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FOREWORD 

This report presents the results of work performed 

by Lockheed Missiles & Space Company, Inc. Huntsville 

Research & Enginee~ing Center, under Contract 'NAS9-14517 

for the Engineering Analysis Division, Johnson Space Center 

(JSC), Houston Texas. The NASA-JSC technical monitor for 

this contract is Mr. Barney B. Roberts. 
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Section 1 

INTRODUCTION AND SUMMARY 

The interaction of the exhaust plumes, emanating from the Space Shuttle 

main engines (SSME) and the solid rocket boosters (SRB), with the aero- 

dynamic environment experienced by the Space Shuttle launch vehicle ha8 

received considerable attention, Specifically, the exhaust plumes affect 

vehicle base environment (pressure and heat loads) and the orbiter vehicle 

aerodynamic control surface effectiveness. The base environment directly 

impacts the Space Shuttle payload capacity. The more severe the base en- 

vironment the heavier the base structure and the greater the payload penalty. 

The exhaust plumes also can induce separation of the boundary layer over 

the vehicle control surfaces during the launch segment of the vehicle flight 

trajectory. This interaction reduces the effectiveness of o rbiter vehicle 

aerodynamic control surfaces during the critical launch phase. 

An intensive study involving detailed analytical and experimental in- 

vestigations of the exhaust plume/vehicle interaction has been undertaken a s  

a pertinent part of the overall Space Shuttle development program. Many of 

the experimental programs a r e  being conducted using scaled launch vehicle 

configurations with simulated vehicle propulsion systems. One of the items 

on which the success of these experimental investigation hinges i s  the degree 

to wliich similitude can be achieved between the sub-scale and full-scale 

exhaust plume characteristics for a particular flight trajectory condition. 

(Exhaust plume characteristics, as  used here, denote plume boundary shape 

and location. j 

Although many investigations have been conducted concerning the simu- 

lation of exhaust plumes, very little parametric data in the region of interest 

to the Space Shuttle have been obtained. Therefore an extensive analytical/ 
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experimental investigation is being conducted to  obtain parametr ic  exhaust 

plurne/vehicle interaction data. This program, called the  Plume Technology 

program, has a s  its objective the  determination of the c r i t e r i a  for simulating 

rocket engine (in particular,  Space Shuttle propulsion system) plume-induced 

aerodynamic effects in a wind tunnel environment. 

Correctly simulating the full-scale exhaust plumes during Space Shuttle 

launch vehicle testing involves some .formidable problems. Exhaust plume 

similitude depends on a complex interaction of the propulsion system flows 

with the f r ees t r eam environment (over the full range of the launch trajectory).  

(The development and implementations of similarity c r i t e r i a  a r e  discussed in 

detail  in Ref. 1 and will not be discussed in this  document .) Generally the task 

of simulating full -scale exhaust plumes i s  fur ther  complicated by model geom- 

etry and facility related constraints. Model geometry (configuration, scale ,  

i.e., size) and the test  llconfiguration" (i.e., sting or  s t rut  -mounted model) 

usually dictate the s ize (i.e., m a s s  flow and/or p res su re  capacitjr) of the s imu- 

lant gas  plumbing. In addition, many wind tunnel facilities a r e  restr ic ted to  

the use of dry room temperature air (Ifcold gas") a s  the simulant gas.  

To achieve simulation of the prototype plume shapnz over the full range 

of t ra jectory conditions, subject to  the above constraints,  often resul ts  in 

severa l  scale model nozzles having to  be fabricated. Unfortunately at  some 

of the  operating pressures  required for simulating the prototype exhaust 

plumes, using room temperature a i r ,  liquefaction af the  oxygen and nitrogen 

in the  a i r  can occur in the expanding plume. The model plume shape i s  

a l tered significantly due to  this condensation effect. When this occurs ,  the 

validity of the test  data becomes suspect. 

The complexity of the exhaust plume simulation problem, discussed 

briefly in the previous paragraphs,  necessitates a c l ea re r  understanding of 

the  interactions of the various geometric,  thermodynamic and gasdynamic 

parameters  which affect exhaust plume shape. To better understand the ex- 

haust plume simulation problem, a comprehensive experimental program 
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was conducted using test  facilities s t  NASA's Marshall Space Flight Center 

and Ames Research Center.  This document reports on a pook-test examination 

of some of the experimental results obtained f rom NASA-MSFC1s 14 x 14-inch 

trisonic wind tunnel. 

This document reports  on a study that was conducted to: (1) a s s e s s  the 

agreement that could be expected between experimental resul ts  and predicted 

values in future tes ts ;  (2) examine in scme detail the effectiveness of the 

various analytical models being employed to generate pretest  information and, 

finally; (3) to  specifically recommend analytical and experimental techniques 

that should be utilized in future tes t s  involving exhaust plume simulation. It 

i s  meaningful to note that, although the Space Shuttle application is the driving 

force behind this  study, the results a r e  applicable to other sys tems employing 

rocket propulsion. 

The following technical discussion begins with a description of the test  

facility, simulant g - n  supply system, nozzle hardware,  test procedure and 

test  matr ix .  Nozzle flowfield calculations and comparison of experimental 

and analytical resu l t s  a r e  discussed in Section 2.2. Analysis of exhaust plume 

flow fields and comparison of analytical and experimental exhaust plume data 

a r e  presented in Section 2.3. 

3 
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Section 2 

TECHNICAL DISCUSSION 

2.1 PLk'h:..ki TECHNOLOGY TEST PROGRAM 

o Test  1-acilitj 

The plume technology test  results examined in this study were ob- 

tained from tes t  numbers TWT 575 and 593 conducted in the Marshall Space 

Flight Center 's  14 x 14-inch trisonic wind tunnel. The facility is an inter- 

mittent trisonic blowdown tunnel which exhausts either to a vacuum system o r  

to atmosphere. The tunnel is capable of producing Mach numbers from 0.2 to  

2.5 by utilizing a transonic tes t  section and Mach numbers f rom 2.74 to 4.96 

with a supersonic tes t  section. Reynclds numbers per foot of up to 18,000,000 

may b e  obtained depending upon the test  Mach number and tunnel l imits.  A 

more  detailed description of the facility is presented in the tunnel technical 

handbo~k (Ref. 2). 

The models for tes ts  TWT 575 and 593 consisted of strut-mounted cone- 

ogive-cylinder bodies (e.g., Fig. 1) each with six interchangeable nozzles. The 

models were designed and fabricated by Mic ro-Craft Inc,, Tullahoma, Tenn., 

(Space Shuttle Plume Technology Model, assembly drawing number LD- 520957). 

The body i s  made up of the nose section, midbody and afterbody. The midbody 

is rigidly attached to the s t rut  and i s  composed of the nozzle plenum chamber 

and upper and lower removable skin panels which cover the plenum chamber. 

The nose section is attached to the midbody a t  the forward bulkhead and the 

afterbody at  the aft  bulkhead. Figure 2 shows the cone-ogive-cylinder model 

installed in the wind tunnel. 

The model support consists of the s t rut  and sting a s  shown in Fig. 1. 

The s t ru t  and sting shown in Fig. 1 a r e  used not only to support the model but 
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a l s o  to supply the simulant gas  to the model. The preeeure tubing was routed 

through the leading and trailing edges of the s t ru t  and along the lower and 

upper surfaces of the sting. The sting adapter was rigidly attached to the 

sting and was  fitted into the tunnel main chuck. 

Forty-nine static pressure  orifices a r e  located on the model and a r e  

distributed a e  follows: 

a Nose 5 

a Midbody 19 

a Afterbody 25 

The model plenum chamber is equipped with a total pressure! probe, a static 

pressure  orifice a i ~ d  a total temperature probe. In addition, five thermo- 

couples were  used to measure skin temperature a t  various points on the 

model. The location and numbering system for  all  of the pressure  orifices 

and thermocouples a r e  shown in Figs. 3, 4 and 5. 

a Gas ~ e a t e r / ~ e s e r v i o r  

A high pressure  (2000 psia maximum), electrically heated ( 6 0 0 ~ ~ ) ~  

gas  reservior  system was used to supply the simulant gas  to the test  model. 

The  heater / reservior  system is capable of supplying a gas flow of up to 4.0 

lb/sec (at maximum temperature and pressure)  for a period of 10 seconds and 

was designed for  use with either a i r  o r  cazbon tetraflourid? (CF4). 

A one-inch outside diameter heated and insulated s teel  pipe was used to 

connect the heater  to the model. The pipe was attached to the heater discharge 

valve and routed thlough the side of the tunnel, up through the tunnel floor and 

attached to the sting. 

A m o r e  detailed description of the heater and i t s  operating character-  

i s t ics  i s  presented in Ref. 3. 
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a Nozzle Hardware 

During the TWT 5 7 5  tes ts ,  three single exhaust noezle configurations 

and one triple nozzle were  flowed with heated a i r .  In addition, one single 

and one triple nozzle were  flowed with CFq as the simulant gas. All of the 

nozzles were conical and ranged in a r e a  ratio f rom 3.5 to 8.0 with noezle lip 

angles of 15 to 3 5  degrees.  Figure 6 shows typical single and triple nozzle. 

