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Abstract

A new iterative scheme for solving boundary value problems is

presented. It consists of the introduction of an artificial time depen-

dence into a modified version of the system of equations. Then explicit

forward integrations in time are followed by explicit integrations

backwards in time. The method converges under much more general condi-

tions than schemes based in forward time integrations (false transient

schemes). In particular it can attain a steady state solution of an

elliptical system of equations even if the solution is unstable, in

which case other iterative schemes fail to converge. The simplicity of

its use makes it attractive for solving large systems of nonlinear

equations.
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1. Introduction

Elliptic equations are often solved numerically by iterative

methods. It is generally possible to associate an iterative scheme

with some time marching scheme corresponding to a parabolic equation,

i.e., the solution of the elliptic equation is obtained as the steady

state solution of a corresponding parabolic equation [1).

If the steady state solution of a parabolic system of equations

is unstable, developing instabilities will prevent such solution from

being reached starting from any set of initial conditions. In a similar

way instabilities will prevent "time marching" iterative schemes from

converging to an unstable solution.

We have developed a new iterative scheme with which it is possible

to find the steady state solution of a parabolic system of equations

even if it is unstable. The new scheme is very simple to use and of

rather general application. It can be used to solve boundary value

problems, and, more generally, large systems of linear or nonlinear equa-

tions not easily solved by other iterative techniques.

For simplicity the sche:,e is introduced first for the solution

of a single complex equation (section 7;, and acceleration procedures

are discussed in section 3. In section 4 the method is extended to

systems of equations. In section 5 we present examples of application

to the solution of systems of equations, and section 6 contains a des-

cription of three cases in which the method was used to obtain physically

unstable steady state solutions.
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2. Iterative solution of a single complex equation

Consider the transcendental (complex in general) equation

f(u) - 0.	 (2.1)

We introduce an artificial time dependence and try to find the steady

state solution of

1	 du-f(u).	 (2.2)
dt

If u = u  is a solution of (2.1) we write u - u  + v, and assuming v

sufficiently small, expand (2.2) in a Taylor series

- Yv + 0(v2 ) .	 (2.3)
dt

Here Y= 3u I	
is a complex number if f(u) is complex. From

U
0

(2.3) it is clear that for any time marching scheme, there may be values

of Y for which IvJ will be amplified, so that iterative schemes based on

(2.2) will not converge. On the other hand the scheme that we will now

present will converge to the solution for any value of y.

Let us replace (2.2) by a modified equation

d- f * (u).	 (2.4)

where the asterisK represents the complex conjugate. The scheme consists

of an explicit Euler "time" integration, followed by an explicit Euler

integration going backwards in "time". In both steps of the iteration

the modified equation (2.4) is used:

u - u  + At f * (u^)	 (2.5a)

uV+l - a - At f * (0).	 (2.5b)

i	 i
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We use the superindex v to denote iteration number, not time, since we

always return to the same "time level".

When we linearize with respect to the departure from the solution,

as in (2.3), we obtain

9-vv +At Y vv

vv+l
-3-At Y*3*

and eliminating v,

vV4- - (1 - At  .YY )vv

This result indicates that if the stability criterion

At 2 YY* < 2

(2.6a)

(2.6b)

(2.7)

0

(2.8)

is satisfied the time dependent component v will be damped out. This also

shows that the method is of first order convergence, i.e., the error is

reduced by an approximately constant factor at each iteration so that it

decreases as vv ti	
*

(1 - YY At2)v.

In the case of a double root, i.e., when Y 	 3u	
0 at u - uo,

32 f	2
the method can still be ap?lied. Then f(u) = (	 2 + 0(v3),

	

u=u	 i
and when (2.5) is applied we obtain

0

*
vv+l	

(1 - 6t2 * 
v vvv )vv

-	 2 nn (2.9)

7
where n	

2u	
at u - uo . Therefore the convergence rate is much slower,

and vv

The "time step" At is a computational parameter, which may vary

with v. For a linear equation it is obvious that the optimum value is

Atopt - 1	 For a nonlinear equation Y can be determined from the

REPRODUC1i1i.i'1':- OF "flip
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equation itself or from the solution after the first iteration (see sec-

i

tion 3), but for rapidly varying functions it is safe to take At < At opt

and go "curve crawling"	 [2].	 In practice, however,

at can be determined as the largest value that produces stable results.

