General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FLUTTER OF ARTICULATED PIPES AT FINITE AMPLITUDE
J. Rousselet, et al

Stanford University

Prepared for:
Air Force Office of Scientific Res?arch National Aeronautics and Space Administration

August 1975

DISTRIBUTED BY:

332091

AFOSR Scientific Report

 AFOSR-TR-
flUTTER OF ARTICULATED PIPES

R. Rousselet
and
G. Herrmann

Air Forcē Office of Scientific Research Grant AFOSR 74-2669

SUDAM Report No. 75-9

August 1975

Reproduced by NATIONAL TECHHIC/IL INFORMATION SERVICE US Depertment of Commerce Springliold, VA. 22151

$$
\begin{aligned}
& \text { Qualifled requestors may sheain additional } \\
& \text { coples from the Dofense Documentation Center, } \\
& \text { all others should apply to the } \\
& \text { Nationai Tachnical Informsion Service. }
\end{aligned}
$$

REPORT DOCUMENTATION PAGE	READ INSTRUC TIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMEER
4. TITLE (and Imbitito) FLUTTER of ARTICULATED PIPES AT PIMITE AMPLITUDE	5. TYPE OF MEPORT A PERIOD COVEMED INTERIM
	6. PERFORMIMG ORG. REPORT KUMEER
7. AUTMOR(O 3 ROUSSELET G HERRMANN	B. CONTRXCT OD GRANT NUMEER(s) AFOSR 74-2669
9. DERFORMING OMOANIZATION WAME AND ADOVESS S:ANFORD UNIVERSITY DEPARTMENT OF APPLIED MECHANICS STANFORD, CALIFORNIA 94305	10. PROGRAMELEMENT, PROJECT, TASK AREA A WORK UNTT NUWERE 681307 $9782-04$ 61102%
II. CONTROLLING OFFICE NAME ANO RDDAESS AIR FORCE OFTICE OF SCIENTIFIC RESEARCH/NA	12. REPORT DATE Aug 1975
\qquad	13. NUMBER OF PAGES 26
	13. sECURITY Class. (of thle repori) UNCLASSIFIED TBa. DECLASBIFICATION DOWMGRADING SCMEDULE

16. DIST简DUTION ITATEMENT (ol thic Roport)

Approved for public release; distribution unlimited.
17. DIST IBIBUTION STATEMENT (of the abetract entered in lilock 20, if dilforent from Repert)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Consinue in reverse side If necesamry and Identify by block number)

FLUTIER
FLOW IN PIPES
NONLINEAR VIBRATIONS
LIMIT CYCLES
20. ABSTAACT (Continue on reverae alde if neceaeary aid identify by block number)

The plane motion of an articulated pipe made of two segments is examined and the flow velocity at which flutter manufests itself is sought. The pressure in the reservoir feeding the pipe is kept constant. In contrast to previous works the flow velocity is not taken as a prescribed parameter of the system, but is left to follow the laws of motion. This approach requires a nonlinear formulation of the problem and the equations of motion are solved using Krylov-Bogoliubov's method. A graph of the amplitude of the limit cycles, as a function of the fulid. system mass matio, is presented and conclusions are drawn as to the necessity of considering nonlinearities in the analysis.

FLUTTER OF ARTICIILATED PIPES AT FINITE AMPLITUDE

by
J. Rousselet*
Ressarch Assistant
and
G. Herrmann
Professor and Chairman
Department of Applied Hechanics
School of Engineering
Stanford University
Stanford, Cal:iornia 94305

Presently Assistant Professor, Ecole Polytechnique de Montréal, Montréal, Canada

This work wes supported in part by the Air Force Office of Scientific Research Grant AFDSR 74-2569 and Natisnal Aeronautics and Space Administration Grant NGL 05-020-397 to Stanford University.

SUMMARY

The plane motion of an articulated pipe made of two segments is examined and the flow velocity at which flutter manifests itself is sought. The pressure in the reservoir feeding the pipe is kept constant. In contrast to previous works, the flow velocity is not taken as a preeribed parameter of the system but is left to follow the laws of motion. This approach requires a nonlinear formulation of the problem and the equations of motion are solved using Krylov-Bogoliuboy's method. A graph of the amplitude of the limit cycles, as a function of the fluid-system mass ratio, is presented and conclusions are dram as to the necessity of considering nonlinesrities in the analysis.

INTRODUCTION

A review of existing knowledge [1] on the behavior of pipes conveying fluid a reveals that all earlier anelyses assume that the fluid velocity relative the pipe is a known quantity and is unaffected by the motion of the pipe. In these previous works, the flow velocity is assumed either constant or period z with a prescribed amplitude and frequency. This approach eliminates the n sed to find the flow equations of motion, is adequate for infinitesimal transvers, amplitudes of motion of the pipe system, but is incapable of predicting what will be the effect of larger amplutudes. This last shortcoming may be of importance when flow velocities are near critical velocities, that is, velocities at which the system begins to flutter.

It is therefore the purpose of the present study to investigate in greater detail the dynamic behavior of pipes in the vicinity of critical velocities. Such an analysis requires a nonlinear formulation of the problem. It will be shown that nonlinear terms are generated by the axial motion of the pipe and by the flow velocity fluctuation. Thus, the relative velocity of the fluid will no longer be assumed a given parameter in the problem, but will have to be determined from its own equations of motion which will be coupled, through the nonlinear terms, to the transverse equation of motion of the pipe. The specific system (see Fig. 1) considered here is a vertically hanging articulated pipe made of two segments. Each articulation is assumed perfect in the sense that it has no damping or restoring force associated with it. The fluid entering the pipe comes from a reservoir maintained at constant pressure and after its passage through the pipe, it is discharged, tangentially to the end of the pipe, to the atmosphere. This articulated pipe system was selected,

[^0]-ather than a continuous pipe, in order to obtain an analytical solution and therefore get more complete insight into the problem. The related problems of an articulated two-link pipe fed by a reservoir in which the pressure fluctuates with time and the problam of a continuous cantilevered pipe fed by i, constant pressure reservoir are also being analyzed for presentation in su'sequent papers.

