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SUNMARY

The plane motion of an articuiated pipe made of two segments is examined
and the flow velocity at which flutter manifests itself is sought. The pres-
sure in the reservoir feeding the pipe is kept constant. In contrast to pre-
vious works, the flow velocity is not taken as a pree.ribed parameter of the
system but is left to follow the laws of motion. This approach requires a
nonlinear formulation of the problem and the equations of motion are solved
using Krylov-Bogoliuboy's method. A graph of the ampiitude of the limit
cycles, as a function of the fluid-system mass ratio, is presented and con-
clusions are drawn as to the necessity of considering nonlinesrities in the

analysis.
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INTRODUCT | ON

’ %
A review of existing knowledge [1] on the behavior of pipes conveying

" fluid,. reveals that all earlier enalyses assume that the fluid velocity rela-

tive <o tle ;ipe is a known quantity and is unaffected by the motion of the
pipe. In these previous works, the flow velocity is assumed either constant
or period ¢ with » prosérlbod amplitude and frequency. This approach elimi-
nates the nyed to find the flow equations of motion, is adequate for infini-
tesimal transvers~ amplitudes of motion of tne pipe system, but is incapable
of predicting what will be the effect of larger amplutudes. This last short-
coming may be of importance when flow velocities are near critical velocities,
that is, velocities at which the system begins to flutter.

It is therefore the purpose of the present study to investigate in greater
detail the dynamic behavior of pipes in the vicinity of critical velocities.
Such an analysis requires a nonlinear formulation of the problem. It will be
shown that nonlinear terms are generated by the axia! motion of the pipe and
by the flow velocity fluctuation. Thus, the relative velocity of the fluid
will no longer be assumed a given parameter in the problem,but will have to
be determined from its own equations of motion which will be coupled; through
the nonlinear terms, to the transverse equation of motion of the pipe. The
specific system (see Fig. 1) considered here is a vertically hanging articu-
lated pipe made of two segments. Each articulation is assumed perfect in the
sense that it has no damping or restoring force associated with it. The fluid
entering the pipe comes from a reservoir maintained at constant pressure and
after its passage through the pipe, it is discharged, tangentially to the end

of the pipe, to the atmosphere. This articulated pipe system was sclected,

% Numbers in brackets refer to referances at the end of the paper.



-ather than a continuous pipe, in order to obtain an analytical solution and
therefore get more complete insight into the problem. The related probiems of
an articulated two-link pipe fed by a reservoir in which the pressure fluctu-
ates with time and the problem of a continuous cantilevered pipe fcd by .. coa-
stant pressure reservoir are also being analyzed for presentation in sulse-
quent papers.

The basic assumptions made are: 1) The fluid is incompressible; this is
a reasonable approximation for a liquid since the characteristic time taken
by a wave to travel the length of the pipe is very much shorter than the per-
lod of the transverse motion of the pipe; 2) The diameter of the pipe is
small compared to its iength so that the rotatory inertia of an element of
the pipe is negligible; 3) The velocity profile of the fluid, at a given
cross-section is uniform, modeling fairly well a completely turbulent flcw;

k) The motion of the articuiated pipes takes place in a plane.

EQUATIONS OF MOTION

The derivation of the relevant equations of motion can readily be ob-
tained by the direct application of Newton's law to our system (see Fig. 1).
The first equation is obtained as a moment condition with espect to the upper
pivot pcint on the free-body diagram of the two segments of the pipe. Sim-
ilarly, the second equation is obtained as a moment condition with respect to
the pivot point on the free-body diagram of the lower segment. Finally the
equation governing the motion of the fluid In the pipe is obtained by the force
condition in the tangential direction on a fluid element and by a subsequent

integration over the length of the pipe. The three equations thus obtained are:
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+ (1/2)m6,2," = 0 (3)