Figure 1 shows graphically how the method works for the case of

a real
du

Y. Values of 
dt 

for different values of u (assuming y constant)

are plotted. Since 
thed- 

is proportional to u-uo , the derivatives

are steeper for values of u far from the solution uo . If At - At 	 lyl'
the method converges in one iteration (for linear equations). It should

be noted that if, as in Figure 1, Re(y) > 0, a simple time marching scheme

is unstable.



3. Acceleration of the scheme applied to a single equation

3.1 Extrapolation

When the error v is sufficiently small, Y may be considered approxi-

mately constant, and from the results of each iteration we can extrapolate

and obtain second order convergence. From (2.6) we get

u  - Q -Y At vv

(3.1)
u  - uv+l 

'b YY At2vv

and therefore the best estimate of v v is

	

vv a (uy-u)(uv-Q)*	
(3.2)

(uv-uv+l)*

V	 v+l
Y*et	

u - u	
(3.3)

uv-Q

Then for the next iteration optimum estimates of 
uv+l 

and At are obtained

as follows:

uv+l M uv - (uv-Q)(uv-Q)*	 u + 0(v 2 )	 (3.4)

opt	
(uv-uV+l)*	

o

At 
V+1	 At 

V

opt	
ly*vAtvl

3.2 Real equation

If f(u) is real, it is necessary to apply only one of the forward

and backward parts of scheme (2.5). In other words, (2.5) reduces to

uv+l M UV + et'f(uv )	 (3.6)

where At is determined from a single complete iteration (2.5):

Nh1X:11)1?;G i .."., ,.,....... "\ . i 1 "%Aijj
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1 O

At' - sign (u_^u )At

Fig. 2 indicates how vle method works if this option is used.

I

(3.7)

Ol



4. Solution of a system of equations	 1

Consider the system of equations

F(u) - 0	 (4.1)

Where F is a nonlinear, complex in general, matrix operator, and u is

the vector of the dependent variables. If u0 is a solution we expand

in a Taylor series with respect to the departure from the zolution, and

neglect terms higher than linear:

F(u) x F(u0) + Jv - Jv. .	 (4.2)

Herr J - 2u I	
is the jacobian such that J ij - 3Fi

 
/au j.

u-u
0

Note that a simple extension of scheme (2.5) to higher dimension

u  + At F (uv)

(4.3)

v+lu	 -0-AtF*(0)

will not converge in general to the solution, because J can have complex

eigenvalues even if F is real.

Let J - S + A, where S - (J + JT )/2, A - (J - J T)/2 are symmetric	
le

and antisymmetric matrices respectively and the superindex T denotes

transpose. Then the extension of scheme (2.6) to a system of equations is:

	

3 - vv + At (S* + A* ) vv	(4.4a)

	

v - vv + At (S* - A* ) vv .	 (4.4b)

	

v
v+l - 0 - At (S * + A* ) v* .	 (4.4c)

Here, as before, the asterisk denotes complex conjugate. When 0 and It

are eliminated in (4.4), we obtain

I'll L9,1 4P TC, • ,	 . '	 I JJ. %.;D
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vv+l . [I - At 2 (S* + A* )(S - A))vv	(4.5)

where I is the identity matrix.

Therefore a sufficient condition for convergence is

S * A - A * S .	 (4.6)

It is e.isily verified that if J is real, condition (4.6) is equivalent

to J being normal, i.e., JJ T . JTJ.

*T
If condition (4.6) is fulfilled, then from (4.5) and S	 - S

A*T . -A* we obtain

vv+l . [I - At 2 (S*T
S + A*TA)]vv.	

(4.7)

•

The matrix S*TS + A*TA is the sum of positive definite matrices and there-

fore it is positive definite, i.e., it has real positive eigenvalues u .n

If the linear stability criterion

At 2 ti,n < '2	 (4.8)

is satisfied for all n, the method wiles converge.

