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SUMMR7

The plane motion of an articulated pipe made of two segments is examined

and the flow velocity at which flutter manifests itself is sought. The pres-

sure in the reservoir Seeding the pipe is kept constant. In contrast to pre-

vious works, the flow velocity is not taken as a pre-Abed parameter of the

system but is left to follow the laws of motion. This approach requires e

nonlinear formulation of the problem end the equations of motion are solved

using Krylov-0ogoliubow's method. A graph of the amplitude of the limit

cycles, as a function of the fluid-system mass ratio, is presented and con-

clusions are drawn as to the necessity of cons i dering nonlinearities in the

analysis.

Er

lb



INTRODUCTION

A review of existing knowledge [1]
N
 on the behavior of pipes conveying

fluid ,,reveals that all earlier analyses assume that the fluid velocity rela-

tive :j tl.. ; t oe is a known quantity and is unaffected by the motion of the

pipe. lm the" previous ,works, the flaw velocity is assumed either constant

or period c with :, prescribed amplitude and frequency. This approach elimi-

nates the need to find the flow equations of motion, is adequate fo g• infini-

tesimal traas-erg- amplitudes of motion of the pipe system, but is incapable

of predicting what will be the effect of larger amplutudes. This last short-

coming may be of importance when flow velocities are near critical velocities,

that is, velocities at which the system begins to flutter.

It is ttWMr Dre the purpose of the present study to investigate in greater

detail the dynamic behavior of pipes in the vicinity of critical velocities.

Such an analysis requires a nonlinear formulation of the problem. It will be

shown that nonlinear terms are generated by the axial motion of the pipe and

by the flow velocity fluctuation. Thus, the relative velocity of the fluid

will no longer be assumed a given parameter in the problem,but will have to

be determined from its own equations of motion which will be coupled, through

the nonlinear terms, to the transverse equation of motion of the pipe. -he

s pecific system (see Fig. 1) considered here is a vertically hanging articu-

lated pipe made of two segments. Each articulation is assumed perfect in the

sense that it has no damping or restoring force associated with it. The fluid

entering the pipe comes from a reservoir maintained at constant pressure and

after its passage through the pipe, it is discharged, tangentially to the end

of the pipe, to the atmosphere. This articulated pipe system was selected,

* Numbers in brackets refer to referances at the end of the paper.
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-ether than a continuous pipe, in order to obtain an analytical solution and

therefore get more complete insight into the problem. The related problems of

an articulated two-link pipe fed by a reservoir in which the pressure flu(:tu-

ates with time and the problem of a continuous cantilevered pipe ftd by 	 co,i-

stant pressure reservoir are also being analyzed for presentation in suise-

quest papers.

The basic assumptions made are: 1) The fluid is incompressible; this is

a reasonable approximation for a liquid since the characteristic time taken

by a wave to travel the length of the pipe is very much shorter than the per-

iod of the transverse motion of the pipe; 2) The diameter of the pipe is

small compared to its length so that the rotatory inertia of an element of

the pipe is negligible; 3) The velocity profile of the fluid, at a given

cross-section is uniform, modelin g fairly well a completely turbulent flew;

4) The motion of the articuiated pipes takes place in a plane.

EQUATIONS OF MOTION

The derivation of the relevant equations of motion can readily be ob-

tained by the direct application of Newton's law to our system (see Fig. 1).

The first equation is obtained as a moment condit i on with ,•espect to the upper

pivot point on the free-body diagram of the two segments of the pipe. Sim-

ilarly, the second equation is obtained as a moment condition with respect to

the pivot point on the free-body diagram of the lower segment. Finally the

equation governing the motion of the fluid in the pipe is obtained by the force

condition in the tangential direction on a fluid element and by a subsequent

Integration over the length of the pipe. The three equations thus obtained are:

2
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r	 £R

(m 1 + m24 
R 22 + j 1 ¢ ? sinA 1 + (m l + m2) - 122 2 6 22sin(6 2 - A1)

32	 2

+ 9 1 ( 1	 ¢ 1 1 t 21+ A 2 It cas(A 2 - 9 1 ) + 2m l y	Al + A 1 ,2 2 9 2cos(A Z - A1)

+ m I R 1 2 2v t` n(o 2 - @ 1 )	 m 1 v 2 k 1 sin(A 2 - A 1 )	 0	 (1)

(112)(m I
 + m2 )gk 2 sine 2 + (1/3)(m 1 + m2 )R 2 3 5 2 + m1v82R22

(2)