Geometry data for  the nozzles used in the TWT 575  t es t  a r e  prese,-.ted in 

Table 1. Two single nozzle configurations and four triple nozzle configurations 

were utilized in :he TWT 5 9 3  tes ts .  Geometric data for these nozzles a r e  

given in  Table 2. 

T e s t  Procedure 

Exhaust plume data were obtained for  both quiescent and wind- on 

tunnel ambient conditions. For  the quiescent condition the basic tes t  procedure 

involved: (1) evacuating the wind tunnel tes t  section to a prescribed przssure;  

(2) setting desired conditions on gas heater reserv ior  (and waiting until heater 

conditions stabilized); initiation of nozzle flow and data acquisition. The wind- 

on procedure differed in the fact that the tunnel a i r  flow was initiated pr ior  

to the nozzle flow initiation. Test data recorded included model surface and 

base s tat ic  pressure ,  tunnel f rees t ream conditions, nozzle plenum pressure  

and temperature and schlieren photographs. A more  detailed description of 

the basic test  procedure is available in Ref., 4. 

T e s t  Pa ramete r  Matrix 

Pa ramete r s  varied during test  numbers TWT 5 7 5  and 5 9 3  included: 

f rees t ream Mach number, nozzle a r e a  ratio, conical nozzle divergence 

angle, nozzle plenum total pressure,  nozzle plenum total temperature and 

the simulant gas  (eitki;r a i r  o r  CF4).  The investigation reported on in this 

document has exa~nined only the test  data obtained with quiescent tunnel con- 

ditions (M = 0.) This  approach was taken since the plume/vehicle interaction 

was not studied during the effort reported in this document. Data from these 

tests  a r e  documented in Ref. 5  for TWT 5 7 5  and in Ref. 6 for TWT 5 9 3 .  
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INVISCID NOZZLE FLOW CALCULATIONS 

Pos t - tes t  nozzle flowfield charac te r i s t i cs  we re  defined using the 

Lockheed Method-of-Characterist ics (MOC) computer code descr ibed in  Ref. 7. 

Utilization of this code required that  thermochemical  data  be  generated to de- 

s c r i b e  the simuliint gas  property behavior and the formulations of mathematical  

models  of the  nozzle wall geometry.  

Tes t s  numbers  TWT 575 and 593 w e r e  conducted in  par t  with heated air 

and in  part  with heated carbon tetrafluoride (CF4). The thermochemical  gas  

proper ty  data  describing the behavior of the  air and CF4  for  u se  in this analysis  

w e r e  generated using two computer ccdes  which a r e  descr ibed in  Ref. 8. Ai r  

thermodynamic behavior was modeled using the f o r m  of the Beatt ie-Bridgeman 

equation of s t a t e  given in Ref. 9. Carbon tetrafluoride (CF4) gas  thermodynarnit-, 

behavior was modeled using the Martin-Hou equation of s ta te  a l so  given in  Ref. 

9. Thermodynamic data fo r  the a i r  and CFq were  prepared in tabular f o r m  for  

u se  as input to the MOC computer code. P r e s s u r e  variat ions as well cs temp- 

e r a t u r e  variat ions a r e  reflected in  the gas  proper ty  data .  Additional discussion 

of the  equation of s ta te  models and the application of these  thermochemical  data  

codes  i s  presented in  the plume technclogy program pre tes t  analysis document, 

Ref. 9. 

Mathematical models based on m e a s  ured (actual) nozzle dimensions,  

presented in Refs. 5 and 6, were  used in th is  analysis.  These data have been 

reproduced in this document fo r  ea se  of re fe rences  in Table 1 fo r  TWT 575  

and Table 2 for  TWT 593. 

F o r  the purposes 0:: this  investigation a minimum of two calibration t e s t  

points were  selected f r o m  the Plume Technology T e s t  Run Log of Ref. 5 for  

e a c h  of the nozzles (with the exception of nozzle 4 f o r  which the accuracy of 

the t e s t  data was  suspect). An additional s e t  of calibration data  was obtained 

f o r  two of the  nozzles from the t e s t  run log of Ref. 6. (Note: "Calibrationu 

denotes  quiescent o r  M = 0 wind tunnel environment conditions.) The actual  

1;ozzle plenum conditions used in the analysis  we re  then obtained f rom the 
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t i ~bu l i t l ~d  tt8st data (Appendxk J'L, R c f .  5, and Appendix B, Ref.  6). The nozzle 

plenum coaditions used in the analysis correspond to the data "frame" a t  

which the schlieren photogralph~ of the exhaust plume were taken for  each 

test  point. Table 3 summarizes  the test  points examined in thiu inveetigation. 

The basic  analytical procedure employed to generate the inviscid nozzle 

flowfield character is t ics  involved the following steps: (1) specification of nozzle 

geometry and t e s t  condition; (2) generation of thermochemical gas  property data; 

(3) formulation of the mathematical nozzle models; and (4) calculations of the 

nozzle and exhaust plume flowfields, This procedure was used in ger-erating 

the analytical data discussed in the remainder of this document. 

Test Data Quality 

'C1-ie quality of the experimental data can be assessed  by examining the 

dimelrsional accuracy of the model hardware and the accuracy employed in 

making the test  data measurements .  Deviation of model hardware dimensions 

from design values can aciversely affect the anticipated agreement between p r e -  

dicted nnd measured nozzle gasdynamic characteristics,  Some obvious resul ts  

of poor model dimensional accuracy would be changes in nozzle wall angle (or  

contour), nozzle a r e a  ratio, and the relative location of p res su re  orifices. A 

detailed dimensional inspection of the model nozzle hardware was made during 

the course  of this study. Dimensional data resulting from the inspection were  

presented in Refs. 5 and 6 and a r e  reproduced in this document for ease of re -  

feference. (See Table ! for  TWT 575 and Table 2 for 593.) 

Both design and measured nozzle dimensions a r e  given in Tables 1 and 2. 

Examination of these data did not reveal any gross  deviations of measured noz- 

zle dimensions from the design values. However, differences between design 

and measured dimerasions were largc enough to  warrant  using the measured data 

a s  the basis for  mathematically modeling the model nozzle geometry. 

P r e s s u r e  orifice locations used in comparing experimental and analyti- 

ca l  data were a l so  obtained from the inspection results. These data, presented 
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fn Tables 1 and 2, were obtained by measuring the distance from the center 

(average of fore and aft port  edge location) of the p res su re  port  to the nozzle. 

exit plane and subtracting this value from the overall measured nozzle throat 

to exit plane length. As indicated a minimum of three measurements a r e  r e -  

quired to locate a p res su re  tap. At this point i t  should be noted that the inspec. 

tion data is a lso  bounded by some tolerance range. The inspection tolerance 

range, although not defined, was assumed smal l  enough s o  as to not be a sig- 

nificant influence on accuracy of the inspec tion data, 

In considering the overall model dimensional influence on the test  data 

quality i t  was noted that the diameter of the pressure  orifices (or  tap-) exceeded 

1070 of the nozzle overall length for many of the nozzles, P o r t s  of this relative 

s ize can  induce considerable flow disturbance which c o ~ l d  adversely affect the 

quality of the nozzle gasdynairic data. However, in surveying the experimental 

resul ts  no specific data agreement problem could be attributed to the relative 

s ize of the pressure  orifices, This i s  not to say that the relative s ize of the 

p res su re  orifice is not an important consideration, It indicates only that the 

influence of p res su re  orifice s ize in this program may have been overshadowed 

by other stronger influences. 

Gornparison of Experimental and Analytical Results 

Agreement between experimental and post-test  analytically predicted noz- 

zle performance was assessed  by comparing experimentally determined and cal-  

culated nozzle wall static pressure  distributions. The influence of tes t  data 

acquisition accuracy, pressure  tap size,  and analytical models on the degree 

~f agreement achieved was investigated, 

Nozzles 1, 2 and 4 of test T W T  575 were operated in the single nozzle 

configuration illustrated in Fig. 6, Comparison of experimental and cal.cula- 

ted nozzle wall p res su re  distributions for these nozzles a r e  presented in Figs. 

7 through 14. Nozzles 5 and 6 of tes t  TWT 575 were  operated in the triple noz- 

zle configuration shown in  Fig, 6. Calculateci and experimental nozzle wall pres-  

su re  distributions for  nozzles 5A, 5 6  and 5C a r e  compared in Figs. 15 through 

9 
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2 3  and for  nozzles 6A, 6B and 6C a r e  compared in  Figs. 24  through 29. h w -  

z l e s  4 and 4A of tes t  TWT 593  were  operated i n  the single nozzle configura- 

tion. The experimental  and calculated nozzle wall  p r e s r ~ u r e  distributions for  

these  nozzles a r e  compared in  Figs. 30 through 3 7  fo r  var ious  operating con- 

ditions. 

