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ABSTRACT

A "constraint length" for a convolutional code to be used with sequential
decoding is usually specified by the allocation of a certain number of bits
to be used in the "tail" of an encoded frame. The constraint length, K, of
the code has conventionally been chosen to match this tail parameter; this

report shows that several other options are available. Codes in various
options which require the same tail allocation are said to have the same
to 	 constraint length", K E , regardless of their actual constraint

lengths.

Virtually all previously-suggested rate 1/2 binary convolutional codes

with KE = 24 (which is the effective constraint length specified for the
International Ultraviolet Explorer spacecraft) are compared in this report.
Their distance properties are given; and their performance, both in com-
putation and in error probability, with sequential decoding on the deep-
space channel is determined by simulation. Recommendations are made both

for the choic of a specific K v = 24 code as well as for codes to be included

in future coding standards for - the deep-space channel.

A new result given in this report is a method for determining the sta-
tistical significance of error probability data when the error probability

is so small that it is not feasible to perform enough decoding simulations
t. obtain more than a very small number of decoding errors. This result
should be of general usefulness in the efficient design of decoding simulation

experiments.

* This research was supported by the National Aeronautics and Space

Administration under NASA Grant NSG 5025 at the Universit y of Notre

Dame in liaison with the NASA Goddard Space Flight Center.
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I. INTRODUCTION

In this report, we give the results of comparing, by their performance

on a simulated deep-space channel, virtually all of the rate one-half,

binary, convolutional codes of rate R = 1/2 and "equivalent constraint

length" K  = 24 which have been proposed for use with sequential decoding

on the deep-space channel. These values of R and K  are those selected	
1

for the International Ultraviolet Explorer (IUE) spacecraft. This report

supersedes an earlier report [1] which gave a similar, but less extensive,

comparison of KE = 32 codes; K_ = 32 having earlier been considered for use

in the IUE spacecraft.

Section II contains the definitions of terms used herein and the

descriptions of the various design options for the convolutional encoder/

sequential decoder (CE/SD) system. In Section III, we describe the simulation

procedures employed and list the various codes which were compared. We then

give, in Section IV, our recommendations for the code to be used in the IUE

CE/SD system. We give consideration also in Section IV to many factors which

should be considered in the development of future coding standards for decp-

space communications.

Because of the very small decoding error probabilit y for sequential

decoding, even at the rather short K  = 24 constraint length, it was necessary

to give careful consideration to the statistical significance of the data

obtained. A novel method to characterize this statistical significance was

developed and is described in Section III of this report.
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II. CODE PAIUUM1:1'ERS AND DESIGN OPTIONS

A. Convolutional Coding Terminology

We give here a brief description of a convolutional encoder for use

with sequential decoding,. Whenever possible, we use the same 1,omenclature

as in the preliminary coding standard [2] developed at the Goddard Space

Flight Center.

Figure 1 gives the general block diagram of a rate R = 1/2, binary,

convolutional encoder. The encoder is completely specified by its

-I

Fig. 1. A Genernl R = 1/2 Binary Convolutional Encoder.

,enerator polynomials G
1
 (D)and G,,(D), where

G 1 (D) = a0 + a 
1 
D + ... + aK-11)K-1

and

G2(D) = b 0 + b 1D + .,, + bK-11)K-1.

Each binary digit a i (or b l ) is 1 or 0, respectively, according; as to whether

or not there is a connection from the corre s pondinp shift-register stage to

the corresionding modulo-two adder. For examp]L • , a l = 1 would signify a
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connection from the second shift-register stage to the upper modulo-two adder

in Fig. 1, whereas b l = 0 would signify the absence of a connection from the

second shift-register stage to the lower modulo-two odder in Fig. 1. It is

also customary to speak of the ecg iera tor f unctions which are the binary

K-tupleG

G1 = a0 a 1 ... aK-1.

G 2 = b 
0 
b 1 ... bK-1'

Tile constraint len€th, K, is the length of the shift-register in Fig. 1, i.e.,

the number of information bits in the span which, at any clock instant,

determine the two encoded bits formed by the modulo-two adders. The infor-

mation sequence to be encoded is represented by the polynomial

I(D) = i 0 + i 
1 
D + ... + i1-1DL-1

where i t is the information bit present in the leftmost shift-register stage

at clock instant t. Note that, at each clock instant, one information bit

enters the encoder shift-register but two encoded bits are formed. These

encoded bits are multiplexed into one stream to form the encoded sequence

which is denoted by T(D) in Fig. 1. The quantity L is the frame length in

information bits.

Whenever sequential decoding is used, the information sequence is follow-

ed by a tail of T zeroes so that a total of L + T clock instants are used

by the encoder to form the enti7e encoded frame. This segmentation into

"frames" is required to permit independent processing of frames so that the

sequential decoder can move on to the processing of the next frame whenever

it encounters a received frame which causes excessive decoding computation;
I

such frames thus result in deletion of the frame rather than d ecoding errors.

The choices a0 = b 0 = 1 are always made, so that there is always a

connection from the first :;haft-register stage to both modulo-two adders in

1

n
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Fig. 1. The code is said to be systematic when a l = a 2 = ... = aF-1 = 0,

i.e., when the encoded sequence from the upper modulo-two adder in Fig. 1

is -just the information sequence itself (Ole upper adder is then.in  fact,

not necessary). Because the information sequence appears directly in

alternate positions of the encoded sequence, it can be trivially recovered

from the latter in t he absence of errors. In a non-systematic code, such

simple recovery of the information sequence is not possible. The code is

said to be quick loot:-in (QLI) if G 2 (D) = D + G 1 (D), i.e., if a i = b  for

i f 1 but a l # b l . For a QLI :ode [3], C 1 (D) + G 2 (D) = D so that the

information sequence can be recovered from the encoded sequence, except for

an unimportant delay of one clock unit, by the simple circuit shown in Fig. 2.

•; l

In

Fig. 2. Recovery of the Information Sequence from

the Error-Free Encoded Sequence for a QLI
code.

Simple recovery of the information sequence from the transmitted sequence

is desirable both for encoder check-out and for extracting the engineering

data from the "hard-decisionvd" received sequence without the necessity of

full decoding. The probability of error in the latter case is the minimum

possible, viz. the error probability in the hard-decisions th, •mselves, for

systematic codes. For QLI codes, this error probability is at most LWICV
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this absolute minimum [31, and is the minimui9 for nonsystematic codes.

