General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

NASA TM X-6499|

TEST PLANE UNIFORMITY ANALYSIS FOR THE MSFC SOLAR SIMUIATOR LAMP ARRAY

By Donald B. Griner
Optics Branch, Electronics and Control Laboratory

Monnh 1076
(NASA-TM-X-64991) TEST PLANE UNIFORMITY
N76-20159
ANALYSIS FOR THE MSFC SOLAR SIMULATOR LAMP
ARRAY (NASA) 42 P HC $\$ 4.00$ CSCL 14E
Unclas
G3/09 20717
NADA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

	REPORT NO. I'M X-64991 2. GOVERNME NT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4. Titte and subtitie		5. REPORT DAT- March 1976
Test Plane Uniformity Analysis for the MSFC Solar Simulator Lamp Array		6. PERFORMING ORGANIZATION CLIDE
7. AUTHOR(S) Donald B. Griner		8. PERFORMING ORGANIZATION REPOR T
NG 0		10. WORK UNIT NO.
George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812		11. CONTRACT OR GRANT NO .
		13. TYPE OF REPOR'i a PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space Administration Washington, D.C. 20546		
		Technical Memorandum
		14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES Prepared by Optics Branch, Electronics and Control Laboratory		
16. AbStRACT		
	A preliminary analysis was made on the MSFC Solar Sim lamp array is a variation on the design used by LeRC. It is an halogen lamps with fresnel lenses to achieve the required spect collimation. A computer program was developed to analyze the at the test plane. A listing and sample run of the computer prog appendices of the report. Measurements were made on individu tions to obtain data for the computer analysis and that data are The analysis indicated that the performance of the lamp array w except for a need to position the test plane within $2.7 \mathrm{~m}(9 \mathrm{ft})$ of achieve the desired 7 percent uniformity of illumination tolerance	mulator Lamp array. The array of 405 tungstenral distribution and lamp array performance ram is included in the al lamp-lens combinancluded in the report. as about as expected, f the lamp array to e.

17. KEY WORDS		18. DISTRIBUTION STATEMENT Unclassified - Unlimited	
19. SECURITY CLASSIF. (of this report) Unclassified	20. SECURITY CLASSIF. (of thie page) Unclassified	21. NO. OF PAGES 42	22. PRICE NTIS

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 1
TEST APPARATUS 4
DISCUSSION OF TEST 4
DISCUSSION OF COMPUTER PROG RAM 11
DISCUSSION OF COMPUTER ANALYSIS 13
CONCLUSIONS 18
APPENDIX A - EXAMPLE RUNS OF COMPUTER PROGRAM LUMP (LAMP UNIFORMITY MAPPING PROGRAM) 21
APPENDIX B - LISTING OF LUMP WITH EXAMPLE OF INPUT FILE DASTT 30

LIST OF ILLUSTRATIONS

Figure Title Page

1. Fresnel lens shape and spacing 2
2. Lamp array configuration 3
3. Experimental arrangement to measure parameters of lamp-fresnel lens combination 4
4. Plot of relative intensity versus angle for MSFC lamp-fresnel lens combination 6
5. Comparison of MSFC and LeRC fresnel lenses with both lenses normalized to 100 percent 6
6. Comparison of MSFC and LeRC fresnel lenses with LeRC lens normalized to MSFC lens 7
7. Peak intensity (I_{i}) variation with distance from the fresnel lens ratioed to the intensity at $4.6 \mathrm{~m}(15 \mathrm{ft})$ (Io) 8
8. Plot of relative intensity as a function of lamp voltage 10
9. Arrangement of test plane to $1: \mathrm{mp}$ array 12
10. Two scans of relative intensity in the test plane, one at the center and one at the edge 14
11. Test plane odge variation in intensity as a function of distance from the lamp array 14
12. LeRC array test plane uniformity as a function of distance from the array 15
13. Test plane uniformity as a function of distance from the lamp array - y axis scans 16
14. Effective number of lamps viewed as a function of distance from the lamp array 17

LIST OF TABLES

Table Title Page

1. Relative Intensity Versus Angle Averaged for 10 Fresnel Lenses 5
2. Relative Intensity Measured from 10 Different Lamps 8
3. Kelative Intensity as a Function of Lamp Voltage 9

TEST PLANE UNIFORMITY ANALYSIS FOR THE MSFC SOLAR SIMULATOR LAMP ARRAY

SUMMARY

The MSFC Solar Simulator Lamp Array was analyzed to predict its performance. The lamp array corsists of 405 Tungsten-halogen lamps with fresnel lenses in a 15×27 array. To calculate the expected perforn ance, measurements were made on a single lamp-fresnel lens combination and a computer program was developed to give the total array performance. The report describes the computer program and Appendices A and B of the report contain a copy and sample run of the program.

The analysis predicted the edge intensity in the $1.2 \times 2.4 \mathrm{~m}$ test plane $(4 \mathrm{ft} \times 8 \mathrm{ft})$ decreased more than 7 percent at the desired $4.6 \mathrm{~m}(15 \mathrm{ft})$ distance to the test plane. It was recommended that the distance be reduced to 2.7 m $(9 \mathrm{ft})$ to maintain uniformity within 7 percent of the nominal value. Experimental measurements of the lamp-fresnel lens combination showed the total collimation angle was 20°, which exceeded the 10° specification. However, no recommendation was made to change the fresnel lens since the larger angle will have very little effect on collector cover transmission or surface absorption when operating near normal incidence.