An important consideration of any analytica?/expsrirnental data compar i -  

son  i~ivolving p r e s s u r e  measurements  is the t ransducer  accuracy. Transducer  

da ta  accuracy information fa :. TWT 575  (Ref. 5 )  and for  TWT 593 (Ref. 6) a r e  

presented in Tables 4, 5 and 6, respectively. As indicated, the  t ransducer  in- 

s t rumentat icn was changed between TWT 575  and TWT 593 with a significant 

improvemerlt in  the overall  t ransducer  accuracy.  The non- dimensionalized 

nozzle wall  s ta t i c  p r e s s x r e  was  utilized t o  compare  measured  and predicted 

results .  This  quantity is a function of two measured  values, each subject to 

t ransducer  accuracy. It was desirable,  therefore ,  to  a s s e s s  the accuracy of 

the  experimental  values of PC and PW being used to compare the two s e t s  of 

data. 

The absolute uncertainty in the experimental  data can be a s s e s s e d  by 

applying the  following relation: 

where  z is the non-dimensionlized nozzle wall p r e s su re ;  x i s  the model ple- 

num p r e s s u i e ;  and y i s  the nozzle wall s ta t ic  p ressure .  This technique is 

outlined in g rea t e r  detail in the Appendix. Applying the above relations for  

the  experimental  data  f rom TWT 575 and 593 resul ted in absolute uncertainty 

values for  the non-dimensionalized nozzle wall statir: p ressures .  This infor- 

mation is  presented in Table 7 for TWT 575 and Table 8 f o r  TWT 593. As 

showr,, the absolute uncertainty in the non-dimensionalized nozzle wall s ta t ic  

p r e s s u r e  values ranges f rom slightly g rea t e r  than 1070 to l e s s  than 170 depen- 

ding on the par t icu la r  t ransducer  arrangement  utilized and the  magnitude of 

the  model plenum pressure .  The data presented in Figs ,  10 through 13 has  

10 
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bccn utaiaed to  indicate graphically the influence of the absolute uncertainty 

cn the plotted data. The absolute uncertainty ranges from 5 9.4% in Fig. 10 to  

+2.7')6 in Fig. 13. The decrease in the magnitude of the absolute tincertainty is - 
due to the ranges of t ransducers  utilized in the data aqusition system. The in- 

fluence of t r a n ~ d r l c e r  accuracy on the quality of the test  data and correspond- 

ingly the quality of the measured and predicted data comparison is readily 

shown in Figs,  10 through 13. 

Simulant Gas The rmochemical Model Influence 

The influence of the therrnochemical model used fo r  the eimulant gas  

was  readily apparent. Both the air and CF4 models were  not applicable over 

the complete range of t e s t  data considered. Deficiencies were  noted particu- 

la r ly  for nozzle plenum conditions of high p res su res  (greater  than a 1000 psia) 

i n  conjunction with low temperature ( less  than - 250°F). This trend was evident 

in the data obtained for  nozzle 1 flowing CF4 (Figs. 8 and 9 ) ;  f o r  n o ~ z l e  2 flowing 

air (Figs. 10 through 13); and nozzle 6 flowing a i r  (Figs. 23 through 28). 

The data shown in Fig. 11 (PC = 1889 puia, TC = 513OF) indicate excel- 

lent  a g ~ e e m e n t  between measured and calculated nozzle wall static pressure  

distribution. However, where the total temperature of the C F  gas in the 4 
model plenum chamber is decreased to  1 9 0 . 9 ~ ~  (with increase of PL t o  2026 paia) 

the agreement between calculated and measured data i s  poor, a s  shown in Fig. 

9. Additional calculations made using an "ideal" gas model for CF4 ( y = 1.7.17) 

gave better agreement (Fig. 9), but the resul ts  were still not satisfactory. 

The same  trend in the degree of agreement achieved between calculated 

and measured data was exhibited for a i r .  Figures  10 through 13 show data 
for nozzle 2. The data shown in Fig. 10 were  obtained for  relatively low 

model plenum pressr1:e and temperature conditions and agreement was excel- 

lent.  As the model plenum a i r  p res su re  was increased and temperature de - 
creased  (to approximately room temperature level) the agreement achieved 

between calculated and measured data deter iorates  significantly, a s  shown in 

F igs .  1 I ,  12 and 13. Calculations made usi 1s an I t i d e a l  gas  model for  a i r  ( y  = 1.4) 

11 
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yielded good agreement between calculated and measured data for  all of the 

test  conditions presented in Figs. 10 through 13, 

The origin of the deficiences in both the a i r  and CF4 thermochemical 

data appears to l ie  in the applicable pressure  and temperature range for the 

coefficients used in the equation of state model. Therefore, a s  a result  of this 

study, the thermochemical data generated using the computer codes of Ref, 8 

do not appear to be reliable for model plenum conditions corresponding to total 

pressures  grea ter  than I000 psia in conjunction with total temperatures l e s s  

than 200 OF. I t  should be realized, however, that these a r e  11 rule -of -thumb'$ 

limits to guide potential users  of these techniques, 

Assessment of Transonic Effects on Data Comparisons 

The method-of-characteristic (MOC) calculation of rocket nozzle flow 

fierde typically uses a one-dimensional startl ine a t  the nozzle throat with a 
constant Mach number from the nozzle wall to the nozzle centerline. Actually, 

the transition from subsonic to supersonic flow is n- - re  appropriately mod ePed 

by a curved o r  two-dimensional line in the nozzle thr, , i  region. To assess  

the effect of this difference in transonic s tar t  lines on the analytical and ex- 

perimental data comparisons, a transonic s t a r t  line was caluclated for nozzle 

4 of TWT 575. Operating conditions were for test  point 114 with PC = 1830.28 

psia  and TC = 550'~. 

A computer code for calculating transonic flow fields in rocket motors 

(Ref. 11) was used to calculate a transonic startl ine in the nozzle throat re-  

gion. The transonic startline was then used to initiate a method-of-charac- 

ter is t ic  nozzle calculation using the VOFMOC computer code. The results of 

the nozzle calculation initiated with a transonic startl ine were  compared with 

the results of th-! nozzle calculation initiated with a straight startline. In Fig. 

38 the non-dimensional nozzle wall static pressure  ratio i s  plotted for the noz- 

z le  calculations generi.'ed with both startlines. Use of the transonic startl ine 

produced only slightly better zgreement with the experimental pressure  data. 

12 
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Effect of Boundary Layer Growth on Data Comparisons 

A boundary layer  is present along a nozzle contour while the nozzle is 

flowing a working fluid. The displacement effect of the boundary layer  can 

cause  changes in the p res su re  distribution as compared to inviscid flow pre- 

dictions. Viscous effects in the boundary layer  can  a lso  influence the thrust 

coefficient of a nozzle and impact convective heat t ransfer  ra tes  to the nozele 

wall. Of par t icular  interest  in this study is the effect of boundary layer  dis- 

placement on nozzle wall static pressure  distributions. 

To investigate the effect of boundary layer  displacement on the compari- 

eon of experimental and analytical nozzle wall p res su re  dietributions, tes t  point 

1 14 of TWT 575 was selected f o r  a boundary layer  analysis. The geometry point 

4 and operating conditions f o r  tes t  point 114 (P = 1830 psia  and TC = 550°1?) C 
w e r e  input to  Hoenigl s boundary layer  computer code (Ref. 12). Boui~dary layer  

charac ter i s t ics  were  calculated from the nozzle throat to the nozzle exit. 

The calculated boundary layer  displacement thickness was subtracted f rom 

the local nozzle radius along the length of the nozzle. The nozzle contour with 

no boundary layer  is compared in Fig. 39 with the nozzle contour modified by 

boundary la ye r displacement thickness. 

The modified nozzle geometry was input to the MOC computer code with 

the corresponding operating conditions. A nozzle flow field was calculated 

using a s t raight  startl ine and rea l  gas thermodynamics for air. The resulting 

non- dimensional nozzle wall static pressure  distribution i s  compared in Fig, 

40 against the experimental static pressure  measurements and the pressure  

distribution calculated with a nozzle unmodified by boundary layer  displace- 

ment  thickness. 

F rom Fig. 40 it is evident that the boundary layer  displacement effect 

on the nozzle wall static p res su re  distribution was minimal. Including the ef- 

fect  of boundary layer displacement thickness in  the analysis did not have a 

significant effect on the comparison of the analytical and experimental data. 
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It was  concluded that boundary layer  growth in  the nozzles did not have 

any significant effect on data comparieons for the nozzle geometries and oper- 

ating conditions under investigation. 

2.3 EXHAUST PLUME ANALYSIS 

Simulation of full-scale exhaust plumes with subscale nozzle exhaust 

plumes rsquireu that the exhaust plume boundary shapes be  matched. Analyt - 
ical exhaust p l u r ~ e  boundaries and internal boundary shock shapes were com- 

pared with t?rese character is t ics  on schlieren photographs of the subscale 

nozzle exhaust plumes. The degree of agreement between the analytical ca l -  

culations and the experimental resul ts  provided a measure  of how well the 

subscale nozzle exhaust plume could be predicted by the analytical techniques 

employed in  the analysis. 