+ (1/2)(m, + m2 )t I 1t 2 2 6 1 Cos ( @ 2 -	
+ (1/2)(m l

 + m2)R1k2 ; 1 ` sIn(0 2 - A I )	 0

Po - Lv 2 + m I 9( t cos@ 1 + L'cosA 2 ) - m 1 v(R. I + k2)

+ m 1 9 1 [1 122/2 + .¢1 
91  

cos (A 2 - Q l )] - m1a1tIk.2sin(0 - AI)

+ (i/2)m 1 A 2 t 2 2 . 0
	

(3)

where m 	 and m2 are the mass, per unit length, of the fluid and the pipe,

respectively, g is the acceleration due to gravity, 
X  

and P, 2 are the

lengths of the upper and lower segments, v is the flow velocity, P o is the

force, due to pressure, acting on the fluid at x s 0 and Lv 2 represents

the friction force between the fluid and the pipe. Fluid dynamic studies [21

have shown that L depends on the size and roughness of the pipe, on the den-

sity o` the liquid a.-.d on Reynolds number if the latter is not too high. For

fully turbulent flow (high Reynolds number), L is independent of Reynolds

3



number and consequently is independent of viscosity.

He need now to relate the pressure p 	 in the reservoir to the force

"p " . From Bernoulli's equation, applied between the surface of the water in0

the reservoir and its outlet, we obtain:

. 2

	

vo	ppo	*

+	 - gh + —	 (4)
	2 	 p	 p

where the subscript "o" refers to quantities measured at the entrance of the

pipe, h* is the height of the fluid in the reservoir, p is the density of

the fluid and p	 is the pressure in the reservoir. Eq. (4) is now combined 	

f
with Eq. (3) and after the introduction o f the following non-dimentional

I
variables;

R1	 m1	 ,^	 9

U - 92 9 Y m 1 +m2 P t	 k2 
t

Ua v
	

Lo 	 p*=P_	 Huh

q^'2	
m1	 Pt2g	

^2

Eqs. (1,23) become:

r

i

( a2 + a 3/3)6 1 + (a/2)9 2 Cos ( 0 2 
- 0 1 ) + Ya2Ue1 + 2aUO 2 Cos (0 2 - 01)

+ (a + a2/2)sin0 1 + YaU2sin(0 2 - 61)',

+ YaU sin(0 2 - 0 1 ) - (1/2)6 2 2 sin(0 2 - 0 1 ) - 0	 (5)
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(1/2)sine 2 + (1/3)6 2 + Y N + ( 1/2)a[e l cos(9 1 - A l ) + 5, 2 5in!9 2 - e l )j	 0 (6)

62 [(1/2)  + L0 j + H* + a cos 9 1 + cos 9 2 - (a + 1) U

_ -[(1/2)x2 6 1 2 + aA l 2cos(e 2 - e l ) - ae l sin(e 2 - e l ) + ( 1/2) e 2 2 ]	 (7:

Since we do not want here to solve the complete nonlinear set of equations,

but only to determine the effect of the leading nonlinearities on the system,

we will omit nonlinear terms of order 4 ar.,, higher. Also, to facilitate

manipulations by making certain terms linear in U , we will assume that:

U	 U0 + AU where 60 2 ' P 1/2 
+
+L a + 1

0

;t

U 
is the steady-st p ' 'low veiocity under pressure p	 when the pipe is

vertically at resit and A6 is a small fluctuation of the flow velocity such

that U2	U 2 + 26 AU
0	 0

Under thest modifications, Eqs. (5,6,7) become:

a2 + c 3 /3	 a/2 9)
Ya2U0	

2yaUo
e 1 ?

6la!2	 1/3 e2, 0	
YU0

(a + a2 /2)	 - yaUO 2 YaUO2 re f F1+
(8)

f 0 1/2 e 2 F2
+

5



where	 F  - 6 2U(A 2 - 8 1 ) 2
/4 + e22a(A2 - 

al)/

+ 6 2yaUo (A 2 - 6I)2 + (a + a2/2)013/6

+ ya6c2 (0 2 - a 1 ) 3 /6 - 2yc%60A(A 2 - 
a 

F	 23/12 - yAN 2 + a8 1 ( 6 2 - A1)2/1

(a + I )66 + ( 1 + 2Lo0o66 - - aA l 2 /2 - 92`

- a6
1

(a 9 - a 

The linear part of Eq. (C) consists of two coupled equations with constant co-

efficients The stiffness aid damping matrix are nonsymmetric, indicating a

nonconservative system. £q. (9) is uncoupled from Eq. (8) in its linear pa-t

but not in its nonlinear t--rms.