INTP.ODUCTION

As part of the Solar Ene gy Program at Marshall Space Flight Center (MSFC), a solar simulator lamp array is being constructed to obtain controlled experimental data on flat-plate solar collectors. The design of the lamp array is similar to the simulator now in operation at the Lewis Research Center (LeRC), (Ref. NASA TM-X-3059); however, the MSFC array has a higher density of lamps to obtain either higher light intensities or the standard Air Mass 2 at a lower voltage. An increase in size was necessary to test up to $1.2-\times$ $2.4-\mathrm{m}(4-\times 8-\mathrm{ft})$ collectors. The MSFC simulator has 405 Tungsten-halogen lamps in a $15-\times 27$-array. The lamps are General Electric Quartzline model ELH rated at $120 \mathrm{Vac}, 300 \mathrm{~W}$. The fresnel lenses used are hexagon shape
12.7 cm (5 in .) across with a $15.24-\mathrm{cm}$ ($6-\mathrm{in}$.) focal length, as shown in Figures 1 and 2.

To calculate the performance, a measurement program was conducted to obtain data on individual lamp-fresnel lens combinations. A computer program was then used to calculate the irradiance uniformity at the test plane from the total lamp array.

This report gives the results of the measurement program, a description of the computer program, and the preliminary results of the computer analysis.

Figure 1. Fresnel lens shape and spacing.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure 2. Lamp array configuration.

TEST APPARATUS

Several parameters of the lamp, fresnel lens, and lamp-fresnel lens combination were measured using the experimental arrangement shown in Figure 3. A precision rotation table held the fresnel lens and lamp so that the intensity versus angle data of the resulting light cone could be measured. For the experimental measurements involving relative intensity readings, a Spectra Physics Model 401 power meter was used. To measure absolute power output of the lamp, a Quantronix Model 504 power meter was used with the watt energy detector head. A Dana Model 3800A Digital Multimeter measured the voltage applied to the lamp.

Figure 3. Experimental arrangement to measure parameters of lamp-fresnel lens combination.

DISCUSSION OF TEST

Tests were first made to measure the intensity profile of the cone of light produced by the lamp-fresnel lens combination. During this measurement the detector was fixed at $4.6 \mathrm{~m}(15 \mathrm{ft})$ from the fresnel lens. The lamp-fresnel lens combination was rotated on an axis through the fresnel lens to obtain the
intensity readings at various angles. Table 1 presents the result of the measurements averaged on a random sample of 10 fresnel lenses. Figure 4 presents a plot of the same data compared to a Gaussian curve. There was little variation between individual fresnel lenses. Some nonsymmetrical points were observed but the average deviation was less than 5 percent. Measurements were also made on a single $25.4-\mathrm{cm}$ (10 in .) focal length lens of the type used by LeRC. Figure 5 presents a comparison of the two lenses with both normalized to the centerline intensity. Figure 6 presents a comparison of the two lenses with the LeRC $25.4-\mathrm{cm}$ ($10-\mathrm{in}$.) lens normalized in relative power to the MSFC 15.2 -$\mathrm{cm}(6-\mathrm{in}$.) focal length lens. The intensity of the LeRC lens is approximately 2.4 times that of the MSFC lens in the central region. The larger angle provided by the MSFC lens gives better uniformity in the test plane by merging more !amps.

TABLE 1. RELATIVE INTENSITY VERSUS ANGLE AVERAGED FOR 10 FRESNEL LENSES (15.2 cm FOCAL LENGTH)

Angle (deg)	Relative Intensity (\%)	Angle (deg)	Relative Intensity (\%)
0	100.0	6	24.3
1	98.0	7	12.5
2	93.5	8	4.2
3	80.0	9	2.5
4	63.5	10	1.8
5	42.0		

A random sample of 10 lamps were measured to determine the variation in intensity between lamps. The values of intensity measured for the 10 lamps are shown in Table 2. The largest variation is 28 percent but since the variation is so large, 10 is probably too small a sample size +0 obtain an accurate average intensity value for the total lamp array. A larger sample will be obtained during buildup of the lamp array when all 405 lamps will be measured.

The lamp-fresnel lens combination intensity profile was measured at various distances from the fresrel lens. The relative intensity curve shape changed very little beyond $2 \mathrm{~m}(6.5 \mathrm{ft})$. At distances less than 2 m , hot spots were observed which were attributed to the geometry of the lamp. In all measurements at the $4.6-\mathrm{m}(15-\mathrm{ft})$ distance, the lamp was defocused approximately 3 mm (0.1 in .) to prevent imaging of the lamp and thereby produce a smoother intensity profile curve.

Figure 4. Plot of relative intensity versus angle for MSFC lamp-fresnel lens combination.

Figure 5. Comparison of MSFC and LeRC fresnel lenses with both lenses normalized to 100 percent.

Figure 6. Comparison of MSFC and LeRC fresnel lenses with LeRC lens normalized to MSFC lens.

TABIE 2. RELATIVE INTENSITY MEASURED FROM 10 DIFFERENT LAMPS

Lamp Number	Relative Intensity $(\%)$	Lamp Number	Relative Intensity $(\%)$
1	83.1	6	86.3
2	81.1	7	97.6
3	84.2	8	77.9
4	94.7	9	100.0
5	73.7	10	71.6

Figure 7 shows the measured peak intensities of the relative intensity $\left(I_{i}\right)$ profile curve at various distances ratioed to the peak intensity at 4.6 m (15 ft) (I_{0}). Also shown is the calculated value to be expected due to the ratio of the inveres rquare of the area covered at each position. The measurements agreed ve!y we! 1 with the calculated values.

