NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Lomancopy RE APHETECHICA KIRTANOASB.

Technical Memorandum 33-765

Improved Space Radiation Shielding Methods

(NASA-CE-146581) IEPEOVED SPACE RADIATIONSHIELCIUS METHOOS34 p HC $\$ 4.00$
(Jet Propulsion Lab.) CSCL 22B

Herbert S. Davis
Thomas M. Jordan
G3/15 W

Techrical Memorandum 33－765

Improved Space Radiation Shielding Methods

Herbert S．Davis

Thomas M．Jorcian

SET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA，CALIFORNIA

March 1， 1976

PREFACE

The work described in this report was performed by the Applied Mechanics Division of the Jet Propulsion Laboratory under the cognizance of the Mariner Jupiter/Saturn 1977 Project. The work was originally prepared as a paper which was presented at the Winter Meeting of the American Nuclear Society held in San Francisco, California, on November 16-21, 1975.

CONTENTS

I. Introduction 1
II. Summary 1
A. Data Flow 1
B. Software 2
III. One-Dimensional Calculations 3
A. Slant Path and Center-of-Sphere Kernels 3
B. SHIE LD Program 4
C. Minimum Path and Angular Transmirsion Kernels 5
IV. Complex Geometry Modeling 6
A. Surface and Region Processors 6
B. Electronics Bays Processors 7
C. Boards Processor 7
D. Design Processor 7
E. Rotate and Translate Processors 7
F. Camera and Picture Processors 8
V. Three-Dimensional Calculations 8
A. SIGMA Program 8
B. Shield Optimization 9
VI.: Conclusions 10
References 11
APPENDIXES
A. SHIELD, Numerical Method 19
B. Minimum Path Kernel 28
preceding page blank not fllmed

FIGURES

1. Mariner Jupiter/Saturn 1977 spacecraft 12
2. Electron and proton radiation transport software flow diagram 12
3. BETA II/SHIELD/CHARGE comparison for spherical geometzy 13
4. SHIELD/BETA II/SIGMA comparis on for slab geometrv 13
5. SriIELD/SANDYL comparison for transmission through a $2-\mathrm{cm}$ slab of aluminum 14
6. Schemaiic illustration of the sequence of rotations and translations used in SIGMA to position an electronics bay at its proper location in the spacecraft 15
7. Com:uter plot of the command computer subsystem. The geometry model consists of 244 quadratic surfaces bounding 142 material regions 16
8. Computer plot of the photopolarimeter subsystem, The geometry model consists of 108 quadratic surfaces bounding 56 material regions. 17
9. Shield sensitivities for the Canopustracker for one dose point 18
10. Shield weight optimization for the Canopus tracker for one dose point $: 8$

ABSTRACT

The computing software that was used to perform the charged particle radiation transport analysis and shielding decign for the Mariner Jupiter/ Saturn 199^{7} sparecraft is described. Electron fluences, energy spectra and dose rates obtained with this software are presented and coripared with independent computer calculations.

I. INTRODUCTION

In situ measurements of the Jovian trapped radiation were made by Pioneer 10 in December 1973 and by Pioneer il in December 1974. These measurements revealed a potentially hazardous environment for MJS' 77 spacecraft electronics and some surfaces. As a result, the Mariner Jupiter/Saturn 1977 project carried out an intensive study of the charged particle environment derived from those measurements and the effects of that environment on both spacecraft and mission design (Ref. 1). This report covers one aspect of that study: the radiation transport analysis and shielding design.

Radiation analyses were performed for rirtually all of the engineering and scierice subsystems of the MJS'77 spacecraft (Fig. 1) with the computer programs described in this report. System level and subsystem iavel shielding for the MJS'77 spacecraft were based on these radiation shielding calculciions.

> II. SUMMARY

A. DATA FLOW

A flow diagram of the inain compurer programs is shown in Fig. 2. Unshielded electron and p:oton radiation environment 3 are input to the SHIEID program in the form of flux and fluence energy spectra for a particular tra!ectory derived from Jupiter electron and proton and solar flare proton radiation models (Ref. 1). The SHILLD program outputs include onedimensional attenuation kernels such as dose or fluence vs absorber thickness for electrons, protons and secondary photons (b=emsstrahlung). ${ }^{1}$ This information, along with the spacecraft and/or rnbsystem geometry and mase distribution descziptions, is input to the SIGMA prograrr (Ref. 2), which uses three-dimensional ray tracing to nbtain dose and fluence estimates at incernal spacecraft locations. The SOCODE prograrn then uses the SIGMA shield sensitivity data in combination with a predetermined set of radiation level criteria to obtain an optimum shield configuration.

[^0]
B. SOFTWARE

Several charged particle shielding codes were developed and/or revised during the course of this work. The SHIELD program, written at the Jet Propulsion Laboratory, subdivides miterials into many small layers; within each layer, incident particl:s are transported using the continuous slowing down approximation for a set of solid angle bins. The angular distribution is reviscd at the surface of eact layer using angular straggling distributions. The revised distribution is then used as the incident data for the next layer. SHIELD uses the BENA-II program (Ref. 3) cross section and source spectra prucessors. Gutput includes angular fluxes and flux responses with slab and center-of-sphere kernels, both printed and punched. Results for both differential and integral fluence are in excellent agreement with calculations performed using the BETA-II and SANDYL (Ref. 4) Monte Carlo computer programs.