The basic assumptions made are: 1) The fluid is incompressible; this is a reasonable approximation for a liquid since the characteristic time taken by a wave to travel the length of the pipe is very much shorter than the period of the transverse motion of the pipe; 2) The diameter of the pipe is small compared to its length so that the rotatory inertia of an element of the pipe is negligible; 3) The velocity profile of the fluid, at a given cross-section is uniform, modeling fairly well a completely turbulent flow;
4) The motion of the articulated pipes takes place in a plane.

EQUATIONS OF MOTION

The derivation of the relevant equations of motion can readily be obtained by the direct application of Newton's law to our system (see Fig. 1). The first equation is obtained as a moment condition with respect to the upper pivot point on the free-body diagram of the two segments of the pipe. Similarly, the second equation is obtained as a moment condition with respect to the pivot point on the free-body diagram of the lower segment. Finally the equation governing the motion of the fluid in the pipe is obtained by the force concition in the tangential direction on fluid element and by a subsequent integration over the length of the pipe. The three equations thus obtained are:

$$
\begin{align*}
& \left(m_{1}+m_{2}!9\left(\frac{\ell_{1}^{2}}{2}+\ell_{1} \ell_{2}\right) \sin \theta_{1}+\left(m_{1}+m_{2}\right)\left[-\frac{\ell_{1} \ell_{2}^{2}}{2} \dot{\theta}_{2}{ }^{2} \sin \left(\theta_{2}-\theta_{1}\right)\right.\right. \\
& \left.+\ddot{\theta}_{1}\left(\frac{\ell_{1}{ }^{3}}{3} \div \ell_{1}{ }^{2} \ell_{2}\right)+\ddot{\theta}_{2} \frac{\ell_{1} \ell_{2}{ }^{2}}{2} \cos \left(\theta_{2}-\theta_{1}\right)\right]+2 m_{1} \dot{v} \dot{\left[\frac{\ell_{1}{ }^{2}}{2} \dot{\theta}_{1}+\ell_{1} \ell_{2} \dot{\theta}_{2} \cos \left(\theta_{2}-\theta_{1}\right)\right]} \\
& +m_{1} \ell_{1} \ell_{2} \ddot{v} \sin \left(\theta_{2}-\theta_{1}\right)+m_{1} \dot{v}^{2} \ell_{1} \sin \left(\theta_{2}-\theta_{1}\right)=0 \tag{1}\\
& (1 / 2)\left(m_{1}+m_{2}\right) g \ell_{2} \sin \theta_{2}+(1 / 3)\left(m_{1}+m_{2}\right) l_{2}^{3} \hat{\theta}_{2}+m_{1} \dot{v} \dot{\theta}_{2} \ell_{2}{ }^{2} \tag{2}\\
& +(1 / 2)\left(m_{1}+m_{2}\right) \ell_{1} \ell_{2}{ }^{2} \ddot{\theta}_{1} \cos \left(\theta_{2}-\theta_{1}\right)+(1 / 2)\left(m_{1}+m_{2}\right) \ell_{1} \ell_{2}{ }^{2} \dot{\theta}_{1}{ }^{2} \sin \left(\theta_{2}-\theta_{1}\right)=0 \\
& P_{0}-L \dot{v}^{2}+m_{1} g\left(\ell_{1} \cos \theta_{1}+\ell_{2} \cos \theta_{2}\right)-m_{1} \ddot{v}\left(\ell_{1}+\ell_{2}\right) \\
& +m_{1} \dot{\theta}_{1}^{2}\left[\ell_{1}^{2} / 2+\ell_{1} \ell_{2} \cos \left(\theta_{2}-\theta_{1}\right)\right]-m_{1} \ddot{\theta}_{1} \ell_{1} \ell_{2} \sin \left(\theta_{2}-\theta_{1}\right) \\
& +(1 / 2) m_{1} \dot{\theta}_{2} \ell_{2}{ }^{2}=0 \\
& +(1 / 2)\left(m_{1}+m_{2}\right) \ell_{1} l_{2} \theta_{1} \cos \left(\theta_{2}-\theta_{1}+(1 / 2)\left(m_{1}+m_{2} \ell_{1}^{l} 2{ }_{1} \sin \left(\theta_{2}-\theta_{1}\right)=0\right.\right.
\end{align*}
$$

number and consequently is independent of viscosity.
He need now to relate the pressure p^{*} in the reservoir to the force "Po". From Bernoulli's equation, applied between the surface of the water in the reservoir and its outlet, we obtain:

$$
\begin{equation*}
\frac{\dot{v}_{0}^{2}}{2}+\frac{p_{0}}{\rho}=g h^{*}+\frac{p^{*}}{\rho} \tag{4}
\end{equation*}
$$

where the subscript " o " refers to quantities measured at the entrance of the pipe, h^{*} is the height of the fluid in the reservoir, ρ is the density of the fluid and p^{*} is the pressure in the reservoir. Eq. (4) is now combined with Eq. (3) and after the introduction of the following non-dimentional variables;

$$
\begin{gathered}
a=\frac{l_{1}}{l_{2}}, \quad \gamma=\frac{m_{1}}{m_{1}+m_{2}}, \quad t^{*}=\sqrt{\frac{g}{l_{2}}} t \\
\dot{U}=\frac{\dot{v}}{\sqrt{g l_{2}}}, \quad L_{0}=\frac{L}{m_{1}}, \quad P^{*}=\frac{p^{*}}{\rho \ell_{2} g}, \quad H^{*}=\frac{h^{*}}{l_{2}},
\end{gathered}
$$