Exhaust Plume Calculation Procedure 

Analytical exhaust plume boundaries and internal boundary s l~ock shapes 

were  calculated with an  inviscid MOC computer code, Transonic effects had 

been shown previously to have a negligible effec: as the comparison of analy- 

t ical  and experimental nozzle wall pressure  data. Therefore,  the nozzle plume 

solutions were  initiated with a straight s tar t l ine with a Mach number of 1.01. 

Previous analysis had shown that boundary layer  growth had an insignificant 

effect on da ta  comparisons. The measured noenle geometry was input to the 

MOC code without being modified to account for  boundary layer  growth. Two 

MOC calculations were  performed fo r  each operating condition investigated. 

Real gas thermodynamics from the Beattie-Bridgeman equations were  input 

f o r  one calculation and ideal gas thermodynamics were  input for the other cal- 

culation. Each analytical calculation was expanded to a back p res su re  equal 

to the ambient test  cel l  p ressure  of the corresponding experimental data point. 

The MOC solutions were  ca r r i ed  out to an axial location a t  leas t  five nozzle 

exit  diameters  downstr eam of the nozzle exit plane. 
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Experimental  Data Acquisition Procedure  

Experimental  e x h a u ~ t  plume boundaries and internal  boundary shocks 

w e r e  obtained by use  of a lrchlicren photograph system. Schl ieren photographs 

of the  nozzle exhaust plumes were  obtained a t  d i sc re te  t ime intervals  during 

each run. 

The sch l ie ren  sys tem i s  the most  widely used optical method of recording 

nozzle exhaust plumes on photographic plates. Light f rom a uniformly illumi- 

nated line source  of smal l  width i s  collimated by a lens  o r  m i r r o r  and then pas- 

s e d  through the  t e s t  section in  which the nozzle is located, The light is then 

brought to a focus by another l ens  o r  m i r r o r  and projected on a s c r e e n  (o r  

photographic plate). At the focal point of the foc,ueing lens  o r  m i r r o r ,  where  

an imdge of the source  exits ,  a knife edge i s  introduced which cuts  off p a r t  of 

the light. With no flow in the t e s t  section, the knife edge is usually adjusted to 

?.i.:ercept half of the light f rom the source  and the s c r e e n  i s  uniformly illumi- 

nated by the portion of the light escaping the knife edge. When flow is  es ta-  

blished in the nozzle and/or tes t  section, any light ray passing throcgh a re -  

gion i n  which there  i s  a density gradient normal to the light direction will be 

deflected a s  though it has passed through a p r i sm.  Depending on the  or ien-  

tation of the knife edge with respec t  to the density gradient and on the alge- 

b ra ic  sign of the denisty gradient, more  o r  l e s s  of the light passing through 

each pa r t  oi ,he  tes t  section will escape the knife edge and illuminate the screen.  

Thus a sch l ie ren  sys tem makes density gradients visible in t e r m s  of intensity 

of illumination. A photographic plate a t  the viewing sc r een  would r eco rd  den- 

si ty gradients in the t e s t  section as different shades of gray. The sch l ie ren  

sys t em in the MSFC facility employs a horizontal knife edge orientation. A 

horizontal  knife edge orientation (knife edge paral le l  to the direction of flow) 

de tec t s  density gradients perpendicular to the flow direction, 

The internal  boundary shock appears  on the sch l ie ren  photographs a s  a 

s h a r p  well defined l ine which i s  eas i ly  interpreted.  A viscous shea r  l ayer  of 

measurab le  thickness i s  present  a t  the boundary of the exhaust plume and the 

ambient  environment. 

15 
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The inviscid MOC solution of the exhauet plume flow field does not 

account for the viscous shear  layer thickness in the  calculation of the exhaust 

plume boundary. The reeults of a -..ovioue analyeis (Ref. 10) indicate that 

the MOC plume boundary i s  located along a line which evenly divides the shear  

layer  visible on schlieren photographs. F o r  the purpose of comparing experi- 

mental and analytical plume boundaries, the experimental plume boundariee 

were  assumed t o  l i e  along a line which evenly divided the ehear layer visible 

on each schlieren photograph. 

Comparison of Experimental and Anad ytical Results 

Comparison of analytical and experimental exhaust plumes was accom- 

plished by two methods. For  some test  points, the calculated exhaust plume 

boundaries and boundary shock locations were converted to the schlieren co- 

ordinate system and superimposed on the corresponding schlieren photographs. 

F o r  other test  points, the coordinates of the experimentally determined exhaust 

plume boundary and boundary shock were located with respect to  the nozzle exit 

plane and nozzle centerline. These axial and radial coordinates were non- 

dimensionalized by the nozzle exit radius and plotted with the corresponding 

calculated values of plume boundary and boundary shock location. 

The effect on exhaust plume structure of different thermochemical models 

in the calculated flow fields i s  illustrated in Fig. 4 1 for  test  number 575,  nozzle 1 

and test  point 5 11. The exhaust plume calculated with an ideal gas  thermo- 

chemical model exhibits relatively good agreement with the experimental 

exhaust plume structure displayed on the schlieren photograph. The exhaust 

plume calculated with a rea l  gas  thermochemical model exhibited poor agree-  

ment. In Figs.  42 through 45 experimental exhaust plume boundary and boundary 

shock locations a r e  compared (using method 2 )  with calculateu values using rea l  

and ideal gas  thermodynamics. Comparisons a r e  presented for  test  number 575, 

nozzle 2 and test  points 382, 383, 384 and 385, respectively. The nozzle wall 

static pressure  distributions a r e  presented in Figs. 10 through 13. 

The corresponding exhaust plumes for test  points 383,384 and 385 did 

not expand enough to match the experimental exhaust plume boundaries. This 
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is demonstrated more clearly in Figs, 47, 48 and 49 in which the exhaust plume 

structure calculated with real gas thermodynamics is  superiinposed on the cor- 

responding schlieren photograph. The experimental and calculated exhaust 

plumes for test point 382 show good agreement in Figs, 42 and 46. For test 

point 382, nozzle 2 was operating at a relatively low chamber pressure (517 

psia) and a relative1 y high chamber temperature (1 56O~).  These conditions 

a re  considered to be within the operating range for which the real gas thermo- 

chemical models a r e  applicable, For test points 383, 384 and 385, the plume 

calculations generated with ideal gas thermodynamics compared favorably with 

the experimental exhaust plume structures (see Figs. 43, 44 and 45) for eeveral 

nozzle exit radii downstream of the nozzle exit. 

It was concluded that experimental exhaust plume structures can be 

modeled analytically using either ideal gas o r  real gas thermochemical models 

for  relatively low chamber pressures in conjunction with relatively high temper- 

?.tures. For higher pressures in conjunction with lower temperatures, calcula- 

tions using ideal gas thermodyna.mics produce better agreement with experimental 

exhaust plume boundary and boundary shock locations for several nazele exit radii 

dowrtstream of the nozzle exit plane. For  the higher chamber p: sssures in con- 

junction with lower chamber temperatures illustrated in Figs. 43, 44 and 45, 

analytical calculations with both thennochemical models failed to compare favor- 

ably with the experimental exhaust plume boundaries beyond several r a&~i  down- 

stream of the nozzle exit piane. The experimental exhaust plume boundaries in 

Figs.43, 44 and 45 expand to a larger diameter than predicted analytically. This 

condition i s  indicative of exhaust plumes in which a gaseous species is condensing 

(Ref. 13). As the nozzle o r  exhaust plume expands, the local pressure and temper- 

ature decrease and may cross the saturated vapor curve for a particular specie 

(GO2, HZO, etc.). Continued expansion of the plume will cause a large portion 

of the gaseous species in the flow to condense. Condensation of a relatively large 

mass of a gaseous species adds a significant amount of energy to the remaining 

flow reducing the Mach number and increasing the pressure. If the flow is still 

in the nozzle, condensation will be evidenced by a significant change in the nozzle 

wall pressure distribution slope. With condensation present, the nozzle wall 

pressure will be significantly higher than predicted and the PC/pW ratio i s  
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significantly lower. If condensation occurs in the exhaust plume, it will be 

evidenced by a significantly larger plume than predicted. 

For  the nozzle geometries and operating conditions investigated in this 

study, the experimental nozzle wall pres sure distributions did not deviate suf - 
ficiently from the best analytical calculation to indicate the presence of condens- 

ing species in the nozzle, The overexpanded experimental exhaust plumes of 

Figs. 43, 44 and 45 did indicate however, the presence of condensing species in 

the nozzle exhaust plumes for some operating conditions. 
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Section 3 

CONCLUSIONS 

The following conclusions were reached during the course  of this 

e tudy. 

8 The nozzles used in TWT 575 and TWT 593 did not exhibit any gross  
physical deviations from the nozzle design parameters  (page 8). 

8 The l a rge  diameter  of the pressure  or i f ices  relative to the overall 
nozzle length did not have a pr imary influence on the agreement of 
analytical and experimental data (page 9). 

