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Abstract

A two-step classification algorithm for processing multispectral scanner

data has been developed and tested. The algorithm is carried out by two

separate programs called CLUSTX and GROUPX. The program CLUSTX is a single

pass clustering algorithm that assigns each pixel, based on its spectral

signature, to a particular cluster. The output of the program CLUSTX is a

cluster tape in which a single integer is associated with each pixel. This

integer is the cluster number to which the pixel has been assigned by the

program. The cluster tape is used as the input to the classification program

GROUPX. Ground truth information is used in GROUPX to classify each cluster

using an iterative method of potentials. Once the clusters have been assigned

to classes the cluster tape is read pixel-by-pixel and an output tape is

produced in which each pixel is assigned to its proper class. The classifi-

cation algorithm can be operated in a hierarchical manner in which each ground

truth datum is classified at various levels in a classification tree. In

addition to the digital classification programs, a method of using correlation

clustering to process multispectral scanner data in real time by means of an

interactive color video display is also described.
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1. Summary and Overview

The research undertaken under this contract hadw aq. its goal the development

and evaluation of various correlation techniques which might be useful in the

processing of multispectral scanner data. This study is an outgrowth of work

that was initially undertaken when the principal investigator was on sabbatical

leave at the Johnson Space Center during the 1972-73 academic year.

At that time the principal investigator developed a single-pass clustering

algorithm called CLUSTDI that could be used as a nonsupervised classifier. In

addition, the possibilities of using coherent optical methods in the processing

of multispectral scanner data were also studied. 2 Considerable progress has

been made under the present contract in clarifying the potential role of these

techniques and significant advances in developing and evaluating these methods

have been achieved.

The major accomplishments of the current research effort include the

following;

1) The overall digital processing of multispectral scanner data

has been separated into two separate tasks. The first is to

associate every pixel with a particular clusLer by using a

single-pass correlation clustering algorithm. The clusters are

made small enough so that (nearly) all pixels in a given cluster

will have very similar spectral signatures and therefore can be

associated with the same class. The second task is to classify

each cluster using ground truth information and thus, by

association, to classify each pixel in the flight line. This

separation of the processing tasks means that only a relatively

1
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few spectral signatures need to be classified by the classifier

(usually less than 200, corresponding to the spectral signatures

associated with each cluster). As a result very powerful, non-

linear, nonparametric classifiers can be used to classify these

clusters. A more detailed description of this overall processing

method is given in Section 3.

Two new single-pass correlation clustering algorithms have been

developed. These algorithms have replaced the original method

used in CLUSTD that was based on a transformation of the spectral

signature into a binary signature in which the elements were either

+l or -1. The improved algorithms accomplish the same task without

the need for this transformation. (This transformation was originally

invented for an optical implementation in which it is required.)

These single-pass clustering algorithms are grouped under the

general name of CLUSTX and are described in more detail in

Section 4.

The single-pass clustering algorithms CLUSTX have been extensively

studied. The goal is to generate enough clusters so that all of

the pixels in a given cluster will belong to a single class. This

can obviously be achieved in the limit of one cluster per pixel.

We have found, however, that with fewer than 200 clusters, over

99% of all pixels in a given cluster will, on the average, belong

to one class. The best results are achieved when the physical

separation of pixels associated with the same cluster is not allo

to become too great.

2
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4)	 A new, nonparametric method of classifying the clusters based on

an iterative method of potentials has been developed. 	 This^r

algorithm is described in more detail in Section 5. 	 In one version

of the program, the training data for the classifier is taken to be

L'

= the clusters that have been assigned to classes based on the

U' Y

costmatrix (i.e., by simply counting ground truth pixels in each

cluster).	 This works well when large quantities of ground truth

are available.	 For example, we have achieved an overall classifi-

cation accuracy of approximately 44% when applying this method to

the 12-channel aircraft scanner data of the C-1 flight line. 	 The

n_.
program GROUPX has been further improved by modifying it in such a

way that the classifier based on the method of potentials can be

trained directly from the ground truth pixels. 	 This means that	 y

many fewer ground truth pixels are needed in order to effectively

train the classifier.

5)	 A new hierarchical classifier called CHIMP (for Classification
1

Hierarchy using an Iterative Method of Potentials) has been

a developed.	 This classifier allows ground truth information

to be stored in the form of a classification tree with various

levels of detail.	 For example, the class corn could be stored

L':7

simultaneously as land, agricultural land, cultivated agricultural

land, and corn.	 Classification of all pixels can occur at any

level.	 In addition, ground truth information can be entered at
i

any level and used for classifying all higher levels.	 For example,

a pixel may be known to be forest but	 the particular type of

trees may be unknown. 	 This pixel could be used as ground truth



d optical methods seem to offer a possible choice. Nowevei

al 	 an extensive study of the current optical processing

chnology it was concluded that the development of a real -t

nteractive, color processing system is beyond the present

ate-of-the-art. Alternate technologies-were then investigc

and the preliminary design of a real-time processing system L

hybrid digital/analog system has been completed. This syst

hich could have a major impact on-the usefulness and applica

 multispectral scanner data, is described its Section 7.
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atever level of detail can be handled by the classifier. A

feature space that are being observed. Such a real-time pro-

ssor will require considerable parallel processing capabilities
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2. Recommendations

As a result of the work done under this contract the following specific

recommendations are made:

A. Software

1. It is recommended that the program CLUSTX be made operational

at NASA-JSC after the following improvements and modifications

have been made.

a) A preprocessing procedure should be included that will

sample the data in order to determine the optimum window

size (the threshold parameter) such that clusters are

generated at an appropriate rate.

b) A feature should be added that will start generating

new clusters on a new file when the maximum number of

clusters is reached or when a certain number of scan lines

has been processed. This will minimize the problem of

different classes that are widely separated on the ground

but might have similar spectral signatures. In addition,

it will allow an entire data tape to be processed at one

time.

c) The COSTMATRIX procedure should be provided as an option

in. CLUSTX for evaluating the effectiveness of the clustering

operation when ground truth information is available. This

information should be stored on the cluster tape.

d) The linear correlation measure anal the rectangular

correlation measure should be urovided as alternate

correlation measure options.

5

POOR .QUAjJ7^



l: J

^v

t ;^

f: J

^a

L:.l

L':f

r-,

!" ry

2. It is recommended that the program GROUP% be implemented at NASA-JSC

after the following improvements and modificarons have been made.

a) An algorithm should be implemented that will automatically

use all ground truth information within the particular area

corresponding to the data on the cluster tape. In addition

ground truth from an area on either side of the region being

processed should be used. With this modification multi-file

cluster tapes can be processed with new ground truth information

always being added from in front of the flight path while old

ground truth corresponding to areas behind the flight path

are being discarded.

b) Modifications should be made that will allow the program to

be compatible with multi-file cluster tapes. 'These modifications

would produce multi-file output tapes.

c) An option should be provided for classifying the clusters

using either an Iterative Potential Function Method or a

Gaussian Maximum Likelihood Method.

d) The hierarchical classifier CHIMP that can classify at

various levels of detail should be incorporated as an

option in the program.

e) An option that will produce a line printer classification

map should be included.

f) An option that will produce a PMTS-DAS tape output should

be provided.

g) The capability of inputing ground truth test data and pro-

ducing an error matrix for testing the classification

accuracy should be provided.

6
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T
B.	 Hardware

It is recommended that a prototype interactive color display system

as described in Section 7 of this report be built and tested. The major

parts of the system would include

1. A high density magnetic disk assembly with 32 fixed head

cl}	 transducers,

2. A tape drive and processor suitable for loading the fixed

head refresh disk,

3. A specially designed interactive analog processor incorporating

high speed D/A converters,

4. A color TV monitor.
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3. Processing Multispectral Scanner Data Using Correlation Clustering and

Nonparametric Classification Techniques

The classification algorithm developed under this contract is a two-step

process carried out by two separate programs called CLUSTX and GROUPX. The

functions of these two programs are illustrated in the block diagram of Fig. 1.

The input data tape contains multispectral scanner data in the `orm of 8--bit

integers representing, for each pixel, the reflectance measured in each of

several spectral channels. Thus, associated with each pixel on the input data

tape are NCHAN integers (ranging in value from 0 to 255) where NCHAN is the

number of spectral channels.

The program CLUSTX is a single pass clustering algorithm that assigns

each pixel, based on its spectral signature, to one of NCLUST clusters. The

maximum value of NCLUST is.MAXCLUST (typically MAXCLUST=200). However, the

actual value of NCLUST is variable and is determined by two variable parameters

in the program. The output of the program CLUSTX is a cluster tape in which a

single integer is associated with each pixel. This integer is the cluster 	 j

number to which the pixel has been assigned by the program.

The clustering program CLTISTX can be considered to be a data reduction

and preprocessing step in the classification algorithm. Thus, for example,
	 a

whereas the original problem might be to classify each of say 40,000 pixels

as one of 4 classes, CLUSTX reduces the problem to one of classifying each

of a maximum of MAXCLUST clusters. The assumption is that enough clusters

are chosen so that all pixels assigned to a particular cluster have very

similar spectral signatures and thus belong to the same class. A spectral

signature is associated with each cluster. This signature is the average

signature of all pixels that have been assigned to the cluster. A detailed

description of the program CLUSTX is given in Section 4.

8

{



%D

ASSIGNS PIXELS

TO CLUSTERS

CLUSTX

GROUPX
ASSIGN PIXELS

TO CLASSES

(D
0
DATA
TAPE

0
0
OUTPUT
TAPE

CLUSTER
TAPE

	

,.:_...,.	 r	 _.:;	 __ r	 F_.......-a	 G	 ^ :--a	 c-__.... s	 e.-.....y	 C.	 ...:]	 C....	 ^	 ^	 Gr--.•3

9.	 L•..-	 _.3	 @	 .. _..^	 r	 •..	 .	 e...	 ...-	 .-.r	 n	 -	 a	 C_.	 r	 L	 L'	 -i	 L"

GROUND
TRUTH

ASSIGN CLUSTERS

TO CLASSES

Fig. 1
	

Flow Diagram for Processing Multispectral Scanner Data Using Correlation

Clustering and Nonparametric Classification Techniques.



The cluster tape which is the output of the program CLUSTX is the input

to the classification program GROUPX. Ground truth information is used in

GROUPX to classify each cluster as one of a small set of classes. Since the

maximum number of possible clusters is 200 the number of items to be classified

is relatively small. However, once the clusters have been assigned to classes

the cluster tape is read pixel by pixel and an output tape is produced in

which each pixel is assigned to its proper class. This output classification

tape can then be used directly to produce classification maps, compute acreage

of different classes, or test the accuracy of the classification method by

comparing the results with additional ground truth.

Ground truth information is used to train the classifier that will

classify each pixel. This classifier creates nonlinear decision surfaces

based on the method of potentials. Two types of training are possible. If

the ground truth is limited then the spectral signatures from each pixel are

used to construct the decision surfaces. On the other hand, if a large

quantity of ground truth is available, then it can be used to produce a

costmatrix giving the number of pixels in each cluster that belongs to each

of the various classes. These numbers are used to estimate the a posteriori

probabilities of a particular cluster belonging to a particular class. The

cluster is then assigned to the class for which this a posteriori probability

is a maximum. The clusters classified in this manner serve as the training

data for constructing the decision surfaces using the potential functions.

The remaining clusters are then classified using the method of potentials. A

more complete description of the method of potentials is given in Section 5.

10
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The advantages of this classification algorithm include the following:

l) The classification method is entirely nonparametric and

thus avoids the errors that are inherent in estimating

parameter vectors in parametric methods. This should

lead to a more effective utilization of all of the infor-

mation when data from a large number of channels is used. In

particular, multimodal distributions of particular classes

cause no problem.

2) Changes in the spectral signature of a particular class

along the flight line cause no problem as long as repre-

sentative ground truth is available, since the result will

simply be the generation of new clusters. These clusters

will then be assigned to the proper class in GROUPX.

3) If new ground truth information is obtained only GROUPX

needs to be run to produce a new output tape.

4) The clustering can be done before the ground truth is

obtained and the results of the clustering can be used

as an aid in selecting ground truth areas.

1
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4. Data Reduction Using A Single Pass Correlation Clusterin g Algorithm

The program CLUSTX is a single pass clustering algorithm that uses a

correlation function as a similarity measure for assigning each pixel to a

particular cluster. This correlation function is a measure of similarity

betwaen the spectral signature of a new pixel and the spectral signatures

associated with previously generated clusters. Let x be the N-channel

spectral signature associated with a particular pixel. That is,

T = [xl , x2" "'xn 1. Let y ( ^ )x 	 be the average of the spectral signatures

of all pixels that have previously been assigned to cluster number i. Let

(x^ - y { 
i)

a 	) be a weighting function associated with channel. 3 whose

value is a maximum at xj = ya ( ^ } and whose value becomes small as

M
I 
x3 -- y

j 
( ' ) I increases. A possible example of the functions ^^ (x, - y^ . ) )

for the case of 4--channel data is shown in Figure 2.

The correlation function C W associated with the ith cluster is defined

as

N
C (1) _ E ^i (x

i 
- y^(i))

j=l

From the properties of the function ^^ it is clear that the maximum value of

C (i) is equal to

N

Cmax - z C(0)
J=1

and will occur when the spectral signature x is equal to the spectral

signature yM . It is also clear that a large value of C (i} will occur

when the spectral signatures x and y (r) are similar, while a small value

of C (1) will occur when x and y W are dissimilar. Thus, C M can be

used as a similarity measure to determine if the pixel with a spectral

...
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signature x should be assigned to the cluster whose average spectral

signature is	 M. The criterion used will be to assign x to cluster i

if C M > Cmin	 minwhere C	 is a variable threshold level. In the interest of
— 

efficiency the C (p' ) 's will be computed in the inverse order of cluster

generation and the pixel will be assigned to the first cluster encountered

for which C hi) > Cmin' If this condition does not hold for any of the
— 

clusters, then a new cluster is generated with the pixel as its first member.

The algorithm thus consists of the following steps:

1) Assign first pixel with spectral signature x to cluster

number 1. Let y E ^ ) = x and set i = NCLUST = 1.

NEXT 2) Consider next pixel with spectral signature x. When pixels

run out, STOP

LOOP 3) If i > 1
N

Then Compute C ^^) = E j (xj - Y. M )

j=l

if C 	 > C— min

Then assign pixel to cluster number i and update

cluster signature yM	 GO TO NEXT

Else let i i - I and GO TO LOOP

Else create a new cluster by letting NCLUST = NCLUST + 1,

i = NCLUST, and setting y M = x. GO TO NEXT.

In practice this algorithm may be modified so that instead of checking

all of the clusters only the NBACK most recently generated cluster's are

checked before a new cluster is generated.

Two different versions of this clustering algorithm have been implemented.3

One uses the linear correlation weighting function shown as the third example

14



in Fig. 2. The second implementation uses the rectangular weighting function

shown as the second example in Fig. 2. Both implementations produce satis-

factory clustering results.
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5. Pattern Classification Using an Iterative Method of Potentials

The goal of computer-aided pattern recognition is to automatically

classify objects into distinct classes or states of nature. 4-6 If there

are M such classes for a given problem and wi , i=1, DI represents the ith

class, then let P(w i) be the a priori probability of an object belonging to

class i. If this was the only information available then the best decision

rule is to always guess that an object belongs to the class for which

P(w i) is a maximum. This rule will result in the minimum probability,of

error.

However, one normally has more information available with which to

make a decision. This information will be assumed to be in the form of a

measurement or feature vector x where x t= [xl ,x2" "' xn1. The components

of this vector represent measurements on the object to be classified. For

example, in multispectral scanner data the components of x represent the

reflectance in each of N different spectral channels.

Having made an observation x the a posteriori probability P(W ijx)

that the object belongs to class w  given that x was measured is given by

Bayes rule 4	 N

P(xI wi) P(wi)
P(wiIx) _~P(x)
	

(5-1)

where p(xlw i) is the state conditional probability density of x and p(x)

is the total probability density

M
P(x)	 E	 p%"X 1,0 P(w i )	 (5-2)

The decisioa rule is now to assign an object to class i if

P (wi lx) > P(wj Ix) for all j Ir i.
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P(wi lx) = P(wj lx) Ise on a decision boundary which separates class regions

in the feature space. The decision rule can be generalized by introducing

a loss matrix L.. representing the loss associated with choosing wj when

the actual class is w.• A classifier that minimizes the total expectedr	 1

loss is-called a Bayes classifier. 4 The effect of various loss functions is

TT	 to shift the decision boundaries in feature space so as to give more or lessi;

weight to a given decision.

It is common practice in statistical pattern recognition to assume

that all classes have equal a priori probabilities P(w 
i) 

and that the loss

q	 matrix Lij is equal to 0 if i = j (no loss for choosing the correct class) and 	 j

T^	 is equal to l if i j (a unit loss for making a mistake). Linder these i
assumptions the Bayesian decision rule is to choose wi if P(w i lx) > P(wjl x) 	j

rvr	
or p(xlw) > p(xlw) for all j ^ i.

Alternatively, any monotonically increasing function of P(w i lx) can

be used as a discriminant function gi (x). The decision rule is then to choose

class w i if g i (x) > g,(x) for all j	 i. The logarithm of P(w i lx) is often

used as a discriminant function.

In general, the state conditional probability densities p(xlw,) are

not known. One common practice is to assume that p(xlw.) is a multivariate
i

normal distribution and labeled training samples are used to compute maximum

likelihood estimates of the mean vector and covariance matrix for each class.
f;

There are two major potential pitfalls to this approach. First of all,

if the training data for a particular class is not really normally distributedt

then serious errors can occur. This is particularly true if the data is

multimodal and precautions (such as applying preliminary clustering algorithms)

have not been taken to discover this fact. Secondly, and possibly more

serious, is the fact that the number of samples needed to obtain reasonably

i	 good estimates of the mean vector and covariance matrix increases dramati-

cally as the number of features goes up. Thus, while one would expect that
rn
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adding new features to the measurement vector would increase class discrimi-

nation it is a common practical result that classification performance often

deteriorates as the number of features increases beyond a certain point.

This phenomenon can usually be traced to the fact that there are not enough

training samples to provide an accurate estimate of the probability density

parameters.

In order to overcome this problem of too many dimensions in the feature

vector a wide variety of feature selection algorithms have been developed. 4-6

The goal of these algorithms is to reduce the dimensions of the feature space

while at the same time trying to maintain the best possible discrimination

between classes. However, the class discrimination can never be as good as

when all features are used. This situation has led to the search for non-

parametric methods in which the problems associated with statistical para-

meter estimations would be alleviated.

Nonparametric techniques have been used to estimate both the state

conditional probability density p(xlwi ) 7 and the a posteriori probability

P(W,jx). 8 Alternatively, methods have been developed that determine the

discriminant functions g(x) directly from the labeled training samples. The
i

most popular of these techniques are the linear discriminant functions which

divide the feature space into class regions by means of hyperpl.anes.
9
 The

main problem with linear discriminant functions is that there are many classi-

fication problems in which the classes may be separable with nonlinear

discriminant functions but are not separable with linear discriminant

func t ion. .

The final goal of any of the classification schemes is to associate

every region in feature space with a particular class (or a probability of

belonging to a class) in such a way that the best possible classification

accuracy is achieved in practice.

18



The classifier described in this section is a nonparametric classifier

that produces nonlinear decision surfaces or discriminant functions by means

of an iterative method that continually warps the decision surfaces in such

a way that all labeled training samples remain correctly classified. When

classifying an unknown object with a feature vector x, the M discriminant

functions gi (x), i = 1,M, are computed and the object is assigned to the

class i for which g i (x) > gj (x) for all

This classifier is related to a class of methods referred to as the

method of potentials. 5,10,11 In all such methods an interpolating or potential

function is associated with labeled sample points. The cumulative sums of

such potential functions form the discriminant functions used for classi-

fication. In the most common version of this method a potential function

is added to the discriminant function only when a labeled samples is mis-

classified by the discriminant functions formed up to that point. 12-14 This

recursive algorithm for forming the discriminant functions is applied inter-

atively until all labeled samples are classified correctly.

The advantage of this method of potentials is that only those samples

that are misclassified need to be stored to compute the discriminant functions.

However, although all training samples are classified correctly there is no

reason to believe that the resulting discriminant functions are related in

any way to the a posteriori probabilities P(W a Jx) and thus there is no

reason to believe that good classification results will occur with test data.

The classifier described in this section uses a modified approach in

which a potential function is associated with each labeled training sample. 15,10

This approach is similar to the use of Parzen windows for the estimation

of probability densities. However, an-iteration technique is used in which

a positive weighting factor is applied each time a labeled sample is misclas-
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sified. In this way the resulting cumulative discriminant functions continu-

ally warp themselves until all labeled training samples are correctly classified.

Although this method has been recognized as a very general and powerful

classification technique, it has been criticized in the past for its compu-

tational problems and excessive storage requirement. 
16 

However, these pro-

blems have been largely overcome in the classifier described here.

If a number of labeled samples belonging to the same class have feature

vectors that are very close together in feature space then for the purpose

of forming a cumulative potential function or discriminant function these many

feature vectors may be replaced by a single "potential center" located at

the mean of the vectors being replaced and the new single potential function

is given a weight equal to the number of labeled samples that it represents.

In this way the storage requirements can be kept to manageable proportions.

For example, a resulting discriminant function that was formed from, say,

100 potential centers could represent an extremely complex, non-linear decision

surface.

The classifier described in Section 6 checks each labeled training

sample as it is presented to the classifier to see if it can be combined with

an existing potential center. It does this by using a correlation clustering

algorithm. In this way an efficient, but very powerful classifier is achieved.

Another unique feature of the classifier described in Section 6 is the

hierarchical manner in which the training data is stored in the computer.

Each labeled sample can be assigned to a class at a number of different levels

of specificity. For example, bad corn could be simultaneously classified as

land, agricultural land, cultivated agricultural land, corn, and bad corn.

All training data can then be stored as a classification tree in which more

and more detail is achieved by going further down the tree. The classifier

is able to classify an object at any level in the classification tree.

i
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Classifiers based on the method of potentials have been recognized as

being superior to statistical classifiers when the amount of training data

is limited. 
16 This is often the case when processing multispectral scanner

data since the cost of acquiring reliable ground truth can be very high.

When this cost is taken into account then a more powerful classifier that

can work well with a limited amount of ground truth may be more economical

even if its processing time is longer.

The main advantages of the classifier described in this report can

be summarized as follows:

1) It is a nonparametric classifier that works well with multimodal

data and whose performance should continue to improve as the

dimension of the feature vector is increased.

2) It is trained iteratively in such a way that all training data

are correctly classified by the classifier.

3) It can equally well handle a large amount of training data

(by using correlation clustering to reduce the number of

potential centers) or a small amount of training data (by

using each training sample as a potential center).

4) It can classify at various levels of detail by storing the

training samples in the form of a classification tree.

5) It can be trained over a period of time, getting better and

better as additional ground truth information becomes available.