Eqs. ($1,2,3$) beconie:

$$
\begin{align*}
& \left(\alpha^{2}+\alpha^{3} / 3\right) \ddot{\theta}_{1}+(\alpha / 2) \ddot{\theta}_{2} \cos \left(\theta_{2}-\theta_{1}\right)+\gamma \alpha^{2} \dot{U} \dot{\theta}_{1}+2 \alpha \dot{u} \ddot{\theta}_{2} \cos \left(\theta_{2}-\theta_{1}\right) \\
& +\left(\alpha+\alpha^{2} / 2\right) \sin \theta_{1}+\gamma \alpha \dot{u}^{2} \sin \left(\theta_{2}-\theta_{1}\right) \\
& +\gamma \alpha \ddot{u} \sin \left(\theta_{2}-\theta_{1}\right)-(1 / 2) \dot{\theta}_{2}{ }^{2} \sin \left(\theta_{2}-\theta_{1}\right)=0 \tag{5}
\end{align*}
$$

$$
\begin{align*}
& (1 / 2) \sin \theta_{2}+(1 / 3) \ddot{\theta}_{2}+\gamma \dot{u} \dot{\theta}_{2}+(1 / 2) \alpha\left[\ddot{\theta}_{1} \cos \left(\theta_{2}-\theta_{1}\right)+\dot{\theta}_{1}^{2} \sin \left(\theta_{2}-\theta_{1}\right)\right]=0 \tag{6}\\
& P^{*}-\dot{u}^{2}\left[(1 / 2)+L_{0}\right]+H^{*}+\alpha \cos \theta_{1}+\cos \theta_{2}-(\alpha+1) \ddot{u} \\
& =-\left[(1 / 2) \alpha^{2} \dot{\theta}_{1}^{2}+\alpha \dot{\theta}_{1}{ }^{2} \cos \left(\theta_{2}-\theta_{1}\right)-\alpha \ddot{\theta}_{1} \sin \left(\theta_{2}-\theta_{1}\right)+(1 / 2) \theta_{2}{ }^{2}\right] \tag{7}
\end{align*}
$$

Since we do not want here to solve the complete nonlinear set of equations, but only to determine the effect of the leading nonlinearities on the system, we will omit nonlinear terms of order 4 ar.s higher. Also, to facilitate manipulations by making certain terms linear in U, we will assume that:

$$
\dot{u}=\dot{U}_{0}+\Delta \dot{U} \text { where } \dot{u}_{0}^{2}=\frac{P^{*}+H^{*}+\alpha+1}{1 / 2+L_{0}} .
$$

\dot{U}_{0} is the steady-ste ${ }^{+}$flow velocity under pressure P^{*} when the pipe is vertically at rest, and $\Delta \dot{U}$ is a small fluctuation of the flow velocity such that $\dot{U}^{2}=\dot{U}_{0}{ }^{2}+2 \dot{U}_{0} \Delta \dot{U}$.

Under these modifications, Eqs. $(5,6,7)$ become:

$$
\begin{array}{r}
{\left[\begin{array}{cc}
\alpha^{2}+a^{3} / 3 & \alpha / 2 \\
\alpha / 2 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\gamma \alpha^{2} \dot{U}_{0} & 2 \gamma \alpha \dot{U}_{0} \\
0 & \gamma \dot{U}_{0}
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]} \\
\quad+\left[\begin{array}{cc}
\left(\alpha+\alpha^{2} / 2\right)-\gamma \alpha \dot{U}_{0}^{2} & \gamma \alpha \dot{U}_{0}^{2} \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right] \tag{8}
\end{array}
$$

where

$$
\begin{align*}
& F_{1}=\ddot{\theta}_{2}\left(\theta_{2}-\theta_{1}\right)^{2} / 4+\dot{\theta}_{2}^{2} \alpha\left(\theta_{2}-\theta_{1}\right) / 2-\dot{\theta}_{1} \gamma \alpha^{2} \Delta \dot{U}-\dot{\theta}_{2} 2 \gamma \alpha \Delta \dot{U} \\
& +\dot{\theta}_{2} \gamma \alpha \dot{U}_{0}\left(\theta_{2}-\theta_{1}\right)^{2}+\left(\alpha+\alpha^{2} / 2\right) \theta_{1}^{3} / 6-\gamma \alpha \Delta \dot{U}\left(\theta_{2}-\theta_{1}\right) \\
& +\gamma_{\alpha} \dot{U}_{0}^{2}\left(\theta_{2}-\theta_{1}\right)^{3} / 6-2 \gamma \alpha \dot{U}_{0} \Delta \dot{U}\left(\theta_{2}-\theta_{1}\right) \\
& F_{5}=2^{3 / 12-\gamma \Delta \dot{U}_{2}+\alpha \ddot{\theta}_{1}\left(\theta_{2}-\theta_{1}\right)^{2} / 4-\alpha \dot{\theta}_{1}{ }^{2}\left(\theta_{2}-\theta_{1}\right) / 2} \\
& (\alpha+1) \Delta \ddot{U}+\left(1+2 L_{0}\right) \dot{U}_{0} \Delta \dot{U}=-\alpha \theta_{1}{ }^{2} / 2-\theta_{2}{ }^{2} / 2+\dot{\theta}_{1}{ }^{2}\left(\alpha+\alpha^{2} / 2\right)+\dot{\theta}_{2}{ }^{2 / 2} \\
& -\alpha \ddot{\theta}_{1}\left(\theta_{2}-\theta_{1}\right) \tag{9}
\end{align*}
$$

The linear part of Eq. (δ) consists of two coupled equations with constant coefficients The sciffness ard damping matrix are nonsymmetric, indicating a nonconservative system. Eq. (9) is uncoupled from Eq. (8) in its linear pa-t but not in its nonlinear $t=r m s$.

