https://ntrs.nasa.gov/search.jsp?R=19760014365 2020-03-22T15:09:26+00:00Z

NASA CR-141743

"THE NATA CODE - USER'S MANUAL, Volume II

1

JSC-11102

W. L. Bale and J. M. Yos VCO Systems Division 201 Lowell Street Wilmington, Massachusetts 01387

NAS9-9744 CR -141743

١

Final Report Volume II

Prepared for

LYNDON B. JOHNSON SPACE CENTER Houston, Texas 77058

(NASA-CE-141743)THE NATA CODE; THEOFY ANDN76-21453ANALYSIS.VOLUME 2:USER'S MANUAL FinalReport (Avco Systems Div., Wilmington,<br/>Mass.)302 p HC \$9.75CSCL 20DUnclas

Unclas G3/34 25120 172 105-015-11

> . 7

|                                             |                        |                            | · · · · · · · · · · · · · · · · · · · |                                  |
|---------------------------------------------|------------------------|----------------------------|---------------------------------------|----------------------------------|
| 1. Report No.<br>NASA CR-141743             | 2. Government Acces    | ision No.                  | 3. Recipient's Catalo                 | g No.                            |
| 4. Title and Subtitle                       | L                      |                            | 5. Report Date                        |                                  |
| 1                                           |                        |                            | Atril 1910                            |                                  |
| THE NATA CODE - USER'S MAN                  | NUAL Volume II         | .                          | 6 Performing Ormani                   | ization Code                     |
|                                             |                        |                            |                                       |                                  |
| 7. Author/s)                                |                        |                            | · 30-11102                            | ·                                |
| 7. Author(s)                                |                        |                            | 8. Performing Organi                  | zation Report No.                |
| W. L. Bade and J. M. Yos                    |                        |                            | AVSD-0068-75                          | -CR                              |
|                                             |                        |                            | 10. Work Unit No.                     |                                  |
| 9. Performing Organization Name and Address |                        |                            |                                       |                                  |
| Avco Systems Division                       |                        |                            | 11 Contrast of Court                  | Ala                              |
| 201 Lowell Street                           |                        |                            | The contract of Grant                 |                                  |
| Wilmington, Massachusetts                   | 01887                  |                            | NAS9-9744                             |                                  |
|                                             |                        |                            | 13. Type of Report a                  | nd Period Covered                |
| 12. Sponsoring Agency Name and Address      | -see limitistr         | ain                        | Contractor<br>Final Repo              | Reicrt                           |
| Ivindon B. Johnson Srace Ce                 | nter                   |                            | 14 Sponsoring Anno                    |                                  |
| Houston, Texas 77058                        |                        | 1                          |                                       |                                  |
|                                             |                        |                            |                                       |                                  |
| The final report on Contra                  | ct NAS9-9744 6         | consists of three          | volumes.                              |                                  |
| Vol. I The NAfA Co                          | de - Theory ar         | na Analysis (NASA          | (R-2-47)                              |                                  |
| Vol. II The NATA Co                         | de - User's Ma         | anual (NASA CR-14          | 1743) (present                        | t document)                      |
| Vol. III The NATA Co                        | <u>de - Programme</u>  | r's Manual (NASA           | CR-141744)                            |                                  |
| 16. Abstract                                |                        |                            |                                       |                                  |
| The NATA code is a co                       | mputer program         | n for calculating          | quasi-one-di                          | mensional                        |
| gas flow in axisymmetric r                  | ozzles and re          | ctangular channel          | ls. The flow                          | is assumed                       |
| to start from a state of t                  | hermochemical          | equilibrium at P           | nigh temperatu                        | re in an                         |
| upstream reservoir. The p                   | program provide        | es solutions base          | ed on frozen c                        | hemistry,                        |
| chemical equilibrium, and                   | nonequilibriu          | n flow with finit          | e reaction ra                         | tes. El-                         |
| ectronic nonequilibrium ei                  | fects can be           | included using a           | two-temperatu                         | re model.                        |
| An approximate laminar bo.                  | ndary Layer c          | alculation gives           | the shear and                         | heat flux                        |
| on the nozzle wall. Bound                   | ary layer dis          | placement effects          | on the invis                          | cid riow                         |
| are taken into account.                     | nemical equil.         | ibrium and transp          | port property                         | calculations                     |
| are provided by sucroutine                  | es. NATA CONT          | ains compilea-in           | thermochemica                         | I, Chemical                      |
| kinetic and transport cros                  | s section data         | a for nign-temper          | fature air, cu                        | 2 <sup>-1</sup> 2 <sup>-Ar</sup> |
| tions on Evisymmetric or t                  | m. It provid           | S CALCULATIONS C           | or the stagnat                        | ion conui-                       |
| flat surface of a blunt w                   | dae The code           | i models, and or           | the condition                         | ribe the                         |
| flow conditions and test                    | onditions in a         | e s primary purpe          | ed wind tunne                         | le This                          |
| volume of the final report                  | on NATA is a           | user's manual fo           | or the code.                          | Tt includes                      |
| definitions of the input:                   | and outputs:           | tabulations and d          | locumentation                         | of the pre-                      |
| coded data on gas models.                   | reactions. the         | ermodynamic and t          | ransport prop                         | erties of                        |
| species, and nozzle goomet                  | ries; explana          | tions of diagnost          | ic outputs an                         | d code                           |
| abort conditions; illusira                  | tive test prol         | olems; and a user          | 's manual for                         | an auxili-                       |
| ary program (NOZFIT) used                   | to set up ana          | lytical curvefits          | s to nozzle pr                        | ofiles.                          |
| 1                                           |                        |                            | -                                     |                                  |
| }                                           |                        |                            |                                       |                                  |
|                                             | <b></b>                |                            |                                       |                                  |
| 17. Key Words (Suggested by Author(s))      |                        | 18. Distribution Statement |                                       |                                  |
| planetary atmosphere                        | argon                  | Silk Subject :             | alegery:                              |                                  |
| arc-heated wind tunnels                     | nozzle flow            | 54 (Fiaia Leon             | anics and Heat                        | t Fransfer) 🛛                    |
| nonequilibrium flow                         |                        |                            |                                       |                                  |
| thermal nonequilibrium                      |                        |                            |                                       |                                  |
| high-temperature air                        |                        |                            |                                       | )                                |
| 19. Security Classif. (of this report)      | 20 Security Classif In | f this name)               | 21 No. of Pager                       | 22 Price*                        |
|                                             | Le occurry crossil, (C | - time pager               | AT. NU. UL Føyes                      |                                  |
| Unclassified                                | Unclassifi             | ed                         | <u> </u>                              | ቅ?•75                            |

\*For sale by the National Technical Information Service, Springfield, Virginia 22151

.

•

٠

1

;

۲

ł

١

1

i.

Ţ

Ţ

,

•

!

#### PREFACE

ł

NATA is a computer program for calculating steady, guasione-dimensional flow of a reacting gas mixture in a nczzle or rectangular channel. It also computes stagnation-point conditions on axisymmetric or two-dimensional models and the conditions on the flat surface of a blunt wedge. The code's primary purpose is the prediction and interpretation of test conditions in arc-heated wind tunnels used for laboratory evaluation of thermal protection materials for reentry vehicles such as the Space Shuttle Orbiter. The theory and analysis underlying the operation of NATA have been documented in Volume I of this report.\* The present volume is a user's manual for the code. ... defines the inputs and outputs, documents the precoded data on gas species and nozzle geometries, explains the diagnostic outputs, and includes illustrative results from test problems. In addition, this volume contains a user's manual for an auxiliary program (NOZFIT) which can be used to set up nozzle profile curvefits of the form used in NATA. The programming of NATA and NOZFIT is documented in Volume III.\*\*

<sup>\*</sup>W. L. Bade and J. M. Yos, The NATA Code - Theory and Analysis, NASA CR-2547.

<sup>\*\*</sup>W. L. Bade and J. M. Yos, The NATA Code - Programmer's Manual, NASA CR-141744.

### TABLE OF CONTENTS

ļ.

1

ł

.

.....

•

ł

I.

:

;

1

| 1.   | Intro  | oduction                                             | 1       |  |  |  |  |
|------|--------|------------------------------------------------------|---------|--|--|--|--|
| 2.   | Inputs |                                                      |         |  |  |  |  |
|      | 2.1    | Format Requirements for Input Cards                  | 2       |  |  |  |  |
|      | 2.2    | Input for Air cases with a Standard Geometry         | 8<br>10 |  |  |  |  |
|      | 2.3    | General inputs                                       | 36      |  |  |  |  |
|      | 2.5    | Execution Time                                       | 44      |  |  |  |  |
| 3.   | Outp   | uts                                                  | 45      |  |  |  |  |
|      | 3.1    | Listings of Input Variables                          | 45      |  |  |  |  |
|      | 3.2    | Problem Summary                                      | 49      |  |  |  |  |
|      | 3.3    | Definitions of Output Identifiers                    | 56      |  |  |  |  |
|      | 3.4    | Reservoir Conditions                                 | 56      |  |  |  |  |
|      | 3.5    | Flow Solutions                                       | 56      |  |  |  |  |
|      | 3.6    | Model and Wedge Conditions                           | 61      |  |  |  |  |
|      | ۲.7    | Throat Conditions                                    | 66      |  |  |  |  |
|      | 3.8    | Informative Messages                                 | 66      |  |  |  |  |
|      | 3.9    | Transport Cross Section Edit                         | 71      |  |  |  |  |
|      | 3.10   | Species Thermal Properties                           | 78      |  |  |  |  |
| 4.   | Prec   | oded Data                                            | 79      |  |  |  |  |
|      | 4.1    | Elements                                             | 79      |  |  |  |  |
|      | 4.2    | Thermochemical Data for Species                      | 80      |  |  |  |  |
|      | 4.3    | Data for Reactions                                   | 121     |  |  |  |  |
|      | 4.4    | Electronic Nonequilibrium Data                       | 127     |  |  |  |  |
|      | 4.5    | Standard Gas Models                                  | 134     |  |  |  |  |
|      | 4.6    | Transport Cross Section Data                         | 1^7     |  |  |  |  |
|      | 4.7    | Nozzle and Channel Geometries                        | 165     |  |  |  |  |
| App  | pendix | A - Reaction Data for the Helium and Argon<br>Models | 182     |  |  |  |  |
|      |        | A.1 Helium Model                                     | 182     |  |  |  |  |
|      |        | A.2 Argon Model                                      | 207     |  |  |  |  |
| Appe | endix  | B - Diagnostic Messages                              | 226     |  |  |  |  |

# CONTENTS (Continued)

1

1

-

.

.

1

1

# <u>Page</u>

ļ

:

| Appendix  | c –                      | Illustrative Test Problems                                                       | 240                      |
|-----------|--------------------------|----------------------------------------------------------------------------------|--------------------------|
| Appendix  | D -                      | User's Manual for the NOZFIT Code                                                | 267                      |
|           | D.1<br>D.2<br>D.3<br>D.4 | Introduction.<br>Inputs of NOZFIT.<br>Outputs of NOZFIT.<br>NOZFIT Test Problem. | 267<br>267<br>270<br>272 |
| Reference | es                       |                                                                                  | 278                      |

# LIST OF ILLUSTRATIONS

ł

"Salaya"

| 1.  | Input Data for a NATA Job with Three Cases                                                | <u>Paqe</u><br>3 |
|-----|-------------------------------------------------------------------------------------------|------------------|
| 2.  | Listing of Input Cards for Test Problems No. 1 and 1A                                     | 46               |
| 3.  | NATA Code Output - Listing of Input Variables for Test<br>Problem No. 1                   | 47               |
| 4.  | NATA Code Output - Problem Summary for Test Problem No. 1.                                | 50               |
| 5.  | NATA Code Output - Definitions of Output Identifiers                                      | 57               |
| 6.  | NATA Code Output - Reservoir Conditions for Test Problem<br>No. 1                         | 59               |
| 7.  | NATA Code Output - Frozen Solution for Test Problem No. 1.                                | 60               |
| 8.  | NATA Code Output - Equilibrium Solution for Test Problem<br>No. 1                         | 62               |
| 9.  | NATA Code Output - Nonequilibrium Solution for Test Prob-<br>lem No. 1                    | 63               |
| 10. | NATA Code Output - Reaction Rate Data for Test Problem<br>No. 1A                          | 64               |
| 11. | NATA Code Output - Model and Wedge Conditions for Test<br>Problem No. 1                   | 65               |
| 12. | NATA Code Output - Equilibrium Sonic Conditions for Test<br>Problem No. 1                 | 67               |
| 13. | NATA Code Output - Area Rescaling Message from Subroutine<br>THRØAT in Test Problem No. l | 69               |
| 14. | NATA Code Output - Freezing of Minor Species Message in<br>Test Problem No. 1             | 70               |
| 15. | NATA Code Output - Artificial Increase of Rate Constant<br>Message                        | <b>7</b> 2       |
| 16. | NATA Code Output - Transport Cross Section Edit (Input)                                   | 73               |
| 17. | NATA Code Output - Transport Cross Section Edit (Edited)                                  | 76               |

# LIST OF ILLUSTRATIONS (Continued)

1

1

i

Sector .

Ţ

ſ

ł

|     | (Continued)                                                                       | Page        |
|-----|-----------------------------------------------------------------------------------|-------------|
| 18. | NATA Code Output - Transport Cross Section Edit (Averaged<br>Pair Cross Sections) | 77          |
| 19. | Thermal Properties of e                                                           | 91          |
| 20. | Thermal Properties of N                                                           | 92          |
| 21. | Thermal Properties of O                                                           | 93          |
| 22. | Thermal Properties of Ar                                                          | 94          |
| 23. | Thermal Properties of N <sub>2</sub>                                              | 95          |
| 24. | Thermal Properties of O2                                                          | 96          |
| 25. | Thermal Properties of NO                                                          | 97          |
| 26. | Thermal Properties of NO <sup>+</sup>                                             | 98          |
| 27. | Thermal Properties of N <sup>+</sup>                                              | 99          |
| 28. | Thermal Properties of O <sup>+</sup>                                              | 100         |
| 29. | Thermal Properties of $N_2^+$                                                     | 101         |
| 30. | Thermal Properties of 02 <sup>+</sup>                                             | 102         |
| 31. | Thermal Properties of CO2                                                         | 103         |
| 32. | Thermal Properties of CO                                                          | 104         |
| 33. | Thermal Properties of CN                                                          | <b>1</b> 05 |
| 34. | Thermal Properties of He                                                          | 106         |
| 35. | Thermal Properties of C                                                           | 107         |
| 36. | Thermal Properties of C <sup>+</sup>                                              | 108         |
| 37. | Thermal Properties of He <sup>+</sup>                                             | 109         |
| 38- | Thermal Properties of Ar <sup>+</sup>                                             | 110         |

# LIST OF ILLUSTRATIONS (Continued)

1

ł

, !

;

ł

.

1

-

|     |                                                    | Page           |
|-----|----------------------------------------------------|----------------|
| 39. | Thermal Properties of He ( <sup>3</sup> S)         | 111            |
| 40. | Thermal Properties of He (1s)                      | 112            |
| 41. | Thermal Properties of He2 <sup>+</sup>             | 113            |
| 42. | Thermal Properties of He <sub>2</sub>              | 114            |
| 43. | Thermal Properties of CO <sup>+</sup>              | 115            |
| 44. | Thermal Properties of Ar*(m)                       | 116            |
| 45. | Thermal Properties of Ar*(r)                       | <b>1</b> 17    |
| 46. | Thermal Properties of Ar <sub>2</sub> <sup>+</sup> | 118            |
| 47. | Profile for DCA 1.90-cm Throat (NØZZLE=1)          | 168            |
| 48. | Profile for DCA 3.81-cm Throat (NØZZLE=2)          | 169            |
| 49. | Profile for MRA 5.72-cm Throat (NØZZLE=3)          | 170            |
| 50. | Profile for MRA 2.54-cm Throat (NØZZLE=4)          | 171            |
| 51. | Profile for EOS 0.81-cm Throat (NØZZLE=5)          | 172            |
| 52. | Profile for EOS 1.97-cm Throat (NØZZLE=6)          | 173            |
| 53. | Profile for MRA 1.90-cm Throat (NØZZLE=7)          | 174            |
| 54. | Profile for MRA 3.81-cm Throat (NØZZLE=8)          | 175            |
| 55. | Profile for 10 Nw 5.72-cm Throat (NØZZLE=9)        | 176            |
| 56. | Profile for EOS 2.77-cm Throat (NØZZIE=10)         | 177            |
| 57. | First Profile for T12 and T22 Channels (NPRØFL=11) | 178            |
| 58. | Second Profile for T12 Channel (NPRØFL=12)         | . 1 <b>7</b> 9 |
| 59. | Second Profile for T22 Channel (NPRØFL=13)         | 180            |

-ix-

# LIST OF ILLUSTRATIONS (Continued)

!

ł

ļ

"Shipate Pro-

|     |                                                                                                                                              | Page        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 60. | Momentum Transfer Cross Section for Electron-Helium<br>Collisions                                                                            | 189         |
| 61. | Maxwell Averaged Electron-Helium Momentum Transfer Cross Section, $\overline{Q}_{e-He}$                                                      | <b>1</b> 90 |
| 62. | Reaction Rate for the Collisional De-exicitation Process $He(2^{3}S) + e \rightarrow He(1s^{2}) + e$                                         | <b>20</b> C |
| 63. | Maxwell Averaged Momentum Transfer Cross Section $\overline{Q}_{e-Ar}^{(1,1)}$ for Collisions Between Electrons and Ground-State Argon Atoms | 208         |
| 64. | Maxwell Averaged Momentum Transfer Cross Section for Collisions Between Electrons and Metastable 4s $({}^{3}P_{2})$ Argon Atoms              | 210         |
| 65. | Input Data for Test Problems No. 2, 3, 4A, 4B, and 5                                                                                         | 241         |
| 66. | First Page of Problem Summary for Test Problem No. 2                                                                                         | <b>2</b> 42 |
| 67. | Reservoir Condition Output for Test Problem No. 2                                                                                            | 243         |
| 68. | Flow-Solution Output for Test Problem No. 2                                                                                                  | 244         |
| 69. | Problem Summary for Test Problem No. 3 (First Page)                                                                                          | 245         |
| 70. | Problem Summary for Test Probler No. 3 (Second Page)                                                                                         | 246         |
| 71. | Problem Summary for Test Problem No. 3 (Third Page)                                                                                          | 247         |
| 72. | Problem Summary for Test Problem No. 3 (Fourth Page)                                                                                         | <b>2</b> 48 |
| 73. | Problem Summary for Test Problem No. 3 (Fifth Page)                                                                                          | 249         |
| 74. | Reservoir Condition Output for rest Problem No. 3                                                                                            | 250         |
| 75. | Output of Nonequilibrium Flow Solution for Test Problem<br>No. 3 (First Page)                                                                | 251         |
| 76. | Output of Nonequilibrium Flow Solution for Test Problem<br>No. 3 (Second Page)                                                               | 252         |

~x-

1

į

.

ł

# LIST OF ILLUSTRATIONS (Concluded)

١

ł

ļ

,

.

• .

i.

1

ŧ

|     |                                                                                | <u>Page</u> |
|-----|--------------------------------------------------------------------------------|-------------|
| 77. | Output of Nonequilibrium Flow Solution for Test Problem<br>No. 3 (Third Page)  | 253         |
| 78. | Output of Nonequilibrium Flow Solution for Test Problem<br>No. 3 (Fourth Page) | <b>2</b> 54 |
| 79. | Problem Summary for Test Problem No. 4A (First Page)                           | 256         |
| 80. | Problem Summary for Test Problem No. 4A (Second Page)                          | 257         |
| 81. | Reservoir Condition Output for Test Problem No. 4A                             | 258         |
| 82. | Equilibrium Solution for Test Problem No. 4A (First Page).                     | 259         |
| 83. | Problem Summary for Test Problem No. 5 (First Page)                            | 260         |
| 84. | Problem Summary for Test Problem No. 5 (Second Page)                           | 261         |
| 85. | Problem Summary for Test Problem No. 5 (Third Page)                            | 262         |
| 86. | Reservoir Condition Output for Test Problem No. 5                              | 263         |
| 87. | Nonequilibrium Solution for Test Problem No. 5 (First Page)                    | 264         |
| 88. | Nonequilibrium Solution for Test Problem N . 5 (Typical)                       | 265         |
| 89. | Output of NOZFIT Test Problem (First Page)                                     | 273         |
| 90. | Output of NOZFIT Test Problem (Second Page)                                    | 274         |
| 91. | Output of NOZFIT Test Problem (Third Page)                                     | 275         |
| 92. | Output of NOZFIT Test Problem (Fourth Page)                                    | 276         |
| 93. | Output of NOZFIT Test Problem (Fifth Page)                                     | 277         |

-xi-

# LIST OF TABLES

<u>Page</u>

÷

ł

•

| I.     | Data for Elements                                                                  | 80           |
|--------|------------------------------------------------------------------------------------|--------------|
| II.    | Composition Data for Species                                                       | 85           |
| III.   | Thermo Fit Data                                                                    | 86           |
| IV.    | Data for Physical Model                                                            | 87           |
| v.     | Degeneracies of Electronic States                                                  | 88           |
| VI.    | Energies of Electronic States                                                      | 89           |
| VII.   | Spectroscopic Data for Molecules                                                   | 119          |
| VIII.  | Reaction System for Air                                                            | 122          |
| IX.    | Reaction System for Argon                                                          | 123          |
| х.     | Reaction System for Helium                                                         | 124          |
| XI.    | Reaction System for Carbon and Argon Species in the<br>Planetary Atmosphere Models | <b>1</b> 25  |
| XII.   | Electronic Nonequilibrium Data for Helium Model                                    | 130          |
| XIII.  | Electronic Nonequilibrium Data for Argon Model                                     | 131          |
| xIV.   | e-He Momentum Transfer Cross Section                                               | 132          |
| xv.    | e-Ar Momentum Transfer Cross Section                                               | 133          |
| XVI.   | Standard Gas Models                                                                | 135          |
| XVII.  | Sources of Cross Section Data                                                      | <b>1</b> 49  |
| XVIII. | Precoded Data in the TL, ØMEGAl, ASTAR, and BSTAR Arrays.                          | 162          |
| XIX.   | Thermochemical Data for Helium Species                                             | 183          |
| xx.    | Reaction Rate Parameters for Helium                                                | <b>1</b> .84 |
| XXI.   | Thermochemical Data for Argon Species                                              | <b>1</b> 85  |

.

# LIST OF TABLES (Continued)

ł

1

•

| Pag | e |
|-----|---|
|     |   |

| XXII.  | Reaction  | Rate   | Para | ameters | for | Arc | gan   | • • • • • • | •••   | • • • • | • • • • • • • | 186 |
|--------|-----------|--------|------|---------|-----|-----|-------|-------------|-------|---------|---------------|-----|
| XXIII. | Low-Lying | J Exc: | itcd | States  | of  | the | Argon | Atom        | • • • |         |               | 213 |

#### THE NATA CODE - USER'S MANUAL

1

1

By W. L. Bade and J. M. Yos Avco Systems Division Wilmington, Massachusetts

#### 1. INTRODUCTION

The NATA code is a computer program for solving problems of steady, quasi-one-dimensional gas flow in nozzles. The code's capabilities, and the theory and analysis underlying its operation, have been documented in the first volume of this report (ref. 1). The present volume is a user's manual for the code. Section 2 is a comprehensive discussion of NATA's inputs. Section 3 defines the normal outputs which present the results of the flow calculations and the calculations of test conditions on models. Section 4 documents the precoded data on gas models, transport properties, and nozzle geometries. Appendix A discusses the reaction data assumed in the electronic nonequilibrium models for argon and helium. Appendix B lists and explains the diagnostic outputs which NATA produces to aid the user in identifying the causes of abnormal conditions and code failures. Appendix C presents the inputs and outputs of test problems which illustrate the code's use and capabilities. Finally Appendix D is a user's manual for the NOZFIT code, a relatively small auxiliary program for setting up nozzle profile curvefits of the form required by NATA\_

#### 2. INPUTS

NATA employs a flexible, user-oriented input system called "Namelist", which is a standard feature of the Fortran IV programming language. The format requirements for the input card deck are summarized in Section 2.1. Section 2.2 discusses the few inputs that are required for running most problems of interest to NASA/JSC. Section 2.3 is a complete list of the definitions of all input variables accepted by NATA, except those used to read in the properties of chemical species and the rates of reactions. Input of these types of gas data is discussed in Section 2.4. In this discussion, the reader is assumed to be generally familiar with NATA's capabilities as summarized in the Introduction of Volume I (ref. 1).

Examples of sets of NATA input data for various types of problem, together with portions of the output produced when the code was run with these data, are presented in Appendix C.

#### 2.1 Format Requirements for Input Cards

The input data for a NATA code run are punched on computer cards. The data for each case in the run require a deck of at least four cards, as explained below. The decks for the cases are stacked to obtain the input deck for the entire run or job. The cases are run in the order in which they appear in the job deck, from the top down. Figure 1 illustrates the input data for a job consisting of three cases. In this figure, the data are written\* on an 80-column coding form. Each line of the form corresponds to a card in the input deck. Each column corresponds to one of the 80 columns in which data can be punched on a computer card.

\*In figure 1, and in the text of this report, the letter O is written  $\emptyset$  to distinguish it from zero (O), and the letter I is written with serifs to distinguish it from the numeral 1.

DRIGINAL PAGE IS DE POOR QUALITY

ł

÷

ź

-

IDENTIFICATION ĥ n m NANGLES 2,5, Π Ă 53 ģ 6 0 0 TSOIAM--FORTRAN STATEMENT Z S W4A=0 1 207 - 1153, CXMAXI= 45 ш HENCE ISW4A=0 d う 1 日 Ł S S •1 RADLE-Ч FL & W= Ś A ₹ U ī F TPRNTI LASH הד FIRST ш 2 SAS n 11 6 PRESAL ખં Ш Ш SAMPLE = 236 NRADL CS WHAE PRESAI= m <del>0</del> 2 × ¢ FLOW CASE LE=10) <u>u</u> -त CASE ן ש ש U 11 -NG Z Z L E A V G L H 3 SAMPLE łu STN PU • Q V ⊎\$ **INO**D d NI 5 AMPL \$INP SEND END STATEMENT 2 3 4 5 WOD

FIGURE 1 - INPUT DATA FOR A NATA JOB WITH THREE CASES

The <u>first card</u> in the input deck for each case may contain any descriptive information desired by the user. This information is reproduced at the head of the printed output for the case. This card may be left blank, if desired; but it may not be left out.

1

1

1

The <u>second card</u> in the deck for each case must contain the following characters:

#### \$INPUT

in columns 2-7.\*

The numerical input data for the case begin on the <u>third</u> <u>card</u> of the deck for the case. As many additional cards may be used as necessary. The data are punched in the form of equations:

1

or

2

P

1

These equations are separated by commas. Also, the individual values of a list being read into an array are separated by commas. The admissible names for input variables and arrays are listed and defined in Sections 2.2 and 2.3, below.

The following is a condensed summary of the format requirements for the data cards. A more complete discussion may be found in the UNIVAC and IBM Fortran manuals (refs. 2, 3), under "Namelist".

\*When the program is run on an IBM 360 system, the \$ is replaced by an EBCDIC ampersand or a BCD + sign. (1) The data must be punched in columns 2-80 of the cards; column 1 should be blank.

ł

- (2) There may be no embedded blanks within the field occupied by a variable name or a numerical value (including the sign, if any). With this exception, blanks may be inserted freely to improve legibility and thus facilitate checking the calls.
- (3) The last item on each data card must be a constant (i.e., a value) followed by a comma. On the last data card for a case, the final comma is optional.
- (4) The number of values listed for an array must be less than or equal to the "number of entries" or the product of dimensions given in Sections 2.2 to 2.4.
- (5) The value given for any variable (except a logical variable) may be a number with or without a decimal point, or a number with a decimal followed by an exponent of 10 expressed in "E" notation. For example, 1.23 x  $10^{-5}$  could be punched as 1.23E-5, and 9.8 x  $10^{-3}$  as 9.8E+23 or 9.8E23. For example, see the input for TPRINTI in figure 1.
- (6) The typing of variables as integer or real (see Section 2.2) is determined by the program. If a number without decimal is provided as input to a real variable, the namelist input system converts it to a real value before storing it. For example, in figure 1, the specification ANGLE = 10 has the same effect as ANGLE = 10.0. If a decimal number is provided as input to an integer variable, the system rounds it down to the next smallest

integer. For example, NANGLE = 1.3 would be quivalent to NANGLE = 1; however, NANGLE = 5.0 hight have the effect of NANGLE = 4 on some comouter systems where the 5.0 is represented as 4.999999... Thus, the decimal should be omitted in input values to integer variables. ł

Note: The remaining features (7-10) in the present list are not needed for setting up standard-type cases using the inputs of Section 2.2.

Ţ

- (7) The input value to a variable typed "logical" (see Section 2.3) may be T for "true" or F for "false". For example, see the input for AAMS in figure 1.
- (8) In an input of array data in the form (lb), if several successive values in the list are equal to the same value v, these values can be given in the form n<sup>4</sup>v, where n is the number of values equal to v.
- (9) In the case of a multiply dimensioned array, the order in which the values must be listed is determined by the rule that the left-most index varies most rapi?ly and the right-most index least rapidly. For example, in a doubly dimensioned array such as ISHAPE(J, M), which is dimensioned (12,2), the values must be listed in the order

ISHAPE(1,1) ISHAPE(2,1) ISHAPE(3,1) . . ISHAPE(12,1) ISHAPE(1,2) ISHAPE(2,2) . . ISHAPE(12,2)

-6-

It is not necessary to set all of the elements of an array in the input list. However, the list in equation (lb) must begin with the first element and must include values for all elements up to the last one to which a value is assigned. For example, in a channel problem with four sections in each profile, the input for ISHAPE might be

#### ISHAPE = 1, 2, 2, 1, 8\*0, 1, 2, 2, 1,

The entry 8\*0 fills up the elements ISHAPE(5,1), (ISHAPE(6,1),..., ISHAPE(12,1), which are not actually to be used. This entry is required to place the remaining data (1,2,2,1) into the locations ISHAPE(1,2),..., ISHAPE(4,2). If the 8\*0 entry were omitted, the second set of data (1,2,2,1) would be loaded into ISHAPE(5,1),..., ISHAPE(8,1), instead. Note that the elements ISHAPE(5,2),..., ISHAPE(12,2) are not referenced in the above list and are not required.