The original SIGMA complex geometry program interpolated center-of sphere kernels using slant ;iath mass thicknesses for each ray used in the solid angle integ:ation. This kernel agrees with Monte Carlo calculations for spherical geometry but underestimates radiation leveis for sleb geometry. A revised kernel was implemented which agrees with Monte Carls calculations for both slab and spherical geometries. The revised kerael uses perpendicular ress thickness (estimated from slart paths and normal deriva:ives at macerial boundaries) in conjunction with a depth-dependent power law for angular transmission.

The geometry description and ray tracing portions of SIGMA received extensive modifications, including simple input for multiple bay spacecraft, recognition of simple geometric shapes with multiple bounding surfaces, a.id implementation of CRT plotting capabilities. In addition, the requirement ior explicit description of void volumes was removed.

The shield s.nsitivity option of SIGMA was exteaded to include automatic recognition and retention of shield crossing corrbinations. This sensitivity information is used for designing spot shields for critical compenents and/or increasing vehicle surface thicknesses in an optimim manner.

iII. ONE-DIMENSIONAL CALCULATIONS

A. SLANT F-ATH AND CENTER-OF-SPHERE KERNELS

A typical one-dimensional attenuation kernel is the radiation level, $D_{\text {sphere }}(x)$, at the center of a sphere of radius x, due to an externally incident, cosine-distribu'ed radiation source (isotropic flux environment). This is the kernel used by the original SIGMA program. The kernel can be generated by several methods and is supplied to the three-dimensional program as a tabulation of radiation level vs mass thichness.

The CHARGE program (Ref. 5) is a one-dimensional code which uses the basic range-energy relation, nodified hy applying electron transmission factors derived from curve fit Monte Carlo data (Mar formula, Ref. 6).

The BFTA-II program uses Monte Carlo methods to predict electron tranmmission. Center-of-sphere rescits were approximated in slab geometry by

$$
D_{\text {sphere }}(x)=\frac{4 \pi}{\Delta \Omega} \Delta D(x, \cos \theta)
$$

where x is the mass thickness of a slab, θ is the off-nornyal scattering angle, and $\Delta \mathrm{D}(x, \cos \theta)$ is the radiation level contribution frcm the forward directed portion ($0.9<\cos e<1.0$) of the electron transmission: 1 . e., only those particles transmitted within ΔS steradians of the slab normal are counted.

Figure 3 is a comparison of a one-dimensional kernel as jenerated for the Jupiter electron environment (Ref. 1) using the CEARGE and BETA-II programs. Both problems assume incident isotropic flux and cosine source angular dependence for an aluminum spherical shell absorber with the dose point at the center.

Excellent agreement between CHARGE and BETA-II was obtained through $4 \mathrm{~g} / \mathrm{cm}^{2}$. Divergence beyond $4 \mathrm{~g} / \mathrm{cm}^{2}$ is attribute? to the ireatment, by CHARGE, of the high-energy ($>10 \mathrm{MeV}$) content of the Jupiter electron environment. First, the Mar transmission formula was based on eagth trapped radiation energies; i. e., < 10 Mev . Second, CHARGE assumes that electrons slow down while traveling :n straight iines (i. e., straight ahead
approximation). This assumption leads to overly conservative fluinde estimates.

B. SHIELD PROGRAMi

The SHIELD program was written to retain the cosi effectiveness of CHARGE kernel generation while removing the deficien ies for energiegreater than 10 MeV . SHIELD uses the BETA-II electron/photon cross section processing; how:ver, kernels are generated by numerically integrating the one-dimensional transport equation.

Numerica: me:hods used in the SHIELD prograrn include (see Appendix A):
(1) Subdividing material layers into many differential subloyers.
(2) Using condensed history angular straggling distributions (Goudsmit - Saunderson method) for each cifferential sublayer.
(3) Pegrouping of electrors after each differential sublayer into a :ixed energy/angle mesh before proceeding to the next sublayr.r.

The efficacy of this approach, i.e., the excellent agreement with ivonte Carlo calculations, is seen in Fig. 3. The BETA-II calculation used separate rins for the high ($>10 \mathrm{MeV}$) a: ad low (<10 MeV) energy portions of the spectrum. The SHIELD run required about one minute of Univac 1108 time, while the RETA-II calculation required over 30 min .

Other SHIELD capabilities incluce:
(1) Energy-deperdent flux outple.
(2) Angular flux output.
(3) Multiple response functions.
(4) Punched card output kernels for SIGMA.
(5) Proton/heavy charged particle transport.
(6) Secondary bremsstrahlung kernels.
(7) Angular incidence, inciuding monodirectional.