5.1 Discriminant Functions formed by an Iterative Application of Potential
Functions

The method of potentials uses labeled training samples to form non-

linear discriminant functions that can be used to'classify test data. Let

xk be the feature vector associated with the k th sample of class i. An

21
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interpolating, or potential function K(x,xk M) is defined to be a function

that is maximum when x = xk(i) and decreases monotonically as	 %(W

increases. Specific potential functions that have been used include

x(X}xk	 ) H

	

-
  (i)112	

(5-3)
l +a^^x	 xk

and

K(x,xk{1)) = exp(_al lx - Xk i) 11 2)	 (5-4)

An estimate p(x1W 
i
) of the state conditional probability density

p(xJWi) can be obtained by erecting a potential function K(x,x k (a) ) at each

of the Ni samples of class i, adding all of these functions and dividing by

N.. That is,
IL

Ni

P(x1Wi) = N E	
K(x'{^))
	 (5-5)

z k=l

The division by N. in Eq.(5) accounts for the fact that 'ere may be

different numbers of samples in different classes. If all classes have

equal a priori probabilities then., from Eq. (5--1), p(x j ,,i ) would also be

proportional to an estimate of the a posteriori probability P(wi Jx). One might

then consider using a discriminant function G i (x) equal to p(xlw 3 ) given by

Eq. (5--5) and then classify objects according to the following decision rule:

Assign an object characterized by the feature vector x to class i if

Gi (x) > Gj (x) for all j # i.

On the other hand if the training data is obtained by randomly sampling

all objects to be classified, then the number of training samples obtained

for each class is, in some sense, related to the a priori probabilities of

class Membership. In particular if N i is assumed to be proportional to P(w

then by comparing Eqs. (5-1), and (5-5) it is clear that ,an estimate p(wi lx) of

the a posteriori probabilities P(w.lx) can be taken to be

Ni
"P(w. (x) = A E K(x,x (^))	 ('5-b)

1	 k=1 - 'k
where A is some proportionality constant. A useful discriminant function
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for class i might therefore be taken to be .

N.
z

Gi (x) = E 1, (x,xk W	 (5-7)
k=1

The decision rule is to assign an object to class i if G.
z

(x)> Gj (x) for

all j # i.

The location of the decision boundaries generated by the discriminant

functions of Eq. (5-7) will depend on the number of training samples of each

class N i . As has been noted this shifting of the decision boundaries is

meant in some sense to account for the a priori probabilities. However, there

is no guarantee that the discriminant functions given by Eq. (5-7) will classify

all of the labeled training samples correctly. This situation can be corrected

by using an iterative error-correcting scheme that adds a weighting factor to

the potential function K(x,xk W ) each time that the labeled sample xk
(r) is

misclassified by G i (x W ). The discriminant functions G i (x) given by Eq. (5-7)

are therefore modified by the following error -correcting algorithm.

For each labeled sample x
k

(k) the discriminant functions Gi (xk ^k ) are

computed for all classes. If Gk (xk {k) ) > Gi (xk {k) ) for all i # k, then

GQ (x) is left unchanged and the next labeled sample is considered. on the

other hand if, for any i, GQ (xk (2) ) < Gi (xk , (0 ) then G (x) is changed to

G 9 (x) + AK(x,)C,,, ) )where a is a constant. This rule is applied iteratively

to all labeled samples until all of the labeled samples remain correctly

classified. After convergence the resulting discriminant functions are

thus given by
N.

G..(x) = El (1+XCik) K(x,x^ ^) ). 	 ( 5-8)
k=1

where Cik is the number of times that the labeled sample xk^ ) caused a

change.

The discriminant functions given by-Eq. (5-8) are used to classify test

I	 data by assigning an object to class i if G. (x) > Gj (x) for all j	 i.

.

i
i
i
E
E

1
i
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5.2 Using the Potential Function Classifier in the Program GROUPX

As described in Section 3 the purpose of the program GROUPX is to1iclassify each of the clusters that have been created by the program CLUSTX.

The program has a procedure called COSTMATRIX that computes a cost matrix

using ground truth data. Fig. 3 shows an example of the costmatrix that is

produced by the procedure COSTMATRIX. In this figure the rows correspond

to cluster numbers and the columns correspond to class numbers. The numbers

within the costmatrix are equal to the number of pixels belonging to a parti-

cular cluster that are known from ground truth to belong to a certain class.

Since it is desirable that all pixels in a given cluster belong to the same

class one would hope that only one column in erch row of the costmatrix is

nonzero. In any event the cld6cer is assigned to that class corresponding; to

the column containing the largest number of pixels. This selection is

indicated on the right--hand side of each row together with a percentage

indicating what percentage of the total of each row this maximum number

represents. A figure of 100% means that all ground truth pixels in that

cluster belong to one class. This is obviously the desired state of affairs.

Printed at the bottom of each column of the costmatrix is the number of

ground truth pixels that belong to clusters that have been assigned to that

class. The ratio of this number to the sum of all pixels in that column

is also printed as a percentage and is a measure of the percent correct

classification.

Those rows in the costmatrix corresponding to clusters containing pixels
3

for which no ground truth exists will contain all zeros. These clusters

must be classified using the method of potentials. It is also possible to 	 i
3

i

train the potential function classifier directly from the ground truth for

individual pixels and to then classify all clusters using the method of.,
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potentials. In this case the costmatrix is used only for informational

purposes as an indication of how well the clustering algorithm CLUXTX

performed.

The discriminant functions given by Eqs. (5-8) and (5-3) are used to

classify all of the unlabeled samples. Thus, if y is the spectral signa-

ture associated with an unclassified cluster then y is assigned to class

i if G  (y) > G  (y) for all 3 ^ i.

After all of the clusters have been assigned to a class, the input

cluster tape is read and the cluster number associated with each pixel on

the cluster tape is translated into a corresponding class number on the

output tape-

The effectiveness of the algorithm GROUPX that uses a Potential

Function Method (PFM) classifier can be demonstrated by comparing its

performance to that of a Gaussian Maximum Likelihood (GML) classifier.

Both types of classifiers have been used to classify ERTS data containing

agricultural fields in Fayette County.

An area containing 12,726 pixels was selected of which a total of

297 pixels of ground truth was available. This ground truth consisted of

six classes and was divided between training data and test data according

to the following table.

TABLE OF GROUND TRUTH

Class	 No. of Training Pixels 	 No. of Test Pixels

1. Soybean	 116	 25

2. Corn	 40	 10

3. Wheat	 14	 3

4. Woods	 52	 16

5. Bare Soil	 13	 4

6. Clover	 3	 1
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When the GML classifier was applied to this data, the covariance matrix

for class 6 was found to be non-positive definite (the matrix was singular)

and t-hns this class could not be included in the classification. The

remaining 58 test pixels were classified by the GML classifier and the

results are summarized in the error matrix of Fig. 4. These results show

that all of the test pixels are classified as either class 3 or class 4.

This is undoubtedly due to the fact that an insufficient quantity of training

data yields inaccurate estimates of the mean vectors and covariance matrices.

The PFM classifier GROUPL was then applied to this same data. The pro-

cedure COSTMAIRIX classified the following number of clusters that were used

as potential canters for training the potential method classifier:

CLASS	 No. of TRAINING POTENTIAL CENTERS

1. Soyb--an	 17

2. Corn	 5

3. Wheat	 1

4. Woods	 7

5. Bare Soil	 1

6. Clover	 0

A value of a = 5.0 and a = 1.0 in Eqs. (5-8) and (5-3) resulted in

training convergence after a single iteration. A total of 51 test pixels

were then c-'assified and the resulting error matrix is shown in Fig. 5.

Both the GML and PFM classifiers were used in similar version of GROUPX.

ALGOL listings of both programs and given in the Appendix. The original

scanner data had been clustered into 137 clusters using CLUSTX. The ove•:all

performance of the costmatrix using the training data was about 90%. A

higher percentage could have been achieved by generating more clusters. Thus,

relative to this upper limit a more accurate measure of the GML classifier

would be an overall accuracy of 17.24/90 = 19.2%, while the overall accuracy

of the PFM classifier is 84.31/90 = 93.6%. The total processing time for the

version of GROUPX containing the GML classifier and for the version containing

I
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the PPM classifier was 1 min. 17 sec. and 1 min. 29 sec. respectively. All

programs were run on a Burroughs B-3500 computer.

Another version of GROUPS was tested that used a PFM classifier that

trained on individual pixels rather than cluster centers obtained from the

COSTMATRIX. In order to keep the number of potential centers or training data

to a minimum (an actual advantage in PFM classifiers!) the test data used

previously was used for training and the original training data was classified.

A total of 136 pixels were classified using 79 different pixels as training

potential centers. The resulting error matrix is shown in Fig. 6.

The same data was used to train the GML classifier and the result of

classifying the same 136 test pixels used in Fig. 6 is shown by the error

matrix in Fig. 7. The covariance matrix for class 7 was singular and there-

fore the three text pixels for that class could not be classified.

The results given above indicate the superiority of the new PFM

classifiers over the GML classifiers. The main reasons for this improved

performance include:

1) Even limited quantities of ground truth can be effectively used by

the PFM classifiers while the same ground truth may yield covariance 	
i

matrices that are either singular or so grossly in error as to be

meaningless.

2) The pre-clustering of the training data (by using the COSTMATRIX)

results in a manageable number of potential centers that represent a

faithful sampling of all available training samples. 	
3

3	 [then the training 	 Ydata is not normal ly distributed or is even multi-modal

the PFM classifiers have no problem in forming accurate decision boundaries.

On the other hand, the GML classifier may produce totally inaccurate

results in these instances.
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5	 Error Matrix for PFM Classifier.
Potential Centers Obtained from COSTMATRLX Clusters.
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6.	 A Nonparametric, Hierarchical Classifier

In many classification problems, the taxonomy in which objects are

to be placed is intrinsically hierarchical. Figure 8 illustrates a possible

taxonomy for use in classifying areas of a photograph of the earth's surface.

At the lowest level of classification (level 1) a pixel is classified as

either land or water. The next level of classification further subdivides

^r
the first level. The taxonomy shown indicates no further classification of

a	 water (for example into warm or cold) but a pixel classified as land at level 1

might further he rlassified at level 2 as urban, woods, bare soil, or agricultural.

The algorithm described in this section is able to classify an object to any

desired level in such a hierarchical classification system.17

.	 .. We assume a set of Labeled training data, each of which has been classi-

fied. in order to classify an unknown object at level 1 (water or land) we

need two sublists of our training data, one of all training data labeled water,

the other of all training data labeled land. Using the iterative method of

potentials described in Section 5.1, the discriminant function for each of these

sublists is evaluated at the point in feature space corresponding to the

._	 spectral signature of the unknown pixel. Then the unknown pixel is determined

to be either water or land according to which sublist yields the largest dis-

criminantfunction value	 To further classify the unknown pixel at level 2,

we would need four other sublists of labeled training data: urban, woods,
LLs

bare soil and agricultural. A training datum classified as, say, corn (Fig. 8)

would be included in four sublists.

*In the algorithm described below, a further requirement is made; namely that
this largest discriminant function value must exceed some minimal threshold.
Otherwise, the object is unclassifiable at that level.
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Clearly, to implement hierarchical classification we need rapid access

to various sublists of the training data. Representing the training data as

subsets of lists is facilitated through the use of a multi-linked data structure.

Each of the labeled training data is stored in a node

^--	 Fig. 9 Node for Storing
`.	 -	 rr	 1	 Training Data

Datum Descriptor	 List Pointers

as shown in Fig. 9. The datum "value" is stored along with a set of links

or pointers. These pointers are used to associate that datum with those

sublists to which it belongs. For each node, a pointer is required for each

level of classification. If a given datum is the only member of a sublist

at, say, le-ael 2, the corresponding pointer is set to null (zero); otherwise

it is set to point to the most recent datum that is a member of that sublist.

The classification tree of Fig. 8 has 4 levels; hence, the nodes for storing

the training data will each have 4 pointers.

To facilitate the addition and deletion of training data nodes, it is

convenient to include one more pointer with each node. This pointer is used

simply to link all of the data into a list. If any training da,_um is to be

discarded, this pointer can be used to link the unused node storage box to

the free storage stack. When a new datum is required, the needed node storage

box is removed from the free storage stack. This memory management technique

insures that all available memory for training data storage is accessable.

The actual arrays used to implement the multi-linked list structures

are now described. The i th node box is composed of the i th row (or element)
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of the arrays described in Table 1

Name	 Dimension

FEATURE	 NROWS x NCHAN

CLASS	 NROWS x NLEV

CLINK	 NROWS x NLEV

CLISTLINK	 NROWS

Table 1	 Arrays used for multi-linked list storage

' The array FEATURE is used to store the training data feature vectors, each

of which is a vector of length NCHAN. 	 The array CLASS is used to store the

classification data. 	 Each datum is classified according to the given classi-

fication tree, where the branches are labeled sequentially as shown in Fig, 8.

NLEV is the depth of the classification tree and therefore represents the length

of a classification vector.	 Each row of the array CLINK holds the pointers

needed to link that node into each of the respective sublists.	 Finally, the

array CLISTLINK is used to link all of these nodes together in one list.

The unused locations are also linked into a list (stack) by means of

CLISTLINK.	 The location of the top of this stack is held in the variable

CAVAIL .

The data structure described above is adequate far storing all of the

sublists of the labeled training data. 	 However, it does not inherently provide
a^

. rapid access to each sublist.	 For example, if it is known that a given train-

ing datum is a member of the "land" sublist, then its level 1 pointer points

to the "next" element of the "land" sublist. 	 However, no mechanism is pro-

vided for locating the beginning of the "land" sublist.	 Yet another data

e
^a

structure is required to provide access to the beginning of any desired sublist.

G ct

nn

by

r4r+

36

'	 1



i

The data structure used here to access the sublists is a tree having

a form similar to that of Fig. 8. Each node of the tree contains the address

of the beginning node of a training data sublist. By "climbing" through this

tree any desired sublist can be located.

A typical tree node is shown in Fig. 10. Storage is

Fig 10 A typical tree
node

Pointers to "son" tree nodes.

Pointer to a training data sublist.

provided for a pointer to the head of a sublist. Also provided are pointers

which locate the "sons" of that tree node. If the tree node has no sons

(i.e., a terminal or "leaf") then all of the son pointers are null (zero).

In the present implementation, a fixed number of son pointers is used;

this number must equal the maximal "fan out" of the classification tree. The

subclasses of a node are denoted by integers: 1,2,3,..; the absence of the

i_th subclass (or a sublist) is denoted by a null (zero) value in the i th son

pointer position.

An array TNODE, with dimensions NODES x NSONS, is used to store the

access tree. The i th row of this array stores the i th node box. The unused

storage locations are linked together in a free storage stack using the first

column elements of the array. The location of the top of this stack is held

in the variable TAVAIL. The location of the root of the tree is held in the

variable TROOT.

In summary, two data structures are used for storing and accessing the

training data. A multi-linked list structure is used to represent the data as

a set.o.f mutually inclusive lists (or sublists). A tree structure is used

to`pxovide access to the various sublists. Together they provide the data
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storage and access needed to support the algorithm for hierarchical classifi-

cation by the method of potentials.

6.1 The Classifier CHIMP

The algorithm described below is called CHIMP (for Classification

Hierarchy using an Iterative Method of Potentials). There are three major

phases in this algorithm: training data input, training, and classification.

These phases of the algorithm are discussed separately. Reference is made to

the listing of the algorithm in Appendix D.

6.1.1 Training Data Input

The function of this phase of the algorithm is to enter the training

data (from TDFILE) into the multi-linked list structure and to construct the

corresponding sublist access tree. As each labeled training datum is received

by the procedure INPUT, the access tree is extended, if necessary, by the pro-

cedure SETTREE to accomodate that new datum. SETTREE leaves behind a TRAIL

vector of tree node locations which contain pointers to the sublists in which

the new datum will be included. (These sublists may, of course, be empty, {

_-	 in which case the new datum will be the first element in the lists.)

I	 An important task carried out by the procedure INPUT is that of

clustering the training data. Stated simply, training data that are suffi-

ciently "close" to each other in feature space will be combined into a single

datum located in feature space at the center of gravity of the included data.

i

The number of data associated with each "cluster" or "potential center" is

stored in a corresponding element of the vector WEIGHT (of length NROWS).

^ u	A new datum will be clustered with an existing one if the new datum falls

within the WINDOW of the existing one, which WINDOW is a hypercube centered

on the existing datum with half width WINDOWSIZE. The procedure INWINDOW

determines whether or not the new datum is to be clustered.

'
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Clustering is only done with data that match at all levels of classi-

u:.
fication. Therefore, after deploying SETTREE, the procedure INPUT searches

the deepest sublist, to which the new datum would belong, to see if the new

datum is in the WINDOW of any existing datum. If so, then they are clustered

J.	 and INPUT terminates. If not, then the new datum is placed in a new storage

node which is then linked in to each of the sublists identified in TRAIL.
ua

6.1.2 Training

t

The potential function used in this algorithm has the form

f^(x,x^) = WEIGHT(x.)
7

where x. is a feature vector of a training data cluster,

x is the feature vector of the unknown datum,

u	 X and a are scalar parameters,

WEIGHT(x.) is the number of training data associated with xj,

is the Euclidean norm,

and	 COUNT is a counter used in training as described below.

;.	 The discriminant function for a subclass (sublist of potential centers)

is

v.b	 Dk(x) — E f (x,x . }

3	 "^
i -

•^	 where the summation is over all elements in the sublist corresponding to the

subclass k.

1 + XCOUNT

(6-1)

1+ a l l x-xi 112

(6-2)
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An example will illustrate the use of these discriminant functions.

Suppose we wish to classify an unknown object with feature vector x at

level 1 as either water or land (Fig. 8). Two discriminant functions are

required: D  and DL . D  is defined over the subclass of all training data

labeled "water," and DL (x) is defined over the sublist labeled "land."

Dw (x) and DL (x) are evaluated and x is classified according to which dis-

criminant function value is greater. If the unknown x is classified at

level 1 as land then it can further be classified at level 2 as "urban,"

"woods," "bare-soil" or "agricultural." To do this classification at level 2,

four discriminant function values are needed, corresponding to the four

training data sublibtS. Again, the unknown x is classified according to

which discriminant function value is greatest.

Implicit in this algorithm is the requirement that the potential centers,

resulting from the training data, be themselves classified correctly by the

discriminant functions. If the value of COUNT,J in Eq. (6-1) is zero it

usually happens that some of the potential centers would not be correctly

classified by the method. To overcome this shortcoming, COUNT is introduced

into the potential function and adjusted until each potential center is

correctly classified by the discriminant functions.

The adjustment of the COUNT 
J
,'s is an iterative procedure as described

in Section 5. During each pass, the classification of each member of each

sublist is checked by the procedure CLASSIFIEDCORRECTLY. If the classification

is wrong, the value of COUNT. for that sublist element is incremented. Note

that since each potential center can belong to as many as NLEV sublists,

then each potential center may have NLEV values of COUNT associated with it,

one for each sublist to which it belongs. If, during the first pass, any

i

z
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sublist element were incorrectly classified, then the whole procedure of

checking the sublist elements is repeated a second time to determine whether

or not the new COUNT values were sufficient to yield accurate classification.

This procedure is repeated until all sublist elements are correctly classi-

fied (or until a limit on the number of these iterations is reached). This

completes the training phase of the algorithm.

The procedure TRAIN is the driving procedure for this phase. It

executes training passes by deploying TREECHECKER until training is success-

ful, or for a maximum of 20 times. Also, it reports on the results of each

pass.

The procedure TREECHECKER traverses the sublist access tree and deploys

CHECKSUBLIST for each sublist accessed by the tree. TREECHECKER returns a

Boolean value indicating whether or not all of the elements in all of the

sublists were classified correctly.

The procedure CHECKSUBLIST traverses a sublist and deploys CLASSIFIED-

CORRECTLY to determine whether or not each list element is correctly classi-

fied. If a list element is not classified correctly then the corresponding

COUNT is incremented. CHECKSUBLIST returns a Boolean value indicating

whether or not all elements in the sublist are classified correctly.

6,1.3 Classification

The previous example on the use of the discriminant functions given in

Section 6.1.2 describes the general technique for classification of an

unknown. The procedure CLASSIFY carries out the classification of an unknown

feature. The classification is carried out only to a depth specified by the

parameter MAXLtVEL (but, of course, not to exceed NLEV - the maximal depth of

the tree). The unknown, to be classified by CLASSIFY, is held in the vector

NEWFEATURE (which is taken from a row of the input array SIG). The vector

of classification results produced by CLASSIFY is held in NEWCLASS.

41
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The operation of CLASSIFY can be understood by following it through

one level of classification. A pointer P is set to the root of the access

tree. The local variables BIGCLASS and BIGVALUE are set to zero at the

beginning of each new level of classification. Each of the sublist discri-

minant functions is evaluated and compared in turn with the current value of

BIGVALUE. If the discriminant function value is greater than BIGVALUE, then

BIGVALUE is replaced and BIGCLASS is replaced by the sublist index. The

sublists are accessed through the sublist pointers and those tree nodes that

are the sons of the root node. TNODE [TROOT, 1+K] points to the Kth son of

TROOT. Therefore, TNODE[TNODE[TROOT, 1+K],l]points to the sublist corresponding

to the Kth son of TROOT.

When all of the sublist discriminant functions for the sons of TROOT

have been compared to BIGVALUE, then BIGVALUE will contain the value of the

largest discriminant function and BIGCLASS will contain the corresponding

classification. However, before the assignment of BIGCLASS to NEWCLASS is

made, it is required that BIGVALUE exceed THRESHOLD. The a priori assumption

here is that if the greatest discriminant function value falls below THRESHOLD

then no proper classification can really be made. In this event, --1 is

placed at the appropriate level in NEWCLASS and the procedure terminates.

However, if BIGVALUE exceeds THRESHOLD then BIGCLASS is placed in the

proper (first) element of NEWCLASS. Then the local pointer P is moved down

the tree one level to the Kth son of TROOT, where K = BIGCLASS. This process

is then repeated until MAXLEVEL is reached or until a terminal is reached.

In summary, the major advantages of the classifier CHIMP include:

1) Labeled samples can be represented by a hierarchical tree structure

and unknown objects can be classified at any level of the tree.

Labeled samples that are known at only a certain level can be

used to train the classifier up to that level.
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2) The classifier can produce good results with a limited amount of

training data. This is in sharp contrast to parametric classifiers

such as a Gaussian maximum likelihood classifier for which consider-

able training data is required, particularly for higher dimensional

feature vectors.

3) The classifier can operate well when urge quantities of training

data are used. Previous attempts to use potential function methods

with large amounts of training data have been plagued with computa-

tional difficulties. CHIMP incorporates an automatic clustering

algorithm that reduces the training samples to a manageable number

of potential centers. These potential centers represent a faithful

sampling of all available training samples.

4) The classifier CHIMP can produce very general, nonlinear decision

boundaries. These decision surfaces can be used to accurately

classify multi-modal as well as unimodal data.
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7.	 An Interactive Color Display for Multispectral Imagery Using Correlation
Clustering

Two distinct but complementary approaches to the processing of multi-

spectral scanner data have been followed. One approach focuses on digital

processing and has as its goal the classification of each ground resolution

element, or pixel, in a given area. Sections 3-6 of this report describe an

example of this approach that uses correlation clustering and nonparametric

classification techniques to classify each pixel. The second general approach

uses a variety of techniques to produce color maps of the ground area that are

suitable for visual inspection and interpretation by humans. One common

method is to use the intensity of one color (red, green, or blue) to represent

the intensity of the reflected energy in one of three channels. If these

three color images are superimposed (either photographically or with a color

video system) then a full color map is obtained.

