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- ABSTRACT

Recent ,interest in asymmetrically swept, or oblique, wings has raised

fundamental questions about the acroclastic stability characteristics of

such wings. This paper presents two formulations of the oblique wing

Flutter problem; one formulation allows only Simplm wing bending deform-
ations and rigid body roll as degrees of treedowm, while the second
formulation includes a moré complex bending-torsional deformation together.

with the roll freedom. Flutter is found to occur in two basic modes. The

first mode is associated with wing bending-aircraft roll coupling and occurs

at low values of reduced frequency. The second instability mode closely

resembles a classical ﬁendingutorsion wing flutter event. This latter mode
occurs at much higher reduced frequencies than fhe first. The occurrence

of the bending-roll coupling mo&e is shown to lead.to lower flutter speeds
while the_bending-torsiqn mode is associated with higher flutter speeds.

The ratio of the wing mass moment of inertia in roll to the fuselage roll
moment of inertialis found to bela major factor in the determination of which

of the two instabilities is critical.



Nomenclature

[a] = flexibility matrix fox clamped fuselage wing

br = wing reference semi~chord |

c = wing chord measured perpendidular to elastic axils (Fig, 1)
é = wing chofd measured parallel to tﬁe,free stream directlon
QL“ = 2~ﬁimensiona1lsectional'lift-curve slaope

¥4 = structural damping parametex

i =TT |

I0 = wing roll-mdment-uf iﬁe:tia akt zéro aweep

k = reduced frgquency, mc/2Vn or we/2V

R = (IU/IT) coszh
s = ﬁing'semi—span

Y = airspeed-

Vf =‘flutter'spegd

Vn = airspeed norﬁai to swept axis, Vn = VeosA

A = sweep anglg

p = ajr density

w = frequencj of oscillation
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Introduction

The recent interest in the use of an asymmetrically swept, high-
aspect-ratio wing to achieve high 1ift-to-drag ratios has generated in-
terest in the aeroelastic stabi1i£y characteristics of such a configuration.
‘However, the undesirable static aeroelastic divergence characteristics of
| symmetrically swept forward wings has prompted some caution on the part
of stkuctura] engineers towards the asymmetrical wing, As a result, con-
;iderab1e discussion of. the merits of sﬁch a desigh and the potential
weight pené]ties which might be incurred has occurred. Jones and Nisbet
(Ref. 1) have presented data which tend to allay some misgivings about
the aeroelastic stability of asymmetrically swept or oblique wings. ﬁro-
minent among their findings is the discovery tﬁat the inclusion of the
rigid-body roll dégree of Ffreedom of the aircraft appears to have a stabi-
1izing effect on the aeroelastic stability of the ﬁing, when compared to
the stability of a similar, but clamped, wing. Their analytical results
were obtained‘fhrough the use of quasi-static aerodynamic theory to re-
bresent the perturbation 1ift forces generatad by the harmonic motion of
their idealized flexibie model.

This study seeks to explore, in somewhat more detail than Ref. (m,

- the flutter behavior of asymmetrically swept orrob1ique wings; to accom-
plish this task the results of two studies are presehted. The first

study examines the flutter behavior of an idealized finite span, uniform-
property wing in_incompressfb1e flow swept asymmetrically at various angles
to the flow. For this portion of the study, quasi-steady aerodynamic strip
‘theory will be’empTOyed in the equations of motion; the Galerkin method

will be used to solve these equations.



The second portion of tudy entails the use of a more sophisti~-
cated approach to the solution of the oblique wing flutter problem. This
~approach uses a finite-element, unsteady aerodynamic representation
together witﬁ & multi-degree-of-freedom structural model to examine more
closely and more accurately the fTutter behavior of variable f¥ form
wings.- In all cases, the flow is assumed to be incompressible., |

From these studies, it will be shown that, at moderate sweep angles,
the Flutter speed of the wing may be'1owered when compared with the flut-
ter speed of thie wing at zero sweep. In addition, the shape of the wing
~ planform ghd the spanwise distribution of stiffness and weight will have
a significaﬁt effect on the relation between flutter speed and sweep

angle.