FIGURE 7 PEAK INTENSITY (II) VARIATION WITH DISTANCE FROM THE FRESNEL LENS RATIONED TO THE INTENSITY AT 4.6 METERS (15 FEET) (10)
Figure 7. Yeak intensily (1_{1}) variation wisi uistance irom the fresnel lens ratioed to the intensity at $4.6 \mathrm{~m}(15 \mathrm{ft})\left(\mathrm{I}_{\mathrm{o}}\right)$.

A single lamp was measured to determine the relative intensity as a function of voltage. Table 3 gives the results from 60 to 128 V and Figure 8 shows this voltage versus intensity. In Figure 8 there are two breaks in the curve, one at approximately 75 Vac and a second at 100 Vac . The breaks are probably related to the Tungsten-halogen cycle. If the Tungsten-halogen cycle is no longer operating below 100 Vac , the lamp life may be reduced.

TABLE 3. RELATIVE INTENSITY AS A FUNCTION OF LAMP VOLTAGE

Vac	Relative Intensity (\%)	Vac	Relative Intensity (\%)
128	123	95	62
125	117	90	54
120	107	85	47
117	100	80	40
115	97	75	32
110	87	70	27
105	79	65	22
100	69	60	17

The irradiance of both the MSFC and the LeRC lamp-fresnel lens combinations at 117 Vac was measured with the Quantronix power met The peak irradiance measured for the MSFC combination was $4 \mathrm{~mW} / \mathrm{cm}^{2}\left(12.7 \mathrm{BTU} / \mathrm{h} \mathrm{ft}^{2}\right)$ and $9.7 \mathrm{~mW} / \mathrm{cm}^{2}\left(30.8 \mathrm{BTU} / \mathrm{hft}^{2}\right)$ for the LeRC. The irradiance is only an indication of the absolute power due to the large variation in lamps; however, if it is representative, then the lamp array should provide $107 \mathrm{~mW} / \mathrm{cm}^{2}$ or 340 $\mathrm{BTU} / \mathrm{h} \mathrm{ft}^{2}$ at slightly over 100 Vac . 90 Vac would give $80 \mathrm{~mW} / \mathrm{cm}^{2}$ ($254 \mathrm{BTU} / \mathrm{h}$ ft^{2}). The irradiance of the lamp array is approximately 37 times the irradiance of one lamp.

Figure 8. Plot of relative intensity as a function of lamp voltage.

It should be noted that all the aforementioned experimental data were taken with the lamp in open air and no forced air cooling. They were operated only for short periods of time to prevent damage to the lamp. Since the lamp characteristics vary with operating temperature, these data should be considered preliminary and only designed to catch "show stoppers" in construction of the solar simulator.

DISCUSSION OF COMPUTER PROGRAM

The Lamp Uniformity Analysis Computer Program (LUMP) used to analyze the total lamp array is listed in Appendix B. Appendix A is a sample run of the program which includes the instructions for the computer monitor. The program is written in Fortran IV and is intended to be executed from a time share terminal connected to the XDS Sigma V computer located in Building 4487 at MSFC.

The technique used to compute the test plane intensity is depicted in Figure 9. A point of interest in the test plane (A) is mapped to lamp positions in the lamp array, (B is an example of one lamp position). The intensity at A from the lamp at B is calculated by first finding the angle ABE, then calculating the relative intensity given off by the lamp at that angle. The total power at A is found by going through this sequence for all 405 lamps and adding up the results. To develop an intensity scan through the test plane, the computer program increments A through different values of X while holding Y constant. By sequencing X at the same increments as the Y spacing between scans, a regular array of data points in the test plane can be generated. The regular array is useful for calculating total power at the test plane and obtaining statistics on the total surface uniformity. A program is now being written to plot the intensity profile and provide statistics on the intensity surface. It will be described in a subsequent TMX.

To compute the intensity component from each lamp, the assumption is made that the cone of light from the lamp is rotationally symmetrical. Some non-symmetry was noted during the experimental measurements of the 10 fresnel lenses but the average deviations were less than 5 percent. When averaged over many lamps the assumption should lead to negligible errors.

IVSA is the subroutine of the computer program which provides the intensity value at different angles. The array AI in the data statement stores the relative intensity values in percent at 1° increments for the light cone intensity

Figure 9. Arrangement of test plane to lamp array.
profile. The range is from 0 to 10°. To obtain values at any angle, the subroutine linearly interpolates between the stored values. Angles greater than 10° are assigned a zero contribution to the point A.

To calculate absolute power at the point A for different spacings ($0^{\prime}-0$) between the test plane and lamp array, power readings at a reference distance from the lamp are ratioed by the inverse square rule to obtain power per unit area at a different distance. This is the reason for the multiplication factor TMFAC, line 87 of the program, in obtaining the intensity contribution from each lamp.

Data are input to the program through a file assigned to Unit 201. The distance between the test plane and the lamp array (SPACE) is input first and then an array (TLI), which has an intensity value for each lamp, is input. This was necessary because of the large variation in intensity from individual lamps. All other variables that might require frequent changing are stored in the program. The edit capability of the time share monitor makes it practical to change only the variable in the program when needed.

The program has the option to print out the lamp intensity array and the X, Y locations assigned to the lamps. The lamp intensity array will be printed if NCO is set to some value other than one. The X, Y spacing position of the lamps will be printed out if NCODE is set not equal to one.