C. MINIMUM PATH AND A.NGULAR TRANSMISSION KERNELS

The major deficiency of slant path kernels is that they are correct only ii material distributions around a receptor are actually spherically symmetric or if the charged particles are not deflected during thansport.

Figure + indicates the error introduced by using slant path keraels with the Jupiter environment (Ref. 1) for simple uniform thickness slab geometry. In view of the uncomrervative results (underest:mates) and of the many spacecraft volumes which have a slablike geometry (e.g., points just inside vehicle skins), an alternate one-dimensional kernel, $\mathrm{D}\left(x_{\min }(\mathrm{r}, \Omega)\right.$, was generated by SFIIELD and implemented in SIGMA. In this kernel, $x_{\min }(r, \Omega)$ is the minimum mass thickness path at the dose point r in the direction Ω; e.g. , for slab geometry, $x_{\min }(r, \Omega)$ is the slab thickness, regardless of the reiztive direction between Ω and the slab normal. This kernel is assumed to have an angalar dependence of the form

$$
D(z)=\left[D_{\text {sphere }}(z)\right](\cos \phi)^{c(z)-1}
$$

where $z=x_{\text {min }}(r, \Omega), D_{s p h e r e}(z)$ is the dose at the center of a spherical shell of thickness $7 . \phi$ is the incident angle, and $c(z)$ is a depth-dependent exponent. Br requiri'g that this kernel correctly predict both center-ofsphere and slad geometry results, $c(z)$ is simply

$$
c(z)=\frac{D_{\text {sphere }}(z)}{D_{\text {slab }}(z)}
$$

and is cbtained directly from SHIELD calculutions (see Appendix B). As seen in Fig. 4, this kernel is exact for slab geometries.

Using the SANDYL computer program, TRW reporte; (Ref. 7) auditional verification of SHIELD-generated kernc.s. Typical differential fluence comparisons are shown in Fig. 5 for transmission through a 2 cm slab of aluminum.

IV. COMPLEX GEOMETRY MODELING

A description of the distribution of spacecraft materials (model) is required by SIGMA for radiation level calculations. The material distribution around specific dose points is obtained by ray tracing outward froin these points. ${ }^{1}$ The ray tr.cing methods of the FASTER III (Ref. 8)/ BETA II/SIGMA programs required explicit descrip ions of all volumes in a geometry, even if void. This requirement was removed because of lengthy input required to describe the many voids of complex shape in the spacecraft. The spacecraft models useri in the kernel analysis are fully compatible with Monte Carlo analיsis methods.

The SIGMA and BETA-II program iiles both utilize a series of useroriented input/outprt data processors. The processors described below were used extensively.

A. SURFACE AND REGION PROCES $冫$ RS

Some parts of the spacecraft wer scribed by the surface/region methods of the FASTER-III and BETA- rograms. Each region is defined by specifying the surfaces which form it boundariea, where each surface is defined by a general quadratic equation:

$$
\begin{aligned}
G(x, y, z)= & a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} y^{2}+a_{6} z^{2} \\
& +a_{7} x y+a_{8} y z+a_{9} z x=0
\end{aligned}
$$

where the 2_{k} are the surface coefficients.
Material regions are then defined by specifying the particular surfaces (simple planes, cones, cylinders, or spheres) . at bound that region. Regions of the MJS'77 spacecraft described by this method include the propeliant tank and the higi-gain antenna.

[^1]The method of material distribution description given above was simplified for use by the MJS'77 project.

B. ELECTRONICS BAYS PROCESSORS

The MJS'77 sp:cecraft has ten electronics bays of similar gecmetry. An input processor was written to generate the surfaces and ragions comprising each bay. Input parameters include:
(1) Jumber of bays.
(2). Thickness and materials of each bay wall.
(3) Total wipht and material of the bay interior.

In geseral, all bays excepr th: one of specific interest were rescribed by a emearef density which conserved mass, velume and shape.

c. BOARDS PROCESSOR

Several electronics bays had interiors containing a series of parallel electronics boards. An input processor was written to accept a simple inputfor parailel board geometries all having common transverse ooundaries.

D. : DESIGN LROCESSOR

Other electronics bays and all of the science instruments required more complicated geumetric iescriptions. They werc composed of many farts, cach with a different, but simple, geometry. Again, a special input processor was developed to generate the surfaces ant regions required to describe these parts. Recognized slapes include plates, cylinders, annuli, spheres; ani truncated cones. This processor included error testing for overlap of 2 egions.

E. ROTATE AND TRANSLATE PROCESSORS

The interior of each bay was described in a bay-centered coordinate system. This description was then rotated and translated, b: the program, to the appropriate spacecraft coordinates. This procedure is schematically indicated in Fig. 6.

This same rotation and translation capability was used for detector points; i.e., detectors were specified in the bay-centered coordinate system and then moved to the appropriate bay.

F. CAMERA AND PICTURE PROCESSORS

Two plotting routines were used to facilitate geometry checkout. One routine (PICTURE) generates printouts of geometry cross sections iFig. 7). The second picture routine uses the CRT plot capabilities of the CAMERA program (Ref. 9 and Fig. 8).