METHOD OF SOLUTION

To solve the above system of equations we dill proceed as follows: a) Solve the linear part of Eq. (8) and determine $\theta_{1}(t), \theta_{2}(t)$ for \dot{u}_{0} critical; b) Use the solution found in a) to calculate the nonlinear terms of Eq. (9) ; c) Solve Eq. (9) treating the nonlinear terms as forcing functions and obtain $\Delta \dot{U}(t)$; d) Use $\Delta \dot{U}(t)$ in the right-hand side of Eq. (8) and apply Krylov-Bogoliubov's averaging technique.

To find the solution to the linear part of Eq. (8) we assume a solution of the form:

$$
\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=\operatorname{Re}\left[\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right] e^{\lambda t}\right]
$$

and stiustitute into Eq. (8) which ylelds

$$
\left[\begin{array}{cc}
(a / 2) \lambda^{2} & \lambda^{2} / 3+\lambda \gamma \dot{U}_{0}+1 / 2 \tag{10}\\
\left(\alpha^{2}+\alpha^{3} / 3\right) \lambda^{2}+\gamma a^{2} \dot{U}_{0} \lambda & (a / 2) \lambda^{2}+2 \gamma a \dot{U}_{0} \lambda \\
+\left(\alpha+\Lambda^{2} / 2\right)-\gamma a \dot{U}_{0}^{2} & +\gamma a \dot{U}_{0}^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{1}
\end{array}\right]=0
$$

For a nontrivial solution to exist, the determinant of th: ahove matrix has to be zero. This leads to a 4 th order polynonial in x. Since we are only interested in critical values of A, we know that it has to be a pure inaginary number and since the coefficients of the polynomial are all real, we can separate the polynomial into its real and imaginary parcs in the following manner:

$$
\begin{gather*}
\lambda\left[\lambda^{2} \dot{U}_{0} \alpha \gamma(1+\alpha) / 3+\dot{u}_{0} \gamma(1+\alpha)-\dot{U}_{0}^{3} \gamma^{2}\right]=0 \tag{11}\\
\lambda^{4} \alpha(\alpha+3 / 4) / g+\lambda^{2}\left[(\alpha+1)^{2} / 3-\alpha^{2} / 6-\dot{u}_{0}^{2} \gamma(\alpha / 2+1 / 3-\gamma \alpha)\right]
\end{gather*}
$$

$$
\begin{equation*}
+(1+\alpha / 2) / 2-\gamma \alpha \dot{U}_{0}^{2} / 2=0 \tag{12}
\end{equation*}
$$

The elimination..f λ^{2} between these two equations yields:

$$
A \dot{U}_{C}^{4}=B U_{C}^{2}+C=0
$$

where

$$
\begin{equation*}
\dot{U}_{c} \equiv \dot{U}_{0} \text { critical }=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \tag{i3}
\end{equation*}
$$

and

$$
\begin{aligned}
& A=\left[\frac{\gamma^{2}(\alpha+3 / 4)}{\alpha(1+\alpha)^{2}}-\frac{3 \gamma^{2}(\alpha / 2+1 / 3-\gamma \alpha)}{\alpha(1+\alpha)}\right] \\
& B=-\left[\frac{2 \gamma(\alpha+3 / 4)}{\alpha(1+\alpha)}-\frac{3 \gamma(\alpha / 2+1 / 3-\gamma \alpha)}{\alpha}-\frac{\gamma(\alpha+1)}{\alpha}+\frac{\gamma}{2}+\frac{\alpha \gamma}{2(1=\alpha)}\right] \\
& C=\left[\frac{\alpha+3 / 4}{\alpha}-\frac{(\alpha+1)^{2}}{\alpha}+\frac{(1+\alpha / 2)}{2}+\frac{\alpha}{2}\right]
\end{aligned}
$$

The substitution of \dot{U}_{c} into Eq. (11) permits us to find the two complex conjugate, critical, eigenvalues of our system. Eq. (13) gives us two values for \dot{U}_{c}. The value of interest is the higher one since the other value corresponds to the point where the system regains stability (see Fig. 2). To obtain the two corresponding eigenvectors, we substitute \dot{U}_{c} and the eigenvalue into either one of Eqs. (10), say the first one:

$$
R_{j} \quad \frac{\theta_{1 j}}{\theta_{2 j}}=-\frac{\lambda_{j}{ }^{2} / 3+\lambda_{j} \gamma \dot{U}_{c}+1 / 2}{\lambda_{j}{ }^{2} \alpha / 2} \quad j=1,2
$$