Discussion
The first part of this study is concerned with: the aeroelastic anal-

ysis of a simplified oblique wing model, shown in Fig. 1. The impetus
for such a study stems froﬁ the desirability of assessing the behavior of
the fiutter speed 6f the wing as it is asymmetrically swept. This model
represents a wing of uniform structural and aerodynamic properties, asym-
metrically swept at an angle j to the flow. This'high—aspect-ratio wing
~is idealized as a beam with a straight elastic axis, free to roll about
an axis parallel to the flow., It is assumed that mass is distributeﬁ
along this roll axis such that a mass moment of inertia, If, simulating
the roll moment of inertia of the fuse1age,.appears concentrated there.

| To examine the aercelastic Stabi]ity of this mode], assume that it
is caused to undergo small oscillations about a "wings~1eve1f static
equ111bt1um position. The stability of the subsequent motion can be

determined by an examination of the character of this free wibration.



The structural behavior of this wing can be modelled through the use of
conventional Euler-Bernouili beam theory. It is further assumed that the

wing has no torsional flexibility so that only bending flexibiTity is
~important. The Timits to the validity of this latter assumption will be
discussed Tater in this paper. | | "

In Ref. 2 , Barmby, et al. discuss the fiutter analysis of
'symmetrica11y swept wings through the use of aerodynamic strip theory and
the Theouworsen ' functions. The present study neglects all the noncircu-
latory aerodynamic terms in Ref, 2, but retains two of the circulatory
terms. In additidn, the free vibratory motion 1s assumed to tale place
at a value of reduced frequency k = wc/2V which is so small that the flow
is quasiwsteady. The circulatory aerodynamic terms retained are: a term
which corresponds to the familiar damping-in-rollsand a term which
arises from the angle'of attack generated by behﬁing deformations of a
swepl wing. '

fhe assumptions- about the behavior of this idealized mode] under-
going small osci]]ations‘in’the ajrstream Tead to the following

differential equation of motion for the elastic wing.

2, 4,
m E_g.+ EI 3_%-+ (qchmcoszA) %%-tann (1)
ot Yy
qcc coszA 2
+ Lo ) aH  gee  cosTA( py
Vcosa /ot v

- mpycosA = O

where m = wing mass per unit Tength along the y-axis

" El = bending stiffness of cross-seétion‘perpendicu1ar to y-axis
g = freestream dynamic pressure
W = wing deformation due to elastic deformation, positive upward
t = time ‘
_p =roll rate in radians per unit time



Nondimensionalization of Eq. (1) yields the following equation,

AN 4

(% ) + :n‘g * A m " (tanA)(I\;l) (2)
. N .

() (1) ) o -

where (') = differentiation with respect to time
| W= K/L
n=y/L |
A = qeey LosintcosM/EI

The requivement that the sum of all roll. moménts generated by wing oscil-

latory motion be equal to zero results in the additional equation:

. . 1 '
(If + Ioc052A> P f(qchmchossft) ([_1 %%- ndn) tana (3)
' s Nl
+ { mL"cosA f1 vindn

2 qchngcos?’A pL
3 v

_ qchmL3cos.2A ]. |
- 7 -1 wndn

. If we et p=p cosA then Eq. (3) may be written és |
4+ -Z-(XL) $ = (ysinh) f _‘1’. ] fT Wndn - (4)
AV -1 IT -1
(e )f

2

where IT = If + Iocos A
_ 2.2 43 2
Iw = Iocos A= 3 mL¥cos™ A
¥ = qchmchossgx/IT



To solve Eqs. (2) and (4), the time dependency is eliminated by recogni-

tion that. the functions w{n,t) and ¢(t) are scparable such that

w(n,t) = Fln)e"™ (5a)

s(t) = o't

Mext, Eq. (2) is separated into two parts, one valid in the region -1 £
<0, the other valid in the region 0 £n <7T1. Finally the resulting set
of equations is solved approximately through use of Galerkin's method. A
simpie poiynomial to use for such a solution is that shape obtaihed for
uniform 10ading'of a cantilever beam, In this case the function f(n) is
approximated as:
| ~and ety 0 fg%

(6)
4) -1 2 N 2o

(6n

(6n% + 4n° + q

2
fn) = 2

W Ll

where a and b are unknown constants. The Galerkin wethod Teads to a set

¢f three homogeneous algebraic equations, represented in matrix form as:

 (a 0 _
L] B )
The coefficients dij are given in the Appendix to this paper.