where m and m, are the mass, per unit length, of the fluid and the pipe,
respectively, g is the acceleration due to gravity, 2‘ and 12 are the
iengths of the upper and lower segments, v is the flow velocity, PO is the
force, due to pressure, acting on the fluid at x = 0 and LQZ represents
the friction force hetween the fluid and the pipe. Fluid dynamic studies [2]
have shown that L depends on the size and roughness of the pipe, on the den-

sity of the liquid and on Reynolds number if the latter is not too high. For

fully turbulent flow (high Reynolds number), L is independent of Reynolds



number and consequently is independent of viscosity.
#
He need now to relate the pressure p in the reservoir to the force
"po" . From Bernoulli's equation, applied between the surface of the water in

the reservoir and its outlet, we obtain:

v? o P’
-2.- + .—9— = gh* o — (l.)
2 P P

where the subscript ''o'' refers to quantities measured at the entrance of the
pipe, h* is the height of the fluid in the reservoir, p is the density of

the fluid and p* is the pressure in the reservoir. Eq. (4) is now combined

with Eq. (3) and after the introduction of the following non-dimentional

variables;

Eqs. (1,2,3) becone:

(a2 + a3/3)§' + (a/2)52cos(e2 - 6') + yazﬂé' + ZGUézcos(Bz - el)
2 . 22
+ (a + a /Z)Slnel + yaU sin(ez - 6')
+ yail sin(e, - 8)) - (1/2)é,%sin(e, - 0,) = 0 (5)



(l/2)sin02 + (|/3)§2 + yﬁéz + (l/z)u[alcos(ez - e') + é!ZSI"(ez ) 6')] -0 (6)
p* - sz[(l/Z) + Lo] +H + acos 8, + cos 6, - (a + 1)U

- -1(1/2)a% % + o Zeos (0, - €,) - absin(e, - 8)) + (/28,71 (7

Since we do not want here to solve the complete nonlinear set of equations,
but only to determine the effect of the leading nonlinearities on the system,
we will omit nonlinear terms of order 4 aro higher. Also, to facilitate

manipulations by making certain terms linear in U , we will assume that:

* *
2 _Pp +H +a+]

U= Uo + AU where Uo 77 % Lo

- " . * . .
Uo is the steady-ste- ‘low velocity under pressure P when the pipe is

vertically at rest,and AU is a small fluctuation of the flow velocity such

that 02 = U 2 + 20 AU .
o o

Under thess modifications, Eqs. (5,6,7) become:

2 - 2. - B .
a” + c3/3 a/2 e‘] X Ya Uo 2yaUo 6'
al/2 1/3 624 0 YUO ) 62
(a + 02/2) - Yaﬁoz Yuﬁoz re‘ i Fl
+ - (8)
0 1/2 62 F
L 2
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where F, = eza(ez e') /h + 0, a(e2 3])/2 8, yo AU ﬂZZYaAU

- - 2 2 L
+ ezyuuo(e2 B e]) + (a +a /2)613/6 - yuAU(Bz - e,)
.« 2 3 _ 5 .4 )
+ yal, (e2 - a') /6 2yuquu(e2 al)
F. = 23/12 - yAU®

- _ 2,0 . .32 _
. * 06‘(02 e]) /b af | (e2 el)/z

(a + 1)aU + (1 + zLo)OoAb = -ae|2/2 - 922/2 - élz(u + a2/2) + 622/2
- af, (s, - 6,) (9)
The linear part of Eq. () consistsof two coupled equations with constant co-
efficients The sciffness arnd damping matrix are nonsymmetric, indicating a

nonconservative system. Eq. (9) is uncoupled from Eq. (8) in its linear pa-t

but not in its nonlinear t-rms.

METHOD OF SOLUTION

To solve the above system of equations we ./ill proceed as fcllows: a)
Solve the linear part of Eq. (8) and determine Bl(t) , ez(t) for ﬁo
critical; b) Use the solution found in a) to calculate the nonlinear terms of
Eq. (9); c) Solve Eq. (9) treating the nonlinear terms as forcing functions
and obtain AU(t); d) Use Al(t) in the right-hand side of Eq. (8) and apply
Krylov-Bogoliubov's averaging technique.

