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The work described in this report was performed by the Space Sciences
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ABSTRACT

A description is given of the knowledge representation data base in the

perception subsystem of the Mars robot vehicle prototype being implemented

at JPL. Two types of information are stored. The first is generic informa-

tion that represents general rules that are conformed to by structures in the

expected environments. The second kind of information is a specific descrip-

tion of a structure, i, e, , the properties and relations of objects in the

specific case being analyzed. This paper ' q limited in scope to the descrip-

tion of the syntax and semantics of the data structure. The generic know-

ledge is represented so that it can be applied to extract and infer the descrip-

tion of specific structures. The use of the generic model in the inference

process is only briefly described where needed to justify the generic know-

ledge representation, and it will be thoroughly described in a following

publication.

The generic model of the rules is substantially a Bayesian represents-

Lion of the statistics of the environment, which means it is geared to repre-

sentation. of nondeterministic rules relating properties of, and relations

between, objects. The description of a specific structure is also nondeter-

ministic in the sense that all properties and relations may take a range of

values with an associated probability distribution.

vi	 JPL Technical Memorandum 33.761
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	 There were a few attempts to build useful models of generic information.

The traditional method of representation is the use of a set of deterministic

axioms expressed in mathematical logic (Ref, 1, Chaps, 6, 7, 8). This

approa • S was used successfully in generation and analysis of mathematical and

physical models and theories. Unfortunately, attempts to use this method of

representation by computer programs for automatic analysis ran into the pro-

blems of computational impracticability as was foreseeable from complexity

theory (Ref. 2). In addition to the inherent computational impracticability of

the use of most nontrivial axiom systems, most rules in the real world are

nondeterministic. That is, for almost all rules, exceptions can be found.

Following the realization that logic-based (deterministi.c) rule systems

are impractical, attempts to design practical nondeterministic inference

systems were made (Refs. 3, 4).

This article represents our approach to the representation of nondeter-

ministic generic rules and to nondeterministic representation of the specific

cases being analyzed.

Environment Description — Specific Structure Representation

In the abstract, a specific structure can be represented as a set of

objects, properties of those objects and relations between the objects. Our

domain of specializations is the representation and the analysis of pictorial

information. In that domain, typically there are the following classes of

objects: (1) scenes (picture frames), (2) three-dimensional bodies, (3) two-

dimensional regions (pictorial images of three-dimensional surfaces),

(4) one-dimensional lines, (5) one-dimensional boundaries between regions,

(6) vertices, etc.

JPL Technical Memorandum 33-761 	 1
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In each specific instance of the environment (for example, a specific

picture frame), there appear a few objects of those types. Each one of

these objects has properties and is related to other objects. Figure 1 gives

a partial data structure describing an image.

The knowledge data base is implemented in SAIL, an Algol-based

associative data base. The unfamiliar reader is referred to Refs. 5 and 6

for the semantic definition of the data type.

Objects and Classes: The list of possible "classes" of objects is pre-

determined by the repertoire of the generic model. But when representing

an instance structure, each "class" is a "set" data structure. Such a "set"

is a data structure containing an unsorted list of nonrecurring pointers to

the data structures representing the known objects of that class in the

specific structure. For instance, the set associated with the class "regions"

when representin g; the model in Fig. 1 will contain pointers to regions Rl,

R2 , R3 , and R4 . The object data structure itself is an item containing the

object's name (for man-machine interaction), the name of its class

some basic preprogrammed properties. Usually each object in a structure

is in relation "part of with a global object (the "scene" in the visual pic-

tures case). The global object allows the definition of global properties like

camera position and lighting condition which affects the analysis of all

substructures.

Representation of Properties: The generic model of the environment

defines a set of features which are functions that act on elements of a speci-

fied class and range into the integer domain. These functions are called

features. For example, the following are some of the features of the objects

of class regions: "area," "color," "average light intensity," "shape."

2
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Features which act on objects of type ooundary include "length," "difference

in light intensity across the boundary line," etc.

The value of a feature when applied to an object is a property of Cie

object. For instance, application of the feature "area" to region R I U Ly

result in the value 7, which is a property of RI.

The representation of properties is made a bit more complicated,

because measurements may be unreliable and take a range of possible values.

For instance, estimating the "label" (meaning) of the body imaged on R I may

be speculative. To represent ambiguity, properties are allowed to take

range of values with an associated probability estimate of the validity of that

value.

The association of feature, object, and property is represented by the

associative data structure of SAIL, and may look like this:

	

(16	 0.05)
Area ® R3	 1115	 0.9

	

14	 0.05

This will mean that the current estimate is that the area of R 3 is 16

with probability 0. 05, 15 with probability 0. 9, and 14 with probability 0.05.