It is found-that, in the absence of the roll freedom, the first

natural frequency of vibration of the clamped wihg, in vacuo, is pre-

' dicted by the Galerkin method to be | |
w, = 3.530 Ela ' (8)

mL.

This compares with the exact so]ption_(Ref.;B)

w_ =3.518 [EL - . (9)
0 ““‘4 : )
mL,

For the clamped wing, it is found that the sweptforward wing undergoes

static djvergence when r is zero. This occurs at a value of A equal to



6.40; The exact solution gives a value of A for static divergence of
6,33 (Ref. 4).

If a1l the system parameters, such as EI, A and V,are substituted
into the‘exﬁreésions for dij’ then the determinant of the matrix[?iﬂ,
written as A(d,.), can be used to find r through the relation:

aldy5) =0 (10)
With reference to Eqs. {(5a,b), it is seen that if v is found %o be a real

iJ

number, then motion is aperiodic. A positive real value of v indicates
aperibdic'instability or static divergeﬁce. On the other hand, if r is
found to be a compiex number, motion is harmomic. If r = « + i then the
motion is periodic with frequency w. For nagative values of «, the motion
decays, but for positive values of « it grows with time. This latter
situation corresponds to the dynamic aeroelastib instability commonly
referred to as wiﬁg flutter. At the value r = iw, the system undergoss
undamped osci]]étion and is saﬁd.to be in neutral éﬁui]ibrium. For a
given set of system parameters, the airspeed V at which this occurs is
termed the f]utﬁer speed, VF‘
| The way in which the probiem is presently formulated allows the selection
of one system parameter as the unknown in Eq. (10). The magnitude of
~ the complex number r is of no interest, but rather the value of velocity .
“at which neutral stability occurs. For this reason, it is found to be
_ advantageous to let r = fw in the expressions for dij and to express these
coefficients in terms of‘wo and the parameter g, Qefined as

B = A/ldi\’ . o (1]&)

where . o Agqy = 32/5 = 6,40 (11b)_-



Given the system physical param:ters, the determinant in Eq. (10)
may be expressed in terms of the independent variable 8. Collecting
terms, the determinant is found Lo have a real part and an imaginary part

given respectively by the expressions ‘
4 2 2?2
W 1 =39 1T -39 yh o D% {1 - 1__
o) [ 2] - G [P0 - 38) + e o (0 ) Joee

2
# [1 - g2 + 26 gR + 41 wn} =
[ 725 50

4 2

al‘ld . [A) 'I - 77 ,I " _I
| (55> ( - WR) ] (55) ( 7 "‘—zﬂn) (12b)

+ %-(1 3 32/25) =0

’ 22 _ 104 pCCLmL) aR

where D Wy - mﬂ( T Tanh (13a)
| 108 (PSetY (R |
- 3 ¥ 305 ( 2m TanA g (13b)

The selection of a value of B which yields identical values of the
ratio w/wo 1n Egs, (T2a,b) EompTetes the solution. With this value of g,
the Tlutter velocity then may be obtained.

The above solution procedure was imp]emented‘for a sma1l model wing
constructed of aluminum sheet with a constant thickness of 0,064 inches.
" The wing properties were taken to be: |

Material density = 0.101 Tb /in?

=4 in. - L = 20 in.  Cp ™ 2w
I/ =3 EL ='874.0 The-in. |
Using a sea level air density value, Egqs. (12a, b) were solved numeri-

cally using a Newton's Method trial and error solution technique. The

results of this analysis are shown in Fig. 2.