B. Implementation Options and Equivalent Constraint Length

It is not generally realized that there are several options available

to the CF./SD system designer as to the choices of K and T even after the

frame parameter_; have been frozen. To see this, we show in Fig. 3 a con-

ceptual view of the complete encoded frame in an R = 1/2 CE/SD system.
	 1

(We neglect the "synch patterns" which in general are appended to the encoded

frame to form the entire transmitted frame. The active ortj_-)n of the encoded

t ---	 1

Active portion
	

:Passive portion
2L Bits
	

P Bits

Fig. 3. Structure of a Complete Encoded Frame for R = 1/2

frame consists of the 2L encoded digits formed by the modulo-two adders in

Fig. 1 during the L clock instants in which information bits enter the Shift-

register. The passive portion of the encoded frame consists of P further

encoded bits formed during the T clock instants in which the tail of zeroes

is inserted into the encoder. The total encoded frame lens , th, F, is then

F= 2L+ P.

We now consider the options still available to the CE/SD designer after L 	
i

and P have been frozen.

1. Conventional Option

We first describe the manner in which virtually all past CE/SD systems

have been implemented, whichx..,e shall call the "conventional option." This

option is:

Conventional option: Choose T - K - 1 " P/ 2.

In this option, the passive portion of the frame is just thv 2T encoded bits

I

5
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formed during the T clock instants in which the tail of zeroes enters the

encoder. This option has the advantageous feature that the encoder may

immediately begin encoding the next frame after completing the last because

when the first information bit of the next frame enters the encoder, it

automatically finds only 0's residing in the remaining T = K - 1 shift

register stages.

We now define the equivalent constraint length, K E , of any CF./SD option

to be

KF= I'/2+1.

01ir rati )nale for this definition is that

KF = K (conventional option),

and that, sin. P completely determines the actual "overhead" in the encoded

frame needed to effect segmentation of frame;:, only P should be used as the

measure of "constraint length" within the frame.

2. A-Undersized Tail Ontion

There is no reason to choose T so large as K - 1 except for the con-

venience of the "automati- initialization" (as ,just described for the con-

ventional option) for encoding of subsequent frames. 'Thus, we define:

A-Undersized tail option: Choc e T = K - 1 - A = 11/2.

(A, sonic positive iutege•r).

In this option, the passive portion of the frame again consists of the 21'

encoded digits formed as the tail of T zeroes is inserted into the encoder.

From the definition of K 1., we see that

K  = K - A (A-undersiZL-d tail option).

This option has the minor disadvcuit.gc that, in order to begin encoding

of the next franio, it is necessary to "stuff" zeroes into the A rightmost

stages of the encoder shift-reiister immediately upon conclusion of the

encoding of the frame. It has, however, two major advantages over the
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conventional option. First, the frame decoding error probability, P e , with

sequential decoding is in general proportional to the frame length in

information bits, 1., when K = T + 1 as in the conventional option. However,

fixing P (and thus also fIxing T in the. A-undersized tail optio-), we have

shown elsewhere 141, [5] that P e decreases rapidly as K is increased up to

the point where e	 log2 L where no further improvement results. Moreover,

for

A > log 2L,

the resulting Pe is independent of L. We can now see a second advantage

in the possibility to standardize encoder design. By choosing one good

code with a large value of K, we will have a near-optimal CE/S1) s y stem over

a very wide range of telemetry formats, viz., all those such that

K > P/2 + lop, 2 1. + 1.

3. Systematic Partial Tail-Suppression Option

This option can be used only with systematic codes and its possibility

was first reported by us quite recently [6]. It rests upon the obvious

fact that, since the upper adder in the circuit of Fig. 1 for a systematic

code emit_: only zeroes Ls 01v tail of T zeroes is inserted into the encoder,

it is both unnecessary and wasteful to multiplex these known zeroes into

the encoded sequence. Thus, in this option, the passive portion of the

encoded frame 2onsists of only the P = T bits from the lower adder in Fig. 1

during the T clock instants that the tail of zeroes is inserted.

Systematic Martial tail-suppression option: Choose T = K - 1 = P.

For this option, we see from the definition of 
K1: 

that

F._ (K- 1)/24 1.

In this option, we again have T - K - 1 so that automatic initialization

for successive encoded frames is achieved as in the conventlonal option.

im
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The main advantage over the conventional option, when nonsystematic codes

are used with the latter, is the simpler and more reliable recovery of the

information sequence from the hard-decisioned received sequence, although

this advantage is only a factor of 2 when QLI nonsystematic codes are

considered. There are two minor disadvantages of this option compared to

the conventional option. First, because only one encoded digit is formed

at each encoder clock instant during the passive portion of the frame, the

encoder clock must double its speed when it enters the passive portion of the

frame. Se^ondly, the frame decoding error probability, P e , may be slightly

increased. It has long been known [31 that, for the same K, the best non-

systematic code gives a far smaller Pe than the best systematic code. At

R = 1/2, however, the K in this option for the same K  (i.e., same P) is

related co the K in the conventional option as

K	 - 1 = 2(K	 -1)
Sys	 nonsys

or

KSys	 21!nonsys

The available evidence indicates that, when their constraint lengths are

so related, the best systematic code gives about the same Pe as the best

nonsystematic code 131, but with a slight advantage for the nonsystematic

code [71.

G. Systematic Partial Tail-Suppressiun with 0-undersized Tail Option.

This option is that obtained by combining the two unconventional features

of the two previous options, viz. removal of known zeroes from tl•e encoded

sequence and use of a tail shorter than that required to automatically

initialize the encoder between frames. This option can thus be described as:

Systematic partial tail-Suppression

with L-undersized tail option:	 Choose T - K - 1 - 2e - P

(A, some positive integer)
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K  = (K + 1)/2 - A.

Because this option is a combination of the "unconventional" feature.-,

of the two previous options, it shares both the advantages and disadvantages

•	 of each. On the minus side, it requires stuffing of zeroes to initialize

the encoder between frames and also requires the encoder clock rate to double 	 ^II

in the tail. One would expect also that, for the same K  and A, the frame

decoding error probability, P e , would be slightly greater than for option

2 with a comparably good nonsystematic code; however, this drawback is probably

not significant.	 [It should be noted, however, that the constraint lengths

f

K in these two options, for the same K E , are related as

K	 - 2K	 - 1.
Sys	 nonsys

As will be seen in Subsecticn C below, this rules out option 4 as a viable

option because the required r 
Sys 

exceeds the value of K for which good

systematic codes	 a known vt the present time.) On the positive side for

option 4, the resulting Pe would be le s than in option 3 and independent

of the frame length in information bits, L. Moreover, one encoder could be

standard zed a:id used for all applications where its constraint length K

satisfies

P + 2 lop  L + 1

Finally, be,,ause the encoder is systematic, the information sequence can he

simply extracted, with maximum reliability, from the hard-decisioned

received sequence.