'there are a number of limitations to the color maps produced in this way.

First of all, since one color is associated with one particular spectral

channel of the data it is difficult to produce a map that uses data from more

than three different spectral channels. On the other hand, multispectral

scanners with up to 24 spectral channels have been bui't. Even if one uses

data from multiple-passes of the 4-channel EATS multispectral scanner, then 8,

12, or 16 effective channels of data (combinations of spectral and temporal)

would not be uncommon.

In an effort to include information from more than three channels a

rntimber of digital processing techniques, including various clustering methods,

he.-, , a been developed. The results of such digital processing can be used to

or ĉ duce color ?pans with display systems such as NASA's PMTS-DAS system at the
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Is it possible to process multispectral scanner data in an unsupervised

manner and produce color classification maps interactively in real time? In

this section we will describe the design of such an interactive color display

system that uses correlation clustering techniques to produce color maps of

multispectral imagery in real time. 18

Fig. 11 illustrates how the system would be used. An operator sits at

the color display screen and has access to a number of control knobs located

on the console. The color display contains an image of a certain ground area

made up of, say, 500 x 500 pixels. The operator can adjust the knobs such that

the entire screen is a single color. Additional adjustment will produce a

broad level classification map in which perhaps all water appears blue, agri-

cultural land appears green and forests appear red. Further adjustments might

result in only the agricultural fields appearing in color with different colors

representing different types of crops. In other words, the operator can "tune

in" to as much detail as he wishes using his own judgment to interact with the

image causing it to change in real time.

It is important to understand that the processing that is going on is

entirely unsupervised in the sense thet no a priori ground truth information

is used. On the other hand the operator "supervises" the processing in an

interactive mode and may very well use a priori information that he has about

the general nature of the area in order to produce a useful map.

Obtaining good ground truth information may well be the most expensive

part of supervised digital pattern recognition systems. The color maps produced

by the system described in this section could prove to be very useful in identi-

fying meaningful ground truth areas. This is true because a particular color on

the map represents a localized region in the N--dimensional feature space asso-

ciated with the N-channel multispectral data.
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Fig. ll.. Operator Processing Multispectral Scanner Data
on Real,-Time Interactive Color Display System
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For many applications such as the production of land-use maps, the

maps produced by this system may be the only type of processing of the

scanner data that is required. In any event it seems clear that such a

device would greatly increase the productive output of a group involved in

the processing of multispectral scanner data.

In Section 7.1 the general method by which correlation clustering

techniques can be used to produce color maps will be described. Various

technologies, including digital, optical, and analog, that might be capable

of producing the color maps in an interactive and real time environment will

be surveyed and evaluated in Section 7.2. A hybrid system in which the

correlation clustering is accomplished with analog circuitry is described in

Section 7.3. Finally, Section 7.4 presents conclusions and recommendations

for future development.

7.1 Correlation Clustering Images from Multispectral Scanner Data

What does an N-channel multispectral image look like to a human observer?

Or, alternatively, how can the information contained in N-channels of multi-

spectral scanner data be presented in a form that is readily understood by

a human observer? Inasmuch as the eye is able to distinguish a wide variety

of color shades and hues it would seem advantageous to use a color display to

present the multidimensional information contained in the scanner data. In

particular, the goal will be to associate a given shade of color with a parti-

cular localized region in the N-dimensional feature space. The size of a

particular localized region and the color associated with it should be under

the interactive control of the operator.

The color c of a given pixel will be some combination of the three

primary colors red, r , green, g , and blue, b .

C = C R r + CCg + C$b
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where CR, CG , and CB are the proportions of red, green, and blue

respectively. (For a color video tube CR , CG , and CB could be the voltages

applied to the red, green, and blue guns respectively.) The values of C R , CG,

and CB are determined by the following correlation clustering method.

Let x be the N-channel spectral signature associated with a particular

pixel. That is, xT = [ xl , xZ , xn]. Let y (i) be a reference spectral

signature associated with the color i (i = R, G, or B). Let ^j (x j - yj W

be a weighting function associated with channel j whose value is a maximum

at x.
J = 

y. (1) and whose value becomes small as Ix. - y.
J 

( '^ ) I increases. (For
J	 J 

a possible example of the functions ] (xj - y 
(i)

j 	) for the case of 4-channel

data, see Figure 2 in Section 4.)

The correlation function C. associated with the color i (i = R, G,
I

T	 I

or B) is defined as

N

Ci = E j 
(xj -- 

yj (^) }

j 1
(7-2)

From the properties of the function ] it is clear that the maximum value of

C .i is equal. to

N

C^ = ^.(0)	 (7-3)
j =1 J

and will occur when the spectral signature x is equal to the reference

spectral signature y M. It is also clear that a large value of C  will

occur when the spectral signatures x and yM are similar, while a small

value of C. will occur when x and y (i are dissimilar. 'thus, if the three
I-	 -	 -

reference signatures y
M
 are well separated then, for example, a pixel with

a spectral signature x = y (R) would appear red. Similarly, pixels with
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spectral signatures x = y (G) and x = y (`) would appear green and blue

respectively. Other pixels with arbitrary spectral signatures x would have	 ?

colors given by (7-1) and (7-2).

R G
An example of the locations of the three reference signatures y y , and

Y,	 v  for the case of 2-channel data is shown in Figure 12. In this figure a

"region of influence" is shown as a solid curve surrounding each color center.

The size of each region is representative of the "widths of the corresponding

weighting functions j . In a real time interactive system the operator

i
would be able to vary both the color centers v ( ' ) and the size of each "region

of influence" surrounding each color center. In this way the operator can

watch as the display changes in real time as the result of varying the different

.parameters. Large regions of influence corresponding to rwide cp s functions will I
i

result in color displays in which large areas with different spectral signatures i

will appear as (nearly) the same color. On the other hand, narrow functions
i

can be used to isolate in a single color only those pixels with a particular

spectral signature. By this interactive mode of operation it should be possible

to extract the maximum amount of information from the multispectral data in a i

° 	 minimum amount of time.

The next section will consider a number of technologies that might be

used to make the type of interactive color display system that has been described

above.
V L

7.2 T teractiye Displays Using Digital, Optical, or Analog Systems

w	 When thinking of an interactive color display that is to operate in real
l

time one thinks first of a TV type of video display system. Assuming a 500 x 500

pixel display that must be refreshed every 1/30 sec., one sees that a 7.5 MHz

zdata rate is required to refresh the video display. Such systems are available

and in use today. However, this will simply display a single image and does not

process the multispectral data in any way.
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What is desired is to be able to change the correlation functions Ci

given by Eq. (7-2) in "real time" as observed by the operator. Suppose one

tries to do this digitally. Assume that the calculation of a single value

of	 requires only 5 basic operations each taking l psec. For ERTS data

this calculation must be done for each of the four channels and the results

added (assume 1 psec per add) to obtain C  in Eq. (7--2). Thus, it would

take 23 Vsec to compute C  for each of the three colors. Therefore, each of

the 250,000 pixels would require 69 psec of computation which means that it

would take over 17 sec. to change the video picture. This is obviously not

the real time operation that is desired.

The basic problem with digital computations is that there are too many

pixels (250,000) and one can t.aerefore afford to spend only about 1 psec per

pixel if the entire calcr ,,lation is to be completed in some fraction of a second.

This suggests that a substantial amount of parallel processing must be done

if real time operation is to be achieved. Although digital computers with

substantial parallel processing capabilities have been designed and built (such

as the ILLIAC IV), there are major problems with their use and they would not

	

,.	 be suitable for use in the small type of dedicated system envisioned here.

Optical processing in one sense offers the ultimate in parallel processing.

	

`	 The author 2 has previously suggested a method by which holographic correlation

	

'f	 techniques could be used to produce classification maps of a type similar to
.J

those described in Section 7.1. In such a system all of the pixels are pro-

	

;i	 cessed simultaneously at the speed of light. However, a real time system would

	

^^•,	 require a real time input transducer capable of changing coded data for all

i!

pixels at video rates as well as a real time medium for recording the holo-

graphic filters. While a number of such real time devices and recording media

are being developed in various laboratories, none at the present time possesses

all of the properties that would be required for the type of interactive system

being discussed here, 	
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Additionally, in order to make a color display it would be necessary

to construct an elaborate system containing lasers of three different colors.

It is clear that such an interactive real time system using coherent optical

processing is not within the current state of the art.

Returning then to the color TV video display, is there any way that the

processing described by Eq. (7-2) can be done in real time? The next section

will describe a hybrid system in which this interactive processing is accom-

plished with electronic analog circuits.

7.3 Design of an Interactive Correlation Clustering Color Display System

In this section an interactive system that will process ERTS multi-

spectral scanner data in real time will be described. An overall block diagram

r ` t	 ;stem is shown in Fig. 13. The scanner data for an area of up to

pixels is transferred from magnetic tape to a high speed magnetic

disk using a minicomputer which serves as a high speed buffer. Up to 250,000

bits can be stored in a single track on the disk. Thus, eight parallel tracks

can store the 8--bit per pixel data for an entire TV frame for one of the

spectral channels. Thirty-two tracks can then store the data for all four

spectral channels. The disk rotates at 1800 rpm so that data for a complete

TV frame is read every 1/30 sec.

The 32 bits representing the spectral signature for a given pixel are

read from the disk in parallel with 32 fixed head transducers. This data is

fed through four 8-bit digital-to--analog converters. Thus, four voltages

(V1 , V2 , V3 , V4) representing the spectral signature of a single pixel are

available simultanously. These four voltages are fed into an interactive

analog processor containing analog circuits that process the data. This

processor contains the interactive controls that determines the nature of the

processing. The output of Lnis analog processor consists of three voltages

that go to the three color guns of the video display.

I

1
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MINICOMPUTER

L.	 (High Speed Buffer)

DATA

TAPE	 32 Track

FIXED HEAD DISK

1800 rpm

D/A	 D/A	 D/A	 D/A

Vl	V2	 V3	
V4

INTERACTIVE ANALOG PROCESSOR

CR	 CG	 CB

COLOR VIDEO DISPLAY

Fig. 13 ;ztzractive Color Display System for Multispectral Imagery
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The analog processor contains three similar circuits as illustrated

schematically in Fig. 14. Each of these three circuits is associated with

one of the three colors (red, R, green, G, and blue, B). Each of these color

circuits contains two control knobs per spectral channel. Thus, there are

eight variable controls for each of the three color circuits, or a total of

24 control knobs for the entire analog processor.

Each of the three color circuits making up the interactive analog pro-

cessor is of the form shown in Fig. 15. The variable voltages V a , Vb , Vc , and V 

represent a reference spectral signature that is to be correlated with the

spectral signature of a given pixel which is coming from the digital-to--analog

converters. The gains al , a2 , a3 , and a4 of the four differential amplifiers

are also under the interactive control of the operator. The values of the

voltage at different points in the circuit are indicated in Fig. 15. An

example of the four voltages entering the output summing amplifier in Fig. 15

as a function of V1 , V 2 V3 , and V4 for particular settings of Va ,Vb ,Vc ,Vd ,CtV a29a31

and a4 is shown in Fig. 16. It is,clear that the output of the summing amplifier

is the correlation C.
a 
given by Eq. (7--2). Three such outputs from the three

color circuits in Fig. 14 are then combined in a color TV tube to produce a

particular color as indicated by Eq. (7-1).

The entire 500 x 500 pixel TV frame is refreshed every 1/30 sec and thus

the whole picture is changed in real time as the controls of the interactive

analog processor are varied by the operator. These controls allow the operator

to move the locations of the three color centers in feature space and to vary

the size of the "region of interaction" for each color (See Fig. 12). The

system described above for 4-channel data can be extended in a straightforward

way to accommodate large numbers of spectral channels. Fixed head magnetic

disks exist that could handle up to 24 channels of multispectral scanner data.
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7.4 Conclusions

This section has described a new method of processing multispectral

scanner data in a real time interactive environment. The result of the

processing is a color video display of up to 500 by 500 pixels in which a

given color represents a particular localized region of feature space.

The size and location of these localized regions of feature space are

under the interactive control of the operator. Thus, the user can elect

to look at as broad or as narrow a region of feature space as he wishes.

The interactive system for processing 4--channel data contains 24 control

knobs that the operator can vary. In general the number of knobs will be

bxN where N is the number of spectral. channels. The ultimate goal would

be to have the computer control the knobs (with perhaps some fine tuning

by the operator). For example, ground truth information could be used to

locate "interesting" regions of feature space that could then be painted

with various colors. A whole new approach to the digital processing of multi_

spectral scanner data will be concerned with how best to have the computer

"turn the knobs" in order to produce meaningful motion picture classification

maps of various levels of detail.

The real time interactive system should be built in order to test the

human reaction features of the system. It is expected that this system

will effectively put the human brain into the data processing and pattern

recognition. loop. Since the operator views 250,000 pixels at a glance, he

will be able to use the spatial information that is apparent to him to guide

his way through the spectral feature space. After studying how the human

operator reacts to this system an effort should be made to train the computer

to "turn the knobs" and thus produce its own motion picture classification

maps based on ground truth or other adaptive learning information.
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CI_USTH	 [REVISED	 VERSION)

BEGIN
Fi	 E	 IN ERTS	 2	 (2,500);
Fl	 E	 TN CARO	 DISK(2PIOP30))
FI	 E	 OUT LINE	 PRINT (2.17):

.^ FILE	 OUT CTAPE	 2(2#900PSAVF 99);
IN	 DISKFILE CTAPFTt
THERE	 ARE 150	 WRDS/RECD AND	 300	 WRDS/8LK

PILE
MAXIMUM	 LnGICAL
CTAPET	 DISK

RFCORDS = 4	 TIMES 200 = 800
(2;492001	 #150,300);OUT

^' t4:F#^e##*#*#1Mf*:^' #*+Irfr*rt*,k*###i****##***ir*
GLISSARY	 OF GLOBAL	 VARIABLES

REAL CMIN; %	 THE	 CORRELATION	 THRFSHOL_D.
% IF	 A	 CORRELATION	 C	 IS COMPUTED FOR	 A
x GIVEN	 CLUSTER,	 AND	 TF	 C	 GEQ	 CMIN,	 THEN

THE	 PIXEL	 IS	 A^SSiGNFD	 TO	 THAT	 CLUSTER
%	 AN	 ARRAY	 CONTAiMING	 51	 WORDS	 FOR	 STORIINr,INTEGER	 ARRAY	 CTIFOt501;

HEADER	 INFORMATY	 N	 AS	 DEFINED	 IN	 FIG.	 5,
INTEGER FNDRFC; %	 THE	 FINAL	 SCAN L	 NE	 OR RECORD NUMBER
G TO	 8E	 READ	 FROM	 THE	 INPUT	 TAPE.1
YNTEGER FVD SAMP; %	 THE	 FINAL	 SAMPLI:	 OR	 PIXEL

FFS
NUMBER

^NTEGER THE B INCREMENT P EUSEDTN D READING H 5 C AN N LINES#INCR; %
X FROM	 THE	 INPUT	 TAPE.	 IF	 INCR=I#	 ALL

-. X SCAN	 LIMES	 ARE	 READ.	 IF	 INCR=2,	 EVERY
x OTHER	 SCAN LIINE	 IS	 READP	 ETC.
INTEGER T NCS; %	 THE	 INCREMENT	 SED	 TN	 PROCESSING,	 SAMPLE
9 NUMBERS	 IN	 EACH	 SCAN	 LINE.	 IF	 TNCSst,
% EVERY	 PIXEL	 IN	 THE	 SCAN	 LINE	 IS	 PROCESSED*

% IFIN5SEVERY
	 OTHER	 PIXEL	 IS

IN TEGER ?AAXCL (IS T;
=2*

X	 THE_	 AX	 M1M	 NUMBER	 nF	 CLUSTERS	 ALLOWED,
IF	 THE	 PROGRAM	 TRIES	 TO CREATE	 MORE
THAN	 MAXCLUST	 CLUSTERS	 THE	 PIXEL	 IS

- X A5STGNED	 TO	 AN	 ' ► nTHFR H 	CATEGORY	 BY
% SETTING NS=O,

-.1 iNTEnER MR; %	 THE	 NUMBER OF	 RECORnS TO BE	 SKIPPED	 IN
% ORDER TO READ SCAN LINE NUMBER NRECD#
INTEGER NBACK) X	 THE	 NU-M8ER OF	 CLUSTFRS	 FOR	 WHICH	 A

` J CC► MLATION	 I5 COMPUTED BEFORE A NEW
% CLUSTER	 15	 CREATED *	IF	 NBACK	 EXCEEDS
T THE	 CURRENT	 NUMBER	 nF	 CLUSTERSo,	THEN
X ALL	 CLUSTERS	 ARE	 CHECKED.
INTEGE R NCHAN; %	 N IJM13ER	 OF	 SPECTRAL	 rHANNELS	 ON	 TAPE,
INTEGER NCLUSTJ %	 THE	 NUMBER	 OF	 CLUSTFRS	 THAT	 HAVE

NROLD; %	 THE NLAST A SCAN LINE	 TO HAVE BEEN READ,
ua

pH TEGER
TEGERIN ^js; %	 CLUSTER NUMBER.

INTEGER NSAMPI %	 NUMBER OF	 SAMPLES	 (PIXELS)	 IN	 EACH
H SCAN	 LINE	 ON	 THETAPE,

^
INTEGER NWR048; %	 THE	 NUMBER	 OF	 a8'BIT	 WORDS	 NEEDED	 TO
% STONE	 THE	 DATA	 IN	 ONE	 SCAN LINE.

us THIS VALUE	 IS	 COMPUTED	 IN HEA02	 AND
USED	 TO ESTABLISH	 THE	 DIMENSION	 OF	 THE

% ARRAY	 IDAT	 IN	 CALCULATE.
DEAL ARRAY
%

SIGI0e1201120031
SIGEJ.NS]	 IS	 A	 TWO-DIMENSIONAL	 ARRAY

% CONTAINING	 THE	 AVERAGE	 SPECTRAL	 SIGNATURES
ASSOCIATED	 WITH FACH	 CLUS ER,
THE	 ROWS	 OF	 SIG	 C€1RRESpD D	 TG THE
SPECTRAL	 CHANNELS	 AND	 LfE CQLUMN$ OF	 SIG

^a CORRISP p ND TO	 THE C( USTNR NUMBER#
YNTEGER STARTREC; %	 THE	 NItIAL SCAN	 LINE O	 RECORD NUMBER

TO	 RE	 READ FROM	 THE	 INPUT	 DATA	 TAPE,
YNTEnER STARTSAMP; %	 THE	 INITIAL	 SAMPLE	 NUMBER OR	 PIXEL
M NUMBER	 TO	 BE	 PRrCESSED	 IN EACH	 SCAN LINE.

` REAL ARRAY WTDTHr0f24);% THE	 PARAMETER)	 THAT	 CONTROL	 THE	 WEIGHTING
FUNCTIONS	 ITV	 FACH	 CHANNEL	 AS	 DEFINED

% IN	 FIG#	 3o

1

LABEL	 ENDING; 	 ORIGINAL PAGE 18
OF POOR QUAQIYI

%	 PRnCEDURES HEAn2, IN PUTHP AND CALCULATE ARF INSERTED HERE

F^
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MATN	 PRnr,RAM	 *	 *^ *

THE	 PRnGRAH	 CLUSTH	 PFAUS A DATA	 TAPE	 rONTAININr
MiiLT ISPFCTR.AL	 SCANNF7 ?	DATA AND	 PRnnI}CfiS	 A	 CLUSTER	 TAFF

CALLF n 	FTAPF	 ON	 WHICH	 EACH PIXEL	 HAS	 ^EFN	 ASSIGNED	 TO
11NE	 t1F	 MAYCLUST	 CLU S TFRS,, EACH	 CL , ISTrR	 Cn k'TATNS	 PIXELS
WITH	 ST IA TI AR	 SPFCTRAE.	 5IGNATURFSe

ENDYn^Gt
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I
PROCrOURF NFAn ?(FILFNIAk!F,1'CH.4N, NSA NIP) P

1I THE PRnCE DURfi	 HFAWl 	RFADS	 THE	 HFAr)rR	 nF	 A	 nATA	 TAPE	 THAI
T1 HAS R FF %i	 WRITTFhI	 1N	 I I RSYS- II	 F n R m̂ A T ,	 FRnm	 THIS	 HFADFF
2 IT rFTFRHINF'S	 THE	 NomnF.R	 nF	 SPF( TRA1	 rHANNEI_S	 NCHAN,	 AP1[}

THE 1111 Ia RF.R	 r1F-	P1 XFLS,	 NSAMF,	 In'	 A	 SINr.LF	 Sr,AN	 LINE,
IT Al Cn	 CnM r IITF S	 NwRL)4E1.

FILE FTLFr;AMF:	 THE	 FILE_	 II)ENTIFTFR	 FOP	 THE	 nATA
TAPF	 WHf)SF	 HFAOFO	 IS	 BFIK'r',	 READ,

INTEnFR NUMIREP	 nF	 SPECTRAL	 rHANNELS	 nm	 TAPE,
INTEnER NSAMPB	 7	 MlimRER	 nF	 SA14PLFS	 ( P IXFLS)	 IN	 EACH

REr,Ir^

INTERER ARRAY Trfo:20n3;	 w	 AN	 IRPAY	 IN	 wHTCH	 THE	 UNPACKFn	 3?-BIT
z Wr'RnS	 OF	 THE	 1 A P sYS-I T	 HEADER	 ARF	 STnREne
INTEr.FR ARRAY TwFr(0:1341;T	 'I A '	 ARRAY	 INTn	 WHTCH	 T HE	 DATA	 >;RnM
I; THE	 HF A nFR	 IS	 RF AD 	AS	 !INPPOCFS5Fn

F II LL	 48-BIT	 wnRfls.
INTEr,FR K;	 a	 It. 'nrxlNr,	 VARIAF3I..E

FtlRM,AT rF4T0(X20,"HFAPFr'	 RECORn	 OF	 LAR5Y5-II	 TAPE:"/),
f7 MT4(Y.10 * "TAPF	 *IUMBFR •1 ,I6,y10, 1, 1)ATA	 IS	 C0NTIPJIIAIInN01

1,	 nF	 FLIGHT	 LTNF	 STARTFD	 nN	 TAPF 11 , 16),
F M T5 (x 10,'/TAPF	 I",3NBFR11,T6),
F W T6(XIn, '

I
F TI.F	 ^I 1 1"!13FR='I ,I6,Y10. 19PII N	 NLIMRFR = It rIn /X10,

,, NIImgFR	 rlF	 rH A "!NEL.S=", 13, Y,6, 11NUMRFP	 ;1F	 SA MPLF'S 11,
' 1	 PFR	 i_ I NF= 11 , T 4) •

FuT7( Y10p 1, 0ATF'' 1 ,X3,316/K10, 1, AI TITtIr)F=II,I10,Y9p
„ r•,Rr7L I Nn	 HEAnIN I G= 11 , I6);

h

t

HATNI	 RnnY	 OF	 dFAn?