From Fig. 2, it is seen that the flutter speed decreases as the wing
is swept. For small values of A, the value of VF greatly exceeds thut of
| the clamped-wing static divergence speed, VD’ Howaver, as A increases,
the critical speeds VF and VD draw closer togethers; at A = 90° they will
coincide. As suggested by Jones And Nisbet in Ref. 1, the moment of
“inertia ratio Iw/IT plays a significant role in the flutier analysis ofthis
asymmetric wing. From the expression for Iw/IT given below Eq. (4), it is
seen that this ratio tends to zero as A approaches 90°. It has been sug-
gested that this mass moment of inertia ratio should be as large as |
possible to imﬁrovelf1utter performance. The results in Fig. 2 support
this obsefvéﬁion. |

Since one of the original assumptions of the present analysis was
that the flutter jnstabi1ity pceurs at re]ativeiy smali values of reduced
frequency k,it is worthwhile to note the values of reduced frequency for
which’ the instaﬁi]ities in Fig. 2 occur, These numbers are Tisted in
Tabie I. Although these reduced frequencies are reasonably small, the
accuracy of these results is probably degraded somewhat by the quasi-
éteady fTow assumption.

The model jdst ana]ysed‘is similar to, but not identical to, a
| series of models used by Papadales (Ref. 5) in wind tunnel experiments at
Virginia Polytechnic Institute. Those experiments had as their primary
~ objective the study of the static aeroelastic characteristics of clamped
obTique wings. However,‘when those tests were completed, simpie'f1utter
tests were conducted on ro11;free.mode1s. Although no attempt to take
accurate data was made during these flutter demonstration tests, the
velocity magnitﬁdes shown in Fig. 2 correspond to the order of magnitude

of the velocities observed in these demonstrations. In addition, for



sweep angles greater than 15-20°, the primary mode of instability was
. observed to.be'primari1y a fundamental symmetrical bending mode coupled
with the asymmetrical rigid body to11 osci11ation.

For sweep tngles Tess than about 20%, the tests described in Ref, §
found ‘a flutter mode which resembled a more conventional "fixed-root"
bending-torsion inétabi]ity These obqervationé, together with the desire

to obta1n a more accurate versatile ana1ys1s model, sugdested the app11cat1on
of a more soph1°t1cated analysis techn1que to the oblique wing f1utter

‘problem. It is to this analysis that attentior is now turned.

Conventional flutter analysis 6f realistic ajrcraft employs assumad
structural def1ections‘or mode snapes together with generalized roordi-
" nates assigned to these mode shapes. An exce]]ént discussion of modal
and npn-modal matrix methods qf flutter analysis is.given by Rodden in
Ref. 6. In addition, Ref. 6 presents a succinct discussion of how to
include free-free boundary'bonditions into the conventional restrained or
clamped model. This latter discussion follows the development g%Ven in
Ref. 7, but is more general. The highlights of Ref. 6 are reviewtd here.

To analyze the Flutter behavior of a planform such as that shown in
 Fig. 4, it is necessary that the following items be taken into account: |
the distributed mass of the wing along the span; the variable bending and
torsional stiffness along the span; and the unsteady, three-dimensional
aerodynamic forces and moments associated wfth deformations caused by
wing oscillations. With the assdmption of sihp]e hafmonic motion at fre-

quency w, the classical matrix equation for flutter analysis, before the

inclusion of assumed modes, is given by (Ref. 6):

§h£=(1—3f—23) ] [[M] + obZs [Ch:l]ah% S (4



In this equation the static flexibility matrix [a]l has begn divided by

' the factor (1 + ig) to account for the siructural damping necessafy to
sustain simple harmonic motion. The e1ements_6f the vector {h} are

actual elastic deflections and rotations at control ﬁoints:on the wing.

'The mass matrix [M] and aerodynamic influence coefficient matrix [Chl are
both mu1tip11ed_by the frequency squared. The é1ements of [Ch] are
complex numbers and functions of Macﬁ number and the local control point
reduced frequeﬁcy; k = wb/V, where " b 1is the 1oﬁa1 sémi-chord, With the
‘formulation in Eq. 14, the unsteady aerodynamic forces enter into the problem, -

‘mathematically, as complex Masses .