C. Su=iary, by Option, of the K E . 24 Codes Compared in This Report.

The equivalent constraint	 length,	 Kl., has been spvcifIed at K 	 - 24

for	 the IUE spacecraft	 CF/sl) system,	 i.e., P - 2(KE -	 1)	 - 46 bits have been
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allocated for the passive portion of the encoded frame.

In the conventional option 1, the specification P - 46 requires that

a code with K - 24 be chosen.

In the A-undersized tail option, Ole specification P = 46 requires that

a code with K = 24 + A be chosen. We have specified further that A = 24 for

several reasons. First, the resulting; K = 48 is about as large a constraint

length as that for which good nonsystematic convolutional. codes are presently

I-	 known. Moreover, the corresponding A = 24 is large enough to accomodate

as wide a range of frame lengths, L, in information bits and allocated

passive flame length, P, as is likely to be considered in any future deep-

space applications, so that a standardized K = 48 encoder is robust enough

for all likely future applications. Finally, K = 48 is a convenient con-

straint length for software sequential decoding as it is wall-matched to

most computer wordlengths. Hence ; ±,e consider hereafter only K - 48 codes

for option 2.

In the systematic partial tail-suppression option 3, the specification

P = 46 requires that a systematic code with K - 47 be chosen.

In the systematic partial tail-suppression with .'-undersized tail

option 4, the specification P = 46 requires that a systematic coda with

K - 47 + 2A be chosen. The same considerations as just discussed for option

2 suggests that A - 24 would be a sensible choice. However, the resulting

K - 95 is far beyond the range for which good systematic codes arc presently;

known. In fact, the systematic codes reported earlier (8) with K < 61 are

the longest good codes presently known, The K 	 C. code would allow the

choice A - 7 in the IUE spacecraft CE/SD, but this rather small A would

accomodate a very small additional range of frame parameters so that standard-

ization at this value would be unwise. Because such standardization is

perhaps the most attractive feature of option 4 vis-a-vl, nption 3,
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its impossibility With Lhe present state of the art in code construction

has led us to rule out option 4 as presently enviable.

In Table I, we summarize the types of convolutional codes, by opt icon,

which we shall consider as candidates for use in the IUE spacecraft CE./SD

system.

Option

No.
Option
Name

Conventional

Kr. K

24

48

Remarks

1 24

Z4

Viable

2 (a=24)-Undersized Tail Viable

3 Systematic Partial 'fail-Suppression 24 47 Viablc

4 Systematic Partial Tail-Suppr
with	 (G-24) Undersized Tail

95 Unviable at
Present

Ta'o`	 Required constraint ?cngth K, for convolutional
codes with KL	24, by implementation options.

W
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I1I. SIMULATION RESULTS AND CO^IPARISONS

A. Codes Selected for Comparison

We now list, by option, all of the codes used in the simulations to be

reported here. These codes comprise all of the known convolutional codes,

`	 with the required co.straint lengths, that appear attractive for use in
I	 ^

deep-space communications.

1. Codes for the conventional option.

a. The Ilassey-Costello (MC) quick-look-in (QLI) code with K = 24.

(MCQL1-24 code).

This code is obtained by shortening the K = 48 QLI code

given by Massey and Costello [3]. This K = 24 code is the recommended code

for this length in the preliminary coding standard [2].

b. The first Johannesson (J) QLI code having an optimum distance

profile (ODP) with K = 24. ( lJQLIODP-24 code).

This is the first of two K = 24 OLI codes found by

Johannesson [9] having the optimum distance profile !ODP, property which

will be discussed further in Subsection B below.

C. The second Johannesson QLI code having an ODP with K = 24.

( 2.IQLIODP-24 code).

d. The Bahl-Jelinek (BJ) is = 24 complementary code (BJ-24 code).

Complementary codes were defined by Bahl and Jelinek [10]

as codes for which a 0
 = b0 = ` k-I = b

K-1 = 1, but a i # b  for I < i < K - 1.

This is the best K = 24 code in this class as found b y exhaustive searching

[10].

C. The K = 24 quadratic residue code. (Q1:-24 coda).

This is a code which was found b y Massey, Costello rnd



1	 ,

13

Justesen [11] using a technique for constructing convolutional codes from

known cyclic block codes. This code actually has K = 23 since a
23 = b 23 = 0.

f. The K = 24 optimally-truncatable code (OT-24 code).

This code, which was found during the progress of the

research reported here, will be described more fully in Subsection B below.

2. Codes for the (L=24)-undersized tail option.

a. The Massey-Costello QLI code with K = 48. ( 11ICOLI-48 code).

This K = 48 code is the recommended cow-_ for this length

in the preliminary coding standard 12]. (However, its use as here at K E = 24

in the undersized tail optioi. is not considered in the preliminary standard.)

b. The Johannesson QL1 ODP code with K = 48. (JQLIODP-48 code).

This code was reported in [6] which contains extensions

of Johannesson's earlier %.York [9].

3. Codes for the systematic partial tail-suppression option.

a. The adjoin,- [12] of Bussgang's optimal systematic code [12] as

extended by Lin and Lvne [13], and later Forney [14], to a good,

but sub-optimum, code at K = 47. (BLLF-46 code).

This is the K = 48 systematic code recommended in the

preliminary coding standard [2]. Its use by shortening to K = 47 actually

gives a code with K = 45 because b
46 = b

45 = 0 in the generator.

b. Johannesso-i's systematic ODP code with K = 47 (JSODP-47 code).

This code was reported in [6] in the extension given there

of Johannesson's earlier work. There are no other K = 47 systematic codes

known which appeared promising enoLiFh to be considered in this comparison.

In Table II, we summarize for easy reference the ten 1,r = 24 codes that

were used in the simulations to be reported here. The generators are listed
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in octal form in the manner that G 1 = 111, 011, 011, 101, 011, 011, 110, 111

(binary, with con gas shown to indicate segmentation for conversion to octal)

is shown as G 1 = 73353367. Also shown in Table II is the free distance,

dfree' of the code which is the minimum Hamming distance between two complete

encoded sequences caused by different information sequences. The minimum

distance, d 23 , which is the minimum Hamming distance between two encoded

sequences during the first l`H = 24 encoder clock instants caused by infor-

mation sequences that have different values of i 0 , is also given in Table II.

Code

No.

Code
Name

G1

(octal)

G2

(octal)
d23 dfree

la MCQLI-24 73353367 53353367 9 17

lb 1JQLIODP-24 74042417 54042417 11 18

lc 23QL10DP-24 74041567 54041567 11 1.9

ld BJ-24 51202215 66575563 10 24

le QR-24 77441232 54502376 10 20

if 01'-24 75105323 55105323 10 19

73353367 53353367

2a MCQLI-48 67373553 67373553 9 >19

74042402 54042402

2b JQLIODP-48 07121635 07121635 11 >19

40000000 71547370

3a BLLF-47 00000000 13174650 9 19

40000000 67114545

3b ,	 JSODP-47 00000000 75564666 11 17

, r 1

3

'fable I1: Description of

(l•;here dfree is

but these lower

instance, it is

and 2b.)