The variables NLINES, DELX, TPY, DELY, and SX control the scan lines to be calculated. NLINES is the number of scan lines to be calculated, TPY is the Y position of the scan line, and DELY is the spacing between scan lines. $S X$ is the first part of the scan line and it will be incremented by units of DELX. Format statement 650 is intended as a comment line to label the output data page.

An attempt was made to keep the program as flexible as possible. For instance, all Do loops were set with variable limits. The lamp array size can be changed from the present 15×27 to any size which will fit in the arrays as dimensioned. The array size is set by assigning the desired values to NLX and NLY.

DISCUSSION OF COMPUTER ANALYSIS

An array of lamps with equal intensities was used as an input to the computer program to determine the best uniformity that could be expected at the test plane. The uniformity as calculated was very good in the central region of the test plane but dropped off at the edge. Figure 10 presents a plot of the percent intensity for two scan lines across the narrow direction (X axis), one line in the center and one at the edge. Figure 11 shows the edge and corner variations as a function of distance from the lamp array. Figure 12 presents a comparison of a similar run on the LeRC array.

The desired tolerance was 7 percent from the nominal value. Since most of the test plane area intensity varies less than 1 percent, the nominal value of intensity is almost 100 percent. Therefore, 93 percent would be the minimum

Figure 10. Two scans of relative intensity in the test plane, one at the center and one at the edge.

Figure 11. Test plane edge variation in intens'ty as a function of distance from the lamp array.

Figure 12. LeRC array test plane uniformity as a function of distance from the array.
acceptable. To analyze the decrease in nominal value due to varying intensity from each lamp, a run was made with lamps varying at random up to 30 percent. The absolute power dropped in percentage but the nominal value was still almost 100 percent (99.9 percent). The variation in lamps is not as evident in the MSFC array as much as in the LeRC array because the MSFC lamp-fresnel lens combination has a wider cone angle and a higher density of lamps per unit area.

As the distance to the lamp array is decreased, the number of lamps averaged at a point in the test plane decreases. This does not result in a decrease in irradiance at the point in the test plane because the individual lamp irradiance increases. The increase in irradiance is inversely related to the square of the distance (Fig. 7) but the decrease in number of lamps averaged is directly related to the square of the distance due to the decreasing area covered by the cone of light. The result is that the irradiance from the lamp
array is uniform within the central region as the distance is increased from the lamp array. This is true only within a limited range near the lamp array. As the distance increases, the edge intensity will drop off until there is no flat central region as shown in Figure 13.

Figure 13. Test plane uniformity as a function of distance from the lamp array - y axis scans.

An effective number of lamps averaged at any distance from the lamp array by a point in the test plane can be computed by defining N, where the test plane irradiance equals N times the irradiance from one lamp.

Figure 14 presents a plot of the effective number of lamps averaged at various distances using the intensity profile of Table 1. This curve is important because it is representative of the number of lamps averaged at any one point.

Figure 14. Effective number of lamps viewed as a function of distance from the lamp array.

The LeRC array averaged approximately 7 lamps at $4.6 \mathrm{~m}(15 \mathrm{ft})$ and therefore was sensitive to individual lamp variation. At $4.6 \mathrm{~m}(15 \mathrm{ft})$ the MSFC array averages 37 lamps. Even at $2.7 \mathrm{~m}(9 \mathrm{ft})$ the MSFC array averages 14 lamps and is correspondingly less sensitive to lamp intensity variation.

As can be seen in Figure 10, the desired tolerance can be achieved by operating at a distance of $2.7 \mathrm{~m}(9 \mathrm{ft})$. As the number of lamps average is still high, the recommendation was made to adopt $2.7 \mathrm{~m}(9 \mathrm{ft})$ as the standard operating distance. For test articles smaller than $1.2 \times 2.4 \mathrm{~m}(4 \times 8 \mathrm{ft})$ the distance can be increased.

Other options to increase the uniformity at distances of 4.7 m (15 ft) or greater were analyzed. One option is to increase the array size. The lamp array is now unsymmetrical with respect to the $1.2 \times 2.4 \mathrm{~m}$ test plane. Across the narrow distance, the lamps extend 0.33 m (13 in .) past the test bed edge. Across the long axis the lamps only extend 0.2 m (8 in .). Expanding the array to 15×29 would make the system more symmetrical and bring both edges up to within 10 percent (the corners would still be down 20 percent).

The placement of brighter lamps around the edges of the array to improve the uniformity was analyzed and proved to be feasible provided 34 percent brighter lamps could be used. Since the maximum variation measured was 28 percent, this could probably not be obtained by measuring all the purchased lamps and picking the brighter ones for the edge. The placement of brighter bulbs near the edge, however, would be a method of arranging lamps to achieve the maximum uniformity for a particular set of lamps at a standard operation spacing. The uniformity is good for only one spacing (Appendix A).

Of all the options considered, the reduction of the standard operating distance involved the least cost and time impact to the present system which is well on the way to completion.

CONCLUSIONS

The experimental measurements and the computer analysis revealed no real problems with the design of the solar simulator lamp array. A recommendation was made to change the standard operating distance for the test specimen to $2.7 \mathrm{~m}(9 \mathrm{ft})$. This recommendation was made because the edge intensity drop-off would be less than 7 percent and enough lamps would still be averaged to keep the central region uniformity better than 2 preent.