Transducer accuracy had a modest effect on the quality of the ex- 
perimental nozzle wall pressure  data and the comparison of ex- 
perimental data with the calculated p res su re  data (page 10). 

9 The a i r  and CF4 therrnochemical models were  not applicable over 
the complete range of tes t  conditions. Part icular ly poor agree-  
ment was noted between rea l  gas analytical calculations and ex- 
perimental data fo r  chamber pressures  greater  than 1000opsia 
in conjunction with chamber temperatures  lower than 250 F (page 11). 

8 Transonic effects had an insignificant influence on analytical and 
experimental data comparisons (page 12). 

8 Boundary layer  growth in the nozzle had an insignificant effect on 
analytical and experimental data comparisons (page 13). 

Analytical and experimental exhaust plume character is t ics  com- 
pared well a t  lower chamber pressures  in conjunction with higher 
chamber temperatures  using both ideal and r ea l  gas thermo- 
chemical models. (page 16). 

8 Analytical and experimental exhaust plume character is t ics  for high- 
e r  chamber p res su re  in conjunction with higher chamber tempera-  
tures  compared favorably for analytical data calculated with a r ea l  
gas thermochemical model for CFq (page 1 7). 

a No instances were noted where the lack of agreement between the 
predicted and experimental nozzle wall p res su re  distributions 
(flowing a i r )  could be attributed to  the presence of condensinp 
species in the nozzles (page 17). 

a Condensing species were suspected, however, t o  be present in the 
exhaust plumes of nozzles operating a t  high chamber to  ambient 
p res su re  rat ios  and low chamber temperatures.  Condensation in 
the exhaust plume causes the local p res su re  in the plume t o  in- 
c rease  thereby yielding a la rger  plume than is  predicted using 
single phase analytical models (page 18). 
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8 The accuracy with which the exhauat plume boundariee could be 
predicted was strongly affected by the adequacy of the thermochem- 
ical model for the working fluid, Chamber conditions for which a- 
greement between predicted and experimental nozzle wall pressure 
distribution wae poor also resulted in poor exhaust plume boundary 
agreement, 
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Section 4 

RECOMMENDATIONS 

1. Predictions of exhaust nozzle and plume flowfield character is t ics  
for systems using a i r  a s  the working fli*.id sl~oulld utilize an equi- 
librium chemistry (standard equation of state) or  ideal g a s  thermo- 
chemical model for  the air. 

2. Predictions of exhaust nozzle and plume flowfield charac ter i s  t ics 
for  systems using CFq a s  the working fluid should generally utilize 
the real  gas model of R e f .  8 for the CFq. It should be noted, how- 
ever, that this model does not adequately t rea t  t e s t  conditions in- 
volving high chamber p res su res  (> 1009 psia) in conjunction with 
low chamber (i.e., total) temperatures  (< 250'~). 

3. Additional investigations should be mads to establish an applicable 
CF4 gas model f a r  the tes t  conditions not adequately t reated if 
deemed necessary by the experimental program requirements, 

4. Transonic effects and boundary layer  growth can  be neglected for  
nozzles of the s ize range considered in this program when operating 
in the s a m e  (or la rger )  Reynolds number range. 

5, The accuracy of the transducers used to a s s e s s  nozzle performance 
should be maintained a t  a high and consistent level over the range 
of tes t  conditions. 

6, Consideaakion should be given to the s ize  of the p res su re  ports in the 
nozzle walls. The ports should be kept small  relative to  nozzle length. 

7.  Future t e ~ i t s  should include near field pitot p res su re  surveys in 
the exhaust plumes to correlate  with optical data. These addition- 
al  data will .aid in rrlore accurately determining exhaust plume 
characteristics.  

8. Calculations made to predict nozzle wall p res su re  distributions and 
exhaust plume shapes should utilize nozzle dimensional inspection 
data in forming the mathematical models of the nozzles, 
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Table 1 

PLUME TECHNOLOGY TEST MODEL NOZZLE GEOMETRY (TWT 575) 

* 
BuiYt during tea t  f rom a A/A* ~ 6 . 5 ,  clip =35O a i r  s ingle  nozzle 

'(design dimension) 
Actual Dimension 

R . S  13.5 

Noszle 
N 0. 

1 

2 

4 

4A 

5 

6 

N o z z l e  A T ! 
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Cia. 

CF: 

A i r  

A i r  

A ~ I  

C F 4  

Air  

Nozzle 
Config. 

Single 

Sinple 

Single 

Single* 

Tr iple  
Nozzle A 
Nozzle B 
Nozzle C 

Triple  
Nozzle A 
Nozzle B 
Nozzle C 

A/A* 
(in.) 

(8.0)' 
7.90 

(3.5)' 
3.51 

(6 ,s) '  
6.52 

(3.5)' 
3.45 

(8.0)' 
8.21 
8.17 
8.05 

(4.0)' 
4.06 
4.01 
4.03 

$1) 
(15) 

14.92 

(25) 
23.22 

C 
( in . )  

(-750) 

(.750) 

A 
(in.) 

0.247 

0.372 

(35) 
34.77 

(35) 
34.77 

( IS)  
15.10 
15.12 
15.08 

(25) 
24.85 
24.58 

B 
(in.) 

0.695 

0.698 

D 
(in.) 

0.978 

0,513 

E 
( in.)  

(.312) 

(.31L) 

0.471 

0.282 

0.523 
0.518 
0.52 5 

0.322 
0.328 

24.83 

0.273 

0.375 

0.143 
0.141 
0.143 

0.200 
0.201 

(.312) 

(.312) 

(.3 12) 

(.312) 

0.199 

(. 503) 
0.697 ! 
0.697 

0.404 
0.403 
0.404 

0.404 
0.402 

(. 188) 

(.375) 

(.400) 

0.400 0.33 5 



Table 2 
PLUME TECHNOLOGY TEST MODEL NOZZLE GEOMETRY 

(TWT 593) 

* I.hv dbo~v~~sron ta a conalanl equal to 0 3 12 In, lor a11 norrler 

I 

I( 

'i 

-1rrl.ut1laritv III Noaale No 8 meomelry. refer to r i a  11 lor rract dlmanatons 

U ~ o n t u ~ i r r d  ueunirtry norale; dimena~ona 1301 applicbblr; mee Table L lor exact dtmensto~t. 
*a 

(Dem~rn d~rnenaion) 
Arlual  Dbmenmion 
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\ I  

Air 

41r 

t r i p l e  
Nosrle A 
Nuzrle Il 
Noarle C 

I'rtplc 
Nucrle A 
Nozzle B 
Nurzle C 

Trtpla 
Nosale A 
Norale B 
Norrle C 

lb 01 
5 ')O 
i 85 
5 

(4.0) 
4.01, 
4 00 
3 91 

(5.L9) 
5 29 
S.31 
5 12 

132) 
35. l b  
34 75 
4 

110) 
10.12 
10.00 
10.11 

0 
o 
0 
0 

(0 1690) 
0 I636 
0 1636 
0. lb3b 

(0.202) 
0.1990 
0.1999 
0.2001 

(0.1758) 
0.174L 
0.1151 
0 1733 

(0 4042) 
0.3974 
0.3926 
0.1957 

(0 4042) 
0.4010 
0 5999 
0.4001 

(0.4042) 
0.4024 
0.4034 
0.4044 

- -- 

(0 310) 
0. J IU 
0.130 
O.JIO 

(0 400) 
e 

0 

0 

(u 27.) 
( 1 . ~ 7 . ~  
0 2;-u 1 
U.L7bs I 

(0.b05) 

(0 b48) 
0.64OL 
0.6385 
0 h4bl 
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Table 3 

TEST POINTS INVESTIGATED 

8 
Data for the indicated test  point appear on the on the 
figure indicated in parentheses. 
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. 
* 

Test Points (Figure No.) 

505(7),  509(8),  51 1 (9 ,41)  

382(10 ,42 ,46) ,  3 8 3 ( 1 1 , 4 3 , 4 7 ) ,  384(12, 
4 4 , 4 8 ) ,  385(13 ,45 ,49)  

107(14), 114(38,40) 

603(15- 17),  604(18-20) ,  606(21-23) 

4O1(24-26), 405(27-29) 

2(30),  7 ( 3 l ) ,  12(32), 17(33) 

161(34), 167(35), 172(36), 176(37) 

Tes t  
No. 

575 

593 

N o z ~ l e  
No.  