F = 24 chosen for comparison in simulations.

unknovn, the best known lower bound is given,

bounds are not expected to be tight. For

likely that dfree is at least 30 for codes 2a

RTTRODUCBTM ITY (j,'' 'i ; I F.
PACE IS

1
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B. Distance Properties of the Selected Codes

The distance properties of a convolutional code can be used to make a

coding. We now consider the distance properties of the above codes with a

fairly reliable estimate of how that code will. perform with sequential de-	

i

view to correlating their performance on the deep-space channel with these

properties.

15

The i-th order column distance, d i (i = 0,1,2,...) is defined to be the

minimum Hamming distance between two encoded sequences over the first i + 1

time instants [2(i+l) digits for rate 1/2 codes] resulting from information

sequences with different values of i 0 . Because of the linearity of the code,

d i is equal to the minimum Hamming weight of an encoded sequence over the

first i + 1 time instants resulting from an information sequence with

i0 = 1. The free distance, 
dfree' 

may be expressed as

d free = lim di
i-*w

and is well-known to be the main determiner of error probability where

sequential decoding is used [3]. The distance profile, d = [d0,dl,d2,...dMI,

has been shown [9] to be the property of interest as far as computational

performance with sequential decoding is concerned. The distance profile d

is said to be superior to the distance profile d' if d i > d' for the smallest

i such that d i # di; we denote this superiority by writing d > d'. We define

the distance index i. of a code to be the smallest integer i such that
i

d i = j. Because d 0 = 2 for all R = 1/2 codes having a 0	b0 = 1, i 2 is the

first distance index of interest. Because di < dfree for all i, i d	is
free

the largest distance index of interest. The distance indices i j for

j = 2,3,...,dfree of course uniquely determine the distance profile d, but

in general they also provide further information, viz. that about the column

distances d i for i > M.

4
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In Table III, we show the distance indices for all of the codes to be

compared in our simulations of K B = 24 codes. For codes Id, 2a and 2b, the

distance indices are shown wherever we have found their value, but the time

requirements for computing higher distance indices were so great as to pro-

hibit generation of the full set of distance indices. All of the distance

indices shown were obtained by using a sequential decoding program, as was

first suggested by Forney [14], which was programmed in assembly language

for the IBM 370/158 computer. In this procedure, for a given threshold

T = j-1, one e,:plores all encoded sequences beginning with 1 0 = 1 until

their Hamming weight exceeds T. If the longest path of weight T = j-1 is

i + 1 branches in length, then d  = I. The program also checks the encoder

state after each extension of an encoded path whose Hamming weight is T = j-1

	

If the all-zero state is ever encountered, then dfree
	

j-1 and the program

is stopped. Otherwise, the threshold T is increased b y 1 and the search

continued until either a zero state is reached or the predetermined limit

on CPU time is exceeded. The values of 
dfree 

given in Table II were all

found in this manner, except that for the BJ-24 code whose 
dfree 

was found

in [10]. The CPU time required for each code in Table II with d
free >— 19

was approximately 15 minutes.

It is interesting to compare the codes in Table II in terms of their

distance properties. In terms of their free distance, the ordering by

quality of the codes is

o	 ^

(2b) > (2a) > (ld) > (le) > (lc) _ (3a) _ (If) > (3b) _ (la)

[ordering by free distance]

where the codes are shown in order of decreasing quality. In terms: of their

distance profile (where we treat all codes as having M = 47, the memory of

the code with greatest memory), the ordering by quality of the codes is

i

1	 ,



17	 v

I

Code No. la lb lc ld le if 2a 2b 3a 3b

Code Name	 I s
^ N

I

N

I

CO

^

N
w
ca

a
M

00 1a r^ ^

H
.1

O
H

a

O
H

]
1
N N N

1
H
r]

ra
O
H

s
1

1
P-.
Cm

d Cr Cr ' I ^' H
d

d .-7
OO

X .--I N Cl Cr O % ') rn

0 0 0 0 0 0 0 0 0 0i 2

1 1 1 1 1 1 1 1 1 1i 3

3 3 3 3 3 3 3 3 3 3i 4

6 5 5 5 6 5 6 5 5 5i5
1
1 i6 10 7 7 8 10 8 10 7 7 7

i 7	I 12 10 10 10 15 11 12 10 10 10

i 8	I! 15 12 12 14 17 15 15 12 14 12

20 16 16 19 20 17 20 16 16 16i 9

1	 i10 25 19 19 21 23 22 26 19 20 19

29 23 23 24 28 28 30 23 24 23
ill

i12
32 29 28 27 34 32 36 27 27 27

37 35 35 33 36 34 40 30 31 30i 13

39 38 37 37 40 39 43 34 35 34i 14 I

44 43 43 39 43 42 45 38 40 38
i15

I

49 46 46 44 49 45 48 42 43 42i 16

55 50 51 51 54 49 58 46 53 46i 17

- 54 56 58 64 53 61 52 55 -
i18

- - 58 60 67 60 64 58 59 -
i19

- - - 63 70 - >69 >63 - -
i20

- - - 71 - - ? ? - -i 21

d free 17 18 19 24 20 19 >19 >19 19 17

Table	 III: Distance properties of the codes chosen for comparison in	 simulations.

the smallest i such that d i = j.)(i i	is
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(2b) _ (3b) > (lc) > (lb) > (3a) > (ld) > (lf) > (la) > (2a) > (le)

[ordering by distance profile].

As we shall see below, these two orderings substantially agree with the

ordering in performance with respect to decoding error probability and

computation,respectively, for these codes on the simulated deep-space channel.
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C. Description of the Simulation

	
ORIGN AL PAGE I5 PCK)R

	

i
The channel chosen for simulation was a white additive Gaussian noise

channel (i.e., a deep-space channel) with an energy per transmitted bit,

E, to one-sided noise power spectral density, No ,  ratio of E/N 0 
= ] or

0 db. Because the code rate is 1/2, this corresponds to an energy per

information bit, 1'. b , to No ratio of 11b /No = 2 or 3 db. The received digits

were quantized to 3 bits using the quantization scheme suggested by Jacobs

[15]. The result of this quantization is to convert the Gaussian channel

to a 2-input, 8-output discrete memoryless channel (DMC) whose transition

probabilities are as given in Table 1V. This, DMC is the actual channel

that was simulated, the various transition probabilities being obtained by

1VULPUL

it uu t '^_
0 I	 OI 1	 I

V
r1t	 t	 1
V

7	 1	 1	 I
1 

I	 7	 1	 1	 11	 1
J

0 .434 .197 .167 .111 .058 .023	 .008	 .002

1 002 .008 .023 .058 .111 .167	 .197	 .434

Table IV:	 Transition probabilities for the DA1C obtained by 3-bit quanti-

zation of the deep-space channel with E b IN O = 3 db for R = 112 coding.

use of a standard random number routine. The cut-off rate, R09 of the

Gaussian channel (which is sometimes also denoted as R comp ) was .5481,

whereas that of the resulting DMC is .4913 so that the loss due to quanti-

zation is 0.48 db. Note that R 0 = .4913 is slightly less than the code rate

R = .5000, which indicates that this DMC is actuall y somewhat noiser than

the channels on which the CE/SD s ystem would actuall y be used. This "noisier

than usual" situation was chosen for simulation so that the probability of

a decoding error would be large enough so that the number of decoded frames

required to determine the decoding error probability would correspond to

practical amounts of computing time.

