
ON THE COMETARY HYDROGEN COMA AND FAR UV EMISSION

H. U. Keller

I. INTRODUCTION

Comet Tago-Sato-Kosaka (1969 IX, hereafter TSK) was the

first medium bright comet passing by in the era of ultra-

violet satellites. The Orbiting Astronomical Observatory

(OAO-2), observed in January 1970 the strong Lyman alpha

signal at 1216 A which led to the first detection of cometary

hydrogen. The peak signal in the photometer field-of-view

(FOV) of 10' diameter was about 70 kR (Code et al., 1970).

The resonance scattering emission of hydrogen was optically

thick in the central part of the coma. A rocket experiment

of Jenkins and Wingert (1972) using an objective grating

spectrograph confirmed the OAO-2 observations. Later in

Spring 1970 comet Bennett (1970 II) was observed in La by

OAO-2 and by two photometers onboard the Orbiting Geophys-

ical Observatory (OGO-5) (Bertaux and Blamont, 1970; Keller

and Thomas. 1973). A single observation of the short

periodic comet Enke was also achieved (Bertaux et al.,

1973). Comet Kohoutek (1973X11) triggered a variety of

ultraviolet experiments using satellites, Copernicus (Bohlin

et al., I. A. U.) and Skylab (Keller e_t al. , 1975; Car-

ruthers et al., 1974), as well as rockets (Feldman et al.,

1974; Opal et al. , 1974) and the spaceprobe Mariner 10

(Broadfoot et al., 1974) on its way to Mercury,
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For hydrogen coma interpretations this review will rely

heavily on recently published data of comet Bennett. Many

observations of comet Kohoutek are still being analyzed.

The cometary hydrogen observations are reviewed, and

theoretical interpretations of the results are followed by a

brief summary of UV observations other than La.

II. La OBSERVATIONS

A spectrometer with a FOV of 2' x 8* onboard OAO-2 was

used to construct a La isophote map of the central region of

the hydrogen cloud of comet Bennett on April 16, 1970 (Code

et al., 1972). The roughness in the contours --extending

out to 2 kR -- is partly explained by contamination of the

La signal by resonance oxygen emission at 1304 A (Lillie,

1974). The observed diameter was about 3 x 10 km. The

apparent heliocentric velocity of the comet forms an angle

of 52° with the antisolar direction (and not of more than

90° as indicated in the map). A comparison with recent La

isophote maps of comet Kohoutek (Opal et al., 1974) shows

the OAO-2 isophotes appreciably more irregular. The details

are probably not physically relevant.

The French OGO-5 observations, which yielded twelve

maps (Bertaux et al., 1973), were made during a special

spin-up (spin axis parallel to apparent sun-comet direction)
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in April 1970. These photometer observations showed the

hydrogen coma extending out to 250 R or a length (in anti-

solar direction) of 15 x 10 km, several orders of magnitude

larger than its visible counterpart. In these observations

the influence of the La radiative pressure force is dom-

inant. The resolution is somewhat worse than the FOV di-

ameter of 40' would have permitted. Because the special

spin-up motion of the satellite complicated the data re-

duction, the location of the cometary nucleus is not known.

A different set of observations were achieved by the

University of Colorado photometer onboard OGO-5 when the

comet passed fortuitously through the FOV during the normal

satellite operation in late March 1970 (Keller and Thomas,

1973). Four tracks across the cometary hydrogen cloud

revealed that the La intensity as far out as 30 x 10 km in

antisolar direction still reached a value of about 70 R

above the sky background (̂ 400 R). A relatively large FOV

of about 3° diameter increased the sensitivity of this

instrument.

The Mariner 10 satellite made similar observations of

comet Kohoutek in January 1974. The multichannel spec-

trometer of the Kitt Peak Observatory scanned the comet out

to about 25 x 10 km in tail direction (Broadfoot et al.,

1974). The data evaluation is still in progress.
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By far the best La isophotes (Fig. 1) resulted from an

observation of comet Kohoutek by an electrographic camera

flown on a rocket on January 8, 1974 (Opal et al., 1974).