METHOD Or SOLUTI ON

To solve the above system of equations we aill proceed as follows: a)

Solve the linear part of Eq. (8) and determine 0 1 (t) , A 2 (t) for 6 
critical; b) Use the solution found in a) to ,calculate the nonlinear terms of

Eq. (9); c) Solve Eq. (9) treating the nonlinear terms as forcing functions

and obtain 66(t); d) Use 6U(t)	 in the right-hand side of Eq. (8) and apply

Krylov-Bogoliubov's averaging technique.

To find the solution to the linear part of Eq. (8,' we assume a solution

of the form:

6



0 Re 9  At

e 2 92

and su:,stitute into Eq. (8) which yields

(a/2)X2
	

X2/j + XY60 + 1/t
	

^e1
4

1

(a + a 3/3) A. + ya2^0X
	

(a/2)X 2 + 2ya60X	 I	 0

	
(10)

+(a + X2/2) - YaUo2
	

+YaUo2
	

02]

For a nontrivial solution to exist, the determinant of the a!rove matrix has to

be zero. This leads to a 4th order polynomial in ) . Since we ire orly

interested in critical values of A , we know th6t it has to be a pine omagin°

ary number and since the coefficients of the polynrxnial are all real, we can

separate the polynomial into its real and im3g1nary parts in the following manner:

X(X 2 Uoay(1 + a)/3 + 6 Y(1 + a) - U o3Y^]	 0	 ill)

X 4a(a + 3/4)/9 + 12 ((a + 1) 2/3 - a2/6 - 6
0
2y(a/2 + 1/3 - ya)]

+ (1 + a/2)/2 - YaUo2/2 - 0	 (12)

Tne elimination ..P X 2 between these two equations yields:

AU4-BU2+C_0
c	 c

whe re

1



	

U = U critical - -B ±	
B2 ' 4AC
	

(i3)
c	 o

A - Y2 (a + 3/4) _ 3Y2 (a/2 + 1/3 - Ya)

all + a) 2	at'l + CO

2Y (a + 3/4) _ 3-,(a/2 + -1/3  - Ya) _ x (a + 1 + Y + aY

CIO + a)	 a	 a	 2	 20 a a)

C	 a + 3/4 _ 
( C,
	 1) 2 + (1 + a/2) + a

a	 a	 2	 2

The substitution of Uc into Ea. (11) permits us to find the two comolex

conjugate, critical, eigenvalues of our system. Eq. (13) gives us two values

for 0c . The value of interest is the higher one since the other value cor-

responds to the point where the system regains stability (see Fig. 2). To

obtain the two corresponding eigenvectors, we substitute U 	 and the eigen-

value into either one of Eqs. (10), say the first one:

0	 X.2/3 + X YU + 1/2
R. LU . - _L	

2j 
c	 j = 1,2

0 2	 X  a/2

Since X l and X2 are complex conjugates, R i and R,, are also complex con-

jugates. We will not investigate the other two eip•_nvalues since a previous

analysis by Bohn and Herrmann [31 shows that tney possess a negative real part and

consequently they contribute but little to the solution. A typical root locus

(as a function of 6  ) for the system is shown in Fig. 2. The motion of the

l it	 V

and
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pipe in its flutter mode Is therefor :

e1 
M ReIR 1 021 (cos wt + i sin wt) + R 1 022 (cos wt - i sin wt)]	 (1 4 )

d2 = Re[02 1(cos wt + i sin wt) + 822 (cos cut - i sin wt)1	 (15)

where iw - X . These equations can be expressed more conveniently as:

e1 
a 0 A 2 + b2 sin(tut + 1 + 0o ) where (a + ib) - R 1	(16)

e2 = 0 sin(wt + 
01)

where 0 - ^(Re
21
 + Re022) + (-Ime

21
 + IMO 	 ,

atiw,

b	
(Re0

21
 + Re0

22)
t9^o '

	

	 ^ t9^^	 (17)
a 

( - Im8211 + im022)

0 and 
01 

are determined by the initial conditions. We note, in the above,

that 0,, 1 and 022 are not completely determined since we have two equations

and four unknown. If we want. but there is no obligation to do so, we can re-

quire the imaginary part of Eqs. (14) and (15) to be zero, which leads to:

021	 022

A graphical representati.n of '_Na mode shape through a cycle Is presented

In Fig. 3. The angular velocities of the two segments are indicated by curved

arrows and each of the `our sketches is taken at the instant when one segment

has no angular velocity. The sketches are separated by almost exactly 3P°.

