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PREFACE

The work described in this report was performed by the Applied

Mechanics Division of the Jet Propulsion Laboratory under the cognizance

of the Mariner Jupiter/Saturn 1977 Project. The work was originally pre-

pared as a paper which was presented at the Winter Meeting of the American

Nuclear Society held in San Francisco, California, on November 16-21,

1975.
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ABSTRACT

The computing software that was used to perform the charged particle

radiation transport analysis and shielding decign for the Mariner Jupiter/

Saturn 197"7 spacecraft is described. Electron fluences, energy spectra and

dose rates obtained with this software are presented and conipared with

independent computer calculations.
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REPRODUCIBILITY OF THE
ORIGINAL FAG F. 13 ?r>™

I. INTRODUCTION

In situ measurements of the Jovian trapped radiation were made by

Pioneer 10 in December 1973 and by Pioneer il in December 1974. These

measurements revealed a potentially hazardous environment for MJS'77

spacecraft electronics and some surfaces. As a result, the Mariner

Jupiter/Saturn 1977 project carried out an intensive study of the charged

particle environment derived from those measurements and the effects of

that environment on both spacecraft and mission design (Ref. 1), This

report covers one aspect of that study: the radiation transport analysis

and shielding design.

Radiation analyses were performed for virtually all of the engineering

and science subsystems of the MJS'77 spacecraft (Fig. 1) with the computer

programs described in this report. System level and subsystem level shielding

for the MJS'77 spacecraft were based on these radiation shielding calculations.

ii, "SUMMARY

A. DATA FLOW

A flow diagram of the main computer programs is shown in Fig. 2.

Unshielded electron and proton radiation environment's are input, to the

SHIELD program in the form of flux and fluence energy spectra for a particu-

lar, trajectory derived from Jupiter electron -ind proton and solar flare pro-

ton radiation models (Ref. 1). The SHIELD program outputs include one-

dimensional attenuation kernels such as dose or fluence vs absorber

thickness for electrons, protons and secondary photons (bremsstrahlung).

This information, along with the spacecraft and/or rnbsystem geometry

and mass distribution descriptions, is input to the SIGMA prograrr (Ref. 2),

which uses three-dimensional ray tracing to obtain dose and fluence esti-

mates at internal spacecraft locations. The SOCODE program then uses the

SIGMA shield sensitivity data in combination with a predetermined set of

radiation level criteria to obtain an optimum shield configuration.

Dose is generally expressed in units of rads, where a rad represents
100 ergs of energy deposited per gram of material. In this report the
material is silicon.

JPL Technical Memorandum 33-765



B. SOFTWARE <

Several charged particle shielding codes were developed and/or I

revised during the course of thir- ^rork. The SHIELD program, written at

the Jet Propulsion Laboratory, subdivides materials into many small

layers; within each layer, incident partic] -s are transported using the con-

tinuous slowing down approximation Tor a set of solid angle bins. The angu-

lar distribution is revised at the surface of each layer using angular • • i

straggling distributions. The revised distribution is then used as the inci- ;

dent data for the next layer. SHIELD uses the BETA-II program (Ref. 3) . . •

cross section and source spectra processors. Output includes angular $

fluxes and flux responses with slab and center-of-sphere kernels, both j

printed and punched. Results for both differential and integral fluence are j

in excellent agreement with calculations performed using the BETA-II and )

SANDYL (Ref. 4) Monte Carlo computer programs. 3

The original SIGMA complex geometry program interpolated center-of- j

sphere kernels using slant -,;ath mass thicknesses for each ray used in the '}

solid angle integration. This kernel agrees with Monte Carlo calculations ,

for spherical geometry but underestimates radiation levels for slab geom- j

etry. A revised kernel was implemented which agrees with Monte Carlo j

calculations for both slab and spherical geometries. The revised kernel !;

uses perpendicular rr^ss thickness (estimated from slart paths and normal I

derivatives at material boundaries) in conjunction with a depth-dependent •

power law for angular transmission. =
• - ' ' • . ' . • • ' • ' • 1

- . • - f

The geometry description and ray tracing portions of SIGMA received

extenhiv; modifications, including simple input for multiple bay spacecraft,

recognition of simple geometric shapes with multiple bounding surfaces, .. i

a.id implementation of CRT plotting capabilities. In addition, the require- i

ment tor explicit description of void volumes was removed.' •

The shield sensitivity option of SIGMA was extended to include auto- I

matic recognition and retention of shield crossing cotr.binations. This sensi- •]