Since λ_{1} and λ_{2} are complex conjugates, R_{1} and R_{2} are also complex conjugates. We will not investigate the other two eigenvalues since a previous analysis by Bohn and Herrmann [3] shows that they possess a negative real part and consequently they contribute but little to the solution. A typical root locus (as a function of \dot{U}_{0}) for the system is shown in fig. 2 . The motion of the
pipe in its flutter mode is therefol :

$$
\begin{equation*}
\theta_{1}=\operatorname{Re}\left[R_{1} \theta_{21}(\cos \omega t+i \sin \omega t)+\bar{R}_{1} \theta_{22}(\cos \omega t-i \sin \omega t)\right] \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{2}=\operatorname{Re}\left[\theta_{21}(\cos \omega t+i \sin \omega t)+\theta_{22}(\cos \omega t-i \sin \omega t)\right] \tag{15}
\end{equation*}
$$

where $i \omega=\lambda$. These equations can be expressed more conveniently as:

$$
\begin{gather*}
\theta_{1}=\theta \sqrt{a^{2}+b^{2}} \sin \left(\omega t+\phi_{1}+\phi_{0}\right) \text { where }(a+i b)=R_{1} \tag{16}\\
\theta_{2}=\theta \sin \left(\omega t+\phi_{1}\right) \\
\text { where } \theta=\sqrt{\left(\operatorname{Re} \theta_{21}+\operatorname{Re} \theta_{22}\right)^{2}+\left(-\operatorname{Im} \theta_{21}+\operatorname{Im} \theta_{22}\right)^{2}} \\
\operatorname{tg} \phi_{0}=\frac{b}{a}, \quad \operatorname{tg} \phi_{1}=\frac{\left(\operatorname{Re} \theta_{21}+\operatorname{Re} \theta_{22}\right)}{\left(-\operatorname{Im} \theta_{2 i}+i m \theta_{22}\right)} \tag{17}
\end{gather*}
$$

θ and ϕ_{1} are determined by the initial conditions. We note, in the above, that θ_{21} and θ_{22} are not completely determined since we have two equations and four unknown. If we want, but there is no obligation to do so, we can require the imaginary part of Eqs. (14) and (15) to be zero, which leads to: $\bar{\theta}_{21}=\theta_{22}$.

A graphical representati in of the mode shape through a cycle is presented in fig. 3. The angular velocities of the two segments are indicated by curved arrows and each of the four sketches is taken at the instant when one segment has no angular valocity. The sketches are separated by almost exactly 90°.

Now that we have determined the mode shape of interest, we wili eliminate the damped made, thus reducing our fourth-order system to second order. To achieve this elimination we follow foss' work [4] on the uncoupling of the equations of motion of a damped linear system. His approach must, however, be modifiea since he assumes that all the matrices of the system are symmetric. To take care of this difficulty we must have recourse to the concept of the adjoint problem, that is, the problem obtained by transposing all the matrices of our system. It cen be shown that the aigenvalues of this new problem are the same as those of the originai problem but that the eigenvectors are different. Yet, these eigenvectors have the crucial property of being orthogonal to the eigenvectors of the original system, thus permitting the separation of the modes of our system. The details of how to proceed will not be given here because of limitations in space; they can be found in reference [5].

Thus, following the method described above, Eq. (8) can be rewritten as:

$$
\begin{equation*}
\ddot{x}+\left(\omega^{2}+\beta^{2}\right) x=2 \beta \dot{x}+\frac{r \dot{f}+s \dot{g}}{r^{2}+s^{2}}+\frac{r \dot{f}+s g}{r^{2}+s^{2}}\left(-\frac{r}{s} \omega-\beta\right)+f \frac{\omega}{s} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\theta / 2 \sin \psi, \psi=\omega t+\phi_{1} \tag{19}
\end{equation*}
$$

$$
\begin{align*}
& (\beta+i \omega)=\lambda \\
& (r+i s)=2 \omega i\left\{\begin{array}{l}
1 \\
R_{a}
\end{array}\right\}^{\top}\left[\begin{array}{ll}
\alpha^{2}+\alpha^{3} / 3 & \alpha / 2 \\
\alpha / 2 & 1 / 3
\end{array}\right]\left\{\begin{array}{l}
R \\
1
\end{array}\right\}+\gamma \dot{U}_{0}\left\{\begin{array}{l}
1 \\
R_{a}
\end{array}\right\}\left[\begin{array}{l}
\alpha^{2} \\
2 \alpha \\
0
\end{array}\right]\left(\begin{array}{l}
R \\
1
\end{array}\right\} \tag{20}
\end{align*}
$$

$$
\begin{align*}
& f=F_{1}+c F_{2} \text { where } F_{1} \text { and } F_{2} \text { are defined in Eq. (8) } \\
& g=d F_{2} \\
& (a+i b)=R=-\frac{(1 / 3) \lambda^{2}+\lambda \gamma \dot{U}_{0}+1 / 2}{\lambda^{2} \alpha / 2} \tag{21}\\
& (c+i d)=R_{a}=-\frac{\lambda^{2}\left(a^{2}+a^{3} / 3\right)+\lambda\left(\gamma a^{2} U_{0}\right)+3 \alpha / 2-\gamma \alpha U_{0}^{2}}{\lambda^{2} \alpha / 2} \tag{22}
\end{align*}
$$

The damping coefficient B is a small quantity, since we are interested only in flow velicities close to critical and therefore tt will be eliminated in Eq. (18) except in the linear damping term. Also, because of the smallness of that term, it has been transferred to the right-hand side of the equation, which contains the small nonlinear terms. The nonlinear terms F_{1} and $F_{\mathbf{2}}$ are not completely known yet because they depend on $\Delta \dot{U}$ and $\Delta i 0^{\circ}$. To determine these fluctuations of the flow velocity we combine Eqs. (9) and (16) to obtain

$$
\begin{equation*}
\Delta \dot{U}(\alpha+1)+\Delta \dot{U}\left(1+2 L_{0}\right)=\left(\theta^{2} / 2\right)[(A+3)-(A-B) \cos 2 \psi+C \sin 2 \psi] \tag{23}
\end{equation*}
$$

where $A=-a^{2} \alpha / 2-1 / 2+(a+a / 2) \omega^{2} b^{2}+\alpha \omega^{2}\left(a-b^{2}\right)$

$$
\begin{aligned}
& B=-a b^{2} / 2+\left(a+\alpha^{2} / 2\right) \omega^{2} a^{2}+\omega^{2} / 2-\alpha \omega^{2} b^{2} \\
& C=-a a b-\left(2 a+a^{2}\right) \omega^{2} a b+a \omega^{2}(b-2 a b)
\end{aligned}
$$