To find the solution to the linear nart of Eq. (8) we assume a solution

of the form:
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and suustitute into £q. 8) which ylelds

T (a/2)22 A/3 + Ay&o +1/2] ré,]
(a2 + a373)22 + vuzﬁox (a/2)2? 4+ 2yall ) S0 (10)
g +(a + «2/2) - vul.loz ""Yuﬁoz ! QZJ

For a nontrivial solution to exist, the determinant of thc shove matrix has to
be zero. This leads to a kth order polynomial in > . Since we are orly
interested in critical values of A , we know that it has to be a pure imagin-
ary number and since the coefficients of the polynomial are all real, we can

separate the polynomlal into its rsal and imaginary parcs in the following manner:

A0 av(1 + a)/3 + B y(1 + @) - 037 =0 ()

2 .
Aala + 3/8)/3 +232[(a + 1)°/3 - a%/6 - 0 (a2 + 1/3 - ya)]
+ (10 +a/2)/2 - yall /2 = 0 (12)

Tne elimination ..7 Az between these two equations yields:

where



-B+ VB -‘!AC (13)
ELY

e
i

ﬁo critical =

and

A Yila + 3/8) 32(a/2 + 1/3 - ya)
all + a)* a(l + a)

B a-l2xlo+3/8) 3y(a/2+1/3-va) yla+1) ,y, o
a(l + a) a a 2 2(1 = a)

C = u+3/h_(a+|)2+(|+a/z)+g
a a ) 2

The substitution of ﬁc into Eq. (11) permits us to find the two complex
conjugate, critical, eigenvalues of our system. Eq. (13) gives us two values
for ﬁc . The value of interest is the higher one since the other value cor-
responds to the point where the system regains stability (see Fig. 2). To
obtain the two corresponding eigenvectors, we substitute &c and the eigen-

value into either one of Eqs. (10), say the first one:

2 .
C] A /3 + 0. vU + 172
R —-l' = - J rl £ j-!,Z
J €] A, a/2
2] J

Since XI and Az are complex conjugates, R' and R2 are also complex con-
jugates. We will not investigate the other two eigenvalues since a previous
analysis by Bohn and Herrmann [3] shows that they possess a negative real part and
consequently they contribute but little to the solution. A typical root locus

(as a function of ﬁo ) for the system is shown In Fig. 2. The motion of the



pipe in its flutter mode is therefoi :

8, = Re[Rle (cos wt + 1 sin wt) +'l'922(cos wt = i sin wt)] (14)

21

b, = Relez'(cos wt + 1 sin wt) + Gzz(cos wt = 1 sin wt)] (15)

where iw = X . These eqdatlons can be expressed more conveniently as:

8, =© az > b2 sin(ot + ¢ + ¢°) where (a + ib) = R (16)

6, =0 sin(ut + ¢')

2

2
where 0 = v[(neezl + Reezz) + (-lm92, + Imezz) p,

(ReB,, + Red

)
21 22 17)

(-|mezi + '”ezz)

oo

t9¢° - ’ th‘ =

© and ¢| are determined by the initial conditions. We note, in the above,

that © and © are not completely determined since we have two equations

21 22

and four unknown. |f we want, but there is no obligation to do so, we can re-

quire the imaginary part of Eqs. (14) and (15) to be zero, which leads to:

21

(o]

-622 .
A graphical representati .n ot the mode shape through a cycle is presented
in Fig. 3. The angular velocities of the two segments are indicated by curved

arrows and each of the four sketches is taken at the instant when one segment

has no angular velocity. The sketches are sepsrated by almost exactly $0°.