tivity information is used for designing spot shields for critical components 1

and/or increasing vehicle surface thicknesses in an optimum manner. j

JPL Technical Memorandum 33-76i



III. ONE-DIMENSIONAL CALCULATION'S i * :

A. SLANT FATH AND CENTER-OF-SPHERE KERNELS § !

A typical one-dimensional attenuation kernel is the radiation level,

D . (x), at the center of a sphere of radius x, due to an externally inci-

dent, cosine-distribu'ed radiation source (isotropic flux environment). This

is the kernel used by the original SIGMA program. The kernel can be gen-

erated by several methods and is supplied to the three-dimensional program

as a tabulation of radiation level vs mass thickness.

The CHARGE program (Ref. 5) is a one-dimensional code which uses

the basic range-energy relation, modified by applying electron transmission

factors derived from curve fit Monte Carlo data (Mar formula, Ref. 6).

The BETA-II program uses Monte Carlo methods to predict electron

transmission. Center-of-sphere results were approximated in slab geometry

by

i

the Jupiter electron environment (Ref. 1) using the CHARGE and BETA-II

programs. Both problems assume incident isotropic flux and cosine source

angular dependence for an aluminum spherical shell absorber with the dose

point at the center.

Excellent agreement between CHARGE and BETA-II was obtained

through 4 g/cm . Divergence beyond 4 g/cm is attributed to the treatment,
-by CHARGE, of the high-energy ( >10 MeV) content of the Jupiter electron

environment. First, the Mar transmission formula was based on earth

trapped radiation energies; i.e. , <10 Mev. Second, CHARGE assumes that

electrons slow down while traveling :n straight lines (i. e. , straight ahead

JPL Technical Memorandum 33-765

;

D u M = -T -̂ *D(x, cos 6)sphere AQ

where x is the mass thickness of a slab, 9 is the off-normal scattering angle,

and AD (x, cos 6) is the radiation level contribution from the forward directed '£
g

portion (0. 9 < cos 6 < 1. 0) of the electron transmission; t. e., only those

particles transmitted within AS7 steradians of the slab normal are counted.

Figure 3 is a comparison of a one-dimensional kernel as generated for [j
I

\



approximation). This assumption leads to overly conservative flu-'nce

estimates. '.

B. SHIELD PROGRAM

The SHIELD program was written to retain the cosv effectiveness of

CHARGE kernel generation while removing the deficien.ies for energie'

greater than 10 MeV. SHIELD uses the BETA-II electron/photon cross

section processing; however, kernels are generated by numerically integrat-

ing the one-dimensional transport equation.

Numerical methods used in the SHIELD program include (see

Appendix A): .

• '. ' (I) Subdividing material layers into many differential sublayers.

(2) Using condensed history angular straggling distributions

(Goudsmit - Saunderson method) for each differential sublayer.

(3) Regrouping of electrons after each differential sublayer into a

-."ixed energy/angle mesh before proceeding to the next sublayer.

. . The efficacy of this approach, i.e. , the excellent agreement with Monte

Carlo calculations, is seen in Fig. 3. The BETA-II calculation used sepa-

rate runs for the high (>10 MeV) a;»d low (<10 MeV) energy portions of the

ppectrum. The SHIELD run required about one minute of Univac 1108 time,

while the BETA-H calculation required over 30 miri.

Other SHIELD capabilities incluc'e:

(1) Energy-dependent flux output.

(2) Angular flux output.

(3) Multiple response functions.

(4) Punched card output kernels for SIGMA.

(5) Proton/heavy charged particle transport.

: (6) Secondary bremsstrahlung kernels.

: (7) Angular incidence, including monodirectional.

JPL Technical Memorandum 33-765



<z> = [DsPhere(zi]

where z = x . (r, fl). D , (z) is the dose at the center of a sphericalmm sphere ^
shell of thickness 7, $ is the incident angle, and c(z) is a depth-dependent

exponent. B'- requiri-ig that this kernel correctly predict both center-of-

sphert and slao geometry results, c(z) is simply

D • ' . . • • ( z )sphere

and is obtained directly fron SHIELD calculations (see Appendix B). As

seen in Fig. 4, this kernel Is exact for slab geometries.

