control the stability and convergence of the
relaxation process. By explicitly adding these time-like terms, no additional
damping is required. Further, the amount of damping required can be easily
determined by the user from the maximum local Mach number, which in the design
problem would be known from the assumed surface pressure distribution. Also
notice that the time-like terms correspond to the change in <j> between relaxa-
tion cycles; and, thus, they approach zero as the solution converges. A de-
tailed discussion of the finite difference formulation, the numerical scheme,
and its stability is presented in Reference (12).

SURFACE BOUNDARY CONDITIONS

AND COMPUTATION OF SHAPE

There are many ways to approximate the flow tangency, Equation (8), or
surface pressure, Eq. (9), condition at the airfoil boundary. One approach,
which is used here, is to generate dummy values of <f> at mesh points inside the
boundary such that the usual difference equations can be solved at all points
outside the boundary. The problem is to develop a scheme for providing and
updating these dummy values by using the surface tangency or pressure condi-
tion and neighboring values of $ in the mesh, with adequate accuracy and with-
out creating instability.

To accomplish this for the direct region, first note that in the compu-
tational coordinates Equation (8) becomes



!b • sina
Ub

Here, Taylor series about the dummy point (i,j-l) (see Figure 2) can be used

to express <f>n and <f>£ . Thus,

= * * . . + (% - li-i) *r_ .. + ... (18)

When these are written in finite difference form using second order expres-
sions for <{>£ and <|>n and at least first order ones for <j>n and <j>^Tl, they become
in the direct region (for the upper surface case)

n

( n b - H H ) ( > - - - . - ) (I9b)

These expressions can then be substituted into Equation (16) and the result
solved for a sufficiently accurate <{>i -;_i that is in terms of the neighboring1 »J *

potentials, body slope, and body position.
In the inverse region the surface pressure boundary condition

<fxb= „.« }

= -cosa

must be applied at the location given for the surface by the previous relaxa-
tion sweep or last surface update. Thus, to start the inverse calculation an

10



initial profile is needed. While this profile should be reasonable and compat-
ible with the shape selected for the nose region, it is not critical and the
final airfoil may be quite different from the initial profile.

As in the direct region, the Taylor series expression for ̂  , Equation
(18), is used in Equation (20); but in the inverse case considerable care must
be used in selecting the finite difference forms for <j>^^ j_-j and ̂ ij-l-
For example, since the resultant expression is to be solved for <j>.| j_-|, one
possibility is to use CnL . , and central differences about (i-l,j-l). While

rbi-1
numerically stable, this approach has two disadvantages. First, since the
dominant term in the expansion is <j>£, central differencing causes ĵ-i to
depend mostly upon (fr-̂ j-i • Second, the pressure determining <H,j-l 1S

Cp and not Cp . Consequently, adjacent boundary points are uncoupled,
and the boundary values usually have an undesirable oscillatory behavior.
This can be mitigated slightly by using CnL. , and centering about (i-^,j-l),

^DT-h
but the results are still frequently oscillatory.

In order to eliminate this oscillatory behavior, several other possible
approaches were investigated. Among those found to be inaccurate and/or un-
stable were first order forward schemes using CD. . ,, first order backwardKbi-l
formulas using Cp , and schemes centered about (i,j-l) and using Cp.. The
latter failure was expected since its algebraic form emphasizes ^ instead
of <|>£. Finally, it was determined that a scheme based on (i,j-l) and that
uses Cp _, second order backward differences in £ on both <jî  and (j>̂ n and first
order on n in <j> n̂ frequently worked very well.

However, the best form to use for ̂ ^ in Equation (20) is (for the upper
surface)

. n. .
VI

" d) •

(21)
ny n

merical instabilities, builds into ^ - j - i the upstream history of the airfoil,
and uses Cp .. It lea
apparent oscillations.

where the pressure coefficient is Cp . This form does not introduce any nu-

^-j
and uses Cp .. It leads to smooth boundary values and airfoil shapes with no

11



When Equation (21) is substituted into Equation (20) and the result solved
for <f>.j 4-1 » the final expression involves the square of the airfoil slope,

• Technically, this makes the equation nonlinear. However, since the
surface slope is usually small in the inverse region, it has been found to be
sufficiently accurate to hold (V/UJb constant at the value obtained for the
last airfoil surface update.