The idéa?ization of the wing structure as an assemblage of beams,
each with a straight e]astiﬁ axis, permits the use of conventional finite
eiement stfuctura1 analysis methods to describe theﬁwing stiffness and
f1exi£i1ity. Tﬁe reader is referred to Refs. 8 and 9 for discussions of
this metth | Similarly, the mass ﬁatrix may be formulated from Finite

element methods. The mass mafﬁix must account for the fact that the.wing
shear centers may be offset from the wing chordwise location of the cen~
 ters of mass. Finally, to model the three-dimensional aerodynamic forces

and moments, a doublet-lattice method (Ref, 10) Was used to generate .

~aerodynamic influence coefficients. To expedite these calculations, an
existing computer program (Ref. 11) was used.

A computerﬁbrogram‘was written to calculate the matrices in Eq. 14.
The free vibration modes for the.clamped system are then used to condense
the matrix equations. The free-free boundary conditions are then intro-
duced to "free" the clamped system described in Eq. 14; this
allows rigid body roll freedom. - Once these matrices have been formed,
the efgenvalues and eigenvectors may be fpund. Since the aerodynamic

-

10



influence coefficients are functions of reduced frequency k and Mach number
{in these studies, Mach number is zero}, a set of eigenvalues and eigenvectors
corresponding to each value of k is generated. The familiar V-g method (Ref. l
| 3, pp. 565-568) is then used to-find ¢he value-of velocity at which neutral .

-stability occurs.

fﬁ assess the effect of forsion and unsteady‘aerodynamics on the
flutter analysis of the oblique W1ng, the uniform property aluminum W1ng ‘was
again ana}yzed The wing is cons1dered to have the same structural pro-
pertiés aslbefore, but, . in thg present example, GJ is taken to be equal
to 1346 1b-in. It should be noted_tﬁat the flat, sheet-aluminum wing has
"a ratio of first bending to first torsion which is slightly higher than
that common to conventional aircraft. |

?he ana1ys{s-of the constant property wing;-inCIuding roll freedom
and torsional flexibility and emp10y1ng the doublet-Tattice method was
conducted with a s1xty degree-of- freedom model. These sixty degrees of
freadom were obta1ned by considering ten control points on each wing;
each sontrol po11t has p1tch, plunge and bend1ng rotation elastic degrees
of freedom. This model was subsequently reduced to a twenty degree- of—
freedom model by using the first twenty natural modés of the system.

The resuits of this flutter anaTysis_are disp1ayed in Fig. 3 as
‘ratios of the instability velocity (either "1uttér or divergence) to. the
velocity at which wing torsional divergence occurs af zero sweep; this
1atter-va1ocitf'fs denoted as Vp,.

. In Fig. 3 the behavior-of the wing when the fuselage is clamped is
shown as the curve Tabe1i§d Ya/Vpge With the fuselage c]amped;'instabi—
1ity is found tb occur at a reduced frequency k = 0; this is divergence.
When rol! freedom is allowed, and when IO/T,f = 3, a dynamic instability

~ appears; this is-Fflutter and is shown as the curve VFjvuou Unlike the

11



previous results, the flutter speed does not tend to infinity as A tends
to zero. This analysis reveals that the wing has two possible modes of
 flutter instability. The first.type of instability is characterized by a
classical bending-torsion oscillation of the wing with iﬁs root fixed or
.clamped. The second mode of instability fs one which invo]ves bénding~
torsion deformqtion éoup1ed with a significant amount of rigid bady roil.
Depending upon the sweep ang1e, one'of these modes will occur before the
other as a1rspeed is 1ncreased
| For the example shown in Fig. 3, the bend1ng-tors1on ro11 mode deues
‘not hecome critical until the sweep angle is near 15°. The cusp in the
VF vs. A curve indicates that the mode of instability changes at this'point;
Also, the flutter frequency will change discontinuously at this point.
| Gaukroger (Ref. 12) has noted a similar phenomenon associated with
the pitching degree of freedom on.bi1atera11y symmétric aircraft, A
phenomenon termed “body-frgedom f]utter" is found to occur 1f the aircraft
pitching moment of inertia is small enough. For large values of pitch
inertia, a type of wing flutter resembling a "wihg-c]amped" instability
occurs. This latter type of flutter is termed "fixed-root flutter." The
flutter frequency at which body-freedom flutter 0CCuUrs is signifiéant]y Tower
 than that at which Fixed-roct flutter occurs. It is also shown that for
biTaterally symmetric afrcraft antisymnetrical bodnyreedom flutter involving
rigid-body roll is theoretically possible, but only for cases where the
fuselage roll moment of inertia jS'extfeme1y_sma11 or.negative in comparison
to that of the wing. These results are contrasted with the present results