V. THREE-DIMENSIONAL CALCULATIONS

A. SIGMA PROGRAM

Radiation levels are calculated in the SIGMA program by numerical integration over solid angle of the one-dimensional attenuation kernels. For example, the dose $D(r)$ is given by

$$
D(r)=\frac{1}{4 \pi} \int_{4 \pi} D(x(r, \Omega)) d \Omega=\frac{1}{4 \pi} \sum_{i=1}^{n} K_{i} D_{i}(x(r, \Omega)) \Delta \Omega_{i}
$$

where $D(x(r, \Omega))$ is the dose that would be received at the dos.: point if the mess thickness $x(r, \Omega)$ of materials encountered in the differential solid angle $d \Omega$ about the direction Ω were spherically symmetric about r. The constant K_{i} is associated with the numerical integration scheme (e.g., $K_{i}=1$ for midpoint integration). Typically, for MJS'77, the polar and azimuthal angles were each segmented into 26 divisions, making an angular integration grid of $26 \times 26=676$ solid angle sectors (ray traces). Geometry mockup capabilities available in ray tracing programs such as SIGMA permit very accurate representation cf mass distributions. SiGMA accepts multiple radiation-type kernels (electron dose, proton fluence, etc.). Ray tracing about a detector point is performed only once; as each ray trace is performed, the contribution to every radiation type is obtained. In particular, sll SIGMA runs output both slant path (center-of-sphere) and minimum path (slab; results.

SIGMA outputs include mass path distribution Both slant path and minimum path) ard sensitivity of radiation levels with respect to shielding added to particular (user-specified) surfaces. This shield sensitivity output includes recognition of unique shield crossing combinations, e.g., none, one, or combinations of two or more, with corresponding output for the variation of the radiation level when tlese shield thickness are varied. Typical Jose sensitivity data for one dose point is shown in Fig. 9.

B. SHIELD OPTIMIZATION

SIGMA obtains shield-sensitivity data for one or more detector points and optionally saves the data on a permaneni file. These data are then available for shield optimization calculations.

Optimization calculations can be performed for riultiple dose points, shields, and criteria. The user specifies the critcria upper limits and how each criterion is formed from the individuai radiation kernels calculated by SIGMA. For example,

Dose criterion $=(1) \times($ minimum path eiectron dose kernel)
$+(1) \times($ slant path proton dose kernel)
$+(0) \times($ all other kernels $)$.
The user also specifies the geometry and minimum and maximum shield thickness at each candidate shield location. Candidate shields are those specified for the original SIGMA calculation plus a unit shield foi: each point detector. Unit shields, which are spherical shields centered at the dose point, are not obtained if the maximum init shield thickness is specified as zero.

The optimum shield configuration is calculated by iteratively incrementing shield thickness until all criteria are met. On each iteration, the change in the jth radiation level is calculated separately for an increment of Δt_{i} in the ith shield; i.e.,

$$
\Delta L_{j i}=L_{j}\left(t+\Delta t_{i}\right)-L_{j}(t)
$$

is the change in the jth radiation level due to changing the thickness $t=t\left(t_{1}, t_{2}, \cdots t_{n}\right)$ by Δt_{i} in the ith shield only.

The corresponding change in the total shield weight is calculated as

$$
\Delta \ddot{W}_{i}=W_{i}\left(t+\Delta t_{i}\right)-W_{i}(t)
$$

using weight equations for slab, cylindrical; and/or spherical geometries, either isolated or nested.

A combined relative shield worth is calculated as

$$
Q_{i}=\frac{\sum_{j}\left(\Delta L_{j i} / L_{j}^{0}\right)}{\Delta W_{i}}
$$

where the summation is over different radiation level criteria and L_{j}^{0} is the jth criterion. That shield for which Q_{i} is most negative is changed by a thickness Δt_{i} and the procsss is repeated until all criteria are met.

The results obtained for a single detector point and a single criterion are shown in Fig. 10. Because the optimization uses interpoiations of tabulated sensitivity data, a SIGMA calculation for the optimized shield configuration agress with the optimization output to within a few percent.

V1. CONCLUSIONS

Ray tracing (sectoring) transport programs like SIGMA do have their limitations. The errors introduced by using one-dimensional attenuation kernels and by assuming that electrons do not scatter from one solid angle sector to another may be significant. Unfortunately, no experimental measurements that can be used for direct quantitative assessment of the accuracy of these programs have been made for tirree-dimensional shield configurations. Nevertheless, compared to Monte Carlo programs, the computer programs described in this report are fast, convenient, versatile, and inexpensive. Together, they represent a necessary capability for any project where space radiation shielding engineering is an essential discipline.