1 

2  

4 

5 

6 

4A 

4 
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Table 4 

DATA ACCURACY TEST NUMBER TWT 575 
* 

The estimated accuracy of the data is as followe: 

Tunnel Conditions 

F rees t r eam total p res su re  - t0.05 psia 

F r e e s t r e a m  static p res su re  - t0.0 15 psia 

Model Surface and Base P r e s s u r e s  

M = 0.9, 1.2 and 1.46 
ab 

t0.113 psia - 
M =3 .48  

00 
t0.338 psia - 

- -  

Nozzle Internal P r e s s u r e s  

Air Single Nozzle, A/A* = 6.5, a l l  nozzle orifices tO.227 psia * - 
Air Single Nozzle,. A/A = 3.5, all nozzle orifices k1.13 psia 

Air  Triple Nozzle, A/A* = 4.0, all nozzle orifices k1.13 psia 
- 

CF4 Single Nozzle, A/A' = 8.0, orifice 44 - t3.75 psia, 
orifices 45,4$ and 47 -- 9 . 2 2 7  psia 
orifice 48 -- - t1.125 psia  * 

CF4 Triple  Nozzle, A/A = 8.0, all nozzle orifices - t0.227 psia 

Model Plenum Chamber Conditions 

I Total and static p res su res  - t18.75 psia 

Total temperature -  OF 
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Table 5 

DATA ACCURACY TEST NUMBER TWT 593 

The estimated accuracy of the data i s  as follows: 

• Tunnel Conditions 

Freestream total pressure - t0.05 psia 

Freestream static pressure - t0.015 psia 

Model Surface and Base Pressures  

M, = 0.5. 0.7.0.9, 1.2 and 1.46 - t0.022 psia 

Nozzle Wall Static Pressures  

See Tables 5 and 6 

• Model Plenum Chamber Conditions 

Total and static pressures 

0 < p < 150 - $0.225 psia - 
150 < p 5 500 - t0.750 psia 

500 < p - < 2000 - t3.000 psia 

Total temperature - t2OF 

Model and Hardware Static Temperatures 

Model skin temperatures - t2OF 

Pipe and sting temperatures - $2 OF 

28 
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NOZZLE WALL STATIC PRESSURE ACCURACY 
TEST NUMBER TWT 593 

LOCKHEED HUNTSVILLE RESEARCH & ENGINEERING CENTER 

Nozzle 

Single 
A/A* = 3.5 

Cllip = 35O 

Sing$? 
A/A = 6.5 

fillip = 35O 

Triple 
A/A* = 8.0 

tip = 15O 

T r iple 
A /A* = 6.0 

clip = 35O 

Triple 
A/A* = bo 
clip = 10 

Triple 
A/A* = 5.3 

'lip = 6O 

Chamber 
Pressur.e. 

( ~ s i a )  

600 

1000 t o  2000 

1000 t o  1500 

2000 

+ 

44 

o t.225 

i .225 

t.045 - - t.225 

0 t o  500 1 - 
t 

1000 t o  2000 

250 

1000 

0 to 500 

iooo t o  2000 

0 to 500 

1000 t o  2000 

49 

- 
- 
- 
- 

- 
- 

t .045  
.I 

t.045 - 
t .045  - 
t.2 25 - 
- 
- 1 

Orifice No. 

45 46 47 48 

- 
.... 

- t.045 

t.045 
0 

- t.045 

t .226 - 
t.045 - 
t.225 - 

- 
- t.045 

o t.045 

o t.045 

t.225 
0 - 
- 

- t.045 

t.225 - 
t.045 
0 - t.225 

t.045 - 
t.225 

t.045 - 
t.045 - 
t.045 - 
t.225 ..- 

+.045 - 
t.225 - 

- 
- 

t . 045  - 
t.045 
0 

t.045 - 
+ . a 5  - 
t.045 - 
t ,225 - 

t.225 
IL 

t.225 - 
t.045 - 
t.225 - 

t.045 
0 

t.225 

t.045 - 
t.045 .- 

t .045 - 
t.2 25 - 
t.045 - 
t . 2  25 
..I 

Accuracy' 

- t.045 

t.225 - 
t.045 - 
t.225 - 

in psia 

t . 045  - 
t . 225  - 
t.045 - 
t .225 - 



Table 7 

ABSOLUTE UNCERTAINTY VALUES FOR THE NON-DIMENSIONALIZED NOZZLE 
WALL STATIC PRESSURES FOR TEST NUMBER T W T  575 

Nozzle 
No. 

1 

1 

1 

2 

2 

2 

2 

4 

4 

5 

5 

5 

6 

6 

Run 
Na . 
505 

509 

51 1 

382 

383 

384 

38 5 

107 

114 

60 3 

604 

606 

40 1 

405 

P 
C 

(psis) 

1937 

1889 

2026 

51 7 

933 

1376 

1841 

1706 

1830 

5 58 

1067 

1813 

1654 

1888 

44 

Tap Number 

P 
C - 

pwall 

8.184 

5.829 

5.821 

26.445 

26.957 

27.161 

27.780 

56.063 

56.152 

41.892 

41.501 

42.359 

26.685 

45 

P 
+ - 

0.209 

0.125 

0.117 

2.490 

1.422 

0.976 

0.756 

1.035 

0.966 

2.122 

1.096 

0.663 

0.691 

46 48 

P 
C 

Pwall 

85.974 

46.401 

48.866 

101.487 

101.711 

39.351 

39.271 

39.533 

25.015 

25.291 

C - 
pwall 

31.578 

18.805 

18.790 

83.668 

83.945 

+ - 
I 

0.885 

0.397 

0.370 

1,851 

1,734 

t - 

0.973 

0.870 

+ - 

1.098 

0.719 

0.720 

1.983 

2.326 

1.952 

1.018 

0.605 

0.711 

0.634 

- 
pwall 

30.343 

30.719 



Table 8 

ABSOLUTE UNCERTAINTY VALUES FOR THE NON- DIMENSIONALIZED NOZZLE 
WALL STATIC PRESSURES FOR T E S T  NUMBER TWT 593 

Run 
No. 

2 

7 

12 

17 

161 

167 

172 

176 

1 

( p s i 4  

1036 

996 

938 

1689 

1453 

1460 

1492 

1989 

I 

Nozzle 
NO. 

I 

4A 

4A 

4A 

4A 

4 

4 

4 

4 

. 
Tap N u m b e r  

48 

- 
pwall 

28.306 

28.311 

27.908 

29.333 

87.583 

87.740 

87.971 

91.029 

47 44 -. 

t - 

0.256 

0.266 

0.276 

0.16': 

1.368 

1,366 

1.344 

1,074 

- 

- 
Pwall 

35.035 

34.935 

34.472 

36.361 

113.782 

114.062 

114.241 

118.322 

46 

- 
P,all 

20.179 

20.141 

19.847 

20.937 

63.588 

64.516 

63.979 

66.924 

t - 

0.368 

0.380 

0.395 

0.241 

2.238 

2.238 

2.197 

1.763 

- 
Pwall 

35.262 

35.095 

34.548 

20.484 

t - 

0.147 

0.152 

0.158 

0.096 

0.758 

0.755 

0.746 

0.607 

t - 

0.372 

0.384 

0.397 

0.247 



l s O  ( ~ y p .  4 Places) 
+I IC.375 

Section A-A 

' Typical Pressure 
Tubing Routing 

NOTE: Drawing not to scale ; all 
dimensions in inches. - 

6 
Fig. 1 - Sketch of Model Ueed in Plume Technology Study 0 

N 



Fig.  2 - Cone-Ogive-Cylinder Model Installed in the Supersonic Test  Section 



- C ,  

Top Virw 22 

16 
17 

d 0 

- Br~ttonl Virw 
I 

Model Surface Premrure Model Su rface P r e s s u r e  
Orifice Locations Orifice Locations 

t 

O r ~ f i c e  
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I 1  
1 2 
13 
14 
15 
16 
17 
18 
19 

Model Chamber P r e s s u r e  and Temperature 
Instrumentation Locatxon 

Angular 
O r i e ~ ~ t a t i o n  
6 (deg) 

0 
0 
0 
60 

Body 
Station 

(in.) 

1.011 
1.631 
2.700 
3.778 
4.809 
5.800 
6.959 
8.038 
8.582 
9.119 
9.663 
10.202 
10.743 
11.284 
11.555 
11.824 
12.094 
12.363 
12.631 

Orifice 
No. 

20 
2 1 
22 
23 
24 
2 5 
26 
27 
28 

Model Surface Temperature 
Thermocouple Locations 

Station Orlentatlon 

Static P r e s s u r c  11.188 
Total P r e s s u r e  11.188 180 
Total Temperature 1C6 10.938 300 

Angular 
Orientation 
6 (deg) 

0 

1 
0 

~ o d y  
Station 

(in.) 

12.904 
13.172 
13.443 
6.043 
9.125 
10.205 
11.283 
11.554 
11.825 

No. 
I 

TC1 
TC2 
TC3 
TC4 
TC5 

L 

Fig. 3 - Model Surface and Chamber P r e s s u r e  Orif ice  and Thermocouple 
Locations 

29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 

3 4 
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Bod\. 
Station 

(in.) 