in which body-freedom flutter occurs if the fuselage moment of inertia is-

large when compared to that of the wing.

12



As a furth- » illustration of the flutter behavior of oblique wings,

a non~uniform wing planform, constructed of the same material as the uni-
form property wing, was analyzed. This wing (Fig. 4) has a modified |
-elliptical planform. In this case, the wing-fuselage combination has a
oll moment of dnertia ratio I/I; = 11.69. Fig. 5 shows the stability
behavior of thg clamped and roll-free wings. While the decrease in divergence

speed with increasing A for the cTEmped wing shown in Fig. 4 resembles

that of tﬁe uniform property wing, the behavior_of the flutter speed for
'fhe nonuniform wing s much different. Oncé again, for large sweep angies,
the decreasé of f1u£ter Speed with sweep angie is seen in Fig. 53 however,

the roll-free flutter speeds and clamped divergence speeds are fore widely

separated in Fig. 5 than in Fig. 3.

B To.assess the obvious importance of the fuselage roll moment of inertia,

the aeroelastic’ stability of theinonuniform property wing shown in Fig. 4 is
again_studied. However, the rol1 moment of inertia of the fuselage is now

increased by é'factor of two. The results of this study are presented in

Fig. 6 and_are compatred to'those.previousiy obta{ned using the smaller
fuséTage rol1 moment of inertia. Once again, the results are displayed as
" ratios of flutter spéed to clamped divergence speed at zero sweep angle.- |
' The effecf of increasing the_stelage ro11 moment of inertia is
clearly seen in Fig, 6. The flutter speeds for both moment of ineftia
ratios'are séenftp be nearly identical until about 15 degrees. of sweep.

Near this point, the f1uttef mode -for fhe IO(If = 5.85 wing changes from
the fixed-root type to the bodyjfreedom type. ‘This is seen to depress the

flutter speed as A increases.

13



As a final example, consider the uniform property dTuminum wing, This
“wing has been previously analyzed using a quasi-steady strip theory model
with elastic bénding degrees of freedom and rell coupling. It has also
been analyzed with 2 bending-torsfon model which used the doublet-Tattice
‘aerodynamic loads. For the present example, the value of the torsioha]
stiffness GJ 1is chosen to be 10 times that of the example whose results
were presented in Fig. 3. . The results of the present study are shown in
Fig. 7, where they are compared with those presented in Fig. 3. In Fig. 7,
.the desjgnation "Wing 2" refers to a uniform property wing wifh properties
'1dentica1't0'those of "Wing 1“:except that the wing sectional torsional
stiffness of Wing 2 is ten times that of Wing 1.

In Fig. 7, tﬁé relation between flutter sﬁeed and A for Wing 2 Has
an épparent discontinuity near A= 150, Increasing the value of GJ s
found to have a'pronpunced effect on flutter speed“ét moderate sweep angles,
but has 1ﬁtﬁ1e‘effect on flutter at high sweep angles. There is a drastic

change 1in the flutter speed near 15 degrees sweep. For sweep angles beyond

150, the results obtained for this wing with high torsional stiffness resemble

those obtajned with the bending model and strip theory airloads. The reduced
‘frequencies at the onset of flutter of Wing 2 are displayed in Table II for

- several sweep angles. From this table, it is séen that the flutter which
occurs'primari1y as .a body-freedom instability occurs at relatively low
reduced frequenb%es when compared with the reduced frequencies Whiéh arise
at the onset of bending-toréion flutter. Also, a comparison of the reduced
frequencies in Tables I and II shows that the reduced frequencies at flutter

in the two studies are comparable in wagnitude.