The resolution was about 21 or 10 km; the comet's heliocentric

distance was 0.43 a.u., and the influence of the La radi-

ation pressure was strong. The innermost isophotes show

optical thickness effects on the antisolar side not visible

on the Bennett isophote maps. Thirteen maps were achieved

by a similar camera onboard Skylab between 26 November 1973

and 2 February 1974 (Carruthers et al., 1974). Some of the

pictures are, unfortunately, degraded by several adverse

technical circumstances. An interpretation is difficult

because of the proximity of the comet to the sun and because

the absorption of the geocorona must be considered on sev-

eral occasions. A knowledge of the cometary emission line

profile is necessary to make these corrections. Some

observational progress was achieved improving the coarse

determination of the line profile of TSK by Code et al.

(1970) who found a linewidth corresponding to a Doppler

velocity VD = 5 km s~ . The narrow geocoronal absorption

line scanned across the cometary emission at the comet's

perigeum.

The EUV spectrograph of the Naval Research Laboratory

on Skylab received La line profiles of the central optically

thick parts of comet Kohoutek's hydrogen coma shortly after
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Figure 1 La isophotes of comet Kohoutek, 8.1 January 1974,

observed by Opal et al. (1974). The isophotes are

represented by microdensitometer tracings converted

to absolute emission rates (kR). Linear and

angular scales are indicated. Resolution in the

inner parts is about 10 km (2 arc min). The

outer isophotes in the lower part are deteriorated

by a scratch on the film.
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perihelion. The observed broadened linewidth (FWHM = 0.14 A

or VQ = 34 km s~ ) agrees with the hydrogen outflow velocity

Vjj = 8 km s if the small instrumental broadening and

opacity effects are considered. The observations were not

good enough to deduce the actual cometary line profile

(Keller et al. , 1975) . The Princeton University spectrom-

eter onboard Copernicus (OAO-3) made observations in late

January 1974, when the comet's heliocentric distance was

about 1 a.u. (Bohlin e£ al. , I. A. U.). The observed

cometary linewidth corresponds to about VD = 9 km s

since even the central region was predominantly optically

thin.

High resolution observations with a Fabry-Perrot

interferometer of comet Kohoutek detected the HQ> emission

of hydrogen. The determined linewidth corresponded to

VD = 8 km s (Huppler e_t al. , I. A. U.).

III. INTERPRETATION

Biermann (1968) described the overall features of the

then still-hypothetical cometary hydrogen based on the

dissociation of parent molecules like water and other

hydrogen compounds. He called attention to the strong

influence of the solar La radiation pressure force and the

limiting interaction with the solar wind. Keller (1971)
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pointed out that the photodissociation of hydrogen-con-

taining parent molecules in many cases (including tUO)

yields high excess energies of more than 1 eV. These excess

energies are almost completely transformed into kinetic

energy of the liberated hydrogen atoms providing velocities

of more than 10 km s . Depending on the overall gas pro-

duction rate of a comet and, therefore, its heliocentric

distance, r, these fast atoms are partially cooled by

collisions. The inner region where collisions are possible

has a radius on the order of 10 km, assuming a gas pro-

30 -1duction rate on the order of 10 molecule s (typical for

comet Bennett), and is therefore smaller than the region of

dissociation which is about 10 km at r = 1 a.u. (Keller,

1973a). The source of hydrogen is small if compared to the

dimensions of the OGO-5 observations. Keller (1971) sug-

gested using Haser's (1966) fountain model -- originally

developed for the visible coma -- for the interpretation of

the hydrogen cloud. This model assumes a point source at

the cometary nucleus with radial outflow velocity distribution

and includes the effects of solar radiation pressure and of

a finite lifetime. The major drawback of the fountain model

is the neglect of the cometary motion during the lifetime of

the hydrogen atoms (about 10 days at r = 1 a.u.). Bertaux

et aJL. (1973) and Keller (1973b) used this model for the

interpretation of the French OGO-5 data of comet Bennett.
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The outflow velocity of the hydrogen atoms determines

the extent of the sunward part of the isophotes (Fig. 2);

vu = 8 - 9 km s" was found for the mean velocity of an
hi
assumed radial maxwellian velocity distribution. The finite

hydrogen lifetime, tH, decreases the intensity of the iso-

photes the most on the down-sun side. t,, was about 2 x 10 s

(rediiced to r = 1 a.u.) in early April 1970. Bertaux et al.