3.9 
5.8 
9.1 
11.7 
12.8 

Angular 
Orlentallon 

4 (deg)  

15 
IS 
15 
15 
15 - 

12.096 
12.366 1 
12,636 
12.906 
13.176 
13.446 
10.206 
11.826 
12.366 
13.446 

6'0 

180 
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B.S. 13.5 

- - 
N o d e  W a l l  
P r e r r u r c  
Or i f i ce  

L B a r e  P r c s r t l r e  
O r ~ l i ~ c e  

Single Nozzle Wall P r e a r u r e  Or i f i ce  Locat ions  

Model Rase Pr t a s su r r  Or i f t cc  I , o ra t~ons  for ,511 S 2 n c l u ,  l i<~ : / l , - s  

, Nozzle 
Confill. 

A/A* =6.5 
clip =35O 

4 7 
48* - 

Body Angula r 
Or i f ice  Station R a d  iua Oric-ntatiun / NO. 1 n 1 1 (in. ) 1 ( C ~ E ,  

Fig.4 - Single Nozzle Wall and Model Base P r e s s u r e  Orifice Locations 

G a s  

A l r  

* 
Tu >e  routed outs ide  the  nozzle. 

0.934 
0.588 

3 5 
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210 
3 0 

Orifice 
No. 

44* 
4 5* 

I 
i 

46 
47 
4 8* 

46 
4 7 

44* 
4 5* 
4 6  

A/A* = 3.5 
clip = 35O 

A/A* = 3.5  

Olip =250 

Diet. from 
Throa t  (in.) 

0.327 
0.429 

Ai r  

A i r  

Angular  
Or ienta t ion  

4 (deg) 

330 
330 

0.430 
0.430 
0.37 9 

0.24 1 
0.241 

0.348 
0.467 
0.471 

150 
210 

3 0 

150 
210 

330 
330 
150 
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B.S. 13.5 

'Triple Nozzle Wall P r e s s u r e  Or i f i ce  Locat ions  

Angular  
Or i f i ce  Dist. f r o m  Orienta t ion  1 I .aa I NO. o I a i n .  I , ,cieu) I 

A/A* = 4.0 Ai r  44* 0.269 2 10 

8 = 2 s 0  4 5* A A I 0.268 9 0 
I ~ P  4 6* 0.275 3 0 

47 0.275 L I O  
48 C 0.281 150 

0.461 
0.461 L I C  
0.468 

* 
Tube routcad outs ide  !he i loz / l r  

Model Baa r  P r e s s u r e  Ori f ice  1,ocations l o r  All T r ip l e  Nt17.slt-s 

Fig. 5 - Triple  Nozzle Wall and Model Base P r e s s u r e  Orifice Locations 

3 6 
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Orif ice  
No. 

3'7 
40 
4 1 
42 
4 3 

Body 
Statton 

(in. ) 

1 3.499 

1 
1 3.4c4tj 

Radius 
fin.  

0.6 3 
0.0 
0.6 1 
0. \Q 

0.6  \ 

Angular  
Or ienta t ion  

I d ~ p )  

0 
0 

60 
60 

180 
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Fig.6 - Plume Technology Test  Model Nozzle  Geometry 
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0 Experimental 

Real Gas Thermodynamics -- Ideal Gas  Thermodynan-iics 

Fig .  7 - Non-Dimensional  Nozzle  Wall S ta t ic  P r e s s u r e  
3 i s t r i b u t i o n s  f o r  T e s t  Number  TWT 575 and 
Nozzle 1 Flowing Ai r  a t  T e s t  Po in t  505 
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Axial Distance f r o m  Nozzle Throat  (in.) 

Fig.  8 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distributions for  Tes t  Number TWT 575 and 
Nozzle 1 Flowing CF4 a t  Tes t  Point 509 
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Real Gas Thermodynamics -- - 

0.2 0.4 0 .6  0.8 

Axial Distance from Nozzle Throat (in.) 

F ig .  9 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distributions for T e s t  Number TWT 5 7 5  and 
Nozzle 1 Flowine CF4 at T e s t  Point 51 1 
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0.1 0.2 0.3 0.4 0 .5  

Axial  Di s t ance  f r o m  Nozzle T h r o a t  (in.) 

F ig .  10 - Non-Dimensional  Nozzle Wall S ta t ic  P r e s s u r e  
Dis t r ibut ions  f o r  T e s t  Number  TWT 575 and 
Nozzle 2 Flowing A i r  a t  T e s t  Po in t  382 
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I Absolute Uncertainty Band 

0 Exper imental  

Real  Gas Thermodynamics  -- Ideal Gas  Thermodynamics  

Fig .  11 - Non-Dimensional Nozzle Wall Stat ic P r e s s u r e  
Distribution for  T e s t  Numb o r  TWT 575 and 
Nozzle 2 Flowing Air a t  I,.-st Point  383 
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I Absolute  Uncer ta in ty  Band 

0 Exper imen ta l  

Rea l  Gas  Thermodynamics  

0 - - Ideal  G a s  Thermodynamics  
.d 
Y 

Axial Dis tance  f r o m  Nozzle T h r o a t  (in.) 

F ig .  12 - Non-Dimensional Nozzle Wall Stat ic  P r e s s u r e  
Dis t r ibut ions  f o r  T e s t  Number TWT 575 and 
Nozzle 2 Flowing A i r  a t  T e s t  Point  384 
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I Absolute Uncertainty Band 

0 Experimental  

Real  Gas Thermodynamics -- Ideal Gas The rmodynamic s 

0.1 0.2 0 . 3  0.4 0 .5  

Axial Distance f r o m  Nozzle Throa t  (in.) 

Fig. 1 3  - Non- Dimensional Nozzle Wall Static P r e s s u r e  
Distributions fo r  Tes t  Number TWT 5 7 5  and 
Nozzle 2 Flowing Air a t  T e s t  Point 385  
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0.1 0.2 0.3 0.4 0.5 

Axial  Dis tance  f r o m  Nozzle T h r o a t  (in.) 

Fig. 14 - Non-Dimensiona.1 Nozzle Wall Stat ic  P r e s s u r e  
Dis t r ibut ions  fo r  T e s t  Number TWT 575 and 
Nozzle 4 Flowing A i r  a t  T e s t  Point  107 
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. - 

- Real Gas Thermodynamics 

Axial Dis tance  f r o m  Nozzle T h r o a t  (in.) 

F i g .  1 5  - Non-Dimensional Nozzle Wall Stat ic  P r e s s u r e  
Dis t r ibut ions  f o r  T e s t  Number  TWT 575 and 
Nozzle 5A Flowing CF4 a t  T e s t  Point  603 
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Triple Nozzle Configuration (Sue Fig. 

0 Experimental - Real Gas Thermodynamics 

1-1 P r e s s u r e  Transducer Port Diameter 

Axial Distance from Nozzle Throat (in.) 

F i g .  16 - Non-Dimensional Nozzle Wall Static Pressure  
Distributions for Tes t  Number TWT 5 7 5  and 
Nozzle 5B Flowing CF4 at  T e s t  Point 4 0 3  

4 7  
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0 Experimental  

Axial Distaiice f r o m  P;ozzle l i~: oat (in.) 

F i g .  17 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distributions for  T e s t  Number TWT 575 and 
Nozzle 5C Flowing CF4 at Tes t  Point 603  
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Fig.  18 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distributions for T e s t  Number TWT 575 and 
Nozzle 5A Flowing CF4 a t  T e s t  Point 604 

4 9  
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Axial Dis tance  f r o m  Nozzle T h r o a t  (in.) 

F ig .  19 - Non-Dimensional Nozzle Wall Stat ic  P r e s s u r e  
Distr ibutions for  T e s t  Number  TWT 575 and 
Nozzle 5B Flowing CF4 a t  T e s t  Point  604 
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0 .O 0.1 0.2 0.3 0.4 0.5 

Axial Dis tance  f r o m  Nozzle T h r o a t  (in.) 

F ig .  20  - Non-Dimensional Nozzle Wall Stat ic  Pr t s s u r e  
Dis t r ibut ions  fo r  T e s t  Number TWT 575  and 
Nozzle 5C Flowing C F 4  a t  T e s t  Point  604 
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. - ---- - - . . 

T r i p l e  N o z z l e  C o n f i g u r a t i o n  (See  F ig .  6 )  

0 E x p e r i m e n t a l  

0 .O 0.1 0.2 0 .3 0.4 0 .5  

A x i a l  D i s t a n c e  f r o m  N o z z l e  T h r o a t  ( in . )  

F i g .  2 1  - Non-Dime1;sional N o z z l e  W a l l  S t a t i c  P r e s s u r e  
D i s t r i b u t i o n  f o r  T e s t  N u m b e r  T W T  5'75 a n d  
N o z z l e  5A F l o w i n g  C F 4  a t  T e s t  P o i n t  606  
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Fig.  22 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distribution f o r  Tes t  Number TWT 575 and 
Nozzle 5B Flowing CF4 a t  Tes t  Point 606 

5 3 
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0.0 0.1 0.2 0.3 0.4 0.5 

Axial Distance f r o m  Nozzle T h r o a t  (in.) 