The steady-state homogeneous solution is $\Delta \dot{U}=0$. The particular solution is assumed to be of the form

$$
\begin{equation*}
\Delta \dot{U}=\theta^{2}\left(K+U_{1} \sin 2 \psi+U_{2} \cos 2 \psi\right) \tag{24}
\end{equation*}
$$

and is substituted into Eq. (23). After a comparison of the coefficients of similar terms we obtain:

$$
\begin{gather*}
K=\frac{A+B}{2 \dot{U}_{0}\left(1+2 L_{0}\right)} \tag{25}\\
U_{1}=\frac{\dot{U}_{0}\left(1+2 L_{0}\right) C_{\prime}^{\prime} 2-(A-B) \omega(\alpha+1)}{\dot{U}_{0}^{2}\left(1+2 L_{0}\right)^{2}+4 \omega^{2}(\alpha+1)^{2}} \tag{26}\\
U_{2}=\frac{-\dot{U}_{0}\left(1+2 L_{0}\right)(A-B) / 2-C \omega(\alpha+1)}{\dot{U}_{0}^{2}\left(1+2 L_{0}\right)^{2}+4 \omega^{2}(\alpha+1)^{2}} \tag{27}
\end{gather*}
$$

Now that the right-hand side of Eq. (18) is known, we will solve this equation using the Krylov-Bogoliubov (K.B) method [6], keeping only the first term in the asymptotic expression. This method is also known as the method of "averaging".

The K.B. method essentially assumes that in the region close to the critical point, the motion will be oscillatory, as it is at the critical point, except that the amplitude and phase of the motion will change slowly due to the effect of the small damping and of the small nonlinearities.

In our particular case, the oscillatory motion of interest is:

$$
\begin{gather*}
x=(\theta / 2) \sin \psi=(\theta / 2) \sin (\omega t+\phi) \tag{28}\\
\dot{x}=(\dot{\theta} / 2) \omega \cos \psi=(\dot{\theta} / 2) \omega \cos (\omega t+\phi) \tag{29}
\end{gather*}
$$

which satisfies che left-hand side of Eq. (18). We now assume that the small terms of the right-hand side of Eq. (18) will cause θ and ϕ to vary slowly with time. For this to be true, Eq. (29) requires that:

$$
\begin{equation*}
(\dot{\theta} / 2) \sin \psi+(\theta / 2) \dot{\phi} \cos \psi=0 \tag{30}
\end{equation*}
$$

We also obtain, by a differentiatio of Ee.(29):

$$
\begin{equation*}
\ddot{x}=(\dot{\theta} / 2)_{\omega} \cos \psi-(\theta / 2) \omega(\omega+\dot{\phi}) \sin \psi \tag{31}
\end{equation*}
$$

Equations (28) and (31) transform equation (18) into:

$$
\begin{equation*}
(\dot{\theta} / 2) \omega \cos \psi-(\theta / 2) \dot{\phi} \omega \sin \psi=2 \beta \dot{x}+\left(\frac{r \dot{f}+s \dot{q}}{r^{2}+s^{2}}\right)-\frac{r \omega}{s}\left(\frac{r f+s g}{r^{2}+s^{2}}\right)+f \frac{\omega}{s} \tag{32}
\end{equation*}
$$

which can be combined with Eq. (30) to obtain:

$$
\begin{align*}
& \dot{\theta}=\left[\frac{2}{\omega} 2 B \dot{x}+\left(\frac{r \dot{f}+s \dot{g}}{r^{2}+s^{2}}\right)-\frac{r \omega}{s}\left(\frac{r f+s g}{r^{2}+s^{2}}\right)+f \frac{\omega}{s}\right] \cos \psi \tag{33}\\
& \theta \dot{\phi}=\left[\frac{2}{\omega} 2 B \dot{x}+\left(\frac{r \dot{f}+s \dot{g}}{r^{2}+s^{2}}\right)-\frac{r \omega}{s}\left(\frac{r f+s g}{r^{2}+s^{2}}\right)+f \frac{\omega}{s}\right] \sin \psi \tag{34}
\end{align*}
$$

Since θ and ϕ change very slowly, we assume them to be constant for the duration of a cycie and integrate Eqs. (33) and (34) to find the average of $\dot{\theta}$ and $\dot{\phi}$:

$$
\begin{equation*}
\dot{\partial}_{a v}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \frac{2}{\omega}\left[2 \beta \dot{x}+\left(\frac{r \dot{f}+s \dot{g}}{r^{2}+s^{2}}\right)-\frac{r \omega}{s}\left(\frac{r f+s g}{r^{2}+s^{2}}\right)+\frac{f \omega}{s}\right] \cos \psi d t \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\theta \dot{\phi}_{a v}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega}-\frac{2}{\omega}\left[2 B \dot{x}+\left(\frac{r \dot{f}+s \dot{g}}{r^{2}+s^{2}}\right)-\frac{r \Omega}{s}\left(\frac{r f+s q}{r^{2} s s^{2}}\right)+\frac{f \Omega}{2}\right] \sin \psi d t \tag{36}
\end{equation*}
$$

The damping term, $2 \beta_{\dot{x}}^{\dot{x}}$, In the argument of the above integrals depends on θ to the first power, but term. 3 in f and g depend on θ to the third power, which will permit us to find equilibrium points for certain amplitudas. If we are axactly at the critical point, $\mathrm{B}=0$ and, therefore, the nonlinear terms will decide whether or not the criticsl point is stable.