(1973) found a decrease for later dates. This was attrib-

uted to an increase of the solar wind flux at solar lati-

tudes higher than 45°. About 8070 of the hydrogen atoms are

ionized by charge exchange with solar wind protons; the rest

are photoionized. The hydrogen production rate, QH, -- the

third free parameter of the fountain model -- is determined

from the absolute calibration. An average value for Q^ was
90 -I

8 x 10 H atom s for r = 0.8 a.u.

Opal et al. (1974) also used the fountain model for a

preliminary interpretation of their Kohoutek La isophote

maps. The value for VH was confirmed.

The comparison of the computed isophotes with the

observations of comet Bennett (Fig. 2) reveals some quali-

tative differences, particularly in antisolar direction

(Keller 1973b). The tapering of the observed isophotes is

not reproduced by the model. The model shifts too much

weight to the far down-sun parts, probably because of the

incompleteness of the observations and the relatively
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Ly a Isophotes Comet Bennett (1970II) April I, 1970

I06KM

Figure 2 The observed La isophotes (Bertaux et al., 1973) ,

-, are compared to model calculations by Keller

(1973b), -. The model parameters are: QH =

1.2 x 10 ° atom s"1, VH = 8 km s"
1, tR = 2.5

x 10 s, and a solar La center flux of 3.2 x

11 -1 2 -210 ph s cm A is assumed.
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primitive model. The Kohoutek observations (Fig. 1) re-

semble the calculated isophotes better but do not match

perfectly.

Recently a more elaborate model was developed by Keller

and Thomas (1975 and I. A. U.). This model uses methods

similar to the dust tail calculations. Hydrogen atoms

leaving the nuclear region with zero ejection velocity form

a curve in the orbital plane of the comet -- the syndyn-

ame --at observation time. The shape of the syndyname

depends on the radiative pressure force and the cometary

orbital elements. The points on the syndyname are inter-

preted as fictitious sources contributing to the line-of-

sight density integral. This model accounts for the motion

of the comet and the change of the hydrogen lifetime and

production rate*

If the line-of-sight of the observations is nearly

perpendicular on the orbital plane, the curvature of the

hydrogen coma can be used to determine the solar La flux

independent of any instrumental calibration. Keller and

Thomas achieved the following results from the University of

Colorado photometer observations of comet Bennett shortly

after perihelion in March 1970: QR = 5.9(+2) x 1029

atom s"1, tH =
>1.3(-0.3, +0.7) x 106 s both reduced to

r = 1 a.u. These agree well with all the other Bennett

results. The data at the outer boundaries of the hydrogen
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coma required a 50:50 mixture of two maxwellian velocity

distributions, v^ = 7 and 21 km s , for a good fit. The

high velocity component is hard to detect on the antisolar

side, it is masked by the low velocity H atoms. The central

solar La flux was determined to 5(+l) x 10 ph s~ cm" A~ .

Keller (1973a) investigated the properties of the

optically thick central parts of the cometary hydrogen coma.

The radiative transfer problem was solved for a purely "

radial outflow velocity distribution using Monte-Carlo

techniques. Emission line profiles were determined for
\

multiple and single scattering. This type of model cal-

culation will have increasing importance for the inter-
\

pretation of high resolution -- spatial and wavelength --

observations. A comparison with the OAO-2 isophotes con-

firmed the interpretations of the fountain model for Q^ and

V
The physical parameters for particular observations of

the hydrogen coma have been established, and their variation

with heliocentric distance must be investigated now. The
2

lifetime increases with r since the limiting effects of

both solar wind and solar flux are diluted. However, the

effect on the outflow velocity is not clear. The French

OGO-5 data of comet Bennett did not yield evidence for a

systematic variation of the outflow velocity in the helio-

centric distance interval from 0.61 to 1.0 a.u. A sys-
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tematic change in the hydrogen production rate was hardly

detectable either, probably because the uncertainties of the

observations were too large.