Using the SANDYL computer program, TRW reported (Rel. 1) addi-

tional verification of SHIELD-generated kernt *s. Typical differential fluence

comparisons are shown in Fig. S for transmission through a 2 cm slab of

aluminum. . • .-• •

JPL Technical Memorandum 33-765
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C. MINIMUM PATH AND ANGULAR TRANSMISSION KERNFLS
••-,-..• • . M

The major deficiency of slant path kernels id that they are correct l| !
- I]

only ii material distributions around a receptor are actually spherically | .-]

symmetric or if the charged particles are not deflected during tiansport. | \

Figure -4 indicates the error introduced by using slant path kernels $ I
; . \- •

with the Jupiter environment (Ref. 1) for simple uniform thickness slab | 1

geometry. In view of the unconrervative results (underestimates) and of the | ]

many spacecraft volumes which have a slablike geometry (e. g. , points just ^ "\

inside vehicle skins), an alternate one-dimensional kernel, Dfx . (r, flM, 3 \mm g 3

vfAS generated by SHIELD and implemented in SIGMA. In this kernel, | j

x . (r , fl) is the minimum mass thickness path at the dose point r in the * ]

direction!*; e.g. , for slab geometry, x . (r, fl) is the slab thickness,

regardless of the relative direction between f7 and the slab normal. This

kernel is assumed to have an angular dependence of the form



IV. COMPLEX GEOMETRY MODELING

A description of the distribution of spacecraft materials (model) is

required by SIGMA for radiation level calculations. The material distribu-

tion around specific dose points is obtained by ray tracing outward from j

these points.1 The ray trrcing methods of the FASTER III (Ref. 8)/ '

BETA II/SIGMA programs required explicit descriptions of all volumes in a i

geometry, even if void. This requirement was removed because of lengthy !j

input required to describe the man',- voids of complex shape in the space- . j j

craft. The spacecraft models userl in the kernel analysis are fully compati- 3

ble with Monte Carlo analysis methods. \

The SIGMA and BETA-II program Tiles both utilize a series of user- | ;
; j

oriented input/outpvt data processors. The processors described below j j

were used extensively.

A. SURFACE AND REGION PROCES 'RS

Some parts of the spacecraft wer scribed by the surface/region

methods of the FASTER-III and BETA- rograms. Each region is defined

by specifying the surfaces which form it . boundaries, where each surface

is defined by a general quadratic equation:

G(x, y. z) -- aQ + ajX + a2y + a^z + a4x2 4 agy* + a&z2

+ a?xy + agyz + a^zx = 0

where the a, are the surface coefficients.

Material regions are then defined by specifying the particular surfaces

(simple planes, cones, cylinders, or spheres) ..oat bound that region.

Regions of the MJS'77 spacecraft described by this method include the pro-

peJlant tank and the high-gain antenna.

Aluminum was used as the reference dose material.

JPL Technical Memorandum 33-765



The method of material distribution description given above was

simplified for use by ths MJS'77 project.

B. ELECTRONICS BAYS PROCESSORS

The MJS'77 spacecraft has ten electronics bays of similar gec*netry.

An input processor was written to generate the surfaces and ragions com-

prising each bay. Input parameters include:

(1) Number of bays.

(2V Thickness and materials of each bay wall.

(3) Total "--Mpht and material of the bay interior.

system. This description ivas then rotated and translated, bv the program,

to the appropriate spacecraft coordinates. This procedure is schematically

indicated in Fig. 6.

JPL Technical Memorandum 33-765

i
In general, all bays- excep*- th.» one of specific interest were described :

by a emeare-i density which conserved mass, volume and sh?pe. ?

. . ' '4

C. BOARDS PROCESSOR .•
• T
f

Several electronics bays had interiors containing a series of parallel -t

electronics boards. An input processor was written to accept a simple j

input for parallel board geometries ail having common transverse -j

boundaries. * •

D. DESIGN PROCESSOR 1

Other electronics bays and all of the science instruments required ,

more corriplicated geometric description a. They were composed of many -j

parts, each with a different, but simple, geometry. Again, a special input |

processor was developed to generate the surfaces an^ regions required to |

describe these parts. Recognized sl-apes include plates, cylinders, annuli, .|

spheres, and truncated cones. This processor included error testing for «

overlap of legions. . 4

E. ROTATE AND TRANSLATE PROCESSORS }£
' " ' . • ' • . " • £

The interior of each bay was described in a bay -centered coordinate

:$•

*



This same rotation and translation capability was used for detector

points; i.e., detectors were specified in the bay-centered coordinate system

and then moved to the appropriate bay.