RFAI)	 fFItFNAMF,131t,THFnf*3};

F T1R	 Kt= n 	 STEP	 1	 U H TTL	 2 n	 nf?

FEPLACF	 P0TElTFR(II3[*3,8)+A+AXK
RY	 r'r'I » TE R( THE r)r*I, A)+Kx it	 F(IR	 4)

I`ICWAN2=TD[51;
N1SAvP:=I0[61;
nW01)4Rc=(NrHANxt%'SAMP+11) 	 DIV	 6	 +	 1;

,, R1TFCl. INE ,rr4Tn ^;`

IF	 TD r41	 Er7 L 	n

THFN
WRITF'( LTNF ► f'MT5,In[t 1, ID[ u1)

FL SE

W P I TF1 J. T N[7pr' l iT 1. , T D r I I - I^hl

1,rIrTTF	 ( LI AF,F`-ITf- p T Ur21, 11 1 [ 31, Tr"t I51, 10[61) f
W P T T F	 (LINF,F'T7,TC(i1191nT121,Inr131,I('[t51,1ni161
WRITE	 CL TNFrPAGF 1 );

ENn	 nF	 wFAn2;

OF poop ^. G2 1B
Da , QUA

1
t u4.



PRnCFDURE TNPOTH;

v THE	 PRnCERURE INPIlT W 	 READS	 VARInUS	 INPUT	 PARAMETERS
+lARI ARL ES 	 ARE	 GLOBAL,

REGIN
TNTEr,ER I;	 INInFXING	 VARIABLE,
INTEr.ER J1:	 %	 INDEXING	 VARIARI_Fe

IN FTI++1	 WI5);
R

RMAT
RMaT IN FTN2	 (IOF6.?)f

rC)RMAT OUT rnliT1	 ("FOR	 THIS	 RUN + //"NSACK	 =	 " +I5/
"NtAXCLUST	 =	 "r i 5,"	 NCHAN	 =	 11#15/
"STARTREC	 =	 ►,, I5,"	 ENORFC	 =	 ", T l+,"	 INCR	 =	 l+p
I5/"STARTSAMP	 =	 19 ,15, 1T	FNQSAMP	 =	 " , IS,

r	 Of.n 11T2	 C l fHF	 ALL n WFI)	 DELTA	 FnR	 FACW	 CHANNEL_	 IT SFORMAT OUT
"AS	 FOLLnWS"/ "THAN",XS,"nFI.TA "/) ;

F(1RMAT 011T FnIIT3	 (I3,X5,F6,?))
FORMAT OUT FntIT4("CMIN="sF6,1);
FORMAT OUT Fn[JTS("C)ATA	 WILI	 RE	 WRITTEN	 nN	 FI1,E	 Ni1MRER",

15plI nM	 TIAF"	 CLUSTER	 TAPE- rTAPE");
FRRMaT OUT SAmPF RR 	("	 * **	 FRHnR	 ***' l v Xfn,' ► FNnS AMP 	 IS	 „

"TOO	 LARGE,"/"ENDSAMP	 wTLl	 4F	 REAnJOSTFn	 TO
I, FQI.IAL	 NSAhffj");

N q If+ PnnY OF INPUTH

NrLliST:- O;
NROL.0t=0;

RFAQ(CARD.47A6>,CT1(Q),CT1[13)1
RFAn tCARO,FTNS,NRACKjMAYCI_L15T)T
RFAD (CARn,FTN2,F0li Jt:=1 S T EP 1 IINTIL NCHAN

Un 4TDTH[ J11))
RFAn(CAR0 p F T N2s CMT N );
RFA(l (CARD,FINI,STARTRECpENMREr, INCR);
RFAn (CAhtn,FIN1,STARTSAMP,ENnS4MP,INCS);

WRTTE (LT4ENFnl)T1,NRACK,MAXCLfJST,+,ICHAN,
STARTRFC,En10REC+INCR,STARTSAMPP NDSAMP,INCS);

WRI TE(t_TNF_', rnUTl1,rMIN);

1F ENOSAMP GTR MSAMP

THEN

AFr,TN
WR I TF (L.I NF, SAMPERR );
FMPSA4P:=N5A4P;

FNn
El SE'3

WRTTF (L INF,Fr)lIT2);
WRITF (LINF,Ff UT3,F0R Jli=1 STE P 1 UNTTt. NCHAN

no t=)1,WID1H[J1I1);

ENn nF INPUTHI

f

x^c^_=^=__ ^^^^=__c-=^=oam==ray= MM =a===_=e=wry=cc^=	 7

^,P^^ p
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PROCEDURE	 CALCULATFs

%	 THE PROCEDURE CALCULA T E READS THE INPUT DATA TAPE A SCAN
%	 LINE ^T A TIME US NG THE PROCEDURE 0ATA3	 IT THEN ASSIGNS
%	 ACH PIXEL IN A GIVEN SCAN LJUE TO A PAR^ICUL.AR CLUSTER
%	 BY USING THE PROCEDURE ASSIGNHt

BEGIN

%	 GLOSSARY OF VARIABiES kOJAL TO CAL.CYLATE

%	
AND GLOBAL 10 DATA s A	 AND C APEHEAD,

3

e

INTEGER ARRAY

INTEGER ARRAY

z

INTEGER

NTGCR

INTEGER

x

INTEGER

INTEGER ARRAY

INTEGER

INTEGER

INTEGER ARRAY

X

REAL ARRAY

FORMAT OUT

FORMAT OUT

TDATCOtNWRD48]) % AN ARRAY INTO WHICH TH£ RATA FROM
A SINGLE SCAN LINE I5 READ AS
UNPROCESSED FULL 48-BIT WORDS

IDUMEO:NCHANfOsNSAMP])x A TWO DIMENSIONAL ARRAY IN TO
WHICH THE UNPACKED 6;BIT BYTES

p
REPRESENTING THE 5PFTRAL SIGNATURE

THE E ROWS P CORRESPQND 5 0 TN ENC^#,A4NNELS,
TORED•

NUMBERS AND THE COLUMNS CORRESPOND

IRECNO)	 % THE TSEAN A LM iNE OR	 UM ER 	 READ
FROM M INPUT

O
gSATA TAPE,

K'JIMP)	 AN IROH VARJA[
L
i^NORRESPONDING TO A

KNT1	 %
SAMPLE OR

EXVARIAC E UCnRR^SPO DING TO THE
PIXEL NUMBER ASSnCIATED WI H THE CLUSTER
N^IM

UT
RERS THAT ARE WRTTTEN ON THE

O	 UT CLUSTER 
Tpx
A
E
PEELg C

I
TAPE,

C	 (.rlPIXEL5)	
X TUT N NAVf R 9ElN P ASCIGNEEN} 0CCLUSTERS.NE

NSS[OtNSAMP] 1X_...AN ARRAY FOR STORING THE CLUSTER
Nllkl gERS OF EACH PIXE IN A SCAN LINE,

NRECD)	 X AN 'INDEX VARIABLE 'E hRESPONDING TO A
gg CAN LINE R RECORD NUMBER •

NSCANLINE) X THE NUMB R OF SCAM LINES THAT
HAVE BEEN PROCES E

NUM[OtMAXCLUSTPIALR7fATFHVTgEENGASSIGNERBER
TO EACH CLUSTER*

SIGE03NCHANPOSMAXCLUSTI )

RECDERR ("** ERROR **",X5p"NREC0x":I5,X5,
"IRECNO ,15))

NEATLY (2014))

JS
w4wwsswwwaswwwswwwwwiw^rswwaesiwwswdwwarw

PROCEDURES DATA3}  ASSIGNHs AND CTAPEHEAD ARE INSERTED HERE

0^ p^^ PAS
QDR QU ^ ^
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***	 MAIN	 BODY	 nF	 CALCULAT 	***	 *¢*	 ***
N r1Trt	 nN	 THE	 85500:	 5LLUARiARLFS

ARE	 AUTOMATICALL Y 	SFT	 Tn	 7FRn
BEFORE	 EXE	 UTInN,	 TF	 THIS
WAS	 NOT	 AU^OMATICP	 THE	 ARRAYS
NUM	 AND	 SIG WOULn	 BF	 SFT
TO	 7CRO	 HERE*

NRIXELS%=(ENDSAMP-STARTSAMP)/INCS+i;
NSCANLTNEI=(ENDREC-STARTREC)/INCR+I;

FOR	 NRECDT=STAR T RFC	 STEP	 INCR	 UNTIL ENDREC

On	 BEGIN
KNTI =O;

DATA3	 CERTS,NRFC0plRF_CNV);

IF	 NRECD	 NFC	 TRE4Nn

THEN

A F G 7 N
WRITE(LINE,RECDERR,NRECO*IRECNN)1
in TO FNDINGJ

E4!{1
ELSE;

FOR	 NSAMPs=STAPTSAMP	 STEP	 INCS	 UNTIL	 ENOSAMP

nO	 RFGIN

ASS I GNH;

NUMCNSIt=NUMCNS)+I;
N5SIKNT]l=NS;
KNTI=KNT+I;
END;

WRTTE<LINE,NFATLYAFDR	 JJ2 w O	 STEP	 I
UNTT!	 MPTXFLS-!	 DO	 ti55[JJ]);

WRITE(CTAPFTpNPIYELS,NS5[*l)t
END;

RFWIND(CTAPf-T);
L.DCK(ERTS);

CTAPFHEAD;

END	 f1F	 CALCULATE.
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PROCEDURE DATA3 ( FILENAMEsNRECD , IRECNO)f

THE P ROCEDURE DATA3	 READS ICAN	 INE NtJMBER_NRECQ FROM AN
INPUT DATA TAPE WITH FILE	 DENT FSER FIHENAME,	 THE FIRST
16 811S	 OF EACH SCAN LINE CONTA	 N	 THE	 CURD NUMBER
IRECNO,	 THIS	 VALUE	 IS PASSED BACK	 TO	 THE MAIN	 BODY	 OF
CALCULATE	 WHERE	 IT	 IS	 COMPARED	 ( AND	 SHOULD	 AGREE)	 WITH

% THE VALUE OF NRECD,	 THE SECOND	 16	 OF EACH SCAN LINE
y
SITS

$ 15NSAMPLYT5	 WORK SI UE TR-	 REMA NOREH L IN A THEEAMRRY	 NGADATA
IN EACH SCAN LINE CONSISTS OF 8 1 8lf	 BYTES REPRESENTING THE

X
TDA AIS L UNPACKEn R 4Nn O STORED IN X 	HEI2 ° RIMENSIQNALNAARAYHEDUM,

FILENAME)	 X	 THE	 FILE	 IDENTIFIER F	 R	 THE	 DATA	 TAPE.FI^£
IN EGER 1RECNOJ	 %	 THE SCAN LINE	 R RECORD NUMBER	 AS

DATA TAPE,% IREAD FROM THE	 NPUT
INTEGER NRECD)	 Z	 AN	 INDEX VARIABLE CRRRESPONDING TO
X A	 $CAN LINE OR RECORD NUMBER,

BEGIN

g
NT G R

INT GER

K1)

ARRAY	 WORKEOS1]E

%

X

D
AN	 O X VAR

TEMPORARYA	 O

AB PR

5TORAG	 AREAABLE,

MAIN BODY Of DATA3

MRs*NRECpp°NROLDl1)
! PACE	 ( fILENAM£PMR))

READ	 ( FILENAME „ NWRD48,IOATf*}))

FOR	 Kt=O	 STEP	 1	 UNTIL	 1

nn	 REPLACE	 POINTER(WORKT *, 8)+4+6xK
BY	 POI N TERfIOATL *), 8)+3xK	 FOR	 2)

IROLLPI zWOR KE T3D	 ROLL PARAMETER 'NOT USED

FOR	 Ka=O	 STEP	 1	 UNTIL	 NCHANi1

nD BEGIN
TEMPI=	 ( NSAMP	 TIMES K)	 +	 4)

FOR K11=0	 STEP	 1	 UNT IL 	 NSAMPIt

DO REPLACE	 POINTERMtUMfK'*Ip8%+5+6xK1
BY	 POINTER(IDATC d 3A8)+TEMP+K.	 FOR	 1)

END)

NROLDI=NRECD)

END	 OF	 DATA3)

1

1

1
1

1

^ i ^ ^ i l f f i! f f! f f! f f f f f f f f! f i! f f i i f! f! f l i

3
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PROCEDURE

AWAYt

x

ASSIGNH;

THE
USING RDT H E D ORRELATION C^US. ERING P ALC0RITTHM L ©ESCRI gED N NSA
SECTION 3 OF THIS RFPOYT *	IT USES A WEIGHTING FUNCTION
OF THE TYPE SHOWN IN FIG. 3 AND COMPYTES THE CORREEATION
FUNC T ION FOR, AT MOST. THE NBACK MOS RECENT CLUS T RS*

BEGIcj	
x THE CORRELATION FUNCTION

J;	 x AN INDEX VARIABLE*

AWAY;

MAIN HODY OF ASSIGNH

FOR NSIaNCLUST STEP w l UNTIL
IF NCLUST;NBACK LEG 0 THEN 1
ELSE NCLU TONBACK

DO BEGIN
C oo _0)

FOR Ji=1 STEP i UNTIL NCHAN 00

CI= C + WIDTH[JIB-ABSCIDU M[ J n IPK5A MP+11-SIG[JPNSI);

IF C GEQ CMI N

THEN

BEGIN
FOR Js=1 STEP 1 UNTIL NCHAN 00

JSIG[ +IDUMJ- liK5AMPNYI%CNUM[NSl+IjisNSl

Gn TO AWAY;
END

ELSE

ENDS

IF NCLUST LSS MAx CL UST

THEN

RLGIN
NCLUSTIaNCLUST+1;
NSINNCLUST;

FOR Jtml STEP 1 UNTIL NCHAN 00

SIG[JpNSIt-IDitM[J-1,KSAMP•11;

f- ND
ELSE

NS= n D;

END OF ASSIGNH;

X
x

REAL
INTEGER

LABEL
x
x

+r^uaw+w^usws=wwrr^wwwwa^wwwrwawwwwww^wwrivw

ov
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PROCEDURE CTAPENE:AD)

LRECO
RDS C ON^THE OUT^UT^CL*STE S ^ D

uu	 p
T EA W tIXE T'ITFT^IET

yR gg OP

PI^EL L IN ^ALCULATE SEROM ( A I D^5K TFIL^ E ONME THESOUTPl0lTTTAf'Et

BEGIN
INTEGER I)	 X AN	 INDEX VARIABLE.

MAIN	 Rn nY 	 [1P	 CTAPEHIEAD

CTI[211 = NCHAN;
CTI[3]1=NSAMP;
CTI4	 1=STARTREC;
CTIC5	 1=ENDRECI
CTI1611=INCR;
CTI[7)I=STARTSAMP;
CTI[811 =ENDSAMP3

C1T'I	 =NCLUST;C IOI 1
CTI[I1	 1=NSACK;

=MAXCLUST;CTIE4011
C,TI[4I11=CMIN)

FOR	 Ia m i2 _STEP	 I	 UNTIL	 Ii+NCHAN	 On

CTI[I11=WIDTH(I-1.t1;

WRITE(CTAPE,51rCTIE *))f
FOR	

41al
WRIT E(CTAPEPNCLUST+IFSIGEIP*])J

WRlTF(CTAPE,NCLUST+jpNUM(*]))

FnR	 NRECDI=I	 STEP	 I	 UNTIL	 NSCANLINE	 DD

BEGIN
pp	 EE	 pp	 g	 gg

W 1TE(CTA	 X ^ AySSCFoNP	 *B1
END1

REWIND(CTAPE)E

END	 O F CTAPEHEAD;



APPENDIX B

!

ALGOL Listing of GROUPL*

Including Procedures

.	 1 HEADIN

GROUP)MIN

HEADOUT

GROUNDTRUTH

COSTMATRIX

y POTENTIAL

PTRAIN

' PTEST

TAPEOUTPUT

TRUTHMAP

SAMPNOS

PLOT

TEST

*GROUPL is a verson of GAOUPX that uses the procedure

POTENTIAL for classification,

71
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S;
PRODUCES	 OUTPUT	 CLASSIFICATION TAPE
FROM	 INPUT	 CLUSTER	 TAPE

Mre
BEGIN

CTAPE	 2(2,900)=FI L E	 IN

OUTFI L E 0	
7]

m^00NSAVEJ99);OUt A PE 2(
FIDE	 OUT LIME	 PRINT(2,17);
FILE	 OUT DISC	 DISM 4 10]	 (2,15,30,SAVE=99)1

GLOSSARY	 OF GLOBAL	 VARIABLES

REAL ('MIN;	 %	 THE	 CORRELATION	 THRESHOLa,
% IF	 A CORRELATION C	 IS COMPUTED FOR	 A

_ GIVEN C l]STER,
gg
ANNz D	 TF	 C	 G 9	 CMIN, jjTHEN

AR 'FtAY
-
	CT1E01501)	 ^	 AN EARRA LCONTAINTNGERITWORDSTFORUSTORING

= F
NTEGER

HEADER	 INFORMATInN	 AS	 DEFINED	 IN	 FIG •	 S•
%TGr0%	 SIG{	 IS	 A	 TWO=DIMENSIONALREAL	 ARRAY :12,0:?00jj	 ,NS]

% ARRAY CRNTA.INING THE	 AVERAGE SPECTRAL

Ti
SIGNATURES	 ASSOCIATED	 WITH EACH	 CLUST€R,
THE ROWS OF SIG CORRESPOND TO THE

15 SPECTRAL CHANNELS AND THE COLUMNS OF
ry SIG CORRESPOND TO THE CLUSTER NUMBER

INCR;	 %	 THE	 INCREMENT	 USED	 TN	 READING	 SCAN	 LINES11' INTEGER
# FROM	 THE	 INPUT	 TAPE,	 IF	 INCR t I,	 ALL

i S SCAN	 LINES	 ARE	 READ.	 IF	 INCR=29	 EVERY

INTEGERR
OTHER	 SCAN	 LINE	 IS	 NEAR,	 FTC,

X	 TN PROCESSINGINCS;	 THE	 INCREMENT	 USED	 SAMPLE

T
2 NUMBERS	 IN EACH	 SCAN LINE	 IF	 INCSai,

ISEVERY	 PIXEL	 IN	 THE	 SCAN	 LINE	 PROCESSED•SI
IF	 INC.S =2 s	 VERY	 OT H ER	 PIXEL	 15

E TC,
_

PROCESSED,
INTEGER J1	 X	 AN	 INDEX	 VARIABLE

Z	 S AMPHINTEGER K1;	 P I X EL
IN	 EACH	 SCAN	 LINEq

INTEGER K2)	 %	 THE FINAL SAMPLE NUMBER OR PIXEL
ry NUMBER TO BE PROCESSED IN EACH	 SCAN LINES
INTEGER MATOTI	 %	 THE	 NUMBER OF CLASSES FOR	 WHICH

1
INTEGE R

_	 GROUND	 TRUTH	 IS	 EING	 USE.O4
MAXCLUST)	 %	 T H E	 MAXIMUM	 NUf	 R	 OF	 CLUSTE RS 	ALLUWED,	 I

F	 PROGRAM	 TO	 CREATET; THE	 TRI^S	 NORL
THAN MAXCLUST	 CLUS ERS	 THE	 PIXEL	 IS

% ASSIGNED	 TO	 AN	 "nTHER"	 CATEGORY	 BY
% SETTING NS=0,
INTEGER NBACK;	 X	 THE	 NUMBER	 OF	 CLUSTERS	 FOR	 WHICH A

A	 NEWCORRLLATION	 S	 RMPUTED BEFORE%
F' WISTER IS CREATED,	 IF NBACK EXCEEDS

THE	 CURRENT	 NUMBvk OF CLUSTERS, 	 THEN
ALL	 CLUSTERS ARE	 CHECKED

TAPE,NCHAN	 NUMBER OF	 SPECTRAL CHANNhS	 ONINTEGER
INTEGER NCLUS	 ;	 THE	 NUMBER	 OF	 CLUSTFR5	 THAT	 HAVE

INTEGER
EEN	 CREATED.

NPIXEND;	 ^	 7HE	 NUMBER	 nF	 PIXELS PER	 SCAN	 LINE

TNTEGFR
QN	 CTAP

NRI;	 .._THE	 INI	 IAL	 SCAN	 LINE	 OR	 RECORD	 NUMBER
TO	 R'	 RFAD	 FROM	 THE	 INPUT	 DATA	 TAPE,

INTEGER NR2;	 %	 THE	 FINAL	 SCAN	 LINE	 OR	 RECORD	 NOHSFR
% TO	 PE READ	 FROM	 THE	 INPUT	 TAPE,
INTEGER NRECEND;	 %	 THE	 NUMBER	 OF	 SCAN	 LINES	 ON	 CTAPE,
INTEGER NROL 0;	 %	 THE	 LAST	 RECORD NUMBER TO HAVE BEEN
z READ	 FROM	 CTAPE,
INTEGER NS;	 %	 CLUSTER	 Nt1MRER,
INTEGE R NSAMP;	 Z	 NUMBER OF	 SAMPLS	 (PIXELS)	 IN LACH

SCAN LINE	 ON	 THE	 TAPE,

PROCEDURES HEADIN ANO GROUPXMAIN ARE	 INSERTED HERE

MAIN PROGRAM	 T:ORIGINAL PAGE IS

H E a o i	 - -- - - -- ..
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P ROCEDURE HEAL; IN;

THE	 PROCLOURE	 HEADTN	 TS	 USED TO	 READ THE	 FIRST	 TwO
RFCnRDS	 FROM	 THE	 INPUT	 TAPE	 CTAPE.	 THE	 ImFORMATION
CnNTAINFD	 IN	 THE	 FIRST	 RECORD	 OF	 CTAPE	 IS	 uSEn	 FOR
DIrFN"% I0NIPG	 ARRAYC	 IN	 GRDIJPXMAIN,

BE(;	 N

1
T READ	 FIRST	 IWO R E COR DS 	 OF	 CLUS TER 	 T APE	 1

- REAI)(CIAFE.#51,Ci1f*]);

NCt+ANO=CT1[?];
N;SAMPi=CT1[3]:
NR1:=CT1[4]3
NP2:=CT1i53;<
TNCR4=CT1[6If
K1:=CT1[7))
K?:=CTI(81)
INC S.tp.CT1[4]1
NCLllST9=CT1[10l;

MAXfLIJSTi=GljFGQ3f
CMIN:sCT11411i
NRUED1=0)	 l

NRECENQl=(NR2-NR1)/INCR+1;
NPlXENV:=(K?" K 1 )/It-dCS+lf

QN	 i =1	 STFP	 I	 UN I I L. NCHAN	 DO
]	 E,	 NC	 LJ,	 +1sSIG[.J,+	 )3

i

RVAn(CARDSv <I5>> MATOT );

k

i
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I
wknl,T'DORF	 rRf1LjP <'1A T N F

THE	 P Rfj^E nyRE	 i;RItli p xNAIN	 PR[fj3UCF,5	 TW	 t]'ITPUT
T A P FCLASSTr	 CA	 I']FJ	 OtITAPF	 F iOil	 H F 	INP1T	 CLUSTER

G TAPE	 G,A+F	 ISIN n	 T+117	 17 01 I, n4TNG	 STEEPSI
% 11	 THE	 f'7,i:;LIltl l iE	 ,H[I11 1411	 4j j TH	 JJSE5	 GNr)UNn	 TRIITH
t INFiIRMATln`.	 1 I	 r1`1 :4	 NrION	 WITH	 T HE	 UATA	 T)N	 THE

Ix (:ttJSTFK	 TAPE	 In	 Pr;IIIIJr	 A	 COSTMATRIX	 )4ATN[N5. 14ATI	 THAT
Y VINTATNS	 T14F	 NU M Rr4	 I)C	 PIXELS	 KNOWN	 TO	 BE	 OF	 f LASS
x HAT	 THAT	 HAVE	 BF0j	 ASSIGNED	 TI]	 CLUSTER	 NUMBER	 N.S.