OAO-2 photometer observations' of comet Bennett in the

heliocentric distance interval from 0.75 to 1.25 a.u. show a

parallel decrease of the hydrogen and hydroxyl (OH) pro-

duction rates with an r-exponent of -2.3(+0.3) (Keller and

Lillie, 1974; Lillie and Keller, I. A. U. ). These results

are unique because of the simultaneous H and OH observations

with similar instruments and because they include the

greatest heliocentric distance yet observed. The parallel

decrease and an H/OH ratio of about 2 suggest a mutual

parent molecule, probably water. The relatively small

exponent 2.3 does not exclude more volatile molecules. No

indication of a sudden drop of the vaporization of the

parent molecule due to the re-radiation term in the equi-

librium equation was found. These results allow conclusions

on properties of the nucleus, e.g., its albedo (see Delsemme

and Rud, 1973, and Keller and Lillie, 1974, for a more

detailed discussion).

Delsemme (1973) had investigated similar, less complete

OAO-2 data of comet TSK and found the variation of the

production rates of the mutual parent moelcule of H and OH

governed by the exponent -2.8. He concluded that only water

evaporation can explain the data.
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Table I summarizes the results of the hydrogen ob-

servations of comet Bennett. The preliminary results of

comet Kohoutek observations do not-show any significant

differences. The hydrogen outflow velocities determined

from La isophotes (Opal et al., 1974) and line profile

(Bohlin et al., I. A. U.) seem to be equal.

The available hydrogen production rates of the comets

TSK, Bennett, Kohoutek, and periodic comet Encke are illus-

trated in Fig. 3. The agreement for the Bennett observa-

tions are excellent. Undoubtedly, production rate deter-

minations of cometary hydrogen based on the ultraviolet

observations are by far more reliable than results for most

other constituents.

TABLE I

Comet Bennett (1970 II)

Hydrogen

29 -1
Production Rate at 1 a.u. 0 = 5.4(+2) x 10 atom s

Lifetime at 1 a.u. 1 - 2.5 x 10 s

Outflow velocity 7 - 9 km s

and component with ^20 km s

Production rate variation 0 <* r 1.5 < n < 2 . 6

for 0.55 < r < 1.25
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Figure 3 Hydrogen production rates of all observed comets:

Open signs refer to the pre-perihelion, the filled

ones to post-perihelion orbit. The ordinate is the

heliocentric distance.
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Figure 3 Legend

1. OAO-2, Keller and Lillie (1974) obser-

vations cover the interval between the edge

points (heavier line). Observed slope,

n = -2.3.

2. OAO-2, Keller (1973a).

3. OGO-5, French Photometer, Bertaux et al.

(1973). A typical value is chosen. Obser-

vation interval from 0.6 to 1.0 a.u.

4. OGO-5, French Photometer, Keller (1973b).

A typical value, representing the maximum

deviation from average.

5. OGO-5, University of Colorado photometer,

Keller and Thomas (1975).

6. Skylab, electrographic camera, Carruthers

et al. (1974).

7. Ha observations, Huppler et al. (I. A. U.).

8. Spectrometer on rocket, Feldman et al.

(1974).

9. Electrographic camera on rocket, Opal et

al. (1974).

10. Mariner 10, UV spectrometer, Broadfoot et

al. (1974).

11. OAO-2, Lillie (1974).

Comet Encke was observed by the French

photometer on OGO-5, Bertaux et al. (1973).

301



Pre-perihelion comet Kohoutek's hydrogen production

seemed to be slightly less than Bennett's; the La and Ha

observations agree well. The hydrogen production rate was

down by about a factor of five after perihelion as compared

to comet Bennett. Thus, this decrease of the gas production

(lessening the dust production too) explains comet Kohoutek's

fainter visual brightness after perihelion. The hydrogen

production peaked at perihelion and the exponent was ap-
_2

proximately -2 (QH
 a r ). The final results of all

Kohoutek observations (Skylab, Mariner 10, and Copernicus)

will provide the hydrogen production rate variation from

about 1 a.u. to perihelion and back to the same heliocentric

distance.