The evaluation of the right-hand side of Eqs. (35) and (36) turns out to be extremely tedious since r, s, f and g are complicated expressions. The detalls of this evaluetion, which are given in [5], will only be summarized here. The terms in brackets in Eqs. (35) and (36) can be shown to generate, after expansion, terms in $\sin \psi, \cos \psi, \sin 3 \psi$ and $\cos 3 \psi$ but the averaging will retain only the terms in $\sin \psi$ in Eq. (36) and only the terms in $\cos \psi$ in Eq. (35), these terms being affected by a coefficient of one-half. Thus Eqs. (35) and (36) become:

$$
\begin{align*}
& \dot{\theta}_{a v}=\left(\omega \beta \theta+K_{1} \theta^{3}\right) / \omega \tag{37}\\
& \theta \dot{\phi}_{a v}=-K_{2} e^{3} / \omega \tag{38}
\end{align*}
$$

where

$$
\begin{aligned}
& K_{1}=\frac{r\left(f_{1} \omega+c g_{1} \omega\right)}{r^{2}+s^{2}}+\frac{s d g_{1} \omega}{r^{2}+s^{2}}-\left(\frac{r \omega}{s}\right) \frac{r\left(f_{2}+c g_{2}\right)+s d g_{2}}{r^{2}+s^{2}}+\frac{\omega}{s}\left(f_{2}+c g_{2}\right) \\
& K_{2}=\frac{r\left(-f_{2} \omega-c g_{2} \omega\right) \cdots s d g_{2} \omega}{r^{2}+s^{2}}-\left(\frac{r \omega}{s}\right) \frac{r\left(f_{1}+c g_{1}\right)+s d g_{1}}{r^{2}+s^{2}}+\frac{\omega}{s}\left(f_{1}+c g_{1}\right)
\end{aligned}
$$

where, from Eqs. (38, 18, 8, 24)

$$
\begin{aligned}
& f_{1}=-(1 / 16) \omega^{2}\left[3(1-a)^{2}+b^{2}\right]+a \omega^{2}(1-a) / 8 \\
& -\gamma^{2}{ }^{2} \omega\left(U_{1} a / 2-K b+U_{2} b / 2\right)-\gamma a \omega U_{1} \\
& -\gamma \alpha \dot{U}_{0} \omega(1-a) b / 2+\left(a+a^{2} / 2\right)\left(a^{3}+a b^{2}\right) / 8 \\
& \left.+\gamma a\left[(1-a) U_{1} \omega-b \omega U_{2}\right]+(1 / 8) \gamma_{a} U_{0}^{2}[i 1-a)^{3}+(1-a) b^{2}\right] \\
& -2 \mathrm{Ya} \mathrm{\dot{u}}\left[\begin{array}{c}
\left.[1-a)\left(k-u_{2} / 2\right)-b u_{1} / 2\right]
\end{array}\right. \\
& f_{2}=\alpha \omega^{2}(1-a) b / 8-3 a \omega^{2} b / 8-\gamma a^{2} \omega\left[a\left(U_{2} / 2+k\right)-b U_{1} / 2\right] \\
& -\gamma a \omega\left(2 K+U_{2}\right)+\operatorname{raj}_{0} \omega\left[(1-a)^{2} / 4+3 b^{2} / 4\right] \\
& +(1 / 8)\left(a+a^{2} / 2\right)\left(a^{2} b+b^{3}\right)+\gamma a\left[(1-a) U_{2} \omega+b U_{1} \omega\right] \\
& -(1 / 8) \gamma a \dot{U}_{0}^{2}\left[(1-a)^{2} b+b^{3}\right]-2 \gamma a \dot{U}_{0}\left[(1-a) u_{1} / 2-b\left(k+U_{2} / 2\right]\right. \\
& g_{1}=1 / 16-\gamma \omega U_{1} / 2-(1 / 4) \alpha \omega \omega^{2}\left\{a\left[3(1-a)^{2} / 4+b^{2} / 4\right]-(1-a) b^{2} / 2\right\} \\
& -(1 / 2) a \omega^{2}\left[(1-a)\left(a^{2}+3 b^{2}\right) / 4+a b^{2} / 2\right] \\
& g_{2}=-\gamma \omega\left(k+U_{2} / 2\right)+(1 / 4) a \omega^{2}\left\{a b(1-a) / 2-b\left[(1-a)^{2} / 4+3 b^{2} / 4\right]\right\} \\
& (1 / 2) a \omega^{2}\left[a b(1-a) / 2+b\left(3 a^{2}+b^{2}\right) / 4\right]
\end{aligned}
$$

Only β in Eqs. (37) and (38) needs to be determined; we can either solve numerically for the roots of the fourth-order polynomial given by equating the determinant of Eq. (10) to zero or, since β will be a small quantity, we can solve analytically the polynomial neglecting terms of order two and higher in B. This second method is presented in [5].

STABILITY ANALYSIS

The effect of nonlinearities in tre critical region can now be investigated from Eqs. (37) and (38). Equation (37) Indicates that a positive B is destabilizing since it leads to $\dot{\theta}_{a v}>0$. Also, if K_{1}, which represents the effect of nonlinearities, is positive, we have also a destabilizing effect.