9



Now that we have determined the modes shape of interest, we will eliminate the

damped rizds, thus reducing our fourth-order system to second order. To

achieve this elimination we follow Foss' work 141 on the uncoupling of the

equations of motion of a damped linear system. His approach must, however, be

modifieu since he assumes that all the matrices of the system are symmetric.

To take care of this difficulty we must have recourse to the concept of the

adjoint problem, that is, the problem obtainea by transposing all the matrices

of our system. it can be shown that the eigenvalues of this new problem arP

the same as those of the original problem but that the eigenvectors are dif-

ferent. Yet, these eigenvectors have the crucial property of being orthogonal

to the eigenvectors of the original system, thus permitting the separation of

the modes of our system. The details of how to proceed will not be given here

because of limitations in space; they can be found in reference [5].

Thus, following the method described above, Eq. (8) can be rewritten as:

x+ (w2 +S2 )x-2Sx+ rf±sg + rf--,r ^(- L W - S) +f	 (18)

	

r 2 + s 2	 rc +s 2 	 s	 s

where	 x - 0/2 sin ^ , * - wt + ^1
	

(19)

(S + iw) - a

1 T a 2 + a 3 /3	 a/2	 RI	 i	 a2	 2a R

(r + is) - 2w 	 ^ + YUo 	(20)
R aja/2	 1,/3	 i J	 R.	 0	 i i i

l

10



f - F 1 + cF2	where F 1 and	 F2	are defined in Eq.	 (8)

g - dF2

(1/3)l2 + AY60 + 1/2

(a + i b) - R - -
A2a/2

^ 2 (a2 + a3/3) + a(ya2U ) + 3a/2 - yaU 
2

(c + i d) - Ra - -	
o	 o	 (22)

A a/2

The damping coefficient B is a small quantity, since we are interested only

In flow velicities close to critical and therefore t*_ will be eliminated in

Eq. (18) except in the linear damping term. Also, because of the smallness of

that term, it has been transferred to the right-hand side of the equation,

which contains the small nonlinear terms. The nonlinear terms F1 and F2

are not completely known yet because they depend on AU and At?. To deter-

mine these fluctuations of the flow velocity we combine Eqs. (9) and (16) to

obtain

Ad(a + 1) + A60 + 2L
0
) - (9 2/2)[(A + 9) - (A - B)cos 2* + C sin 2* 1 (^3)

where A - -a2a/2 - 1/2 + (a + a/2)w2 b2 + aw2 (a - b2)

8 - -ab2/2 + (a + a2/2)w2a2 + w2/2 - aw2b2

C - -aab - (2a + a2 )w2ab + aw 2 (b - 2ab)

(21)

The steady-state homogeneous solution is AU - 0 . The particular solution is

assumed to be of the form



A - 02 (K + U l sin 2* + U 2 cos 4)	 (24)

and is substituted into Eq. (23). After a comparison of the coefficients of

similar tarms we obtain:

K -	 A + 8
	

(25)
20 (1+ 2L 0)

i, (1 + 2L ) c; z - ( A - B) w (a + 1)

Uo (1 + 2L° ) + 4w (a + 1)

-l10 (1 + 2Lo)(A - B)/2 - Cw(a + 1)

U2
	

6o2 0 + 1Lo ) 2 + 4w2(a + 1)2	
(27

Now that the right-hand side of Eq. (18) is known, we will solve this equation

using the Krylov-Bogoliubov (K.B) method [6], keeping only the first term in

the asymptotic expression. This method is also known as the method of

"averaging".

The K.B. method essentially assumes that in the region close to the crit-

ical point, the motion will be oscillatory, as it is at the critical point,

except that the amplitude and phase of the motion will change slowly due to

the effect of the small damping and of the small nonlinearities.