Also included in Fig. 3 are two points referring to

comet TSK. These are unpublished, preliminary results from

OAO-2 observations. Surprisingly, the hydrogen production

of comet TSK surpassed (about 50%) that of comet Bennett

whose intrinsic visual brightness was three magnitudes

brighter. The superior visual brightness of the latter

comet obviously stems from its tremendous dust production.

Comet Encke's hydrogen production rate was smaller by about

two orders of magnitude.

The questions remain how the hydrogen atoms are created

and what their parent molecules are. These large amounts of
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hydrogen atoms cannot be directly stored in the nucleus;

the same holds for molecular hydrogen. Clearly, the re-

cently detected parent molecules, HCN, CH.,CN, and FUO and

other observed radicals contribute to the amount of atomic

hydrogen. We shall not discuss in detail whether water

(H20) is dominating; only arguments directly connected with

the ultraviolet observations will be mentioned. The strongest

hint for the important role of water is based on the ob-

servations of the large OH production. The OAO-2,results

for comet Bennett (Keller and Lillie, 1974) show that nearly

all the hydrogen comes from water as assumed parent molecule

of OH, or at least one third in the extreme of the error

limits. The Kohoutek observations yielded similar results.

Equally important, the H and OH production rates of comet

Bennett decreased parallel between r = 0.75 and 1.25 a.u.

Probably, OH could not be synthesized efficiently enough by

ion-molecule reactions in the inner coma (Oppenheimer, I. A. U.)

and must be a dissociation product.

The conclusions from the values of the hydrogen outflow

velocities observed and interpreted by several different

methods are somewhat controversial. Table II shows the

probable photodissociation processes connected with water.

Several laboratory experiments (e.g., Welge and Stuhl, 1967;
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Carrington, 1964; and Stief, 1966) deal with the various

dissociation branches of water; however, no measurements

exist for OH. The important 1^0 dissociations yield excess

energies of more than 1.5 eV which are nearly completely

converted into translation energies of the H atoms. The

observed hydrogen velocity of 8 km s , however corresponds

to only about 0.4 eV. Bertaux et al. (1973) estimated,

based on a polytropic coma model of Mendis et al. (1972),

that only about 20% of the hydrogen atoms stemming from

water dissociation are cooled, whereas the second generation

H atoms from OH dissociation undergo practically no col-

lisions. They concluded that the kinetic energy from this

photodissociation must yield only 0.4 eV or less. Most

theoretical estimations, however, are 1 eV or even more

(Solomon, 1968). Wallis (1974) included the heating by

dissociative excess energies in the inner coma more realis-

tically, but his approximation also yielded only 30% ther-

malized hydrogen atoms.

If thermalization determines the outflow velocity, VH

should vary from comet to comet and with heliocentric dis-

tance. The sphere of collisions is proportional to the

production rate and decreases in radius when the comet

recedes. In addition, hydrogen atoms are created at a
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greater nuclear distance and live longer. An alternative is

that all hydrogen atoms with VH = 8 km s are completely

thermalized requiring a total gas production rate essen-

tially higher than that observed of the H atoms (Keller,

1971; 1973a). The recent OH radio observations of comet

Kohoutek (Biraud et al., 1974) seem to exclude collisional

damping and result in rather large hydroxyl Doppler ve-

locities of 3-4 km s~ .

A small variation of the observed hydrogen outflow

velocity cannot be excluded by the existing data but is not

supported either. A large portion of the hydrogen atoms may

have high velocities (Keller and Thomas, I. A. U.). This

high velocity component is difficult to observe. More

knowledge of the 1^0 and OH dissociation is badly needed to

determine whether the observed hydrogen atom velocities are

in agreement with the water photodissociation. A stochastic

treatment of the collision dominated inner coma region

taking into account the partial relaxation of the initial

non-thermal velocity distribution will make a detailed

interpretation possible.

