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SIMULATION OF TURBULENT WALL PRESSURE

By
Robert L. Ash!

SUMMARY

A computer program has been developed to simulate the transient
wall pressure field produced by a low speed fully turbulent boundary
layer. The theoretical basis for the simulation has been discussed
and preliminary results from a pressure simulation are presented.

INTRODUCTION

The purpose of this report is to present a method for simulating
the unsteady pressure fluctuations produced by a low speed incompress-
ible turbulent boundary layer. Attention has been restricted to flow
along flat plates with no pressure gradient. The simulation has been
designed for utilization in analysis of compliant wall candidates for
the Langley Research Center drag reduction program (refs. 1 through 5).
A one-dimensional simulation is presented here which is compatible
with both finite difference and finite element structural programs.
Two-dimensional simulations can be developed by randomly accessing
the one-dimensional simulation, but that development is not pre-
sented here.

Properties of the turbulent simulation have been extracted
primarily from three experimental papers. The very extensive early
work of Bull (ref. 6) has been employed to model the frequency
spectrum, the convection velocity, and the decay of pressure
fluctuations. Burton's (ref. 7) measurements have been used to
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University, Norfolk, Virginia 23508.



justify the assumption that turbulent sublayer "burst" data (see
ref. 8 for a survey of basic sublayer phenomena) can be used to
infer spatial and temporal distributions of pressure fluctuations

in the outer portion of the boundary layer. (This inference does
not necessarily imply that the burst structures ultimately form
large scale pressure fluctuations.) Burton's work has also been
used to estimate the distribution of pressure fluctuation amplitudes
occirring in a collection of events. Offen and Kline's (ref. 9)
burst distribution measurements have been used to model the spatial
and temporal distribution of the pressure fluctuations.

In order to minimize the influence of numerical resolution on
the simulation, a random stepping procedure has been employed in
space and time. The magnitude of the pressure fluctuation at a
particular point at any time is constructed from a collection of
the randomly generated pressure fluctuation "events". Each of the
events which contribute to the local pressure level has been con-
structed to preserve the turbulence statistics measured in experi-
ments. Probability distributions for time between events, distance
between events, fluctuation frequency, and amplitude have been
employed. Each probability distribution has been assumed statisti-
cally independent from the otherz, and a conventional Monte-Carlo
approach has been used. Some detail is provided in the following
section.

MONTE-CARLO METHOD FOR SIMUI.ATING WALL PRESSURE
FREQUENCY SPECTRUM

Bull (ref. 6) has reported the wall pressure frequency spectrum
shown in figure 1 for a low speed turbulent boundary layer. He has
shown his measurements are well represented by the empirical relation:

q2 5* -2 “:JG*
%pl@) = T x 1075 [3.7¢
(1)
*
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+ 0.8e - 376 ®



where g is the dynamic pressure, &* is the displacement thick=-
ness, U_ 1is the free stream velocity, and w is the radian

frequency.

By assuming equation (1) adequately describes the frequency
distributions of the pressure fluctuations occurring in a large
number of events, the probability of a particular frequency occurr-
ing in a particular event can be calculated. That probability would
simply be the normalized forn of equation (1) or:

Plu) ¢p(w)/f 05w du . (2)
(o]

The probability distribution cannot be used directly in a simulation.
Rather, the cumulative probability distribution must be used. The
cumulative probability is defined as the probability an event will
occur with a frequency less than or equal to w, whereas probab-
ility was the likelihood an event would occur between w and

w + dw. Probability P(w) and cumulative probability ﬁ(w) are
related by

w
P(w) =f P(w)dw (3)

-0

However, in this case, P(w) is zero for all values of w less

than zero, leaving:

. w
P(w) i/. P(w)dw . (4)
o

Equation (1) can be employed ia (2) and (4) to write:

2) 47X 8\

P(w) = 1 - 0.5916e <" - 0.5443e ° + 0.1359e (5)
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cumulative probability in figure 2.

where ) = Dimensionless frequency is shown as a function of

Most digital computers have available efficient random number
generation subroutines. Generally, they produce uniformly distributed
random numbers over the interval between zero and unity. If values
of frequency are assigned from figure 2, using randomly generated
numbers between zero and one, the frequencies will be distributed
in agreement with Bull's (ref. 6) data. A brief explanation of the

basis for this approach is given in reference 10.