For a nonlinear problem, scheme (4.4) becomes

d	 u  + At(FS (uv ) + F*A (uu ))	 (4.9a)

U - u^ + At (FS (u V ) - FA (u v ) )	 (4.9b)

uv+l . 0 - At (F
S 

(ù ) + F
A
* (u))	 (4.9c)

where F S and FA are the nonlinear operators corresponding to S and A res-

pectively. It should be noted that, computationally, the most expensive

part of the scheme, which is the evaluation of F(u), is executed only

twice per iteration, in steps (4.9a) and (4.9c).
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F

It is possible to design an extrapolation procedure as in (3.2)

to determine v v and obtain second order convergence. It would require,

i
however, an explicit evaluation of the jacobian J and of its inverse,

and therefore it would destroy the simplicity of the method.

I1! 1
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5. Examples of applications

In the following examples we have not tried to optimize the procedure,

but rather to test the ability of the method to solve nonlinear equations.

It should be noted that a good initial guess is not necessary.
I	 r

I

5.1 Single transcendental equations

a) Real equations

i) We found roots of u - tan u by determining the s: „ly

state solutions of 
2[	

(u - tan u)/u. We divided by u in order to avoid

the trivial solution u	 0. The conservative value At - .2 At opt was

used. Once two succesive approximations differed by less than 1% the

extrapr1ation procedure was used. 10-40 iterations were needed to get

a va'.tt4_ c:ose to the solution, depending on the initial guess, and then

1-3 extrapolations were enough to converge with an error smaller than

10 7 . When the option described in section 3.2 was used, about one

fourth the number of iterations were necessary.

ii) sin u - .5. Using the option described in section 3.2

only 2-4 iterations and 1-2 extrapolations are necessary for convergence.

The value At - 1 was determined from the equation itself.

iii) sin u - 1. This is a double root case, and convergence

is very slow. It takes about 100 iterations to reduce the error to

1%.

b) Complex equations

We solved sin u - 1.17520 using the standarl scheme (2.5).

Starting from Re(u) - 2, Im(u) - 0.5, At - 1, 10 iterations and 2

extrapolations yielded the solution Re(u o ) - 1.570796, Im(u o ) - 0.583628.

The same result was obtained after 25 standard iterations.



5.2 Solution of ordinary differential equations

a) Steady state solution of 
u=

 (u+2)aX + (u+1), with periodic
at

boundary conditions: u(0) - u(1). The only steady state solution is

uo -1, but it is unstable. We found iteratively the steady state

solution by applying (4.9) in the following way:

u u  + At {(uv + 2)uv + (uv + 1)}

u = uV + At {-(u
V
 + 2)uv + (uv + 1)}

x

u l =i1- At{ (U
V 
+2)ux + (u+1)}.

The x-derivatives on the right hand side were replaced by centered
0

finite differences. We started from the initial guess u = sin 2-nx

and used a time step At = .1. About 400 iterations were necessary to

obtain the solution u = -1 with an error smaller than 1%.
0

b) A nonlinear boundary value problem

This method can be used to solve nonlinear boundary value pro-

blems in a rather inefficient way, but with minimum human effort.

Consider the example given by Acton [2], page 171:

y"-y 2(1-0.2 sin 2x) =0

Y(0) = 1, y(1) = 0 .

Since there are no first derivatives the problem is solved in

the following way, using finite differences to express x-derivatives:

y" + At{y"I - ( y") 2 (1 - 0.2 sin 2x)}
xx

y"+l = y - At{yxx - (y) 2 (1 - 0.2 sin 2x)} .

About 300 iterations were necessary to converge within 1%, and after

REpRODUCTijIT 11-;OF 1'tif;
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800 iterations the error was smaller than 10 6.

C) A "stiff" ec,.iation

i	 2
I	 The equation d2 - 101 dx + 100y = 0 has solutions yl - ex and

Y2 - e100x. Only y l satisfies the boundary conditions y(0) = 1,

i
y(1) = e, but the equation cannot be solved by shooting or by relaxa-

tion because the "hidden solution" y 2 is amplified.

We tried to solve this equation by writing

y = y" + At {yxx - 101y, + 100y",(5.1a)

y = y" + At{y, + lolyX + 100y"}	 (5.1b)

y 	 - At{yxx - 101yx + 100y}	 (5.1c)

and replacing the x-derivatives by centered second order finite differences

in the interval (0,1). After about 5000 iterations the solution remained

bounded but it failed to converge. A closer analysis shows that the scheme sat-

isfies condition (4.5) everywhere except at the interior points next to 	 i

the boundaries, where the finite differences corresponding to the first

and second derivatives do not commute. This is easily solved by

eliminating y, y in (5.1) and then applying finite differences on

yv+1 = yv- At l y. - 10001yV + 10000yv}

at the points next to the boundaries. With 20 grid intervals and

At = 2 x 10-4 the method converged with an error smaller than 10-4

in about 2000 iterations.