The irradiance measurement of the 10 lamps indicated more data are needed on individual lamp variation to make rcalistic predictions of total irradiance of the lamp array. Additional data are also required on lamp life and variations in irradiance with age. These data will be obtained during lamp array checkout.

Measurements of the lamp fresnel lens combination indicated the lamp should be positioned $3 \mathrm{~mm}(0.1 \mathrm{in}$.) from the focal point of the fresnel lens to keep from imaging the lamp at the test plane.

The intensity profil: of the light cone from the lamp fresnel lens combination is not a true Gaussian curve but is very close. The point-by-point storage of a measured curve used by the computer program is probably not necessary for realistic analysis; a Gaussian equation could be used.

Measurements of the lamp intensity versus voltage show the lamp intensity varies linearly with voltage but has slope changes above 75 and 100 V .

APPENDIXA

EXAMPLE RUNS OF COMPUTER PROGRAM LUMP (LAMP UNIFORMITY MA PPING PROGRAM)

PRECENP:C : . .

*****EXAMPLE OF EXECUTION OF LUMP PROGRAM**esen.

```
ISET F:201/OASTT
ISET F:108 - LP
IFORT4 LUMP OVER LUMPC
    EXT. FORTRAN IV, VERSION FOO
OPTIONS >BC.NS
IRUN LUMPC
    LINKING LUMPC
'P1' ASSOCIATED.
"STOP" O
!******PROGRAM HAS BEEN RUN ANO RESULTS PRINTED ON THE LINE PRINTER******.
******DATA CAN BE CHANGED AND PROGRAM RERUN AS FOLLOWED ******.
IEDIT DASTT
EDIT HERE
*TY1
    1.000 10P.0
*SE1;/10R/S/180/;TY
    1.000 1RO.0
*END
```

IeUN LUMPC
LINKING LUMPC
'P1' ASSOCIATED.
*STAP" 0
1
1
output data page 1

LAMP INTENSITY ARRAY

1	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	19.7	12.7	12.7	12.7	12.7	12.7
2	12.7	12.7	12.7	19.7	12.7	17.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
3	12.7	12.7	12.7	12.7	12.7	12.7	17.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
4	1207	12.7	12.7	12.7	$12 \cdot 7$	1307	12.7	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	1307	12.7
5	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	:?.7	12.7	12.7	12.7	12.7
6	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
7	1 E.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	$1 ? \cdot 7$	12.7
8	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	$12 \cdot 7$	$12 \cdot 7$	1207	12.7	12.7
9	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
10	12.7	12.7	1207	$12 \cdot 7$	12.7	19.7	12.7	1209	1297	12.7	$12 \cdot 7$	$12 \cdot 7$	12.7	1207	$12 \cdot 7$
11	$12 \cdot 7$	12.7	12.7	1207	12.7	12.7	12.7	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7
12	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	$12 \cdot 7$	12.7	12.7	12.7
13	$12 \cdot 7$	12.7	12.7	19.7	12.7	12.7	12.7	$12 \cdot 7$	$12 \cdot 7$	12.7	12.7	12.7	12.7	$12 \cdot 7$	$12 \cdot 7$
14	$12 \cdot 7$	12.7	12.7	12.7	12.7	19.7	10.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	$12 \cdot 7$	12.7	$12 \cdot 7$
15	$12 \cdot 7$	1207	$12 \cdot 7$	12.7	12.7	12.7	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	$12 \cdot 7$	12.7
16	1207	1207	12.7	1507	12.7	1207	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	1207	12.7	12.7
17	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7	1207	12.7	12.7	12.7	12.7	12.7	12.7
8	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
9	$12 \cdot 7$	$12 \cdot 7$	12.7	$12 \cdot 7$	12.7	12.7	19.7	12.7	$12 \cdot 7$	12.7	$12 \cdot 7$	12.7	12.7	$12 \cdot 7$	12.7
0	$12 \cdot 7$	12.7	12.7	17.7	12.7	12.7	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7
2	12.7	12.7	12.7	12.7	12.7	12.7	19.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
2	1207	12.7	12.7	1297	12.7	12.9	12.7	92.9	12.9	12.7	12.7	12.7	12.7	12:7	12.7
23	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	1207	12.7	12.7	12.7	$12 \cdot 7$	12.7	1207	$12 \cdot 7$	12.7
${ }^{4}$	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
25	12.7	12.7	12.7	12.7	12.7	1207	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12.7	12.7
26	12.7	12.7	12.7	19.7	12.7	12.7	19.7	92.7	12.7	12.7	12.7	12.7	1207	12.7	12.7
27	$12 \cdot 7$	12.7	12.7	$1>07$	12.7	12.7	12.7	$12 \cdot 7$	12.7	12.7	12.7	12.7	12.7	12•7	12.7