IV. NON-La UV OBSERVATIONS

In the ultraviolet an identification of cometary con-

stituents other than hydrogen is difficult. The emission

rates are more than two orders of magnitude weaker than
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La because of the low exciting solar flux and the smaller

oscillator strengths of the transitions. The abundances are

smaller too. Feldman et al. (1974) made observations of

comet Kohoutek on January 5, 1974, using two spectrometers

covering the wavelength region 1200 to 3200 A (Table III).

The figures are uncertain by at least a factor of two. The

radial heliocentric velocity of the comet was large enough

that the cometary atoms absorbed in the wings of the narrow

solar emission lines (for X < 1800- A) introducing an ad-

ditional uncertainty. This situation could be improved in

future experiments by a series of observations at different

cometary velocities (Feldman et al., I. A. U.).

Feldman et al. (1974) concluded that their results are

consistent with the assumption that water vapor dissociation

is predominant. The emission of carbon, CI, at 1657 and

1561 A was observed for the first time. The fact that CI is

only slightly less abundant (QQ/QC ~ 3) than oxygen and

hydroxyl is one of the most important results of all Kohoutek

observations. Lillie (I. A. U.) confirmed the O.-C ratio for

comet Bennett from OAO-2 data. Earlier, oxygen (1304 A) was

found in about the same amount as hydrogen in comet Bennett

(Code et al., 1972). Carbon is obviously by more than an

order of magnitude more abundant than CN (Qu'QrM - 200 for

comet Bennett, Code et al., 1972). It is probably not a

minor constituent. Improved UV observations in future

comets are important and might lead in addition to the
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TABLE III

UV Emissions of Comet Kohoutek (1973f)*

5 January 1974 r = 0.34 a.u.

Species X[A] Qls"1]

TT-J-

01

CI

CO

H2

C02

OH

*Table from Feldman e_t al. (1974) .

Some values are revised.

Species with UV emissions to be detected:

He, N, N2, N2
+, NO, C"1", CN+, 0+, S, Si, and metals

1216

1304

1657

1510

1607

2890

3090

3.6

1-4

0.6

< 2.7

£ 0.3

< 10.1

0.8
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detection of some of the constituents listed on the bottom

of Table III.

V. OUTLOOK AND SUMMARY

Ultraviolet observations of more comets are badly

needed to confirm our conclusions and to find which values

are typical to all comets and which ones are specific to the

individual comet or a group of comets. A new generation of

UV instruments is available to make La observations of

comets down to about 10th visual magnitude. We should try

to duplicate the synoptic and simultaneous observations of

the hydrogen and hydroxyl production rate variations of a

comet and expand the heliocentric distance interval as far

as possible in order to determine the sudden drop off point

of the water evaporation. More difficult, but at least

equally interesting, is the observation of the ratio of

water dissociation products to the rest of the molecules and

atoms and its variation with heliocentric distance. La

observations with good spatial resolution together with

observations of the actual cometary emission profile will

provide the information to determine the velocity distri-

bution using models that include the relaxation of the

hydrogen atoms.

In summary, the cometary La observations have, without

a shade of doubt, confirmed the relatively high overall gas

production rates on the order of 10 molecule s~ of medium
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bright comets suggested by other observations and calculations

in the last decade. Additional observations of oxygen and

hydroxyl favor water to be one of the most abundant mole-

cules in the coma at cometary heliocentric distances of

about 1 a.u. and less. Water does not seem to outnumber

other constituents by orders of magnitude in comet Kohoutek.

The hydrogen production rate of comet Kohoutek was about a

factor 5 less after perihelion and probably only slightly

less pre-perihelion when compared to comet Bennett. The

observed outflow velocities of the hydrogen atoms of both

comets were about 7-10 km s" , a value not yet understood.

If the high velocity component of 20 km s~ or more com-

prises a larger amount, some of the quoted hydrogen pro-

duction rates are actually higher. The intrinsic cometary

brightness is only a very crude indicator of a comet's

actual gas production rate as shown by the comparison of

comets Bennett and TSK. The strength of the La emission

favors these measurements as a standard procedure for

observing future comets since they also provide the most

accurate results on the total gas production rate and its

variation with heliocentric distance.
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DISCUSSION

D. J. Malaise: I have three comments on this review paper.

1. From what I have heard of stellar observations by OAO, the absolute
calibration of the spectrometer and of the photometer was somewhat unreliable,
and even relative calibration between the different experiments was not satis-
factory. Here, moreover, you have to take into account the integration in the
entrance aperture. What kind of uncertainty does that introduce in the relative
production rates you have deduced?

