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1. Imtroduction.

In this report, uwe discuss new re,snl't& and insights concerning an iterative
procedure introduced in .{ﬁ for obtaining maximum~likelihood estimates of the
parameters for a mixture of normal distrfbutfons. For any questions concerning
notation, de.finzu:iqns, etc., the reader is referred to that report.

The fterative procedure in question {z the following: Beginning with same

c ~(Q1)
starting value ,ﬁm fn the space (U® I @ J introduced fn 1}, define
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successive iterates inductively by the relationship
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given fn [1]. It s shown in [l] that, with probabBility approaching 1 as
the sample size N approaches infinity, this procedure converges locally to
the consigtent maximum-likelihood estimate whenever ¢ 1is sufffcfently small.
(In partficular, ¢ < m guaranteesa the local convergence of this pro-
cedure in probability.)

In this report, we prove that, in probability, the procedure (¥} converges
locally to the consistent maximum-lfkelfficod estimate whenever 0 < ¢ < 2. We
also show that the ¢ which yields optimal local convergence rates lies between
1 and 2, In fact, the optimal ¢ 1s near 1, ff the component populations
are widely separated,and near 2 1if the component populations have nearly

identical means and covariance matrices,

1. Loecal Convergence.

As in [1], we say that Ie ia locally contractive (in a norm " ” on

a@M@Ji hear e Of@mej 1f there is a mmber A, 0x A<l
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such- that
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. Our result iIs the following.

Ml =l Rl

a
whenever | 1'| lfes sufficiently near
T

Theorem. With probability approaching 1 as’ N approaches infinity, Ie iz
a locally contractive operator (in a nomm to be defined on NG WP( & j ) near

the consistent maximum-likelfhood estimate whenever 0 < ¢ < 2,

Corollary. With probability approaching 1 as N approaches infinity, the

iterative procedure (%) converges locally to the consistent maximum-likelihood

estimate whenever 0 < ¢ < 2,.

Proof: As observed in [1], the theorem will be proved if it can be shown that,

for 0 <e¢ <2, E(V L(E",u",'f‘)) has operator norm less than 1 with respect

to some vector norm on OKMW.@J . (Throughout tiils note, the superscript

"o " indicates that the superscripted parameters are the true parameters of the

mixture density.) For {=1,...,m, let < , >i and < , >; be the inner pro-

ducts on R" and the space of real, symmetric n*n matrices introduced in [1],
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i = vy (a'iZ )w for v,w ¢ R,

" - a; o1 T

<A,B>, = tr{A(—=I, )B"} for real, symmetric n*n A and B.
i 2°1 ,

<v,w>



These inner products, together with scalar multiplication on Rl, induce an

inner product < , > on (XOW(S.J. Now E(VE (@,0°,5%) = 1= ¢ @R,

where
(diag ai) 0 0
Q = a 1 0
0 0 (diag E;)
and
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One sees that the theorem will be proved if it can be shown that,with respect

to some vector norm on 0[ QMQ ,X , the operator norm of QR 1is no greater

than 1. Since QR 18 positive definite and symmctric with respect to the

~1

inner product < ,Q © >, it follows that the theorem will be proved if it can

be shown that <V,Q-1[QR]V> = <V,RV> < <V.Q-1V> for Ve UC@MG,S.
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by Schwarz's inequality. 1f the squared expressions ia the last sum above are
written out in full, one sees that the :I.nt:egrais of the cross terms in these

expressions vanish. Consequently,

<V,RV> s j( 121[“.1 R\ (x—-ui)) +(tr{A ( _J‘)[Z'i'l(x-u;) (x—u‘i)T-I]T})lza;pi)d:
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Now
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(A proof of (3) follows below,) From (1), (2), and (3),
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This completes the proof of the theorem,

Proof of (3): Setting y = 2"1"1’ 2(x1) and

1= [ certa, G 5 o) e -1 2lp o
Rn

one obtains
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where p_ ~ N(0,I). Denoting Z° -1/2, 21-1/2 = B -'(bjk)'

i

one concludes that



one then derives
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3. The optimal €.

From the proof of the theorem, on. sees that, asymptotically as N approaches
infinity, the value of ¢ which yields optimal local convergence rates is that
which minimizes the spectral radius of l‘:(\i’}'e (@ ,0°,2%)). (Indeed,
ev§ . (@’ 1%,I°) = 1 - ¢ QR 13 symmetric with respect to the inner product

<,qt

>; hence, its operator norm with respect to this inner product is equal
to its spectral radius.) Letting p and T denote, respectively, the largest
and smallest eigenvalues of QR, one verifies that the spectral radius of

BV _(@E°,1°T°) 1s mininized when 1-¢ T =ep -1, i.e., when <= =

Now p = 1 always, for it follows from the proof of the theorem that p 1is



never great:r than 1, and
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is always an eigenvector of QR with eigenvalue 1. Thus optimal convergence
rates are obtained when ¢ = -i%f" where T lies between 0 and 1. 1In
particular, the best choice of ¢ 1lies between 1 and 2.

Suppose that the cowponent populations in the mixture are "widely separated”
in the sense that each pair (u‘i,i‘.‘i) differs greatly from every other such

pair. Ther

op . (x) afp, (x)

and one verifies that QR = I. Consequently, optimal convergence rates are
obtained for an ¢ near 1 and, for the optimal e,
E(V Ie @°P°E%) = I - ¢ QR x 0. Thus for mixtures whose component populations
are "widely separated”, optimal convergence rates are obtaimed for an ¢ near
1, and rapid first-order convergence can be expected for this «¢.

Now suppose that the component populations in the mixture are such that

each palr (u;_,}.'."i) differs little from every other such pair. Then



p; (%)
(x) = p,(x) and ~1 for xeR® and 1= l1,...,m, and one verifies
P 1 p( x) ~

that the smallest eigenvalue of QR is near.zero. It foilows that ?ptimal
convergence rates are obtained for an ¢ near 2. In this case, the spectral
radius of E(VI G(E",ﬁ",'f’)) is near 1, even for the optimal value of ¢}
hence, slow first-order convergence is to be expected.

We conclude by observing that the major practical implication of this note
is that the iterative procedure under consideration converges whenever the
step~size € lies in an interval which is completely independent of the particular
mixture problem ai hand. It is readily ascertained that this cannot be zaid for

the regular steepest descent procedure
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Thus the procedure counsidered here offers considerable practical advantages over
the steepest descent proce&ure, even though it is itself a generalized steepest

descent (deflected gradient) proeéedure.
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