RERRODUCDIITTY OF THE
ORIGINAL アLiGE IS POOR

MSFE ARRAY ANO 6 IN FL LENS
INTENSIPY AT G.O FEET UNITS ARE BTUAMROFYR

EXAMPLE 2 OF OUTPUT DATA PAGE 3
MSFC ARNAY ANO 6 IN FL LENS
INFENEITY AT 1500 FEET UNIT8 ARE BTUNHRAFP2 1

x Pes in		Y SCAN POS IN INCHES			
INCHES	-4.00	-36.0	-24.0	-1200	0
-30.0	30008	35402	356.2	355.9	356.6
-28.0	32305	38003	38208	38401	313.3
-2600	343.2	403.5	406.0	406.2	40602
-2400	358.0	42 c - 4	426.0	425.2	426.2
-22.0	37101	436.6	439.8	439.7	438.8
-2000	37909	44708	$450 \cdot 0$	449.7	451.1
-18.0	$386 \cdot 8$	45403	457.1	458.8	458.1
-1600	39104	459.4	462.6	46294	462.1
-1400	392.6	46205	466.4	465.0	466.7
-12.0	394.6	463.8	467.0	466.7	466.1
$10 \cdot 0$	39800	46404	467.4	46706	467.5
880	39503	46407	$467 \cdot 5$	468.8	468.3
-6.0	396.4	46404	467.6	467.8	467.1
-400	394.8	46408	468.7	$467 \cdot 6$	469.1
-2.0	395.3	46406	467.8	467.5	$467 \cdot 2$
- 0	395.0	46404	467.4	467.6	467.5
200	395.3	464.7	467.5	468.8	468.3
40	35606	46464	467.6	46708	467.1
$6 \cdot 0$	394.8	464.8	468.7	467.6	469.1
8.0	398.3	46406	467.8	46705	467.2
10.0	395.0	46404	467.4	467.6	467.5
12.0	394.2	463.9	466.7	467.7	467.5
1400	394.0	462.2	465.3	465.5	464.9
1600	390.5	459.4	463.4	462.5	463.6
18.0	386.1	454.7	457.8	457.1	457.8
20.0	37508	446.6	450.0	451.0	450.0
$22 \cdot 0$	369.9	436.9	439.9	440.1	$440 \cdot 5$
24.0	358.8	42109	425.0	C25:1	\$24.6
26.0	34104	403.1	406.8	406.3	407.2
2800	32105	38003	38301	38207	38305
$30 \cdot 0$	298.5	353.2	356.2	356.6	356.0

PREGRAM COMPLETE
X POS IN Y SCAN POS IN INCHES

PRGGAM

REFRODUCGSITTY OF THE
ORIGINAL PAGE IS POOR

1	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	
2	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.
3	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17
4	17.0	17.0	12.7	12.7	12.7	12.7	12.7	92.7	12.7	12.7	12.7	12.7	12.7	17.0	17.
5	17.0	17.0	12.7	12.7	12.7	19.7	12.7	12.7	12.7	12.7	12.7	$1 ? .7$	12.	17.0	17.
6	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	1 P. 7	12.7	12.	17.0	17.
7	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.9	12.7	12.7	12.7	12.7	12.7	17.0	17.
8	17.0	17.0	12.7	12.7	12.7	12.9	12.7	12.7	12.7	12.7	12.7	12.7	12.0	17.0	17.
9	17.0	1700	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.	$12 \cdot 7$	17.0	17.
10	17.0	17.0	12.7	13.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	17.0	17.
11	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	17.7	12.7	12.	12.7	$12 \cdot$	17.0	17.
12	17.0	17.0	12.7	12.7	12.7	12.7	12.7	92.7	12.7	12.7	12.7	12.7	12.	17.0	17.
13	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.9	12.7	12.7	12.7	19.7	12.7	17.0	17
14	$17^{\circ} \mathrm{C}$	17.0	12.7	12.7	12.7	19.7	12.7	12.7	12.7	12.7	12.7	12.7	1×07	17.0	17
15	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	17.0	17.
16	17.0	170	12.7	13.7	12.7	13.7	19.7	12.7	12.7	12.7	12.7	12.7	12.	17.0	17.
17	17.0	17.0	12.7	12.7	12.7	19.7	12.7	12.	12.	12.7	12.7	12.7	12.7	17.0	17.
18	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	17.0	17.
19	17.0	1700	12.7	12.7	12.7	12.7	12.7	12.	19.7	12.	12.7	12.7	12.7	17.0	17.
20	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	1 1. 7	12.7	17.0	17.
21	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	17.0	17
22	17.0	17.0	12.7	12.7	12.7	19.7	12.7	12.9	12.7	12.7	12.7	12.7	12.7	17.0	17.
23	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	17.0	17.
24	17.0	17.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	17.0	星
25	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.
26	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	
27	17.0	1700	1700	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	:7.0	17.0	17.