9

Ir -
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The Fano sequential decoding algorithm (16] was used for decoding.

The metrics used were as given in fable V.

rec'd
0 0' 0" I	 0 11 ' 1"' ill

1
trans'

0 4 4 3 0 -8 -20 -34 -59

1 -59 -34	 1 -20 -8 0 3 4 4

Table V:	 M,trics used for sequential decoding for the DMC given in Table IV.

The threshold increment A used in the Fano algorithm was 32. A frame size

of L = 256 information bits was selected. A frame was declared to be

erased when 100,000 computations were performed without completion of the

decoding. This erasure limit of 390 computations per decoded information

bit is well above what one would generally choose in practice, the reason

for this choice being again to ensure a significant rumber of frames with

decoding errors (rather than merely erasing most of those frames.) The

number of computations used for an erroneously decoded frame was recorded

so that one can determine how Pe would change if a smaller erasure limit

on computation were chosen.

For all codes selected for comparison, 10,000 frames were decoded in

the simulation. The same 10,000 received frames were decoded for each code

so that any differences in computation and/or error probability would be

clue to the codes themselves.

I d
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a

Code No.	 la	 lb	 lc	 I 	 le I	 if	 2a	 2b	 3.	 3b

Code Name

	

N	 N	 00
I	 I	 J s

N
w
A

a
A

00
^

I
C1. r^ ^	 s

H O O
^7 r.7 .-7 N

.7
N

1
N

H
.^

O
H

J
I.c.

p.
O

O 01 01 a O,1 04 H O' .7
N a7 d O % "7 co 17

#Frame errors 4 4 2 0 0 5 1 0 1 1	 0

#Bit errors 48 59 36 0 0 116 38 0 13 0

#Erased frames 35 24 23 25 27 25 26 22 17 24

#Frames with:

C < 400 1058 1122 1118 1103 1037 1100 1063 1123 611 602

C < 500 3029 3283 3424* 3352* 2918 3194 2987 3288 2653 2689

C < 650 5145 5575 5552* 5426* 4961 5344 5175 5588 5135 5268

C < 850 6681 7029 7012 6965 6518 6838 6695 7013 6824 6849

C < 1,200 7852 8136 8115* 8051* 7755 7957 7860 8142 8004 8080

C < 1,700 8558 8754 8754* 8696* 8507 8627 8561. 8756 8702 8744

C < 2,400 8992 9109 9119* 9074* 8971 9047 8983 9124 9098 9106

C < 3,500 9298 9385 9397* 9363* 9300 9346 9290 9402 9364 9382

C < 5,000 9497 9563 9550 9540 9507 9534 9485 9552 9553 9546

C < 7,000 9637 9671 9672* 9652* 9633 9665 9613 9678 9681 9672

C < 10,000 9737 9762 9765 9741 9745 9156 9729 9771 9774 9773

C < 15,000 9823 9826 9835* 9828* 9827 9831. 9822 9833 9855 9831

C < 20,000 9859 9873 9872 9871 9864 9876 9869 9870 9881 9867

C < 30,000 9904 9916 9915 9913 9897 9913 9902 9922 9919 9920

C < 50,000 9941 9950 9948 9948 9940 9946 9947 9948 9942 9950

C < 100,000 9965 -6

-99-

9977 9975 9973 9975 9974 9978 9983 9976

C in frames 36,369 1^	 ,185 70,213 I 734 49,449 17,922
with errors

12,4911 16,346 9,740 62,585

933 1 23,410 37,149

48,0651 85,658 2,969

3,047

Table VI: Results of Decoding;	 10,000 frames of	 length 1. -	 256 information l,it:.

on the simulated deep-space channel with an Eb /No of	 3 db. (V;Ilues

marked * were interpolated from nearest data points obtained	 in the

simulation on the assumption that the computation is	 Careto-di:.tributc•d.)
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D. Simulation Results

In Table VI, we show the results obtained from decoding the same 10,000

frames of length L = 256 on the simulated deep-space channel with an lab/No

of 3 d5. Because no decoding frame errors were made with four of the codes,

additional frames were decoded for these codes with the results shown in

Table VII.

Code No ld	 I le 2b 3b --

COsCode Name

w ^

N N
IM
H a.

C]
1

d
O
Ln

M CY

#Additional

frames 40,000 40,000 40,000 10,000

decoded

#Frame
0 2 0 2

errors

41#Bit errors 0 20 0

C in frames 23,864 9,249

with errors
45,786 57,636

Table VII: Results of addit i onal decoding simulations for those -odes

which gave no d oding errors on the first 10,000 decoded frames.

Approximately 15 minutes of CH time on the IBM 370/158 system were required

for each 10,000 decoded frames. Neither code ld (the 8.1-24 code) nor code

26 (the JQLIODII-48 code) yielded any decoding errors on a total of 50,000

decoded frames. It was not feasible to decode enough additional frames to

distinguish which code actually gives the better decoding; error probability.

As regards decoding error probability as determined by simulation, it

can be seen from Tables VI and VII that the codes rank in quality its:
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(2b) - (ld) > (le) > (3b) > (3a) > (2a) > (lc) > (la) > (lb) > (if)

where we have resolved ties in the number of frames decoded in error by

considering the number of information bits decoded in error. We note that

this empirical ranking is substantially the same as the ranking by dfree

given in subsection B above.

In comparing the frame decoding error probability, P e , one should also

give attention to the number of computations done in the erroneously decoded

frames as this can be used to determine the change in P e should a different

frame erasure limit be used. For instance, we see from Table VI that if

the (more realistic) limit of 10,000 computations for a decoded frame is

used, codes la, lb and if would yield 1, 1 and 3 erroneously decoded frames,

respectively, compared to 4, 4 and 5, respectively, for the 100,000

computation limit.