Graphical procedures are not acceptable for efficient computer
utilization. Furthermore, because equation (5) is a transcendental
equation for ) a function of ﬁ, it cannot be used efficiently in
calculating A for a given random number. Since equation (5) is
itself an empirical curve fit, this investigation has employed an
approximate equation for A a function of P to streamline computer
calculations. The equation:

A= 0.2173 V ﬁA - 0.3070 P. + 0.7899 P

2
A A
(6)

1

+ 3.3518 = -1
[(1 - B/ ]

\

appears to satisfactorily represent equation (5), as shown in figure
2. Detectable errors occur only on the upper end of the plot between
0.8 and unity, with a maximum error of about 10 percent at P = 0.9.

That error is within the uncertainty of Bull's (ref. 6) data fit.

The same procedure has been used to generate the other turbulent
characteristics simulated here. The remaining discussion will only
document the appropriate probability distributions and their repre-

sentations in the computer simulation.



Amplitude of a Pressure Fluctuation Event

Experimental measurements of the amplitude of a pressure fluc-
tuation produced by a single fluctuation event is not currently
possible because background contributions from other events are
always present. Such an amplitude is required in the present
simulation. The only data which is related (indirectly) to indi-
vidual fluctuation amplitudes are the measurements of Burton (ref.
7) for the threshold pressure fluctuation which appecred to be
responsible for a burst event. His measurements suggest the dis-
tribution of amplitudes is Gaussian. Since Bull's (ref. 6) measure-
ments indicate the root mean square (rms) pressure fluctuation is
given by p;ms = 3Tw' at the speeds of interest, a Gaussian distri-
bution can be employed using a standard deviation of 31w about a
zero average pressure. The Gaussian distribution was simulated using

conventional techniques (ref. 11l).

Time Interval and Spacing Between

Pressure I'luctuation Events

Offen and Kline (ref. 9) have studied the time interval between
burst events in the wall region of a low speed turbulent boundary
layer. They have found that the time interval can be scaled with
outer flow variables and the probability of a new event varies
with dimensionless time 6 given by 6 = th/d*, as shown in
figure 3. That data can be represented by gamma distribution
function:

p(8) = 6% e-e/B/[I‘(cx + 1) s“*l] (7)

where o = 2.2 and B = 16.4, as shown in figure 3.

Equation (7) was integrated numerically to obtain the cumulative
probability distribution P(0) shown in figure 4. That distribution
has been approximated by:

= 39,0 =t ¢ 72 B2 4 0.63 tan L P

= (8)
By + 0.619 6 28

and is also shown in figure 4.



The spatial distance between events can be gotten by assuming
time and space are related through the friction velocity u_.
Examination of Offen and Kline's (ref. 9) data has suggested that
the Ax and At for spacing between events are related by:

u_At u u
éé S M —L A8 or Ax = &* ﬁl A8 . (9)
0 0 Uoo ®

Consequently, random numbers can be used in equation (8) to generate

X where
ur
X=5*ﬁ—9 (10)

is the spacing between fluctuation events.

Convection Velocity and Decay Rate

Data from Bull's experiments (ref. 6) have been used to model
both convec.ion velocity and decay rate. Although Bull reports the
convection veloc. +y varies with distance from the fluctuation source,

a constant value of convection velocity, ugr given by

u, = 0.8 U, , (11)

has been used in the present simulation. The constant assumption was
made because of difficulties in the numerical calculations, but may
be justified from other experimental data [see Willmarth (ref. 12)
for example].

Bull's experiments (ref. 6) indicate spatial decay scales with

Xu
x+ = —31 . His data has been used to vary the amplitude of the

pressure fluctuation in a particular event. If Ao is the original
amplitude, A(x+) has been modeled by:

4267
A(x+) = Ao [l -a % ] (12)



Both convection velocity and decay rate have been "modeled"
rather than "simulated" in the sense that all events are assumed
to have the same convection and decay properties. At this point
equations have been developed to simulate frequency, amplitude,
and spacing of pressure fluctuation events. The remaining dis-
cussion is intended to explain how these models have been put
together to simulate a turbulent wall pressure.

SIMULATION OF THE TURBULENT WALL PRESSURE

The ultimate output of this simulation is to be a simulated-
pressure field over a specific distance (test model) with a specific
time interval. 1In order to generate that simulation, both a develop-
ment length and a start-up time are required. Theoretically, dis-
turbances extending upstream to infinity can contribute to local
pressure fluctuations which implies that the start-up time would
also be infinite. Practically, a finite start-up length can be
used which accounts for nearly all of the local pressure fluctu-
ation. However, because of the random time stepping procedure
employed here, the start-up time had to be determined by numerical
testing.