F i g .  2 3 - Non- Dimensional Nozzle Wall Stat ic  P r e s s u r e  
Distribution for T e s t  Number T W T  575 and 
Nozzle 5C Flowing CF4 a t  T e s t  Point  606 
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T r i p l e  Nozzle Configuration (See Fig.  6) 

0 Exper imenta l  - Real  G a s  Thermodynamics  

PC = 1654 ps ia  

T = 3 7 4 O ~  
C 

0 .O 0.1 0.2 0.3 0,4 

Axial Dis tance  f r o m  Nozzle Throa t  (in.) 

F ig .  24 - Non-Dimensional Nozzle rlrall Stat ic  P r e s s u r e  
Distr ibution f o r  T e s t  Number  TWT 575 and 
Nozzle 6A Flowing Ai r  a t  T e s t  Point  401 
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Trip le  Nozzle Configuration (See Fig. 6) 

0 Experimental  

R e a l  Gas Thermodynamics 

P = 1654 psia r 

Fig.  25 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distribution for  Tes t  Number TWT 575 and 
Nozzle 6B Flowing Ai r  a t  Tes t  Point 401 

5 6 
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T r i p l e  Nozzle Configuration (See Fig.  6 )  

0 Exper imen ta l  

-. Real  G a s  Thermodynamics  

Axial Distance f r o m  Nozzle T h r o a t  (in.) 

Fig .  26  - Non-Dimensional Nozzle Wall Stat ic  P r e s s u r e  
Distr ibution f o r  T e s t  Number TWT 575 and 
Nozzle 6C Flowing A i r  a t  T e s t  Point  401 
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Triple  Nozzle Configuration (See Fig .  6 )  

0 Exper imen ta l  

Real  Gas  Thermodynamics  

Fig .  2 7  - Non-Dimensional Nozzle Wall Stat ic  P r e s s u r e  
Dis t r ibu t io~ l s  fo r  T e s t  Number  TWT 575 and 
Nozzle 6A Flowing Ai r  a t  T e s t  Point  405 
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Triple  Nozz le  Configuratiotl (See. b'ifi. 6 )  

0 Experimental 

Real Gas Thermodynamics - - Ideal Gas Thermodynamics 
60 

0 . O  0.1 0 . 2  0 . 3  0 .4  0 . 5  

A x i a l  D i s t a n c e  f r o m  N o z z l e  T h r o a t  ( in . )  

F i g .  28 - N o n - D i m e n s i o n a l  N o z z l e  Wal l  S t a t i c  P r e s s u r e  
D i s t r i b u t i o n  f o r  T r s t  N u m b e r  T W T  575  a n d  
N o z z l e  6B F l o w i n g  A i r  a t  T c s t  P o i n t  4 0 5  
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Trip le  Nozzle Configuration (See Fig.  6) 

0 Experimental 

Real Gas Thermodynamics 

0 .O 0.1 0.2 0.3 0.4 0.5 

Axial Distance f r o m  Nozzle Throat  (in.) 

F ig .  29 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distributions for  Tes t  Number TWT 575 and 
Nozzle 6C Flowing Ai r  a t  T e s t  Point 405 
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0 Experimental 

Real Gas Thermodynamics - - Ideal Gas Thermodynamics 

.O 0.1 0.2 0 . 3  0.4 

Axial Distance from Nozzle Throat (in.) 

F ig .  30 - Non-Dimensional Nozzle Wall Static Pressure  
Distribution for T e s t  Number TWT 593 and 
Nozzle 4A Flowing Air a t  T e s t  Point 2 
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0 Experimental  - Real Gas  Thermodynalnics 

Axial Distance f r o m  Nozzle Throa t  (in.) 

Fig.  31 - Non-Dimensional Nozzle Wall Static P r e s s u r e  
Distributions for  T e s t  Number TWT 593 and 
Nozzle 4A Flowing Ai r  a t  T e s t  Point 7 

6 2  
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0 Experimental - Real Gas Thermodynamics 

0.0 0.1 0.2 0 .3  0.4 

Axial Distance from Nozzle Throat ( in.)  

Fig. 32 - Non-Dimensional Nozzle Wall Static Pressure  
Distributions for Tes t  Number TWT 593 and 
Nozzle 4A Flowing Air at  T e s t  Point 12 

6 3  
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0 Experimental 
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F ig .  33 - Non-Dimensional Nozzle Wall StatiL P r e s s u r e  
Distribution for T e s t  Number TWT 593 and 
Nozzle 4A Flowing Air at  T e s t  Point 17 
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F i g .  34 - Non-Dimensional Nozzle Wall Static Pressure  
Distribution for Tes t  Number TWT 593  and 
Nozzle 4 Flowing Air at Test  Point 161 
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Fig.  35 - Non- Dimens ional  Nozzle  Wall S t a t i c  P r e s s u r e  
D i s t r ibu t ion  f o r  T e s t  Number  TWT 593 a n d  
Nozzle  4 Flowing .Air a t  T e s t  Po in t  167 
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Axia l  D i s t a n c e  f r o m  Nozzle T h r o a t  (in.) 

F i g .  36 - Non-Dimens ional  Nozzle  Wall S ta t ic  P r e s s u r e  
D i s t r ibu t ion  f o r  Tes t  Number  TWT 593 and  
Nozzle  4 F lowing  A i r  a t  T e s t  Po in t  172 
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F i g .  37 - Non-Dimens ional  Nozzle  W a l l  S t a t i c  P r e s s u r e  
D i s t r ibu t ions  f o r  T e s t  N u m b e r  TWT 593 a n d  
Nozzle  4 Flowing A i r  a t  T e s t  P o i n t  176 
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F i g .  38 - Non-Dimens ional  Nozzle  Wall Sta t i c  P r e s s u r e  
D i s t r ibu t ions  f o r  T e s t  Number  TWT 575 and  
Nozzle  4 F lowing  A i r  at T e s t  P o i n t  114 
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No Boundary  L a y e r  

Modified by  Boundary  L a y e r  
Displaceri lent  T h i c k n e s s  

Axial  Dis tance  f r o m  Nozzle  T h r o a t  (in.) 

F i g .  39 - Kozzle Radius  a s  a Funct ion of Axial  Dis tance  
f r o m  the Nozzie  T h r o a t  of Nozzle 4 T e s t  
Number  TWT 575 
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Axial Distance f rom Nozzle Throat  (in.) 

Fig .  40 - Non- Dimensional Nozzle Wall Static P r e s s u r e  
Distributions fo r  Tes t  Number TWT 575 and 
Nozzle 4 Flowing Air a t  Tes t  Point 114 
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F i g .  41  - Comparisori of E x p e r i m e n t a l  a n d  A n a l y t i c a l  E x h a u s t  P l u m e  E o u n d a r y  a n d  B o - n d a r y  
Shock  Locati , n s  f o r  T e s t  N u m b e r  T W T  575, N o z z l e  1  a n d  T e s t  P o i n t  511 
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X'R exit 

Fig, 42 - C o r n p r i s o n  of Ex?er imenta l  and Analyt ical  
Exhaust  Plume Boundar ies  for  T e s t  Number  
T W T  5 7 5 ,  N o z z l e  2 and Tes t  Point 382 
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*"exit 

Fig. 4 3  - Compar i son  o f  Exper imen ta l  and P,nalytical 
Exhaust  P lume  Boundar ies  f o r  T e s t  Number 
T W T  575 ,  Nozzle 2 and T e s t  Point  383 
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F i g .  44 - Comparison of Exper imental  and Analy t ica l  
Exhaust Plume Eoundar ies  f o r  Test  Number 
T W T  575, N o z z l e  2 and Tes t  Point 384 
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Fi?. 4 5  - Cornparisor1 of Experimental and Analytical 
Exhaust Plume Boundaries for T e s t  N u m b e r  
TWT 575.  N o z z l e  2 and T e s t  Po in t  385 
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with Analy t ica l  Calcu la t ion  Using R e a l  G a s  T h e r m o d y n a m i c s  f?r  T e s t  N u m b e r  TWT 575. 
Nozz le  2 a n d  T e s t  Poin t  3 8 3  
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IviETHOD F O R  DETERMINIYrG T I i E  ABSOLUTE UNCERTAINTY 
O F  A C O M P U T E D  V A L U E  THAT I5 FUNCTION O F  T W O  MEASURED VALUES 
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Appendix 

T o  d e t e r m i n e  the  abso lu t e  uncer ta in ty  of a cornpu'led v a l i ~ c  tha t  i s  a 

funct ion of two m e a s u r e d  va lues ,  the following p r o c e d u r e  is followed. 

Let z = t he  computed  va lue  

and z = f(x,y) w h e r e  x and  y arc: the m e a s u r e d  va lues .  

X 
f o r  o u r  c a s e  z = - 

Y 

the  va lues  of x  a n d  y a r e  the m e a s u r e d  va lues .  

The  m a x i m u m  value  of 6z i s  obtained by  u s i n g  the ncgativc. va lue  of Sy. 

E x a m p l e  ca l cu la t ion  f o r  o u r  work  

T W T  575 Nozzle  1 P t  505 

Let :  x = PC ; y = P w  
bx = 18.75 6y = 3 0 7 5 ) ~ ~ ~  qq 
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