As regards computational performance as determined by simulation, it

can be seen from Table VI that the codes rank in quality as

(lb) > (2b) > (lc) > (ld) > (31,) > (If) > (3a) > (2a) > (la) > (le)

where we have, somewhat arbitrarily taken the number of frames decoded with

850 or fewer computations as the indicator of quality. We note that this

ranking is in substantial agreement with the ranking by distance profile,

d, given in subsection B above. In particular, we see the excellent compu-

tational performance of all of the optimum distance profile (OU1') codes.

A word should be said about the apparently poor computational performance

of the two systematic codes (codes 3a and 3b) when the computation is small.

The reason for this effect is that a tail of T = 47 branches (with only one

digit per branch) is included in the frame for these codes, compared to only

T = 23 branches (with two digits per branch) for all the other codes.
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Because "computation" is measured in terms of branches searched. the T - 47 	 I

systematic codes necessarily require a small number of additional computa-

tions per frame, compared to the T = 23 nonsystematic codes, to account for

the computation done on the extra tail branches. However, as the computa-

tion per frame increases, Lite additional computation becomes a negligible 	 l

part of the total computation (which is the reason we compared computational

performance at 850 computations or less per frame rather than some smaller 	

^I
number.)	 r
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E. itatistical Significance of the Decoding Error Probability as

Determined from the Simulations.

The very small number of frame decoding errors, between 0 and S inclusive

for the best and the worst codes, makes it essential to consider the statis-

tical significance of the • frame error probabilities determined there`rom.

We now present a new method for testing this significance, a method which

it appears could be of rather general usefulness in decoding simulation

studies.

Suppose that N frames are decoded for a particular code and that the

true frame decoding error probability is P 	 Because decoding of frames is

done independently, and because N >> 1 while Pe « 1, the number of frame

errors, X, is a Poisson-distributed random variable whose mean and variance

are both equal to

a - NP
e

Let x be the observed value of X for the particular N frames actually decoded.

Then x is the best estimate of both E(X) - A and Var(X) = \, while x/N is

the best estimate of Pe - E(X)/N. The problem is that, for x small (say,

X < 10), the estimate of Var(X) is quite inaccurate so that the standard

statistical "-onfidence level" techniques cannot be applied with any vr,lIdIty.

We now show how this dilemma can be resolved.

We define the IOUK.' c• un f ldence int erval, ( I L , )
U
), for ?, F Iven thy•

observation x of X, in the manner that ). L and 
X  

are the	 and r,r..,;;i •:t

numbers, respectively, such that

1'(X	 x) _ 0,	 all a < AL.

and
i

P(X • x) > G,	 all a > AU.

-.A.

in
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This is equivalent to saying that, had the code possessed an actual \ smaller

than ,1L , the probability of observing fewer than the number of x of frame

errors actually observed would have been at least S; and that, had the

actual X been larger than X U , the probability of observing more than the

number of x of frame errors actually observed would have been at least 6.

Because X is Poisson with mean and variance equal to a, the frequency

distribution for X. i.e., the probability of the event that x equals i,

is given by
i

fX (i) = ii e

Now, letting F j (a) be the probability that X < j, we have

i

F j (a) _	 e-^`
i=0

i!

It now follows, from the definitions of 
XL 

and X U , that

Fx-1(XL) = S

and

Fx(XU) = 1 - 6.

For a given x, these equations may be readily s-lved, e.g., by the Newton-

Raphson method, to determine 'A
L
 and XU . In Table VII:, we give the 90%

confidence intervals, so determined, for 0 < x < 5.

x	
x 
	

x 

0	 0	 2.30

1	 .105	 3.89

2	 .532	 5.29

3	 1.107	 6.65

4	 1.76	 7.99

5	 2.52	 9.06

Table VIII: 90% confidence intervals for a given the observed value x

for a Poisson random variable X.

^' T1lD



la	 10,000

lb	 10,000

lc 10,000

ld 50,000

le 50,000

if 10,000

2a 10,000

2b 50,000

3a 10,000

3b 20,000

4

4

2

0

2

5

1

0

1

2

rfi
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Given the 1006% confidence interval (X L , AU ) for a, the corresponding

1006% confidence interval (PeL' PeU) for P
e = E(X)/N = a/N is just

(aLIN, A
U
/N). In Table IX, we give the 90% confidence levels for P e as

determined from the simulation results given in Tables VI and VII.

When the confidence interval for one code lies entirel y to the left of

that for another, then with at least 1006%-confidence we can assert that

the actual PeU of the former code i ,-• smaller than that of the latter. In

Figure 4, we have plotted the 90% confidence intervals on a logarithmic scale

for all of the codes tested. We see from this figure that with at least 90%

# frames	 i # frame	 I best estimate I 90% confidence interval
Code No.I decoded, N	 errors, x Lof P e , x/N	 ( PeL' Pet) 

for P e	—
r

q

6

40 x 10-5

40 x 10-5

20 x 10-5

0

4 x 10-5

50 x 10-5

10 x 10-5

0

10 x 10-5

10 x 10-5

(18 x 10-5 , 80 x 10-5)

(18 x 10-5 , 80 x 10-5)

(5.3 x 10-5 , 53 x 10-5)

	

(0	 4.6 x 10-5)

(1.1 x 10-5 , 11 x 10 -5)

(25 x 10-5 , 91 x 10-5)

(1.1 x 10-5 , 39 x 10-5)

	

(0	 4.6 x 10-5)

(1.1 x 10-5 , 39 x 10-5)

(2.7 x 10-5 , 27 x 10 -5)

i

Tabl e IX: 90% confidence intervals for P as determined from the
—	 e

decoding simulations reported in 'fables VI and VII.

-on

1•.
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3a
2a

	

^.	 le	 la
ld

...	 2b	
^	 lb if

lc
3b

	

_	 --1-
10-:-0	 10-4

	
10 3

Fig. 4. Graphical portrayal of the 90. ccnfidence inter-als for Pe

for all codes tested. (Codes shown by code number).

confidence we can assert that the frame error probability for codes ld and

2b (neither of which yielded any errors in 50,000 decoded frames) is truly

smaller than that of all the other codes, except codes le, 2a, 3a and 3b where

our confidence in the superiority of ld and 2b is somewhat less. It is a

remarkable property of Poisson-distributed random variables that such a

small number of error events (at most 5 for any code tested) can be so highly

significant statistically.

It probably should be pointed out that, although 256 information bits are

decoded in each frama so that there are 256 times as many bit decoding

decisions as frame decoding decisions, one cannot assert greater statistical

confidence in the observed decoding bit error probability than in the observed

decoding frame error probability. The reason of course is that the decodings

of bits within a frame are highly dependent so that one has no more independent

bit decoding decisions from which to infer probabilities than one has inde-

pendent frame decoding decisions.