The properties data structure is further complicated by two factors.

First, a property may change in time; hence, some estimate on the period

of validity of that property must be given. Secondly, often the reliability of

the estimate of a property depends on the resources spent in measurement

and analysis. Hence, an indication of the amount of resources (compute

time) allocated to obtaining the specific property, the amount of resources

actually used to obtain that estimate and the real time (when) the estimate

JPL Technical Memorandum 33 -761	 3



was obtained is associated with the feature. As a result, the property data

structure (the item's content) contains the following kind of information:

(1) Valid from date

(2) Valid-till date

/3)	 Obtained-at date

(4) Resource . allocated to obtain the property's estimate

(5) Resources used to obtain the estimate

(6) Estimate value list

val I	PI

va12	P2	 (more compact representation of the
probability distribution of values is
used when practical)

val	 Pn	 n

All dates are measured in absolute time, and if a property is assumed

constant in the effective time, the validity dates may be set to -m or +m to

indicate permanency in one or two time directions in the scope of the analysis.

Resources are measured in the number of machine cycles which were

used or were allocated to be used to obtain the estimated property.

There can be more than one property associated with a pair of a

feature and a specific object. For instance, the color of an object may be

blue from 0600 to 1735 , red from 1735 to 1830 , and black otherwise in the

period of interest. The associative storage mechanism SAIL provides for

that type of multiplicity of associations of few properties with a single pair

of a feature and an object.

4	 JPL Technical Memorandum 33-761
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Some feature values (properties) and relation values (object lists) are

; i	 being put in manually as training samples for a learning process where the
14
c1

generic model is being improved or analyzed. Such properties are marked

as "special" knowledge for training purposes. The learning process is not

described at all within the scope of this article, and no further reference to

that point will be made.

Representation of Values of Relations (Objects List)

A number of relations are defined for each class of objects in the

generic model. The value of a relation applied to an object of the appropri-

ate class will be a list of objects all of one class (possibly different class

than the class of the object operated on) which satisfy the relation. For

instance, "boundary of" will be a relation which operates on object of class

"regions" and will come back with a list of objects of class "boundary lines"

which are boundaries of that region.

The limitation that relation applies to one object at t!+a time was

imposed to simplify implementation.

In general, relations are n-ary, not binary, as in the present imple-

mentation; that is, the relation is between more than two objects. The

limitation may be bypassed by defining "combination" objects; that is, define

an object class whose elements stand for an order list of simpler objects.

The current system provides for composite objects and guarantee unique-

ness in their representation.

Typically, application of relation to an object results in the following

association being put in the data base:

JPL Technical Memorandum 33-761
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object,	 W,

object;2	 W2	 a

Relation ® object0	 object3	 W3

objectn	Wn

The relation is the name as defined in the generic model. Object  is an

instance of an object of the class of objects upon which the relation works.

Each one of object  (1 <_ i <_ N) is estimated to satisfy the relations with the

corresponding probability Wi . in fact, the relations values defines fuzzy

sets (Ref. 7). All of these objects belong to the same class of objects which

is the range of the relation. Clearly, N varies with different applications of

the relation. Wi must be higher than 0. 5; otherwise, the corresponding

object is not included in the lint to save storage. Note, that the W i 's do

not have to add up to one. There may be cases where more than one object

satisfies the relation, and there may be cases where the list is empty; that

is, no object appears to satisfy the relation.

As is the case with properties, the "list" of objects which satisfy a

certain relation is time and resource dependent. The more the resources

are expanded for searching for such objects, the more of them are likely to

be found. Similarly, the period of time during which the relation will be

valid may be limited. As a result, the data structure of the object list

contains also the following information:

(1) Start of validity period (date)

(2) End of validity period (date)

6	 JPL Techaical Memorandum 33-761
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t;
(3) Approximated time when list was computed

(4) Resources (compute time) allocated to obtaining the list

(5) Resources used in obtaining the list

There are three types of evaluations of relations. The first corre-

sponds to the existential quantifier (3) in logic. This existential search
ti

tries to find an object which satisfies the relation with high enough proba-

E	 bilily as specified in the call, and it terminates successfully as Bonn as one

's

	

	 is found. The second type of evabaalion is an exhaustive search. Its aim is

to find as many objects which satisfy the relation with high probability within

the bound of the resources allocated. The third call operates an exhaustive

search and generates a full objects list, but it returns as value only the one

object which maximizes the "belong" property among all found objects.

The object list contains also a mark as to which type of search was used to

obtain it.