REFERENCES

1. Mariner Jupiter iSaturn 1977 Radiation Control Requirements Document, PD 619-220, Revision A, Jet Propulsion Laboratory, Pasadena, Calif., Dec. 19, 1975 (an internal document).
2. Jordan, T. M., SIGMA, A Cc aputer Program for Space Radiation Dose Analysis Within Complex Configurations, Report DAC-60878, McDonrell Douglas Corp., Huntington Beach, Calif., Nov. 1967.
3. Jordan, T. M., BETA-II, A Time-Dependent, Gereralized-Geometry Monte Carlo Program for Bremsstrahlung and Electron Transport Analysis, ART-60, ARI' Research Corp., Los Angeles, Calif., Oct. 1971.
4. Colbert, H. M. SANDYL: A Conputer Program for Caiculating Combined Photon-Electron Transport in Complex Systems, Docuinent SLL-74-0012, Sandia Laboratories, Livermore, Calif., Sept. 1974.
5. Yucker, W. R., and Lilley, J. R., CHARGE Code for Space Radiation Shielding Analysis, Report DAC..62231, McDonnell Douglas Corp., Huntington Beach, Calif., Apr. 1969.
6. Mar, B. W. , "An Electron Shielding Analysis for Space Vehicles," Nuc. Sci. Eng., 24, 193, 1966.
7. Faelton, E. M., Robertson, L. D., and Gordon, J. D. , Comparison and Reconciliation of TRW/JPL Dose and Equivalent Damage Fluence Calculations for the Flight Data Subsystem of the MIS'77 Spacecraft, Document 27679-6002-RU-00, TRW, Redondo Beach, Calif., May 30, 1975.
8. "FASTER-II, A Time Dependent, Generalized Geometry Monte Carlo Program for the Transport of Neutrons and Photons, "ART-57, ART Research Corp., Los Angeles, Calif., July 1970.
9. M. P. Billings and W. R. Yucker, "The Computerized Anatomical Man (CAM) Model, " Summary Final Report, MDC G4655, McDonnell Douglas Corp., Huntington Beach, Calif., Sept. 1973.

Fig. 1. Nariner Jupiter/Saturn 1777 spacecraft.

Fig. 2. Electron and proton radiation transport suftware flow diagram.

Fig. 3. BETA II/SHIELD/CHARGE comparison for spherical geometry.

Fig. 4. SHIELD/BETA II/SIGMA comparison for slab geometry.

Fig. 5. SHIELD/SANDYL comparison for trane:nission through a $2-\mathrm{cm}$ slab of alumı.um.
(1)

(4)

(2)

(5)

(3)

Fig. 6. Schematic illustration of the sequence of rotations and translations used ir. SIGMA to position an electronics bay at its proper location in the spacceraft.

REPRONJCIBUTTI OF THE ORIGINAL PAGE IS POOR

Fig. 7. Computer plot of the command computer subsystem. The geometry model consists of 244 quadratic surfaces bounding 142 material regions.

Fig. 8. Computer plot of the photopolarimeter subsystem. Tine geometry model consists of 108 quadratic surfaces bounding 56 material regions.

Fig. 9. Shield sensitivities for the Canopus tracker for one dose point.

Fig. 10. Shield weight optimization for the Canopus tracker for one dose point.

APPENDIX A

SHIELD, NUMERICAL METHOD

The SHIELD code calculates charged particle transport in one-dimensional geometries. The following definitions are used in the numerical integration.

I. DIRECTION VECTORS

Let Ω denote the original particle direction

$$
\Omega=(1 \cos \theta+j \sin \theta) \sqrt{1-\mu^{2}}+k_{\mu}\left\{\begin{array}{l}
\theta=\text { azimuth } \tag{A-1}\\
\mu=\text { polar angie cosine }
\end{array}\right.
$$

and ' 2 ' the defiected direction

$$
\Omega^{\prime}=\left(i \cos \theta^{\prime}+j \sin \theta^{\prime}\right) \sqrt{1-\mu^{\prime}}+k \mu^{\prime}\left\{\begin{array}{l}
\theta^{\prime}=\text { azimuth } \tag{A-2}\\
\mu^{\prime}=\text { polar angle cosine }
\end{array}\right.
$$

Then the cosine of the deflection cnalysis

$$
\begin{equation*}
\mu_{s}=\Omega \cdot \Omega^{\prime}=\sqrt{1-\mu^{2}} \sqrt{1-\mu^{2}} \cos \omega+\mu \mu^{\prime} \quad, \quad \omega=\theta^{\prime}-\theta \tag{A-3}
\end{equation*}
$$

11. LEGENDRE POL:NOMIALS

By definition

$$
\begin{gather*}
P_{0}(\mu)=1, P_{1}(\mu)=\mu \tag{A-4}\\
P_{\ell}(\mu)=\frac{1}{\ell}\left[(2 \ell-1) P_{\ell-1}(\mu)-(\ell-1) P_{\ell-2}(\mu)\right] \\
P_{\ell}(\mu)=\frac{1}{2 \ell+1}\left[\frac{d P_{\ell+1}(\mu)}{d \mu}-\frac{d P_{\ell-1}(\mu)}{d_{\mu}}\right] \tag{A-6}
\end{gather*}
$$

$$
\begin{equation*}
\int_{a}^{b} P_{\ell}(\mu) d \mu=\frac{1}{2 \ell+1}\left[P_{\ell+1}(\mu)-P_{\ell-}(\mu)\right]_{a}^{b} \tag{A-7}
\end{equation*}
$$