(10) A single element of an array can be set in the form
 (1a), if the array name is given with its numerical subscripts; e.g., JSHAPE(3,2) = 1.

The <u>last card</u> in the input deck for each case, following the cards containing the data, must be punched\*

#### \$END

in columns 2-5.

1

The Namelist input system processes the inputs of the form (1) one at a time, as they are encountered in the input deck. Thus, the order in which the input variables are referenced is arbitrary. If a variable is set more than once, the last value read is used by the program. For example, in figure 1, the program would run with CXMAXI = 45. Input variables which are not referenced in the input deck to a case are not changed; the program runs with the values already in storage in these locations. For example, in the second case of figure 1, only FLØW

<sup>\*</sup>If NATA is run on an IBM 360, the \$ is replaced by an EBCDIC ampersand or a BCD + sign.

1 .....

and TPRNTI are different from the values in the first case. Most of the input variables in NATA are preset to values which are either usually satisfactory or frequently desired, as indicated in Sections 2.2 and 2.3. If these variables are not referenced at all in the input to the job, the program runs with the preset values. This feature reduces the amount of input data required in most NATA runs by orders of magnitude. However, those variables which are not preset (such as the reservoir pressure, PRESAI) <u>must</u> be set in the input to the first case in every job; otherwise, the program would try to run with garbage data left in the computer by the preceding job, or with zero in the case of a computer in which core is cleared before each job.

A few of the input variables can be reset by operation of the code using certain options. Such exceptions to the rule that variables not referenced in the input do not change from case to case will be pointed out in Section 2.3. Examples include NØZZLE, ATPI, ISHAPE, NPRFLS, and IGAS. Apart from changes in IGAS due to automatic air model selection, these exceptions do not arise in jobs containing cases with only a single type of geometry, i.e., channels or nozzles.

2.2 Input for Air Cases with a Standard Geometry

The NATA code contains compiled-in data on the thermochemistry and reaction kinetics of certain gas mixtures (including air) and on the geometries of standard nozzles and channels in use at NASA/JSC. These precoded gas model and geometry data allow the NATA user to run certain standard types of problems by providing input data for just a few variables. The present section lists and defines these key inputs, under the following assumptions:

- (1) the gas is air;
- (2) the flow is confined by one of the available precoded standard nozzles or channels; and
- (3) the reservoir conditions are to be determined from data on the reservoir pressure and the total mass flow.

Sections 2.3 and 2.4 present a more comprehensive discussion of NATA inputs for users desiring to run nonstandard type problems or to use some of the special options which give the code its flexibility.

-8-

It is recommended that NATA users employ the input lists given below and in Section 2.3 as checklists in setting up problems.

えきかいたちが しくかい ちょう

The table below lists the names and definitions of the key input variables. For each variable, the "number of entries" is the number of numerical values which can be punched on the right hand side of the input equation (1). The preset values are compiled into the program and will be used unless a different value is supplied in the input deck. The abbreviations under "Type" have the following meanings:

R - Real (number containing a decimal point)

I - Integer (number without a decimal point)

| Variable<br><u>Name</u> | Number<br>of Entries | Preset<br><u>Values</u> | Type | Definition                                                                |
|-------------------------|----------------------|-------------------------|------|---------------------------------------------------------------------------|
| PRESAI                  | 1                    |                         | R    | Reservoir pressure (atm).                                                 |
| fløw                    | 1                    |                         | R    | Total Mass flow (lb/sec).                                                 |
| NØZZLE                  | 1                    | 0                       | I    | Index of standard nozzles:                                                |
|                         |                      |                         |      | <pre>1 - DCA nozzle with 1.905 cm   (0.75 inch) throat dia-   meter</pre> |
|                         |                      |                         |      | <pre>2 - DCA nozzle with 3.81 cm   (1.5 inch) throat dia-   meter</pre>   |
|                         |                      |                         |      | 3 - MRA nozzle with 5.715 cm<br>(2.25 inch) throat dia-<br>meter          |
|                         |                      |                         |      | <pre>4 - MRA nozzle with 2.54 cm   (1 inch) throat diameter</pre>         |
|                         |                      |                         |      | 5 - EOS nozzle with 0.813 cm<br>(0.32 inch) throat dia-<br>meter          |

| _ | Variable          | Number                                                 | Preset                        |                 |                                                                                                                              |
|---|-------------------|--------------------------------------------------------|-------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| * | Name              | of Entries                                             | <u>Value</u>                  | Түре            | Definition                                                                                                                   |
| ` |                   |                                                        |                               |                 | 6 - EOS nozzle with 1.968 cm<br>(0.775 inch) throat dia-<br>meter                                                            |
|   |                   |                                                        |                               |                 | 7 - MRA nozzle with 1.905 cm<br>(0.75 inch) throat dia-<br>meter                                                             |
|   |                   |                                                        |                               |                 | <pre>8 - MRA nozzle with 3.81 cm (1.5 inch) throat dia- meter</pre>                                                          |
|   |                   |                                                        |                               |                 | 9 - 10 MW (Aerotherm) nozzle<br>with 5.715 cm (2.25 inch)<br>throat diameter                                                 |
|   |                   |                                                        |                               |                 | <pre>10 - EOS nozzle with 2.764 cm   (1.088 i ch) throat dia-   meter</pre>                                                  |
|   | Note: D<br>9<br>1 | CA, EOS, MRA, a<br>as heaters in u<br>funnel Facility: | nd 10 MW a<br>use at the<br>: | re des<br>NASA/ | ignations for electric-arc<br>Johnson Space Center Arc                                                                       |
|   |                   | DCA - Di                                               | ual-Constr                    | ictor           | Arc                                                                                                                          |
|   |                   | Eos - E                                                | lectro-Opt                    | ical S          | ystems Heater                                                                                                                |
|   |                   | MRA – Mo                                               | odified Ri                    | ng Arc          |                                                                                                                              |
|   |                   | 10 MW -                                                | Aerotherm                     | Heate           | r                                                                                                                            |
|   | ICHAN             | 1                                                      | 0                             | I               | Index of standard rectangular channels:                                                                                      |
|   |                   |                                                        |                               |                 | <pre>1 - channel with 2.54 x 5.08 cm   (1 x 2 inch) throat for DCA   (use CXMAXI = 57.)</pre>                                |
|   |                   |                                                        |                               |                 | <pre>2 - channel with 5.08 x 5.08 cm   (2 x 2 inch) throat (nominal   geometry) for 10 MW heater   (use CXMAXI = 100.)</pre> |
|   |                   |                                                        |                               |                 |                                                                                                                              |

、 ろうちんないないないないないないできょうない

. . .

. . . .

- ( )

.

.

\*\*.

ļ

1

1

<u>Note</u>: Only one of the inputs, N $\emptyset$ ZZLE and ICHAN, is used in a given case. For ICHAN = 0, the flow geometry is determined by N $\emptyset$ ZZLE. For ICHAN > 0, the input data for N $\emptyset$ ZZLE are both ignored and overwritten, and the flow geometry is determined by ICHAN. If an axisymmetric flow problem follows one or more channel problems in the same job, it is necessary to input ICHAN = 0 and NPRFLS = 1.

Ł

í

こうしょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう

| Variable<br><u>Name</u> | Number<br>of Entries | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|----------------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CXMAXI                  | 1                    | 1.E5                    | R    | Maximum distance beyond throat<br>at which free-stream and model<br>calculations will be done<br>(inches). If CXMAXI is omit-<br>ted, the calculations will<br>continue until the free-stream<br>temperature drops to 0.4 per-<br>cent of the reservoir tem-<br>perature.                                                                                                                  |
| TSDIAM(I)               | 20                   | 1.E20                   | R    | For nozzle flow problems, spac-<br>ified nozzle diameters at which<br>stagnation point of model or<br>leading edge of wedge will be<br>placed for calculations of mod-<br>el test conditions. For chan-<br>nel problems, specified chan-<br>nel widths at which the free-<br>stream flow and conditions on<br>the channel wall will be cal-<br>culated. Values assumed to<br>be in inches. |
| KDIM                    | 1                    | 1                       | I    | 0 - two-dimensional model<br>geometry                                                                                                                                                                                                                                                                                                                                                      |
|                         |                      |                         |      | 1 - axisymmetric model geo-                                                                                                                                                                                                                                                                                                                                                                |

<u>Note</u>: The following 5 inputs are needed only if wedge calculations are desired. Wedge calculations cannot be obtained in channel flow problems.

metry

ORIGINAL PAGE IS OF POOR QUALITY

Í J

**í** .

-11-

| Variable<br><u>Name</u> | Number<br><u>of Entries</u> | Preset<br><u>Values</u> | Type | Definition                                                                                  |
|-------------------------|-----------------------------|-------------------------|------|---------------------------------------------------------------------------------------------|
| NANGLE                  | 1                           | 0                       | I    | Number of angles of attack for wedge.                                                       |
| ANGLE(I)                | 10                          | 0.                      | R    | Wedge angles of attack (deg-<br>rees) in ascending order.                                   |
| NRADLE                  | 1                           | 0                       | I    | Number of leading edge radii<br>for wedge.                                                  |
| RADLE(I)                | 5                           | 0.                      | R    | Wedge leading-edge radii<br>(inches).                                                       |
| WXI(I)                  | 20                          | 1.E30                   | R    | Distances from leading edge<br>at which conditions on wedge<br>will be calculated (inches). |
| ISWLA                   | 1                           | l                       | I    | 0 suppresses frozen flow sol-<br>ution.                                                     |
| ISW2A                   | 1                           | 1                       | I    | 0 suppresses nonequilibrium flow solution.                                                  |
| ISW3A                   | 1                           | 1                       | I    | 0 suppresses equilibrium flow solution.                                                     |
| ISW4A                   | 1                           | 0                       | I    | Must be nonzero if another<br>case follows in the job. Must<br>be 0 for last case.          |

#### 2.3 General Inputs

The main inputs to the NATA code are read in under the Namelist name INPUT. All of the input variables in this group are defined in the present section. Data for new species and reactions and transport cross section data are read in under other namelist names, as explained in Section 2.4 Problems in which the precoded data for species and reactions are used require only the inputs discussed in the present section. i

1

- - - - - -

N.

÷.

In the table of definitions below, the ir ut variables are arranged in ten groups, as follows:

- (1) General control variables
- (2) Output controls
- (3) Reservoir conditions
- (4) Geometry
- (5) Gas model
- (6) Test model conditions
- (7) Wedge conditions
- (8) Controls for the flow solution
- (9) Electronic nonequilibrium
- (10) Controls for diagnostic dumps.

The table format is the same as in the preceding section, except that the array dimensions are listed in place of the "number of values". The type designations R for real and I for integer are defined as before; L denotes logical variables, whose admissible values are T for "true" and F for "false".

#### Group 1: General Control Variables

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Type | Definition                                                                        |
|-------------------------|-------------------|-------------------------|------|-----------------------------------------------------------------------------------|
| ISWla                   | l                 | 1                       | I    | Value 0 suppresses frozen solution.                                               |
| ISW2A                   | 1                 | 1                       | I    | Value O suppresses nonequi-<br>librium solution.                                  |
| ISW3A                   | 1                 | 1                       | I    | Value 0 suppresses equilibrium solution,                                          |
| ISW4A                   | 1                 | 0                       | I    | Must be nonzero if another<br>case follows in the job. Must<br>be 0 in last case. |

-13-

# General Control Variables (Cont'd)

5 1

;

ļ

ş

| Variable<br><u>Name</u>        | Dimensions                   | <b>Pr</b> eset<br><u>Values</u> | Type                 | Definition                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------|------------------------------|---------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISW6A                          | 1                            | 0                               | I                    | If >0, only the reservoir con-<br>ditions and transport proper-<br>ties in the reservoir are cal-<br>culated. For the value 2, the<br>reservoir transport property<br>calculations are omitted. If<br><0, tables of species thermal<br>properties at temperatures up<br>to the reservoir temp — ure<br>are produced and no f $\rightarrow$ cal-<br>culations are done. |
| <u>Note</u> : ISW<br>CTAPI and | 6A < 0 should<br>PRESAI (see | be used t<br>Group 3 h          | ogether w<br>below). | with ISW2B = <b>l</b> and input of                                                                                                                                                                                                                                                                                                                                     |
| ISW1B                          | 1                            | 0                               | I                    | If >0, an edit of the steps<br>in the transport property<br>cross section calculations is<br>produced before the flow sol-<br>utions. If <0, averaged trans-<br>port cross sections are also<br>printed for temperatures up to<br>CTAPI and the flow solutions<br>are not computed. If = -1,<br>these cross section data are<br>also punched on cards.                 |
| <u>Note</u> : Fo<br>(see Grouj | r ISWlB<0, a<br>p 3 below)   | also set ]                      | ISW2B = 1            | and read in CTAPI and PRESAI                                                                                                                                                                                                                                                                                                                                           |
| ISW3B                          | 1                            | 1                               | I                    | If 0, boundary layer on nozzle wall is omitted.                                                                                                                                                                                                                                                                                                                        |
| TWALL                          | 1                            | 300                             | R                    | Nozzle wall temperature ( <sup>o</sup> K)                                                                                                                                                                                                                                                                                                                              |
| nøtran                         | 1                            | .FALSE.                         | L                    | If.TRUE., all transport prop-<br>erty, boundary layer, heat<br>flux, and wedge calculations<br>are suppressed.                                                                                                                                                                                                                                                         |

# <u>General Control Variables (Concl'd)</u>

| Variable                |                                 | Preset                   |        |                                                                                                                                                                                   |
|-------------------------|---------------------------------|--------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                    | <u>Dimensions</u>               | Values                   | Type   | Definition                                                                                                                                                                        |
| TSTØPI                  | 1                               | 0.                       | R      | Free-stream temperature at<br>which the flow solutions will<br>be terminited ( <sup>O</sup> K). For value<br>0., the case is stopped at 0.004<br>times the reservoir temperature. |
| CXMAXI                  | 1                               | 1.E5                     | R      | Distance beyond the throat at<br>which the solutions will be<br>stopped (inches).                                                                                                 |
| Note: The<br>ever condi | e solutions an<br>ition .s reac | re stopped<br>ned first. | by eit | cher TSTØPI or CXMAXI, which-                                                                                                                                                     |
| READG                   | l                               | .FALSE.                  | Ц.     | If .TRUE., data on elements,<br>species, and/or reactions will<br>be read in under the namelist<br>name EINPUT.                                                                   |
| READXS                  | l                               | .FALSE.                  | L      | If .TRUE., cross section data<br>for transport property calcu-<br>lations will be read in under<br>namelist name TINPUT.                                                          |

1

# Group 2: Out ut Controls

ł

WITH BUTTLE

The inputs in this group allow some user control of the types and amount of printed output produced by the code.

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                                                                                                       |
|-------------------------|------------|-------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISW6B                   | l          | 1                       | I    | Value 0 suppresses output of<br>species mole fractions in free-<br>stream and model point output.<br>Positive value gives mole frac-<br>tion output every ISW6Bth printed<br>step. Negative value also gives<br>output of reaction rate data ev-<br>ery  ISW6B  th printed step. |

-15-

-----

# Output: Controls (Concl'd)

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | <b>Definit</b> on                                                                                                                                                                                            |
|-------------------------|------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISW7B                   | 1          | 0                       | I    | Value > 0 gives output of the boundary layer parameters limbrand XSN = $\tilde{n}$ .                                                                                                                         |
| <b>T</b> PRN <b>TI</b>  | 1          | 0.01                    | R    | The free-stream nonequilibrium<br>solution is printed out at tem-<br>perature intervals greater than<br>or equal to TPRNTI times the<br>reservoir temperature. For<br>TPRNTI = 0., every step is<br>printed. |
| DATAPE                  | 1          | .FALSE.                 | L    | If .TRUE., data are written onto<br>tape 3 for subsequent plotting.                                                                                                                                          |
| NREC 0                  | 1          | 0                       | I    | Number of records already on<br>data tape at beginning of run.                                                                                                                                               |
| IRUN                    | 1          | 0                       | I    | Run Number (for identification).                                                                                                                                                                             |

# Group 3: Reservoir Conditions

The variables in this group control the calculation of the gas state in the upstream reservoir. The methods used are explained in Section 6.5 of Volume I (ref. 1).

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                                                                                                                                                   |
|-------------------------|-------------------|-------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISW2B                   | 1                 | · 0                     | Ţ    | If G, reservoir temperature is<br>computed from reservoir pressure<br>(PRESAI) and mass flow (FLØW).<br>If positive, reservoir tempera-<br>ture (CTAPI) and pressure (PRESAI)<br>are read in. If negative, reser-<br>voir temperature and pressure<br>are computed from mass flow (FLØW)<br>and stagnation enthalpy (HSTAG). |
| PRUSAI                  | 1                 |                         | R    | Reservoir pressure (atm). Re-<br>quired in input if ISW2B≥0.                                                                                                                                                                                                                                                                 |

#### Reservoir Conditions (Concl'd)

1

١

| Variable<br><u>Name</u> | Dimensions       | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                              |
|-------------------------|------------------|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fløw                    | 1                |                         | R    | Total mass flow (lb/sec) if<br>JDIM = 1 (see under "Geometry");<br>mass flow per inch (lb/in-sec) if<br>JDIM = 0. (FLØW is required in<br>the input if $ISW2B \le 0$ .) |
| CTAPI                   | 1                |                         | R    | Reservoir temperature ( <sup>O</sup> K). (Re-<br>quired in input if ISW2B>0.)                                                                                           |
| HSTAG                   | 1                | 6.0 est 640             | R    | Stagnation enthalpy (Btu/lb).<br>(Required in input if ISW2B< 0.)                                                                                                       |
| MFITER<br>ORIGIN        | 1<br>ALL PAGE IS | 1                       | I    | <b>0</b> value suppresses iteration to take displacement thickness into account in reservoir condition calculations based on mass flow (ISW2B $\leq$ 0).                |

#### Group 4: Geometry

The geometry of a nozzle is specified, in NATA, by describing the nozzle profile. The geometry of a rectangular channel is specified by giving two profiles. There are four optional methods for defining the flow geometry in the input:

- Standard nozzle ICHAN must be 0, NPRFLS must be 1, NØZZLE must be an integer in the range from 1 to 10, inclusive.
- (2) Standard channel ICHAN must be 1 or 2.
- (3) Nonstandard nozzle ICHAN must be 0, NPRFLS must be 1, NØZZLE must be 0, and input data must be provided for DIAM(1), NSECTS(L,1), ISHAPE(J,1), PARAMI(K,J,1), ATPI(J,1), and NZERØI.
- (4) Nonstandard channel ICHAM must be 0, NPRFLS must be 2, NØZZLE, NPRØFL(1), and NPRØFL(2) must be 0, and input data must be provided for DIAM(M), NSECTS(L,M), ISHAPE(J,M), PARAMI(K,J,M), and ATPI(J,M) for M = 1 and 2, and for XZERØL and NBL.

The description of nozzle and channel geometries in NATA is discussed in Sections 4.2 and 4.3 of Volume I (ref. 1).

١

i

¥

?

I

| Variable<br>Name | e<br>Dime | nsions   | Preset<br>Values | Туре   | Definition                                                                   |
|------------------|-----------|----------|------------------|--------|------------------------------------------------------------------------------|
| NØZZLE           |           | 1        | 0                | T      | Index of standard norrles.                                                   |
| NP22LD           |           | *        | U                | -      | index of Standard hozzies:                                                   |
|                  |           |          |                  |        | 0 - nonstandard nozzle                                                       |
|                  |           |          |                  |        | <pre>1 - DCA nozzle with 1.905 cm    (0.75 inch) throat dia-    meter</pre>  |
|                  |           |          |                  |        | <pre>2 - DCA nozzle with 3.81 cm   (1.5 inch) throat dia-   meter</pre>      |
|                  |           |          |                  |        | 3 - MRA nozzle with 5.715 cm<br>(2.25 inch) throat dia-<br>meter             |
|                  |           |          |                  |        | <pre>4 - MRA nozzle with 2.54 cm (1 inch) throat diameter</pre>              |
|                  |           |          |                  |        | 5 - EOS nozzle with 0.813 cm<br>(0.32 inch) throat diameter                  |
|                  |           |          |                  |        | 6 - EOS nozzle with 1.968 cm<br>(0.775 inch)throat diameter                  |
|                  |           |          |                  |        | <pre>7 - MRA nozzle with 1.905 cm    (0.75 inch) throat diameter</pre>       |
|                  |           |          |                  |        | 8 - MRA nozzle with 3.81 cm<br>(1.5 inch) throat diameter                    |
|                  |           |          |                  |        | 9 - 10 MW (Aerotherm) nozzle<br>with 5.715 cm (2.25 inch)<br>throat d: meter |
|                  |           |          |                  |        | <pre>10 - EOS nozzle with 2.764 cm   (1.088 inch) throat diameter</pre>      |
| Notes:           | NØZZLE    | is alter | cd by in         | put of | NPRØFL or by execution of a                                                  |

<u>Notes</u>: NØZZLE is altered by input of NPRØFL or by execution of a case involving ICHAN > 0. In cases with NØZZLE = 0, the first 4 characters on the description card at the head of the input data are used as a facility name.

1

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Types | Definition                                                                                                                        |
|-------------------------|-------------------|-------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|
| ICHAN                   | 1                 | 0                       | I     | Index of standard rectangular channels:                                                                                           |
|                         |                   |                         |       | 0 - not a channel, or nonstan-<br>dard channel                                                                                    |
|                         |                   |                         |       | <pre>1 - channel with 2.54 x 5.08 cm   (1 x 2 inch) throat for   DCA. (Use CXMAXI = 57.)</pre>                                    |
|                         |                   |                         |       | <pre>2 - channel with 5.08 x 5.08 cm   (2 x 2 inch) throat (nomi-    nal geometry) for 10 MW    heater. (Use CXMAXI = 100.)</pre> |

<u>Note</u>: In channel cases with ICHAN = 0, the second 4 characters on the description card at the head of the input data are used as a channel name.

| JDIM | 1 | 1 | I | 0 - two-dimensional nozzle |
|------|---|---|---|----------------------------|
|      |   |   |   | 1 - axisymmetric nozzle    |

<u>Note</u>: A two-dimensional nozzle may be considered as the limiting case of a rectangular channel when one of the channel profiles is at an infinite distance from the channel axis. This limit is of little practical interest. However, JDIM = 0 gives a convenient way of treating the flow in a channel in which two of the walls are straight and parallel, when the boundary 'ayer is neglected (ISW3B = 0).

NPRFLS 1 1 I Number of profiles: 1 - nozzle 2 - rectangular channel

<u>Note</u>: The program sets NPRFLS =2 if ICHAN >0.

-19-

;

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                                                    |
|-------------------------|-------------------|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NPRØFL(I)               | 2                 | 0                       | I    | Indices of profiles in a chan-<br>nel; NPRØFL(1) is equivalent<br>to NØZZLE.                                                                                                                                                  |
|                         |                   |                         |      | 0 - nonstandard profile                                                                                                                                                                                                       |
|                         |                   |                         | l to | 10 - profiles for standard noz-<br>zles (see Nj221E above)                                                                                                                                                                    |
|                         |                   |                         |      | ll - profile l for Tl2 and T22<br>channels                                                                                                                                                                                    |
|                         |                   |                         |      | <pre>12 - profile 2 for Tl2 channel    (ICHAN = 1)</pre>                                                                                                                                                                      |
|                         |                   |                         |      | <pre>13 - profile 2 for T22 channel   (ICHAN = 2)</pre>                                                                                                                                                                       |
| NBL                     | 1                 |                         | I    | Index (1 or 2) of the profile<br>which diverges from the channel<br>axis least rapidly downstream<br>of the throat.                                                                                                           |
| DIAM(M)                 | 2                 |                         | R    | For a nozzle, DIAM(1) is the throat diameter (inches). For a channel, DIAM(M) is the throat diameter of the Mth profile for $M = 1$ and 2 (inches).                                                                           |
| NSECTS (L, M            | ) 2 x 2           |                         | I    | <pre>NSECTS(1,M) = number of upstream<br/>sections in curvefit for Mth pro-<br/>file; NSECTS(2,M) = number of<br/>downstream sections in curvefit<br/>for Mth profile. For a nozzle,<br/>M = 1; for a channel, M = 1,2.</pre> |
|                         |                   |                         |      |                                                                                                                                                                                                                               |

1

I

ì

4 4 44

ł

1

ł

**Part** 

I

| Variable<br><u>Name</u> | <b>Dimensions</b> | Preset<br><u>Values</u> | <u>Type</u> | Definition                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|-------------------|-------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISHAPE(J,M)             | ) 12 x 2          | <b>****</b>             | I           | Shape index for Jth section of<br>Mth profile:                                                                                                                                                                                                                                                                                                                   |
|                         |                   |                         |             | ISHAPE = 1 straight section                                                                                                                                                                                                                                                                                                                                      |
|                         |                   |                         |             | ISHAPE = 2 circular section<br>convex toward axis                                                                                                                                                                                                                                                                                                                |
|                         |                   |                         |             | ICHAPE = 3 circular section<br>concave toward axis                                                                                                                                                                                                                                                                                                               |
| Note: ISHAI             | PE is altered     | by use o                | of NØZZ     | LE > 0 or ICHAN > 0.                                                                                                                                                                                                                                                                                                                                             |
| PARAMI(K,J,             | M) 3 x 12 x       | 2                       | R           | Parameters for profile curvefit<br>sections (lengths in centimeter<br>units):<br>For ISHAPE(J,M) = 1, equation of<br>straight profile is r(x) =<br>PARAMI(1,J,M) + PARAMI(2,J,M)*X<br>For ISHAPE(J,M) = 2 or 3,<br>PARAMI(1,J,M) = distance of cir-<br>cle center from axis<br>PARAMI(2,J,M) = X coordinate of<br>circle center<br>PARAMI(3,J,M) = circle radius |
| ATPI(J,M)               | 11 x 2            | ann dea dat             | R           | Downstream boundaries of pro-<br>file curvefit sections, measured<br>from throat (cm).                                                                                                                                                                                                                                                                           |
| Note: ATP               | I is altered      | by use of               | e nøzzl     | E > 0 or ICHAN > 0.                                                                                                                                                                                                                                                                                                                                              |
| XZERØI                  | ī                 |                         | R           | Nozzle or channel inlet position<br>at which boundary layer is as-<br>sumed to begin (negative value,<br>measured in inches upstream from<br>th. th.oat).                                                                                                                                                                                                        |

٠

Note: XZERØI is altered by use of NØZZLE>0 or ICHAN>0.

1

<u>Note</u>: A separate program (NOZFIT) is available for computing the inputs PARAMI and ATPI from nozzle or channel design data such as dimensions, angles, and radii of curvature; see Appendix D.

#### Group 5: Gas Model

NATA provides three methods for input specifications of the composition, thermochemistry and kinetics of the gas mixture:

- (1) <u>Standard gas models</u> · invoked simply by setting IGAS to 1, 2, 3, 4, 5, or 6.
- (2) <u>Standard gas mode's vith altered elemental composition</u> obtained by setting IGAS = -1, -2, -5, or -6 and specifying the mole fractions of the cold species (QPJ; see Section 4.5). Using this option, the standard air models can be modified to obtain models for (nearly pure) oxygen or nitrogen by setting the mule fraction for the other cold species (nitrogen or oxygen) to a small value. The proportions of  $CO_2$ ,  $N_2$ , and Ar in the planetary atmosphere models can also be changed in this way.
- (3) <u>Nonstandard gas molels</u> specified by setting IGAS = 0 and reading in NCS, JCS, OPJ, ISCI, ISSI, ISRI, ICI, IE, IS, IR, ISATØM, and ISMØL. If species or reactions other than those compiled into the code are desired, they can also be read in as explained in Section 2.4.

The compiled-in species, reactions, and gas models available in NATA are fully described in Section 4.

| Variable<br><u>Name</u> | Dimensions  | Preset<br><u>Values</u> | Tyr2 | Definition                                                                                                                                        |
|-------------------------|-------------|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| IGAS                    | 1           | l                       | I    | Gas model index:                                                                                                                                  |
|                         |             |                         |      | 0 - nonstandard gas mixture;<br>NCS, JCS, QPJ, ISCI, ISSI,<br>ISRI, ICI, IE, IS, IR, ISATØM<br>and ISMØL must all be speci-<br>fied to the input. |
|                         |             |                         |      | l - high-temperature air model                                                                                                                    |
| ORIGI<br>OF PO          | OOR QUALITY |                         |      | 2 - moderate-temperature air<br>model                                                                                                             |

#### Gas Model (Cont'd)

| Variable<br>Name | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                                                   |
|------------------|------------|-------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                  |            |                         |      | 3 - argon model including elec-<br>tronic nonequilibrium                                                                                     |
|                  |            |                         |      | 4 - helium model including el-<br>ectronic nonequilibrium                                                                                    |
|                  |            |                         |      | 5 - planetary atmosphere model<br>(75% CO <sub>2</sub> , 20% Ar, 5% N <sub>2</sub> )<br>for use at reservoir tem-<br>peratures above 7000°K. |
|                  |            |                         |      | 6 - planetary atmosphere model<br>(75% CO <sub>2</sub> , 20% Ar, 5% N <sub>2</sub> )<br>for use at reservoir tem-<br>perature below 7000°K   |

1

e.

<u>Note</u>: If a negative value of IGAS is specified, then |IGAS| is the index of a standard gas mixture for which the mole fractions of cold species (QPJ) are to be provided in the input.

| AAMS           | 1  | .TRUE.      | L | Control for automatic air model<br>selection. If IGAS = 1 or 2 and<br>AAMS = .TRUE., NATA resets IGAS<br>to 1 or 2 based on an enthalpy<br>or temperature criterion; for<br>AAMS = .FALSE., the IGAS value<br>specified in the input is used. |
|----------------|----|-------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCS            | 1  | ani 647 (MA | I | Number of cold species in mix-<br>ture ( $\leq 10$ ).                                                                                                                                                                                         |
| JCS(I)         | 10 |             | I | Indices of cold species in the master list of species*.                                                                                                                                                                                       |
| ÕÐ <b>1(I)</b> | 10 |             | R | Mole fractions of cold species<br>in the same order as JCS (must<br>be provided if $IGAS \leq 0$ ).                                                                                                                                           |

\*See Section 4.2.