For those situations where the flow at point (i,j) is supersonic, the
rotated finite difference scheme may require a <f>ijj_2 value as well as <{>.,• . ̂  .
Thus, in all cases a value of <i>ijj_2

 1S determined by extrapolation as

The above procedures for determining the values of the dummy mesh points
inside the boundary is performed twice for the relaxation procedure of column
i. First, either Eq. (16) or (20) are used with $ values obtained from the
previous relaxation sweep in order to obtain old values for the dummy points

<M,j-l and ^ijj-2- Then> after the column i has been relaxed, they are used
again with as many current values of $ as possible to obtain new values ̂ tj-i

and <)>t j-2* *n ^nis manner> the dummy mesh points will have both old and new
values just like regular mesh points, and they can be used directly in the
finite difference formulas without special treatment.

A similar procedure is used to satisfy the boundary conditions on the
lower surface of the airfoil.

Now in the inverse case the airfoil shape must also be computed. In
other words, for a given <f> solution the differential equation given by Equa-
tion (16) must be solved for the surface ordinates, y, as a function of x,
with the initial conditions given by the surface slope and ordinate at the
interface between the direct and inverse regions. In the present problem the
location of the interface and the values of the initial conditions are known
because the nose region is solved directly. If the problem were treated com-
pletely inversely, the shape would depend upon the unknown value for <j> at the
leading edge.

An easy method for solving Equation (16) is to use the Euler-Cauchy (or
Runge-Kutta of order two) method, either directly or with iteration, since it
only requires information at i and i+1 . This approach was tried, but it was
found tc be insufficiently accurate. Consequently, the Runge-Kutta method of

12



order four has been used; and while it requires for each step information at i,
i+%, and i+1, the improvement in accuracy is worth the added complexity.

In the process of solving Equation (16) <j>n and $? must be evaluated by
finite differences. While Equation (19a) is the obvious choice for <|>n. ,'b
either Equation (19b) or (21) could be used for <|> . Both have been used and

^b
both work well, but experience indicates that more accurate airfoil shape re-
sults are obtained using the central difference scheme, Equation (19b).

Finally, notice that in integrating Equation (16) the most difficult re-
gion from an accuracy standpoint is near the leading edge where the surface
slopes are very large. In the present approach this difficulty is essentially
eliminated since the nose shape is prescribed and the nose region is solved
directly.

NUMERICAL STUDIES

Self Consistency
The present numerical method is capable of being used either directly or

inversely. Thus, when pressure results from a direct calculation are used as
an input for an inverse calculation, the original airfoil shape should be re-
covered. However, as shown by References (4-6), this task can be difficult;
the key to success is numerical consistency between the direct and inverse
computations. Hence, this type of test is a check on not only the validity
of the inverse approach, but also on the consistency of the difference schemes.
Several such tests have been conducted and some typical results are shown on
Figures 3 and 4. Since the boundary condition in the inverse case is computed
using Equation (20) combined with the backward difference formula, Eq. (21),
the input Cp used in these tests (obtained from a direct calculation) was com-
puted using Equation (21) for the <j>r. term. In this manner, algebraic con-

^b
sistency between the two calculations is preserved.

Figure 3 compares the actual surface slopes with those computed by the
inverse technique for a nonlifting NACA 0012 at slightly supercritical con-
ditions. In this case, the inverse design region extended from 6% chord to
the trailing edge. As can be seen the slopes, and consequently the shape, are
returned exactly.

13



A more severe test of self-consistency is a supercritical lifting case,
and the results of such a test are presented on Figure 4. Here a strong shock,
having a local upstream Mach number of about 1.30, exists on the upper surface
of the NACA 0012 airfoil. Notice that the agreement between the direct and in-
verse lift coefficients and between the actual and computed slopes is excel-
lent, and that the differences between the upper and lower surface values are
too small to be detected on the plot. For this case the computed surface or-
dinates are everywhere within 0.33% (T/CL, of the actual NACA 0012 ordinates,max
and no problems exist near the shock or the trailing edge.