The addition forrisla for azimuthal symmetry is equivalent to

$$
\begin{equation*}
P_{\ell}\left(\Omega \cdot \Omega^{\prime}\right)=P_{R}\left(\mu_{g}\right)=P_{\ell}(\mu) P_{\ell}\left(\mu^{\prime}\right) \tag{A-8}
\end{equation*}
$$

For forward directions, the following is defined:

$$
\begin{equation*}
1-P_{\ell}(\mu)=B_{l}(\mu)(1-\mu) \tag{A-9}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
B_{0}(\mu)=0, \quad B_{1}(\mu)=1 \tag{A-10}
\end{equation*}
$$

and from $(A-9)$ and $(A-5)$,

$$
\begin{equation*}
B_{\ell}(\mu)=\frac{1}{\ell}\left\{(2 \ell-1)\left[1+\mu B_{\ell-1}(\mu)\right]-(\ell-1) B_{\ell-2}(\mu)\right\} \tag{A-11}
\end{equation*}
$$

It can be shown by induction using ($A-11$), that

$$
\begin{equation*}
B_{p}(\mu=1)=\frac{e(\theta+1)}{2} \tag{A-12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{\mu \longrightarrow 1}\left[1-P_{\ell}(\mu)\right]=\frac{\ell(\ell+1)}{2}(1-\mu) \tag{A-13}
\end{equation*}
$$

The expansion of a general function $f(\mu)$ uses the coefficients f_{l}, where

$$
\begin{equation*}
f_{\ell}=2 \pi \int_{-1}^{1} f f_{:} \cdot P_{Q}(\mu) d \mu \tag{A-14}
\end{equation*}
$$

i. 2.

$$
\begin{equation*}
f(\mu)=\sum_{l=0}^{\infty} \frac{2 \ell+1}{4 \pi} f_{\ell} P_{l}(\mu i \tag{A-15}
\end{equation*}
$$

Finally, if for any function $g(\mu)$

$$
\begin{equation*}
g(\mu)=g \frac{(\mu-1)}{2 \pi}(\text { a delta function }), \text { then } g Q=g \text { for all } \ell \tag{A-16}
\end{equation*}
$$

III. SCATTERING CROSS SECTION

The charged particle deflection cross section itas the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(\mu)=\frac{C}{(1-\mu+\eta)^{2}} \tag{A-17}
\end{equation*}
$$

where η is the screening angle, and $\eta \ll l \Rightarrow$ strong peaking at $\mu=1$.
It follows that

$$
\begin{equation*}
\sigma=2 \pi \int_{-1}^{1} \frac{d \sigma}{d!2}(\mu) d \mu \tag{A-18}
\end{equation*}
$$

is the total cross section and the Legendre expansion cocfficients are

$$
\begin{equation*}
\sigma_{Q}=2 \pi \int_{-1}^{1} \frac{d c}{d!}(\mu) P_{2}(\mu) d \mu \tag{A-19}
\end{equation*}
$$

in particular $\sigma_{0}=\sigma$. Thus, the scattering cross section can be represented by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\sum_{i=0}^{x} \frac{2 \ell+!}{4 \pi} \sigma_{i} P_{2}(\mu) \tag{A-20}
\end{equation*}
$$

By definition (for later use),

$$
\begin{equation*}
\sigma_{l}^{*}=\sigma-\sigma_{l}=2 \pi \int_{-1}^{l} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}(\mu)\left[1-P_{l}(\mu)\right] \mathrm{d}_{\mu} \tag{A-21}
\end{equation*}
$$

or equivalently.

$$
\begin{equation*}
\sigma_{\ell}^{\hat{*}}=2 \pi \int_{-1}^{1} \frac{d \sigma}{d \Omega}(\mu) B_{\ell}(\mu)(1-\mu) d \mu \tag{A-22}
\end{equation*}
$$

With strong forward peaking, most of the integral comes from $\mu \approx 1$, so that

$$
\begin{equation*}
\sigma_{l}^{*}=2 \pi B_{l}(\mu=1) \int_{-1}^{1} \frac{c^{\prime} \sigma}{d \Omega}(\mu)(1-\mu) d \mu \tag{A-23}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{l}^{*}=\frac{l(l+1)}{2} b \tag{A-24}
\end{equation*}
$$

where

$$
\begin{equation*}
b=2 \pi \int_{-1}^{1} \frac{d \sigma}{d \Omega}(\mu)(1-\mu) d \mu \tag{A-25}
\end{equation*}
$$

F.quality in Eq. (A-24) is used for σ_{ℓ}^{*} rather than the exact value from Eq. (A-21) or (A-22).