The decay rate defined in equation (12) can be used to specify
the development length. If fluctuations less than one percent of
their original value are neglected, then the start-up length is

given by:

Xu
x¥ = 425,000 = -V—T (13)

If u = 1.5 m/sec and v = 1.5 x 107° m?/sec, the start-up length
is 4.25 m.

The procedure employed here has been to define the origin (x = 0)
as the front of the start-up length. Assuming the start-up length is
D’ the front of the model would be at x = Xpe Using random num-
bers, frequency £, amplitude Po, origin Ax, and time At are

X

generated for a particular disturbance using the previously described



equations. The amplitude of the pressure fluctuation can be positive
or negative; all other quantities are positive.

A single-cycle, sinusoidal pressure fluctuation represents a
single event. If x is the location of the previous pressure
fluctuation, the new fluctuation is located at

x = x_+ Ax . (14)
P

The time over which the event is sensed at a particular spatial loca-
tion T is given by:

. .
T iy - s (15)

Using the convection velocity uC the spatial length of the event

is given by:

W, = ucT (16)

»
"

X
|

=
]

X + Ax-uT . (17)
P c

The time of birth of the event, t is assumed given by

b’

t, = t_ + At (18)

where to is a reference time which will be discussed later.

If the disturbance is assumed "born" instantly over the interval

between xo and x, at time the distance traveled by the dis-

t
b'
turbance at some later time t is given by:

D = u, (t - tb) (19)



and the decayed amplitude Pa(t) is:

4267v

T (et
ucuT t tb

Pa(t) = Po l-e (20)

1f Xg is a particular location on the test surface where the
pressure history is desired, then the arrival time for the disturbance
is:

R - (21)

Xy = %4
tg = tb + = (22)
c
Furthermore, if t is any time in the interval, ta L tx tb' the
pressure produced at Xg by that particular event is:
t - ta
P'(xs, t) = Pa(t) sin 27 - — (23)

Equation (23) then represents the pressure contribution at desired
location xs at time t and is the basis for all further calcula-
tions.

Assuming reference t. - to is known, pressure fluctuations
of the type just described can be generated at a random set of
points, starting at x = 0 and stepping to x = Xp + X where
X is the model length, using randomly generated Ax's. 'n
addition, times of birth can be distributed randomly above to
by usincg random At's in equation (18). Then, using equation (23)

the prezsure contributions at particular points can be calculated.

LE &ta is defined as the average time step generated in

stepping from x =0 to x = Xy + X 0 when the end of the model

is reached, calculations can return to the origin and step down



the model again. The reference time would then be updated as:

t =t + Ata (24)

That process can be repeated over and over until a particular
time is reached (to = tmax)' Assuming that part of the simulation
is completed, two problems still remain--how to specify to and how

to store the simulation.

It is reasonable to assume the pressure simulation should be
over the time interval 0 £ts tmax' However, to cannot be set
equal to zero to start with, because start-up transients would be

present in the simulation. Since the time required for a disturb-
X. + X

ance to travel from x =0 to x = Xn + X0 is _ETT—JE a logical
start-up time would be: ¢
X, + X
., = 22 (25)
min u,

However, ¢t should be larger because some of the disturbances may

min
occur upstream from x =0, i.e., x, can be negative. A couser-

vative value for start-up time given by

to = -1.44 tmin (26)

has been used in the present simulation. Then at t = 0, start-up
transients should no longer exist.

Locations and time steps used in the storage of the simulated
pressure have no effect on the calculations and are specified based
on the spatial and time resolutions for the structural calculations.
An X, array can be specified, as well as the desired structurally
compatible time step Ats. Then, if a single disturbance passes over

integer start number N and stop number

xs between ta and go

td'
Nstop given by:

10

-



ta td
Ngo = KE; + 0.99 and Nstop = KE; (27)

can be used to assign storage time locations for P'(xs, t). That
is, the pressure P(xs, tn) has been increased by an amount

] < “
P (xs, t) for t_ = nit, Ngo < n < Nstop

" It is important to
note that p'(xs, tn) is not the pressure because more than one

event may be over Xg at a given tine.

A program for performing the pressure simulation just described
is included in Appendix A. Output from a sample simulation run is
shown in figure 5. It shows the variation of pressure with time at
a single point. All aspects of the simulation have not been verified
at this time. That is, output power spectra and correlations have
not been examined and compared with experimental data. However, the
root mean squar2 precssure fluctuation and average pressure agree

quite well w.*n iheir desired values (3 5 and 0, respectively).

11
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APPENDIX A

FORTRAN PROGRAM FOR SIMULATING
TURBULENT WALL PRESSURE
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