7.)	 T14	 tl Pnc f 17tIRt	 170STr4ATRI1(	 I^$F$	 TH	 INF'nR4ATInN
Tel	 THE	 mATm[la5 ► M,1T7	 ^U	 THECOST4ATkTX	 F5	 THATr	 A

1
WfISTFHIORI

PP(iF,AR]	 I TIES	 1r7	 Ct L15TEti	 N5	 EsELnN(iIN(t,,	 Tf1	 f LAS gg	!SAT
Z' IF	 ENOUGH	 Gkl)UNLI	 IPlil4	 LJATA	 IS	 AVAILABLE	 ANn	 rHF

A	 PnSTLRIr1RI	 PRnFIARILTrY	 IS	 SUFFIC1FNTLY	 HIGHs	 AIL	 Or
Y TA Y 	 P T1;FLS	 IN	 CI_ t 1STFk	 NS	 ARE'	 ASSIGNO	 TO	 CLASS	 MAT.

v 3)	 THOSE	 CLi1 1;TFkK	 THAT	 WFRF	 UNABLE	 Tn	 RF	 CLASSIF[Fr)
I RY	 1HF	 CL 1 5T M AIPIX	 ARE	 CIASSJFI^D	 USING	 THE	 METHOD	 11F
Ix P1lTFfvr1At.5	 FsT	 T(IF	 PRO r E)IIRF	 P(l	 ENTIAL.

Y I}	 1HE	 RF4[ILTIW,	 1̀ LA 1,SIFICATI0t)	 nF	 EACH	 PIXFf_	 IS	 WRITTEN
x tN	 THE	 (I[ITPIJT	 TA FF	 LIUTAPF.	 USING,	 THE	 miar)ORE	 TAPFnHTPUT,

HFu1'I

x rL11ZSARY	 OF	 VARIABLE S	 LnCAI,	 TO	 GROUPXHAIN
Y Anal)	 !',l_nRAt	 Th	 IIFAnntiT,	 rRnUNOTRIITH,	 COSTMATRIXi

P')TI• NTTAL JOTAPF )0TPUT,Tri 1 IFHr,1AP,ANO	 FFS].

REAL ALFA;	 X	 A	 PARAMETrk	 USED	 IN	 THE	 LIFFTNITInN	 OF

T THb,PQiFNTIht.	 F"Nri lI 714
;tnL;	 Y	 PRINT	 MAPA	 MI)L	 AN	 VARIA A L	 1NSF[^	 TO1'lDLFAN

TNTFILE? ;%BRAY	 "L A SS[n: ,NRECF N n. O i N PIXFNO-I3F	 %	 AN	 ARRAY	 CONTAINING	 THE
x G	 A`5	 NUMR	 R5	 A55IliNEn	 T,I	 EACH	 PIXEL
TNTE;ER IkRAY	 N iR r,'Or0	 AT1)T^ II :1	 ► n:r(I;	 YAN	 ARRA Y 	TO	 STURE	 GRn1Nn	 THUTH
Y 1NFn'.iMAII:]N	 FI1R	 115E	 IN	 PRPM)URF	 TRIJTHMAP
T`ITF r,ER I;	 Y	 AN	 TN11EX	 VARIABLE.
INTEGER J:	 %	 AN	 INDE X 	VARIABLE	 C(rRRESF ONn1NG	 TO	 THE
X CHANNEL	 NW-18c'R.
INTFf,Ffl i,14; AY	 <1 +,55r0	 NPIXFNn-llf%	 AN	 ARRAY	 4RITTE4	 nN	 OIJTAPF	 j
X CONTAINING	 THE	 CLASS	 )!U M HFRS	 THAT	 HAVE

PEEN	 ASSIrNEO	 TI)	 FACH	 PIXEL	 IN	 A
7. SCAN	 LINE.	 ..
RFAL L.AMnA;	 Y	 THE	 4EIGHTINr	 FACTOR	 IJSFU	 IN	 4nl)IFYING
x TIE	 POTENTIAL	 FUNCTION	 IN	 EACH	 ERROR
Y CORRECTING,	 ITFRATIUN.
INTFr,ER I_R;	 `x	 THL	 '3ELGINNING	 SCAN	 LINT	 VII M RER	 CON
x r1RIG1,4AL	 f)ATA	 TAPE)	 IN	 A	 rRnOND	 TRUTH

ARFR.
1'!T r ' ;Fa F;	 Y	 THE	 FrtOINu	 SC4N	 LINE	 NL IU HFR	 (nN
3' ;lkl!;INAL	 RATA	 1A P L)	 IN	 A	 r,RnlJNi'1	 TWjTri
T EA

k 11E1;FH ANJ-iAri	 X	 -^OFX	 VATiIAULE	 LONRESPnNnlNr	 Tn
Y. THE	 CLASS	 NOAR F R,
INTE f^FR APRAY	 a A INL 1:t ^LIISTrn;^iATItT];4	 WN 'r>	 PMAT1	 TS	 AN	 ARRAY
x r(INTAIWING	 THE	 N11MdER	 OF	 PIKELS	 KNI)1,N
Y T;R	 r1L	 J F	 CLASS	 '?AT	 THAT	 JiAVF	 (IF FN
Y ASST INFO	 TO	 CLUSTER	 NIIkRE R	 N5,
TN-E--,ER xiII,PERI	 T	 IF	 THE	 PERCENTAGE	 NERCL';INS]	 15	 LES5
x THAN	 M IND"R	 FREE	 ANY	 C! 11S1FIt	 145,	 TuFnl
Y r.	 ASSIFY	 TADS	 %	 TFR	 WITH	 POTENTIAL,li
TNT =riLR MTEiT(J;	 X	 1	 THE;	 NUHRER	 U^JiLLS	 PTTHIN	 A	 rL[ISTE4
Y FOR	 nHICHi}R011NO	 THIITH	 FXISTS	 IS	 LESS
x 'HAM	 M INT(Ii	 1 • HF'N	 CLASSIFY	 THIS
X
TNTFn,FR

"LLII:TER	 WITH	 POTENTIAL
THF.	 4Ur1$ER	 JIF	 tir, 1Kn5	 fn	 RF	 S K I P PFTJ	 IN

Y 'IRQcr?	 TO	 READ	 ,r AN	 L1 14E	 Notlp F^i	 NRECI.
TNTFGEH , I ":,rrf75:	 TFIL	 WWOR ER 	 nF	 DATA	 TAROS	 r(1NTAININ4
Y RU+I	 [)	 TR,11H	 INFnRMATTnN	 A11nUT	 A
X r;I VF	 I	 r,l AS	 S.
I'aTF r,L P ARRAY	 A '1^ R t I S[n: %+AT 1 1T1;	 A	 A^l	 ARRAY	 F_nk	 STURiN(i	 TGIF	 NUMRF'R	 nF
Y TRI)TH	 CARnS	 FUR	 Ilyr	 IN	 TNIITW'AP
T	 rTrr,EF+ 'J, 	 x	 T;+F	 BEGINNING	 rlXFL	 "Jt}mPLP	 n AJ	 C. TAPE_
1 r' R r. FSPI1NiOlNO	 71A	 rrHOUNLI 	T4i1TH	 AUFA,
TNITF',L^i ,,P1	 T	 k	 AN	 INDF-X	 VARIAr t I - F	 (;1RP E S 11 n W) 1 11 r,	 T'1
x A	 PT XFL	 N1,v{1F k.
1 11TEIiE k ,}Pi 1;	 r	 TIIF	 EN1)1NC,	 P I x L L	 Nt;HHF'R	 ON'	 CTLPF
x rnl'pF SPf)NnlNr,	 Trl	 A	 r k ntlNll	 T s21J Ti 4	 Au!	 A,

1 vTF rE. R Y	 A AJ	 I ;11F x	 VARI A61.F	 CQ R WFSP(1Nr)IN¢i	 In	 r,
r;E'C'' P f)	 Vtl'!r4q.
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INTEGER NRL(-I;	 % THE	 BEGINNING	 REC[JKn	 NUMRFR	 ON	 CTA13E
X CORRESPONDING TO A	 GRflUNU TRUTH AREA,
TNTt` G ER k'RE C21	 % THE	 ENDING RECORD	 NUMBER nN CTAPE

X
( ORRESP¢NDf
fHE

NG TO A	 RnUNU TRUTH AREA
(OR	 (ONNG SAMPLP	 PIXEL) NUMURTNTEGFR NSti; BEG	 NN

q ORIC,INAL	 DATA	 TAPE)	 IN	 A	 GROUND	 TRUTH
A

TNTEGER NSLI THEENDINGSAMPLF	 (OR	 PIXEL)	 NUMBER	 (nN
X ORIGINAL DATA	 TAPE)	 IN A	 GRDUNO	 TRUTH

INTEGER	 ARRAY N0M[OINCLAJST1;
AR % AL

AN	 ARRAY	 FOR	 STORING	 THE	 NUMBER
—	 X OF	 PIXELS	 THAT	 HAVE	 SEEM	 ASSIGNED

X TO	 FACH	 CLUSTER,
ARRAY PEr(CLS[0:NCLtJST3J% PERCLS [ NS)	 IS	 THE	 MAXIMUM
% PERCENTAGF Of PIXELS	 IN CLUSTER NS
% THAT	 BELONG TO ONE	 CLASS,
INTEGER	 ARRAY PTXF..LS[46NPIXFNQrl)J %	 AN ARRAY READ FROM CTAPF
X	 CO NT INING THE CLUSTER NUMBERS ASSOCIATED
X	 ITN A H PIXE	 IN , A SCAN LINE
INTEGER	 PIXTOTJ	 %	 HE T T L NLIMB R F PIXELS PR(10E55ED
INTEGER ARRAY TRANSPEGINCLUSTIIX TRANSPIN5I 5 AN ARRAY QINTAINING
X	 THE CLASS NUMBER MAT TD WHICH CLUSTER

NUMBER NS HAS BEEN ASSIGNFne

`
---------------------------------------

PROCEDURES READOUT, GROUNDTRUTHs COSTMATRIX,PnTENTIAL,
TAPEOUTPUT,TRUTHMAP,AND TEST ARE INSERTED HERE,

MAIN BODY OF GROUPXMAIN	 -- ---

I

HF ADOUTI
^^._.

GROUNDTRUTHI

RFA0(CAPOS,<I5>pMTNT0T))

RFAO(CARDS,<I5>,MTNPER)I

READ ( CARDS , < 2F1O,4 >,LAMDA,ALFA)3

WRITE.(LINE, <X5911MINTOT=",I6),,MTNT(IT)I

WRITE( LTNE,<X5r "MTNPER=", I6>>MTNPFR)I

4RlTL(LINE, <X5,"LAMDA= ",F7,2),,LAMDA)1

W P ITE(LINEv<X5, 'AIFA= 'ljpF7r2 >,ALFA)I

rOSTMATTIFX E

POTENTIAL;

TAPEO U T P UTI

ROL t=TRLIE;
TR U THMAP( NR1,N.R 2.p I N C_pKl.,_i K2 , I.NCS PNRECEND, NP I XEND ► BOL);

TE5TI

TRUTHMAP(NRI,NR2,TNCR,KI•K2,INCSPNRECEND,NPIXENOPSOL)I {

R THMA N 1, NR2sTNCR,KI,K2,INCS,NRECFND,NPIXENDPBOL)I
n G K (L 'D 1.5 -C )_f.. -

END OF-JG ROLiPXMAIN;

0pulGW,M' PAGE JS
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PROCEDURE HEAVnUT1
x	

__ TNF NRDC nl+FtE MFADrsU'F -- READS THE THIRD RECORD OF CTAPE
X	 AND WRITES THE INFORMATIO N FR(!M THE FIRST THRFE
^	 RFCf)RDb OF CTAPE UN THE LINE PRINTER•

RF.CIN
LIST	 LI(FOR Ii = O STFF' 1 UNTIL It DO CTI1II,NRECEND,NPIXEN0,

L?(FDR I-;.;12 &TEP 1 -UN_Tll__I-l+-CHk-N DOCI-11,CT1[I11),
l_.3(FOR T.-1 STFP 1 UNTIL NCLU	 ^l0

CI,NUH(II,NCHAN p FOR Jt=1 STEP 11 UNTIL NCHAN DO
SiGfJ,I73)j

F O RMA T 	Fl 01.(X5,"TAPE ^tO9=",2A6,X5,+ I NCHAN*:",I5,X5, ' I NS AMP=",I5/

X5,"NRin",15,X5,"NR2=",15,X5,"INCR=",I5/
X5s"F(^c „ ,IS,XS "^2^", 15, X5,"I CS="MI5/
X5!"9^LV.S T -" p I p 5t 11 N8ACK = "f I P X5, "NRECFND='
X5,"NPIXEND-", I5)s

F102(If0,FX0.1)r
FlU3(I7, I1(1,XF,*I6);

x	 -	 READ THIRD RECORD OF CLUSTER TAPE

REA D (GTAPE,pKrLUST +I sNUM[*3);

WRITE OUTPUT FROM CLUSTE R TAPE
WRITE(LINE,FI0I,L1);	 T	 {WRITE(DISC,F1(11,L1 );
WRITE(LINE,eXS,"MAXCLUST=", I5>,MAXCLUST);

WPlTE(LINEstX5:"CMIN= ",FT*-2>,CMIN);
1

WRITE(LINE,e/K5,"MATUTC",I5>,MATOT)f

WRITE`C(. I NE, c//X4, "I ", X4, "DELTAF I I"> );

WRITE(LTNEPF102PL2)j
WRITE(LTNFPCX5,"NS",XS,"NUMtNSI",XBP

'VALUES OF- S.l&th5*J1">);

WR1 1E(LTNE,F103,L3);

F('R I t =O STEP 1 U NTIL NCL. $ T D p

PIXTOTt= PI XTO T +NUMEII;

WRITE(LINE,<X5,"T H E.TOTAL NUMBER OF^PIXELS=",I6>•PIXT0T);'
WRITE(IINf,c/X5,"THE N MBER OF UNCLASSIFIED PIXELS*",

I5/>,NUMC0));	 t
1

` EMC OF HEADOUT;	 ^^	 f

OF 
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PPOCEGURE GR(-UN[lTkl ► THf

STOPF 1NFDRMATION IN COSTMATRIx MATNCNSPMAT],
q	 READ GRn(JND TRUTH AND COlJNT PIXEL ASSIGNMENTS

BEGIN

ITST	 L4(LB,LE, NSP.NSE)3

FnRMAT	 F104(4I5))

F[IR MATtml S TEP 1 UN TIL MAT OT_ 00	 --- Y 
BEGIN

PEAP(CAR0SpcI5>,NCARDS)f

WRIlE(LINE,</X5:"THE FOLLOWING",I4,
" GROUND TRUTH SITES CONTAIN CL A SS NUMBER" , I3/>r

NCARDS, MAT )fit
WRITE ( LINEP<x •"9EGIhINIP i G"PX2. " ENDING"PX3r

"BEGINNING " PX2," NOING" / X4,"SCAN LINE"p
X1 ► '"SCAN LINE ► aX2 s" ELEMP.NT " AX3,"ELEMFNT">)f

FOR I:., 1 STEP 1 UNTIL NCARDS 00

s ,	 READ(CARr)Sp F'104, L4)f
I	 ViRiTE(LINEs<4I10>,L4))

LB S= IF LB LSS NR1 THEN ` NRI ELSE LR;
=IF LE GTR NR2 THEN 4R2 ELSE LE;

-58a=l. NS8- ..LSS Ki THEN K1 LSE NS9f
NSE%=IF N5E GTR K2 THEN K2 EL E NSF)
NREC13 = INYEG R( ( LB-NR1) / INCR+ )f

	

1	 NP Xl g = NTEC £ R NSBRKI) / INCS+I)3
-.	 NPIX2lcENTIER((NSE-Ki)/IUCS+1)f

GRNO[MAT p lvlJ:=LBf
a	 GRND [ MATsIA?]S=LEf

GRNO f MA , Is 31 : WNSBf
GRND MAT , I94 %=NSE)
NCROSCMAT } S=NCARDS)

MR3=NREC1-NROLO-l)
SPA CE(C.TAPE,MR)f	 ----_—.—
FOR NRE: CI=NRE C1 S TEP 1 9NTI L NRF'C? DO

^e	
BEGIN

	

E	
RrEAD ( CTAPE , NP IXENDpPIXELSC*I ) f

FUR NPIXa = NPIXi_ S TE P_ 1 _UNTIL. NPIx?_ 00

MATN [ PIXFL,S[NPIX -
1}GMAT )_

S= M ATN [ PIXE LS[NPIX w 1 ] p MAT]+1f	 —

ENOf

s	 NROLDS=NRE'C?f -

!	 ..._._
ENO)

ENO)	
_ _ ^ -

JEND OF GRO U N DTR UT H f

AGE^RIGTi'^AL ^' 	 M
OF POOR QUALM	 7Y 



I

'x wwwwwwwwrwwww+wrrwwwrwwwwrwwwwwwwrw+www

PROCEDURE COSTMATRIX)

T
x	 MATNE NS^MAT]"i SCE^T A JÂ TT THE NUMBERPI X ELS IN

CLUSTF R NUMBER NS HAT ARE KNOWN FR04 GROUND TRUTH
T	 TO PELONG TO MATERIAL NUMBER MAT
Y	 FOR EACH RnW NS, TRANSPfNS] IS EallAL TO THE_ C11LUMN

X	 {^U {3ER MAT CONTAINING THE LARGEST VAE^UE O	 `AAfN[NSRMAT].
X	 TH S MEANS THAT CLUSTI: K N IJMBEF NS HA ;FEN ASSIGNED

X	 TO MATERIAL NUMBER 4AT.

BEGIN

^	 *+*rat*tttttttt^ttttt^tt*ttttt
%	 GLOSSARY OF VARIABLES LnCAL TO COSTMATRIX,
x	 a*,et,^tttttt #**tt*ttttttttt}tt

INTEGER ARRAY
H AGING OF THE CO MATRIX.

KoUNTt0$mAT0T3f	 AN ARRAY CONT NING THE INTEGERS

INTEGER

ARRAY

S
REAL

INTEGER

ARRAY

REAL
ARRAY

ARRAY

REAL

FORMAT

MATMAX)	 % T 
TO

H MAXIMU FOR 	 OF THE
CQ TMATRIX MATH NS,MAT]

PERHIT{OIMATOTI)X THE PERC£N AGE OF SIX€LS THAT ARE
ACT;; A' L	 F CLASS MA THAT HAVE BEEN
CLAS5IFI4 AS BELONGING TO MAT BY
THE COSTMATRIX

PERTOT)	 X THE AVERAGE PERCENT CORRECT CLASSIFICATION

O VE
CQST ATRIXSES FOR CLUSTERS CLASSIFIED

SKIP)	 X THE NUMBER OF SPACES TO SKIPN PRINTING

OUMTlB 
114E

 gF08TMATRIX FOR A VAR
IA BLE

LASSE
SUME0lMATOT ]

1%THAH NUJ SER OF gAPSIELSDOF A
T GIA ^IEN CLASS

TOTA 1	 %
Ch-ASS UM

Y OF HTO NSJ MRA RIXv	 TOVER ALL CLASSES,
TOTM 0INCLUST])X AN ARRAY CON AINING THE SUM OF EACH

ROW IN THE COSTMATRIX MATNfNS,MATI,
TOTNSEGIMATOT]) X AN

p
ARR

N
AY COYTAIN

(
I
J
N? THE SUM OF

MATH NSiMAT , NEXCLUOINVG MTHOSE CLUSTERS
T€1 8 CLASSIFIED BY POTENTI A L

TOTSUM4 	 'I- T#£-- 044 Of SO ME NAT ] OVER ALL ILASS€Se

F1020(X3r"CLUSTER/CLASS^,*I6,X*,"TOTAL"s X59"CL ASS"PX3,

"PERCENT" )p
F1021(X4s14#XQs*I6,X*sFlO OsliF,F10 Z),
F 021(/X 

5 
R"TO AL" ► XT,* v 6 p X*, la 05,

F10Z c IX fl^C]RRECT'^,XS*I^a(?oX
6
,F^0 O)r

F102 4/X44 "PLRCENT"#X6s *F6 0, sXa,F10:2)1
F1025(/X4i,"PERCENT",X6,*F6,1PFiO*2))

* *,^*t ****strrtt^,ta******tt

® 4Q^
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MAIN 800Y OF COSTMATRIX

FIND THE MAXIMUM E , TRY IN EACH R04 OF MATN[NS,MAT7

TTRAN SPENS3l C THE E RATIn OF THIS EMAXIMUM NUMBFR T TO THE
TOTAL OF EACH RnWl, STORED AS A PERCENTAGE IN PFHCLS[N53r
15 A MEASURE OF HOW GOOD THE CLUSTER IS FROM THE POIN
OF VlEw OF CDNTAJNING Pi ELS QF gNLY ONE CLASS.
ONLY CLASSIFY THOSE CLUS ERS THAT HAVE: AT LEAST MINTOT
GROUND TRUTH PJXELS IN THEE M 	THE REMAINING CLUSTERS
wILI PE C L ASS IFIED E3Y POTENT I AL.