Now that we have determined the mode shape of interest, we wili eliminate the
damped mode, thus reducing our fourth-order system to second order. To
achieve this elimination we follow Foss' work [4] on the uncoupling of the
equations of motion of a damped linear system. His approach must, however, be
modifiea since he assumes that all the matrices of the system are symmetric.
To take care of this difficulty we must have recourse to the concept of the
adjoint problem, that is, the problem obtained by transposing all the matrices
of our system. It can be shown that the aigenvalues of this new problem are
the same as those cf the originai problem but that the eigenvectors are dif-
ferent. Yet, these eigenvectors have the crucial property of being orthogonal
to the eigenvectors of the original system, thus permitting the separation of
the modes of our system. The details of how to proceed will not be given here
because of limitations in space; they can be found in reference [5].

Thus, following the method described above, Eq. (8) can be rewritten as:

R TR T vt A o L LR S L

r‘+s

where x=0/2siny , V= owt+ ¢' (19)
(B+ iw) =2
1 lT 02 + a a/2 R] i uz 2c8 R
(r + is) = 20i }+ Yo, (20)
RJ 1/3 'J R O 1

10



fof + cF, where F, and F, are defined in Eq. (8)
g= sz
0302 + avil + 172
(a+ib) mR= - . m (21)
Aa/2
Az(ﬂ2 - u3/3) + A(yazﬁ ) + 3a/2 - yal .
(c+1d) =R =- B 0 (22)

A"a/2

The damping coefficient £ is a small quantity, since we are interested only
in flow velicities close to critical and therefore !t will be eliminated in

Eq. (18) except in the linear damping term. Also, because of the smallness of
that term, it has been transferred to the right-hand side of the equation,
which contains the small nonlinear terms. The nonlinear terms F' and Fy
are not completely known yet because they depend on A0 and AU . To deter-
mine these fluctuations of the flow velocity we combine Eqs. (9) and (16) to

obtain

AU(a + 1) + a0(1 + 2L ) = (62/2)[(A + 8) - (A - B)cos 2y + C sin 2¢] (23)
2)

where A = -020/2 - 1/2+ (o + u/Z)wzbz + uwz(a - b

B = -ub2/2 + (o + uZ/Z)wzaz + m2/2 - amzbz

C = -asb - (2a + a?)wlab + awZ(b - 2ab)

The steady-state homogeneous solution is AU = 0 . The particular solution is

assumed to be of the form

1



Al = 02(K + U sin 29 + Upcos 2¢) (24)

and is substituted into £q. (23). After a comparison of the coefficients of

similar tarms we obtain:

ZUO(I + 2L°)

ﬁo(l +20)¢/2 - (A - Blufa + 1)
U, = 7 (26)

! 021 + 2L )2+ b
(o] (o]

(a +1)

-ﬁo(l +2L )(A - 8)/2 - Cofa + 1) -
U, = 2
2 ﬁoz(l + 2L0f77+ bmiku + 1)2

Now that the right-hand side of Eq. (18) is known, we will solve this equation
using the Krylov-Bogoliubov (K.B) method [6], keeping only the first term in
the asymptotic expression. This method is also known as the method of
"averaging''.

The K.B. method essentially assumes that in the region close to the crit-
ical point, the motion will be oscillatory, as it is at the critical point,
except that the amplitude and phase of the motion will change siowly due to
the effect of the small damping and of the small nonlinearities.

In our particular case, the osciilatery motion of interest is:

x = (6/2)sin ¢y = (6/2)sin(wt + ¢) (28)

x = (8/2)w cos ¥ = (8/2)w cos(ut + ¢) (29)

12



which sctisfies che left-hand side of Eq. (18). We now assume that the small
terms of the right-hand side of Eq. (18) will cause © and ¢ to vary slowly

with time. For this to be true, Eq. (29) requires that:
(6/2)sin v + (8/2)$ cos ¥ = 0 (30)
We also obtain, by a differentiatio of Ec.(29):
x = (8/2)w cos ¥ - (6/2)ulw + §)sin ¥ (31)

Equations (28) and (31) transform equation (18) into:

(8/2)w cos v - (6/2)éw sin ¥ = 28x + (L;—‘—’g.) (I-;ﬂg.) + 2 (32)

r +s r 4+ s S

which can be combined with Eq. (30) to obtain:

w r +s Sf’"S

8 .[3 2Bx + ('%LE%) -J0 ('; "—3\ + f ‘]cos v (33)

0é -[3 28x + (L;—’—'-g.) )] (Lif"—‘-}) + f i"-]stn v (34)
s

w r +s s r +s

Since © and ¢ change very slowly, we assume them to be constant for the

duration of a cycie and integrate Eqs. (33) and (34) to find the average of

.