SAMPLE RUN WIH LAMP dATA AS ON PAGE A6

SAMPLE RUN WITH LAMP DATA AS ON PAGE A6

APPENDIX B

LISTING OF LUMP WITH EXAMPLE OF INPUT FILE DASTT

```
    PRGGRAM LUMP IIIIIIIIIIII\TY 1-50
    1.000 C LAMPS UNIFORMITY MAPPING PROGRAM
    2.000 C PROGRAM SET FOR MSFC ARRAY
    3.000 OIMENSION TLX(35,35),TLY(35,35),TLI (35,35),TPI(10,100)
    4.000 DIMENSION TTPX(100),TTPY(30)
    5.000 REWIND 201
    6.000 READ(201,10) SPACE
    7.000 10 FORMAT(F10.1)
    8.000 C SPREF IS SPACE REF FOR INTENSITY
    9.000 C SPREF = DISTANCE AT WHICH POWER READING IS TAKEN
    10.000 SPREF = 180.0
    11.000 NLX = 15;NLY - 27
    12.000 DO 50 1 = 1,NLY
    13.000 READ(201,100) NLX, (TLI (I,J),J = 1,NLX)
    14.000 50 CONTINUE
    15.000 100
    16.000
    17.000 IF(NCO.EQ.1) GO TO 115
    18.000 WRITE(108,105)
    19.000 105
    20.000
    21.000
    22.000 110
    23.000 115
    24.000 120
    25.000 C
    26.000
    27.000 TSPY - 4.33
    29.000 X1 = -36.25
    29.000 DO 160 J = 1,NLX
    30.000 Y1 = +56.29
    31.000 DO 150 I = 1,NLY,2
    32.000 TLX(1.J) = X1
    33.000 TLY(I,J) = Y1
    34.000 Y1 - Y1-(TSPY*2.0)
    35.000 150
    36.000
    37.000 160
    38.000
    39.000 DO 210 J = 1,NLX
    40.000 Y1 = +51.96
    41.000 DO 200 I = 2,(NLY-1),2
    42.000 TLX(I,J) = X1;TLY(1,J) = Y1
    43.000 Y1 - Y1 - (TSPY*2.0)
    44.000 200
    45.000
    46.000 210
    47.000 C
    48.000
    49.000 IF (NCODE.EQ.1) GO TO }34
    50.000 WRITE(108,305)
*
\begin{tabular}{|c|c|}
\hline PROGRAM LUMP & \IIIIIIIIIITTY 1-50 \\
\hline 1.000 C & LAMPS UNIFORMITY MAPPING PROGRAM \\
\hline 2.000 C & PROGRAM SET FOR MSFC ARRAY \\
\hline 3.000 & OIMENSION TLX (35,35),TLY(35,35),TLI (35,35), TPI (10, 100) \\
\hline 4.000 & DIMENSION TTPX(100), \(T\) TPY(30) \\
\hline 5.000 & REWIND 201 \\
\hline 6.000 & READ (201, 10) SPACE \\
\hline 7.00010 & FORMAT(F10.1) \\
\hline 8.000 C & SPREF IS SPACE REF FOR INTENSITY \\
\hline 9.000 C & SPREF - Distance at which power reading is taken \\
\hline 10.000 & SPREF = 180.0 \\
\hline 11.000 & NLX - 15;NLY - 27 \\
\hline 12.000 & \(00501=1, \mathrm{NLY}\) \\
\hline 13.000 & READ (201, 100) NLX, (TLI (1,J),J = 1,NLX) \\
\hline 14.00050 & CONTINUE \\
\hline 15.000100 & FORMAT (NF4.1) \\
\hline 16.000 & NCO - 0 \\
\hline 17.000 & IF (NCO.EQ.1) GO TO 115 \\
\hline 18.000 & WRITE (108, 105) \\
\hline 19.000105 & FGRMAT(1H1, 'LAMP INTENSITY ARRAY',//) \\
\hline 20.000 & \(001101=1, N L Y\) \\
\hline 21.000 & WRITE (108,120) 1,NLX, (TLI (I,J),J = 1,NLX) \\
\hline 22.000110 & CONTINUE \\
\hline 23.000115 & CONTINUE \\
\hline 24.000120 & FORMAT(1H, 13,2X,N(F4.1,2x)) \\
\hline 25.000 C & BUILD UP \(X, Y\) SPACING \\
\hline 26.000 & TSPX - 5.0 \\
\hline 27.000 & TSPY - 4.33 \\
\hline 29.000 & X1 \(=-36.25\) \\
\hline 29.000 & D0 \(160 \mathrm{~J}=1, \mathrm{NLX}\) \\
\hline 30.000 & \(\mathrm{Y} 1=+56.29\) \\
\hline 31.000 & DO 150 I - 1,NLY, 2 \\
\hline 32.000 & TLX(1.J) \(=\mathrm{XI}_{1}\) \\
\hline 33.000 & TLY(1,J) = Y 1 \\
\hline 34.000 & Y1 - Y1-(TSPY*2.0) \\
\hline 35.000150 & CONTINUE \\
\hline 36.000 & X1- X \(^{1+\text { T }}\) SPX \\
\hline 37.000160 & CONTINUE \\
\hline 38.000 & X1 \(=-33.75\) \\
\hline 39.000 & Di \(210 \mathrm{~J}=1, \mathrm{NLX}\) \\
\hline 40.000 & Y1 = +51.96 \\
\hline 41.000 & 002001 - 2, (NLY-1),2 \\
\hline 42.000 & TLX \(1, \mathrm{~J})=\mathrm{X1;} \mathrm{TLY(1,J)} \mathrm{=} \mathrm{Y}\) \\
\hline 43.000 & Y1 - Y - (TSPY*2.0) \\
\hline 44.000200 & CONTIVUE \\
\hline 45.000 & \(\mathrm{x}^{1}=\mathrm{x}^{1+7}\) TSPX \\
\hline 46.000210 & CONTINUE \\
\hline 47.000 C & OPTION TO PRINT OUT X,Y LOCATIONS \\
\hline 48.000 & NCODE - 0 \\
\hline 49.000 & IF (NCODE.EQ.1) GO TO 340 \\
\hline 50.000 & WRITE(108,305) \\
\hline
\end{tabular}
```



```
    PROGRAM LUMP \IIIIIIIIIII\TY101-130
    101.000 700 FORMAT(1HO.'INTENSITY AT',F8.1,2X, 'FEET',10X, 'UNITS ARE',
    102.000
    103.00C
    104.000 800
    105.000
    106.000
    107.000 1000
    108.000 1100
    109.000
    110.000
    111.000 C
    112.000
113.000
    114.000
    115.000
    116.000
    117.000
    118.000 100
    119.000
    120.000 C
    121.000
    122.000 200
    123.000
    124.050
    125.000
    126.0n0
    127.000
    128.000 1000
    129.000
    130.000
*
```