F. CAMERA AND PICTURE PROCESSORS

Two plotting routines were used to facilitate geometry checkout. One

routine (PICTURE) generates printouts of geometry cross sections ("Fig. 7).

The second picture routine uses the CRT plot capabilities of the CAMERA

program (Ref. 9 and Fig. 8).

V. THREE-DIMENSIONAL CALCULATIONS

A. SIGMA PROGRAM

Radiation levels are calculated in the SIGMA program by numerical

integration over solid angle of the one-dimensional attenuation kernels. For

example, the dose D ( r ) is given by

D(r) = -ri-

where D ( x ( r , fl)) is the dose that would be received at the dos.; point if the

mr-ss thickness x ( r , f t ) of materials encountered in the differential solid

angle dfl about the direction Q were spherically symmetric about r. The con-

stant K. is associated with the numerical integration scheme (e.g., K. = 1

for midpoint integration). Typically, for MJS'77, the polar and azimuthal

angles were each segmented into 26 divisions, making an angular integra-

tion grid of 26 x 26 = 676 solid angle sectors (ray traces). Geometry

mockup capabilities available in ray tracing programs such as SIGMA permit

very accurate representation cf mass distributions. SIGMA accepts multiple

radiation-type kernels (electron dose, proton fluence, etc. ). Ray tracing

about a detector point is performed only once; as each ray trace is per-

formed, the contribution to every radiation type is obtained. In particular,

•»11 SIGMA runs output both slant path (center-of-sphere) and minimum path

(slab) results.

JPL Technical Memorandum 33-765
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SIGMA outputs include mass path distribution (both slant path and ^

minimum path) and sensitivity of radiation levels with respect to shielding p

added to particular (user-specified) surfaces. This shield sensitivity output §

includes recognition of unique shield crossing combinations, e.g. , none, 1

one, or combinations of two or more, with corresponding output for the §f
Ivariation of the radiation level when tl ese shield thickness are varied. b

. Typical dose sensitivity data for one dose point is shown in Fig. 9. ^

il
B. SHIELD OPTIMIZATION |

SIGMA obtains shield-sensitivity data for one or more detector points •!

and optionally saves the data on a psrmanen; file. These data are then avail- jl

able for shield optimization calculations. il
- : . ' .i

Optimization calculations can be performed for multiple dose points, 3
35

shields, and criteria. Th? user specifies the criteria upper limits and how

each criterion is formed from the individual radiation kernels calculated by

SIGMA. For example,

Dose criterion = (1) x (minimum path electron dose kernel)

+ (1) x (slant path proton dose kernel)

+ (0) x (all other kernels).

.The user also specifies the geometry and minimum and maximum

shield thickness at each candidate shield location. Candidate shields are

those specified for the original SIGMA calculation plus a unit shield for

each point detector. Unit shields, which are spherical shields centered

at the dose point, are not obtained if the maximum unit shield thickness is

specified as zero.

The optimum shield configuration is calculated by iteratively incre-

menting shield thickness until all criteria are met. On each iteration, the

change in the jth radiation level is calculated separately for an Increment

of At: in the ith shie.ld; i. e. ,

'" AL.. = L.(t + At.) - L.(t)

• *ri
JPL Technical Memorandum 33-765 - . 9 If
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is the change in the jth radiation level due to changing the thickness

t = t ( t . , t_, t ) by At. in the ith shield only.

The corresponding change in the total shield weight is calculated as

AW. = W.(t + At.) - W^t)

using weight equations for slab, cylindrical, and/or spherical geometries,

either isolated or nested.

A combined relative shield worth is calculated as

V/AL../L0)Z-»\ J1 j/
wi ~ AW.

where the summation is over different radiation level criteria and L. is the

jth criterion. That shield for which Q. is most negative is changed by a

thickness At. and the process is repeated until all criteria are met.

The results obtained for a single detector point and a single criterion

are shown in Fig. 10. Because the optimization uses interpolations of tabu-

lated sensitivity data, a SIGMA calculation for the optimizad shield configura-

tion agrees with the optimization output to within a few percent.