Based upon these tests and results, it is believed that the present in-
verse design scheme and program is self-consistent and reasonably accurate.

Size of Inverse Region
The present design approach is general in that the interface between the

direct and inverse regions can be located anywhere between the leading and
trailing edges. However, the nose region is very hard to compute accurately
in the inverse mode if the surface slopes are steep; and the question arises--
How close to the leading edge can the inverse region start? To answer this
question a series of inverse calculations were performed for a six percent
biconvex airfoil at M^ of 0.9 and one degree angle of attack. The input Cp
distribution, which contained shocks on both the upper and lower surfaces,
was obtained from a direct computation, and in each of the tests the inverse
zone was started at a different point. The inverse results were then compared
with the actual surface slopes, given for the upper surface by the straight
line yu' = -0.24(x/c) + .12.

In making these comparisons it should be noted that the -inverse boundary
condition at point i, see Equations (20-21), uses information at points i,
i-1, and i-2. Thus, if the inverse region starts at the third column from
the leading edge, the inverse boundary condition uses only information aft of
the leading edge. However, if the inverse region starts nearer the leading
edge, information from in front of the airfoil will be used in the inverse
boundary conditions, which may not be bad since the flow in front is subsonic
and fully aware that there is an airfoil disturbing the flow.

14



The results of these tests are shown on Figure 5. The slopes computed
by starting the inverse region at the third column from the leading edge are
accurate, but those starting at the second are slightly in error on the slope
and consequently also the shape. Finally, the slopes based upon the inverse
region starting at the first column aft of the leading edge are in serious
error. This trend has been verified by other tests with other airfoils. Con-
sequently, it has been concluded that the inverse region should start no sooner
than the third column from the leading edge, which is usually at about 5-10%
chord. Hence, all the design results presented in this report have been com-
puted with the inverse region starting no earlier than the third column aft
of the leading edge.

Sensitivity to Errors in Cp
Since the pressure distribution is the primary input for the inverse mode,

an important question is—How sensitive is the shape of the designed airfoil to
errors in the input Cp distribution? This problem has been numerically in-
vestigated, and it has been found that a 0.5% change in all the Cp input val-
ues (ACp~0.003) leads to a 0.5% (T/C)m change in the final airfoil ordinates.
This increment appears small (A(y/c) * 0.0006), but it can be quite signifi-
cant in the vicinity of the trailing edge where ordinates tend to be small.
While this result is not at all unexpected, it does mean that care should be
exercised when using the inverse design program to insure the accuracy of
the input Cp distribution.

COMPUTATIONAL PROCEDURE

In designing an airfoil shape using the inverse scheme, the same basic
numerical relaxation technique as described in Reference (12) is used. To
start the problem an initial airfoil shape must be assumed, but this choice
is not critical and the final airfoil shape may be considerably different.
Next, since experience has indicated that the inverse scheme works best if
the perturbation potentials have reasonable starting values, fifty relaxation
cycles are performed in the direct mode for the initial airfoil shape on a
very coarse grid. Then, the grid spacing is halved and the inverse procedure
is initiated using the input pressure distribution as the boundary condition
in the inverse region.

15



An important consideration in the inverse calculations is the frequency
of computing or updating the new airfoil shape. Since in the early relaxa-
tion cycles the pressure boundary condition may cause very large perturbations
from the initial shape, it has been found best not to start the update pro-
cedure until after the first fifty iterative cycles on the second grid, which
are all in the inverse mode. After that, updating can occur after each re-
laxation sweep, if desired, or at some specified interval, or after complete
convergence has been achieved. The last is essentially the procedure used by
Tranen. Since each update computation requires a finite amount of computer
time, it would be inefficient to calculate a new airfoil shape after each re-
laxation cycle. On the other hand, tests with the present scheme have indi-
cated that updating only after convergence has been achieved usually yields
airfoil shapes not completely compatible with the desired pressure distribu-
tion. It appears that the optimum procedure is to perform the airfoil shape
update calculation after every ten relaxation cycles. More frequent updating
does not improve the accuracy of the final shape and only wastes computer
time, while less frequent use sometimes leads to small errors in the final
shape. After convergence on the second grid, the spacing is halved at least
once more and the entire procedure repeated.