1

ł

τ

# Gas Model (Cont'd)

•

1

ļ

\*

| Variable          |                   | Preset        |        |                                                                                                                                                                                                                                  |
|-------------------|-------------------|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Name</u>       | <u>Dimensions</u> | <u>Values</u> | Type   | Definition                                                                                                                                                                                                                       |
| ISCI              | 1                 |               | I      | Number of chemical elements in mixture, including $e^-$ if model contains ion species ( $\leq 10$ ).                                                                                                                             |
| ISSI              | 1                 |               | I      | Number of chemical species in mixture, including $e^-$ if model contains ion species ( $\leq 20$ ).                                                                                                                              |
| ISRI              | 1                 |               | I      | Number of reactions included in gas model ( $\leq 64$ ).                                                                                                                                                                         |
| ICI               | 1                 |               | I      | Number of ions in gas model excluding e <sup>-</sup> .                                                                                                                                                                           |
| IE(I)             | 10                | dart das aus  | I      | Indices of elements present in<br>mixture, in master list of ele-<br>ments;* if electrons are present,<br>they should be the first element.                                                                                      |
| IS(J)             | 20                | 241 AN 016    | I      | <pre>Indices of species present in mixture, in master list of spec- ies.**These species must be listed in the following order:     e<sup>-</sup> (if present)     Neutral species which are     stable at low temperatures</pre> |
|                   |                   |               |        | Other neutral species                                                                                                                                                                                                            |
|                   |                   |               |        | Ion species                                                                                                                                                                                                                      |
| <u>Note</u> : The | first ISCI s      | species i     | n this | list must be linearly inde-                                                                                                                                                                                                      |

pendent combinations of the ISCI chemical elements.

IR 64 ----

Indices of reactions included, Ι in master list of reactions.\*\*\*

\*See Section 4.1.

ļ

١,

. 1

\*\*See Section 4.2.

\*\*\*See Section 4.3.

-24-
# Gas Model (Concl'd)

<u>Note</u>: If a nonequilibrium flow solution is to be run with the read-in gas model, there must be (ISSI-ISCI) linearly independent reactions in the chemical kinetic model; see Section 7.3.4 of Volume I (ref. 1). The standard gas models all satisfy this requirement.

1

| Variable |            | Preset        |      |                                                                                                                                                                         |
|----------|------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name     | Dimensions | <u>Values</u> | Type | Definition                                                                                                                                                              |
| ISATØM   | l          |               | I    | Index of atom used for Lewis<br>number calculations, in master<br>list of species.                                                                                      |
| ISMØL    | 1          |               | I    | Index of molecule used for<br>Lewis number calculation, in<br>master list of species.                                                                                   |
| CTMXXI   | 1          | 5000.         | R    | Temperature ( <sup>O</sup> K) above which<br>species thermal properties are<br>computed from the thermo fit for<br>those species for which thermo<br>fits are supplied. |
| BZERØI   | 1          | 0.0           | R    | Constant in imperfect gas cor-<br>rection; the 0 value suppresses<br>the correction, which is negli-<br>gible for the conditions in<br>which NATA is normally applied.  |
| INEQVI   | l          | 0             | I    | 0 - equilibrium molecular vib-<br>ration                                                                                                                                |
|          |            |               |      | 1 - molecular vibration frozen<br>at the reservoir tempera-<br>ture                                                                                                     |

# Group 6: Test Model

NATA provides calculations of test conditions on two types of models: blunt bodies (stagnation point only) and wedges. A single set of inputs (XMØDP1, NMØDPT, TSDIAM) controls the positions in the flow at which test conditions are calculated for both types of model. These inputs and the parameters controlling options in the calculations for blunt models are in the present group. The wedge model inputs are in group 7.

-25-

## Test Model (Cont'd)

1

In the case of blunt models, the test model position determined by the inputs is assumed to be the location of the model stagnation point. In the case of wedge models, it is assumed to be the location of the leading edge. There are two options for specifying the test model positions:

- (1) A geometric sequence of distances x downstream of the throat from  $x = XM\emptyset DP1$  to x = CXMAXI.
- (2) The positions at which the nozzle diameter is equal to the input values TSDIAM(I).

These two options operate independently. In channel flow solutions, model condition calculations are not done but extra points in the free stream solutions are inserted at the locations specified by XMØDP1, NMØDPT, and TSDIAM, to provide results for comparison with experimental data from pressure taps and heat transfer gages located at known positions on the channel wall.

Regardless of the model-position inputs, no model or wedge calculations are done at positions where the flow Mach number is less than 1.5.

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                               |
|-------------------------|------------|-------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XMØDP 1                 | l          | 1.E20                   | R    | Initial x for model condition<br>calculations, measured in inches<br>downstream of the throat.                                                                                           |
| nmødpt                  | l          | 20                      | I    | Number of model points to be<br>placed in a geometric progres-<br>sion from XMØDP1 to CXMAXI; for<br>NMØDPT = 1, the model calcula-<br>tion is done at $x = XMØDP1$ .                    |
| TSDIAM(I)               | 20         | <b>1.</b> E20           | R    | In nozzle flow problems, nozzle<br>diameters specifying model pos-<br>itions; in channel problems,<br>specified channel widths at<br>which extra flow calculations<br>are done (inches). |
| AXIMØD                  | l          | .TRUE.                  | L    | Value .FALSE. suppresses stag-<br>nation point model condition<br>calculations, if only wedge<br>conditions are desired.                                                                 |

# Test Model (Cont'd)

١

11.

•

× T

t

| -                       |
|-------------------------|
|                         |
|                         |
|                         |
| for<br>al-<br>ic<br>p-  |
| de <b>11</b><br>a-<br>- |
|                         |
|                         |
| a-                      |
|                         |

\*See Section 8.1.2 of Volume I (ref. 1).

# Test Model (Concl'd)

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Type | Definition                                                                                                       |
|-------------------------|-------------------|-------------------------|------|------------------------------------------------------------------------------------------------------------------|
| TP LATE                 | 1                 | 300.                    | R    | Flat plate temperature for cal-<br>culations of heat flux to a flat<br>plate 1 ft from leading edge ( $^{O}K$ ). |

# Group 7: Wedge Models

Wedge model calculations are done only if the following conditions are satisfied:

- Model positions have been specified by input of XMØDP1 and CXMAXI, or of TSDIAM(I);
- (b) The flow Mach number at the specified model positions is greater than 1.5;
- (c) Positive values have been specified for both NANGLE and NRADLE; and
- (d) Either NWX > 0, or a value has been specified for WXI(1).

The positions along the surface of the wedge at which the conditions are calculated can be specified in two ways:

- <u>Uniform sequence</u> The inputs WX1, DWX, and NWX determine a uniformly spaced sequence of distances from the leading edge.
- (2) <u>Specified distances</u> up to 20 arbitrary distances from the leading edge can be specified using the input array WXI.

Both options may be used together, if desired. In all cases, the specified distances from the leading edge are measured along the surface of the wedge (rather than parallel to the direction of the incident flow.)

# Wedge Models (Cont'd)

.

ţ

I

·, \*

· .

1

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Valuos</u> | Type | Definition                                                                                                               |
|-------------------------|------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------|
| NANGLE                  | 1          | 0                       | I    | Number of wedge angles of attack.                                                                                        |
| ANGLE(I)                | 10         | 0.0                     | R    | Angles of attack of wedge surface<br>relative to the direction of in-<br>cident flow (degrees), in ascend-<br>ing order. |
| NRADLE                  | 1          | 0                       | I    | Number of leading edge radii.                                                                                            |
| RADLE (J)               | 5          | 0.0                     | R    | Radii of leading cdge (inches).                                                                                          |
| WXI                     | 1          | 1.0                     | R    | Distance of the first computation point from the leading edge (in-<br>ches).                                             |
| DWX                     | 1          | 10                      | R    | Distance between computation points (inches).                                                                            |
| NWX                     | 1          | 0                       | I    | Number of computation points in uniform sequence.                                                                        |
| WXI(I)                  | 20         | 1.E30                   | R    | Specified distances of computation points from leading edge (inches)                                                     |
| TWEDGE                  | 1          | 300.                    | R    | Wedge surface temperature ( <sup>O</sup> N).                                                                             |
| WK                      | 1          | 1.333                   | R    | Nose drag coefficient for Cheng-<br>Kemp wedge theory; the preset<br>value is for a cylindrical lead-<br>ing edge.       |
| ISW9B                   | 1          | 0                       | I    | Control for wedge model colouba-<br>tions and output:                                                                    |
|                         |            |                         |      | 40 - include calculations usin<br>unmodified Cheng-Rep theory                                                            |
|                         |            |                         |      | >0 - omit unredified theore *                                                                                            |

\*See Section 8.2.4 of Volume I (ref. 1).

# Wedge Models (Concl'd)

ł

| Variable    |                   | Preset        |      |                                                                    |
|-------------|-------------------|---------------|------|--------------------------------------------------------------------|
| <u>Name</u> | <u>Dimensions</u> | <u>Values</u> | Type | Definition                                                         |
|             |                   |               |      | With IS9 =  ISW9B  :                                               |
|             |                   |               |      | IS9 = 1 - print shock ordinate<br>Y <sub>s</sub>                   |
|             |                   |               |      | IS9 = 2 - print nondimensional<br>distance く from leac<br>ing edge |
|             |                   |               |      | IS9 = 3 - print both $Y_s$ and $\zeta$                             |

# Group 8: Controls for the Flow Solutions

The inputs in this group are control parameters for the frozen, equilibrium and nonequilibrium flow solutions. They are all preset to values which have proven satisfactory in practice, and need be varied only rarely, to treat cases in which the code has failed to produce a satisfactory solution when run with the standard values.

| Name   | <u>Dimensions</u> | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                                                         |
|--------|-------------------|-------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WSAVE  | 1                 | 3.0                     | R    | Parameter controlling the averag-<br>ing distance for the boundary<br>layer correlation parameter, n.<br>Instability due to coupling of<br>the inviscid flow with the boun-<br>dary layer can be suppressed by<br>reducing WSAVE.* |
| DELTII | 1                 | 0.01                    | R    | Nondimensional temperature dec-<br>rement used in frozen and equi-<br>librium calculations and in<br>starting the nonequilibrium sol-<br>ution.                                                                                    |
| DELTXI | 1                 | 0.01                    | R    | Initial step size in X for non-<br>equilibrium integration (cm)<br>(may be overruled by code).                                                                                                                                     |

\*See Section 5.11 of Volume I (ref. 1).

# Controls for the Flow Solutions (Cont'd)

ł

And the second second

. هن

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                                                |
|-------------------------|------------|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCHI                    | 1          | 0.1                     | R    | Criterion value $C_{\chi}$ for switch<br>from perturbation technique to<br>numerical integration in non-<br>equilibrium solution; increase<br>to switch farther downstream,<br>decrease to switch farther up-<br>stream.* |
| NQSI                    | 1          | 4                       | I    | Number of successful integration<br>steps before increasing step<br>size in the nonequilibrium cal-<br>culation.                                                                                                          |
| TTEST                   | 1          | 0.05                    | R    | Maximum $ \Delta T/T $ in one step of<br>the nonequilibrium integration;<br>decrease to force a smaller step<br>size.                                                                                                     |
| GTEST                   | 1          | 0.1                     | R    | Maximum relative species concen-<br>tration change in one integra-<br>tion step; decrease to force a<br>smaller step size.                                                                                                |
| HTEST                   | 1          | 0.01                    | R    | Maximum relative change in the<br>total enthalpy (due to radiative<br>losses) in an integration step.                                                                                                                     |
| TETEST                  | 1.         | 0.05                    | R    | Maximum relative change in the electron temperature in an in-<br>tegration step.                                                                                                                                          |
| QTEST                   | 1          | 0.1                     | R    | Criterion value for maximum<br>allowable change in the energy<br>transfer to the electron gas<br>during one integration step.                                                                                             |
| GAMIN                   | 1          | 10 <sup>-10</sup>       | R    | Concentration (moles/g) below<br>which a species will be frozen<br>if it decreases so rapidly that<br>it controls the integration step<br>size.                                                                           |

\*See Section 7.3.6 of Volume I (ref. 1).

|                  | Controls for | the Flow                | Solutio | <u>ns (Co 1'd)</u>                                                                                                                                                                                                                             |
|------------------|--------------|-------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable<br>Name | Dimensions   | Preset<br><u>Values</u> | Type    | Definition                                                                                                                                                                                                                                     |
| DCHLL            | l            | 10-4                    | R       | Parameter limiting the initial integration step size to $0.01  _{S_{1}}  _{min} / DCHLL.$                                                                                                                                                      |
| DCHRAT           | 1            | 10-4                    | R       | Parameter controlling the arti-<br>ficial increase in reaction rates<br>in the perturbation solution to<br>avoid premature startup of the<br>numerical integration; minimum<br>allowable $ \delta\chi_i _{min}/ \delta\chi_i _{max}$<br>value. |

# Group 9: Electronic Nonequilibrium

The standard models for helium and argon include electronic nonequilibrium effects such as inequality of the electron temperature and gas temperature and nonequilibrium population of electronic excited states. NATA allows nonstandard gas models containing tiese features to be set up by the user. The inputs in the present group provide the extra gas model data required to specify these effects.

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Type | Definition                                                               |
|-------------------------|-------------------|-------------------------|------|--------------------------------------------------------------------------|
| INT                     | 1                 | 0                       | I    | Indicator for electronic non-<br>equilibrium:                            |
|                         |                   |                         |      | 0 - conventional one-temperature<br>gas model                            |
|                         |                   |                         |      | Nonzero - two-temperature (elcc-<br>tronic nonequilibrium)<br>model      |
| ktf (IR)                | 25                |                         | I    | Indicator for forward rate constant $k_f$ for IRth reaction in gas model |



-32-

# Electronic Nonequilibrium (Cont'd)

| Variable | e        |          | Preset    |             |                                                                                                                                                                                   |
|----------|----------|----------|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name     | <u> </u> | mensions | Values    | <u>Type</u> | Definition                                                                                                                                                                        |
|          |          |          |           |             | $l - k_f = k_f(T)$                                                                                                                                                                |
|          |          |          |           |             | $2 - k_{f} = k_{f}(T_{e})$                                                                                                                                                        |
|          |          |          |           |             | where $T = gas$ temperature,<br>$T_e = electron$ temperature,<br>and the functional dependence<br>of $k_f$ is as given by equation<br>(69) in Section 2.3 of Volume<br>I (ref. 1) |
|          |          |          |           |             | $3 - k_f = A \left(\frac{T_e}{10^4}\right)^{\eta} (1 - e^{-E_a/R_0T})$                                                                                                            |
|          |          |          |           |             | 4 - $k_f = A \left(\frac{T_e}{104}\right)^{\eta} / \max(1, \tau),$                                                                                                                |
|          |          |          |           |             | where $c = b n_p R / N_0$                                                                                                                                                         |
|          |          |          |           |             | $5 - k_f = A/\sqrt{R}$                                                                                                                                                            |
| Note:    | In the   | standard | das model | s (IGA      | S = 1 to 6), the rate formu-                                                                                                                                                      |

<u>Note</u>: In the standard gas models (IGAS = 1 to 6), the rate formulas indicated by KFF = 3, 4, and 5 are used only in the argon model (IGAS = 3). Note that for KTF = 3,  $k_f$  depends on both  $T_e$  and T. In the formulas for KTF = 4, 5, R denotes the local nozzle radius (or a corresponding effective value in the case of a channel). Also,  $n_p$  is the number density of the atomic species appearing on the product side of the reaction. See Appendix A for a discussion of these rate formulas.

J

KTR(IR) 25 ----

Indicator for reverse rate constant k<sub>r</sub> for IRth reaction in gas model:

 $0 - k_r = 0$   $1 - k_r = k_r(T)$  $2 - k_r = k_r(T_e)$ 

# Electronic Nonequilibrium (Cont'd)

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                    |
|-------------------------|------------|-------------------------|------|---------------------------------------------------------------------------------------------------------------|
| ITR(IR)                 | 25         |                         | I    | Indicator of rule for partition-<br>ing the reaction energy of the<br>IRth reaction; values may be 1<br>to 6. |

<u>Note</u>: In the definitions below,  $\epsilon_f$  and  $-\epsilon_r$  denote the energies gained by the electron gas in N<sub>0</sub> reactions in the forward and reverse directions, respectively, and  $q_f$ ,  $-q_r$  denote the corresponding energies lost by radiation. Also, N<sub>0</sub> = Avogadro's number. The admissible values of ITR correspond to the following relations:\*

| TTR = 1 | $\epsilon_{f} = -a R_{0} r_{e},  q_{f} = \epsilon_{0} - \epsilon_{f}$             |
|---------|-----------------------------------------------------------------------------------|
|         | $\epsilon_r = q_r = 0$                                                            |
| ITR = 2 | $\epsilon_{f} = -\frac{3}{2} R_{0} T_{e}$ , $q_{f} = \epsilon_{0} - \epsilon_{f}$ |
|         | $\epsilon_r = q_r = 0$                                                            |
| ITR = 3 | $\epsilon_{f} = \epsilon_{r} = q_{f} = q_{r} = 0$                                 |
| ITR = 4 | $\epsilon_{f} = \epsilon_{r} = -\frac{3}{2} R_{0} T_{e}$                          |
|         | $q_f = q_r = 0$                                                                   |
| ITR = 5 | $\epsilon_{f} = \epsilon_{r} = \epsilon_{0}$                                      |
|         | $q_f = q_r = 0$                                                                   |
| ITR = 6 | $q_f = \epsilon_0$                                                                |
|         | $\epsilon_{f} = \epsilon_{r} = q_{r} = 0$                                         |
|         |                                                                                   |

The application of these reaction energy partition rules to reactions in argon and helium is discussed in Appendix A.

\*The formulas for TTR = 2 are a special case of those for TTR = 1. The reasons for this formulation are historical rather than logical.

# Electronic Nonequilibrium (Concl'd)

| Variable<br><u>Name</u> | <u>Dimensions</u> | Preset<br><u>Values</u> | Туре | Definition                                                                                                                                                                  |
|-------------------------|-------------------|-------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPAR(I,IR)              | 2 x 25            |                         | R    | EPAR(1,IR) = parameter $\epsilon_0$ for<br>the IRth reaction in cal per N <sub>0</sub><br>reactions; EPAR(2,IR) = para-<br>meter a for the IRth reaction if<br>ITR(IR) = 1. |
| BPAR                    | 1                 | فعة جي هت               | R    | Parameter b for all reactions with $KTF = 4$ .                                                                                                                              |
| TLIST (J)               | 30                | Bas (90 40)             | R    | Temperature values for table of elastic collision cross section ( <sup>O</sup> K).                                                                                          |
| ₽ØM(J)                  | 30                | <b>Can 199 CH</b>       | R    | Elastic collision cross section values $Q^{(1,1)}$ for table (cm <sup>2</sup> )                                                                                             |

# Group 10: Controls for Diagnostic Dumps

NATA contains a number of coded-in provisions for special output to facilitate tracing the operation of certain sections of the program These diagnostic dumps are intended for use by programmers in analyzing causes of code failure. Ordinary users of NATA will rarely find occasion to invoke them. The input variables controlling these diagnostic outputs are defined below.

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                 |
|-------------------------|------------|-------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISW5A                   | 1          | 0                       | I    | If nonzero, the execution of subroutine RESTMP is traced by dumps.                                                                                                         |
| ISW4B                   | 1          | 0                       | I    | If >0, a large dump is written<br>each time the boundary layer<br>routine BLAYER is called; if<br><0, a one-line dump is written.                                          |
| ISW5B                   | 1          | 0                       | I    | If >0, large dumps are written<br>each time the subroutines CØNM,<br>EXACT, RNNT, PRTA are called and<br>at a point in subroutine NØNEQ.<br>If <0, these dumps are written |

-35-

# Controls for Diagnostic Dumps (Cont'd)

| Variable<br><u>Name</u> | Dimensions | Preset<br><u>Values</u> | Type | Definition                                                                                                                                                                                    |
|-------------------------|------------|-------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISW5B<br>(Cont'd)       |            |                         |      | every  ISW5B th entry into<br>CØMM, and a one- or two-line<br>dump is written by NONEQ in every<br>step.                                                                                      |
| ISW8B                   | 3.         | 0                       | I    | If nonzero, diagnostic dumps are<br>printed in the transport prop-<br>erty routines. For ISW3B>0,<br>PUTQIN dump is produced every<br>ISW3B times. For ISW8B<0,<br>PUTQIN dump is suppressed. |

# 2.4 Input of Gas Species and Reactions

Elements, chemical species, and reactions other than those available in the procoded data can be defined and used in NATA flow calculations. These additional data are read in under the namelist name EINPUT. If such data are to be provided, the input variable READG in the main input must be set to .TRUE.. Then, immediately following the \$END card of the main input, there must be a card containing

# \$EINPUT

in columns 2-8. This card is followed by the input data, discussed below, in the namelist format described in Section 2.1, and the input data cards must be followed by another card with \$END in columns 2-5.

The input variables for defining chemical elements are NEELS, a ten-entry array IEEP(I), and ten two-entry arrays EEP1, EEP2,..., EEP10. These variables are defined in the following table. None of them are preset.

| Variable<br><u>Name</u> | Dimensions | Type | Definition                                                                    |
|-------------------------|------------|------|-------------------------------------------------------------------------------|
| NEELS                   | 1          | r    | Number of elements being defined ( $\leq 10$ ).                               |
| IEEP(I)                 | 10         | I    | Indices assigned to the defined ele-<br>ments in the master list of elements. |
| EEPn (J)                | 2          | R    | Data for nth defined element                                                  |
|                         |            |      | J = 1 atomic number<br>J = 2 atomic weight (g/mole)                           |

The elements available in the precoded data and their assigned positions in the master list of elements are specified in Section 4.1.

The input variables for defining chemical species are SP1, SP2, ..., SP30, each of which is a 43-entry array. The number n in the array name SPn is the index assigned to the species in the master list. The available species, their properties, and their locations in the master list are all specified in Section 4.2. Data for any of the standard species can be changed for a particular NATA run by reading in the SPn array used to store its properties.

The data in the SPn arrays are defined and discussed in detail in Section 4.2. The definitions of the SPn array entries are summarized briefly below for convenient reference. All entries are real, but those with integer values may be punched without decimal points, as the Namelist input system will supply the decimals and NATA provides for reliable rounding down to the correct integer values in cases where this is required.

- SPn(1) Read in 0. (Contains species name in compiled-in data; the code supplies a name for identifying the species in the output.)
- SPn(2) Number of chemical elements in species  $(\leq 3)$ .
- SPn(3-5) Indices of elements in the master list of elements (as modified by input data for elements).
- SPn(6-8) Numbers of atoms of elements in a molecule of the species.

SPn(9) Thermo-fit coefficient\* :..

1

\*See Section 2.2 of Volume I (ref. 1).

- SPn(10) Thermo-fit coefficient b.
- SPn(11) Thermo-fit coefficient c.
- SPn(12) Thermo-fit coefficient d.
- SPn(13) Thermo-fit coefficient e.
- SPn(14) Thermo-fit coefficient k.
- SPn(15) Formation enthalpy at 0°K (cal/mole).
- SPn(16) Number of atoms per molecule\*.
- SPn(17) Chemical constant,\*\* b.
- SPn(18) Characteristic vibrational temperature (<sup>O</sup>K).
- SPn(19) Number of electronic levels ( $\leq 10$ ).
- SPn(20) 1 if thermo fit data are used for species, 0 if not.
- SPn(21-30) Degeneracies of the electronic levels.
- SPn(31-40) Energies of the electronic levels (cal/mole).
- SPn(41-43) Vibrational temperatures for the second, third, and fourth vibrational modes (triatomic species only) (<sup>o</sup>K).

When a new species model (as defined by an SPn array) is first set up, it is advisable to make a preliminary run with ISW6A = -1(Section 2.3, Group 1) to print a table of species properties as calculated from the model. Errors in the species inputs can be detected more readily in such a table than in the results of flow calculations.

\*\*See Section 2.2 of Volume I (ref. 1).

<sup>\*</sup>Input of SPn(16) = 0 suppresses all use of the "physical model" for calculating the thermal properties of the species. In this case, the properties are calculated from the thermo fit at all temperatures, and SPn(17-19) and SPn(21-43) are not used; SPn(20)must be equal to 1 in this case.

The input variables for defining reactions are RP1, RP2,..., RP64, each of which is a 29-entry array. The entries are defined, and the available compiled-in reactions are specified, in Section 4.3. The definitions are repeated here for ease of leterence. All of the entries are real, but those with integer values may be punched without the decimal point.

- RPn(1) Constant A in rate equation ( $\sec^{-1}$ ,  $cm^3$ /mole-sec, or  $cm^6$ /mole<sup>2</sup>-sec).
- RPn(2) Exponent  $\eta$  in rate constant formula.\*
- RPn(3) Activation energy E<sub>a</sub> in rate constant formula.\*
- RPn(4) 1.0 if a list of third-body species is provided in RPn (20-29); 0.0 if not
- RPn(5) Number of reactant species ( $\leq 3$ ).
- RPn(6) Number of product species  $(\leq 3)$ .
- RPn(7-9) Indices of reactant species in the master list of species, as modified by the input data for species (if any).
- RPn(10-12) Indices of product species in the master list of species.
- RPn(12-15) Numbers of molecules of reactants.
- RPn(16-18) Numbers of molecules of products.
- RPn(19) Number of third bodies ( $\leq 10$ ).
- RPn(20-29) Indices of third body species in master list of species.

If any transport property calculations are to be done for new species read in under EINPUT, it is also necessary to provide transport cross section data for the species. However, if only

<sup>\*</sup>Equation (69) in Section 2.3 of Volume I (ref. 1); see also the definition of KTF(IR) under Group 9 in Section 2.3 above.

inviscid flow calculations are desired, the code can be run without cross section data by setting the control variable NØTRAN to .TRUE. in the main input (Section 2.3, Group 1); this suppresses all transport property, boundary layer, heat flux, and wedge calculations everywhere in the code.

If transport property calculations involving a new species are required, the variable READXS in the main input must be set to .TRUE., and the cross section data for the species are then read in under the namelist name TINPUT. The input cards containing these data immediately follow the deck of cards read under the name EINPUT. They begin with a card containing

### \$TINPUT

in columns 2-8. This card is followed by the cards containing the cross section input data in the namelist format described in Section 2.1. The final card of this group must contain \$END in columns 2-5.

The transport property inputs are as follows:

Variable

1

| Name    | <u>Dimensions</u> | <u>Type</u> | Definition                                                                                                                                                                                                                                   |
|---------|-------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NNYQ    | 1                 | I           | Number of steps in the cross section<br>calculation for which data are speci-<br>fied (including compiled-in data).                                                                                                                          |
| KKQ (N) | 100               | I           | Index specifying the option to be used<br>in the Nth step of the cross section<br>calculations (allowed values, 2 through<br>14). NNKQ values are required. (The<br>meaning of each of the allowed KKQ val-<br>ues is given in Section 4.6). |
| NNQ (N) | 100               | I           | Number of pairs of species to which the cross sections calculated in the Nth step are to be applied. NNKQ values are required $(NNO(N) \le 5)$                                                                                               |

-40-

| Variable<br><u>Name</u>        | Dimensions                   | Type             | Definitions                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------|------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In(K)                          | 5                            | I                | Indices of the species to which the cross sections calculated in the Nth                                                                                                                                                                                                                                                                                                                           |
| Jn (K)                         | 5                            | I                | step are to be applied, referred to the master species list. In these variable names, n denotes an integer (equal to N) which is part of each name. There are 100 arrays of each type, namely $I1(K)$ , $I2(K)$ ,, $I100(K)$ , $J1(K)$ , $J100(K)$ . There are NNQ(N) pairs of indices In, Jn for each step N. Only pairs with $In(K) \leq Jn(K)$ are used in the transport property calculations. |
| Vn (K)                         | 5                            | R                | List of input parameters for the Nth step of the cross section calculations. There are 100 of these arrays, V1(K), V2(K),, V100(K). The number of parameters required for each option and their definitions are discussed in Section 4.6.                                                                                                                                                          |
| ISEQ (L)                       | 100                          | I                | Sequencing array for specifying the or-<br>der in which the defined steps will be<br>carried out during the cross section<br>calculations. The index N in the pre-<br>ceding arrays is given by $N = ISEQ(L)$<br>where L = 1, 2, 3, 4,, NNKQ is the<br>order in which the steps are executed.*                                                                                                     |
| TL<br>ØMEGA1<br>ASTAR<br>BSTAR | 1000<br>1000<br>1000<br>1000 | R<br>R<br>R<br>R | Additional storage locations for cross<br>section data. The use of these arrays<br>is discussed in Section 4.6.                                                                                                                                                                                                                                                                                    |

Whenever a new set of cross section data is used for the first time, it is advisable to check these inputs by making a preliminary run with ISWLB set equal to -2 in the main input to invoke the complete edit of cross sections. This edit consists of three parts.

\*This input allows steps to be added to the cross section calculation (e.g., for new species) without shifting any of the compiledin data in the Ii, Ji, and Vi arrays.

The first part lists all of the defined steps in the cross section calculation, including these compiled in for computing the transport properties of the standard species and any steps which have been added by input. The steps are listed in the order in which they would be performed if the current gas model were to include all of the standard and defined species. The second part of the edit lists the steps selected by the transport routines for the current gas model. This list omits steps which are required only for calculating the cross sections of species which are not present in the gas model, and includes steps which have been added by the default options. This second part of the edit thus shows how the transport properties will actually be calculated in the current problem. The third part of the edit is a set of tables giving the cross sections for each pair of species in the current gas model as a function of temperature up to the input reservoir temperature, CTAPI.