VI. CONCLUSIONS

Ray tracing (sectoring) transport programs like SIGMA do have their

limitations. The errors introduced by using one-dimensional attenuation

kernels and by assuming that electrons do not scatter from one solid angle

sector to another may be significant. Unfortunately, no experimental

measurements that can be used for direct quantitative assessment of the

accuracy of these programs have been made for three-dimensional shield

configurations. Nevertheless, compared to Monte Carlo programs, the

computer-programs described In this report are fast, convenient, versatile,

and inexpensive. Together, they represent a necessary capability for any

project where space radiation shielding engineering is an essential discipline.

10 . JPL Technical Memorandum 33-765
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Fig. 6. Schematic illustration of the
sequence of rotations and translations
used ir. SIGMA to position an elec-
tronics bay at its proper location in
the spacecraft.
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Fig. 7. Computer plot of the command computer subsystem. The geome-
try model consists of 244 quadratic surfaces bounding 142 material
regions.
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Fig. 8. Computer plot of the photopolarimeter subsystem. The geometry model
consists of 108 quadratic surfaces bounding 56 material regions.
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APPENDIX A

SHIELD, NUMERICAL METHOD

The SHIELD code calculates charged particle transport in

one-dimensional geometries. TKe following definitions are used in the

numerical integration.

L: DIRECTION VECTORS

Let fl denote the original particle direction

f 9 = azimuth
fl = (i cos 6 + j sin 6) . ' < ! - V +

and fil' the deflected direction

= polar angle cosine
(A-l )

61 = azimuth
fl' = (i cos 6' + j sin 6') N/l - ».' + k»^' (A-2)

. [p.1 = polar angle cosins

Then the cosine of the deflection analysis

cos u/ = 61 - 0 (A- 3)

II. LEGENDRE POLYNOMIALS

By definition

PQ(H) = 1 , (A-4)

P/,(f (A-5)
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/
./a

f
b

(A-7) f

a {'

The addition forr.:ala for azimuthal r.ymmetry is equivalent to

P £ ( n - n > ) = P£<H8) - P £ (n)P £ (n ' ) (A-8)

For forward directions, the following is defined:

1 - P£(fx) = B £ ( f i ) ( l - fi) (A-9)

It follows that

B0(n) = 0 , Bj(V) = 1 (A-10)

and from (A-9) and (A -5),

- U- 1) B f _ 2 (n ) j ( A - l l )

It can be shown by induction, using (A- l l ) , that

Therefore,

lim Fl -
- 1 L

The expansion of a general function f(ji) uses the coefficients f^, where

rt{ = 2u I It;' Pjl
•/- I
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•i. e.

Finally, if for any function g

•J

g(fi) = g • I1.," (a delta function), then g^ = g for all I (A-16) r

III. SCATTERING CROSS SECTION

The charged particle deflection cross section ha.? the form

(1 - n + ir
• . . . •

where TV is the screening angle, and TJ « l =» strong peaking at p. = 1

It folio. vs that

,-1
= 2n I -r— (u) du (A-18)

is the total, cross section and the Legendre expansion coefficients A

f1
I CjC"

J.,d" K '

in particular ^ = <r. Thus, the scattering cross section can be repre-

sented by

X

d<r ,
(A"2 '
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REPRODUCEILITY OF THE
ORIGINAL PAGE IS POOR

By definition (for later use),

*l ~ a ~ fft = 2W ' ^ (^ I1 ~ P« (>l)l d* (A-21)

or equivalently.

r£ = 2ir / d&
J-l

(A-22)

With strong forward peaking, most of the integral comes from fi =B 1, so that

r* =s 2ir B^((i = 1) / •^fj- (n) (1 - K) dji _ (A-23)

or

where

b t l / V / 1 \ J / A * > P \= 2tr I -TJT- (fi) (1 - u) du (A-25)

Equality in Eq. (A-24) is used for o-* rather than the exact value from

Eq. (A-21) or (A-22).
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IV. TRANSPORT EQUATION

The transport equation is wri ften as a function of particle distance

trz.versed, where

4>(s, ji) = the angular flux at distance s

The Legendre moments of the flux are

-= 2. /"/ 4>(s.

J-l
dp.