0 and

r +s S

. 2n/w
aav.."l._r i.[zgx‘p-?_"_’*)- b (rf+s)+-f—m-]cosvvdt (35)

13



2x/w .
Ghay = -ilza+§_:_';g)-:£(§_ﬁ§)+f& sinvde  (36)

The damping term, 28x , In the argument of the above integrals depends on ©
to the first power, but terms In f and g depend on © to the third power,
which will permit us to find equilibrium points for certain amplitudes. |If
we are exactly at the critical point, 8 = 0 and, therefore, the nonlinear
terms will decide whether or not the critical point is stable.

The evaluation of the right-hand side of Eqs. (35) and (36) turns out to
be extremely tedious since r , s , f and g are complicated expressions.
The details of this evalustion, which are given in [5], will only be summarized
here. The terms in brackets in Eqs. (35) and (36) can be shown to generate,
after expansion, terms in sin y , cos ¥ , sin 3y and cos 3y but the aver-
aging will retain only the terms in sin ¢ in Eq. (36) and only the terms in
cos v in Eq. (35), these terms being affected by a coefficient of one-half.
Thus Eqs. {35) and (36) become:

éav = (wBO + K‘93)/m (37
é -x,0° (38
0¢,, = “K,© /v 38)
where
r(f.o + cg,w) sdg,w rw\ r(f, + cg,) + sdg w
Ky =~y ’T%‘("‘ AL+ = (fy + c3))
rr+s rr+s s r“+s s
r(-fzu - cqzw) " sdg, 0 re r(fI N cg‘) +sdg, o
Kz " T '<_) 7 * - (f‘ L 2 Cgl)
rr+s s r'+ s s

L]



where, from

f'-

9, *

Eqs. (38, 18, 8, 24)

-(1716)u213¢1 - a)2 + b2 + au?(1 - 2)/8
~valu (U a/2 - Kb + Ub/2) - yaub,
-yuﬁou(l - a)b/2 + (a + a2/2) (a2 + ab?)/8

+yal(1 - a)ujw - bub,] + (1/8)val 2[{1 - 2)3 + (1 - a)b?)
~2val [(1 - a) (K - ¥,/2) - bu, /2]

aw?(1 - a)b/8 - 3aub/8 - va’ola(Uy/2 + K) - b, /2]

~you(2K + U,) + yal ul(1 - a)2/b + 36%/4]

+(1/8) (a + o%/2) (a®b + 1) + yal(1 = 2)uw + bU,w]
-(I/B)mboz[(! - 2)%b + bJ] - 2ya&o[(| - a)u,/2 - b(Kk + u,/2]
116 = you, /2 = (1/W)aw?(a[301 - a)2/k + b2/4] - (1 - &) b%/2)
-(1/2)au?[(1 - a) (% + 36%) 74 + ab2/2]

~vo(K + U,/2) + (1/8)aw?{ab(1 - a)/2 = b[(1 - a)%/k + 3b2/4])

(1/2)aw?[ab(1 - a)/2 + b(3a% + b2)/k)

15



Only 8 in Eqs. (37) and (38) needs to be determined; we can either solve
numerically for the roots of the fourth-order polynomial civen by equating the
determinant of Eq. (10) to zero ur, since B will be a small quantity, we can
solve analytically the polynomial neglecting terms of order two and higher in

B . This second method Is presented In [5].