The simplest method for specifying the cross sections for pairs involving a new species is to rely, to the maximum extent possible, upon the default options in the NATA transport property routines. The inputs required may then be summarized briefly as follows:

- If the new species is an ion, no cross section inputs for it are required, provided the species is assigned a previously unoccupied location in the master list of species.
- (2) If the new species is neutral, one step must be added to the transport cross section calculations to compute the cross sections for interaction of the species with itself. Alternatively, the likelike interaction for the new species can be added to an existing step in the cross section calculation by increasing NNQ for the step by 1 and adding the new species to the corresponding In and Jn lists. In the absence of other specifications, all of the unlike pair cross sections involving the new species will automatically be calculated using a mixing rule (option KKQ = 10).
- (3) Adding a step to the calculations requires the following changes in the transport inputs:
  - a. NNKQ must be increased by 1 (see transport block data routine for the original value).

-42-

b. The option to be used in calculating the cross sections for the like-like interaction of the new species with itself must be specified in the form

ł

KKQ(n) = option number

١

7

where n is the numerical index (N) of a step which is not already used by the compiled-in data.

c. The number of pairs of species to which the new step is applied is set to unity:

NNQ(n) = 1

d. The indices of the species are set:

In = index assigned to new species

Jn = same index

e. The parameters for the option are set

Vn = list of values

- f. The ISEQ array must be modified to insert the new step ahead of the step in which the mixing rule (option 10) is exercised. The proper location can be determined by examining the KKQ and ISEQ arrays in transport block data. This positioning of the new step is required to allow application of the mixing rule to the unlike pairs involving the new species.
- g. If the option selected required addition of data to the TL, OMEGAL, ASTAR, and BSTAR arrays, these data must be set. This can be done most conveniently by reading in each array entry as a subscripted variable; e.g.,

TL(k) = value, TL(k + 1) = value, etc.

-43-

where k, k + 1, etc. are numerical index values of array elements which are not used by the compiled-in data. ł

If information is available concerning the cross sections for some of the unlike interactions involving the new species, the accuracy of the NATA transport property calculations can be improved by adding additional steps to calculate these cross sections. These steps, like the step for the like-like cross sections, should be inserted ahead of the step in which option 10 is applied.

#### 2.5 Execution Time

An estimate of execution time is normally required whenever a job is submitted for running on a computer system. The per-case execution time of NATA can vary greatly depending on the types of solutions requested and the gas models used. Typical times for the various parts of the calculation are listed below for runs using the standard air models (IGAS = 1, 2). The times are roughly similar on the UNIVAC 1108 and the IBM 360/75.

(1) Reservoir calculations

I

Based on temperature and pressure: 1 sec Based on pressure and mass flow: 30 sec Based on enthalpy and mass flow: 60 sec

- (2) Frozen or equilibrium solution: 1/3 to 1/2 min
- (3) Nonequilibrium solution: 1 to 3 min

(4) Model calculations (per model point): 2 to 3 sec

The times are somewhat greater (by up to a factor or two) when the planetary atmosphere models (IGAS = 5, 6) are used. Nonequilibrium solutions based on the helium and argon models are in a class by themselves; experience is limited, but times of the order of an hour should be anticipated.

-44-

#### 3. OUTPUTS

1

Normal outputs produced in various types of NATA runs are described and discussed in the present section. Diagnostic messages and dumps produced under abnormal circumstances are listed and explained in Appendix B.

NATA outputs are discussed in the order in which they appear in a normal run in Sections 3.1 to 3.8. The special outputs making up the transport cross section edit and the species thermal property edit are described in Sections 3.9 and 3.10.

# 3.1 Listings of Input Variables

The output for each NATA case begins with a complete listing of the input variables read in under namelist INPUT (Section 2.3). The names and values of the variables are printed in the namelist format, equations (1). The variables are listed in the order in which they are defined in Section 2.3. The printed arrangement of these data differs between the UNIVAC 1108 and the IBM 360. The 1108 prints each single variable on a separate line, and each array in a separate block. The 360 runs the outputs of the form (1) together to make up lines running the full width of the page. The arrangement produced by the 360 is more compact but more difficult to read.

To provide illustrations of the various types of NATA output, a job consisting of two cases dealing with air flow in an axisymmetric nozzle was run on an IBM 360/75. Figure 2 is a listing of the input cards for these cases. Figure 3 shows the listing of input variables produced by the code for the first case (to be referred to as Test Problem No. 1). Apart from the difference in arrangement described above, the output shown in figure 3 differs from that which would be produced on a UNIVAC 1108 in three additional respects:

(1) Variables which are not referenced in the input data (figure 2), and which are not preset in the coding, contain meaningless values left in the computer core by a previous job. Since the 1108 clears core before each job, such variables would be printed as zero in the output from an 1108 run.

-45-

T PROBLEM ND. 1 - A.R FLOW IN AN AXISYMMETRIC NOZZLE WITH MODEL AND WEDGE +INPUT ISW4A=1. CXMAXI=50. ISW2B=-1. FLOW=.03. HSTAG=10880. NOZZLE=10. TSDIAM=20. 25. KDIM=0. CATFAC=0. NANGLE=1. ANGLE=15. NRADLE=1. RADLE=.375. NWX=8. WXI=2.5. 4.5. ISW9B=-2 +END TEST PROBLEM ND. 1A - OUTPUT CONTROLS +INPUT ISW4A=0. ISW7B=1. ISW6B=-4. ISW1A=0. ISW3A=0 +END

> ORIGINAL' PAGE IS OF POOR QUALITY

> > . •

1

1

.

- 1. d

FIGURE 2 - LISTING OF INPUT CARDS FOR TEST PROBLEMS NO. 1 AND 1A

-46-

.

. . . .

.

' VARIABLES FOR TEST PROBLEM NO. 1 (First Page) ĥ - LISTING OF - NATA CODE OUTPUT m FIGURE

POOR QUALING ••• • 0. 1086636993. 1077952576. 1093152423. • 0. 1075419545. 269588700, 269572116,-1680210449,-1743634168, 1491091736, 134107232, 0F -1.PRESAT= • XX= 4,TTF5T= 0.4090997019767760-01.6TE5T= 0.0999964237213100-01. 1 . ANGLE= • . XZERO1= 0.101= . NRADLE= HTTTE 0.13333313105-72.171551= 0.49999977019767760-01.01551= 0.4999964237213100-01.64MLM= 0.4999994396249290=10.05MLL= 0.[SATOH= O.DIAM= .READG=F.READXS=F.IS46B= 367511H. 451287150. 1491091940. 134123792.KTR= • • 0.KTF= 134123538, 1091064032, 1092114448,-1070217296, o 0. [ SHAPE=-1 076450875. 300-00000000000000000 · 0.99999964411901680 20. \* MFTTR\* • 20. 0.900098441190168D 23. 0.000998441100168D 20. 3.9999998441190165D 20. 0.9999988441190168D 20. 20. 0. 1092649745. • .-0.24341671611024060-44. 0.-1049864004. 0.99999964237213100-01. 5 0. 1092721049 -5.53973960876464 0.9999964237213100-01 0 . XM00P1= 20. 0.99995984411901680 20. 0.9999984411901680 10. 9.9999993948960270 30. 0.9999993948960270 10. 9.9999993948960270 30. 0.99999993948960270 0.9099998441190164D 20. 0.99999441190168D 20. 0.9999994441190166D 20. 0.999998441190168D • 269999504089355 2.099999427795410 1.099999427795410 0.9999996423721J100-01. -5.568469074707031 105.0799865722656 16.50999450683594 - ISNJB= 0 . [ SW2B= 0.15R1= • +CATFAC= .NANGLER • 0 .DELTI= 0.99999979138374320-02.0FLTX1= .HSTAG= 10880. 00000000 • 0.NBL= • • 1075419545. 8.676273108061418 0.09999723334775777777777777777777777 • =1×#•8 0.0 0.0 ••• 0.0 0.0 0.0 •••• •••• • • • •••• I NE QV I = 300.00000000000000000 • • • 0.999996423721310D-01. • • 0.99999964237213100-01. .ATPI= 0.9524999856948853 9.15418= • 0. 1075872530. 0. 1091672473. 0. 1075419545. 0.0 0.0 0.1551= = NUN 1 . 0 .01 2.099999427795410 4.830063412116541 102-5399932861328 0.768611982523263 1.099999427795410 2.099999427795410 -1.099451608276367 2+539998054504394 • • ċ • .-0.5773499608039856 • EXBN. 0. 1075419545. 0,0PJ= 2,848205810391974 1078237262 . TPLATE= 0.FSTAG= 1.NPROFL= . 0 1 . I SW6A= +CXMAX1= --0.R2189574756581540-58.-0.23538773017628020-52.15C1= 0.0 ••• 0.0 ¢•• 0.0 0.0 0.TPRNTI= 0.9099999138374320-02.DATAPE=F.NACCO= 0.0 0.0 0.0. . ÷. . • •DWX= 1.900000000000000 • • . 0.099996423721310D-01. 0.99997954237213190-01. • • • .BZFR01= 0.0 279022. 0. 1075419545. 0. 1092721049. · · · · 20.TSPIAM= 20.0000000000000 C.90999984411991680 20. 0.99999984411991680 r.99999999394896027D 10. 0.9999999394896027D 1. AAMS=T, NCS=-1829429661, JCS= 1.TMONFL= 303.010000000000 -1.264925920922852 0.1515945232480000 20. 0.69404318114751500 29. 8.724243406855007 -2.WSAVE= 3.000000000000000 • 2.099999427795410 2.6461956A3288574 •-0.4959869980812073 16.50999450683594 2.099999427795410 1.26999574089355 2.539998054504394 099999427795410 • \*FLOW= 0.299999999999999990-01.CTAPI= 0.0 • 0 r.9999998441190168D 20.AX1MDD=T.KD1M= -1.175994873046975 I.NPPFLS# • I.ISWAA= ċ • • 249376416, 1096345248, 270569985, 270570511, 0. 1092511876. 0. 1075419545. 469601056. 1610649544, 3.433343231 27423339-n4.0CHRATE C.994949401 97423990-04.1NTE =150V.10-001\_12122690666666 = 1H00.20-00\_V21281 01000000 .0 -1691242240.1540L=-1795188990.CTMXXI# 5000.0000 .NSECTS= 0.0 0. c Ú. 0.0 0.0 ••• 0.0 . 0.0 ò • • .NOTRAN=F.TSTOPI= 0.0 0. 1032649745. r.9999996423721310D-01. • 10-001E122E28966666666 ÷. ċ 0. 1075419545. ċ 0. 1092721049. . WXI = 1.00000000000000 с•с • • 1.009999427795410 -1-523171424R65723 -6.095998764038086 105.0799865722656 102.5399932951328 2.0999999427795410 1.099999427795410 -C+5015759468078613 15.23999977111816 2.009300427795410 1.099909427795410 1.ISW3A= C.JDIM= • ċ ċ 1. RAPLE= 7.37500000000000000 119523750%. J610745742. 1356874212. • 0. 1075872530. 0. 1093297987. 0. 1091672473. 0.0000094411001680 20.NWDDT= +LFWIS= = UCMS[\* • 1 GA 5= ••• с. с 0.0 0.0 0.0 0.0 0°0 0 . . • ċ ĉ 300.00000000000000000 ICHANE CHANE • ; 20. • . c • • 0.99999934411011680 20. 0. 1901191334816777 3J. 5 1 . I SW2AF 0.9999964237213100-01. 9.999999944119A164D 29. n. 1775419545. 0.-1348974459, •••• 0.999996423721310D-01 0.99999984411021699 S-PARAMIS 4.5030199000031010 511F40506095EE.1 3.799999427795410 6.099999427795410 7.399999427795410 -5.45573528ACB5939 4.963773108061417 3.809999512269767 -7.619999885559082 2.00000427705410 -6.7716636657714P5 15. 0100100100100100 1 . I SW78= 0.1S= 0. IF = • · už ú ú 1 6 2 2 2 ć ċ • ; 1092721949. NOZZLE= **FWALL**= I SWIA= TUPUT ... ... 0.0 0.0 0.0 · · · · · 0.0 · • • c • 0 0.0 с • с • • ... c c 0.0 201 -47-) ; )

ORIGINAL PAGE

114762. 75424 1093353808.-21364537449, 1085378499, 1086619700, 1172347612, 458562423, 1101004843, 369335216,~1698246141, 1086619988, 1095794856 0.2145207099394320-44.-0.44025782960959200-46. 2.02159142936948 .-0.22144742097815340-44. 2.723754171911875 . -0.144772073757430-45.-0.11651540777541920-45.-0.98755061278724800-46. 0.339779799667301756 36.0#48155095218155604340-49.7L157= --0.22144616815819790-44.-0.25011961931072270-44.1585A= -721-64028.-214465232.178=-1677306528.-1641242240.-1707061248. 1002374640. 1093685328. 1092634608.-1697474944. \* POM \* 2. 1206950184. -721068028.-2147465232.-1722755835. 1. 1. 1611614064.-1749511680. 1611371647. 1610762224.-1 .-0.68059701272654250-51. --0-16663094458373260-51--0-4061563757945842D 24--0-41163085516211750-47--0-11001970827553910-44--0-167/0540710928670-51 · --0.35%2170027523690-44, 0.37587377584705730 38, 0.42876695043610890 38, 0+24×79792120004450-77+0+65225941472036510+44++0+33517341006639390-50+0+88697393932365260+59+0+32115305730879380+57+ 0.20103523141777480 17.-0.13996415902818680-20.-0.10491763373127500 21.-0.10956633097134810-44.-0.26699653630374300-20 0.36771/30268947040-52.0.30293937266848210
 37.0.37683003544869160
 36.36771/302684859160 C+18638926041158250-44\*-0\*16113002057753770-48\*-0\*58343141252381480-48\*-0\*40166579335311070-48\* (Second Page) g.39692338101181960 29.--.16643998554373260-51.-0.40615650094539140 24.-0.20647006906776240-47. 4.028634073617127 .-0.1545570452452230D-44. 118069412.4962406 +-0\*1618438661955330-57\*-0\*1697056603073327D-51\* 13\*55127167987306
• 0\*561406530926072550-45\* 3\*7532044799922914 -0,4314556514410640-54,-0,48553538814025600-58,-0,18683065484320980-58,-0,2863089928890040-58, 252273669.5119019 118062569.3760387 134839177.0938416 12.76591491714142 12.76756342157422 0.11714555754607070 19.-0.60008285637354840 20. 13.50664068456174 . 0.7r23839339328640 1347435736. 1206959562. 1476411676. 144 047099. 1206959594.-1744486196.-1736555312.FPAR= 2.722657445954796 FIGURE 3 - NATA CODE OUTPUT - LISTING OF LUPUT VARIABLES FOR TEST PROBLEM NO. 0.37353266654370490 36. 9.13656726300494630 38. • 1660944457.37377 2.536381961621817 -----2279399047145860-45. 0.29790201698534430 29. 252287113.7083362 134839657.3748173 ٠ .-0.466073353690A6070 19.-0.21465512952859A5D-44. 194561208. -687841270. 1611286512.-1793796859. 161091 -C.47379306032113650 19.-u.18875192851392640-01. 134910404.4062379 • 0.45917200311085448 118061965.4375915 0+1369028C765204150-77. 0+56782932983122640-78. 118061837+4375916 -0.21444236897221710-49. 0.48302368623838110-21. 0.797290618335659 . 15.03728495413504 54107384, 1610762112,-1850960657, 1610762220,-18538<sup>7</sup> o 0.15W88= 17398669.31293576 13.76646152939159 91 9981 . 7659457326 118069668.4962406 0.4613494929365167 41 F 82517257+59716 P.C31254058470953 12.29712296782805 12.05200231075661 0.15W58= -0.10397599543738850 27. -0.15072238674621910-45. 2.642553440025782 3.3117107476AR139 0.5153720014534967 49.69752396122777 10.039363433456676 113069260.4352406 910391.715066885 134837353.0645447 C. 7532044799920661 7.0003351477266535 252294324,19998 - ISWAB= 1206953274. 1511294928 1613762224 C END

Ì

DRIGINAL PAGE IS OF POOR QUALITY

j

)

Ü

(2) NATA is run as a double-precision program on the IBM 360. Hence, the exponent in floating-point numbers is printed as D in place of E, and the alues are printed to 16 digits. 1

-

Ŧ

1

(3) Under the IBM 360 operating system used in this run, when a double precision variable is set to a single-precision value either by input or in a data statement in the program, only the first six significant figures are set correctly. The ten trailing digits are usually inaccurate or meaningless.

If data describing elements, species, or reactions are read in, the listing of the variables in namelist INPUT is followed by a listing of those in namelist EINPUT (Section 2.4). Also, if transport cross section data are read in, a listing of the variables in namelist TINPUT is produced. These listings are similar in format to the INPUT listing illustrated in figure 3.

## 3.2 Problem Summary

Immediately following the listings of program inputs, NATA produces a summary of the input specifications for the case. This output is headed by the title "NATA III Code Output". The problem summary for Test Problem No. 1 is shown in figure 4. In general, the summary contains the following information:

- (1) A line giving the run number (IRUN), the case number in the current job (set internally by the code), and the contents of the description card for the case.
- (2) A line stating the input specifications for the reservoir conditions.
- (3) A summary of the nozzle or channel geometry, including a table giving the parameters of the nozzle profile curvefit in centimeter units. This is omitted in subsequent cases with the same geometry.
- (4) A specification of the gas model as either a standard gas or a nonstandard gas.

-49-

FIGURE 4 - NATA CODE OUTPUT - PROBLEM "NMMARY FOR TEST PROBLEM NO. 1 (First Page) 1TPUT NATA TAT COL

•

.

- AIR FLOW IN AN AXISYMMETRIC NOZZLE WITH MODEL AND WEDGE TEST PROBLEM NO. 1 HOL IN THIS -CASF o RUN NO.

.

0.03000 LB/SEC STAGNATION ENTHALPY= JORAD. BTU/LB. TOTAL MASS FLOW=

EOS 1. JAR INCH THROAT DIAM FOR NDZZLF NO. 19. AXISYMMETRIC STANDARD

10 SECTIONS IN FIT. A UPSTREAM OF THROAT -3.556 CM INLET AT 1.382 CM THRDAT RADIUS=

| (()3 | SHAPE         | (7)141V     | PARAM(1.J) | PARAM(2.J)  |
|------|---------------|-------------|------------|-------------|
| -    | STRAIGHT LINE | -3.54140 00 | 1.92140 00 | -1.76330-01 |
| ٣    | CIRCLE TOP    | -3.4731D 00 | 2,29550 00 | -3.58450 00 |
| 1    | STRAIGHT LINE | -2.43'00 00 | 8.29850-01 | -4.87730-01 |
| N    | CIRCLE BOTTOM | -2.39190 70 | 2.24180 00 | -2.31960 00 |
|      | STRAIGHT LINE | -1.280000   | 1,25900 00 | -3+05730-01 |
| N    | CIRCLE BOTTOM | -1.25170 10 | 1.90330 00 | -1.20580 00 |
|      | STPAIGHT LINE | -5.39700-03 | 1.38120 00 | -2.17430-01 |
| N    | CIRCLE ROTTOM | 0•0         | 1.40720 90 | 0•0         |
| N    | CIRCLE BOTTOM | 6.5740D-93  | 1.40720 00 | 0.0         |
| -    | STRAIGHT LINE |             | 1.38090 00 | 2.67950-01  |

١

1

LANCS.J 5400D-01 -5400D-01

• 0 0 •

10-000+5. .54000-02 -5400D-02

.

1

1

0

i

1 ( AIR-1 ) STANDARD GAS ND.

| FORMULA                          |                       |                 |                                          |
|----------------------------------|-----------------------|-----------------|------------------------------------------|
| CHFMICAL  <br>(N )2<br>(O )2     |                       | LECULAR WEIGHTS | \$55700-04<br>\$007000 01<br>\$000000 01 |
| MOL • ¥f•<br>28•0140<br>32•0000  |                       | ELEMENT MO      | 6 • • •                                  |
| MOLE FRAC.<br>0.79423<br>0.21177 |                       | ATOM FRACTION   | 0.0<br>1.576460f 00<br>4.235400[-0]      |
| ະທິ<br>ພ<br>ຊ<br>2<br>2          | GAS≖ 28.8581          | ELFMENT         | L z o                                    |
| N AME<br>N 2<br>0 2              | DF COLD               |                 |                                          |
| • = N<br>Z                       | MEAN MOLECULAR WEIGHT |                 |                                          |

THIRD BODY MATRIX 000001010000 00000110100 01100000000 00000111000 0.1000000 0.1000000 0.1000000 0.1000000 0.1000000 0-100000 0.100000 0.100000 0-1000000 0 • 1 0 0 0 0 0 0 0.100000 0.100000 0.1000000 0.100000 0 • 1 0 0 0 0 0 0 0.1000010 CHI TEST 0 0 C 5 G 0 C 0 C \*\* 80 ŝ 50 80 ACTIVATION ENERGY ŝ 1.1798300 3.9150700 7.5510000 1.1798000 1.1 798000 1.1798000 2.2504000 2.2504000 2.2504000 1.5005000 1-5005000 ••• 0.0 c... ••• TEMP. POWER DEPENDENCE ĉ 888 8 ŝ 00 8 00 ŝ -1-0000000 00 -5+00000000-01 -1.5000000 00 -5+000000000-01 -1-500000 00000000-1--1.0000.000 -1-5000000 1.0000000 -1-500000 -4.5000n0n -4.5000000 -1.0000000 -1-5000000 0.0 CONSTANT FACTOR AT ŝ 5 4 2 5 9 4 ٩ n n ŝ \$ 22 4 7.00099900 15 0606061\*E 1.900000 Q000005°L 4.70000D 7.0000000 2.2030000 02000000 3.207605 7.200000 4.1000000 3. 899990 7.099995 0606069.49 2.200005 REACTION NO. ŝ 0-0-0 e 4 3 er. ¢ ) C ,

ŀ

| Page)       |              |              |             |                       |              |             |              |              |               |                                        |              |
|-------------|--------------|--------------|-------------|-----------------------|--------------|-------------|--------------|--------------|---------------|----------------------------------------|--------------|
| (Second     | 0000         | 0000         | 0000        | 0000                  | 0000         | 0000        | 0000         | 0000         | 0000          | 0000                                   | 0000         |
| NO. 1       | 0.100        | 0.100        | 0.100       | 0.100                 | 0.100        | 0.100       | 00100        | 0.100        | 0.100         | 0.100                                  | 0.100        |
| PROBLEM     |              |              |             |                       |              |             | •            |              |               |                                        |              |
| TEST        |              |              |             |                       |              |             | 0 000        |              |               |                                        |              |
| SIMMARY FOR | 0.0          | 0.0          | 0.0         | 0.0                   | 0.0          | 0.0         | 4.570        | <b>6 • 0</b> | 0.0           | 0.0                                    | 0.0          |
| A - PROBLEM | 10-01        | 10-01        | 00 00       | 00 00                 | 00 00        |             | 00 00        |              | 10-01         |                                        | 00 00        |
| CODE OUTPUT | 5.00000      | 5.00000      | -1.50000    | -2.50000              | -2+50000     | 0.0         | -2+00000     | 0.0          | 5.00000       | 0.0                                    | -2+500000    |
| - NATA      |              |              |             |                       |              |             |              |              |               |                                        |              |
| FIGURE 4    | 7.4000000 13 | 7.8000000 13 | 1.500000 16 | 6 <b>* 999999N 13</b> | 2.2000rc0 16 | 1.500000 13 | 3.4000000 11 | 4 1000000 10 | 1. P000000 15 | 6°000000000000000000000000000000000000 | 8.7999960 16 |
| ļ           |              |              |             |                       |              |             |              |              |               |                                        |              |
|             | 16           | 17           | 18          | 61                    | 20           | 21          | 22           | 23           | \$ 2          | 25                                     | 56           |

ļ

. . . .

1

1

1

7

1

. SPECIES THERMAL FIT INDICATOR ALPHA MATRIX

| 0      | c   | o  | ~  | 0 | - | -    | -   | ø  | -  | •   | N   |
|--------|-----|----|----|---|---|------|-----|----|----|-----|-----|
| z      | o   | ¢. | 0  |   | 0 | -    | -   | -  | 0  | •   | 0   |
| -<br>U |     | Ð  | o  | • | ¢ | o    | 7   |    |    | 7   | -   |
|        | C   | -  | -  | c | o | 1    | -   | c  | o  | -   | -   |
|        | - 3 | N2 | 20 | z | c | DN N | 30N | 3N | 30 | N26 | 340 |

REACT NO. NU PRIME MATRIX

|              |             | i<br>u | ۲2<br>N  | 20 | z        | o           | 0<br>V | 30N         | 32      | 30     | NZC    | 0 |
|--------------|-------------|--------|----------|----|----------|-------------|--------|-------------|---------|--------|--------|---|
|              |             | •      | •        | •  | •        | 2•          | •      | •           | •       | •      | •      |   |
|              | ∾<br>1-     | •0     | •0       | •  | •        | ň           | •      | •           | •       | •      | •      |   |
|              | <b>m</b>    | •      | •        | •  | •        | •<br>•      | • c    | •           | •       | :      | •      |   |
|              | 4           | •      |          | •  | ະ        | 2.          | •      | •           | •       | •      | ÷      |   |
|              | ŝ           | •      | .0       | •  | °.       | •           | •      | •0          | •       | •0     | •      |   |
|              | ÷           | • 0    | •        | •  | e.       | •           | •      | •           | •       | •<br>0 | •      |   |
|              | 7           | •      | -        | ċ  | 2•<br>2  | •           | •      | •           | c       | •      | •      |   |
|              | æ           | •0     | •        | •  |          | :           | •      | •           | •       | •      | •      |   |
|              | ¢           | •      | •<br>•   | •  | :        | 1.          | •      | •           | •       | •<br>0 | •      |   |
|              | 10          | •      | ະ        |    | -        | •           | •      | •           | •       | •      | •      |   |
|              | 11          | •      | •        | ċ  | :        | •           | -      | •           | •       | •      | •      |   |
|              | 12          | •      | •        | •  | :        | 1.          | •      | •           | ċ       | •      | •      |   |
|              | 13          | :      | •        | •  | •        | 1.          | •      | •           | •       | •      | •      |   |
|              | 14          | •1     | •        | •  | -        | •           | •      | •           | •       | •      | •      |   |
|              | 57          | č      | •        | •  | •        | •<br>•<br>• | •      | •           | •       | •      | ċ      |   |
|              | 16          | ċ      | •        | •  | •        | -           | •      | •           | •       | •      | •      |   |
|              | 17          | •0     |          | •  | •        | •           | •      | •           |         | °.     | •      |   |
|              | 19          | ċ      | •        | •  | 2.       | •           | •      | ċ           | •       | •      | :<br>: |   |
|              | 01          | ċ      | -        | •  | •        | •           | • •    | •           | •       | •      | •      |   |
|              | 20          | ċ      | -        | •  | •0       | •           |        | •           | ċ       | •      | •      |   |
|              | 21          | •      | •        | •  | ċ        | <b>.</b>    | •      | :           | •••     | •      | •      |   |
|              | 22          | č      | •        | •  | <b>.</b> | • •         | •      | •           | •       | •      |        |   |
|              | 23          | •      | •        | •0 | 1.       | •           | •      |             | •       | •      | •      |   |
|              | <b>\$</b> 2 | •••    | °.       | 1. | •        | •           | •      | •           | •       | •      | •      |   |
| Ŋ            | 25          | • •    | • c      | •  | •        | •           | •      | • •         | •       | •      | •      |   |
| )            | 56          | •0     | •        | :  | °.       | •           | -      | •           | •       | •      | :      |   |
| مە           |             |        |          |    |          |             |        |             |         |        |        |   |
| 3            | REACT NO.   | NU MAT | x I X    |    |          |             |        |             |         |        |        |   |
| ; <b>-</b> 1 |             | ۱<br>س | 2 N<br>N | 05 | z        | Ð           | Dz     | <b>9</b> 0N | 9N<br>S | 30     | N76    |   |

# DRIGINAL PAGE IS DE POOR QUALITY

F

| Pag      |
|----------|
| (Third   |
| н        |
| NO.      |
| PROBLEM  |
| TEST     |
| FOR      |
| STIMMARY |
| PROBLEM  |
| I        |
| OUTPUT   |
| CODE     |
| NATA     |
| Þ        |
| 4        |