In our particular case, the oscillatory motion of interest is:

x - (6/2)sin 0 - (e/2)sin(wt + 0)	 (28)

x - (6/2)w cos l4i - (6/2)w cos(wt + ^)	 (29)

12



which satisfies the left-hand side of Eq. (18). We now assume that the small

	

terms of the right-hand side of Eq. (18) will cause 0 	 and 4	 to vary slowly

with time. For this to be true, Eq. (29) requires that:

	

(9/2)sin 4, + (0/2)i cos * - 0	 (30)

We also obtain, by a differentiatio:- of Eu.(29):

x - (0/2)w cos	 - (0/2)w(w + ;)sin ^p	 (31)

Equations (28) and (31) transform equation (18) into:

	

(9/2)w cos W - (0/2);w sin W - 28; + rf 
+, • _ rw rff++ 

ss + f w	 (32)
s-) s ^r - + s-)	 s

which can be combined with Eq. (30) to obtain:

A-rrZBx+^r2±s2^- rw^
rf +— sue	

f`+ 'cos	 (33)V^
 r+ s	 s	 r+ s

0m-frw,
28x+((rf+s 1	 rw rf+s	 f w sin^	 (34)
 r +s	 s	 r +s	 s

Since 0 and m change very slowly, we assume then to be constant for the

duration of a cycle and integrate Eqs. (33) and (34) to find the average of

0 and ; :

•	 w	 2n/w 2rf + s•	 rc^ rf +	 fw
0ev • — .r	 26; +( -- ^	 (	

srf + ) + _ cos ^ dt	 (35)
21r 	 w I	 r S 3	 3	 r +s	 s

13



•	 w	 2ir/w 2	 •	 rf + •	 rtl	 rf + s	 ff2

0;av . — f	 -	 28x +(- - I)- rQ (^) + — sin w dt	 (36)
2ao	 w	 r + s	 s	 2

The damping term, 20; , in the argument of the above integrals depends on 0

to the first power, but terrra in f and g depend on 0 to the third power,

which will permit us to find equilibrium points for certain amplitudes. If

we are exactly at the critical point, B - 0 and, therefore, the nonlinear

terms will decide whether or not the criticil point is stable.

The evaluation of the right-hand side of Eqs. (35) and (36) turns out to

be extremely tedious since r , s , f and g are complicated expressions.

The details of this evaluation, which are given to (5), will only be summarized

here. The terms in brackets in Eqs. (35) and (36) can be shows to generate,

after expansion, terms in sin y , cos * , sin 3* and cos 3* but the aver-

aging will retain only the terms in sin * in Eq. (36) and only the terms in

cos	 in Eq. (35). these terms being affected by a coefficient of one-half.

Thus Eqs. 1135) and (36) become:

6 a a (w60 + K 1 03 )/w	 (37)

0;av " 
-K203/w
	

(38)

where

	r(flw + cg l w)	 sdglw	 rw r(r 2 + cg 2) + sdg2 	w
K 1 .	 2	 2 — + -,2	2 - Y	 + _ (f 2 + cg 2)

r+ s	 r + s	 s	 r + s	 s

K2	
r (-f 2w - cg 2w)	 sdg 2w - rw r (f 1 + c91) + sdg 1 + o+ ( f i 

+ cg l )

	

r+ s	 (_S	 r+ s	 s

ik
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where, from Eqs. (38, 18, 8, 24)

f l - -( 1 / 1 6)w2 [3 0 - a) 2 + b2] + aw2 0 - 9)/8

-Ya2 .a(U l a/2 - Kb + U 2b/2) - YaWI

-Ya60w(1 - a)b/2 + (a + a2/2)(a 3 + ab2)/8

+Ya[(1 - a)U l w - bwU2] + (1/8)YaUo2 [k1 - a) 3 + (1 - a)b2I

-2Ya6
0

[(1 - a) (K - U 2 /2) - bU1/2]

f 2 o aw2 0 - a)b/8 - 3aw2b/8 - Ya 2w[a(U2/2 + K) - bU1/2]

-Yaw(2K + U 2 ) + Ya6aw[(1 - a) 2A + 3b2Al

+(1/8)(a + a 2/2)(a 2b + b3 ) + Ya[ (1 - a)u 2w + bulw]

-(1/8)YA 2 [(1 - a) ̀b + 01 - 2YaU^[(1 - a)U 1 /2 - b(K + U2/21

g l - 1/16 - Ywu 1 /2 - (1/4) aw2 {a[3 0 - a) 2A + b2A l - 0 - a) b2/2}

-0 /2)aw2 [0 - a)(a 2 + 3b2 )/4 + ab2/2)

g2 - -yw (K + U2 /2) + (1 /4).aw 2{ ab (1 -	 - b [ (1 - a) 2/4 + 3b2Al l

(112)aw2 [ab(1 - a)/2 t b0a2 + b2)/41
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Only B in Eqs. (37) and (38) needs to be determined; we can either solve

numerically for the roots of the fourth-order polynomial given by equating the

determinant of Eq. (10) to zero or, since 8 will be a small quantity, we can

solve analytically the polynomial neglecting terms of order two and higher in

B . This second method is presented in [5].