IV. TRANSPCRT EQUATION

The transport eq̧uation is written as a function of particle distance traversed, where

$$
\begin{equation*}
\phi(s, \mu)=\text { the angular flux at distance } s \tag{A-26}
\end{equation*}
$$

The Legendre moments of the ilux are

$$
\begin{equation*}
\phi_{m}(s)=2 \pi \int_{-1}^{1} \phi(s, \mu) P_{m}(\mu) d_{\mu} \tag{A-27}
\end{equation*}
$$

Therefore, the angular flux can be represented by

$$
\begin{equation*}
\phi(s, \mu)=\sum_{m=0}^{\infty} \frac{2 m+1}{4 \pi} \phi_{m_{2}}(s) P_{m}(\mu) \tag{A-28}
\end{equation*}
$$

The transport equation, allowing only deflection reactions, is

$$
\begin{equation*}
\frac{\partial \phi}{\partial s}(s, \mu)=\int_{4 \pi}^{\bullet} \phi\left(s, \mu^{\prime}\right) \frac{d \sigma}{d \Omega}\left(s, \Omega^{\prime} \cdot \Omega\right) d \Omega^{\prime}-\sigma(s) \phi(s, \mu) \tag{A-29}
\end{equation*}
$$

Substituting for the scattering cross section yields

$$
\begin{gather*}
\frac{\partial \phi}{\partial s}(s, \mu)=\int_{4 \pi} \phi\left(s, \mu^{\prime}\right)\left[\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{4 \pi} \sigma_{\ell}(s) P_{\ell}(\mu) P_{\ell}\left(\mu^{\prime}\right)\right] d \mu^{\prime} d \theta^{\prime} \\
\therefore \quad-\sigma(s) \phi(s, \mu) \tag{A-30}\\
 \tag{A-31}\\
\quad=\sum_{l=0}^{\infty} \frac{2 \ell+1}{4 \pi} \sigma_{\ell}(s) P_{\ell}(\mu) \phi_{\ell}(s)-\sigma(s) \phi(s, \mu)
\end{gather*}
$$

Míultiplying by $P_{m}(\mu)$, integrating cver 4π, and using

$$
\begin{equation*}
\int_{-1}^{1} P_{\ell}(\mu) P_{m}(\mu) d \mu=\frac{\delta_{\ell m}}{2 m+1} \tag{A-32}
\end{equation*}
$$

yields

$$
\begin{equation*}
\frac{\partial \phi_{m}}{\partial s}(s)=\sigma_{m}(s) \phi_{m}(s)-\sigma(s) \phi_{m}(s)=-\left[\sigma(s)-\sigma_{m}(s)\right] \phi_{m}(s) \tag{A-33}
\end{equation*}
$$

or, using the definition of $\sigma_{m^{\prime}}^{*}$

$$
\begin{equation*}
\frac{\partial \phi_{m}}{\partial s}(s)=-\sigma_{m}^{*}(s) \phi_{m}(s) \Rightarrow \frac{\partial}{\partial s} \operatorname{lm} \phi_{m}(s)=-\sigma_{m}^{*}(s) \tag{A-34}
\end{equation*}
$$

A simple integral yields the solution

$$
\begin{equation*}
\phi_{m}(s)=\phi_{m}(0) \exp \left[-\int_{0}^{s} \sigma_{m}^{*}\left(s^{\prime}\right) d s^{\prime}\right] \tag{A-35}
\end{equation*}
$$

where the $\phi_{m}(0)$ are the Legendre moments at $s=0$. Thus

$$
\begin{equation*}
\phi_{m}(0)=2 \pi \int_{-1}^{1} \phi(0, \mu) P_{m}(\mu) d \mu \tag{A-36}
\end{equation*}
$$

Equations (A-35) and (A-36), and Eq. (A-21) for σ^{*}, constitute the Gaudsmit-Saundersor method. The series is truncated at order L and a delta function component is assumed. Therefore,

$$
\begin{equation*}
\phi(s, \mu)=\bar{\phi}(s, \mu)+\phi_{L}(s) \frac{\delta(\mu-1)}{2 \pi} \tag{A-37}
\end{equation*}
$$

The moments of this equation are

$$
\begin{equation*}
\phi_{m}(s)=\widetilde{\phi}_{m}(s)+\phi_{L}(s) \tag{A-38}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\tilde{\phi}_{m}(s)=\phi_{m}(s)-\phi_{L}(s) \tag{A-39}
\end{equation*}
$$

and

$$
\phi(s, \mu)=\sum_{m=0}^{L-1} \frac{2 m+1}{4 \pi}\left[\phi_{m}(s)-\phi_{L}(s)\right] P_{Q}(\mu)+\phi_{L}(s) \frac{\delta(\mu-1)}{2 \pi} \cdot(A-40)
$$

V. TRANSPORT THROUGH MATERIALS

The above definitions are used for the charged particle transport in the following numerical scheme. First, the shield material thickness is divided into many small layers; each layer thickness is much less than the range of the lowest energy electrons. Second, the range of polar angle cosine relative to the layer normal is divided into many intervals; i.e., interval i is $\mu_{\mathrm{i}} \leq \mu \leq \mu_{i+1}$ where the μ_{i} 's are the interval ooundaries. The transport problem is then solved by repetitively calculating the transmitted energy-angle distribution for a layer and using that distributionas the incident source for the next layer.