Most relations in the generic model are related to two special

features. The first feature is a filter feature for the relation. It operated

on a composite object of two elementary objects (object 0 , object,) and it

takes only two values, 0 or 1. It takes the value 1 if object, satisfies the

corresponding relation to object0.

Example:

Filterc ® JObject0 , Object,} 	 10	 0.6}

is equivalent to

Relation  ® Object 0	Object,	 0.6

JPL Technical Memorandum 33-761 	 7
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The second type of feature is an existential feature for the relation.

It also takes only two values 10, 11 and when applied to an object, it takes the

value 1 if the corresponding relation for that object is satisfied at all by any

object. If such a feature exists, the system takes care to avoid redundancy

of the representation of the property and relation value.

The Generic Model

The generic model does not describe an instance of the environment

(a specific structure) but contains information on general rules that objects

and structures in the environment will generally satisfy. The generic model

is designed so as to allow direct use of the rules to compute properties and

find objects which satisfy certain relations when this kind of information is

requested by a user.

The basis of the knowledge representation in the generic model is, of

course, the repertoire of: (1) classes of objects, (Z) the available features,

and (3) the relations. With each feature and relation, there is an associated

algorithm which, when applied to an object of the adequate class, will come

back with the value. These algorithms are constructed so that they may use

only the resources (computer cycles) available to get an estimate of the

value of the relation or parameter.

At the present, the rules are mostly man-made. Using a special

interactive editor, experts generate and update rules expressed in the

formats described below. It is anticipated that in future systems, the rules

will be largely machine-generated by a rule learing subsystem.

Features

Each feature contains information defining the class of objects it

operates on and the range of (integer) values that it can take.

8
	 JPL Technical Memorandum 33-761
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There is an option to associate a name (an alpha-numeric string)

i v	 with some or all of the integer values. These names are intended to facili-

tate man-machine interaction when properties are transmitted to or

received from human operators. Similarly, the features' names are

selected so that they will be self-explanatory as to their semantic meaning.

There are three types of features as determined by the type of the

unique algorithm that is associated with the feature and is used to compute

the properties of objects. The first type is programmed. Here, a prepro-

grammed rour;: , ^, is used to compute the value of the feature. Many of these

properties rate actually stored in the data structure of the object itself in

which case they are not saved in the associative storage. These routines

typically control directly the computer interfaced sensory instruments and

get data from them with a minimum amount of analysia. The second type of

features are those whose values are obtained from human operator or ex-

perts. When the value of one of those features for an object (the property) is

required, the system issues a console (teletype or CRT) message requesting

those values from the operator. The text of the message with blanks to be

filled with the object names is stored in the data structure of the feature.

The last type of features are those which are obtained by the inference sys-

tem. With each such parameter, a unique classification tree is associated.

This tree represents a sequential classification process. When a property

of an object (the value of a feature) of that type is requested, the property is

estimated by classifying the object into one of a few small categories of

objects of that class, using other, hopefully simpler to obtain, properties.

For each of the small categories, the generic model has a Bayesian esti-

mate of the property for objects in that category. That estimate is then

JPL Technical Memorandum 33-761
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taken as the property of that object. The sequential classification can be

easily edited to obtain finer categories and to update the Bayesian estimates
a

of the property for objects in a category. This facilitates learning of the

generic model. More detail on the classification tree data structure is

given below.

Relations

The data structure of a relation specifies the class of objects it

operates on and the class of objec t s on which it ranges. As is the case with

parameters, there are three classes of relations as defined by the way they

are computed. The first is the preprogrammed search where the search is

done by a purely programmed algorithm. The second kind of relation

requires that the list of objects will be pro ,:.ded by the operator. The third

kind of relations, which we call inference relations, is computed from other

(simpler) relations by union, intersection, and filtering the output of the

simpler relations. The data structure of any relation contains pointers to

the corresponding filter or existential features of that relation if they exist.

The rest of this article describes the representation of the sequential

classification process associated with computation of inferred features and

inferred relations.

Inferred Parameters — The Classification Tree

The essence of the infer ence process of properties (feature values) for

objects is classification of the object into small categories where the range

of values of a property for objects in the small category is very limited and,

hence, the property can be estimated reliably.

10
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Example: Consider three-dimensional bodies in an environment

where three-dimensional bodies may be labeled only oranges, bananas, or
a

table tops. Then, without any test, the a priori probability distribution of

the label of an object of class three-dimensional body selected at random

will be something like orange with probabability 0. 6, table with probability

0. 3, and banana with probability 0. 1.

If we break the class of three-dimensional bodies into two categories,

in the first category are those objects which have some planar surfaces, and

in the second category are those objects which are purely curved surface.

