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The separation of these signals is accomplished by an empirical

approach using a set of calibration data and computer algorithms.

Concern over the reliability of this empirical approach prompted

the present study.

BACKGROUND STUDIES

Two background studies indicated the need to estimate the trans-

fer function of the instrument. Both of these used the field data
obtained during the July 1974 field tests in Washington, DC. A large

quantity of data was gathered in and around Washington from a heli-

copter. The original analysis was done by General Electric and is

reported in COPE - National Capital Air Quality Control Region Field

Test Report (1975), to be released as a NASA Technical Memorandum.

An example of the resulting analysis is shown in figure 1. Although

the CO variation shows very plausible variations with high burdens

over heavy traffic regions, the methane variation gives no such

interpretation. Large local sources of CH 4 would be required to

register such changes in total burden.

The question as to whether the variation of the methane gas

amount in the Washington data is real or produced by the method of
data reduction is not easily answered. But one can consider the

following proposition: Can random noise simulate the observed vari-

ations in the data? Do the following: determine a noise figure for

an individual interferogram point, generate random numbers (a flat

distribution between + and - the noise figure was used), apply

the exact weight algorithm used in the original analysis, and take

60-second running means of 10-second averages. The result of this
approach is shown in figures 1 and 2. Note the similarity between

the simulated data in figure 2 and the real data in figure 1. The

amplitude and period of the "time" series are strikingly similar.

This does not prove that the signal is all noise. It does show that

it is consistent with the hypothesis and that the periodic structure
can be induced by the running mean processing used in the General
Electric analysis.
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Since a realistic noise figure was used in the simulated data,

any real signal should be superimposed on this noise variation. Thus

the signal tc noise (SIN) for the variation must be less than unity.

It should be noted that the simulated data do not predict the same

average value as the real data. Since the weight analysis is a

linear process, the inclusion of the average interferogram with noise

would correct for this. Thus the mean interferogram may be a meaning-

ful measure of the gas amount, also sufficiently low frequencies in

the time series may have a sufficiently high SIN to give a measure

of the gas amount. The high noise coupled with the high v/h samp-

ling rate gives little hope of observing this, however.

In the above analysis, it was assumed that the weight algorithm

did not degrade the actual signal. An empirical orthogonal function

analysis was conducted on one flight of the Washington data. Devi-

ations from the mean were used. In this calculation, the eigenvectors

are ordered by their significance in the total variation, with the

associated eigenvalue measuring the percent of variance explained by

the corresponding eigenvector. The first eigenvalue explains 66

percent of the variance. The first eigenvector is shown in figure

3. Also shown is the average interferogram. The similarity of

these leads one to conclude that a large part of the variance can

be explained by instrument instability in the form of a drift in

amplitude. Since most of the signal is due to methane, the weight

algorithm will yield changes in methane.

Further evidence for instrument instabilities can be seen in

laboratory data. Figure 4 shows the variation of the amplitude of

a single data point (interferogram delay point 16) throughout an

8-hour period. The light source and gas amounts were controlled.

The slow linear increase in signal indicates internal changes in

the instrument. This variation correlates well with a change in

room temperature. The total variation is in excess of 10 percent.

Thus this is a serious stability problem. Since the variation is

similar to that found in the Washington field data, this instability

may be the explanation for that variation.
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TRANSFER FUNCTION

The transfer function of an instrument is that function which

"transfers" the incoming signal, in this case radiation, into the

output voltage, in this case, interfercgram amplitudes. The total

transfer function may be written formally as follows:

T(x) = V(x) rti+1('	 S(v)R(&,O,x(t),Y,z,v)F( &,O,v)Q(t)
 f f

t i . ¢ dA v

x dCd0Advdt(x)

where: x	 - delay

t	 = time

C,o = field of view angles

y,z = aperture stop positions

S	 - atmospheric spectra

V	 = interferometer visibility function

F	 = the filter (optical) transmission function

Q	 = the electronic processing and filtering (including

synchronous detection process)

ti	= the integration time for a single data point.

It is very difficult to measure this function directly. In par-

ticular, the measurement of R requires a tunable monochromatic high

resolution source with narrow field of view and a small spot size.

The approach taken here is to calculate theoretically T(x) for an

ideal transfer function and to compare the instrument output with

this calculation. Differences are used to infer changes in one of

the internal ±:unctions contributing to the transfer function. Some

simplifying assumptions were made to isolate the least known part of
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the transfer function. R is assumed to be ideal. In that case,

it may be written:

R(x,V) = V(x) cos (vx)

independent of	 y, and z. This is equivalent to all flat

surfaces and perfect alignment. Under laboratory conditions, with

uniform sources and uniform gas mixtures, variations from ideal for

this function should not affect the comparison with theory. The

effect is to decrease the visibility and thus the efficiency of the

instrument. Still another transfer function parameter which had not

been determined was the actual delay range of the data in the inter-

ferogram. This caused a great deal of confusion in the interpretation

of the interferogram. This delay range was determined to be:

0.287 cm < x < 0.418 cm

This was determined from the comparison of the interferograms with

theoretical calculations as part of the transfer function deter-

mination.