(A-26)

(A-27)

Therefore, the angular flux can be represented by

(A-2S)

m=0

The transport equation, allowing only deflection reactions, ie.

ds
Jilt

, n'V ^(8.0'-. fl) d S 2 ' - < r ( s )4>(8 . (A-29)

I
3

1a

•ss

n

Substituting for the scattering cross section yields

ds

/* oo

/ ^/ ,» V^2g + 1= I Q> (S. Hi >' '
I H, ̂  4w

./4w £ = 0

- <r(s) (A-30)

. 1=0
(A-31)
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Multiplying by P (n), integrating ever 4ir, and using

/'"'./-I
tm

2m + 1 (A-32)

yields

<t>m(s)

or, using the definition of a* ,.

!m
ds (s) = - m m( s ) ^ . ' • . ,(s) = -, (A-34)

A simple integral yields the solution

4>m(s) = 4>m(0) exp <r (s1) ds1

m (A-35)

where the <}> (0) are the Legendre moments at s = - 0. Thus

<)> (0) = 2w / 4>(0, ji) (A-36)

Equations (A-35) and (A-36), and Eq. (A-21) for <r*, constitute the

Gaudsmit-Saundersor method. The series is truncated at order L, and a

delta function component is assumed. Therefore,

4>(8, (A-37)
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The moments of this equation are . 1

<|> (s) = ? (is) + 6. (s) (A-38) im m L j

Therefore, f
a

" " - • • . it~~ • '*
$.JS) = <l> (s) - $T (s) (A-39)

and

L-l

P.((i) + $. (s) 6(^ ' n (A-40) :j
* ,1j ' 11* 3

V. TRANSPORT THROUGH MATERIALS I

The above definitions are used for the charged particle transport in $

the following numerical scheme. First, the shield material thickness is J

divided into many small layers; each layer thickness is much less than the 'g

range of the lowest energy electrons. Second, the range of polar angla ^

cosine relative to the layer normal is divided into many intervals; i.e., J
'̂jr

interval i is u. < u. < u. . , where the u,'s are the interval boundaries. The '•{
' i+l . i ,i

transport problem is then solved by repetitively calculating the transmitted (5

energy-angle distribution for a layer and using that distribution as the inci- >?

dent source for the next layer. . j>1
'•\

In particular, let W.. denote the number of incident particles in energy ji
J1 -|

grouo j and angle interval i. Let E.. denote the average energy of the ^

particles. The problem is a calculation of W.. and E.. or the other side of a 3

layer of thickness t; i. e. , for each energy group, and a: 7,le interval,

i
"p- = T fa- + ^- + 1) • t*ie average pMar angle cosine

s. = — , the path length across the layer
1 11:
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< , ,,
d T ( s ) ds' , the transmitted energy

B.. = r,j* • ' /. j•'o
(s1) ds1 , b(s) from (A-25)

«>" = exp -L'L|-L( -I , the fraction of particles trans-
mitted into the same angle
interval.

The energy-angle distribution of deflected particles is

W 1 ! / 1TM ,1 n M — 1AT. . ( JL , u. . O 1 = W..Jlv »*• Jl
L'! P lu\V^ 2m + 1 A ^mv^' w , „

rn-0

6(E- - EJ;

where

A.. = expjim K [- m (m + 1) - exp - L(L + 1)

Integrating over the initial and final directions and adding on the undeflecte<-

component yields the ensrgy distribution of transmission into angle interval i1

irrs i'm , ,0 c~~~—~~~~^ + p.. o...
^ ' ^ 1 x l

.

where C. is the integral of the mth Legendre polynomial over the ith angle

interval. Integration over final energy yields

cn / wi'ji(E''
i j ./group j'
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and

•-. r '
> » I w" f V ' < \ F1

Z^Z-r/ W i . j i^)E

J i j ygroup j1
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: APPENDIX B ,..

MINIMUM PATH KERNEL

For isotropic incidence .on both sides of a slab,

•2tr cos 0 = 1/*

D(z) = ( _ L ) 2

X ' Jo

« C°S

r n1

[ferlL Jo
= D8Phere(z) c

D , (z) D . (z)
sphere ._. . sphere

Psphere<z)\

V Dslab(z) 7

For isotropic incidence on a sphere, |i = 1 and

/•ZTT /« cos

=^- I
/O Jcos 6=4=0

so that, from (B-1)

D(z) = D . (z)x ' sphere

0) d9

cos0=0 L •""•""" J (B-^

cos 0=1 i
_ * \ - » - - - - • • !
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