STABILITY ANALYS!S

The effect of nonlinearities In tt=2 critical region can now be investi-
gated from Eqs. (37) and (38). Equation (37) indicates that a positive B s
destabilizing since it leads to éav >0 . Also, if Kl , which represents
tne effect cf nonlinearities, is positive, we have also a destabilizing effect.

The only way the nonlinarities can change a stable behavior into an un-

stable one, and conversely, is for B and K, to be of opposite sign. When

this is the case there is an amplitude © for which éav = 0 and which is

L.C.
known as the amplitude of the limit cycle (L.C.). The L.C. is sald to be stable
it for © greater or smaller than eL.C. the amplitude of the motion approaches
OL.C. . The L.C. is said to be unstable if for © greater or smalier than OL.C.
the amplitude moves away from OL.C.
Hence, from the previous discussion, we can identify three different pos-
sibilities, as far as stability is concerned: a) K] <0 and B > 0 which
leads to a stable limit cycle; b) Kl >0 and B < 0 which leads to an un-
stable limit cycle; c) K‘ and B do not mee:i any of the two previous re-
quirements. In this last case, B and K‘ have the same sign and reinforce

one another, leading to the same conclusion regarding stability as a linear

analysis. In a) and b) above, the amplitude of the limit cycle is given by:

16



o c. "\/ i"K-:- (39)
Figure 4 shows a plot of eL.c. as a function of y , the ratio of the
mass of the fluid to the mass of the pipe plus fluid. Also indicated on Fig. 4
is the type of limit cycle. There are two regions of interest. The first one
extends from y =0 to y = .1 and is characterized by destabilizing contri-
bution of the nonlinearities which thus permit cnly limit cycles for flow ve-
locities lower than critical. The second region, from y = .1 to y = .17, is
characterized by stabilizing nonlinearities and consequently limit cycles exist
only for velocities higher than critical. In the first region, if 0 <0

L.C.°
the oscillation will die out but if © > 0 c.? ® will grow continuously. In

L

the second region, If © < OL.C.' the motion will increase until it reaches the
limit cycle and if 0 > eL.C.' motion willdecay until it reaches the limit cycle.
Naturally, the most desirable region is the second one since it permits to operate
with complete confidence up to th .ritical velocity and even if one overshoots
the critical velocity a little, the amplitude of motion will remain bounded.

For y greater than approximately .17 flutter cannot exist, since A
can no longer be pure imaginary. We also observe that for y close to .1,
the amplitude of the limit cycle goes to infinity. This indicates that the
nonlinearities contribute gothlng to the motion for such a value of 1y .

It must be pointed out that in all the above discussiuns Eq. (38) was
never mentioned. The reason for this omission lies in the fact that iav is
the change in the frequency of the motion, which is of no interest as far as

stability is concerned.

EXPER!MENT

The experimental apparatus (with copper tubes) used by Bohn and Herrmann [3]
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proved very useful in carrying out the following qualitative experiment:

With the pipe ver*ically at rest, the fluid velocity Is progressively Increased
until the slightest disturbance causes the system to flutter. The flow Is

then reduced by a very small amount and the system is subjected to small dis-
turbances. It is observed that as long as the disturbances are small, the
motion damps out but that if the initial conditions are sufficiently large,

the amplitude of motion grows until it reaches a very large value. This be-
havior shows the existence of an unstable limit cycle which is also what the

theory predicts (Fig. 4) since the effective vy for the system is about .072.

CONCLUS | ONS

This study has shown that the effect of finite amplitudes can signifi-
cantly change the qualitative behavior oi the articulated pipe system. Never-
theless, the results permit us to Increase our confidence in the predictions
of the linear analysis since Fig. 4 clearly [1lustrates that an amplitude of
motion of at least ten degrees is required tc change the flow velocity by oniy
a few percent. It thus seems that In most engineering applications the effect
of the nonlinearities can be safely neglected knowing that designers are not
likely to allow a system to operate within a few percent of the critical

velocity.
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Figure 3 Flutter moce shape of the pipe.
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