14



Conclusions

Befofe summarizing the results of this paper and listing conq1USions,
‘certain features of the idealized models studied should be reviewed.
These models were chosen for analysis because of past experience with
wind tunnel tests. A constant thickness, sheet-metal wing has a bending
stiffnéss which s proportional to the wing chord measured perpendicular
to the wing elastic axis; the torsional stiffness varies in a similar
manner. This proportionality of the stiffness to the wing chord Teads to
bending and torsional sfiffness distributions which are concave downward
_when plotted versus the spanwise coordinate. In actuality, the bending
stiffness distribution which resu1té from considerations of wing strength
usually appears to havé a concave upward distribution (cf. Ref..3, p. 45).
. The wings considered in this study had wing sectional centers of
mass coincident with the shear centers; thus, there was no elastic axis-
c.g. offset.. Dynamic coupling was either nonexistent, as in the case of
thé uniform property wing, br minimal, as in the caée of the variable
property wing. This Tatter wing has a Tine of shear centers which is

“curved slightly forward when the wing is in its unswept position.

The combinations and permﬁtatfohs of the‘various,parameters which

~affect the aeroé]astic stahility of an aircraft.are seemingly endless,
However, several conclusions may be drawn from the present studies at .
zero Mach numbér: Prominent among these .conclusions is that the inclu-
sion of the rigid-body roll degree of freedom into the flutter model
causes the critica1 mode qf instability to change from an aperiodic in-
stability (divérgence) to an oscillatory instability (flutter). The
degree to which the stability boundary is modified depends to a large

[
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extent upon the sweep angle A and the ratio of the moments of inertia
in roll of the aircraft fuselage and the wing in its unswept position.
| If the wing instability appears as a coupling between wing bending-
" torsion deformation and rigid-body roll (the body-freedom mode), flutter
-speed is reduced as A increases. Howevér, if the system paraméters
are such that flutter appears primarily as a fixed-root bending-torsion
instability, the f1utter speed may aﬁtua11y increase as the wing is swept.
If the wiﬁg can be either eTastica1]y or dynamically tailored, it may be
‘bossib1e to avoid the "bodyufreedom":mode type of instability altogether.
Topiés'Warrantfng further: investigation include: the effect of Mach
- number on obTique wing,flutfer; the significance of elastic axis - c.g.
offset; and the effect of elastic tailoring of the wing. It is antici-
pated that these and other studies will provide further insight into this

unique aerodynamic design.
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Table I - Reducsd Frequency k at Flutter (Fig. 2)

k = uc/2Y " | - A (Degrees)
0,0225 15
0,0330 - 30
0,0494 . 45
0.0587 - : 60

Table 11 - Reduced Frequency k at Flutter
(Wing 2, Fig. 7)

= we/2V A (Dégrees)

0,29 | 0.

0.29 7.5

0.29 15
0022 20

0.025 25

0.028 | 30

0.038 45

0.045 60
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Appendix
The application of Galerkin's method to Eqs, (2,3) results in the

ideterminant of Eq. 10. The elements of the matyrix [dij] are given below,

b \2 , , |

d”=-®ﬁ FuD + 1 4 g - | (A1)
dyp = 0 (A2)
- | 9 |/w 2 R

d]3 = '8" 'w—o-) - JwD (A3)
dpy = 0 (A4)

2 .

%2=-G%>+iw+1-s : (A5)

t

dgq = «?(13r/30) - jwp(13/48) ~ (ysina)(3/5) - (A7)
dgp = - u>(13R/30) + wp(13/45) - (ysinh){3/5) (A8)
dag = - m2l+ Twp(2/3) | . {A9)

The folTlowing definitions of terms are used in the above equations.

D = (13/162) (AL/VsinA) o= LV
R = (IO/IT)COSZA ' A= qchﬂL3sinAcosA/EI
B = A/A,, = 5A/16 v = qec) Locos®h/1;
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Fig. 1 — Uniform Property Wing; Definition of Geonmetrical Parameters.
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