In particular, let $W_{j i}$ denote ihe number of incident particles in energy grouo j and angle interval i. Let $E_{j i}$ denote the average energy of the particles. The problem is a calculation of $W_{j i}^{\prime}$ and $E_{j i}^{\prime}$ or the other side of a layer of thickness t; i.e... for each energy group and a: gle interval.
$\bar{\mu}_{i}=\frac{1}{2}\left(\mu_{i}+\mu_{i+1}\right)$, the average polar angie cosine
$s_{i}=\frac{t}{\bar{\mu}_{i}}$, the path length across the layer

$$
\begin{aligned}
& E_{j i}^{\prime \prime}=E_{j i}-\int_{0}^{s_{i}}\left|\frac{d E}{d s}\left(s^{\prime}\right)\right| d^{\prime} \text {, the transmitted energy } \\
& \\
& B_{j i}=\int_{0}^{s_{i}} b_{j}\left(s^{\prime}\right) d s^{\prime}, b(s) \text { from }(A-25) \\
& \left.\phi_{j i}^{0}=\exp [-L!L+1) \frac{B_{j i}}{2}\right] \quad \begin{array}{l}
\text { the fraction of particles trans }- \\
\text { mitted into the same angle } \\
\text { interval. }
\end{array}
\end{aligned}
$$

The energy-angle distribution of deflected particles is

$$
W_{j i}^{\prime \prime}\left(E^{\prime}, \mu^{\prime}, \theta^{\prime}\right)=W_{j i}\left[\sum_{r: 2=0}^{L-1} \frac{2 m+1}{4 \pi} A_{j i m} \frac{P_{m}(\mu)}{2 \pi\left(\mu_{i+1}-\mu_{i}\right)} P_{m}\left(\mu^{\prime}\right)\right] \delta\left(E^{\prime}-E_{j i}^{\prime \prime}\right)
$$

where

$$
A_{j i m}=\exp \left[-m(m+1) \frac{B_{j i}}{2}\right]-\exp \left[-L(L+1) \frac{B_{j i}}{2}\right] .
$$

Integrating over the initial and final directions and adding on the undeflecter. component yields the energy distribution of transmission into angle interval $i^{\prime \prime}$:

$$
\left.W_{i^{\prime} j i}^{\prime \prime}\left(E^{\prime}\right)=W_{j i}^{L-1} \sum_{m=0}^{L} \frac{2 m+1}{2} A_{j i m} \frac{C_{i m} C_{i^{\prime} m}}{\mu_{i+1}-\mu_{i}}+\phi_{j i}^{0} \delta_{i^{\prime} i}\right) \delta\left(E \cdot-E_{j i}^{\prime \prime}\right),
$$

where $C_{i m}$ is the integral of the $m^{\text {th }}$ Legendre polynomial over the $i^{\text {th }}$ angle interval. Integration over final energy yields

$$
w_{j^{\prime} i^{\prime}}^{\prime}=\sum_{i} \sum_{j} \int_{g r o u p} w_{i^{\prime} j i^{\prime}}^{\prime \prime}\left(E^{\prime}\right) d E^{\prime}
$$

and

$$
E_{j^{\prime} i^{\prime}}^{\prime}=\frac{1}{w_{j^{\prime} i}^{\prime}} \sum_{i} \sum_{j} \int_{g r o u p} w_{j^{\prime}} w_{i^{\prime} i^{\prime}}^{\prime}\left(E^{\prime}\right) E^{\prime} d E^{\prime}
$$

APPENDIX B

MINIMUM PATH KERNEL

For isotropic incidence on both sides of a slab,

$$
\begin{aligned}
& D(z)=\left(\frac{1}{4 \pi}\right) 2 \int_{0}^{2 \pi} \cos \phi=1 \quad\left[D_{\text {sphere }}(z)\right](\cos \phi)^{c(z)-1} d(\cos \phi) d \theta \\
& =\int_{0}^{1} \mathrm{D}_{\text {sphere }}(z) \mu^{c(z)-1} \mathrm{~d} \mu \ldots \quad, \quad \mu \equiv \cos \phi \\
& =D_{\text {sphere }}(z)\left[\frac{\mu^{c(z)}}{c(z)}\right]_{0}^{1} \\
& =\frac{D_{\text {sphere }}(z)}{c(z)}=\frac{D_{\text {sphere }}(z)}{\left(\frac{D_{\text {spher }}}{D_{\text {slab }^{(z)}}}\right)} \\
& D(z)=D_{\text {slab }}(z)
\end{aligned}
$$

For isotropic incidence on a sphere, $\mu=1$ and

$$
D(z)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{\cos \phi=0}^{\cos \phi=1}\left[D_{\operatorname{spher}}(z)\right](\mu)^{c(z)-1} d(\cos \phi) d \theta
$$

so that, from (B-1)

$$
D(z)=D_{\text {spher }}(z)
$$

[^0]: Dose is generally expressed in units of rads, where a rad represents 100 ergs of energy deposited per gram of material. In this report the material is silicon.

[^1]: Aluminum was used as the reference dose material.