FOR NS:=1 STEP 1 UNTIL NCLUST DO

} BEGIN

MATMAX:=0;

FOR MAT:_1 STEP ._. . _UNTIL _ M ATUT DO

REGIN

IF MATH [NS.MATI G T R MATMAX

i	 RE MATNAXI m MATW NSPHATI;
k	 i	 TRANSP [ N51;=t4AT;

ENO

ELS E;
	I

TOTMENSI :=TnTM[ N5I+MATNC NSPMAT3;
END;

r

[F TOTMfNS] L55 MINTOT

THEN

{	 TkANSP[NS7#=
PLRCLS NS1 120

FLS E

PLRCLSINS1:=
MATMAX / TOTMENSIX100;

FND;

r .P kv4'AG
QLTA,^
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COSTHATRIX (CONT,)

FOR FACH LASS MAT, THE pERCENTA E CORRECT
CLASSIFTC^TION AS MEASURED BY THE NUMBER OF GROUND
TRUTH PIXELS IN THOSE CLUSTERS ASSIGNED TO MAT
DYVIDFD BY THE. TOTAL NUMBER OF PIXELS IN ALL C LUS TERS
THAT ARE-KNOWN TO.BELONr. TO CLASS MAT, IS STORED
IN T [E3 ER4L.L DRRECT

[
CLASSI CLASSIFICATION FUR ALL

GASSES S GIVEN BY PFRTUT,

F0 1' t0Tt= 1 STEP 1 UNTIE, MATOT n0

FiEG
R X.S]aI- - TEP- L 11NTIL NCLUST 00	 - -- ^^ --

'I
BEGIN PERCL LN51 .05 :MIKP-LR

^^N t NS7i=

^RaǸ SP- N5]EAL MAT AND PERCLSENSI GEA MINPER_

THFN

SUM[MATII=
SLJME MAT 7 +MA Try [ NS, MAT 7

ELSE;

IF TRANSPt_N.S_.T !t£Q 0 AND PER- CLSENS] GEO MIMPER

THEM

ToTNSEMAT7i=
TOTNSIMATI+MATNENSsMAT7

ELSE;

JENDJ	 - ---	 1

IF TOTNSCFSAT] LSS 095 

THEN
t	 '	 PERHIT[MATlsc0

ELSE
PERHITEM'AT 7 t-

SLIM[ MAT ]/TOTNSE MAT 7x100)

LNpf

F rak MAT : =1 STEP 1 UNTIL MATOT 00

f	 af3F x ThTSUM t =TOTSUM+SUH [ MAT 73
T0TALl=T0TA(+T0 NS[MAT7f
ENU;-

IF TOTAL LSS D.5
-	 THE N

PERTOT1=0
El 5F

PFHTUTt=T0TrUM/T[1TA.Lx100f,

r

F POORQ ̂ ^IS
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COSTHATRIX (CONT9)

WRITEITE OUT THE CnSTMATRIX AND ALL TOTALS. 	
-	 --

HRITE (LINEIPAGEI )3 

FOR MAT $ = I STEP I UNTIL MATOT 00

KOUNTIMAT I:=MATE

SKIPl=(l0;MATDT)x6+1f
WRITE( I N Flo 0*MATOT' R MAT : m 1 STET' I UNTIL MATDT

DO HUN^IEMA I #SKIP++

FOR NSl m l STEP 1 UNTIL NCL UST DO

WRITE(LINEoF'IO21PNSPMATGTPFOR MATIml STEP I. UNTIL
MATDT DO MATNENSoMAT ] sSKIPPTOTMENSIPTRANSPENSIP
PERCLSENS})f

WRIT E ( LINE*F1022PMATOTsFOR MAT: a I STEP I UNTIL MATDT
00 TOTNStMATlr5KIP TOTAL)f

KRITE(LINE , f102 PMATUT P FOR MAT : a1 STEP 1 UNTIL MATDT
00 SUMEMAT),SKIPoTOTSlM)f

WR1TE ( LINE , F1
[
024PMAT T,FOR MAT

T
: = 1 STEP 1 UNTIL MATDT

WRITTE ( DISCsF1025oMAFOT , FOR T MA1 = = 1 STEP I UNTIL MATDT
00 PERMITEMATIPPERTOT)f

END OF COSTMATRIX)
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P RnCFDORE	 POTENTIAL;

THE	 PROCEDURE POTENTIAL SORTS THE$PE:CTRAb SIGNATURES
M GRaa PS.	 THEH5S[iCT k TE n 	WITH	 EACH	 CLUSTER	 INTO

COSTMAT81XSIGNATURES	 OF	 CLUSTERS	 THAT	 WERE	 CLASSIFIED	 BY

TFR4	 PR	 ^FDURFTffATiŜ INC E THE N Pf1TENTIaL Y CLSIR A TN
PTRAIN.	 THE	 SIGNATURE'S	 OF	 LUS5TERS	 THAT	 WERE	 NOT

$ CLASSIFIED	 BY	 COSTMATRIX	 AR	 S1 OWED	 IN	 THE	 ARRAY
X Y[J,KT	 AND	 ARE	 THFN	 CLASSIFIED	 IN	 THE	 PROCEn(JRE	 PTE:ST.

BEGIN

GLOS SAR Y PF	 vARIAM S	 LOCAL TO-POTERTIAL,

INTEGER ARRAY	 CnUNTS0tMATOT p 0lNCLUSTI)%	 CU I INTLIPJI	 IS	 THE	 NUMBER

±
-

%
%

OF TIMES THAT TH	 pp	 T^#T AL FUNCTION
AT THE SAMPLE	 AELU CUSS I	 IS
AUGMENTED BY LkMDA	 N . ORDER	 TO CORRECTLY

T --	 -_ _	 _	
CLASSIFY	 ALL	 LA P 	L CI	 SAMP^ s

ARRAY GSOtMATOTIJ%	 AN	 ARRAY	 CONTAIN	 N5	 THE	 D	 SCRIMINANT
X FUNCTION FOR	 EACH	 CLASS.
REAL GMAX;	 %	 THE	 MAXIMUM	 VALUE	 OF	 THE	 DISCRIMINANT
% FUNCTION*
INTEGER IFLAG;	 %	 A	 F	 AG	 TO	 DETERMINE	 WHEN	 ALL	 TRAINING

BYSAM LES ARE	 CORRECTLY	 CLASSIFIED

TNTE{,f. R TOI)	 Y	 A
A
 NA^EXL'VARTAEILE	 CORRE5PnNnING

% A SS
INTEGER IGMAX;	 %	 THE L NUMBER	 OF R THE	 CLASS	 WITH	 THE	 LARGES"
x DISCRIMINANT	 FUNCT ION*
INTEGER J;	 %	 AN	 INDEX	 VARIABLE:	 CnRRE SPnNnING	 TO	 THE
%
INTEGER

CHANNEL	 UMB R
K;	 %	 AN	 IND EXVAR	 A	 LE	 6nRRESPONIIING	 TO

INTEGER

A	 S AMPLE HUM.8E

CC

R

jjrr^^ARRAY	 KFLPIOINCLUSTInx
	

ARRAY	 EE
CL YS T TDEACH T CLNSTER THEIl1MI^AN BE

X CLASSIFIES}	 USING	 TH	 METHOD	 OF	 POTENTIALS.
INTEGER KSw;	 %	 A	 CnUNTER	 TO	 LIMIT	 HE	 TOTAL	 N I.IMB FR
% OF	 ITERATIONS	 IN PTRAIN	 TO	 JOO
INTEGER KTi	 It	 AN	 INEX	 VARIABLE	 CORRESPONnING	 Tn

A	 SAM
INTEGER

LE NUM E
L;	

ANCJ^REXNUM	
.RDLE CORRESPONDING TO

TNTEGER ARRAY	 N(OrMATOTIJ%	 N 	 1	 IS	 AN	 ARRAY	 CONTAINING,	 THE	 NUMBER
X 0	 SAMPLES	 LABELEDLAB

E
ELED	 C^

P

ASS	 I	 THAT	 ARE

I	
SS

0NSAMPK;	 THEDNUMREROFNCLUS	 ER 	 RE	 C	 4SSIFIEDIER,INTEGER

REAL HEP	 QUA	 E A ^	 THE	 DISTANCE	 INSLIM;	 FFATURE
- % _	 SPACE	 BETWEEN	 ACLU T	 R	 TRAINING	 SAMPLE

A	 0AND	 CLUSTER	 SAMPL	 BE	 CLASSIFIEO

ARRAY
BY	 POTENTIAL

Yro!hATOT,0tNCLU5Ts0tNCHANj;%	 XEIs.1jK]	 IS	 THE
SPECTRAL	 SIGNATURE	 n	 THE	 K	 TH	 SAMPLE
LASELEO	 CLASS	 1.

ARRAY YSOiNCLUSTPOtNCHANI;%	 AN	 ARRAY	 CONTAINING	 THE	 SPECTRAL
% SIGNATURE	 OF EACH CLUSTER	 TO BE
% CLASSIFIED	 BY	 POJE:NT^AL,
TNTEGER ARRAY - 	WT[Ot M AT -OT,0:NCLUST];%	 W EIGH T 	NG	 ACTOT	 ACCOUNTING
% Fp R	 THE	 VARYING	 NIIMBF'R	 nf'

P XFLS	 IN	 EACH	 CLIISTF R.

rwrrwwwwrwrwrwwrrrorwwww^rwewrwwwwwrrrwr

> PROCE VURES PTRAIN	 AND PTEST	 ARE	 INSERIFO HERF

t

wwrrararrwr w wasrw^. wr rarrwwrr+wwswrwrwwww
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i

MAIN	 BOnY	 OF	 POTEN TIAL

Fnk	 I1 =1 	STEP	 t	 UNTIL.	 MATOT	 (W

VOR	 NS	 :=1	 STEP	 1	 UNTIL,	 NCLUST	 DU_

TF	 TRANSPENSI-FOL.O	 OR	 PFRCLSENSI	 LSS	 MINPER i

THE M _.._. _...
BEGIN

K:=K	 I i
Kf_EPC.KIt=NSf

FOR J:=1	 STEP	 t	 UNTIL NCHAN

r

DO

A~—^Y	 K,J }t=Sl	 IJsNSl)

END
Fl SE

RLGIN
I:=TRANSPCNSIJ

^r^rri77e-N	 I )+i 1
NUmINS3fwTEF: -N	 33t=

--	 _-_

i{IIN411L
. f nR	 ,)._t	 bT

NC
- _	 -	 _ ._..

I,	 II,	 :=5	 G I

N5AMPK:=K1 t}
W 	 I TEt L. , X NEA < /X5+"I "s X 5, "N C I l"/> ii

FOR	 I :r;1	 STEP	 1	 UNTIL	 MOOT	 O[i

wRITE(L_INEs4I6,I10 >,I,NEI3)f

_ PTRAIN.)

ENO	 OF	 POTENTIAL)

- wmR..ea r.e.m scsrnm.n1snr raerre.»inr+R r.O .arsa'w*rrswN•
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P0nCFCUHL P 1 h A I N

TI;F	 PPbCEDL'RE	 PTRAIN	 TTFRATIVEL,Y	 M11 01FIVS	 THE	 DISCRTMTNANT
z	 FUNCT'VT45	 GFI1	 UNTTI.	 AU	 13F	 THE	 L A AFLF0	 SAMPLr75	 WHOSE

T SPECTE'AI	 5IGNATHRE5	 ARE:	 STIMEO	 IN	 THL- 	ARRAY	 %FL,J,KT]
?	 ARf,	 CFlf{REC -.l Y	 C LASSIFTLU+

a T-
RFGIN

IFLAG: W 1; {	 -
1+4L:a0;

fK
r?ri	 3:=1	 STEP	 1	 U M TIL	 MATOT	 Erb]

II f VR	 .J1_1	 S*FP	 1 .. UNTIE,	 HC 13	 DO	 -'--- --

1
J ^{nIJNTT T, J]:=(s1

—^!	 .,FILE	 IrLAG	 ESE	 I	 AND	 KSW	 L55	 100	 D 

iFLA J;:=Of i

r	 rtit?	 L c=1	 STrP	 'I	 tJN! 7TL	 MAT11T	 DO

fl y	 KI:=I	 STt P	 f	 U	 TIL	 r EL 1	 D u

(;r1Ax l=fli

Li z ^	 {	 ^	
FpH	 I:=1	 STEP	 1	 UNTIL	 MA TOT	 D(1

FOR	 I:=1	 STEP	 1	 UNTIL	 MATGT	 F0

a: IF	 F4ri f" 
NF

- 4	 0I

.-r• ---; —.^.F ^_	

JaFt'YTN
i;f? R	 : z I	 5 T F P^ 1	 a FJ T It.	 N1 I_ U N

1

9EGI 4
F. i

	
D;

{. f!	 F_OR	 J*.=1	 STEP; 1	 iMTIL NCHAM	 €}il
FOR

:.t^ I	 S1i
Mts5IJwfCxEL^,KT,J1"XII ► K,J])*2;_

- 	- — ------
ftT):=r(11+(( 1 +lAMr)AsCOrJNTri,K I )l

i F[INK];

GIT3s=G[I1/14E1],

IF	 G( II	 GTR	 GMAX

f
ITH FN

--
E G T N^-

-	 i .D	 urdAX:^Gf Lli
S_	 f

i E NO
!	 E1.SE3

J	 LfiSF; J

I;- TG V Ax	 R EG	 L,

THt 61 .

€	 BEGTN
EIFLAG:=1i

^ ^]UNTtL,xT]:= CT.i^;'vTEI sKTl+1;
i . EN 

rRalE

i rFF^	 N.Iur. I J,

` ORIMAU PAGE IS
OF POOR QUALITY



j	 I	 i

k.,	
PROCEDURE PTEST;

THE PRUCEDU E PTES.T UAES THE DISCRI141MANT FUNCTIONS
CALCM.AT E D IN PTRAIN TO CLASSIFY THE CLUSTERSr WITH

N-()^CCLASSTFTto}TTiYEfHETPRDMOURFHGOSTMATRIXRDKT3s THAT 
^tEFtE,

REG3N

FUR KTI=1 STEP1 UNTIL N•SAMf l K D€1

BFGIN
cMnx3_0a

FR I:=1 STEP i UNTIL MATOT DO
G[IJ:= 0)

FOR 11=1 5TF'P I UNTIL MATOT DU

THEN

IGMAXt*O

FOR 1t s .-I
:

STEP_
.
I UNTIL NO] 00

k BEGIN
m t_ r	 k

^.	 FOR J:=1 STET' i UNTIL MCHAN DO 1

SUM ,= SUM+(-YtJ(TLJL91_IAKa_^.7.). *^a

])t(I+ALFA X SUM) )	
-

G[I3$=GEII*(( 1+ LANDAx COUNTCIaK ,s,	
WT'(f K]

'END)

TE-Gtil rata GMAx _	 ---r-r	 -
THEM

_. .

	

-	 --.	 bFaLN
MAXtsGEII;

IG14AXI=I3
#	 END.

r
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M	 awrrr rwa s.rww.r wwwawrw rwrM.rwws^.r MCw.n p rw.N+^	 -

PROCEDURE TAPEntITPUrI

M	 THE PROCEOLIRE TAPF'rlUIPUT P P ODt1CFS THE OUTPUTTAPE'
y	 OQ[APF.	 THE FIRST PL CORD (IF CIUTAPF CONTAINS THE CONTENTS

nF CTl f *3.	 EACH S l ICCFEDING RECORD CONTAINS THE
y	 CEASSIFICATTON OF rACH PIXEL IN A G IVEN SCAN LINFQ
%	 THEE ARRAY PIXFLSI*l CONTAINS THE CLUSTER NUMPF.RS
X

	

	 Fnq FACH PIXEL IN A SCAM LINE, AND THE ARRAY KLASSE*a
_. CONTATNS THE CORRESPONDING CLASS TO WHICH EACH PIXEL

Y	 HAS BEEN ASSIGNFO PY FITHER COSTMATRIX OR PnT̂ F IAL*

HE G. I N
WRiTE.(QUTAPFs51rCT1C*l)3

SPACECCTAPEsO NROL D)f

FOR NREC:=l STFP 1 UNTIL NRFCFMn DO

RE41N
RE:A0 CCTAPEANPl YEND,PIXELSC*] );

FOR NPIX1=0 STEP 1 UNTIL. NPIXE ND-1. DO

KLASSCNPIXI:=TRANSPEPIXELSCNPIXIIf

WR ITE(OUTAPF,NPIXEiND.PKLASSC*1 }s'
'	 E N UJ

W R ITEUINE, cX 5,I5s"SCAN LIME.S s E'AC H  CONTAINING",I5.0
► 	 "PIXELS HAVE BEEN WRITTEN ON O l JTPUT TAPE11>o,

N	 F T	 TPUT fREKI-	 A	

)

a

t^

op



P ROCEDURE TRUTHMAP	 (NRI.P^IR2slNCRsKIPK2plt CSpNRCD*KSMPPBnL)J

INTEGER NO! BEGINNING RECORD TO 	 BE
PROCESSED

INTEGER...	 _ _NR2I_`.. X FINAL RECORD Tt1. 8F . PRMSSE.D

TNTEGER INCR) THE	 SCAN-LINE	 INCREMENT	 s

INTEGER K 13._ _.	 _^ AIE.0 I NNINO	 SAMPLE.--NUMBER

TtITEGFH K7; % ENDTNG SAMPLE NUMBER

TNTF FiFR .	 _ Ik^csj X SAMPLE NUMBER INCREMENT

INTEGER NRCT); % NUMBFR OF RECORDS TO PE
PROCESSED

TNT`EGE =R KS
MiP3...___._._	 -._._. --	

NJMPER OF -SAMPLES	 TO _BE._
PFIOCF SSED

PnOLE_AN;	 -- :_BOO)_	 _ A	 BnOLEAN	 VARIjIBLE_USED	 TO	 PRINT	 MAP
E3EGY N

INTEGER ARRAY SCALE[Dfle0.sKSMP' DIV 5]f%	 DUTP IJT . SCALF	 F DR	 THE	 SAMPLE

NUMHFR AXIS

PROCEDURE SAMPNOS INSERTED HERE .

x PROCEDURE PLOT	 INSERTED HERE

REAL ARRAY C. OMBMAP1. 0_f NRCDP+GVKSMPJVZ USED TO PRINTOUT THE SPECIFIED
AREA, CLUSTER NUMBERS ARE

1

PEAL ARRAY CHAREI:91) Z	 USE S)	 TO	 STORE	 1	 THRIJ. 9	 AS
CHARACTER DATA

TmTEGtMR ARRAY PR C101 5013
_. ^	

15CALING ARR A Y

X SCALING ARRAYARRAY-INTEGER FRCC 0154.31

-1 NTEGE
.
R	 ARRAY OS M P [ O ' s 50-1.	

_
_ _. _.1_ SCALING_ARRAY

INTEGER ARRAY ESM?[0f50); %.SCA`L.ING	 ARRAY

T N.I'E'GER I it JsKYLi -
	 __

COU4TERS
FORMAT.	 IN . FMT3:(X24s2.15*.X5x2I.5);

FORMAT OUT FMTS("	 THIS TS T HE COMBINED* GRO UN DT RUTH MAP."P// / )3

.MAIN . BnDY. GF	 % R1lfJND T RU TJ4. 	 r

IF SOL

THEN ..	 l

HrqlN

PAGEOF p	 is
OOR- QU
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i Y r *s	 Ih IT: AI IIFS	 I q F	 C0 144 14AP	 +*+
_..vnq
	 ,I:_I	 .STFP	 I	 UU T IL	 NRCJ

r}E)	 FI]R " KF=I	 STEP 	 -1	 IINTIL	 Ka!dN

° I]	 i'^MHMAPfJ^KIS=,^'n=_ _
	 ..

x ++k	 SETS	 UP	 T IIF	 C ! {ATtACTr R	 VFC T nrt 	 t++

FILL	 CHAR[+1	 ;-,Illi	 '^1,^^ .n^n^, t ^niugee^n^j ,r^npn^+,7n^ug„yngvl a

+++ 	 GENERATES	 THE. SC A LE	 ALONG THE . SAMPLE	 NUttFll±ft AXIS ***
— _

SAMP%OS(K1,KS4PsINCS);	 _..

Y +a*	 PiOCESSFS	 THE	 C ^.A SSES	 *++
l

FI]k	 L:=1	 STFP	 i	 UNTIL	 MATQT

[^ n	 p f is I N-

:`	 FPR	 I==1	 STEP	 I	 JNTIL	 NCR FISCLI	 f}fl F

;8hCIIIs = IF	 GRNbIL,Isll	 LSS	 NRI	 THEN	 NR1
EISF	 GRND(LsIsll;

_	 _ :.	 _PRCLI)==I!^TEGE!tC(BRGtIl^NR1XlINC.Rfilf

FkC[I}:YIF GRNPUP Is2l	 GTR NR2	 THEN	 NR2
a.

}. EL.5F .GRN13Ef.sI,2I;

ERCIII l,=CERCET7 w WRI)	 UIV	 INCR+1;

- S r•1PEI7s `=1F	 GR40[LrI,31	 LSS	 Itl	 THEM	 Ki
-	 ELSE - GRND1.L,L,31;

^. '.	 '	 85M'CII: w T*1TE,ERCi85:^Sr'[i]'K1l/INC5+1 )1

{
-

FS'd^plI:?Gp'J7I^,Ts4)	 ';iR	
rc2 ER 	NSFGRMOILsI,41;

-TF

^
FS	 III.-(FSM	 EIi	 K1)	 I)TV	 I.fCS+11

3

E 1404	 _.
3

ASSIGNS	 THE	 CL A SS	 -'cjMRFR	 TO	 G11MRMAP	 AT	 GRIIIJNf)	 nATA
4<	 j LOCATIONS	 + n *

i 'rOR	 1:=1	 STFP	 1	 UNTIL	 NCROSILI
i i}.f]	 VilR	 J	 .8RCTII	 STEP	 1	 UNTIL	 ERCUII

"r}i3 FnR	 K. c g SNPC I l	 STFP	 1	 IINTIL	 ES + I I'E II
',.,_..F7FGItii

{

I I.	 CPM1;,4AP(.;s K) t=CHAR[Ll;

^._!	 F"ICI

f_Fa,},

Y ***	 P414TS	 OJT	 TmF	 Cf)MAENFf)	 GrRndj4,lTR0TH	 MAP	 ***
4

WRITE( LINETPA;r.j:}:.

wRI IF- 'i_IN E,Fmrp

P! LrTC^11141"AP);

F .E aE'iE i 
I .ti

W R ITF(L TNFfPA,E-3
5Au1':t^l>iK1rKS„+^.,IHGS}; ^

PI'^TCCLA55)TL^,L

( tut ! nF	 TkUTH *-.AP:

J?T
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f

PROCE DURE SAMpN0-S(Kl	 KSMP.- INKS);

TriTFGER K1;	 % BEGINNING SAMPLE	 NUMRFR

TNTEGE'R KSMP)	 %	 SAMPLES TO BE
PROCESSED

7NT.ECER	 _.. XNC5^ ._ 	%	 SAMPLE NUMBER	 INCREMENT

BFGTN

INTE=GER TFMP;	 %	 INITTALIZFD Tn	 THE	 BEGINNING

—	 SAMPLE NUPBERs	 THEN INCRE MENTED

TO	 CREATE	 THE	 SAMPLE a+UMBER

x SCALP

I	 TE:GER I,J;	 COUNTERS

***	 MAIN	 BODY _IMF .SAMPNDS,-- *.*

TFMPJ=KI;

FDR	 I:=1	 STEP	 1.	 UNTI L 	 KSMP	 DIV	 5.

DO	 FEGIN

* CUNVE;.RTS .A 	 SAMPLE- NUMBER	 INTO .A -C0LU ti4N. VECTDR-

SCALEti ► I):=TFMP	 DIV	 100;
SCALEE2aI):=(TEMP	 MOD	 100)	 DIV	 10;

SCALES,€):=TEMP	 MOD	 10;

TEMP..i.=TEMP+5xI lCS;

X1+1 T F 	 PN0S;	

--



` PROCEDURE PLU7(MAP)f

S TNTEGER ARRAY MAP(Os03f SPECIFIED AREA TO BE 	 PRINTE0

BEGIN
.