5.3 A highly nonlinear system of equations

Scarf [3]	 developed a constructive method to find fixed points

of a mapping that transforms a space into itself. He tested the method

on a highly nonlinear system of equations
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9	 5

3 r 'Zi kil '£k 'k	 1

RE1 nb	 a	 n
l-bR - 

wii) = 0	 1	 1,...,5	 (5.2)

k 1 Lk k

5
subject to the normalization condition 

i fl "i	
1. Here a ii , wkk and

b  are positive data matrices, and % i is a vector of unknowns. According

to Scarf [3]	 this system of equations cannot be solved by gradient

methods.

We solved the problem by multiplying (5.2) by n 1 and applying

only 4.9a and 4.9c under the as umption F A (r) Z 0. The solution was

normalized after each iteration. The method converged in 300 iterations

within an error of 10 -6 . However when we tried a simple forward scheme

(4.9a), it also converged and in only 60 iterations. This illustrates

the point that whenever a simple forward scheme converges, it should

be used, because it is more efficient than the forward-backward scheme

(cf. section 3.2).

For comparison we note that Scarf's [3] constructive algorithm

converged in 168 iterations, but the averaged solution given by Scarf

has errors varying between 2 and 20%.

:J



^. Physically unstable steady state solutions

As discussed in the introduction, this scheme was originally

devised as a method of finding steady state solutions of partial differen-

tial equations which are unstable, so that small perturbations are ampli-

fied by regular iterative techniques.

The method has been tested and found to yield an unstable steady

state solution in three different cases.

6.1 Rotating annulus: example of a spectral (Fourier) model

Lorenz [4]	 developed a simplified spectral model of a rotating'

I

annulus heated in its rim and cooled in the center. It consists of a

system of only 14 ordinary differential equations for the real and

imaginary Fourier components. For certain values of the external para-

meters, the thermal Rossby number and the Taylor number, the steady

state solution becomes unstable and Rossby waves develop.

In a spectral (Fourier) model the linearized jacobian J (see

eq. 4.2) is complex, but it has only diagonal elements. Therefore the

straightforward scheme (4.3) can be used.

Following Lorenz 	 [4] we made a regular forecast for an unstable

situation, until Rossby waves were well developed. Then, using the same

time step as Lorenz, we applied (4.3) and, after 300 iterations, the

model converged to the unstable steady state solution found analytically

by Lorenz.

6.2 An unstable steady state boundary layer

Inez Fung [5]	 has used scheme (4.9) t; obtain the unstable

steady state axisymmetric nonlinear boundary layer of a geophysical vor-

tex, where the Coriolis parameter is different from zero. Two cases

were considered: a) a V-R vortex, and b) Carrier et al. 	 [6] model

f	 -1

1
r

i

11 	 - J
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hurricane vortex. Convergence occurred in about 1000 iterations in both

cases, and the results for case b) compared well with those for the

downdraft region in Carrier's model.

6.3 A steady state solution with shear instability: example of a finite

differences model

The flow defined by the equation

at = + J (^ ,C) + vo 2; +C sin y

has a steady state solution

^o 
C sin y

which is unstable due to the presence of inflection points in the pro-

file of the mean velocity field. Here C is the vorticity, the stream

function ^ is defined through the equation

V I* = C ,

v is a diffusion coefficient and C is a constant.