Another important consideration in the inverse approach is the determina-
tion of convergence. In direct calculations, it is usually sufficient to moni-
tor both the maximum perturbation potential change between relaxation cycles
and the number of relaxation cycles. The calculation is stopped when either
the maximum perturbation potential change is less than some specified value or
.the number of cycles exceeds a given number. However, in the inverse problem,
another important criteria is the maximum change that occurs between update
calculations in the surface ordinates of the airfoil being designed. It has
been found that this value should also be monitored, and the computations con-
tinued until it is consistently less than some specified value: (say Ay/c <
0.0001). Frequently, satisfaction of this criterion yields a maximum pertur-
bation potential change smaller than would be required for a direct calculation.

All of the inverse results presented in this report have been obtained with
this procedure and have used at least two grid halvings. Usually, the final
grid contained 49 x 49 points, which yields, 66 pressure points on the airfoil
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surfaces. Typical computation times were six minutes on a CDC 6600 (including
Varian plots) or about twenty minutes on an IBM 360/65.

APPLICATION AND TYPICAL RESULTS

When designing an airfoil to satisfy a specified pressure distribution,
the final shape must have certain reasonable characteristics. Obviously, the
upper and lower surface must not "criss-cross" near the trailing edge; and
since the inverse approach yields the location of the boundary layer displace-
ment surfaces, the trailing edge should have a finite thickness. Since the
displacement thickness near the trailing edge is frequently on the order of
0.4% of the chord, the computed trailing edge thickness should be on the order
of 1.0% or more. Unfortunately, it is not at all obvious how the input pres-
sure distribution should be modified to achieve such characteristics if they
do not result. Besides, such a modification would change one of the desired
design parameters, namely, the pressure distribution.

With the present scheme, however, the pressure distribution can be kept
the same, and the nose shape can be used by the designer to control the de-
gree of tail closure. The procedure is demonstrated on Figure 6, which shows
three airfoils, each designed with the same C distribution from 7% chord to
the trailing edge. The input pressure distribution, which is shown as the
solid line on Figure 7, is supposed to be "shockless" and contains the lower
surface bucket typical of aft-cambered airfoils.

Airfoil No. 4 has an NACA 0012 nose shape; but, as can be seen on Figure
6, the resultant design has too thick a trailing edge. Consequently, a Korn-
like nonsymmetrical nose shape (see Table I) having a smaller leading-edge
radius was used. The resultant design, termed Airfoil No. 5 on Figure 6, is
about two percent thinner and has a very reasonable trailing edge shape. Fin-
ally, for Airfoil No. 6, the lower surface nose region ordinates were raised
by 0.1% of the chord; and this change led to a slightly thinner airfoil with
an even thinner trailing edge.

Figure 8 shows another case in which the nose shape was used to control
the trailing edge characteristics. The pressure distribution for these air-
foils, which is the solid curve on Figure 9, was selected to have the same
basic lift coefficient and lower surface pressure distribution as an NACA 0012
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at the same flight conditions, but without the strong upper surface shock
wave. In each case, the nose shapes and initial starting profiles were those
associated with NACA OOXX airfoils. For the NACA 0010 nose shape, Airfoil No.
100, the upper and lower surfaces of the designed airfoil criss-crossed; but,
as can be seen on Figure 8 for Airfoils 110 and 115, as the leading edge rad-
ius was increased, the maximum and trailing edge thicknesses also increased
proportionately. In each case, the moment coefficient was low compared to
similar aft-cambered airfoils, and the maximum upper surface ordinate was near
the mid-chord.

Based upon the results shown in Figures 6 and 8, it is believed that the
nose shape can be used to control the trailing edge shape and that any desired
thickness of the trailing edge displacement surfaces can be achieved by the
designer by adjusting the nose shape. As indicated previously, this adjust-
ment does not require changing the desired inverse C distribution.