M'
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IV. DISCUSSION AND RECOMMENDATIONS

A. Performance Summary for Each Code

1. Codes for the conventional option.

a. The MCQLI-24 code, (Code la).

Although this is the recommended : = 24 in the preliminary coding

standard, its frame error probability P
e 
was tied for worst with 1JQLIODI'-24

code among all codes tested, and significantly so (cf. Table IX and Fig. 4).

Moreover, its computational performance was superior only to the QK-24 code

(cf. Table VI). Perhaps, however, this is a good place to make the point

that onlv codes known to be good were tested. One might say that this

code is the worst of a good lot! Moreover, it does possess the desirable

quick-look-in property which is worth some sacrifice in performance (but is

also a feature of the distinctly better 2JQLIODP-24 code.)

Because this code is the K = 24 truncation of the MCQLI K = 48 code

whose K = 32 truncation is an excellent code at that length [1], its poor

K = 24 performance was somewhat unexpected. To explain this phenomenon,

the free distance for all the distinct truncations of the MCQLI K = 48 code

with K < 28 were computed with the results given in Table X. The value of

dfree	
23 for the K = 32 code is also shown. From this table, one sees

that there is indeed a "soft spot" around K = 24 in the truncations. In fact,

the K = 22 code is quite likely superior in P
e 

to the K = 24 code because

the same free distance is achieved within a smaller constraint length!

K	 2 3 5 6 8 9 10 12 14 15 17 18 19 20 22 23 24 25 26 28 32

d	 3 5 6 7 9 7	 9 11 11 11 13 11 13 15 17 15 17 18 18 >21 23
free	 —

Table X: Free distance for truncation to constraint length K, for K = 32

and all K < 28 giving distinct truncations, of the MCQLI-48 code.

I^
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Beyond K = 2';, th-- codes rapidly improve; the K - 32 code being already

quite good. From the data in Table X, we conclude that it would probably

be unwise to recommend truncations of the MCOLI-48 code with K < 32 in

future coding standards.

b. The 1JQLIODP-24 (Code lb).

This code gave the best computational performance of all codes tested

(cf. Table VI). However, its superiority in this respect over the

structurally-simila r 2JQLIODP-24 code was very slight, but its inferiority

to the latter in P
e 

(cf. Table IX and Fig. 4) is substantial. It thus

appears snwise to recommend this code for any applications.

c-The 2JQLIODP-24 code, (Code lc).

The three nonsystematic optimum distance profile codes tested (codes lb,

lc and 2b) all gave virtually the same computational performance and were

superior in this respect to all other codes tested (cf. Table VI), often

quite significantly. The 2JQLIODP-24 code was also the best of the K = 24

codes with the quick-look-in feature (codes la, lb, lc and lf) with respect

to Pe (cf. Table IX and Fig. 4), and significantly so. This code is

definitely the best of the K = 24 QLI codes studied.

d. The BJ-24 code, (Code ld).

This code gave outstanding P e performance (cf. Table IX and Fig. 4), as
	 4

expected from its large dfree of 24. Its computational performance was

slightly inferior to that of the ODP codes (cf. Table VI), but not signifi-

cantly so. This code, unfortunately, does not have the quick-look-in property;
	

f

but we have shown elsewhere [17] that it can be encoded almost as simply as 	
4

a QI.I code although, of course, the extraction of data by an encoder inverse

from the hard-decisioned received sequences is much less reliable than for

a QLI code. However, if one does riot insist on the (LI property, this code

Is clearly the best of all known K - 24 codes.

1 

11
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e. The QR-24 rode, (Code le).

As we noted earlier, this is actually a K - 23 code as both of its K = 24

generators end in a 0. This code is primarily interesting in that it is the

only one of all the codes tested which was derived by an algebraic construction

[11] as opposed to being found by a heuristically-guided computer search.

Although its computational performance is distinctly inferior to the ODP

codes and the BJ-24 code (cf. Table VI), its Pe performance was surprisingly

good (cf. Table IX and Fig. 4). However, because it also lacks the QLI

property (while being inferior in both P e and computation)as does the BJ-24

code, this code should not be recommended for any K = 24 application. Its

superiority in P
e 
over most of the codes tested does suggest, however, that

there may well be merit in investing further effort toward finding algebraic

approaches to convolutional code construction, an almost totally-neglected

research area.

f. The OT-24 code, (Code if)

The rather uneven quality of the various truncations of the MCQLI-48

code (cf. Table X) suggested to us the advisability of devising a code

which would truncate well everywhere. This led us to define the optimally-

truncatable OT-K code as the QLI code obtained by the following algorithm:

Step 0: Set a,)= 1, b 0 = 1, al = 1 and b l = 0. Set i = 2, d = 3

and i d = 1.

Step 2: Set a  = b i = 1 and compute the free distance d' of this code

and the distance index id,.

Step 3: If d' > d or if d' = d and id , < i d , replace d by d' and go

to step 4. Otherwise, set a i - b i = 0.

Step 4: If i = K-1, stop. Otherwise, increase i by 1 and go to step 2.

w

r	 ,
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It should be clear that, for K' < K, the OT-K' code is the K' truncation of

the OT-K code, so that these QLI codes are 
it
	 in the same sense as the

MCQLI codes.

In Table XI, we give the free distance for all the distinct OT-K codes

with K < 24. Comparison of Table XI with Table X shows indeed that the OT-K

QLI codes are indeed superior to the MCQLI -K codes, but significantly so	 r

only for rather small K. However, if one desires a QLI code, in future

K	 1	 2 3 4 6 9 13 15 17 18 20 23 24

dfree1	
3 5 6 8 10 11 14 14 16 17 18 19

Table XI: Free distance for distinct truncations of tree K = 24 optimally-

truncatable code.

coding standards, which truncates well for K < 24, the OT-24 code would be

agood choice.

The penalty for both truncating well at all smaller constraint lengths

and having the QLI property, however, is that one cannot do as well as an

unconstrained code at some fixed large K. For instance, the OT-24 code

has 
dfree	

19 compared to 
dfree	

24 for the BJ-24 code.

From Table III, we see that the OT-24 code is superior to the MCQLI-24

code in both distance profile and free distance. This explains the slightly

better computational performance of the OT-24 code (cf. Table VI), but

raises questions about the observed superiority in E'
e 

for the MCQLI -24 code

(cf. Table 1X); however, as Figure 4 clearly shows, the observed difference

In Ye for these two codes (la and If) is not statistically significant.

2. G-undersized tail option.

a. The MCQLI -48 code, (Code 2a).