STABILITY ANALYSIS

The effect of nonlinearities in t ► s critical region can now be investi-

gated from Eqs. (37) and (38). Equation (37) indicates that a pos i tive B is

destabilizing since it leads to 
6 
a > 0 . Also, if K i , which represents

the effect of nonlinearities, is positive, we have also a destabilizing effect.

The only way the nonlinarities can change a stable behavior into an un-

stable one, and conversely, is for B and K, to be of opposite siqn. When

this is the case there is an amplitude 
0L.C. 

for which Eav - 0 and which is

known as the amplitude of the limit cycle (L.C.). The L.C. is said to be stable

if for 0 greater or smaller than OL 
C. 

the amplitude of the motion approaches

OL C . The L.C. is said to be unstable if fnr 0 greater or smalier than 0L.C.

the amplitude moves away from 0L.C.

Hence, from the previous discussion, we can identify three different pos-

sibilities, as far as stability is concerned: a) K i < 0 and 8 > 0 which

leads to a stable limit cycle; b) K  > 0 and 8 < 0 which leads to an un-

stable limit cycle; c) K 1 and B do not meet my of the two previous re-

quirements. In this last case, 8 and K 	 have the same sign and reinforce

one another, leading to the same conclusion regarding stability as a linear

analysis.	 In a) and b) above, the amplitude of the limit cycle is given by:
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OL.C.	 K)
	 (39)

Figure 4 shows a plot of 
0L.C. 

as a function of y , the ratio of the

mass of the fluid to the mass of the pipe plus fluid. Also indicated on Fig. 4

is the type of limit cycle. There are two regions of interest. The first one

extends from y - 0 to y - .1 and is characterized by destabilizing contri-

bution of the nonlinearitles which thus permit only limit cycles for flow ve-

locities lower than critical. The second region, from y - .1 to y - .17, is

characterized by stabilizing nonlinearlties and consequently limit cycles exist

only for velocities higher than critical. 	 In the first region, if 0 < 0L.C.'

the oscillation will die out but if 0 > 0..C. , 0 will grow continuously. 	 In
^

the second region, if 0 < 0L.C.'  the motion will increase until it reaches the

limit cycle and if 0 > 0L.0 , motion willdecay until it reaches the limit cycle.

Nr.turaily, the most desirable region is the secer.d one since it permits to operate

with complete confidence up to th .;ritical velocity and even if one overshoots

the critical velocity 4 little, the amplitude of motion will remain bounded.

For y greater than approximately .17 flutter cannot exist, since X

can no longer be	 pure imaginary. We also observe that for y close to .1,

the amplitude of the limit cycle goes to infinity. This indicates that the

nonlinearities contribute nothing to the motion for such a value of y .

It must be pointed out that in all the above discussions Eq. (38) was

never mentioned. The reason for this omission lies in the fact that 
;av 

is

the change in the frequency of they motion, which is of no interest as far as

stability is concerned.

EXPERIMENT

The experimental apparatus (with copper tubes) used by Bohn and Herrmann 131
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71, 

proved very use!ul in carrying out the following qualitative experiment:

With the pipe ver`lcally at rest, the fluid velocity is progressively Increased

until the slightest disturbance causes the system Zo flutter. The flow is

then reduced by a very small amount and the system is subjected to small dis-

turbances. it is observed that as long as the disturbances are small, the

motion damps out but that if the initial conditions are sufficiently large,

the amplitude nf motion grows until is reaches a very large value. This be-

havior shows the existence of an unstable limit cycle which is also what the

theory predicts (Fig. 4) since the effective y for the system is about .072.

CONCLUSIONS

This study has shown that the effect of finite amplitudes can signifi-

cantly change the qualitative behavior or the articulated pipe system. Never-

theless, the results permit us to increase our confidence in the predictions

of the linear analysis since Fig. 4 clearly illustrates that an amplitude of

motion of at least ten degrees is required to change the flaw velocity by oniy

a few percent. It thus seems that in most engineering applications the effect

of the nonitnearities can be safely neglected knowing that designers are not

likely to allow a system to operate within a few percent of the critical

velocity.

18
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