TRANSFER FUNCTION COMPARISONS

Under laboratory conditions, with a constant source and a nominal

.12 atmosphere cm of CO in a gas cell, data were Dbtained. CO was

chosen because the signal peaks in the instrument delay range and the

line parameters necessary to make the theoretical calculations are

well known. The optical filter function used was that given by the

manufacturer. The calculated interferogram got a poor fit to the

measurement.

To test this interference filter transmission function, the filter

was removed and the transmission measured at several incidence angles

by P.J. LeBel at NASA/Langley. The variation was found to be large.

Since the optical system focuses the large aperture of the interferom-

eter onto the filter, and since the direct normal incidence light is

deflected by a small mirror for use by the reference channel, only
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•	 light at angles between 9 and ZZ degrees is incident on the filter.

A new response curve was calculated using the actual geometry within

•	 the instrument. A comparison of these curves is shown in figure 5.

Two additional factors were included in the final comparison.

These are the visibility function V(x) as c'.lculated for the field

widened conditions and actual elements used in the instrument. Also

the "vacuum" interferogram was subtracted from I and Q. The vacuum

interferogram represents the interferogram due to the filter alone and

possibly due to some as yet unknown reasons. When this is compared

with the measurement, the results are shown in figures 6 and 7.

Qualitative agreement is apparent for both CO and a mixture of CH4

and CO. The CO comparison shows that the theory and the instrument

data have the same shape. Two discrepancies are to be noted. First,

a slight shift between the two curves. Second, the absence of the

high frequency (0.011-cm period) component present in the theory is

not seen in the instrument. The source of the first is likely to be

a slight shift in the center frequency of the filter relative to the

determined filter response. A shift of 3 cm- 1 could account for this

shift in the interferogram. The second discrepancy is more disturbing.

The sampling in the instrument is sufficient to detect the ripple seen

in the theory. Also, the data shown in figure 7 for CH 4 and CO in the

cell shows frequency components as high as that missing in the CO

interferogram. Extensive checks on the theoretical program have

been made and no errors have been found which could account for

these ripples. Further tests on the theoretical and experimental

aspects of this problem are continuing.

CONCLUSIONS

Comparison of theoretical and instrument response functions has

been demonstrated as a method for determining the instrument transfer

function of the COPE correlation interferometer. It has been shown

that qualitative agreement can be obtained when discrepancies between

theory and instrument are investigated and the instrument components
are analyzed in detail.
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Empirical approaches to the analysis such as that used in the

original analysis by General Electric cannot separate instrument-

'	 induced noise from actual signal variations. The instrument instab-

ilities that are presented here are not easily distinguished from

real variations in gas amount. An analysis based on the theory can

correct these problems. However, the only way such an analysis can

proceed is through the transfer function of the instrument. The

approach presented here for determining the transfer function and

the problems encountered in this work indicate the degree of knowledge

of the construction and fabrication of the instrument that is needed

to ascertain even an approximate function. A further conclusion is

that a more 6irect approach to the determination of the transfer

function is desirable with the same comparison of theory and instru-

ment responses as the test of goodness of the determination.

P
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Figure 3. Comparison of mean interferogram for data of
figure 1 and first eigenvector obtained by
maximizing the variance of the deviations
from the mean. The similarity of these
indicate that 70 percent of the variance
can be explained by a drift in the signal.
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Figure 4. Laboratory demonstration of instrument drift
instability during a single day with labora-
tory conditions held constant. A nearly
linear change with time is observed.
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Figure 6. Comparison of instrument response in laboratory
with gas cell containing CO with theory. Filter
response and visibility functions have been
included. The ripples in the theory and their
absence in the data is still unexplained.
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Figure 7. Comparison of instrument response with cell containing
CO and CH 4 . Qualitative agreement is good but the
amplitudes are different. These differences may be
due to errors in the line strengths for CH 4 used in
the theoretical calculations.

14


	GeneralDisclaimer.pdf
	0007A02.pdf
	0007A02_.pdf
	0007A03.pdf
	0007A04.pdf
	0007A05.pdf
	0007A06.pdf
	0007A07.pdf
	0007A08.pdf
	0007A09.pdf
	0007A10.pdf
	0007A10_.pdf
	0007A11.pdf
	0007A11_.pdf
	0007A12.pdf
	0007A12_.pdf
	0007A13.pdf
	0007A13_.pdf
	0007A14.pdf
	0007A14_.pdf
	0007B01.pdf
	0007B02.pdf