2. I don't agree that these results are another proof that H2O is the main
constituent of the comet. In fact, they seem to disprove it in two respects.
First, the dissociation of H2O yields only the high velocity component of H (v>
10km/sec), so that about half the hydrogen observed in the coma (the low velocity
component, v ~ 9 km/sec) needs another mother molecule than H2O. Second,
you showed that the variations of both H and OH with perihelion distance were
remarkably parallel, while the production of H (the low velocity component for
instance) through the dissociation of OH would give a H/OH production rate
greater at smaller perihelion distances.

3. You showed an observed profile for H and a 2-component (9 km/sec +
21 km/sec) computed profile which was adjusted to fit the observations. I want
to make a general comment about the fitting procedure in view of information
theory. The two limits of the observed profile are essentially due to accidental
errors, while there is a systematic deviation of the computed profile from the
mean of the observed profiles. It is not relevant in the fitting procedure that
the systematic deviation be kept within the accidental errors, because these two
errors are of quite different nature.

As a matter of fact, if the correct physics were used to derive the theoreti-
cal profile, such large systematic deviations should not appear. If you allow
such a misfit, a good mathematician will show you that there exists an infinite
number of solutions to your problem. To choose one particular solution, you
need to use additional constraints (other than your observed curve). These con-
straints can be simple hypothesis or personal views of how the model should be,
etc. These constraints are used in parallel to the observations to define or select
the fitting curve, but then it is an error of principle to claim that the observa-
tions prove the model. The model is an input and not an output of the fitting pro-
cedure; it can not be both.

W. Jackson;

1. The latest laboratory data for H2O is reviewed in my paper. However,
it shows that in the first continuum 99% of the H2O dissociates into H + OH
(X27r), while in the second continuum 99% of the H,O dissociates into H + OH,
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DISCUSSION (Continued)

while 10% of the products are H2 + O(!D). Further, the present data indicate
that the excess energy is deposited into translational energy of the H product in
both regions.

2. It seems unlikely that CO is the parent of C atoms, because laboratory
data indicate that CO doesn't photodissociate in its first absorption band. This
means that the lifetime against photodissociation is very long, since CO will
only dissociate in a region below 1100A.

P. D. Feldman:

1. CO as a source of C is only an educated guess.

2. The new value for QQH is 0. 5 x 1029 sec'1 (Feldman, et al., paper 51).
This gives QOH/^H ~0.1, which is probably outside experimental errors.

3. CH4 -> C + 4H would give a good fit to the data.

4. With a factor of 10 better sensitivity in UV observations, next time we
should be able to see if CO is really present.

F. L. Whipple: It should be pointed out that the high production rates of
some material like H2O was explicit in the early non-gravitational forces in
comets. The necessary mass was unobserved at that time and had to have a
vapor pressure something like H2O to confine the non-gravitational forces, as
well as general comet activity, to the perihelion regions. The current evidence
for many carbon compounds in comets relieves the need to postulate CH4, which
seems to be incompatible with the presence of CO and CO2.

M. Festou: The velocity of the H-atoms is obtained by comparing fountain-
model and data, so we must use an experimental profile which is very dependent
on this velocity, that is to say, the sunward profile. All observations fit with an
8 km/sec component. If we use the anti-solar profile, we can see that the velocity
is only a factor of proportionality, and the model fits the data when using a short
lifetime for the H-atoms; the velocity does not play any role. This is illustrated
by the fact that we find both a short lifetime (~1. 5 x 105 sees) when using two
different velocities (20 km/sec and 8 km/sec). Another way to fit the data when
using a higher lifetime of the H-atoms is to take into account a complementary
source in the anti-solar direction. I think the dissociation of H2O+ can be this
additional source, because H2O+ is produced in a very small solid angle, which
compensates its relatively low production rate.
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