Now a severe test for a design program is whether or not an analysis or
direct solution of the designed airfoil returns the design or inverse C_ dis-
tribution. Figure 7 compares the inverse CD used to design Airfoil No. 5 with
that obtained from a direct solution (airfoil given) using the ordinates for
No. 5, and Figure 9 makes a similar comparison for Airfoil No. 115. In these
comparisons the input CD is used with <|>P computed via backward differences

r ^l)

(Equation (21)), while the direct Cp results are based upon more usual central
differences. As a result, perfect agreement should not be expected. Never-
theless, the agreement in both cases is excellent. On Figure 7, the lower sur-
face result agrees perfectly; and the direct solution for the upper surface
only disagrees slightly near 70% chord, exhibiting a weak shock (local Mach
number of 1.07) at 84% chord. This appearance of a weak shock and the conse-
quent variation in lift coefficient of about two percent frequently appears
when aft-cambered airfoils that are designed to be shockless are analyzed di-

(2)
rectly.v ' The comparisons for Airfoil No. 115 on Figure 9 show even better
agreement and tend to verify the validity and accuracy of the present inverse
design program.

A final case is shown on Figure 10. An arbitrary pressure distribution
(dashed line) having an upper surface Mach number plateau around 1.2 followed
by a large jump to subsonic flow at 76% chord was selected for the inverse
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input. No attempt was made to match the shock jump conditions at the dis-
continuity. On the lower surface, the Cp was chosen to maintain subsonic
flow; and a pressure bucket selected according to the Stratford separation

(14}criteriav ; was included to enhance lift. As indicated, the design program
uses for <t>r a backward difference scheme, Eq. (21) with the Cn boundary con-

^"b r

dition, Eq. (20); and, thus, in regions of large gradients the output pres-
sure distribution, which is computed using a central scheme for <j>^ and should
be more accurate, will be different.

Now in the course of the inverse solution, the trailing edge displacement
surfaces that satisfied the input Cp distribution were not parallel; and, thus,
the inviscid solution required a rear stagnation point behavior. The actual
inverse pressure distribution, which was computed by central differences and
is indicated on Figure 10 by the solid line, shows this behavior. (Of course,
if the converged solution was used to compute C using backward difference
for <bc as in Eq. £1), the prescribed "inverse input" distribution would be

^b
obtained.) In addition, notice that the upper surface discontinuity has been
smoothed. Examination of the flowfield results shows a smooth supersonic bub-
ble on the upper surface and indicates that the decelleration, while rapid,
is not due to a shock wave of any significant strength. Also shown on Fig-
ure 10 are the results of a direct solution for the designed airfoil, which
exhibit excellent agreement with the actual inverse pressure coefficient dis-
tribution. Finally, the airfoil shown is the shape obtained after the boundary

(2)layer displacement thickness, calculated by the method of Nash-McDonaldv ' for
a Reynolds number of twenty million, has been subtracted.

It is believed that the results of Figure 10 demonstrate that the present
inverse technique and program can handle "arbitrary" pressure inputs. In ad-
dition, it will yield results consistent with analysis technique.

CONCLUDING REMARKS

An inverse technique suitable for designing two-dimensional transonic
airfoils having a specified pressure distribution has been developed. This
method utilizes the full inviscid potential flow equation and exact boundary
conditions and solves them via numerical relaxation. A rotated finite dif-
ference scheme is employed in order to obtain the correct domain of dependence
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in supersonic regions, and Jameson's time-like damping is included to insure
numerical stability. Further, grid halving is used to achieve computational
efficiency.

A logical method for controlling trailing edge closure has been devel-
oped. In addition, it has been demonstrated that it is not necessary to
match the computational grid to the airfoil surface and that very accurate,
numerically consistent, and physically correct results can be obtained in a
Cartesian grid system. The technique has been successfully used to design
aft-cambered and other airfoils specifically for transonic flight.

Texas A&M University
Aerospace Engineering Department
College Station, Texas
14 December 1974
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Table I--Nose Shape Ordinates
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