This code, which is the K = 48 code recommended in the preliminary

coding standard [2], performed (as expected) slightly better computationally
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than its K = 24 truncation, code la (cf. Table VI). While its Pe performance

is certainly good (cf. Table IX), it is somewhat surprising that even one

w
frame was incorrectly decoded since the theoretical bounding argument [4]

suggests that, because of the extra memory, P e should be reduced by a factor

of at least L/KE = 10.7 over its K = 24 truncation for which only 4 frame

decoding errors were observed. The explanation is provided by Table VIII;

the actual error probability of this K = 48 code, for which only x = 1 frame

decoding error was observed, has a significant probability of being smaller,

by at least the theoretically-expected order of magnitude, than that

observed in the simulation. However, because this code is still inferior

in all respects to the JQLIODP-48 code to be described next, it would be wise

to replace the `1CQLI-48 code in the standard b y the JQLIODP-48 code if the

disruption would not be too great.

b. The JQLIODP-48 code, (Code 2b).

This code performed superbly in both computation (cf. Table VI) and in

error probability (cf. Table IX and Fig. 4). The excellent computational

performance, which was the best of all codes tested, results of course from

its optimum distance p rofile over the full K = 48 branches. The extremely

low observed P e , which tied with that of the 11J-24 code for the best of the

codes tested, is explained by the expected reduction by at least a factor

of L/KL = 10.7 over the Pe of its K = 24 truncation because of the additional

memory of the K = 48 code.

This is probably the appropriate place to point out that a truncation

of an ODP code is also arain an ODP code. Thus, all truncations of the

JQLIODP-48 code would perform well computationally compared to other codes

at their constraint length. The JQLIODP-48 code would be a good choice for

the truncatable K - 48 quick-look-in code in future codin g standards.

4
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3. Systematic partial tail-suppression option.

a. The BLLF-47 code, (Code 3a).

This code, which is the K = 47 truncation of the K = 48 systematic

code given in the preliminary coding standard [2], had nearly as good a

computational performance as the JSODP-47 code (cf. Table VI) to which it

most closely compares, and is also nearly as good in error probability
A

(cf. Table IX and Fig. 4). In fact, as can be seen from Table III, the

distance profile of this code is only slightly inferior to the ODP code

and, moreover, this code has a larger free distance than the ODP code

(19 vs 17). [The paradoxically slightly better P e of the ODP code derives

most likely from the fact that it reaches its free distance much more quickly

(i 17 = 46 compared to i 17 = 53 and i 19 = 59 for the BLLF-47 code).] The

good Pe performance of both codes confirms the conjecture, noted in Section

I' v

II.B.3 above, that a good systematic cote in option 3 performs about as well

in Pe as does a good nonsystematic- co.'e in option 1, for the same KF.

The "systematic" property is a highly desirable one for many purposes

(such as the absolutely minimal error probability in recovering data b y an

encoder inverse from the hard-decisioned received sequences, and the absolutely

simplest "encoder inverse".) The disadvantages in option 3 compared to

option 1 are the necessity to double encoder speed in the tail, and the small

amount of extra computation required because of the extra branches in the

tail.

The rather slight inferiority of the BLLF-47 code to the JSODP-47 code

suggests that there would be only slight advantage in replacing this code
	

P

by the better JSODP-47 code in future coding standards.

b. The JSODP-47 code, (Code 3b).

A1, just discussed, this is the best available systematic code with

respect to both computation and decoding error probability. Its ODP structure'

L
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guarantees that irs truncations will also be ODP, and hence good. If the

changeover from the BLLF-47 code would not be too disruptive, it would be

the best available choice for the K = 48 truncatable systematic code in

future coding standards.
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B. Recommendations for the K  = 24 code

In the performance summaries for the K  codes tested, we have already

made a number of recommendations regarding the selection of a K E - 24 code

for the deep-space channel and, more generally, for the selection of rate

R = 1/2 convolutional codes for the deep-space channel. We now particularize

our recommendations to the choice of a K  = 24 code for the IUE spacecraft.

1. The best choice for the K  = 24 code would be the JQI.IODP-48 code

(code 2b) used in the (0 = 24)-undersized tail option (option 2).

We favor this choice because (a) this code has the best computatioi,al

behavior of all the codes tested, and a decoding error probability tied with

the BJ-24 for the best, (b) this same code and encoder could be advantageously

used at K  = 32, or any K  < 48, in later deep-space missions so that its

adoption now would be a healthy move toward encoder standardization, (c) the

lone drawback of this code (or any code used in option 2), namely that the

encoding s'tift-register must have all its contents set to zero upon completion

of encoding of the frame, appears to be very slight, and (4) this code has

the desirable quick-look-in (QLI) property.

2. The next best choice would be the BJ-24 code (code ld), provided

the QLI feature is not considered essential.

If the conventional option (option 1) is chosen for the IUE convolutional

coding system, this is definitely the best code to use. Its decoding error

probability was equal to the best of the other codes tested, and its compu-

tational performance was nearly as good as any other. The only drawback for

this code is that it does not have the quick-look-in feature.

3. If the qLI feature is considered essential, the next best choice

(after the JQLIODP-48 code) would be the 2JQLI0DV-24 code (code lc) or the

K - 24 truncation of the JQLIODP -48 code, although the MCQI.I-24 code (cotie 1a)

would be acceptable.

. w.
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If both the conventional option (option 1) and the QLI feature are

chosen for the WE convolutional coding system, the 2JQLIODP-24 code offers

the twin advantages of near-optimal computational performance and near-

minimal decoding e ► r probability. Although the MCQLI-24 code was somewhat

.nferior in both of these respects, the fact that various spacecraft have

already used truncations of the MCQLI-48 code, so that proven encoder hard-

ware is presently available, may make this code the practical choice for the

IUE spacecraft. "owever, if the JQLIODP-48 code (code 2b) displaces the

MCQLI-48 code (code 2a) as the truncatable QLI code in future coding standards

(in keeping with our recommendation in Section 1V.A.2.b), then the K = 24

truncation of this code should be used in preference to the MCQL1-24 code.

POSTSCRIPT

i

fFollowing just upon completion
advanced copy of the paper "Further
with an Optimum Distance Profile" b
presented at the IEEE International
Ronneby, Sweden, June 21-24, 1976.

K = 24 code, namely

of this report, the author received an
Results on Binary Convolutional Codes
y R. Johannesson and E. Paaske to be

Symposium on Information Theory in
This paper reports their newly discovered

G1 - 55346125 (octal)

G2 = 75744143 (octal),

which has both an optimum distance pro
exceeding that of any previously known

which has d	 24.) This code is thus
W

and in error probability to the BJ-24,

file and a free distance d - 25go
K = 24 code (including the BJ-24 code
undoubtedly superior both in computation
and should be recommended in place of

the latter code wherever the latter code is recommended in this report.
Simulations to confirm this superiority are now in progress and the results

will be reported as soon as they become available.
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