1

٢

1

ŧ

|                               |    |     |        |     |          |          |     |    |     |    |     |          | 0 <sup>1</sup><br>0 | RT<br>)F | G<br>F | 0      | (A)<br>(0) | Ľ<br>R | F  | ı<br>U | G<br>A |    | I F     | EN |     |    | ELECTRONIC LEVELS     |  |
|-------------------------------|----|-----|--------|-----|----------|----------|-----|----|-----|----|-----|----------|---------------------|----------|--------|--------|------------|--------|----|--------|--------|----|---------|----|-----|----|-----------------------|--|
| ST PROBLEM NO. 1 (Third Page) |    |     |        |     |          |          |     |    |     |    |     |          |                     |          |        |        |            |        |    |        |        |    |         |    |     |    | ENTHALPY OF FORMATION |  |
| RY FOR TES                    | •• | ••• | •••    | ••  | •        | •••      | ••• | •• | ••  | •0 | ••• | •0       | •0                  | •0       |        | ••     | •0         | •0     | •0 | •0     | •0     | •• | 0.<br>0 | 1. | ••• | •0 | AL TEMP.              |  |
| STIMMA                        |    |     | •0     | ••  | •        | •        | •   | •  | •   | •  | •0  | •        | •                   | •        | :      | •      | 1•         | 1.     | •  | •      | •      | •  | ••      | •  | ••  | •  | RATION                |  |
| ROBLEM                        | •• | •   | ••     | •   | •<br>•   | •        | •0  | •  | •   | •• | •   | •        | •-                  | ••       | •0     | •      | •          | •      | •  | •      | -      | -  | •       | •  | •   | •0 | AR. VIB               |  |
| 1 - LD                        | •  | ••  | •      | •   | •        | <b>.</b> | •   | •  | ••  | •  | •   | •0       | ••                  | 1.       | •0     | •      | •          | •      | •  | •      | •0     | •  | 1.      | •  |     | •  | θ                     |  |
| DE OUTP                       | •  | •0  | •••    | •   | •        | •        | •   | •  | •0  | •  | •   | • -      | •                   | ı        | ••     | •      | •          | ъ.     |    | 1.     | •      | •  | •       | •  | •   | 1. | STANT                 |  |
| VIA COL                       | •  | •   | •      | •   | •        | •        | •   | •  | • • | 1. | •   | •        | •                   | •0       | *<br>* | •      | -<br>0     | •      |    | •0     | 1.     | •  | •_      | -  | •   | •  | AL CONS               |  |
| 4 - N2                        | •  | •   | •      | •   | •        | •        | •   | •  | •   | •  | -   | •0       | •0                  | •        | •      | •      | •          | •      | •  | •      | •      | •  | •       | •  | •   | •  | CHEMIC                |  |
| FIGURE                        | •  | •   | •      | •   | <b>.</b> |          | •   | •  | •   | •  | •   | •0       | •                   | •        | •<br>° | •      | 1.         | •      | •  | •<br>0 | •      | •  | •       | •  | •   | •  | •                     |  |
| 1                             | •  | -   | ۰<br>۲ | •   | •        | •        | •   | •  | •   | •  | •   | •        | •0                  | i        | •      | ,<br>, | •          | •0     | •  | •      | •      | •  | •       | •  | -   | 1• | CULE                  |  |
|                               | •  | •   | •      | • 1 | 1.       | •        | 2.  | •  | •   | •• | 1.  | •        | •                   | •0       | •      | •      | •          | •      | •  |        | •      |    | •       | •  | •0  | •  | R MOLE                |  |
|                               |    | •   | ť      | •   | •        | •        | •   | •  | °.  | •  | •0  | <b>.</b> | 2.                  | 2.       |        | •0     | •0         | 1.     | 1. | 1.     | •      | •  | •       | •0 | ••  | •  | ATOMS PE              |  |
|                               | -  | N   | n      | 4   | 'n       | Ŷ        | ۲   | Ð  | 6   | 10 | 11  | 12       | 13                  | 14       | 15     | 16     | 17         | 18     | 19 | 20     | 21     | 22 | 23      | 24 | 25  | 26 | PECIES                |  |

| SPECIES     | ATOMS PER MOLECULE   | CHEMICAL CONSTANT | CHAR. VIBRATIONAL TEMP. | ENTHALPY OF FORMATION | ELECTRONIC LEVELS |
|-------------|----------------------|-------------------|-------------------------|-----------------------|-------------------|
| 1<br>E<br>- | 1.000000 00          | -1.4927600 01     | 0.00                    | 0 • 0                 |                   |
| 2<br>2      | 2.000000 00          | -4.1059990-01     | 3.3520000 03            | 0.0                   | ŝ                 |
| 1 02        | 2.000000 00          | 1.14000001        | 2+2390000 03            | 0.0                   | ŝ                 |
| z           | 1.030,000 00         | 2.9440000-01      | 0.0                     | 1.125200D CS          | ŝ                 |
| o           | 1.000000 00          | 4 • 938000D-01    | 0.0                     | 5.899000 04           | *                 |
| Ov          | 2.0000000 00         | 5.455000-01       | £0 000669°3             | 2.1460000 04          | •                 |
| 30N         | 2,000000 00          | 3.841000-01       | 3+3730000 03            | 2.3666000 05          | •                 |
| 3N          | 1.000000 00          | 2.943000-01       | 0.0                     | 4.476000 05           | *                 |
| 30          | 1.0070000 00         | 4+9380000-01      | 0.0                     | 3.7294000 05          | ñ                 |
| N26         | 2.000000 00          | -3.7630000-01     | 3.1240000 03            | 3.5768000 05          | •                 |
| 026         | 2.000000 00          | - 3.1 700000-02   | 2.628000D 03            | 2,880000 05           | ŧn                |
| SPECIES     | (DEGENERACY.ELECTRON | IIC ENERGY LEVEL) |                         |                       |                   |
|             |                      |                   |                         |                       |                   |

#### 2+1399000 05 50 5 1.5177000 1.3466000 OF FORMATION 0.0 2.0 5.0 0000 000 000 0 40 50 1.9411000 0004105.2 2.5014000 2.5014000 1.4910000 9.3456000 1.3486000 HEAT ¥ 2•0 3•0 18•0 ••• ••• 2.0 5 6 6 6 6 6 6 6 50 0 0 0 0 80 40 1.7150000 1.0320000 2.3827000 4.5367000 1.997600D 2.0000000 4.378900D 1.31 32 000 u: 1 3 • 0 1 2 • 0 5 • 0 2•0 5•0 2•0 ••0 4.0 1.1570000 05 7.2797000 04 9.1206000 04 05 0 0 0 0 0 4 4 N 1.6000000 05 3.7500000 02 1.7048000 3.7726000 8.2456000 6.4800000 ٥ 1.2570000 0 0 0 0 9 1 9 1 2.0 0 \* 0 9 \* 0 0 0 0 0 0 0 0 0 0 υ 1.4354000 05 2.2639090 04 5.4962000 04 4.5300000 02 7.6670000 04 2.5890000 04 5.5800000 02 1.0600000 05 1.4000000 02 02 3.4600000 60 0.0 0.0 0.0 0.0 0.0 0.0 2•0 0 ° 0 • 0 10.0 8 • 0 8 • 0 6 0 05 00 2.49820CD 0.0 2.6374000 1.7334000 « 00 00 0 0 0 0 0 0 ••• 0.0 0.0 SPECIES $e^{i}$ •

1

2

` **|** 

•••

00

3.0712680

-5.4683190-17

2.7392950-12

-4.2514280-08

3.0983310-04

3.4514830 00

ŝ

3 ----

۰ ۲

•

3

`

;

•

•

.

0.0 2.1460000 04 2.3666000 05 3.5768000 05 2.8800000 05 NO. 1 (Fourth Page) 5.9150220 00 3.6111670 00 4.2005620 00 4.9515990 00 4.6675000 00 FIGURE 4 - NATA CODE OUTPUT - PROBLEM S''MAARY FOR TEST PROBLEM -3.6115220-17 -1-0002810-16 -1.1077040-16 -2.1145000-17 -9.7275000-17 4.44 D-12 1.694-20-12 4.637506D-12 1-5296300-12 4.162070D-12 -6.0620270-08 -6.70174RD-08 -5.2084100-08 -2.6395480-08 -3.958800D-08 3.7493840-04 4.9634490-04 2.0839610-04 4.4725700-04 3.3787290-04 00 000 000 0 0 3.4921290 00 3.3973850 3.2494730 3+7562150 3+2383600 . 02 N0 N0£ N26 026

1

ş

= N2 0 LEWIS NUMBER CALCULATIONS BASED ON BINARY DIFFUSION COEFFICIENT FOR

BOUNDARY LAYER EFFECTS INCLUDED

INPUT DATA FOR MODEL PARAMETER CALCULATIONS SPECIFIED TEST SECTION DIAMETERS IN INCHES= 20.00 25.00 MODEL TEMPERATURE= 300. DEG K.FLAT PLATE TEMPERATURE= 300. DEG K BOTH EQUILIRRIUM AND FROZEN SHOCK LAYERS ON MODEL CALCULATED SURFACE CATALYTIC FACTOR = 0.0 TWO-DIMENSIONAL MODEL GEOMETRY

9 DISTANCES FROM LEADING EDGE WITH A UNIFORM SEPAKATION OF 1.00 INCHES. STARTING AT 1.00 INCHES WEDGE SURFACE TEMPERATURE 300. DEGREES K. NOSE DAAG COEFFICIENT#1.333 4.50 2.50 15.0 SPECIFIED DISTANCES FROM LEADING EDGE IN INCHES 0.3750 MODEL ANGLES OF ATTACK IN DEGREES LEADING-EDGE RADII IN INCHES WEDGE

2. SECONDS SINCE LAST PRINTED TIME 0.03 MINUTES SINCE START OF RUN. #######ELAPSFD TIME≈

SPECIFIC HEAT OF COLD GAS= 0.2416 BTU/LB-DEG R AT 300.00 DEG K

DRIGINAL PAGE IS OF POOR QUALITY . .

r

.

• • • •

.

ļ

į

:/ .

•

3

1.....

(5) A table listing the cold species with their indices in the master list of species, mole fractions in the cold gas, molecular weights and chemical formulas. The mean molecular weight of the cold gas is then given. \$

٦Ē

ł

- (6) A table giving the elemental composition of the gas; the "atom fraction" in this table is the number of atoms of a given element per molecule of the cold gas.
- (7) A table containing the rate data for all of the chemical reactions in the current gas model. This table includes the coefficient , A, the temperature exponent  $\eta$  , and the activation energy E<sub>a</sub> (in cal/mole) in the formula (69) of Volume I (ref. 1) for the forward rate constant. This table also includes the criterion value  $C_{\chi}$  for the switch from the perturbation solution to the nonequilibrium integration. Also, for each reaction with a third-body list, the code prints a string of zeros and ones containing as many characters as there are species in the gas model. A l indicates that the corresponding species is a third body in the reaction, a 0 that is is not.
- (8) A table listing the chemical species in the gas model. In this table, a l under "thermal fit indicator" means that a thermo fit has been provided for the species, a 0 that no thermo fit has been specified. Under "alpha matrix", the number of atoms of each chemical element in a molecule of the species is given.
- (9) A table giving the matrix  $\nu_{ij}$  of the stoichiometric coefficients on the product side of the reaction. The entry under each species is the number of molecules of the species appearing as a product of the reaction.
- (10) A table giving the matrix  $\nu_{ij}$  of the stoichiometric coefficients on the reactant side of the reaction.

- (11) A table containing data for the "physical model" description of the thermal properties of the species. The columns of this table contain the number of nuclei in a molecule of the species, the chemical constant b, the vibrational temperature  $\Theta_v$  in degrees Kelvin, the enthalpy of formation in cal/mole, and the number of electronic energy levels. The degeneracies g and energy levels E relative to the state of formation are given in the next table, listed in pairs (g, E) across the page. The energies are again in cal/mole.
- (12) A table listing the thermo fit data for the species for which such a fit is provided. The table includes the coefficients a, b, c, d, e, and k for each species, and the enthalpy of formation in cal/mole (also given in the table (11) for the physical model in the case of species for which both methods are used). All of the tables from (5) through (12) are omitted in subsequent cases with the same standard gas model.
- (13) A statement of the species pair for which the Lewis number is calculated.
- (14) A statement of whether or not boundary layer effects are to be included in the flow solutions.
- (15) A summary of input data for calculations of conditions on models.
- (16) A summary of input data for calculations of conditions on wedge models.
- (17) A timing message giving the elapsed times since the beginning of the run and since the last time message. Such timing messages appear at several points in the output and allow the user to determine how much computer time is consumed in each major part of the calculations.
- (18) The value of the specific heat of the cold gas mixture at the nozzle wall temperature TWALL.

-55-

# 3.3 Definitions of Output Identifiers

In the first case of each NATA run, the code next prints a list of definitions of the alphanumeric identifiers used t label the outputs of the flow and model condition calculations. This list is shown in figure 5.

# 3.4 Reservoir Conditions

Next appears a page of output summarizing the calculated gas conditions in the upstream reservoir, as illustrated in figure 6. Since the same output format is also used for the throat conditions, the flow velocity and mass flux are included even though they are always zero in the reservoir. In Test Problem No. 1, the reservoir conditions were determined from mass flow and stagnation enthalpy inputs. The double iteration required in this calculation consumed over a minute of computer time, as shown by the timing message.

# 3.5 Flow Solutions

The nozzle flow solutions are computed and printed in the order: frozen, equilibrium, nonequilibrium. The format is the same for all three types of solution, but varies with the type of problem being run. For example, if the boundary layer on the nozzle wall is neglected, only a single area ratio is printed and the boundary layer quantities such as the displacement thickness and the Stanton number are omitted. In a channel flow problem including the boundary layer, two complete sets of boundary layer data are printed, one for each pair of channel faces. In a problem involving an electronic nonequilibrium gas model, the electron temperature, the radiative power loss, the energy transfer to the electrons, and the local stagnation enthalpy are added to the output.

The first page of output from the frozen solution for Test Problem No. 1 is shown in figure 7. The output identifiers X, T, etc., are defined in figure 5. The species mole fractions are not included in the output for the frozen solution because they are constant at their previously printed (figure 6) values in the reservoir.

| age)       |             |   |  |
|------------|-------------|---|--|
| (First P   |             |   |  |
| NTIFIERS   |             |   |  |
| NUTPUT IDE |             |   |  |
| 6.0        |             |   |  |
| SNOTIT     |             | ; |  |
| DEFIN      |             |   |  |
| OUTPUT -   |             |   |  |
| CODE       |             |   |  |
| NATA       |             |   |  |
| 5          |             |   |  |
| FIGURE     |             |   |  |
|            |             |   |  |
|            | SYMROLS     |   |  |
|            | DEFINITIONS |   |  |

ł

1 1 2

FIGURE 5 - NATA CODE OUTPUT - DEFINT - TONS OF OUTPUT IDENTIFIERS (Second Page)

2

:

1

Ì

DISTANCE FROM LEADING EDGE OF WEDGE, WEASURED ALONG WIDGE SURFACE (INCHES) Dadinate of Shock From Line Parallel to Free Strear Low, Passing through Leading Edge of Wedge (inches) Nondimensional streamwise coopdinate in Blunt wedge Analysis CRITICAL REYNOLDS NUMBER (BASED DN MOMENTUM THICKNESS) FOR BUUNDARY LAYFR TRANSITION Density at stagnation condition for Equilibriu4 Shock (LO/CU FT) AXIAL DISTANCE ALONG NOZZLE. MEASURED FROM THROAT AND POSITIVE COWNSTREAM (INCHES) ELECTRICAL CONDUCTIVITY AT STAGNATION CONDITION FOR EOUILIDRIUM SHOCK (MHO/CM) Electrical conductivity at stagnation condition for frozen Shuck (MHD/CM) ENTROPY AT STAGMATION CONDITION FOR FOULLERIUM SHOCK (BTU/LH-DFG R) Entropy at stagnation condition for Fruzen Shock (BTU/LH-DFG R) TESPERATURE AT STAGNATION CONDITION FOR EQUILIRATUM SHOCK (DEG K) TEMPERATURE AT STAGNATION CONDITION FOR FROZEN SHOCK (DEG K) ١ MOMENTUM THICKNESS OF BOUNDARY LAYER ON NOZZLE WALL (INCH) N AVERAUED OVER SEVERAL PRECEDING POINTS OF THE SOLUTION = ELECTRICAL CONDUCTIVITY IN FREE STRFAM (MHO/CM) FIRST TRANSVERSE DIMENSION OF CHANNEL (INCHES) REYNOLDS NUMBER BASED ON MOMENTUM THICKNESS SHEAP STRESS AT NDZZLE WALL (LBF/SO FT) JLOS NUMBER PER FOOT IN FREE STREAM STANTON NUMBER BASED ON TOTAL ENTHALPY ENTROPY IN FREE STREAM (BTU/LG-DEG R) TENDERATURE IN FREE STREAM (DEG K) TY IN FREE STREAM (LH/CU FT) VELOCITY OF FREE STREAM (FT/SEC) ELECTRON TEMPERATUPE (DEC K) STANTN RETHTR SIGT2E SIJTZF WIDTH S 1 GMA TELEC THE TA RETH R REPF R 7.2E TAUW 512E ST2F T 25 X SN 12F × ŝ s

ORIGINAL PAGE R OF POOR QUALITY

)

.`

;

 $\mathbf{i}$ 

-58-

ZETA

ł

į

FIGURE 6 - NATA CODE OUTPUT - RES" "OIR CONDITIONS FOR TEST PROBLEM NO. 1 RVOIP CONDITIONS -

1

•

,

•

•

1

• • •

ť

1

+ 1 ļ

I

ļ

1

| GAS FLOW RATE    | ĸ  | 0.030    | LB/SEC               |
|------------------|----|----------|----------------------|
| NOZZLE - EGS     |    | 1.088    | INCH THRUAT DIAMETER |
| PRESSURE         | H  | 0.581    | ATM                  |
| TEMPERATURE      | R  | 6735.    | DEG K                |
| ENTHALPY         | 97 | 10875.   | BIU/LB               |
| ENTROPY          | ß  | 3+35     | BTU/LB-DEG R         |
| DENSITY          | h  | 0.00120  | LB/CU FT             |
| VELOCITY         | 8  | •0       | FI/SEC               |
| MASS FLUX        | ħ  | 0•0      | LB/SO FT-SEC         |
| COMPUTED FLOW    | ņ  | 0:000    | LB/SEC               |
| G AMMA           | H  | 1.406    |                      |
| MOLECULAR WEIGHT | H  | 14.23    | GM/MOLE              |
| ELECTRON DENSITY | H  | 3.580 14 | FLEC TRONS/CC        |
|                  |    |          |                      |

# SPECIES MOLE FRACTIONS

| 5+6500-04 | 2-6070-01 | ., 7110-05 | 4.7120-01 | 2.6440-01 | 2.5250-03 | 3.9180-04 | 1-0104   | 5.7113-05 | 1.4500-05 | 1.0 COD-07 |
|-----------|-----------|------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|------------|
| 1<br>10   | 22        | 20         | z         | ٥         | D<br>Z    | SON       | 9N<br>NG | 30        | N25       | 026        |

I G G#########ELAPSED TIML= 1.14 MINUTES SINCE START OF RUN. 67. SECONDS SINCE LAST PRINTED TIME

# RESERVOIN TRANSPORT PROPERTIES

| ISCOSITY     | 11   | 1.200-04 LBM/FT-SEC |
|--------------|------|---------------------|
| ANDIC NUMBER | H 11 | 3-190 00 MHD/CM     |
| EWLS NUMBER  | H    | 0.779               |

)

١

¢.

•

5

í

UTION FROZEN FLOW

"IN SOLUTION FOR TEST' PROBLEM NO. FIGURE 7 - NATA CODE OUTPUT - Fr

Ч

ţ

1

| ×       | ********* | F      | H | 6735. | I      |   | 10876. | ٩    | H | 5. BI 3D-01 | •       | 1.1970-03 |
|---------|-----------|--------|---|-------|--------|---|--------|------|---|-------------|---------|-----------|
| DIAM    | ********* | >      | ŋ | •0    | I      | H | 0.0    | ŝ    | R | 5 F * F     | CAMMA = | 1.406     |
| ARA TEF | *******   | REPF   | n | 0.0   | ¥Σ     | H | 16.23  | D W  | N | 1.2040-04   | SIGMA . | 3.1930 00 |
| ARAT    | ********  | DELSTR | H | 0•0   | THETA  | Ħ | 0.0    | *0   | H | 0.0         | TAUM .  | 0•0       |
| an      | ••••      | PRREF  | ļ | •••   | STANTN | n | 0.0    | RETH | N | ••          | RETHTR  | 200.      |
|         |           |        |   |       |        |   |        |      |   |             |         |           |

٢

|        |        | •      |    |           |          |            | •      |   |           |          |                   |
|--------|--------|--------|----|-----------|----------|------------|--------|---|-----------|----------|-------------------|
| H W    | 1.849  | >      | ĸ  | 1401.     | Σ        | . 0.206    | S      | Ħ | 3,35      | GAMMA    | 1.407             |
| 17EF = | 2 887  | REPF   | IJ | 1.3720 04 | "<br>A E | . 18.23    | MU     | 8 | 1.1960-04 | SIGMA .  | 3.1980 00         |
|        | 2.897  | DELSTR | 11 | -0.008    | THETA :  | . 0.013    | MO     | ¥ | 4.4810 02 | TAUN #   | 1.6250 00         |
| n      | 10872. | PRREF  | 11 | 0.6290    | STANTN - | - 2.540D-0 | Z RETH | H | 15.       | RETHTR = | 209.              |
| ท      | 10872. | PRREF  | #  | 0.6290    | STANTN = | - 2.5400-0 | 2 RE   | I | H H       | rh = 15. | TH = 15. RETHTR = |

ļ

| 1+1470-03 | 1.408   | 3.2020 00 | 1.9680 00 | 214.      |   |
|-----------|---------|-----------|-----------|-----------|---|
| •         | GAMMA . | SIGMA =   | TAUN .    | RETHTR =  |   |
| 5.4760-01 | 30.05   | 1.1870-04 | 3.4500 02 | 27.       |   |
| N         | Ħ       | H         | H         | Ħ         |   |
| ٩         | ŝ       | ŊW        | *0        | RETH      |   |
| 10798.    | 0.293   | 18,23     | 0.017     | 1.4130.02 |   |
| M         | W       | ų         | u         | *<br>Z    |   |
| I         | Σ       | 32        | THETA     | STANT     |   |
| 6619.     | 1980.   | 1.9120 64 | -0.011    | 0•5290    |   |
| Ħ         | 11      | n         | ۱<br>α    | Ħ         |   |
| +         | >       | REPF      | DELST     | PRREF     |   |
| -0.936    | 1.571   | 2.086     | 2.036     | 10862.    |   |
| H         | μ       | H<br>L    | ĸ         | IT        |   |
| ×         | DIAM    | ARATEI    | ARAT      | ¥-60      | - |

|           |           | Ţ           | R          | 7 <u>0</u><br>10 | INAL PA           | G           | E       | I<br>T    | SY        |   |
|-----------|-----------|-------------|------------|------------------|-------------------|-------------|---------|-----------|-----------|---|
| 1.1230-03 | 1.410     | 3.2060 00   | 2.2230 005 | 217.             | +                 |             | 114-1   | 3.2100 00 | 2.6230 90 |   |
| <b>π</b>  | GAMMA =   | SIGMA =     | TAUN #     | RETHTR =         |                   | ľ           | GAMMA = | SIGMA =   | AUW =     |   |
| 5+3130-01 | 3,35      | 1.1790-04   | 3.0960 02  | 36.              |                   |             | 3.6.35  | 1.1710-04 | 2,935D 02 | • |
| N         | 8         | N           | n          | H                | *                 | 1           | 8       | P         |           |   |
| ٩         | ¢î        | л<br>М<br>С | MO         | RETH             |                   | 1           | ¢       | ŊW        | MO        | 1 |
| 10759.    | 0 • 3 5 0 | 10.23       | 0.019      | 1.0590-02        | ****              | 10/20+      | 0.417   | 18.23     | 0.019     |   |
| H         | H<br>E    | H<br>M      | THETA =    | STANTN =         | • + + F &02EN + + | ļ           | ti<br>E | H<br>3 E  | THETA =   |   |
| 6562.     | 2423.     | 2.3080 04   | -0.012     | 0.6290           |                   | • • • 0 0 0 | 2797.   | 2.6250 04 | -0-013    |   |
| Ņ         | II        | Ħ           | H<br>C     | H                | *                 | n           | ¥       | R         | n<br>R    |   |
| ۲         | >         | REPF        | DELSI      | PRREF            |                   | -           | >       | REPF      | DFLS1     | ' |
| -0.714    | 1.436     | 1 - 7 4 1   | 1 • 7 4 1  | 10853.           | ****              | -0.575      | 1.351   | 1.542     | 1.542     |   |
| H<br>X    | E MAIC    | ARATEF =    | ARAT =     | II<br>II         |                   | n<br>×      | DIAM    | ARATEF =  | ARAT =    |   |

| И Ш 0.417 S = 3.35 GAMMA = 1.411<br>И Ш 18.23 МU Ш 1.1710-04 SIGMA = 3.2100 C<br>ГНЕТА № 0.019 ОМ = 2.9350 О2 ГАUW № 2.6230 О<br>STANTN № 8.88.40-03 RETH № 42. RETHTR = 220. | -0.575 T = 65(           | -0.575 T = 65(         | 1 650            | 650       | ň         | . 4 . | I        |    | 10720.    | ٩      | H | 5.1540-01 | <b>a</b> | 1.0990-03 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------------|-----------|-----------|-------|----------|----|-----------|--------|---|-----------|----------|-----------|
| ИИ Н 18.23 МU Н 1.1710-04 SIGMA E 3.2100 (<br>ГНЕТА Н 0.019 ОМ E 2.0350 02 ГАUV E 2.6230 О<br>STANTN H 8.884-0-03 RETH H 42. RETHTR E 220.                                    | : 1.351 V = 2797.        | 1.351 V = 2797.        | V = 2797.        | 2797.     | 797.      | Ĩ     | π<br>Σ   | 11 | 0.417     | ŝ      | H | 10 M + 22 | CAMMA -  | 114-1     |
| ГНЕТА # 0.019 04 # 2.035002 /AUV # 2.62300<br>Stantn # 8.8840-03 Reth # 42. Rethtr = 220.                                                                                     | - 1.542 REPF = 2.6250 04 | 1.542 REPF = 2.6250 04 | REPF = 2.6250 04 | 2.6250 04 | 2.6250 04 |       | 1<br>3 X | *  | 16.23     | л<br>М | Ŗ | 1.1710-04 | S IGMA   | 3.2100 00 |
| 5TANIN # 8.8840-03 RETH # 42. RETHTR = 220.                                                                                                                                   | • 1.542 DFLSTR = -0.013  | 1.542 DFLSTR = -0.013  | DFLSTR = -0.013  | -0-013    | -0.013    |       | THETA =  | м  | 0.019     | MO     | # | 2,935D 02 | - AUK    | 2.6230 90 |
|                                                                                                                                                                               | : 10844. PRREF = 0.6291  | 10844. PRREF = 0.6291  | PRREF = 0.6291   | 0.6291    | 0.6291    |       | STANTN # | Ħ  | 8.8840-03 | RETH   | Ħ | 42.       | RETHTR   | 220.      |

| R # 1.0750-0 | GAMMA = [.412 | SIGMA = 3.2140 0 | TAUW = 2.9420 0 | RETHTR = 222. |
|--------------|---------------|------------------|-----------------|---------------|
| 10-0666**    | 3+35          | 1.1520-04        | 2,8660 02       | 47.           |
| R            | n             | n                |                 |               |
| ۵            | ŝ             | Ņ                | ¥O              | RETH          |
| 10681.       | 0.455         | 18.23            | 0.019           | 7.9350-03     |
| 11           | Ħ             | Ħ                |                 | #<br>Z        |
| I            | Σ             | ¥                | THETA           | STANT         |
| 6446.        | 3125.         | 2.8910 04        | -0-014          | 0.5291        |
| н            | Ħ             | 11               | #<br>~          | Ħ             |
| •            | >             | REPF             | DELST           | PRREF         |
| -0.470       | 1.292         | 1.410            | 1.410           | 10836.        |
| #            | Ħ             | 1ł<br>14         | Ħ               | Ħ             |
| ×            | N I O         | ARATEN           | ARAT            | ũ             |
|              |               | )                |                 | )             |
Figure 8 shows the first page of output for the equilibrium solution. Here, the mole fractions are included because they vary along the flow. When the gas includes free electrons, the electron density in  $cm^{-3}$  is printed in place of the electron mole fraction.

In the nonequilibrium solution, the step size is often quite small. To avoid excessive output, the flow conditions are printed at intervals in the free stream temperature controlled by the input TPRNTI (Section 2.3, Group 2). The number of integration steps between successive printouts of the flow conditions is stated in the line of asterisks which separates the output for different flow points, as illustrated in figure 9, which shows the first page of output from the nonequilibrium solution for Test Problem No. 1. The method of calculation used in obtaining the conditions at the current flow point is also given by printing the value of the indicator, INEQ, which is 0 in the perturbation solution and 1 in the nonequilibrium integration.

When NATA is run with the preset value ISW6B=1, or with ISW6B= -1, the output includes the species mole fractions in every printed step as illustrated in figure 9. If ISW6B is greater than 1, the mole fractions are printed only every ISW6B th printed step. Also, if ISW6B is negative, the output of mole fractions is followed by a summary of reaction rate data as shown in figure 10. In this rate output, PI denotes the quantity  $P_i$  in equation (288) of Volume I; CHI is  $\chi_i$  of equation (289); PICHI is  $P_i \cdot \chi_i$ ; and DLG is d ln  $\gamma_i/dx$ , where  $\gamma_i$  is the concentration of the jth species in moles/g. The quantities  $P_i$ ,  $\chi_i$  and  $P_i \chi_i$ are listed for all of the reactions (i = 1 to r), together with the reaction index i. The quantity d ln  $\gamma_i/dx$  is listed for all the species together with the species names.

### 3.6 Model and Wedge Conditions

The conditions on models at a specified model point are printed immediately rollowing the flow conditions at the model point, as illustrated in figure 11. If both equilibrium and frozen shock calculations have been requested (FSTAG >0.), the model conditions for the case of the equilibrium shock are printed first. The species mole fractions at the stagnation point in the external flow over the model are then tabulated, and are followed by the model conditions for the case of a frozen shock. The output identifiers for the model conditions are defined in figure 5.

UTION. EQUILIBRIU'

FIGURE 8 - NATA CODE OUTPUT - EQUT' BRIUM SOLUTION FOR TEST PROBLEM NO. 1

:

Ļ

| X<br>D I AM<br>Aratef<br>Hr |             |                                     | T<br>V<br>REPF<br>Delestr<br>Prref | н н н н н<br>~ | 6735.<br>0.<br>0.0<br>0.0         |            | 10876.<br>0876.<br>18.23<br>0.00 |              | 0 N Z O Z N<br>D 3 M A<br>D 3 M A | * * * * * * | 5. 61 30-01<br>3.35<br>1. 2040-04<br>0.0 | R<br>Gama<br>Sigma<br>Taut<br>Rethtr | <br>1 • 1 970-0<br>1 • • • • • •<br>3 • 1 930 •<br>0 • 0<br>200 • |
|-----------------------------|-------------|-------------------------------------|------------------------------------|----------------|-----------------------------------|------------|----------------------------------|--------------|-----------------------------------|-------------|------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| 20<br>20<br>20<br>20        | \$4 \$1 \$2 | 3.5790 14<br>2.5250-03<br>1.0000-07 | N N<br>N U E                       | 17 H           | 5PECIES<br>2.6070-01<br>3.9180-04 | 5 MOLE 747 |                                  | 1010<br>1010 | n yo                              | <b>N N</b>  | 4. 71 20-01<br>5. 71 70-05               | 0<br>N 5 C                           | <br>2.6440-0<br>1.4500-0                                          |

ł

ļ

?