PROGRAM
LUMP
700

102.000 X° bTU/HR-FT2', ///'x POS IN',15x, 'Y SCAN POS IN INCHES')
103.00C
104.000800

WRITE(108,P00) NLINES, (TTPY(1),1 - 1,NLINES)
105.000
106.000
107.0001000
108.0001100
109.000
110.000
111.000 C
112.000
11.000
115.000
116.000
117.000
118.000100
119.000
120.000 C
121.000
122.000200
123.000
124.000
125.000
127.000
128.0001000
129.000
130.000

FORMAT('INCHES', 1X,N(FR.1,5X))
DO 1000 I - 1,LiM
WRITE (108,1100) TTPX(1),NLINES, (TPI (J, 1),J = 1,NLINES)
CONTIVUE
FORMAT(F6.1,2X,N(FR.1,5X))
OUTPUT 'PREGRAM COMPLETE'
END
subrgutine to obtain intensity vs angle
SUBROUTINE IVSA (ANGLE,TI)
DIMENSION ANG(11),AI(11)
DATA (AI (1),1 - 1,11)/100.0,98.0,93.5,80.0,63.5,42.0,
X24.3,12.5,4.2,2.5,1.8/
OO $1001=1,11$
ANG(1) = FLOAT(1-1)
continue
IF (ANGLE.GT. 10.0) TI - 0.0;GO TO 1000
INTERPGLATE INTENSITY
1-0
$1=1+1$
IF(I.GE.11) TI $=0.0$; GO TO 1000
IF(ANGLE.GT.ANG(1)) GO TO 200
IF(ANGLE.EQ.ANG(I)) TI - AI (I); GO TO 1000
SLOPE - (AI (1)-AI ($1-1$))/(ANG(1)-ANG(1-1))
TI = SLOPE* (ANGLE-ANG (1-1))+A|(1-1)
TI = TI*0.01
RETURN
END

EXAMPLE OF INPUT FILE DASTT

```
TY 1-2R
    1.000 108.0
    2.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    3.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    4.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    5.0nO 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    6.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    7.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    9.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    9.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    10.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    11.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    12.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    13.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    14.000 12.712.712.712.712.712.712.712.712.712.712.712.`12.712.7i2.7
    15.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    16.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    17.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    18.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    19.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    20.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    21.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    22.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    23.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    24.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    25.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    26.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    27.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7
    28.000 12.712.712.712.712.712.712.712.712.712.712.712.712.712.712.7

REPRODUCIBLLITY UF THE ORIGINAL PAGE IS POOR

LIST OF VARIABLES USED IN LUMP (n the order they appear in the program)

TLX Array for storage of \(x\) location of lamps
TLY Array for storage of y location of lamps
\begin{tabular}{ll} 
TLI & Array for storage of lamp intensities \\
TPI & Array for storage of test plane point intensities \\
TTPX & Array to store \(x\) location of points in test plane \\
TTPY & Array to store \(y\) location of points in test plane
\end{tabular}

201

NLX Number of lamps in \(x\) direction
NLY Number of lamps in y direction

TSPX Spacing of lamps in \(x\) direction
TSPY Spacing of lamps in y direction
X1

Y1
NCODE

NUNES
DELX

SPACE Distance from lamp array to test plane
SPREF Distance at which lamp intensity measured

NCO Code to obtain printout of lamp intensity array. If valve is set to 1 there will be no printout of lamp intensity array.
Input unit number

First lamp position in \(\times\) direction
First lamp position in y direction
Code to obtain printout array of lamp positions if set equal to 1 printout will not be obtained

Number of scan lines to be calculated
Distance between points to be calculated in the x direction
\begin{tabular}{|c|c|}
\hline TTY & \(y\) position of first scan line to be calculated \\
\hline DELY & Distance between scan lines \\
\hline SX & First point in test plane scan line to be calculated \\
\hline ALX & Last point in scan line to be calculated \\
\hline LIM & Number of points to be calculated in each scan line \\
\hline TSX & Dummy variable tic hold \(x\) scan position during calculation of intensity \\
\hline DUMY & Dummy variable to hold \(y\) scan position during calculation of intensity \\
\hline DY & Calculated x separation between lamp and test plane point \\
\hline DY & Calculated y separation between lamp and test plane point \\
\hline DIST & Diagonal distance from lamp to test plane point \\
\hline ANGLE & Calculated angle from lamp center line to test plane point \\
\hline IVSA & Subroutine to calculated lamp intensity at the calculated angle \\
\hline TLENET & Distance from lamp to test plane point \\
\hline TMFAC & The multiplication factor to adjust lamp intensity for different spacings to test plane \\
\hline TI & Dummy variable to hold intensity calculated at test plane point \\
\hline
\end{tabular}

\section*{APPROVAL}

\title{
TEST PLANE UNIFORMITY ANAL 'SIS FOR THE MSFC SOLAR SIMULATOR LAMP ARRAY
}

\author{
By Donald B. Griner
}

The information in this report has bel 7 reviewed for security classification. The report, in its entirety, has been determined to be unclassified and contains no information concerning Department of Defense - Atomic Energy Commission programs.

This document has also been reviewed and approved for technical accuracy.


F. BROOKS MOORE

Director, Electronics and Control Laboratory```