The only way the nonlinarities can change a stable behavior into an unstable one, and conversely, is for β and K_{1} to be of opposite sign. When this is the case there is an amplitude $\theta_{\text {L.C. for which }} \dot{\theta}_{a v}=0$ and which is known as the amplitude of the limit cyele (L.C.). The L.C. is said to be stable if for θ greater or smaller than $\theta_{\text {L.C. the amplitude of the motion approaches }}$ $\theta_{\text {L.C. }}$. The L.C. is said to be unstable if for θ greater or smalier than $\theta_{\text {L.C. }}$ the amplitude moves away from ${ }^{0}$ L.C.

Hence, from the previous discussion, we can identify three different possibilities, as far as stability is concerned: a) $K_{1}<0$ and $\beta>0$ which leads to a stable limit eycle; b) $\mathrm{K}_{1}>0$ and $\beta<0$ which leads to an unstable limit cycle; c) K_{1} and β do not mee $\hat{\imath}$ any of the two previous requirements. In this last case, B and K_{1} have the same sign and reinforce one another, leading to the same conclusion regarding stability as a linear analysis. In a) and b) above, the amplltude of the limit cycle is given by:

$$
\begin{equation*}
\theta_{L . C .}=\sqrt{-\frac{\omega \beta}{K_{1}}} \tag{39}
\end{equation*}
$$

figure 4 shows a plot of $\theta_{\text {L.C. }}$ as function of γ, the ratio of the mass of the fluid to the mass of the pipe plus fluid. Also indicated on Fig. 4 is the type of limit cycle. There are two regions of interest. The first one extends from $\gamma=0$ to $\gamma=.1$ and is characterized by destabilizing contribution of the nonlinearities which thus permit only limit cycles for flow velocities lower than critical. The second region, from $\gamma=.1$ to $\gamma=.17$, is characterized by stabilizing nonlinearities and consequently limit cycles exist only for velocities higher than critical. In the first region, if $\theta<\theta_{\text {L. }}$ C., the oscillation will die out but if $\theta>\theta_{\text {L. }}$ C. θ will grow continuously. In the second region, if $\theta<\theta_{\text {L.C. }}$, the motion will increase until it reaches the limit cycle and if $\theta>\theta_{\text {L.C. }}$, motion willdecay until it reaches the limit cycle. Nisturally, the most desirable region is the second one since it permits to operate with complete confidence up to th eritical velocity and even if one overshoots the critical velocity a little, the amplitude of motion will remain bounded.

For γ greater than approximately .17 flutter cannot exist, since λ can no longer be pure imaginary. We also observe that for γ close to .1 , the amplitude of the limit cycle goes to infinity. This indicates that the nonlinearities contribute nothing to the motion for such a value of γ.

It must be pointed out that in all the above discussiuns Eq. (38) was
never mentioned. The reason for this omission lies in the fact that $\dot{\phi}_{a v}$ is the change in the frequency of the motion, which is of no interest as far as stability is concerned.

EXPERIMENT

The experimental apparatus (with copper tubes) used by Bohn and Herrmann [3]
proved very useful in carrying out the following qualitative experiment: With the pipe verifcally at rest, the fluld velocity is progressively increased unitl the slightest disturbance causes the system co flutter. The flow is then reduced by a very small amount and the system is subjected to small disturbances. It is observed that as long as the disturbances are small, the motion damps out but that if the initial conditions are sufficiently large, the amplitude of motion grows until i: reaches a very large value. This behavior shows the existence of an unstable limit cycle which is also what the theory predicts (Fig. 4) since the effective γ for the system is about 0072.

CONCLUSIONS

This study has shown that the effect of finite amplitudes can significantly change the qualitative behavior oi the articulated pipe system. Nevertheless, the results permit us to increase our confidence in the predictions of the linear analysis since Fig. 4 clearly illustrates that an amplitude of motion of at least ten degrees is required to change the flow velocity by oniy a few percent. It thus seems that in most engineering applications the effect of the nonl!nearities can be safely neglected knowing that designers are not likely to allow a system to operate within a few percent of the critical velocity.

BIBLIOGRAPHY

1. Paidoussis, M.P., Issid, N.T., "Dynamic Stability of Pipes Conveying Fluid', Journal of Sound and Vibretion, Vol. 33, No. 6, 1974, pp. 267294
2. John, J.E.A., Haberman, W.L., Introduction to Fluid Mechanics, PrenticeHall, 1971.
3. Bohn, M.P., Herrmann, G., "Instabilities of a Spatial System of Articulated Pipes Conveying Fluid', Journal of Fluids Ingineering, Trans. ASME v96, Ser.1, N3, Sept. 1974, pp. 289-296.
4. Foss, K.A., "Co-Ordinates Which Uncouple the Fquations of Motion of Damped Linear Dynanic Systems", iounal of Applied Mechanics, September 1958, pp 361-364.
5. Rousselet, J., "Dynamic Behavior of Pipes Conveying Fluid near Critical Velocities', PH. D. dissertation, Stanford University, 1975.
6. Minorsky, N. Nonlinear Qscillations, Van Nostrand Co., 1362.

Fig. 1 - Reservoir-articulated pipe system
Fig. 2 - Typical root-locus of the system
Fig. 3 - Flutter mode shape of the pipe
Fig. 4 - Limit-cycle amplitude vs mass rati, γ

Figure 1 Reservoir - articulated pipe system.
21

Pigure 2 Typical root-locus of the system
29.

Figure 3 Flutter mocie shape of the pipe.
23.

[^0]: * Numbers in brackets refer to referances at the end of the paper.