ļ

1

1

| 1.1700-03<br>1.406<br>3.1640 00<br>1.4490 00<br>210.                                             | 2.6470-01<br>1.4200-05                                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| # u h # #                                                                                        |                                                                                                  |
| R<br>Gamma<br>516ma<br>710ma<br>Ritht                                                            | 2<br>2 2<br>2 0                                                                                  |
| 5.6650-01<br>3.35<br>1.2020-04<br>4.2680 02<br>14.                                               | 4 • 6960-01<br>5 • 6200-05                                                                       |
|                                                                                                  | <b>B R</b>                                                                                       |
| 8<br>8<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2 0                                                                                              |
| 10842.<br>0.213<br>18.24<br>0.014<br>2.59 10-02<br>71005 10 THE FRI                              | 3.2970-05                                                                                        |
| ₩ ₩ ₩ ₩ ₩ ≪<br>₩ ₩ ₩ ₩ ₩ ≪<br>Z ₩<br>≪ ►                                                         | ,<br>,<br>,                                                                                      |
|                                                                                                  | 3<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 6721.<br>1305.<br>1.271D 04<br>-0.008<br>0.6291                                                  | 3, 8970-04                                                                                       |
| N U U U N<br>CC                                                                                  | M 91                                                                                             |
| T<br>V<br>REPF<br>DELST<br>PRREF                                                                 | NOC                                                                                              |
| -1.217<br>1.541<br>2.863<br>2.863<br>2.863<br>10873.                                             | 3.4590 14<br>2.5180-03<br>9.8240-08                                                              |
| н н н н н<br>Ц                                                                                   | 16 11 H                                                                                          |
| X<br>D I A<br>A R A T I<br>A R A T I<br>H R                                                      | F-<br>N0<br>026                                                                                  |

| 1.1440-03<br>1.406<br>3.1640 00<br>1.7660 00<br>214.                                                                              | 20 000-02<br>1 • 3000-02            |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| *****                                                                                                                             |                                     |
| А<br>Сака<br>5-гома<br>7-асма<br>7-асма<br>7-асма<br>7-асма                                                                       | 0<br>• N2C                          |
| 5.5200-01<br>3.35<br>1.2770-04<br>3.3140 02<br>26.                                                                                | 4 • 6807-01<br>5 • 52 37-05         |
| анинк<br>С                                                                                                                        |                                     |
| р<br>50<br>80<br>80<br>81<br>11<br>11<br>11<br>11<br>11<br>11                                                                     | zõ                                  |
| 10608.<br>0.302<br>18.76<br>0.018<br>1.4607-02<br>10NS IN THE FR                                                                  | 3. 2840-05<br>9. 6530-05            |
| ⊢<br>∪<br>₩₩₩₩₩≪<br>₩<br>₩₩₩₩₩<br>₩<br>₩                                                                                          |                                     |
| 0<br>1 2 2 2 2 1<br>2 4 2 2<br>7 4 1<br>7 4 4<br>7 4<br>7 | N J<br>O Z                          |
| 6706.<br>1847.<br>1.7580 04<br>-0.012<br>0.6291<br>5PFC(E                                                                         | 2.6330-01<br>3.8750-04              |
| иннин<br>Ст                                                                                                                       | ни                                  |
| т<br>К С<br>Обс 51<br>Раргр                                                                                                       | N O C<br>N O C                      |
| -0.926<br>1.566<br>2.971<br>2.671<br>2.671                                                                                        | 3.3420 14<br>2.5110-03<br>9.6480-08 |
| N II N II N<br>LL<br>LL                                                                                                           | # 11 11                             |
| C I A<br>A R A 1<br>A R A 1<br>H R                                                                                                | л<br>20<br>02<br>6                  |

| R = 1.1160-6<br>Gamma = 1.406<br>Sigma = 3.1640 0<br>Tauw = 2.0130 0<br>Rethtr = 217        | 0-000                               |
|---------------------------------------------------------------------------------------------|-------------------------------------|
| 5.3750-01<br>3.35<br>1.2020-04<br>2.9970 02<br>35.                                          | 4. 5540-01<br>5. 42 80-05           |
| ники<br>2<br>«                                                                              | N 11                                |
| е в в в в в в в в в в в в в в в в в в в                                                     | zõ                                  |
| 10774.<br>0.371<br>18.28<br>0.020<br>1.1020-02<br>10NS IN THE FR                            | 3.2700-05<br>9.4140-05              |
|                                                                                             | N N                                 |
| И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И<br>И | 0 5<br>N C                          |
| 6692.<br>2263.<br>2.1050 04<br>-0.013<br>0.6291<br>SPECTE:                                  | 2.6460-01<br>3.8540-04              |
| и и и и и<br><u>с</u> с.                                                                    | н н                                 |
| T<br>Repe<br>Dels<br>Prrei                                                                  | N N<br>N N<br>N N                   |
| -0.705<br>1.411<br>1.730<br>1.730<br>1.357                                                  | 3.2290 1.<br>2.5040-03<br>9.4750-08 |
| и п н н в<br>Ц.                                                                             | <b>H</b> H H                        |
| X<br>Dtam<br>Apate<br>Apat                                                                  | 1 Z C                               |

DRIGE AD PAGE IS DE POOR QUALITY

ţ

ļ

i

ł

)

FIGURE 9 - NATA CODE OUTPUT - NONEQ "", IBRIUM SOLUTION FOR TEST PROBLEM NO. 1

. . . .

|          | DCHMAX= 6+5750-02 | DCHMAX= 1.5230-01 | DCHMAX= 1.4010-01 | DCHMAX= 9.9450-02 | DCHMAX= 1.4010-01 | DCHMAX= 1.189D-01 |
|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| SOLUTION | 0-05              | 0-05              | 2-05              | 0-05              | 0-05              | 0-05              |
| 181      | 1.258             | 2.610             | 2.539             | 1.852             | 2.539             | 2.184             |
| NONEOULL | =N] MHDO          | =NI WHOO          | EN I MHOO         | DCH41N=           | =NI WHOO          | DCH4 IN=          |

in in

ທ່ານທ່ານ

| 1.2580-05 DСНЩ<br>2.61/0-с5 DСНЩ<br>2.53/0-05 DСНЩ<br>1.8520-05 DСНЩ<br>2.5340-05 DСНЩ<br>2.1840-05 DСНЩ | AX= 6.5750-02 IMA'= | AX= 1.5230-01 [MAX= | AX= 1.4010-01 [MAX= | AX= 9.9450-02 [MAX= | AX= 1.4010-01 [MAX= | AX= 1.189D-01 TMAX= |
|----------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                                                                                                          | 1.2580-05           | : 2+6100-05 0       | 2+5392-05           | 1.8520-95 0         | : 2.5397-05         | 2+1840-05           |

|           |        |      | 400810 FF |    |         |                   |        |         | *********   |        |       |           |          |        |
|-----------|--------|------|-----------|----|---------|-------------------|--------|---------|-------------|--------|-------|-----------|----------|--------|
|           |        |      |           |    |         |                   |        |         |             |        |       | 80-0066°8 | Ħ        | 026    |
| 1.0330-05 | •      | N26  | 5.2320-05 | μ  | 30      | 9 • 4 9 9 D - 0 5 | n      | 3N<br>S | 3.8190-04   | Ņ      | JON   | 2.3970-03 | H        | QN     |
| 2.6470-01 |        | 0    | 4.7030-01 | 2  | z       | 3+0740+05         | 4      | 02      | 2+6140-01   | H      | N 2   | 3.304D 14 | Ņ        | ۳.     |
|           |        |      |           | AM | FI STRE | TIONS IN THE FR   | FRACT  | S MOLE  | SPECIE      |        |       |           |          |        |
| 213.      | 1 A H  | RETH | 24.       | Ħ  | RFTH    | 1-5740-02         | u Z    | STAN    | 0 • 5 2 C 4 | ŧ      | PAREF | 10857.    | IJ       | ян     |
| 1.6970 00 |        | TAUM | 3,3400 02 | Ħ  | ¥O      | 0.018             | n<br>• | THET    | -0.011      | ॥<br>भ | DELST | 2.217     | Ŗ        | ARAT   |
| 3.1400 00 | •      | SIGM | 1.1990-04 | *  | 30      | 18.23             | Ħ      | X       | 1.6470 04   | n      | REPF  | 2.216     | 11<br>11 | ARATEN |
| 1.407     | #<br>< | GAMM | 3+35      |    | ŝ       | 0.271             | A      | £       | 1715.       | n      | >     | 1.620     | n        | DIAM   |
| 1.1510-03 |        | œ    | 5.5310-01 | Ħ  | ٥       | 10817.            | N      | I       | 6657.       | H      | +     | 100-0-    | H        | ×      |

| P = 5.2200-01 R = 1.0980-03 | S = 3.35 GAMMA = 1.408 | MU = 1.18AD-04 516MA = 3.0400 00 | 0W = 2.8580 02 TAUW = 2.3930 00 | RETH = 40. RETHTR = 219. | REE STREAM    | N = 4.6840-01 0 = 2.6520-01 | 06 = 5.0120-05 N26 = 1.2190-05 |     |
|-----------------------------|------------------------|----------------------------------|---------------------------------|--------------------------|---------------|-----------------------------|--------------------------------|-----|
| 10743.                      | 0.400                  | 18.26                            | 0.020                           | 9.3670-03                | TONS IN THE F | 2.8770-05                   | 8•809D-0 J                     |     |
| "<br>I                      | I                      | H MW                             | THETA =                         | STANTN =                 | S MOLE FRACT  | u 20                        | # 3N                           |     |
| 6600.                       | 2594 .                 | 2.3890 04                        | -0.014                          | 0.6301                   | SPEC1E        | 2.6300-01                   | 3.7110-04                      |     |
| H                           | Ħ                      | H                                | n<br>a                          | 11                       |               | Ħ                           | 11                             |     |
| 4                           | >                      | REPF                             | DELST                           | PRREF                    |               | N N<br>N                    | NOE                            |     |
| -0.597                      | 1.345                  | 1.541                            | 1.573                           | 10350.                   |               | 3.0270 14                   | 2.2990-03                      |     |
| Ħ                           | 11                     | łł<br>L                          | Ħ                               | 15                       |               | 11                          | 11                             | 1   |
| ×                           | DIAM                   | I ARATEF                         | CARAT                           | 1 I I                    |               | τ-<br>3                     | oz                             | 025 |

| 11         | -0.423     | F           | H | 6532.     | I         | Ħ    | 10681.    | ٩        | 4 | 4.9750-01 | œ     |         | 1.0590-03  |
|------------|------------|-------------|---|-----------|-----------|------|-----------|----------|---|-----------|-------|---------|------------|
| 11         | 1.272      | >           | n | 3125.     | Σ         | Ņ    | 0.485     | ŝ        |   | 3+35      | GAMMA |         | 1.410      |
| н<br>Ц     | 1.322      | REPF        | n | 2.8090 04 | Σ         | Ħ    | 18.27     | DW       | H | 1.1780-04 | SIGMA | H       | 2.9510 00  |
| IT         | 1.366      | DELSTR      | n | -0-014    | THETA     | Ħ    | 0-0-0     | MO       | Ħ | 2.0150 02 | TAUN  | H       | 2. A53D 00 |
| <b>9</b> 1 | 10836.     | PRREF       | H | 0.6301    | STANTN    | R    | 7.9140-03 | RETH     | # | 47.       | RETHT | #<br>ax | 223.       |
|            |            |             |   | SPECIE    | S MOLE FR | RACT | AT THE FR | EE STREA | W |           |       |         |            |
| H          | 2. P04D 14 | N Z.        | 4 | 2+6400-01 | 202       | ĸ    | 2.6670-05 | z        | N | 4.6740-01 | c     | H       | 2+6550-01  |
| n          | 2.1690-03  | <b>3</b> 0N | H | 3.6310-04 | NE        | Ħ    | 8.2041-05 | 30       | H | 4.8260-05 | NZC   |         | 1.1120-05  |
| И          | 7.2690-08  |             |   |           |           |      |           |          |   |           |       |         |            |

2. 9190 00 2. 9190 00 3. 4030 00 227. GAMMA SIGMA TAUW RFTHTR α 4.7220-01 3.35 1.1620-04 2.7320 02 53. MU Neth Reth ດທ 18.28 0.559 10614. n THETA III 3 3.1690 04 -0.015 0.6311 3619. 6454. REPE = DELSTR = PRREF = Ħ 11 > -0,282 1.210 1.1210 1.132 1.17 10821 Ð 11 -ARATEF P144 AGAT

111 5TANTN ≈ 6.9010+03 RETH 4 Species molf fractions in the frace stream

6 STEPSessessessessessessessessessessesses

1.0170-03

Ţ

ŗ

2-6580-01

0

4.6640-01

z

2.4410-05

H

20

2-5480-01

ĸ

∿i Z

2.5780 14

ا ليا a I

.)

 $\mathcal{D}$ н

ì

×

ļ

•

I

| -8.60-01                    | NOC        | -1.30 00 | 8.40-03 ND                              | -            | C-02 0       | . •                                         | z<br>0 0                 | 1. FD<br>2. 70 | 02<br>025 -  | • 30 - 05<br>• CD 00  | 26 -2<br>26 -2                                                                  |                  | 0-02-1        | ī :              | 1. ?<br> | 1.Cr C(        | 1               | 0 3<br>4 4                                   |
|-----------------------------|------------|----------|-----------------------------------------|--------------|--------------|---------------------------------------------|--------------------------|----------------|--------------|-----------------------|---------------------------------------------------------------------------------|------------------|---------------|------------------|----------|----------------|-----------------|----------------------------------------------|
| \$1-06°1                    | 26         | 4.10-09  | 5.40-10 25                              | 24           | 1 - 40-06    | C9 23                                       | 9.40-                    | 22             | 6.10-CB      | 21                    | 3 - 47 - 1 0                                                                    | 0                | ی<br>د<br>ا   | - Ury <b>-</b> 4 | 10       | 20-01          | ¢.              | G<br>                                        |
|                             | •          |          |                                         | n<br>-       |              | -                                           |                          |                |              | 4                     |                                                                                 | -                | -<br>-<br>    | ***              | -        |                | •               | <i>,</i>                                     |
| -1.00-06                    | 10 1       | -2.90-06 | -7+10-65 7                              | 9            | -1-20-06     | C7 5                                        | -2.00-                   | 4              | 5.20-11      | m                     | 5-53-56                                                                         | י<br>ה           | -07           | - (: a + 1 -     | -        |                |                 | P 1CH                                        |
| 7.70-01                     | 26         | 10-06-1  | 3.00-02 25                              | 24           | 1 . 4D-C 1   | C1 23                                       | 1.50-                    | 22             | 2-50-01      | 12                    | 10-02.2                                                                         | э                | -01 5         | - J • • K        | c<br>H   | 12-61          | -               | -<br>1 c                                     |
| -3.20-02                    | 17         | 2.33-01  | 1.20-01 16                              | 15           | R. CD-C1     | C 1 14                                      | 8.30-                    | 13             | 3. 60-62     | 12                    | 4 • in - C 2                                                                    |                  | : 25.         | - E . R D .      | 10       | 10 00          | · ·             | J                                            |
| -3.10 00                    | 60         | -3.3D OF | -3+30 00 7                              | s            | -3,30 00     | co 5                                        | -2,05                    | 4              | 2. 40 00     | •<br>•                | 2.77 00                                                                         | י<br>~           | 0<br>0        | (10 *2 -         | -        |                |                 | Гно                                          |
| 1.00-13 K K                 | 50         | 2.20-08  | 1.83-08 25                              | 24           | 1.00-05      | CP 23                                       | 6.1P-                    | 25             | 20-01-52     | 21                    | 4.40-10                                                                         | . 0              | -1 v 5        | 1.10-            | 61       | 50-00          | •<br>(4         | 15                                           |
|                             | ) <u>-</u> | 1.00-08  | 5.60-08 16                              | 2            |              | 07 14<br>07                                 | 2.70-                    | , n<br>-       | 4-10-04      | . 5                   |                                                                                 | <b>.</b>         |               |                  | - 0      | 40-0r          | -               | <u>,</u>                                     |
|                             | ٩          | 9-60-07  |                                         | ×            | 7 0 - 03 - E | TE DATA                                     | 4 1 0 0 1 1<br>- 0 0 - 7 | RF AC          |              | ٣                     | 70-C4-8                                                                         | ç                | <u>د</u><br>ر |                  | -        |                |                 |                                              |
| AU<br>AU                    |            |          |                                         |              |              |                                             | Y 0 110                  | 1              |              |                       |                                                                                 |                  |               | - C -            | 3640     | ทั             | Đ               | 02F                                          |
| P 00-0991 .0                |            | N 26     | 4.3080-05                               | Ħ            | 30           | 5040-05                                     | 5 <b>.</b>               | H              | 34           | 8760-04               | •<br>~                                                                          | *1               | N C E         | 10-1             | 4645     | -              | 81              | Û<br>Z                                       |
| 2.6670-04 1                 |            | •        | 4.644D-01                               | #            | z            | 5400-05                                     | •                        | 11             | 52           | 10-0369               | ~<br>~                                                                          | ¥1               | 51            | 41               | 7715     | -              | II              | ן<br>נו                                      |
| 7 <b>A</b><br>101           |            |          |                                         | Ŧ            | RFE STRFA    | IN THE F                                    | CTIONS                   | FRA            | IES VOLE     | SPI-C                 |                                                                                 |                  | ,             |                  |          |                |                 | •                                            |
| 10<br>10<br>10              |            |          | • • • • • • • • • • • • • • • • • • • • | I            |              |                                             | •                        | -              |              | 14 7D - C1            | - 4 -                                                                           | =<br>[]          | NSX.          | 10-0             | 4720     | , u.           | "               | i<br>z                                       |
| IG                          |            | RETHTO   |                                         | 1            | GE TH        | 4 2 4 D - D - D - D - D - D - D - D - D - D |                          |                | C T AN       |                       |                                                                                 | 1 11<br>4<br>- L |               |                  |          | 10751          | . 11            |                                              |
| R 0 022 • 2                 |            | SIGNA    | 1.1060-04                               | 8 1          |              |                                             | 6) <                     | H I            | 1            | 0610 04               | • (<br>                                                                         | " "              |               | _                | 1000     |                | H I             | 45.47F                                       |
| 1.420                       | -          | CAWAA    | 3,35                                    | Ħ            | ŝ            | .815                                        | 0                        | Ħ              | 2            | •                     | 5242                                                                            | μ                | >             | _                | 1.104    | -              | 11              | N 7 1 0                                      |
| <b>8</b> • 5693 <b>-</b> 04 |            | ۹<br>œ   | 3.7340-01                               | Ħ            | ٩            | •                                           | 10327                    | Ħ              | I            | •                     | 6066                                                                            | *1               | ۲             | _                | 0.030    | ĭ              | <b>\$</b> 1     | ×                                            |
|                             |            | ***      | + 2 STEPS+                              | * * *        | ****         | ****                                        | ורנפגוח                  | NE CU          | 04 * * * * * | * * * * *             | * * *                                                                           | * * *            | * * *         | * * *            | *        | *              | *               | <b>₩</b><br><b>₩</b><br><b>₩</b><br><b>₩</b> |
|                             |            |          |                                         |              |              |                                             |                          |                |              | 41 80-C1              | • £ •                                                                           | 1)               | ) NSX         | 10-              | C130     | 5              | "<br>(          | :<br>z                                       |
| 20,000,000                  |            | RETHTR   | 64.<br>64.                              | 1 H          | CE TP.       | 6260-03                                     | ີ ທ                      | ן וו<br>כ 2    | AATS STAN    | .6331                 |                                                                                 | । स<br>८<br>- ध  |               |                  | •        | 10775          | 1 1             |                                              |
| 2.5250 00                   |            | SIGMA    | 1.123D-04                               | <b>1</b> 1 ( | D I          | • 20                                        | 8                        | H 1            | 31           | 8770 C4               | • •                                                                             | (  1<br>C        | 1444          |                  |          |                | le i<br>Fr      | APATE                                        |
| 1.417                       |            | GAMMA .  | 3,35                                    | Ņ            | S            | .748                                        | 0                        | Ħ              | 2            | •                     | 4236                                                                            | It               | >             |                  | 1-120    |                | Ħ               | 2114                                         |
| 9.001D-04                   | -          | ۰<br>۲   | 3-9980-01                               | u            | ٩            | •                                           | 10409                    | 4              | I            | •                     | 61 <b>9</b> 2                                                                   | 61               | ►             |                  |          | ĭ              | 11              | ×                                            |
| 1=03N]+++++                 |            |          | + 2 STEPS                               | ***          | ***          |                                             | נרופמוח                  | NE CU          | 04++++       | * * * * *             | * * * * *                                                                       | * *              |               | * *              | *        | - u # # # # #  | *               | +++++++++++++++++++++++++++++++++++++++      |
| • 6 6 5 2                   | -          | 261419   | 010                                     | h            | H<br>H<br>H  | 9160-03                                     | ۰<br>۵                   | #<br>Z         | NATZ         | • 6341<br>0 2 29 - 61 | U •<br>M<br>I                                                                   |                  |               | - 01             | -1       | 0 4 0<br>- 4 - | ⊨ #             | ÷<br>z                                       |
| 4.4470 00                   |            | TAUW .   | 2.6530 02                               | 8            | ¥0           | . 620                                       |                          | #<br>¥         | THET         | .015                  | •                                                                               | н<br>Н Н         | 1) F F 2      | _                | CI.1     | -              | IJ              | APAT                                         |
| 2.6310 00                   |            | S IGMA   | 1.1370-04                               | M            | D<br>W       | • 29                                        | 18                       | H              | 32           | 668D C4               | , m                                                                             | 11               | RFPF          |                  |          |                | "<br>L          | APATE                                        |
|                             |            | CAMMA .  | 3.35                                    |              | . ທ          | • 684                                       |                          | 1              | 2            |                       | いてい                                                                             | . 11             | • >           |                  |          |                | : F:            | CIAN                                         |
| 9.4129-04                   |            | ۳<br>۵   | 4-2510-01                               | *            | ٩            |                                             | 10464                    | H              | I            | •                     | 19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | н                | ►             |                  | .126     | 1              | 4:              | ×                                            |
| 1=03N [ 90001               |            |          | • 2 STEPS+                              | *            | * * * * * *  | * * * * * * *                               | 1 L I PRI U              | NF CU          | 10N ** ** *  | *                     | * * *                                                                           | * *              | * * *         | *                | *        | * * * *        | *               | * *                                          |
| 830 <b>.</b>                | -          | RETHTR   | 57.                                     | H            | F 1          | 3230-03                                     | <u>ۍ</u>                 | n<br>Z         | STAN         | •6321<br>5180-01      |                                                                                 |                  | ) NS X        | -01              |          |                | р н<br><b>~</b> |                                              |
| 00 C+16 *2                  |            | TAUW     | 2.6860 02                               | 81           | 80           | .020                                        |                          | -              | THET         | • 015                 | 1                                                                               |                  | CFL S         |                  |          |                | . 11            | ARAT                                         |
| 1.413<br>2.7410 00          |            | CAMMA C  | 3,35<br>1 1550-04                       | H 1          | 5            | . 522                                       | 5 a                      | 8 1            | 2 3          | • 2 20 1 4            | 4034<br>4034                                                                    | •                | د د<br>د د    |                  |          | -              | n r             | 01 AV                                        |
| 9.7950-04                   |            | -<br>~   | 4 • 4 8 8 D - U 1                       | n            | ٩            | •                                           | 10551                    | n              | I            | •                     | 6374                                                                            | h                | ۲             |                  | 0.192    | ĭ              | "               | ×                                            |
|                             |            | 4        | PROBLEM NO. 1                           | TEST         | DATA FOR     | ON RATE                                     | REACTI                   | ו<br>ביי       | ODE OUTP     | NATA C                | RE 10 -                                                                         | DDI .            |               |                  |          |                |                 |                                              |
|                             |            | 1        |                                         |              |              |                                             |                          | ļ              |              | i                     | •                                                                               |                  |               |                  |          |                |                 |                                              |
|                             |            |          |                                         |              |              |                                             |                          |                |              |                       |                                                                                 |                  |               |                  |          |                |                 |                                              |

ļ

7

١

Ϊŧ.

ŗ

-64-

2

FIGURE 11 - NATA CODE OUTPUT - MODEL AND WEDGE CONDITIONS IN TEST PROBLEM NO. 1

;

•

۰.

:

٩ ••

>

ţ

ł

Ĩ

I

1

|           |           |           |           |             |                |             | •         |           |               |           |           |           |                |                |           |             |           |                |           |           |           |         |                                                                         |
|-----------|-----------|-----------|-----------|-------------|----------------|-------------|-----------|-----------|---------------|-----------|-----------|-----------|----------------|----------------|-----------|-------------|-----------|----------------|-----------|-----------|-----------|---------|-------------------------------------------------------------------------|
| 1.4420-06 | 1.545     | 9-04-02   | 2.1460-02 | 2319.       |                | 2.6890-01   | 1.0070-09 |           |               | 0.737     | 0.156     | 0.211     |                |                | 2.5650-01 | 2.0090-06   |           |                | 0.825     | 0.195     | 0.247     |         |                                                                         |
|           |           |           | K         |             |                |             | N         |           |               |           | Ħ         |           | •              |                | H         | Ħ           |           |                |           | N         | H         |         |                                                                         |
| ¢         | GAMMA     | STGMA     | TAUN      | RETHTR      |                | D           | N26       |           |               | LEE       | EPSLE     | DELREH    | 050            |                | 0         | NZE         |           |                | LEF       | EPSLF     | DELRFH    |         |                                                                         |
| 2.3700-05 | 10 m = 10 | 1.1400-05 | 4.7750-01 | 65 <b>.</b> |                | 4.6100-01   | 2.9030-05 |           |               | 1.0170-04 | 0.673     | 0.566     | 0.713          |                | 5.2870-01 | 2.4750-05   |           |                | 1.2350-04 | 0.704     | 0.572     | 0.619   |                                                                         |
| Ą         | 44        | 'n        | Ħ         | N           | ¥              |             |           |           |               | Ħ         |           | H         | Ņ              |                | H         | H           |           |                | #         | Ħ         | Ħ         | H       | *                                                                       |
| ٩         | ŝ         | )<br>M    | ×0        | RETH        | EE STREA       | z           | 30        |           | SHOCK         | MUT2E     | PRE       | DELREF    | H0 <b>a</b> te | OCK            | z         | 30          |           |                | MUT2F     | PAF       | DELRFF    | HRATF   | ELS****                                                                 |
| 6780.     | 10.941    | 16.32     | 0.433     | 2.1530-03   | IONS IN THE FR | 3.6470-06   | 1.4640-05 |           | - EQUILIBRIUM | 4.0280-03 | 1.6820 00 | 28.43     | 3.68           | EQUILIBRIUM SH | 2.3180-06 | 3+3940-05   |           | - FROZEN SHOCK | 3+9360-03 | 3.0160-01 | 28.10     | 4.57    | S ON WEDGE MOD<br>Cheng-kemp the                                        |
| •         | 4<br>2    | H AN      | THETA =   | STANTN =    | MOL FRACT      | 02 <b>=</b> | nc<br>N   |           | CONDITIONS    | P126 =    | S1GT2E =  | 0E SR 1 = | K 2 PFF        | RACTIONS -     | 02 =      | = JN        |           | CONDITIONS     | PT2F #    | 51GT2F =  | 0F SR 1 = | K2PFF # | ++CONDITION<br>MODIFIED<br>01 INCHES-                                   |
| 229.      | 14320.    | 1.811D 03 | 4.355     | 0.6495      | SPECIES        | 2.7000-01   | 3.9470-10 |           | MODEL         | 1.0030-05 | 17.52     | 2 • 67    | 6.07           | MOLE F         | 2.1390-01 | 1.8730-04   |           | MODEL          | 7.8890-06 | 18,32     | 3.86      | 8.20    | ######################################                                  |
| H         | H         | n         | H         | 11          |                | Ħ           | Ħ         |           |               | H         | Ħ         | H         | II             |                | H         | μ           |           |                | 11        | n         | n         | \$I     | r<br>X<br>X                                                             |
| ۲         | >         | REPF      | DELSTR    | PRREF       |                | NZ          | NOC       |           |               | R 72 E    | 4WT2E     | QEFF      | 0EHF<br>0      | 1              | N N       | <b>3</b> 0N |           |                | RT2F      | MWT2F     | QFFF      | QFHF    | ANT FOR                                                                 |
| 45.926    | 25.000    | 211.874   | 527.984   | 10000.      |                | 3.3150 1C   | 3.5940-06 | 11-0226-1 |               | 5354.     | 3.91      | 8e 33     | 18.94          |                | 1.3690 12 | 4.0970-04   | 5.3440-05 |                | 6956.     | 3.89      | 9.53      | 29+26   | FECTS SIGNIFIC                                                          |
| n         | Ħ         | 11        | Ħ         | H           |                | н           | H         | Ħ         |               | H         | #         | 11        | n              |                | 8         | Ħ           | 11        |                | ŧł        | fI        | H         | n       | 1<br>1<br>1<br>1                                                        |
| ×         | DIAW      | ARATEF    | ARAT      | ан          |                | Ē           | 0 z       | 026       |               | T 2E      | STRE      | OEFE      | OEHE           |                | E E       | ÛN          | 026       |                | T 2F      | STZF      | OFFE      | OFFE    | Ž15<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>2 |

| *******FEAD ING-ED 0 | F RADI | 105 = 0°3 | TS INCH. | ANGLE OF ATT | ACK = 15.0 | DE GREE S. | CAPITAL GAMM | A = 3.130 | 00. OMEGA = | 5 * 73D-01 + | *******  |
|----------------------|--------|-----------|----------|--------------|------------|------------|--------------|-----------|-------------|--------------|----------|
| X. (INCHES)          | H 1.   | 00 000    | 2.000 00 | 2.500 00     | 3.000 00   | 4.000 00   | 4.500 00     | 5.000 00  | 6.00D 00    | 7.000 00     | 8.000 00 |
|                      |        | 420-03    | 1.080-03 | 9.980-04     | 9.39D-04   | 8+580-04   | 8.290-04     | 8.050-04  | 7.660-04    | 7.370-04     | 7.130-04 |
| QWW (BTU/SQ FT-SEC)  | = 5.   | +10 012.  | 1.480 01 | 10 062.1     | 1.160 01   | 9.780 00   | 9.140 00     | 8.610 00  | 7.770 00    | 7.140 00     | 6+64D 00 |
| STANTCN NUMBER       |        | 10-040.   | 6+660-02 | 5.820-02     | 5.220-02   | 4.410-02   | 4.120-02     | 3.680-02  | 3+500-02    | 3.220-02     | 2.990-02 |
| DELSTW (INCH)        |        | 440-01    | 3.800-01 | 4.350-01     | 4.850-01   | 5.740-01   | 6.140-01     | 6+520-01  | 7.220-01    | 7.870-01     | R.460-01 |
| ZETA                 | н ,    | 260-03    | 1.450-02 | 1.820-02     | 2.180-32   | 20-006+2   | 3.270-02     | 3.630-02  | 4.360-02    | 2.000-02     | 5.810-02 |
| FREE-WOLFCULE        | LIMI   | _         |          |              |            |            |              |           |             |              |          |

!