INTEGER SCL; X	 INITIALIZED 7n THE	 INITIAL

RECRRO NUHRF'RY	 THEN	 IS
INCREMENTED TO GENERATE THE
THE SCALE ALONG THE 	 RECORD.
NUMBER AXIS

INTEGER I,J,K; % COUNTERS

FORMAT	 OUT FMT3(X5,12OA1)=

FORMAT OUT FMT4(X5r12OT1)f

FORMAT	 0LIT FMT6(XIPI3)3

FORMAT 00T
__.

FMT7'(X5.25(I1'p74));
op F 

~^	

p

 IT

hl
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I
1

1

i

PROCFQUR.E._ TESTP*	 _.	 -	 -BEGI N
INTEGER	 COL;	 AN TNOEX VARIABLE

ER ARRAY
ARRAY	 PFRCORE03101^# IO	%PFRCE	 ANT OFTi^UE I CLA N	 OSSTHATARE

M ATRIX

X	 CLASSIFIED CORRECTLY
ARRAY	 PFHCORCOLEDt1011 % PERCENTAGE OF PIXELS WE CALL MAT

THtT ARE REALLY MA r
ft;TEOUR- k-tRAY SUM[01201) % TH SUM OF EACH ROW IN ERRMAT
TNTEGER	 SUMROW;	 % THE SUM OF ALL ELEMENTS IN ERRMAT
TNTEGER ARRAY TrT(01203f % THE SUM OF EACH COLUMN IN ERRMAT
TNTFGFR	 TnTDIAGf	 % THE SUM or THE DIAGnNAL ELEMENTS IN ERRMAT
REAL	 TOTSUMf	 % THE OVERALL PERCENT CORRECT CLASSIFICATION

FORMAT	 FI(/sXl3s517sX5sI5sX5pF6,?)s

F2(/ /sX5s ++ PERCENT +ls5F'7a2sXl5sF6.2.)s
F3(/sX5s"SUM"sX5s5I7sX5sl5)f

LIS T	L1(FOP T t=l.. STEP i US , TIL MATOT Do ERRMATEMATsI1rSUMEMAT3.,
PERCOREMAT3)s

L2(FOR It= i STEP i UNTIL MATOT 00 TOT[ I)s SUMR0W)s
L3(FOR It_l STEP I UNTIL. MATOT DO PERCORCOL E I7sTOTSUM))

WRITE(l.1NF p <///sX23s"TEST ERROR MATRIX 11>0)

WRTIE,( LINE s< ////, X 25s"CLASS IFIEQ",X2Qs"SUM"P.X5s"PERCENT"s 	 j
//r X5pllACTUALll>)}

	

{	 SPAGE(OUJAP s l) j
_ FOR NSR	 S EP .-UNuL NREUND--DU

	

E	 READ(OUTAPFPNPIXEND,CLASSENS,* 3) s'

FOR MATt=I STEP I UNTIL MATOT DU

BFGIN	 t
REA0(CARDSs<I5>sNCARDS,)f

FOR It=l. STEP i UNTIL NCARDS Ufl

BEGIN.	
--f

	

ll11

	 REA©(CARDS s <415>PLR#LE s- NSBs NSE) #

L.B I=IF_..LS .LS5 -NR1 TFIEN NR_ ELSE L.B
LEI=IF LE GTR NR2 THEM NRZ ELSE LE;	 k
NSBt=IF !TSB LJRg K1 THEN KI JLSE NSB;
NSE:=IF NSE G R K2 THEN K2 LSE NSF#

NPEC1tcINTEGER((LB-NRt) /INCR +1)1
NREC2 :vENTIER((LE-NRi)/INCR+i))
NPIXI;=INTEGER(NSB;Ki)/INCS+l)f 	 4

to	 +^tPIlc2	 ENTIER(^PISE K1)/I^ICS i)f
0 DEMAT,Ii1xt=LB#
G NDj MA sIs23t=LEf	 -
GRNQMAT,Is331=NSB#
GRNQ MATsIP41t=NSE#

	

j	 NgED (MAT3l=NCARQ.S3

FOR NRECI=NRFC1 STEP 1 UNT IL NRE C2 QD

FOR HPIXt^̂ VA.D1, STEP i UNTIL_NPIK-2 00	 {

ER RMAT' MA T y CLASSiNRECs NPI X .6 l l t,_
E'RRMATEMATs CLASS[ NR ECsNPIX, I	 kf

	

--	 f (tR M AT t = 1 5 EP I UN TIL.,MATuT r^'-	 1

POOR QTJALIW

	

PAGES	
-



^ r

TG IN

FOR C00=1 STEP 1 UNTIL MATOT D0

FSUM(MATI s = SUMIMATI+ERRMATIMAToCOL)f

IF S UMS MAT ]	 GT R 0

_J H EN
tM	 ]= (ERlIMATL MAT, MAT?/SUM[ MAT])xipp-

_.`.. _.E L S E S .

SUMRoWt=SUMROW+SUM(MATl;

WRITE(i LNE,F1,-L1.)s	 -

END)

FD	 0	 I=1	 STEP	 1	 UNTIL	 RAT -T., Qf.

FOR MAT:=1	 STEP	 MATOT1	 ONTIL	 00

iTOTLCOLIs=TOT(C0L]+ERRMAT[MATaC0L]3

` IF	 T OT t COL I	 GTR	 p

P COaCOL.iC p Lli=(ERRMAT[COL,COL]/t3 000L))x100.
-EL SEg .

F ND I

wRI.TE(LINE sr /f>)f
WRI'TE(LINE,F3,L2))

FOR MATE = 1	 STEP - 1	 UNTIL	 MATOT ES Q_ 	_

T^TQTDIAG%'T0T0tAG+FRRMAT[MAMAT]3

TOTSUM!=tTOTDIAG/SUMROWlX lOd3 j
i

WRlTE ( LINF:f2,L3
1

--------	 ------

_ WRITE ( OISC^F ' 2#L3

END	 OF	 TEST;

.^i

lop

L
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PROCEDURE	 GAU55CKLASS;FJCHANU;NCLI;ST;SIG;TOF"ILESCLASSINDEX:VALPOINTr

INTEGER
1HANSP);

NCLUST;	 % HA	 B EENTHE NUMBER OF CLUSTERS THA I HAV E Q 1:

% CRE:AEEae
REAL	 AFFRAY STci[0;0];	 % AN ARRAY	 CONTAINING THE AVERAGE	 SPECTRAL

SIGNATURES ASSOCIATED WITH EACH CLUSTER.
FILE"
INTE.GEFi

T`P}	 ILE;
ICL.A5Si	 % THE NUMBER OF CLASSES FOR WHICH	 GRUUNU

%
INTECLl? EICHANU;	 %

TRUTH	 IS BEING	 USED
NUMBER OF SPECTRAL 8HANNELS ON TAPE.

INTEGER VALPOINT;	 X A	 POINTER USED TO POINT THE BLGINING
% (IF	 VAL[J]	 IN	 MATLINE4
INTLGER CLA.SSINDEX;% A	 PC]INTLH	 THAT	 POINTS	 TO	 THE	 CLASS
% NUMBER IN MATLINE.
INTLGLX ARRAY THANSP[0];	 % AN ARRAY CONTAINING THE CLASS NUMBER

MAT	 fO WHICH CLUSTER NUMBER NS
HAS BEEN ASSIGNED.:

BEGIN

FILE	 IN FRAIN	 1)ISK "TRAIN"/ "AX31 I II ( 2;15,30);
L.-ABEL,., F AIL;
LABEL DONE;
LABEL NFX73
FORMAT FMTiC/I6pllO)3
INTEGER ARRAY NUMf0:143;	 % AN ARRAY CONTAINING THE NUMBER OF SAMPLES
% TRAINING	 THE	 PUTENTIAL CLASSIF.IER,..
INTEGER ,J;	 % AN	 INDEX VARIABLY CORRESPONnIN(, .TO THE
% CHANNEL NUMBER,
T N	 F_	 i U	 THEr^Sk-

THE	 NL E ST V R
NUMBERCORRESPONDING ^

INTEGER KI N

T

CD	 HESP	 DI	 G. TO 	 THE.DEX.V.ARIABLE
% CLASS NUMBER,
I N.TF.GLR CLASS;	 % AN	 INDEX VARIABLE CORRESPONDING TO 	 THE

-CLASS NUMBER*
INTEGER D2;	 % A	 PARAMETER USED TO COMPUTE	 THE

DETERMINANT FUNCTION@ . .
INTE(2'LR NC:► 	 % .	 AN	 INDEX VARIABLE	 CORRESPONDING TO	 THE
% CHANNEL NUMBER
INTEGER NCi,	 % AN	 INDEX	 CORRESPONDING	 T11	 THE_VARIA^LE

CHANNEL NUMBER.'
REAL. GMAX;.	 % THE MAXIMUM	 OF THE DESCRIMINANT,VALUE
% FUNCTION,
REAL f11;	 % A	 N(IMBER USED	 TO CALCULATE THE
% DETERMINANT	 FUNCTIONR
REAL G;	 % THL	 VALUE OF THE DESCR IMINANT	 FUNCTION,
REAL. N i;	 X A NUMBE R USED TO CALCULATE	 THE

WEIGHTING	 FUNCT. IOhi.e.
REAL 6173	 % A	 NUMBER USED	 TC)	 CALCULATE	 THE

VALUE	 OF	 THE	 DE:SCRIMIFIANT	 FUNCTION.#
REAL. 7.7;	 % A NUMBER USED TO CALCULATE THE
% VALUE OF THE	 DE:SCRIMINANT	 FUNCTION,
,RE:AL..	 ARRAY L:fU=14rfi)02s03121	 % . `AN	 ARRAY	 FOR-STORING	 THE

COVARIANCE: MATRIX	 AND	 ITS	 LOWER
% TRFANGLER TRANSF'ORMATION
REAI.	 ARRAY SUMSQ[0:l4,a;12;Cii12]) %	 AN ARRAY FOR STORING THE
Y SUM OF THE PRODECTS	 VAL[IIXVAL[J]•
REAL ARRAY ..	 .. Mt1 . L0: 14o 0.1.121 . ;. X	 AN ARRAY FOR STOKING THE

MEAN VECTOR EACH CLASS,
REAL	 ARRAY MullUt123;	 % AN ARRAY FOR STORING THE MEAN
X VECTUR FUR THE ROWS- OF MU`
REAL.	 ARRAY SOM[Usi4,0s42]i %	 AN ARRAY FOR STORING THE

..SUM	 OF	 VALLI],
REAL ARRAY VAL[0."12I;.% AN ARRAY	 FOR STORING THE
% SPECTRAL	 SIGNATURESOF EACH	 PIXELLS.
REAL ARRAY P'ro:14s01121) X	 AN ARRAY FOR	 STORING THE MAIN
% DIAGONAL 'ELEMENTS OF THE LOWER
% TRIANGULAR MATRIX.
REAL,	 ARRAY YrftL.'141;	 _	 % AN	 ARRAY	 CONTAINING 'THE	 W;ET.GHTING .	 _

FUNCTION OF EACH CLASS.
REAL,	 ARRAY or0:14A0112]3
REAL	 ARRAY 71Ut100$123;

ORIGIN" PAGE 118
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F OR	 KL := 	_STLP	 1	 JJN -T^.	 K ^.	 .,^....._..

NUM C KLI; =0;
}OR NC:=1	 STEP	 i	 UNTIL. NCHANU	 00

SUMCKL,NCI:=Oo 1;
FOR	 z=1	 STEP 1 UNTIL NCHANU DO- i^Ci

BEGIN

SUKLNKL.@NC NC113lv0;
LC	 ,	 C,	 C1	 ;

END;

LNOf	 T _
LNU;

14HILL	 TRUE	 DO

BEGIN

R-EAD(TRAINA15,MATLINEr*J)	 [NEXT])
KLt=MATLINECCLASSI.NDEX];..

FOR	 J==1	 STEP	 1	 UNTIL NCHANU U0

VA L[J11-MATLI"NECVALPOINT +J-1 73

CLASS I ( KLs NCHANUP VAIrs NUMB SUM,:SU!iSQ.).;
LNUf

%T EXT t CLASS2( NCHANU, NUMB SUM, SUMSA,,MU, L);
-- -—	 - -- --

FOR	 =1,.	 s 3a 4•.6	 DCL__.___ .
.tiLN
FOR .t=1 -STEP I U 

fL —	aUrK ^J 3

LDETl(N9H6NM,, L P C,

^-
GO	 TO

FAIL .t "MATRIXWHTECL,INEP<NUT	 POSITIVE DEFINITE	 FORI.

DUNE; E NDF

WHITs_CLI NET PAGE] 

V114IT.E(LINE,<X5s'lN5,'.X10s"CLASS">)f

Film	 N oa =-1	 STEP	 1	 ' IN TITL	 NCL_UST	 00

- ;.^ HEGIPf
i a

F{]R J= 1	 STFP	 f 'UNTIL NCHANU DO	 T1

`VAI-CJ1[=	 SIGFJ,NS7;

.CL.AS.S t=1;

FOR KL$ I,? p 3,4s6 DO

. 13EG IN

i PAtii'	 " CHOLSOL1C.NCHANUsLr P,VAL,Z`) ;'

1p POOH QuALrry CLASS 4;
END)

TRANSPtNS]:	 CLASS 

WRITE(LINLsF MT1, NS,CL A`SS );

EiQ OF GAUSS;



111777}	 ,i

i

PROCLUURF	 CLASSI(KLPNCHANU,VAL:NUM,SUMPSUMSQ)3
INTEGER KL;	 X	 AN	 INDEX VARIABLE CORRESPONDING TO	 THE
2 CLASS NUMBER,
INTE GER tvCHANUI	 %	 AN	 INDEX	 VARIABLE	 CORRESPONDING	 TO	 THE

..
REAL ARRAY

CHANNEL NUMBER
VAL103	 X	 AN	 ARRAY	 CONIAINING	 THE	 SPECTRAL

% SIGNATURES
INTE:GLH	 ARRAY	 NE.iML03 j	 X	 AN ARRAY CONTAINING	 THE NUMBER OF SAMPLES

FOR EACH CLASS	 THAT	 ARE USED FOR
TRAINING THE	 POTENTIAL CLASSIFIER.

REAL ARRAY stiml0sU]i
REAL ARRAY SLINSUMPOP011

BEGIN

FUR	 NC:--1	 STEP	 .1	 UNTIL.'NCHANU	 Del'

HLG1N
S1IMEKL,NC3$=SUMEKLrNC]+VALENC]3
FOR	 NCI . I=N.:C	 STEP	 1	 UNTIL	 NCHANU.DO

Sl1MSQCKL.PNCPNC1]:=SUMSQEKLPNCPNCIJ+VALENC1
xVALENCi ]3

ENDS

NUM[KLlt=NUMEKLJ+1f

END	 0, 9,LASS4 3 	 A

i

4

•

—

i

1
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PROCEDURE	 CHOLj)ETI(IJ,L,P,D1-PD?, FAIL))

NIN'(ECE.R	 N:	 X	 AN	 INDEX	 VARIABLE	 CORRESPONDI NG TO
THE	 CHANNEL NUMBER,

PF AL	 ARRAY	 L(U,O,( 3
REAL	 ARRAY	 PIl},0)3
REAL	 Dl ^	 ^	 A	 NUMBER USED TO C1.ACULATE THE
R	 DETERMINANT FUNCTION,
II N1 L G E R	 lea;	 %	 A NUMBER USED TO CLACULATE THE

i)ETLRMINANT	 FUNCTIONe
LAREL	 FA 10
%	 CHOLESKY DEFACTURIZATION TO PRODUCE L
BEGIN 	 -

INTEG ERJy
INTEGER	 K;
REAL	 V;

01:=Ir	 D22 =03
FOR	 I:=1	 STEP	 1	 UNTIL	 N	 DO

_U,R	 ^., =l	 STEP	 i	 U NT IL 	 N
BE GI

Vs_LCiCL,ZsJI;

FOR	 K:=I^t. STEP -1	 UNTIL	 1	 DO

t	 Vt-Vw L[KL, J , K 3xLCkC L,I:KI;

IF J EO L I THEN

,BEGIN
  k

Ir V EQL 0 THEN	 —	 —
REGIN

U2t=OS
G[]	 TO	 FAIL;

E	 501) GEG 1 00
E	

REDT=DixU.Ub25;
_ND2t=D2+4j	 -

WHILE	 ABSCOA). LSS	 0. 0625	 D€] i

BEGIN 
DZ :=02 - 4;

ENi33 -	 -

IF V LS5 0 THLN GO TO FAIL)
1	

PCKL,I3t=1.0/SQRT(V),

END

a	 ELSE LCKL,JrIll=VxPCKL,TI;

j	 E N i1'3i}	 END	 OF	 CHULDETI;

ORIGIi AU A-	
- op PC301 QUAWE4 ,.

98



PRDCEL}ORE CHOLS0L1(NaLlP, HAX);
INTEGER	 N,'	 AN INDEX VARIABLE CORRESPONDING

TU THE CHANNEL NURSER,
RLM- . AFFRAY	 t.[Us0pU';
REAL ARRAY	 P(003S
REAL ARRAY	 11103;	 j
REAI. ARRAY	 X[U9uI

SOLUTION OF AX=B

REGTN
INTEGER	 I ►
TNTEGER	 J1
I NT EGER	 K;
REAL.	 V;

X SULUfI ON of RY=B;	 ^



1
1
1

PROCEDURE CE_ASS3







NLE	 SONSs

	

anQ	 PRO E ^t}̂ RE	 I	 t	 AN,	 V, N	 Sin	 yIND8^SIZE, jHREJHPNROWSP

	

2500	 L As . LRUB ,	 LEVEE;: TDFILEP FIRS, SE
ES, 
N a B^jGs t^ LUS ,

	2510	 NCENTERS,SIG,OUTPUTARRAY)I

it PARAMETER SPECIFICATIONSt

	

2^ 54	 INTL£AN DEBE#GI

"	 X DIMENSION AF A. FEATURE VECTOR,
.^8 	

NLEVP	 X NflA. OFOLE LS A&S SA A' T;ANYALEIVEL*OF
3100 	 NBBE S,	 % NO, ^E)R '^R E NR D E S TO BE AVAILABLE*

	3204	 X NQ OF TRA NING SAMPLES

	

340 0	
REANRO^lSj

08HRESHa	
X &PECIFIE THRESHOLD AS FRACTION OF MAXPOT

	

woo	 WIND O W 	 ,	 X FpORA OFE MMLUSiE
RINNGG TRAINING DATA*

	

3

o	
kFA-#	 THE PRT #^71AL FUNCTION.

	

800	 FILE 	
X THE FILE FROM WHICH TRAINING DATA IS READ*

	

AOCIO	
IN

T
 E COND,	 X STA RT INGROSITOF^FFATECJGES0A TA^INIF ILELE=

	4050	 X.NO OF DATA '0 BE CLASSIFIED.

	

4104	 NCLUST,	 X NO OF p OTE= NTIAL CENTERS USED

	

1

4 0	 1VCE:NT[^RS^	 * UE IRED LEVE= L OF CLASSIFYCATTDN^
43 00	 REAk ARRA Y

	4qUU	 RIG Id,4)x	
0#03 X FOR^CLASSIFICATIONOFRESULTSD BE CLASSIFI Q4500..	 {1UTPUTARR.AY E

	

4788	 BEGINL % ALLOCATE GLOBAL DATA

	

4700	 i1	
POT LINES PRINT C2,l5)!

$S$
KC

T^STH EE AD,

	

4
0 4	 A y A L,

	

00	 Rf^O,

	5300	 TAVAILI
400

	5600
	 REAL

AXPOTi

	

?0
0
0	 INTEGER ARRAY

5A
55	

NEWCLASS,
	5900	 TRAI II NLEV3x

	

^00D	 COUNT..:
cc AS
C IN

SN
 [IINROWS , ltNLEV Is

	

b^^	
wE GHTs	

-

	

5300	 CLTST.LIHK ll:̂ R?WS3a6400

	

5500	 TNODE. ' f. INODESa t!' SONS+131

REAL ARRAY
NEWFEATU

itNC 	 a

	

694.4?
7040	 FATURE^ [ 1 t N (14# r 9 t NCHANI s

	 C)U MYdt5 CC#Npp-i^rNV 3
1"88 	 DEFINE YHRESHOLR n ^IAX PEIT ^c RSH#f

	

7300   	 -	 ORYGWAL PAGE TS
+-ABEL	 IPT, DONE)7400 .	 4F PpOR QUALM

9

I
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r5^a xxxxxxzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx^
7600 PROCEDURE DUMPDATAROW (RDWsTAB))
7700

T900 BEGINTEGEIN TEG E RAKp NNCHA N,NNLEV 3
7050 NNCMAN:uNCHAN;	 NNLFV	 t x NLEV;
8000 WRITE	 CLINE*
8100 eX*,^I3 , ^^ns * F8•Aa++ ^^',*I3^an^++sl3^ „3na*x3,

z 8?4a
8300

SX TAB I 	 ROW*
NNC ANPFOR Ktxl	 STEP 1	 UNTIL NCHAN 00 F AT RECROW,K]P

^O OLASSEROW,KIP8400 NN	 EV	 , FOR K	 ix	 1	 STEP	 i	 UNTIE.	 NLEV
. 8500 WE GV TC OEGR ' Ktwl	 STEP 1	 UNTIL NLEV	 DO CLINKCRDW,KI)3

0700

889880
^GUM	

S
END OF	 POATAROW)	

{

x """ROC	 U RE	 UMP ArA;
xxxxxxxxxxxxxxxxx %% xXZxxxxxxxXxxxxxxxxxxxxxxxx^

9000
N	 gBEG RIT
	 , < "DUMPOATAtn>3f

N
o	 K

FOR K	 iml	 rTEP
	 i UNTIL NROWS 00 DUMPDATAR Wf	 A I)3

9300 ,d END OF DUM	 A	 3

9600 xz xxxxzxzzxxxzxxzxxxxxxxxzxxzzxxxxxxxxxxxxzxxxxxxxxxxxxxzxxxzxxxxxxxzx
9700 PROCEDURE OUTPUTSUBLIST (PiLEVEL : KLASS ) l	 VALUE P)
9800 d

100 .0
INTPEGER

KLASS10200

110400
BE^IF

Px0 THEN % RET'URH	 1

060n G G 
10700 WRITE CL NE 3

^ ^ s^0900 KHTLE PP ,	6

11200 BEGR.=MPCLTAR(OW('(PPLEV
L)f

[
11300 END	 j
1 1 400 END
11500 END.OF OUTPUTSUBLISTI
11600
a^^ ^^xxxx

irziTEGER	
xNEwcBMx^xxxxxxxxxxxxxxxxxxxzxxzxxxxxxxxxxxxxxx^x

PROCEDURE
1^9d0
1	 00fi x	 GET A NEW DATA STORAGE BOX,	 RETURN THE LOCATTIGN (ROW NUMBER) aF
12100 x	 THE BOX AND CLEAR THE BOXO.	 ALSO ADJUST THE AVAIL STACK.,.
22 00

12400
BEGIN	 INTEGER N8*K1

1 500 IF CAVAILxO	 THEN BEGIN
12600 WRITE CLINE

1
70 a t"*** VERFLON	 ATA MMEM RY **01>"

OENERATE DIV DE' EXCE^TTON	 DEALT	 a$OK!
129011

%	 To	 EXEC
/CAVAIL)pCAVAILtxl

..130.00 EN
11 8gii	 p

13200 ELSE NEGIN
p	 ^r

FOP K E I A ^fit1	 u FAii' ^L N^EV C UEI ST Si ASJ tN^^K]+a;13340
13400 NEWCBOX fx NB

1
3	 pp
3600

^^rr pp
END OF NIPBOX)

!!33	 pp
^	 xxxxxxxxxxxxxxxxxxxx^xzxzxxxxxxxxxxxxxxzxxxxxxxxxxxxxxxxzxxxzxxxxxxxxxxx13 7 00

13900 INTEGER PROCEDURE NEWNODE,t

4;00 	 THIS PROCEDURE RET RNSS THE=	 OCATI,ON OF A H EW NODE BOX WHICH HAS	 j
BEEN CLEARED AND READ3ED FOS USE14200'

1
4300
4400 BEGIN	 INTEGER KwNN)
14500 - IF TAVAILaO THEN BEGIN
14600 WRTTECLINEs<"**#OVERFLOW TREE.MEMORY** n 	;
1470 .0 TAVAIL1111/TAVAIL x DENERATF DIV EXCEPTION
14800 END	 ;	 % TO HALT EXECUTION
14900 NN	 t x TAVAIL)

NEWNODE~	 : m 	 NN)1R000ii 0 0 TAVAIL	 t	 , TNOD . 1, T AYAILi1	 1.
fi52[!0 . FOR	 Kta^1	 S T EP	 UN[IL	 Nt	 V	 DO _TNODECNN , K]'x.0;

15300 END Of	 NEWNGDEI
IS40D
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566 xxxxxxxxxxxxxxxxxxxxxxYxxxzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
15600	 PROCEDURE INITIALIZATION)

1 ;8002 x	 INITIALIZE LINKED STORAGE@
1 900
16000	 BEG N INTEGER K
16100	 ^OR KI s 1 STEA I UN,JIL N ROWS- DO CLISTLINK E K]tuK+if
16200	 FOR Ia STEP 1 UNTIL NngES• DO TNO?EEKp1]IsK}1f

J
16300	 CLISMNIK CNROWS ,I.t 0 f	 NODE q DESP I Is 0/
16400	 CAVAILIR TAVAIL s 1; TROOT Ise 0
16500	 FOR K I * 1 STEP ^ UNTIL NCHAN DO INDOWEK II sWINDO'WSIZEI
16600	 END OF INITIALIZATION
1
1 6800 xxxxxxxxxxxxzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
6900	 PROCEDURE SETTREE ( NEWCLASS)f
11000	 _	

gg	 pp	 pp	 ,^rr

..