Then, the first category will include almost exclusively objects whose label

t kes the value tables, while the second category will be almost exclusively

bananas or oranges. Testing the color and shape of objects in the second

category will allow further subclassification of objects in that category into

finer subcategories; some almost exclusively containing objects labeled

bananas and the other of almost exclusively containing objects labeled

oranges.

The classification tree for an inferred feature actually represents the

classification process. The top node of the tree stands for the category of

..11 objects of the class. With each node, there is an associated category of

object and each son node stands for a (finer) subcategory of the category of

objects in the parent node.

Each node contains the following information:

(1)	 Calling feature. Each node is part of a unique classification

tree dedicated to one feature. A pointer of that feature is con-

tained in the node.

JPL Technical Memorandum 33-761 	 11



(2) Default answer. This is the distribution of the values of the

feature over all objects which belong to the category associated
,c

with the node. This Bayesian information is collected by going

over ex..mples and collecting the distribution. If the inference

algorithm reaches the node without sufficient resources to

expand it further, ,`.his estimate is returned as the answer. If

there is not yet a known default estimate (insufficient training

set), a marker to that effect is put in.

(3) List of sons and son selection procedures (optional). This

information designates how to get a finer classification of the

objects in the node's category if there are sufficient resources

(compute time) to do so and get a finer estimate of the property.

If there is no such list, the node is a terminal node (no finer

classification is available for that case) and the default estimate

is the only possible answer.

(4) Integration procedure. This specifies how to integrate estimates

returning from the sons to get a unique answer returned from the

current node if, because of ambiguity, more than one son is

applied (that is, the object may have been estimated to belong

with positive probability to more than o :n subcategory).

(5) Text (optional). Describing why the node was generated. This

text is put in by the person or procedure who generated the node.

The son nodes correspond to the immediate subclassification of the

objects ir, the category associated with the node. This finer classification

is done based on other properties of the specific structure analyzed. Since

these other properties may be nondeterministic, this selection of the

12
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subcategories may be nondeterministic. In such a case, the object will be

i	 assumed to belong to different sons (subcategories) with different positive
e probabilities, and the estimate of the answer is the average of the estimates

obtained from the different possible subcategories weighted by the proba-

bility that the object belongs to each of those categories. The integration

procedure specifies which kinds of averaging are used for the node.

The reader is reminded that the default answer is returned as the

estimate of the property from a node if there is not sufficient compute time

(resources) allocated to the expansion of the node so as to obtain finer sub-

classification (activate sons and average the estimates returned from those

sons). Since all computations consume machine cycles (resources), the

selection procedure is guaranteed to terminate after a finite amount of time.

Vie sons selection 1,-ocedure in the nodes specifies a list of properties

to be extracted from the stricture analyzed. Each one of these properties is

allocated a portion (specified in the none) of the resources still available at

that point to the inference process for expanding the node. Each of these

properties is estimated. A vector of property values is generated

), where P i (1 <_ i <_ N) is the nondeterministic estimateP - (P 1 , PZ "' P  

for the corresponding property specified in the node. These properties may

be properties of other objects designated by their relation to the current

object. In this case the relations specified in the node need to be evaluated

to find out to which objects those properties belong. The node contains infor-

mation as to what portion of the available resources should be allocated to

those searches, the type of call on the relations, and a special son (subcate-

gory of objects) is specified for those cases where no object appears to

satisfy the relation.

JPL _echnical Memorandum 33-761
	 13
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The vector of properti , i is then reduced into a single property, like

value Q, by an expression of the form

Q = PT A • P + BB • P

A is a square matrix N by N, and B a vector of N elements associated with

the node Q is compared against a list of increasing thresholds (T i • • • Tm)

T i < Ti+l and m = +m. With each threshold, a son node is associated such

that if T i+1 <Q `T i , then the ith son is selected (or in other words, the

object belongs to the ith subcategory which is associated with the ith son).

Now since Q is a property like value, it can take a range of values

with different probabilities, it is nondeterministic. As a result, the object

may have positive probability of being in more than one subcategory, which

will require integrating the estimates returned froin each son node so as to

get a unique answer from the parent node. There are a limited number of

options for integration. Typically, it is geometrical or arithmetic averaging

(weighted by the probabilities of belonging to the son) of the answers coming

back from the different activated sons.

Inferred Relation — Combination Searches

Combination searches are organized in a search tree. The nodes of a

search tree contain a son selection procedure which is used for resource

allocation and expansion of the node. The selection procedure is identical

to the son selection procedure used in the classification tree. Also each

such node contains a pointer to the one relation with which it is associated.