--

Ţ

| *******             | 8.000 00    | 6.670-04  | 6+340 00           | 2+860-02       | 8.860-01      | 5.810-02  |
|---------------------|-------------|-----------|--------------------|----------------|---------------|-----------|
| 1 5.730-01+         | 7.000 00    | 40-016-9  | 6.82D 00           | 3.060-02       | 8.230-01      | 5.080-02  |
| 00. OMEGA =         | 6.000 00    | 7.200-04  | 7.440 00           | 3,350-02       | 7.550-01      | 4.360-02  |
| A = 3.050           | 5.000 00    | 7.590-04  | 8.26D 00           | 3.720-02       | A.80D-01      | 3.630-02  |
| APITAL GAMM         | 4.500 00    | 7.830-04  | R. 77D 00          | 3.950-02       | 6-400-01      | 3.270-02  |
| DEGREFS. C          | 4.00D CO    | 8.130-04  | 0° (10 * 6         | 4.240-02       | 5.970-01      | 2.900-02  |
| ACK = 15.0          | 3.000 00    | 8.93D-04  | 1.120 01           | 5.030-02       | 5.030-01      | 2.1 AD-02 |
| ANGLE OF ATT.       | 2.500 00    | 9.530-04  | 1.250 01           | 5.620-02       | 4.510-01      | 1.820-02  |
| 15 INCH.            | 2.000 00    | 1.030-03  | 10 024-1           | 6.457-02       | 3+920-01      | 1.450-02  |
| 24DIUS = 0.3        | 1.000 00    | 1.390-03  | 2.240 01           | 10-010-1       | 2.510-01      | 7.260-03  |
| 061 5               | H           | ۴,        | "                  | H              | 11            | "         |
| ******** EAD ING-FI | XE (INCHER) | PAR (AT4) | QWW (PTU/SG FT+SEC | STANTON NUMMER | DELST# (INCH) | 25TA      |
| ,                   |             |           | )                  |                |               | J         |

ELAPSED TIME IN MODEL AND WEDGE CALCULATIONS= 3. SECONDS

J

If calculations of conditions on wedge models have been specified in the input, the wedge results follow those for the stagnation point, as shown in figure 11. The message about merging effects refers to equation (510a) in Volume I (ref. 1). The results given under "modified Cheng-Kemp theory" are based on the formulas of Section 8.2.4 in Volume I. In particular, "capital gamma" is  $\Gamma$  as defined by equation (501) in Volume I, and "omega" is  $\Omega$  as given by (502). The output quantities XW, PWW, QWW, etc., in the table are defined in figure 5. The wedge results given under "unmodified Cheng-Kemp Theory" are based on the formulas of Section 8.2.3 in Volume I. The message referring to the strong-interaction approximation is based on equation (510b) of Volume I.

L

ł

### 3.7 Throat Conditions

Immediately following the frozen solution is a page of output summarizing the sonic conditions in the solution. The format is similar to that used in the output of reservoir conditions, except that the transport properties are omitted. A similar page giving the sonic conditions in the equilibrium flow solution follows that solution (figure 12). Since the equilibrium sonic conditions are needed for starting the nonequilibrium solution, they are computed and printed even when the equilibrium solution is suppressed E setting ISW3A = 0, if the nonequilibrium solution has been requested (ISW2A  $\neq$  0). The page containing the equilibrium sonic conditions also gives the coefficients  $\propto$  and C in the analytical area-density relation (equation (383) of Volume I) used in the upstream nonequilibrium solution by the inverse method.

### 3.8 Informative Messages

The normal forms of output, illustrated and discussed above, are sometimes interrupted with messages containing information of possible interest to the code user. For example, during the solution by the perturbation method, one line of additional output is printed for each step, giving the smallest  $|\delta \chi_i|$  (DCHMIN) the largest (DCHMAX), and the index IMAX of the largest  $|\delta \chi_i|$  (see Section 7.3 of Volume I (ref. 1)). This type of output is illustrated in figure 9.

When the switch from the inverse method to direct numerical integration is made (Section 7.4, Volume I (ref. 1)), subroutine

FIGURE 12 - NATA CODE OUTPUT - EQUILIBRIUM SONIC CONDITIONS FOR TEST PROBLEM NO. 1 3RIUM THRDAT CONDITIONS -

-

÷ ,

.

.

•

x

•

.\*

ł

;

ř

۱

1

I

ľ

:

БО Н

| GAS FLOW RATE    | 11 | 0:00     | LB/SEC               |
|------------------|----|----------|----------------------|
| NOZZLE - EOS     |    | 1.088    | INCH THROAT DIAMETER |
| PRESSURE         | u  | 0.336    | ATM                  |
| T EMPERATURE     | H  | 6446.    | DEG K                |
| ENTHALPY         | μ  | 10175.   | BTU/LB               |
| ENTROPY          | Ħ  | 3.35     | BTU/LB-DEG R         |
| DENSITY          | #  | 0.00074  | LB/CU FT             |
| VELOC ITY        | ł  | 5924.    | FT/SEC               |
| MASS FLUX        | H  | 4.375    | LA/SO FT-SEC         |
| COMPUTED FLOW    | H  | 0.030    | LE/SEC               |
| GAM4A            | #  | 1.405    |                      |
| MOLECULAR WEIGHT | 11 | 18.62    | GM/MOLE              |
| ELECTRON DENSITY | 8  | 1.740 14 | ELECTRONS/CC         |

.

SPECIES MOLE FRACTIONS

| 4 54 80 - 0 4 | 2+3850-01 | 3+0320-05 | A.3770-01 | 2.7050-01 | 2.3779-03 | 3.4670-04 | 5,9450-05 | 3.9500-05 | 9.1320-06 | 6. B030-08 |  |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|--|
| t<br>L        | NZ        | 02        | z         | c         | 0v        | 30N       | ы<br>Z    | 30        | N26       | 026        |  |

33. SECONDS SINCE LAST PRINTED TIME 

DENSITY FIT-ALPHA= 1.4419063D-01 CONSTANT= 2.5604746D-02

DRIGINAL PAGE IS DE POOR QUALITY

1

Ì ţ

,

ა

,

.

)

THRØAT is called to rescale the nozzle geometry so as to provide continuity of effective flow area between the two solutions. THRØAT prints a two-line message as illustrated in figure 13. The point at which this output is produced is neither the geometric throat nor the sonic point, but a location distinctly downstream of both. The variables given in this output are as follows:

- CX Axial coordinate in nozzle (cm)
- AMACH Mach number
- AFNX Effective area ratio,  $\widetilde{A}_{e}$ , based on the inverse method
- DLOGA d ln  $\tilde{A}_{p}/dx$
- Sl Effective area ratio, A<sub>e</sub>, based on the nozzle geometry and boundary layer displacement thick-ness
- S2  $d \ln A_{e}/dx$
- RSA Area rescaling factor,  $R_a = \tilde{A}_e / A_e$
- DELBL Nondimensional displacement thickness,  $\delta^*/R_0$  (two values in the case of a channel)

During the nonequilibrium integration, under certain circumstances, the code may "freeze" a species of very low concentration which is decreasing so rapidly that it controls the step size, by switching off all of the reactions in which it appears (Section 7.5.3 of Volume I). When this occurs, a message such as the one appearing at the bottom of figure 14 is produced.

The switch from the perturbation method to the nonequilibrium integration normally occurs where the largest  $|\delta \chi_i|$  is about 0.1. If one of the  $|\delta \chi_i|$  is very much larger than some of the others, it can cause the integration to start at a point where some of the reactions are very close to equilibrium. Should this occur, the step size required for stability of the finite difference equations would be too small to allow significant progress in the solution. Under certain circumstances (Section 7.3.7 in Volume I), NATA prevents such a premature startup of the numerical

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                        |             |                            |                                         |                                       |                    |                     |                                       |          |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|-------------|----------------------------|-----------------------------------------|---------------------------------------|--------------------|---------------------|---------------------------------------|----------|--------------------|
| M.M.         Column         Column <thcolum< th="">         Colum</thcolum<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H          | 1.045                  | F           | ≖ 51A7.                    | "<br>1                                  | 974                                   | ٥                  | = 2.1930-           | 01<br>8                               | H        | 5.88(              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B MAI      | 1.111                  | >           | = 7539.                    | "<br>Σ                                  | <b>ا</b> ر مک                         | S                  | е 3•35              | GAN                                   | E VNI    | 1.445              |
| NT         Control         Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATEF =     | 0.946                  | REPF        | = 4.548D 04                | "<br>*                                  | 18.30                                 | DW                 | * 9.756D-           | -05 SIG                               | WA W     | 1.7770 00          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT =       | 1 • 0 4 3              | DELSTR      | -0.016                     | THETA =                                 | 0*020                                 | MO                 | # 2.242D            | 02 TAL                                | = 2      | 7.0450 00          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #          | 10629.                 | PRREF       | = 0.6398                   | STANTN -                                | 4.7000-03                             | RETH               | = 74.               | RET                                   | HTR =    | 265.               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *          | 51 U0007               | N<br>Z      | 5PEC 45<br>2 5 5 7 0 - 0 1 | IS MULE FKA                             | ICTIONS IN THE FI                     | REE STREAM<br>N    | -0153-0             |                                       | •        | 2.6770-01          |
| 0       0.000-00       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •        | 6.7150-04              | 30 Z        | 1.7080-04                  |                                         | 4.0570-05                             | 30                 | = <b>0</b> -22+0-   | 02 N20                                |          | 2.5970-06          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>      | 8.6460-09              |             |                            |                                         |                                       |                    |                     |                                       |          |                    |
| Mr         1000         T         2007         Mr         2007         2007         Mr         2007 <td></td> <td>****</td> <td>***</td> <td>****</td> <td>JOUNON++++</td> <td>11. [3R] UM #######</td> <td>* * * * * * * *</td> <td>LS N 4444</td> <td>*****Sd3.</td> <td>****</td> <td>~1 ********</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | ****                   | ***         | ****                       | JOUNON++++                              | 11. [3R] UM #######                   | * * * * * * * *    | LS N 4444           | *****Sd3.                             | ****     | ~1 ********        |
| NUM         NUM <td>1</td> <td></td> <td>,</td> <td></td> <td>:</td> <td></td> <td>I</td> <td></td> <td></td> <td>I</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          |                        | ,           |                            | :                                       |                                       | I                  |                     |                                       | I        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H          | 650.0                  | - :         | - 2066 -                   | r:                                      | 9583.                                 | ۵.                 | = 2•072D-           | а <b>1</b> в                          | <b>H</b> | 5. 6570-04         |
| Mill         District         District <thdistrict< th="">         District         <thd< td=""><td></td><td>611•1<br/>100-1</td><td></td><td></td><td>1 H<br/>1<br/>2<br/>3</td><td>19293</td><td>n 1</td><td>10°4°0<br/>10°4°00</td><td></td><td></td><td>1.447</td></thd<></thdistrict<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 611•1<br>100-1         |             |                            | 1 H<br>1<br>2<br>3                      | 19293                                 | n 1                | 10°4°0<br>10°4°00   |                                       |          | 1.447              |
| IOLIA         MERGE         STERTE         MERGE         MERGE <t< td=""><td></td><td></td><td>DEL STD</td><td></td><td>THETA</td><td>0-0-0</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                        | DEL STD     |                            | THETA                                   | 0-0-0                                 |                    |                     |                                       |          |                    |
| X         1,100 11         N2         2,070-01         N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 10616.                 | PRREF       | = 0.640B                   | STANTN                                  | 4.624D-03                             | RETH               | T 75.               | RET RET                               | HTR =    | 267.               |
| 0       1       2.4770-01       02       2.4770-05       04       4.42170-03       02       2.47300-01         0       0.03150-03       NG       1.4500-03       NG       1.4500-03       NG       2.43700-01         0       0.03150-03       NG       1.4500-03       NG       1.4500-03       NG       2.43700-03         0       0.0375       T       5018.       N       5.4100-03       NG       5.43500-03         0       0.075       T       5018.       N       1.4300       0       0.0414       5.4350-03       0         0       0.075       T       5018.       N       1.4300       0       N       0.44110-03       0       0.0014       1.4300-03       0       0.44110-03       0       0.44110-03       0       0.44110-03       0       0.44110-03       0       0       0.44110-03       0       0.44110-03       0       0       0.44110-03       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                        |             | SPECTE                     | S MOLE FRA                              | CTIONS IN THE FI                      | REE STREAM         |                     |                                       |          |                    |
| 1       5.4107-05       NGC       1.45030-04       NC       3.43770-05       0.4.2170-05       NCC       2.3350-06         1       5.1107-05       NC       1.10500       MAXET       1.2000       0.0000       551       3.9500-03       5.3350-06       NC       2.3350-06         1       511       1.10500       S22       4.0000-01       S32       4.0000-01       S12       5.4300-03       5.13300       0.000       1.10500       NC       2.33500       0.000       1.10500       NC       1.10500       NC       1.10500       0.000       1.10500       NC       1.10500       0.000       NC       1.10500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H          | 7.146D 13              | NN          | = 2.6790-01                | "<br>20                                 | 4+6030-06                             | z                  | = 4.633D-           | 0 10                                  | M        | 2.6780-01          |
| WILL       Transmission       MACHE 1.200 00       MACHE 1.200 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H H        | 5.8140-04<br>6.9320-09 | NDC         | = 1.5630-04                | "<br>SN                                 | 3+8770-05                             | 90                 | = 4.217D-           | -05 N26                               | W        | 2.3520-06          |
| THENT (X: 1.765D-01       X:X: 1.0110 00       NLCK: 1.0010 0       NLCK: 1.0000-01       X:X: 1.0110 00       NLCK: 1.0000-01       X:X: 1.0110 00         S1: 1.065D 00       S2: 4.0000-01       X:X: 1.0110 00       NLCK: 1.0000-01       X:X: 1.0100-00       X:X: 1.01000-01       X:X: 1.0100-00         X: X: 1.0000       Y:X: X: 1.010       Y:X: X: 1.0000-01       X:X: 1.0000-01       X:X:X: 1.0000-01       X:X:X: 1.0000-01       X:X:X:X: 1.0000-01       X:X:X: 1.0000-01       X:X:X:X: 1.0000-01       X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:X:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          |                        |             |                            |                                         |                                       |                    |                     |                                       |          |                    |
| S1= 1-0600 00       52= 4-0090-01       63.4 9.4461-01       DELBL=-2-0460-02       3 STEPS       3 STEPS         AFF       1.007       V       7 701.       N       1.0007       N       1.4000-01       8.4390-04         AFF       1.007       V       7 701.       N       1.0007       N       1.4000-01       8.4390-04         AFF       1.007       V       T       7701.       N       1.0007       1.0000-01       8.4390-04         AFF       1.007       V       T       2.0000-01       N       1.0000-01       8.4390-09       1.0000-01       0.011       1.0000-01       0.011       1.0000-01       0.011       1.0000-01       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.01001       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.0111       0.0110       0.011       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | /// THRDAT CX=         | 1.7650-01   | AMACH= 1.320D              | 00 AF                                   | NX= 1.011D 00                         | DLOGA= 4           | 10-0460.            |                                       |          |                    |
| MM       #       0.075       T       = 5018,<br>= 1.007       M       #       0.075       T       = 5018,<br>= 1.007       M       #       9620,<br>= 1.001       B       #       #       9620,<br>= 1.001       B       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       # <td< th=""><th></th><th>51=</th><th>: 1.0680 00</th><th>S2= 4.009D</th><th>н 10-</th><th>:SA= 9.4640-01</th><th>DELBL=-2</th><th>•9860-02</th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 51=                    | : 1.0680 00 | S2= 4.009D                 | н 10-                                   | :SA= 9.4640-01                        | DELBL=-2           | •9860-02            |                                       |          |                    |
| ATEF       I.010       KEPF       I.010       MM       I.010       MM       I.010       I.0100       I.0100       I.0100       I.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H H        | 0 • 075<br>1 - 097     | ⊢ >         | = 5018.<br>- 7011.         | IS                                      | 9629.                                 | <b>c</b> v         | = 1.960D=<br>= 3.35 | 01 R<br>284                           | 4 H      | 5.4390-04<br>1.450 |
| M =       0.011       M =       0.021       M =       0.01       M =       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        | -           |                            | 1 I<br>E 3                              |                                       | 0                  |                     |                                       |          |                    |
| I (0655.       PREF = 0.4008       STATN = 4.3360-03       REH = 7.5       RE = 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                        |             |                            |                                         |                                       | 53                 |                     |                                       |          |                    |
| x       5.0680-01       NZ       z       2.6800-01       02       z       3.9150-05       N       z       2.6700-01         x       5.0680-04       NG       z       2.6800-01       02       z       3.9150-05       NZ       z       2.6700-01         x       5.6040-03       NG       z       1.4380-04       N       z       2.6000-05       NZ       z       2.6000-05         M       z       0.002       T       z       3.7150-05       NZ       z       2.6000-04         M       z       0.002       T       z       9.000       NZ       z       2.6000-04         M       z       0.001       N       z       0.001       NZ       z       2.6000-04         M       z       0.002       V       z       0.001       NZ       z       2.000-04         M       z       0.001       NZ       z       0.011       NZ       z       2.000-04         M       z       0.001       NZ       z       0.011       NZ       z       2.000-04         M       z       0.001       NZ       z       0.001       NZ       z       2.000-04 <td>:   </td> <td>10605.</td> <td>PRRE -</td> <td>- 0.6408</td> <td>STANTN</td> <td>4.4360-03</td> <td>RETH</td> <td>- 27.</td> <td>RET</td> <td>HTR =</td> <td>270.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :          | 10605.                 | PRRE -      | - 0.6408                   | STANTN                                  | 4.4360-03                             | RETH               | - 27.               | RET                                   | HTR =    | 270.               |
| Image: Solution in the solution in the solution in the solution of the solution |            |                        |             | SPECIE                     | S MOLE FRA                              | CTIONS IN THE FI                      | REE STREAM         |                     |                                       |          | •                  |
| E       5.0080-04       NGC       I.43380-04       NC       = 3.7150-05       GC       = 4.2100-05       NZC       = 2.1420-06         M       =       0.002       T       = 4942       H       = 9579       5       5       5       5       5       2       5       2       5       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b> 1 | 6.456D 13              | r<br>N N    | = 2.6800-01                | 02                                      | 3.8960-06                             | z                  | = 4.632D-           | 0                                     | N        | 2.6790-01          |
| AM       =       0.0002       T       =       49420       H       =       95790       P       =       3 STEPS       5.55000004         AM       =       1:105       V       =       49420       H       =       95790       P       =       5.5500004         AM       =       1:105       V       =       49420       H       =       1.307       S       =       1.305       GAMA       =       1.4505       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>11 1</td><td>5.0680-04</td><td></td><td>= I.438D-04</td><td>u<br/>Sz</td><td>3.7150-05</td><td>30</td><td>= A.210D-</td><td>05 N26</td><td>H</td><td>2.1420-06</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 1       | 5.0680-04              |             | = I.438D-04                | u<br>Sz                                 | 3.7150-05                             | 30                 | = A.210D-           | 05 N26                                | H        | 2.1420-06          |
| AM       =       0.002       T       =       4942.       H       =       9579.       P       =       1.0653D-01       R       =       5.2500-04         ATEF       1.105       V       =       8057.       H       =       1.367       5       5.2500-04         ATEF       1.105       V       =       8057.       M       =       1.367       5       5.2500-04         ATEF       1.0105       V       =       8057.       0.017       HETA       1.367       0.011       =       1.5510       0         AT       =       1.033       PEFF       =       -0.017       THETA       1.8.30       0       1.45510       0       5.2910       00         AT       =       1.0505.       PEFF       =       -0.017       THETA       1.8.30       0       1.45510       0       2.210       0       2.210       0       2.210       0       2.210       0       2.210       0       2.210       0       2.210       0       1.45510       0       2.210       0       2.210       0       2.2600-01       1.455       2.2600-01       1.455       2.2600-01       2.6000-01       2.6000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                        | ***         | *******                    | ****ONE 00                              | ILIBRIUM++++++                        | * * * * * * * * *  | **** 3 51           | ****Sdu                               | ****     | V] *********       |
| AM       1.367       5       1.367       5       1.367       5       1.0000       1.0000         AT 5       1.034       7       1.035       7       1.035       7       1.035       1.035       1.055       1.055       0.017       1.014       1.055       0.010       1.055       0.017       1.014       1.055       0.017       1.016       0.021       0.01       1.055       0.017       1.016       0.021       0.01       1.055       0.017       1.055       0.017       1.055       0.017       0.017       1.055       0.011       1.055       0.017       0.017       0.017       0.016       0.017       0.016       0.017       0.016       0.011       0.011       0.017       0.016       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.011       0.0105       0.0105       0.011       0.011<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                        | •           |                            | :                                       |                                       | c                  |                     | i                                     | I        |                    |
| ATEF = 1:034 REPF = 4.4940 04 WW = 18.30 WU = 9.4120-05 SIGMA = 1.5510 00<br>AT = 1:032 7ELSTR = -0.017 THETA = 0.021 0W = 1.9950 02 TAUW = 2.72.<br>= 10595. PAREF = -0.017 THETA = 0.021 0W = 1.9950 02 TAUW = 2.72.<br>= 5.8700 13 N2 = 2.6610-01 72 = 3.3250-03 NEFTH = 78. RETHTR = 2.72.<br>= 4.6310-01 0 = 2.6600-01<br>C = 3.3250-04 NC = 3.3250-05 NC = 4.6310-01 0 = 2.6600-01<br>C = 3.5540-05 NC = 3.5540-05 NC = 1.9610-06<br>AT = 1.115 V = 8216. H = 9528. H = 1.7600-01 R = 1.9610-06<br>AT = 1.115 V = 8216. H = 18.30 MU = 9.2670-05 SIGMA = 1.455<br>AT = 1.153 RFPF = 4.6410 04 MW = 18.30 MU = 9.2670-05 SIGMA = 1.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •        |                        | - >         |                            | 5 H                                     | 1.367                                 | LV                 |                     |                                       |          | 1.452              |
| AT       =       1.032       7LLSTR =       -0.017       THETA =       0.021       0M       =       1.9950       02       TAUW       #       6.2910       00         =       10595.       PAREF       =       0.6417       STANTN =       A.387D-03       RETH       =       78.       RETHTR =       272.         =       5.8700       13       N2       =       2.6810-01       72       =       3.3250-06       N       #       4.6310-01       0       #       2.75.         E       4.5110-09       I       1.3250-03       NE       =       3.5540-05       N       #       4.6310-01       I       2.56800-01         E       4.5110-09       I       I.32550-06       N       I       4.6040-05       NZ       I       1.99610-06         E       4.5110-09       NZ       I       4.6040-05       NZ       I       I.99610-06       I       I       4.6040-05       I       I.99610-06       I       I.99610-06       I       I.99610-06       I       I       I.99610-06       I       I.99610-06       I       I.99610-06       II       II       II       II       II       II       II       II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATEF =     | 1.034                  | REPF        | = 4.494D 04                | 11<br>3<br>2                            | 18.30                                 | DW                 | = 9.412D-           | 01S S0                                | -        | 1.5510 00          |
| =       10595.       PAREF       =       0.6417       STANTN =       4.3870-03       RETH       =       79.       RETHTR =       272.         =       5.8700 13       N2       =       2.6810-01       72       =       3.3250-06       N       HE FREE STREAM       4.6310-01       0       #       2.6600-01         =       5.8700 13       N2       =       2.6610-01       72       =       3.3550-06       N       #       4.6310-01       0       #       2.6600-01         E       =       3.5560-05       DC       #       3.5560-05       DC       #       4.6310-01       0       #       2.6600-01         E       =       4.6110-07       #       3.5560-05       DC       #       4.2040-05       N2C       #       1.0610-06         F       =       4.6110-07       #       3.5560-05       DC       #       4.2040-05       N2C       #       1.0610-06         F       =       0.111       T       #       #       9528.       P       #       1.4004       S       #       1.4050-01       N       #       1.4050-05       N1       1.4050-05       0.700-05       0.700-05       0.700-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AT =       | 1.032                  | JELSTR :    | -0.017                     | THETA =                                 | 0.021                                 | HO                 | = 1.9950            | 02 TAU                                | *        | 6.291D 00          |
| Image: Second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11         | 10595.                 | PARF :      | = 0.6417<br>sperre         | STANTN =                                | 4.3870-03                             | RETH<br>Dec etoeam | = 78.               | RET                                   | HTR =    | 272.               |
| E = 4.5110-09 NOE = 1.3250-04 NE = 3.5540-05 DE = 4.2040-05 N2E = 1.9610-06<br>E = 4.6110-09 N2E = 1.9610-06<br>A. = 0.111 T = 4862. H = 9528. P = 1.7660-01 R = 5.0570-04<br>A. = 1.115 V = 8216. H = 18.30 MU = 9.2670-05 SIGMA = 1.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | 5.8700 13              | 02          | 3-6810-01                  | 2 M C C C C C C C C C C C C C C C C C C | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    | -0114-4             | 5                                     | ł        | 2. 6800-01         |
| C       = 4.6110-69         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 4 • 3 2 0 - 0 • 0      | N 0 6       |                            | NE I                                    | 3+5640+05                             | 20                 | -04040<br>          | 05 N26                                | 1 11     | 1.9610-06          |
| = 0.111 Т = 4862. Н = 9528. Р = 1.7660-01 R = 5.0570-04<br>Ак = 1.115 V = 8216. М = 1.404 S = 3.35 GAMA = 1.455<br>Атег = 1.653 RFPF = 4.4840 04 Ми = 18.30 МU = 9.2670-05 SIGMA = 1.4710 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1          | 6 - 21 1 0 - C 0       | *******     | ********                   | ****ONE QU                              | 1 L [8 R ] UM+++****                  | ****               | 1.5 E               | ***<br>***<br>Sdu                     | ***      | 7                  |
| E 0-111 T E 4862. H E 9528. P E 1.766D-01 R E 5.057D-04<br>AN E 1.115 V E 8216. M E 1.404 S E 3.35 GAMA E 1.455<br>ATEF 1.653 RFPF E 4.484D 04 MW E 18.30 MU E 9.267D-05 SIGMA E 1.471D 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                        |             |                            |                                         |                                       |                    |                     |                                       |          |                    |
| AK H 1.115 V H 8216. M H 1.404 S H 3.35 GAMA H 1.455<br>ATER 1.1.053 RFPF H 4.4840.04 MV H 18.30 MU H 9.2670-05 SIGMA H 1.4710.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11         | 0.111                  | -           | - 4862.                    | I                                       | 9528.                                 | ¢                  | = 1.766D-           | 01 R                                  | H        | 5.0570-04          |
| ATEF = [.C33 RFPF = 4.4840.04 MW = IN.30 MU = 9.2670-05 SIGMA = 1.4710.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 V V V    | 1.115                  | "<br>> 1    | = 8216.                    | Σ                                       | 1.404                                 | s                  | 3.35                | C C C C C C C C C C C C C C C C C C C | H V      | 1.455              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATEN 8     | 1.03                   | 11<br>1     | 10 01554 to 5              | H N E                                   | 10.50                                 | 5<br>¥             | -0102.06            | <b>710 GD</b>                         |          | 1.4710 00          |

1

. ? 1 ŗ

1 |

> ۱ ۲

:

1

1

. . .