We used centered finite differences and periodic boundary condi-

tions to solve the problem. Starting from the analytical steady state

solution we made a regular forecast, using Lorenz' [7] 	 N-cycle scheme

with N = 8. Immediately strong instabilities developed, until the mean

flow was completely distorted. Then we started again from the analytical

solution but adding a strong perturbation of the form-9—
,j
 sin 2x sin 2y,

and applied scheme (4.9). After about 800 iterations the analytical

solution was recovered.
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7. Summary and conclusions

We have presented a new numerical scheme to solve nonlinear

boundary value problems. It consists of the introduction of an arti-

ficial time dependence into a modified versiur of the equations. Then

explicit forward integrations in "time" are followed by explicit inte-

grations backwards in "time". For a real system of equations, if only
i

the forward part of the step is executed, the method reduces to one of

the class of "false transient" methods that has been widely used to

solve elliptical systems of equations. (See discussion by Varga, [1]

pp. 27G-278, and Mallinson and de Vahl Davis, (8]	 The forward-	 is

backward method is less efficient than the forward methods, since it 	 j

requires twice as many computations per iteration and the convergence

rate is usually slower. On the other hand, the forward-backward scheme

converges under much more general conditions than the forward schemes.

In particular, it converges to the steady state solution of an ellip-

tical system of equations even if the solution is unstable, in which

case the forward schemes fail.

The method has been tested for several cases, and the numerical
K

examples indicate that when the size of the time step is chosen close

to the maximum value compatible with numerical stability, convergence

occurs on the order of serveral hundred iterations.

The number of iterations necessary for convergence is highly

dependent on the size of the time step, and on the difference between

largest and smallest eigenvalues 
w
  of the matrix S*T S + A*TA (section 4).

Therefore a thoughtful variation of the time step size with the itera-

tion number, as done for ex anple in the Okamura-Rivas scheme (Grant and

Rivas, (9] may increase significantly the efficiency of the method.

It may also be possible to normalize the system of equations in order
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to decrease the range of the eigenvalues N n . This is equivalent to

choosing different time scales for different equations.

The numerical method presented here, though strictly iterative,

shares all the simplicity of initial value problems solved with expli-

cit time differencing schemes. It is hoped that it will prove useful

for solving systems of large numbers of nonlinear equations not easily

solved with other iterative techniques.

.	 1

i

i

i



1

20.

Acknowledgements

I am very grateful to Prof. J.G. Charney for suggesting the pro-

blem of devising a scheme to find unstable solutions of boundary value

problems. Several useful discussions with Dr. Mark Cane, Prof. E.N. Lorenz

and Ms. Diana L. Spiegel are also gratefully acknowledged. This research

has been supported by the National Science Foundation under grant no.

NSF OCD 71-00333. The computations were performed at the National

Aeronautics and Space Administration (NASA) Goddard Institute for Space

Studies in New York (NASA Grant NGR 22-009-727).

0

i

i



References

1. R.S. Varga, Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs,

N.J. (1962) .

2. F.S. Acton, Numerical Methods that Work. Harper and Row, New York (1970).

`	
3. H. Scarf, The approximation of fixed points of a continuous mapping,

I
	

SIAM J. Appl. Math. 15 (1967), 1328-1343.
1

4. E.N. Lorenz, The mechanics of vacillation, J. Atmos. Sci. 20 (1963),

i	
448-464.

1
	

Ale

i5. I. Fung, The organization of spiral rainbands in a hurricane, Ph.D.

Thesis MIT Dept. of Meteorology (in preparation).

6. G.F. Carrier, A.L. Hammond and O.D. George, A model of the mature hurri-

cane, J. Fl. Mech. 47, part 1 (1971), 145-170.

7. E.N. Lorenz, An N-cycle time-differencing scheme for stepwise numerical

integration, Mon. Wea. Rev. 99 (1971), 644-648.

8. G.D. Mallinson, and G. de Vahl Davis, The method of false transient

for the solution of coupled elliptic equations, J. Comp. Phys.

12 (1973), 435-461.

9. W.K-F. Grant, and E. Kalnay-Rivas, Initialization procedures for primi-

tive equations models, submitted to Mon. Wea. Rev.



22.

Figure Captions

Fig. 1: Graphic interpretation of the iterative scheme (2.5) for a real
equation f(u) - 0. y is assumed constant and the dashed lines
indicate the time derivative for different values of u.

Fig. 2: Same as Fig. 1, except for the scheme (3.6).
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List of Symbols

UP
0 ' uv' i ' u 

VI w,

f, F, Fa, Fs

f*, F*

S, S*, S*T

A, A*, A*T

I

J

Greek letters

Y gamma

A delta

v nu (guperindex)

a (partial derivative)

n eta

Tr pi

Psi

{ Zeta

U mu
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