However, clearly there is no default answer associated with the node (the

generic model cannot know the specific objects which will satisfy the rela-

tion for a specific object), and there is only one form of integration and

14
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that is to take the (weighted) union of the objects lists returned from the

different activated sons.

The default answer of the feature tree is replaced at terminal nodes

of the search tree by calls on other (hopefully simpler) relations and filters.

Typically, at a terminal search node there will be specified a call on another

relation and another filter feature. The object list returned from the other

relation which is evaluated with a portion of the i esources available for the

expansion of that terminal node is then filtered by the feature which esti-

mates the probability that each candidate actually satisfies the original

relation and throws away all those which do not satisfy it with probability

hig.'ier than 0. 5.

Permanent Storage

The associative data base representing a specific structure is mean-

ingless without the associated generic model which defines the classes of

objects, the list of parameters, and list of relations. Hence, there are

two types of permanent storage options on a magnetic disk cr tape file. One

is the generic model by itself, and the other is a generic model coupled

with a description of a specific structure using the terms defined by the

generic model. The system can store files containing either kind of data

and accept them so as to continue analysis or editing from the status when

saved.

Conclusive Remarks

The foregoing material describes our approach to the representation

of perceptual information. We apologize for the lack of examples and

incompleteness, which are mainly due to the fact that the complete system

is not yet fully implemented, and as a result, not all points of ambiguity

JPL Technical Memorandum 33-761 15
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were resolved. But, we hope that the concepts of (1) inference and search

bound by time constraints, (Z) nondeterministic Bayesian inferences, and

(3) nondeterministic description were shown to be of potential practical and

integrated use for sensory data analysis systems. Most of the system

described has been implemented but not yet applied to actual perceptual tasks.

The actual recursive expansion algorithm that computes properties and

values of relations, and the learning subsystem will be described in a later

publication. We are also looking for practical ways to save the status of

inference processes which exhausted their resources so that if additional

resources become later available, the inference process may be resumed

from the status it was terminated. Currently, it has to be started from the

beginning again, but it can make use of any properties and values of relations

that is already in the data base.

16
	 JPL Technical Memorandum 33-761

Li



REFERENCES

1. N. Nilsson, "Problem Solving Methods in Artificial Intelligence,"

McGraw-Hill Book Co., Inc., New York, 1971. 

2. M. O. Labin, "Theoretical Impediments to Artificial Intelligence,"

Proceedings of I. F. I. P., 1974, pp. 615-619.

3. J. Feldman and Y. Yakimovsky, "Decision Theory and Artificial

Intelligence: A Semantics Based Region Analyzer," A. I Journal,

5 (1974), 349-371.

4. E. H. Shortliffe, "Mycin: A Rule Based Program for Advising

Physicians Regarding Antimicrobial Therapy Selections," Stanford

University Technical Report STAN-CS-74-465, 1974.

5. K. Van-Lehn, et al., "SAIL Manual," Stanford University Technical

Report CS-STAN-73-373, July 1973.

6,

	

	 J. Feldman and P. D. Rovner, "An Algol-Based Associate Language,"

C. A. C. M. Vol. 12, No. 8, 1969, pp. 439-449.

7.	 L. A. Zadeh, "Fuzzy Sets," Information and Control, Vol. 8, 334-353,

1965.

JPL Technical Memorandum 33-761
	

17

ors:



i
I
c

18

R171 3

V8
12

R2 	R4

CLASSES OF OBJECTS: SCENES, REGIONS, BOUNDARIES, VERTICES
OBJECTS

OF CLASS	 SCENES: P1
OF CLASS	 REGIONS: R 1 , R  R3, R4
OF CLASS	 BOUNDARIES: B IT B IT B 14' B23' B34
OF CLASS	 VERTICES: V 11 V2

FEATURES
OF REGIONS: SIZE, GRAY LEVEL, LABEL
OF BOUNDARIES: LENGTH, AVERAGE DIFFERENCES

RELATIONS
REGIONS IN: 	 SCENES	 REGIONS
BOUNDARY OF: REGION	 BOUNDARY
ADJACENT:	 REGION	 REGION
COMPOSES:	 VERTEX —+ BOUNDARY

PROPERTIES:
SIZE XO R I a (10 1.0)	

1LABEL Q R l = 1	 J"CLOUD" .5
RELATION - OBJECT LIST:

/B12 1.0

BOUNDARY OF QX RI I B13 1.0
18 14 1.0

(B 13 1.0
COMPOSES	 Q V I 1 823 1.0

1812 1.0

R 1 1.0

REGIONS IN	 OX P1	 -
R2
R 3

1.0
1.0

R4 1.0

Fig. 1. Partial representation of a scene
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