17100 x	 PUT NEW 
NO +D+IAI TMOT4"ELQCAIA p^QDNDE5 C THA T DP IHT H 0 C HESS!*17200 x	 ASSIGN TO

,17340 x	 SUBLISTS OF A "NE WCL
ESCLASSClI311400	 INTEGER AR RAY N

17540
17600	 BEGIN INT^GER P p Qs NCpLf
17700	 IF TR9D n 0 THEN TROOT is NEWNODE3

P I	 ROOT' f
11 900

7500	
FORT L i n f STEP I UNTIL NL£ V 	 DO

18!00	
IF 04NC In NEWCLASSILI THEN

15200	 Q I s TNODE C PP 1 +NC I f
18300	 IF $ ^ 0 THEN BE IN
19400	 a 1 14 NWNODEf

1
18500	 TNODEI e1+NCI a Qf
18600	 END)
16700	 TRAILELI Ian Qf
1B80d	 P In 9)

E ^l
8950	 ELSE TRAILELIIsOf	

i

19000	 END OF SETTRE£#

191	 xxxxxxxxxxxxxxxxxxxxxx Xx xx xxxxxxxx x xxxxxxxxxxxxxxxXxxxxxxxxxxxxxxxz9	 800 EAN PROCEDUR^ INW NDOW {N W E11TURE-Pfa

`.119580 x	 DETERMINES Y^HL^TNER OR NOT "NEWFEATURE" IS IN THE WINDOW
19600 x	 OF THE FEATURE IN ROY! "P".

97.00
t• 99dp

^900	 REA	 ARRAY NEWFEATUREM)
2i.'t30	 Ii+1T^G R Pf
01 1 0	 BEGIN B OLEAN B3	 INTE GER K3

'02b N	.8 Is TRUE)
.!030	 FOR KI : 1 STEP 1

i

2'0400	 WHILE K LEG NCHAN AND B DD
20500	 B 1 

It 
ABS(FEATURECPsK3 + NEWFEATURE{KI) < WINDOW[KI 	 3

0600	 INWINDOW Is 63
0700	 END OF INWINDOW3

'10800209on x'xxxXXxxXXxacxXxxxxxxxxxxxxuxxxxx x xxxxxzxxxxxxXxxx x xxxxxxxxxxxxxxxX



21000 PROCEDURE INPUT (NEWFEATURCPNEWOLASS)3

21200 x	 INPUTS "NEWFEATURE" AND "NEI^CLASS" TO LINKED) STORAGE, 	 IF

21100 XX 	""N WEEATURE"	 6 
IN 	 THIS	 IND	 g

IT	 S 1 2GAC	 INTNEW STORAGE BL*	 CLUSTERED WITH THAT TSAMPLEJEL5E21500 0

2100 INTEGER ARRAY NEWCLASS[13)
21800
21900

R
8

A	 ARRA	 NEWFEATURE ClI
G	 N	 IN. EGER CMARK p Ta Kit, P,;	 LABEL	 XI TI

7200 0 SETTREE (NEWCLASS))

22 OD 1	 STEP -1 UNTIL 1 DOFORRL t 	 NLI? Y
22300 IF 0 NEQ TI=TRAIL[L] THEM
22400
22500
22600

BEGIN
IF CMARK > 0 THEN BEGIN

CLINK[CMARKpL3TwTNDDE[T,171
22740 Toll  	 C4ARi4ENOTNODEf

_., 22400

2300
ELSE BEGIN	

pp^	 si]J
NHILE p

DOl:

23 00 BE IF"
 NOTlINWIINDOW,

c 	EWFEATURE PP 7
x.

H

ELSN P
	 L	 K[	 L

2300
8	 IN

33
2370037 88

8

L pAGB IS	 KQjs11 STEP 1 UNTIL NCHAN DQ
ORIGINA^	 EEATUREfPsK]IC^(WE GHTEPI x FEATURE EP&K]

24000 OT^`P^ ' 
Q
	

WEIGH* 
y

fP9 E sm U FW	 GH^Ef'i+iT£IGN"
^[P77j

24tOO IF WEYGHTEPI>MAXPOT	 THEN MAXPOT4-WEIGHTE.P]f
24200 GO TO XIT

^a^ #°̂ aa° cNt^D^ rc^e=
A
	wcSox;	

TNODE[T2 4600 CLINKECMaL3	 t^	 1173

2
4700
4800

TTN p D	 [T	 1	 C k4,^RK
Fa	 u p	 3 EP 1 trN IL NCHAN DO

2 4900 FEATUREECMARKM	 tz NEwFEATUREEK])

25100 fOtCG S EGM RK ; K	 s g NARASSN33

2SJOA
WEIGHT[CMARK]	 to	 11	 3

END

25500 XTTI	 I:ND E NF' ' YNPUT.I

2700 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx^ax^cxxxxxxxxxx^xxxxXxxx^xxxxxxxxxX

25800
PROCEDURE	 DUMPTREEI

26000
26100

BEGIN INTEGER
J
	M,N^

WRITE	 IIN s	 [ DUMPTREE">7; .:
26z 00 FORMl^	 S	 P 1	 NT IL ,NODES Do

WRITr:	 fLN sY3>aM	 A6340
26400 FOR Ni s 	 i UNTIL NSONS +1 DO
26500 TNODE	 EMAN79,1
26600 END OF DUMPTREEJ
6788

xxxxxxxxxxxacxxXxxxxxxxxxxxxxx x xxXXxx:xxxxxxX xX xxxxxxxxxxxxxxxxxxx X^
26900 PROCEDURE TREECLIMBER CLOCs'L VELD KLASS7o VALUE LOCPLEVELPKLASSI

MRS
27200

x	 THIS PRQC	 TRAVERSES THE ^kASSIFICATION TREE IN END ORDER, 	 WHEN A.
NODE	 IS	 VfSTTED,	 THE CORK	 P13NDING SUBLrST' 15 OUTPUT	 (VIA f+DUTPUTSUB-

27300 CH ILDREN	 VISITED,.,9	 IST") AND THEN EACH OF THE	 ARE
22 400
c";500

% GLOBAL DATAt
INTEGER ARRAY . TNODE L1sNGDE. Ss1tNSONS	 3;

2	 00 INTEGER LOCm	 % LOCA T ION OF THE NODE`	 ISI
U

TE`D	 3
27900

^E^E^) ``	 ^ LekOESL OF THE	
V TSI ,^^UBLI ST

NODE27 9 00
20000
28100 BEGIN
2300

`NNTEG R K	 OC''
IF LID ^ ^1	 HEN	 X RETURN

2
!a
8108

ELSE BEGIN
F LEVEL	 NEQ 0 THEN OUTPUTSUBLISTCLOCsL.EVE'L sK LASS7;

287
g
 00

. op
FRf NLQC t	 TS cT E P

E	 pp
i f}C iT^ ^j } .^'^pQ5T6^EH

TREECLIMSE (N OCALEVEL+i,K)J
2890

2
9000
9100

END
LAND OF THE PROCEDURE TREECLTMBER 1

.
^9200n	 ,âY^^.7

,
yy	 pyyy

'
 yp}	 ^/^f^'/1r ^/.

	
dl .̂Iy^.p.^rMM	 yy y. /^I Ar ^/^r	 ^r fir

'
 1.^"Jy^/. y. yM	 ^	 MY^q..y.r yiy^^rygl ^/y	 ^f	 ^/^1 ^I

i^ . ^b..ia-m Jr N^^	 ^i^ AA p 1^tB. ^AmY.^^SaJ^ /d r^xMlhMAAisA^Ib pi^ /^A3AN1@ iY	 ^	 AdrtA t7_^_ lY 1V flHAx9x N . 1Y IM	 ^
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I	 i

199900 _ . 
REAE.

ISTSO E t FFATUREsROWI )
9

29800	 XFEATURE AHD TH£AVECTORTEFA TUREEROW#
*,STANCE BETWEEN

qq 0,. 30400	 REAL ARRAY XFEATURE E!I!
30100	 INTEGER ROW;
30200

	

0300	 BEGIN
30 400	 REAL	 SUmj	INTEGER Kf
30300	 SUM E 0f
30600	 FOR K*1 STEP 1 UNTIL 'NCHAND

	

'30700	 SUMfSUM * (XFEATUREEKI	 PEATUREERDNPK])*2f
30800	 DISTSO F SUMP

	

0900	 END OF DISTSQf
31000

3
3f10 xxx xXxxxxxxxxxxx xxxxxx;txX^XxacxxxxxxxxxxxxxxxxXxxxxxxxxXxxxxxxxxxxxxxxxx

	

1200	 REA PROLE URE
31300	 R[)TENTIAL CXFEATUREiR©W.aLEVEL))
31400
31500 x	 EVALUATES TH FDLL O W NG P pp 1' ,ENTIAL FUNCTON
31600 x	 + L AMB A x Gt1UNTER13 PLEVE

j
3

333111800 X	 1 *.ALFA x (FEATUREERDW#*] 	 XFEATUREE*I } * 2

	

`32000	 REAL ARRAY XFEATURE E 1 3 J
32110	 INTEGER	 ROW,	 LEVEL;
32200
32300	 BEGIN
32400	 POTENTIAL M WEIGHTRt3Y1

	

2500	 xC 1*LAM&DAXWhUN 'T[RRQMs EVEL] )

3
600	 t(x4ALFAKCISTS0 E3iFEATUREAROWM

	

700	 END OF POTENTIAL)
328 SO
32900 XX%%%%%% %% %%% X%%%%%%%% %X % xxxxxx%%%%%%%X%X%%%%%%%%%%%%%%%%%%%%%%%%%%%tx

33000	 REAL PROCEDURE DISCRIMINANT EXFEATUR £, LISTHEAD,LEVEL)f
33.100
33200 X	 EVALUATES THE DISCRIMINANT FUNCTION FOR A SUBCLASS
33300,%	 AT THE POINT XFEATUREr
33400
33300	 REAL ARRAY XFEATUREEII)

1
33600

	

	 INTEGER, LI5THEAt3a .
33700	 LEVEL)

_33800 yy
34000	 BE INTEGER P)	 REA L SUMP	 -

1'

	

	 1
3	 SUM¢Of	 P*LISTH Apf
34200	 I^HI{^ Ps0 DO X: M V
34300	 BEGIN	 X FTNCTION OVA^UES AT I THE RPOINT XFFATURENTIAL
34400	 SUM + SUM + PO ENTIAL [ X EA TUREr► P PLEV EL) 1
34500	 A ♦ CLINKEPPLEVELTf
34600	 Elf
34700	 SCRIMINANI * UM f
34800-	 END OF DISCRIM NAN f

^

4900
50an X xxxxxxxxxzxxxxxxxxX^xxXxxxXxxxxxxxXxzxXxXxxx^x%^xxxxxxx^ xxxxx xxxxxxx^:xx	 ^

0
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3 280
B"HAsSIPHHHHECTLY (CLOC,LEVELPPARENT);

3540 X	 DETERMINES WHETHER OR NOT A TRAINING SAMPLE IS CLASSIFIED
35500 9	 CORRECTLY PY THE PRESENT DISCRIMINANT FUNCTIONS•
335600

00
INTR59.8	 % ATT L"ICATrON IN CLIST

3
3

32000 Aa N j	 x TH	 L C	 ION D A H F TR
ii

I NODE. THAT	 IS	 THE
36100 % PARENT OF THIS SURLIST 	

R3
5
6200

36#308 OEGAPAL ARRAY	 MATURE 11INCHANIS	 % THE FEATURE VECTOR TO BE
INTEGER	 % CLASSIFIED5 6580

6600 0	 St	 LASSf 

3998S REA6IGVALUE , ^IDS

37'300 F©RX	 ITDRL[K3 +H FF kTUDF[CLOCiK73

3 500 FO^kY5k1E5TED i	 UN^?L L NSONS DO'

1
76
77'00

I	 T	 p	 t	 FiENT^	 5	 > pp	 H N
TF U^G^AL^E < D^ WRIMINAN^ tXFEATUREP

3
800 TNODEtTNnDEEPARENTAI+S7si]sLFVEL)

3 900 THEN BEGIN
BIGCLASSFS 3NDBIGVALUE4.n)39080

38200 CLASSIF'IEDCERRkCTLY - +CLASStCLOCsLEVEL72BIGCLASS!
38300 END OF CLASSIFIEDCORRECTLY;
38400

38600
XXXX%%

BOOL EAN xPROCEDURE CHE CKSUBLIS xCLISTHEADjLEVELtPARENTj; 	
xXxZX%%X1^.

00 X	 TRAVERSES A SUBLIST TO DETERMINE WHETHER OR NOT A Y
LL TRAINING

38988
39800

SAMPLES
$	 tIdAN	 U C	

S.AREORD AC{	 5AMP ESMORtRECTLyHE
U	 HAS ANx	 DCLaSSTFI£D, COUNT	 IS	 INCEMENT	 IM3tE	 TAT LY;	 THI5

X	 IMMEDIATE EFFECT ON THE DISCRIMINANT FUNCT ON #34208

39400
39500

INTR
L	 THEADa	 I TH.E.00ATION OF THE	 SUBSIST	 i

CHECKED
.j

39680
39700

LEVEL,	 H	 L	 E
PARENT;	 % THE LO OA

4F	 A S Tn Q
ION D	 THE PARENT TREF NODE

34900 SEGFiDgl EAN B 3	 REAL POT )
'G	 P!40000

20200
203.00

NT	 R
.

64-T UL3	 P4,LISTHEAD
WHILE P3*0 D	 % MOVE THROU GH THE LIST CHECKING EACH ELEMENT

20400

405 00

BEG;'
1	 NO gEDIH S'SIF

 
E NCD h£4 H^YCULPf	

F d LpPARENT9

487 0 8 CO U .PAI iF!LEVEL ] FCOUNTEP,LEVELI+IJ
44400. IF P©^ P XPOT TFIEN MkXP€1T+PO^"f N % E UPDATE^ AXPOT	 `0000

4i2oo

_	 rr
CL N KL PoLEVELI) X MO VE P DOW N LIST

ENa1$
pp

23 00
uu	 a

ENDGU CCHEC SUS	IS B
41600
41p00

%%%%%%X%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%X%%%%%%%%%%%%%%%%%%%%X% x%%XXx%%%11800
900

4 000

8[)€LF:AN PROCEDURE TREECHFCKER CLOCaLEVEL-tFARENT).1

%	 TRAVERSES ALL SUBLISTS TO DETERMINE WHETHER OR NOT ASL SUBLISTS
42200 %	 ARE CORRECTLY CLASSIFIED BY THE DISCRIMINAT FUNCTION 	 e
42300
4240.0 INT.	 GER 	 a

LOC,	 X A TREE NODE LOCATION4
2
2500

4200 RLN 1	 %	 E L C LF ^HE PARENT OF NODE AT LOC
4280.0.  
42900 .
43000

BEGIN
BOOLEAN Hs	 INTEGER	 S,sONs

43200
43300

I	 LEVEL no THEN B 4- TRUE
ELSE 8e-CHECKS UBLIST CTNDDEtLOC, i ],1EVEL.PPARENT))

43400
43508 ,

FOR S+1 STEP ? UNTIL NSONS DD
.I. F. CO<SON+TNODEE€^OCa 1+S] )

'	 +I,L0C)f43600 THEN 84-8 AND	 REECHECKER (SON,LEVEL
4370p
43E30t3

TR ECH	 KER	 88
END OF TREECHLCKE^

-
43400
!1!{F).lf^1

`'^1^fYXi'^'!f!'!'^Y4^'!`it,MY+!'MMMYtl4'41/KyYMVM!'Mr^rr

µ



44100 PROCEDURE	 CLASSIFY	 (MAXLEVEL)J

30 3t CLASSIFIES "NEWFEATURE" LEVEL-BY'LEVEL	 TO MAXLEVELJP

4450
{
CUP

D	 hG4IRANT R RLSJNRTi ^N N V ALEEIE CSOR	 UP AE Y GRE^iYER E^HAN " HRE54Nflo"
44 00 % FUNCTIOR3	 WCLASk" E AT FTHEYARPRRPR A^E LEV.SR F "^f M IS PENTERLG E IN A "N
44	 0

45000 x GLOI^L^DUTAS NXkVWURE,NEWGLASS	 x NEWFEATURE IS CLASSIFIED
45100 BEGIN	 % RESULT	 IN NEWCLASS
45200 INTEGER	 LEVEL.*P,BIGCLASS,K,J1 	 i4;100 REAL	 BIGVALU,D	 D

4400
45500 MARL	 +VEL	 MINCHAXLEVEL,NLEV)J

TROOT)45 a0 P +
4500
45800_

LEVEL	 1 ; 0 0.j 
WHILE P 	 AND LEVEL<MAKLEVEL DO

460 00
F1EG l 

I.RV	 F	 LE	 EL	 f	 ;
R	 03	 0346050 GVA U	 t BIOCLASS	 to

46100 F R K 1	 T P	 1	 UNT
7HEH
`` NSONS DO

46200 IP TNODE P,1+K3 >0

A640V gEG F BIGVALUE<D*-DTS E
I T INANTF NJ+K J ATY REEV EL)46500 TN	 [	 ND E	 ,

4g^00:
THEN 

BE OI9VALUE+ D1	 BIGCLASS+ KS
END;

46900 NQ
47000 TF CIGVALUE GE0 THRESHOLD
47100
47200

THEN P^EGTN
NEWCLASStLEVELJ+ BIGCLASS 3

TNODEEP,1+BIGCLASS]J
47400

ENDF+

§47500
47600

ELSE BEGIN
NEWCLASSCLEVFL J+ "I	 J	 PF 0 J

47650 FOR JtuLEVEL+1	 STEP 1	 UNTIL NLEV DO
NEWCLASSCJ1t=OJ

47660 END)
p

47900 END 0	 CLASSIFY)
48000
48190 ^xxxxxxx'xxxzzzxxxxxxxxxxxxzxxxXxxxxxxxXxxzXZ%zxxxxxxxxxXxxxxXxxxxxxxxxx^

TRAIN48200 PROCEDURE	 3
!8300

46 500 S
EE

EUA A	 R	 STFEDCO.RC T	 NA NTAFUNCTIONS.^GCLA	 CYLYBY^THE DI SCRIM
48600

46800 NEGY NTE GE R ^J	 BOOLEAN	 OX)

49100 OR T+	 STIP	 f WHILE . 1<20 AND NOT OK DO
49150 BEGIN
49
9 00

DK+ THE CHEC ! g R	 R OT, 0, 0 )l
WRITE(L NE,<	 R	 N1NG WAS	 ,LS,I1:(t,"	 PASSES USAD">,£3Ksl))

49350 WRITE(	 INEa<"EkAPS D TIMEt	 pR,IC1"p2Ri5s4>p
493.51 OPT	 /.6034IMEM/	 ME(3).
49360 END)
49400 END OF TRAIN)
49546
49600 X	 CHIMP EXECUT ON
4970.0
49800 TPTt

RNZTI LI ATIQYJ
R	 AD	 CIDF LEP.F RSA'	 4NCHAN+NLEVP,DUMMY[	 I)	 EDON.E3)

49900 FOR K4-1	 STP 1 UNTIL NLEV DO
NEWCLASICK	 ♦ DUMMY	 EFIRST+K*41]J50000

50100
50200

FOR K4. 1	 ST P	 UNTIL NCHAN DO
NEWFEAT RE	 E K3	 DUMMY	 ESECOND +K - 131

50
50300 INPUT (NEHFEATU.REs.NFWCLAWJ.

05(149
.ggGO

NCERS	 t* CAVATL	 1JPNT
50495

DONEt
WRITE(LINEA<"NCENTERS:t'pl6>PNCENTERS)A

50500,
50530

IF DEBUG THEN DUMPDATAJ	 Q
TRA.INJ	 U

50600 FOR K+b STEP I UNTIL NCLUST ^1	 QU 
;0 100 BEG

	 M+1 STEP 1	 UNTIL NCH AN DI]
i 50900 NEWFEATURE rAl + SIG	 EMPKIE
51000
51100

..CLASS..IFY	 MAXLEVEL)J
FOR M 6 1 SP I UNTIL NLzV DU

OUTPUTA R#Y	 EK,M7	 + NE WCLASS	 IM3J
51200 EH}];
51400 END OF CHIMP)