ţ

;

••••

;

;

| IAM       1.523.       1.523.       1.523.       1.523.       1.523.         RATEF       7.290       7.290       7.290       7.590       1.6633       0.033       1.515.         R       1.501012       N2       7.590       7.590       7.590       0.033       1.515.         -       1.501012       N2       2.5657-00       0.033       1.515.         -       1.50112       N2       2.56570-00       0.0548       0.0648         2.25507-10       2.25507-10       0.0112       0.043       0.010         2.2<5070-10       0.012       1.3053       0.0048       1.1         2.2<5070-10       0.012       1.3053       1.1       0.0048       1.1         2.2<5070-10       0.012       1.3053       1.1       0.0048       1.1         2.2<5070-10       0.012       0.0051       0.0048       1.1       0.0048       1.1         2.1<100-00       0.014       0.0048       1.4470       0.0048       1.1       0.0048       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.0051       0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ĸ                    |                             |             |                   |            |          |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-------------|-------------------|------------|----------|-----------------------------|
| IAM       1.000       V       12981.       1.000       M         Rater       1.000       0.003       0.003       0.003       0.003         C       2.000       0.003       0.003       0.003       0.003         C       2.000       0.003       0.003       0.003       0.003         C       2.000       0.004       0.003       0.003       0.003         C       2.000       0.004       0.004       0.004       0.004         C       2.000       0.004       0.004       0.004       0.004         C       1.014       0.004       0.004       0.004       0.004         RA       1.014       0.004       0.004       0.004       0.004         RA       1.014       0.004       0.004       0.004       0.004         RA       1.014       0.004       0.004       0.004       0.004         C       2.1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 7510.                       | ,,<br>D     | 5.0530-0          | υ<br>α     | R        | 4.6230-05                   |
| RATEF       7.200       7.290       7.290       98.653       71         RAT       1.3010       0.0548       0.0548       59.570-01       02         2       1.5010       12       N2       2.6970-01       02         2       1.5010       12       N2       2.6970-01       02         2       2       2.5070-10       02       2.1920-08       N6         2       3       2       2.5070-10       02       02         2       3       2       2.5070-01       02       02         2       3       3       3       3       3       3         2       3       3       3       3       3       3         2       1014       3       3       3       3       3         2       1014       3       3       3       3       3       3         2       1014       3       3       3       3       3       3       3         2       1014       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | И                    | 3.876                       | ۍ<br>۳      | 3035              | GAMMA      | H        | 1.512                       |
| MT       R.065       DELSTR       0.033       T1         N       SPECTES       0.033       SPECTES       NM         A       13.235       V       13.55640       DA       NM       SPECTES       SPECTES       SPECTES       SPECTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "                    | 18.32                       | ۳<br>۳      | : 3.6520-0        | SIGMA      | ĸ        | 6.5330-01                   |
| x       10156.       PRREF       0.6688       59         x       1.501012       N2       2.5070-01       00         x       2.5070-10       NC       2.5070-01       0         x       2.5070-10       NC       2.5070-01       NC         x       1.501       12       N2       2.5070-01       NC         x       1.501       12       N2       2.5070-01       NC         x       1.101       1.101       1.100       NC       N         x       1.101       1.100       NC       N       N         x       1.100       NC       1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HETA =               | 0.074                       | T AO        | - 1.7590 0        | TAUM       |          | 7.6730-01                   |
| C       1.501D 12       N2       2.6507D-01       00       2.1920-09       N0         C       2.5507D-10       N0       2.1920-09       N0       2.1920-09       N0         ANTEF       2.5507D-10       N0       2.1920-09       N0       2.1920-09       N0         ANTEF       2.5507D-10       N0       2.5507D-10       N0       2.1920-09       N0         ANTEF       3.238       Y       1.153       Y       1.15059       M       M         ANTEF       1.014*       0.6488       Y       1.15059       M       M       M         ANTEF       1.014*       0.6488       Y       1.15059       N       Y       M       M         ANTEF       1.014*       0.6488       1.4700-09       N       Y       M       M         ANTEF       1.014*       1.1375       1.4700-09       N       Y       M       M         ANTEF       2.39500-10       12       Y       Y       Y       Y       Y       Y         ANTEF       2.39500-10       12       Y       Y       Y       Y       Y       Y         Y       Y       Y       Y       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANTN #              | 2.7260-03                   | RE TH       | - 102.            | RETHT      | n<br>Cz  | 477.                        |
| M       1.5010 12       N2       2.50070-01       00       2.50070-01       00         M       2.50070-10       N0C       2.50070-01       00       00       00       00         M       3.5010       1.433       T       1.1513       M       M       M         ATEF       3.5070       0.5070       00       0.000       1.1554       M         ATEF       3.235       V       1.15147       0.6040       M       M         ATEF       1.3670       12       N2       2.6470-01       00       00         C       1.10147       0.6488       0.6488       1.4700-08       00         C       2.2170-06       N1       1.1470       0.6488       1.1         C       2.2170-06       N1       1.1470       0.6488       1.1         C       2.2170-06       N1       1.1470       0.6051       0.6488       1.1         M       2.2170-06       N2       2.26801-10       0.6051       0.6488       1.1         M       1.1375       1.1470       0.6051       0.6051       0.6488       1.1         M       2.21010       0.2       1.1475       0.6488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DLE FRACT            | IONS IN THE FR              | REE STREAM  |                   |            |          |                             |
| 1     2.2640-06     NOC     2.1920-08     NC       1     2.5070-10     NC     2.1920-08     NC       1     2.5070-10     11000     11000     11000       1     1.945     1.945     11000     11000       1     1.945     1.945     11000     11000       1     1.945     1.945     11000     11000       1     1.945     1.945     1.945     11000       1     1.945     1.945     1.945     11000       1     1.945     1.9470     1.9470     11000       1     1.945     1.9470     1.94740     11000       1     1.945     1.94740     1.94740     11000       1     1.945     1.94740     1.94740     1.94740       1     1.945     1.94740     1.94740     1.94740       1     1.945     1.94740     1.94740     1.94740       1     1.945     1.94740     1.94740     1.94740       1     1.945     1.94740     1.94740     1.94740       1     1.945     1.94740     1.94740     1.94740       1     1.945     1.94740     1.94740     1.94740       1     1.9454     1.94440     1.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #<br>~               | 1.5450-06                   | z           | = 4.614D-C        | 0          | n        | 2.6880-01                   |
| AM = 4.183 T = 1453.<br>ATEF = 7.945 REPF = 13059.<br>ATEF = 7.945 REPF = 13059.<br>ATE = 10147.<br>= 10147.<br>ATE = 0.6488 SIT<br>= 10147.<br>AM = 2.2170-06 NJC = 1.4700-08 NG<br>= 2.3960-10 NC = 2.6970-01 02<br>ATE = 8.2 REPF = 1.4700-08 NG<br>ATE = 2.3960-10 NC = 13145.<br>AM = 3.423 V = 13145.<br>ATE = 9.80 NG = 1.4700-08 NG<br>ATE = 9.80 NG = 1.4700-08 NG<br>ATE = 9.3960-10 NG<br>= 2.9680-06 NG<br>= 2.9680-10 NG<br>= 2.9680-10 NG<br>= 2.9680-10 NG<br>= 2.9680-10 NG<br>= 2.9680-10 NG<br>= 2.9680-00 NG<br>= 1.0051 NG<br>= 1.0051 NG<br>= 1.0051 NG<br>= 1.0050 NG<br>= 1.0051 NG<br>= 1.0050 NG<br>= 1.0 | H<br>6)              | 2.0690-05                   | 30          | - <b>4</b> 0930-0 | 5 N26      | M        | <b>4 • 01</b> 30-0 <b>4</b> |
| AM       1453       1453       1453       M         ATEF       7.945       REPF       13059       M         ATEF       7.945       REPF       115540       M         ATEF       10147       9.859       DFLSTR       0.6483       S)         ATEF       10147       9.859       DFLSTR       0.6483       S)         B       10147       9.859       DFLSTR       0.6483       S)         C       10147       0.6483       S)       S       S         C       10147       DFLSTR       1.4700-03       M       M         C       2.3950-10       DFLSTR       1.4700-03       M       M         A       2.3950-10       DFLSTR       1.4700-03       M       M         A       2.3950-10       DFLSTR       1.4700-03       M       M         A       3.423       Y       Y       1.4700-03       M       M         A       3.423       Y       Y       1.4700       M       M         A       1.4700       Y       1.4700       Y       Y       Y       Y         A       Y       Y       Y       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • NONE ON I L        | 18R1UM*******               | *****       | 1484 4 STE        | ######\$Sd | * * * *  | ~ ] * * * * * * * * *       |
| ATEF =       3.233       V       = 13059       M         ATEF =       7.945       REPF =       1.5640       040       T1         I =       1.3670       12       N2       =       5560       040       N         I =       1.3670       12       N2       =       2.6470       06       N         I =       1.3670       12       N2       =       2.6570       06       N         I =       1.3670       12       N2       =       2.65970       06       N         I =       2.23960       12       N2       =       1.4700       08       N         A       3.423       V       =       1.4700       06       M       N         A       3.423       V       =       1.4700       08       N       N         A       3.423       V       =       1.4700       08       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                    | 7470-                       | ٩           | A. 3970-0         | ¢          | н        | 4.2160-05                   |
| ATEF = 7.945 REPF = 0.040 04 MM<br>ATEF = 7.945 REPF = 0.040 04 MM<br>= 10147. 0.040 12 M2<br>= 2.53170-05 M2 = 2.6977-01 02<br>2.23170-05 M2 = 2.6977-01 02<br>ATE = 2.3967-10 M2 = 1.4700-08 M6<br>ATEF = 3.423 V = 1315. M<br>ATEF = 3.423 V = 1315. M<br>ATEF = 0.6488 S1<br>= 10137. DPREF = 1.4740 04 MW<br>= 2.2580-10 02 = 0.051 07<br>= 2.2580-10 02 = 0.051 07<br>ATEF = 0.6488 S1<br>= 10137. DPREF = 1303. M<br>ATEF = 0.65488 S1<br>= 10137. DELETF = 0.65488 S1<br>= 10128. DELETF = 0.65488 S1<br>= 10128. S1<br>= 10000 S1<br>= 10                       | 1                    |                             | . u         |                   | THE STANKS |          | 1.513                       |
| AT       =       0.6488       5         AT       =       10147.       PRREF       0.6488       5         E       1.367D       12       N2       =       2.697D-01       02         E       1.367D       12       N2       =       2.697D-01       02         E       2.217D-06       N1C       =       2.697D-01       02         E       2.396D-10       N1C       =       2.697D-01       02         AM       =       2.396D-10       N1C       =       1.470D-08       N6         A       =       3.4537       T       =       1.375.       M         ATEF       =       3.4537       T       =       1.375.       M         ATEF       =       3.423       V       =       1.1474D       04       M         ATEF       =       0.6488       51       0.6488       51       0.6488       51         ATEF       =       1.0137.       PRREF       =       0.66488       51         E       1.0137.       PRREF       =       0.66488       51       0.6         E       2.1680-06       N2       =       2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                   | 18.32                       |             | 3.5210-0          | S SIGWA    | 41       | 6.4350-01                   |
| I       10147.       PRREF       0.6488       57         I       1.3570       12       N2       I       2.6970-01       02         I       2.62170-06       N7L       I       2.6970-01       02         I       2.6350-10       N2       I       2.6970-01       02         I       2.6350-10       N2       I       2.6970-01       02         AM       I       2.6970-01       02       N8         AM       I       3.4537       T       I       1.4700-08       N8         AM       I       3.423       V       I       1.4740       N8         ATEF       I       3.423       V       I       1.375.       M         ATEF       I       0.537       I       I       1.4740       M         ATEF       I       0.550       I       I       0.6488       51         I       I       I       I       I       I       I       I       I         I       I       I       I       I       I       I       I       I       I       I         I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HETA =               | 0.078                       | - <u>A</u>  | = 1.594U 0        | I TAUW     |          | 6.996D-01                   |
| C       1:3670 12       N2       2:6970-01       02         C       2:2170-06       N16       1:4700-08       N6         C       2:2170-06       N16       1:4700-08       N6         AM       2:2170-06       N16       1:4700-08       N6         AM       2:25010       1:4700-08       N6         ATEF       3:423       V       11:4740       04         ATEF       9:493       DELSTP       0:051       TH         ATEF       2:10137       PPREF       1:4740       04       N9         ATEF       8:       2       REPF       1:4740       04       N9         ATEF       9:6493       1:4740       04       N9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I NINAL              | 2.6930-03                   | RFTH        | - 102.            | RETHT      | ax<br>II | 489.                        |
| AM       I • • 3670 12       N2       I • • 4700-08       N0         I       2 • • 3960-10       N1       I • 4700-08       N0         AM       I       3 • • 537       T       I • 4700-08       N0         AM       I       3 • • 537       T       I • 4700-08       N0         AM       I       3 • • 537       T       I • 4740       04       M1         ATEF       I       • - 9.893       S1       V       I • 1375.       M       M         ATEF       I       • - 9.893       DELSTP       I • 1375.       M       M1       M1         ATEF       I       • 9.893       DELSTP       I • 1.4740       04       M1         ATEF       I       0.137.       PPREF       I • 1.4740       04       M1         I       I 0137.       PPREF       I • 1376.       I • 1400       I • 1400       I • 1400       I • 1400       I • 1307.         I       I = 10137.       I = 1000       I = 1000       I = 1307.       I = 1307.       I = 1307.         I       I = 10127.       I = 1307.       I = 1307.       I = 1307.       I = 1307.         I       I = 10006       I = 1307. <t< td=""><td>DLE FRACT</td><td>IDNS IN THE FR</td><td>REE STREAM</td><td></td><td>•</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DLE FRACT            | IDNS IN THE FR              | REE STREAM  |                   | •          |          |                             |
| C       2.33500-100       T         AM       =       2.33500-100       T         AM       =       3.4537       T       H         ATEF       =       3.4537       V       =       13145.         ATEF       =       0.6051       T       H         ATEF       =       0.6051       T       T         ATEF       =       0.66488       S       M         I       10137.       PPREF       0.66488       S         I       I       2.25680-10       0       N       S         I       I       2.25680-10       I       0.6531       N         I       I       I       2.25680-10       I       0.5410-00       N         I       I       I       I       0.5410-00       N       N         I       I       I       I       I       I       I         I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n n                  | 2-0660-05                   | z Č         |                   | N N SE     | И Н      | 2.7080-09                   |
| AM       =       4.537       T       H       1375.       H         ATEF       =       3.423       V       =       1375.       H         ATEF       =       3.423       V       =       1375.       H         ATEF       =       3.423       V       =       13145.       H         ATEF       8.       2       REPF       =       13145.       H         ATE       9.6998       06117.       0.051       TH       0.051       TH         ATEF       =       10137.       0.0548       =       0.6488       51         =       10137.       0.02       =       2.6570-01       02       02         =       1.2250       N2       =       2.6560-06       N0       =       9.5410-09       N6         =       2.25600-10       N2       =       2.5680-10       02       0.04       N6         =       2.25600-10       N2       =       9.5410-09       N6       N6       0.04         =       2.25600-10       N2       =       1303.       N6       N6       N6         =       2.26600-10       N2       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                             | 1           |                   |            |          |                             |
| AM       =       4.537       T       E       1375.       H         ATEF       =       3.423       V       =       13145.       H         ATEF       8.       2       REPF       =       13145.       H         ATEF       8.       2       REPF       =       13145.       H         ATEF       8.       2       REPF       =       13145.       H         ATE       9.4898       51       DELSTP       =       0.051       TH         AT       =       10137.       DPREF       =       0.64988       51         =       10137.       DPREF       =       0.64988       51         =       1.225012       N2       =       2.6597-01       02         =       2.1680-066       N02       =       2.6597-01       02         =       2.25680-10       N2       =       2.657010       02         =       2.25680-10       N2       =       2.56470-01       02         =       2.25680-10       N2       =       2.56470-01       02         =       2.25580-10       N2       =       3.5415-09       N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •NONE OUIL           | 107. CM + + + + + + + +     |             | 5 STE             | ***        | *        |                             |
| M       =       3.423       V       =       13145.       M         TFEF       =       8.       2       REPF       =       1.4740       04       M         T       =       9.6998       DELSTP       =       0.051       TH         =       10137.       PPREF       =       0.6051       TH         =       1.2250       12       N2       =       59ECTES       02         =       1.2250       12       N2       =       2.6970-01       02         =       2.25800-06       N05       =       9.5410-09       N6         =       2.25680-10       02       =       9.5410-09       N6         =       2.25680-10       N2       =       9.5410       N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ħ                    | 7424                        | ۳           | 3,7350-0          | 2<br>10    | Ħ        | 3.7850-05                   |
| TEF = 8, 2 REPF = 1,4740 04 MW<br>T = 0.051 TH<br>= 10137, PPREF = 0.051 TH<br>= 1.2250 12 N2 = 0.6488 S1<br>= 2.2580-10 N2 = 2.6970-01 02<br>= 2.2580-10 N2 = 9.5410-09 N6<br>= 2.2580-10 N2 = 1303, M<br>= 2.2580-10 N2 = 1303, M<br>M = 3.615 V = 13224, M<br>M = 3.615 V = 13224, M<br>M = 10129, PRPE = 0.062 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ņ                    | 4.126                       | "<br>•      | : 3,35            | GAMMA      | M        | 1.515                       |
| IT       . 0.898       DELSTP =       0.051       TH         I       10137.       PPREF =       0.6488       51         I       1.2250       12       N2       E       2.6570-01       02         I       2.25680-10       N2       E       2.65970-01       02         I       2.25680-10       N2       E       2.55900       N6         I       2.25680-10       N2       E       9.5410-09       N6         I       2.25680-10       N2       E       1303.       M         I       2.25680-10       N2       E       1303.       M         I       3.615       V       E       1303.       M         I       I       3.615       V       E       13224.       M         I       I       1.1043       DELSTR       0.662       T       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                    | 18.32                       | "<br>ກ      | : 3.3770-0        | SIGNA      | Ħ        | 6.3000-01                   |
| =       10137.       PPREF       0.6488       51         =       1.2250 12       N2       ±       2.66970-01       02         =       2.2680-10       N0C       ±       9.5410-09       N0         :       2.2680-10       NC       ±       9.5410-09       N0         :       2.2680-10       NC       ±       9.5410-09       N0         :       2.2680-10       NC       ±       1303.4       N         :       2.2650-10       NC       ±       1303.4       N         :       3.615       V       ±       13224.4       M         :       11.043       DELLSTR <tt>       0.662       11         :       10128.6       PRPEF       0.662       11</tt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46TA =               | 0.083                       | H O         | - 1.423C G        | TAUM       | H        | 6.286D-01                   |
| =       1.2250 12 N2       =       2.6970-01       02         =       2.1680-06       N05       =       9.5910-09       N5         =       2.2580-10       05       =       9.5910-09       N5         =       2.2580-10       05       =       9.5910-09       N5         =       2.2580-10       05       =       9.5910-09       N5         =       2.2580-10       N5       =       9.5910-09       N5         =       2.2580-10       N5       =       9.5910-09       N5         =       2.2580-10       N5       =       1303.4       N6         =       3.615       V       =       1303.4       M         AM       =       3.615       V       =       1323.4         AT       =       11.043       05L5TR       0.662       T1         =       10128.6       D2L5TR       =       0.6622       T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TANTN «              | 2.6600-03                   | RETH -      | - 102.            | RETHT      | R<br>H   | 504.                        |
| <pre>     = 2:1680-06 NOG = 9:5410-09 NG     = 2:2680-10     = 2:2680-10     = 2:2680-10     = 1303.     H     = 3:615     V = 13224.     MM     = 3:615     V = 13224.     MM     = 3:615     V = 13224.     MM     = 10128.     DSLSTR = 0.0662     T1 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1.7120-06                   |             | 4-6140-0          | 0          | 8        | 2.6880-01                   |
| AM = 4.906 T = 1303. H<br>AM = 3.615 V = 13224. M<br>ATEF = 9.711 RFPF = 1.3890 0A M<br>AT = 11.043 DELSTR = 0.062 TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                    | 2.0620-05                   |             | A.082D-0          | 5 N26      | H        | 1.6650-09                   |
| <ul> <li># 4.906</li> <li>M</li> <li># 1303.</li> <li>M</li> <li>M</li> <li>3.615</li> <li>V</li> <li>= 13224.</li> <li>M</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *NDNE QUIL           | 18R1 UM + + + + + +         | ****        | 1444 S S          | *****      | *        | 2                           |
| IM = 3.615 V = 13224. M<br>ITEF = 9.711 REPF = 1.3890 04 MU<br>IT = 11.043 DELSTR = 0.062 TF<br>= 10128. PRPEF = 0.6438 S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μ                    | 7383.                       | ٩           | 3•18 D-0          | ۲<br>۲     | H        | 3. 4060-05                  |
| ATEF = 9.711 REPF = 1.3890.04 MW<br>AT = 11.043 DELSTR = 0.062 TF<br>= 10128. PRPEF = 0.643R 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IJ                   | 4.262                       | ۳<br>۲      | 3•35              | GAMMA      | ¥        | 1.512                       |
| AT = 11.043 DELSTR = 0.062 TF<br>= 10128. PRPEF = 0.6438 S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ))<br>1              | 18,32                       | "<br>>W     | 3+2430-0          | SIGMA      | H        | 6.1490-01                   |
| # 10128. DRPEF # 0.6488 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HETA                 | 0.088                       | »<br>»      | 1.2710 6          | TAUN       | "        | 5.652D-01                   |
| SPECIES MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANTN =<br>DLE FRACT | 2.6250-03<br>10n5 in the Fr | RETH -      | . 102.            | RETHI      | H<br>24  | • 025                       |
| = 1.1C0D 12 N2 = 2.6970-01 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , H                  | 1.8030-06                   | "<br>Z      | 0-0E19-0          | 0          | H        | 2.688D-01                   |
| = 2.1250-06 NOE = 6.5910-09 NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>13              | 2.0590-05                   | -<br>-<br>- | - 4.075D-0        | S N2E      | H        | 1.0070-09                   |
| 6 = 2.145D-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                             |             |                   |            |          |                             |
| •••••••CONCENTRATION OF N26 FROZEN AT 5.4950-11 MG<br>Suppressen reactions 17 18 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OLE/GM.              |                             |             |                   |            |          |                             |

1

i

ļ

1 ĉ 04111 ( PREES CI TT DI TT 200 NAT'

•

)

integration by artificially increasing the rate constant for the reaction with the largest  $|\delta \chi_i|$ , for the duration of the perturbatio. solution. When this occurs, the code prints a message such as the one illustrated in figure 15 (for a problem involv-ing the IGAS = 5 planetary atmosphere model).

1

1

1

### 3.9 Transport Cross Section Edit

1

1

Figures 16, 17 and 18 illustrate the three parts of the transport cross section edit, which is invoked by setting ISWLE equal to -2. Figure 16 shows the edit of precoded cross Lection data for all species. In this table, STEP is the counter for the steps of the cross section calculation in the order in mich they are carried out, while INDEX is the index of the steps in array storage. For the precoded date, these two indices are equal for all steps. However, if new steps were added by input, this equality might no longer hold. OPTIØN is the index of the option used to calculate the cross section generated in each step (see Section 4). The quantities VV(1) to VV(5) are parameter values for the steps. Under INTERACTION, the pairs of species to which each cross section applies are listed.

Figure 17 shows the first page of the second part of the cross section edit, which summarizes the steps of the cross section calculation for the current gas model. The edit shown in the figure is for the large standard air model (IGAS = 1). The format is similar to that in figure 16.

Figure 18 shows the first page of the third part of the cross section edit, the tabulation of averagel pair cross sections as functions of temperature. The temperature is given in degrees Kelvin at 1000 degree intervals up to CTAPI. The three tabulated cross sections are

$$Q(1) = \overline{\hat{\Omega}} (1, 1)$$
 (2a)

$$Q(2) = \bar{\Omega} \frac{(2,2)}{ij}$$
 (2b)

$$Q(3) = B_{ij}^{*} \widetilde{\Omega} \stackrel{(1,1)}{ij} \qquad (2c)$$

(where the notation is defined in Section 3.1 of Volume I), and are given in square Angstroms (units of  $10^{-17}$ ?). The

| RIGINAL PAGE IS<br>F POOR QUAI ITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.4960-03<br>1.365<br>6.9340-03<br>7.2290-01<br>210.<br>6.5450-02<br>3.5290-08<br>1.0940-13                                                              | **************************************                                 | 1.365<br>6.7020-03<br>1.2750 00<br>216.                                                | 2.9570-05<br>2.9570-05<br>8.8950-1.4                                                                   | 9+++++++ NEO= <br>3+1210-03<br>1+364   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|
| -LE / G # •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••••                                                                                                                                                    |                                                                        | ч н н н н<br>< < ( <sup>2</sup>                                                        |                                                                                                        | • • •                                  |
| 0<br>W 4<br>T - 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          | *<br>*<br>* Z'                                                         | 54 X<br>54 X<br>54 X<br>54 X<br>54 X<br>54 X<br>54 X<br>54 X                           |                                                                                                        | R<br>CAMM                              |
| 50LUTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.428V1<br>2.42<br>7.5670-05<br>9.6170 01<br>61<br>61<br>8.7775-11<br>8.5740-11                                                                          | 16 STEPS+<br>6.1300-01                                                 | 2.42<br>7.5040-05<br>1.1060 02<br>60.<br>2.6160-02                                     | 4 • 4 0 0 - 0 1<br>4 • 4 1 0 0 - 0 1<br>7 • 4 1 3 0 - 1 1<br>1 • 3 1 2 0 - 1 1                         | 65 STEPS+<br>5.6170-01<br>2.42         |
| 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *****<br>*****                                                                                                                                           | *<br>*<br>* *                                                          | ₩₩₩₩₩<br>Σ<br><                                                                        |                                                                                                        |                                        |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          | <b>a</b> .(                                                            | S<br>AU<br>AU<br>AU<br>ASTAF<br>NO ATAF                                                |                                                                                                        | €<br>₩<br>€<br>€<br>₽<br>₽             |
| PFACTANT ARG 1<br>3.0840 03 FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4902.<br>0.320<br>26.55<br>0.2940-03<br>6.2940-03<br>5.420-65<br>1.004.6-02<br>1.1360-1<br>5.8730-13                                                     | - 16:R1 UM####################################                         | 0.351<br>26.66<br>0.015<br>4.7670-03<br>4.7670-03<br>710NS IN THE FR<br>710NS OF 70-02 | 5 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 7                                                          | . 1 ISR I UM444 4444                   |
| A T I C A<br>A T I C A<br>I A A A T C A<br>I A A A I G<br>I A A A I I G<br>I A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 222<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>22                                                                                        | H = 4 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×                            | Х<br>ХНЕТА<br>КНЕТА<br>КОСАМТИ Н<br>ГКАС<br>ССС<br>П ГКАС                              | 0016 / G.M.                                                                                            |                                        |
| 0 5MALL- CONCENT<br>4 INCREASFO RY<br>5.1480-01<br>1.4600-01<br>1.4500-01<br>1.4500-01<br>1.4500-01<br>1.4500-01<br>1.4500-01<br>1.4500-01<br>1.4700-01<br>1.4700-01<br>1.1500-02<br>1.4800-01<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.1500-02<br>1.15000-02<br>1.15000-02<br>1.15000-02<br>1.15000-02<br>1.15000-02<br>1.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3739.<br>3739.<br>4.1230 04<br>4.1230 04<br>0.6604<br>0.6604<br>1.2570-01<br>3.0070-01<br>7.3820-01<br>7.3820-01                                         | ZF4 AT 4.8560-11<br>6 24 A2<br>8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 14100<br>6.3150 04<br>- 0.611<br>0.6604<br>1.2550-01                                   | 3.0010-01<br>3.0200-07<br>7.0200-07<br>1.7410-14<br>5.36.37400-16<br>5.36.37400-16<br>26% at 2.2640-16 | ананынанынынын<br>3661.<br>2033.       |
| IS TOU<br>NN ND -<br>WAXE -<br>WAXE -<br>MAXE -<br>M | ивия и и и и<br>С. Ц.                                                                                                |                                                                        | п н н н<br>с<br>н ц                                                                    | FR02<br>34 35<br>14 17                                                                                 | #<br>#<br>#<br>#<br>#                  |
| 2 4 70 - 6 8<br>2 6 70 - 6 8<br>2 6 7 0 0 0 1 1 6<br>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F>XC4 4CZ0                                                                                                                                               | CT C25<br>CT 025<br>++++<br>++++<br>++++<br>++++                       | х ран<br>ран<br>ран<br>ран<br>ран<br>ран<br>ран                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                     | * +>                                   |
| NVDCHKAX<br>CCNSTANT 53.5<br>CCNSTANT 53.5<br>5270-C5<br>5270-C5<br>5270-C5<br>5270-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>5277-C5<br>52777-C5<br>52777-C5<br>52777-C5<br>52777-C5<br>52777-C5<br>52777-C5<br>52777-C5<br>52777-C5<br>527777-C5<br>5277777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.4705<br>-3.458<br>-3.611<br>-3.611<br>-3.611<br>-4.655<br>-1.4655<br>-1.4655<br>-1.4670<br>-0.1<br>1.4070<br>-0.1<br>1.4070<br>-0.1<br>1.4070<br>-0.1 | CCNCENTRATION<br>SUPPRESSED RE<br>++++++++++++++++++++++++++++++++++++ | 2=(11<br>1=719<br>1=797<br>4=9515<br>8=5650 11                                         | 1.2230-09<br>3.1270-08<br>1.2950-09<br>CCNCFLTRATION<br>SUPPRESSED PFJ<br>CONCENTRATION                | ************************************** |
| 1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                        | СТАХ<br>Алах<br>Алах<br>Алат<br>Алат<br>Алат<br>Алат<br>Алат<br>Алат<br>Алат<br>Алат   |                                                                                                        | *<br>* 18<br>* 18                      |

FIGURE 15 - NAT. SODE OUTPUT - AR" STAL INCREASE OF RATE JUSTANT MESSAGE

۱

\_

•

*.* 

:

•\_-

;

1

,

•

١

•

Ţ

ļ

ł

1

•

NOVE OUTLAND . SLUTTON

.

`, ) FIGURE 16 - NATA CODE OUTPUT - TRANSPORT CROSS SECTION EDIT (INPUT) (First Page) TRANSPORT CROSS SE N DATA

.

÷

÷

•

•

ł.

2

:

,

Ì

1 •••• ļ

I

) •

-

|       | 110N         | <b>AR</b> |            |             | 202        |     | ť   | : ( | , <b>,</b> | , <b>,</b> |            |              | U         | υ         | ŝ         | 30        | z         | z         | Q | 2N2 | 0         | 00        | 0  | 5   | 00 | 0<br>0 | z         | Z   | C02 | C02  | 202 | C 02      | Q   | Oz | z  | N2 | 22        | z  | ON | 02 | Z         | Oz | Z  | Q   | Q | Q         | 02  | c         | z         | Q | 02 | 02 | Z         | 0z | 22 | Q      | z          |    | z (       | PZ |
|-------|--------------|-----------|------------|-------------|------------|-----|-----|-----|------------|------------|------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|---|-----|-----------|-----------|----|-----|----|--------|-----------|-----|-----|------|-----|-----------|-----|----|----|----|-----------|----|----|----|-----------|----|----|-----|---|-----------|-----|-----------|-----------|---|----|----|-----------|----|----|--------|------------|----|-----------|----|
|       | ERA          | •         | 1  <br>E ( | ) (<br>K    | •          | 1   | •   |     | 1 (        | 2          | 1          | ł            | 1         | I         | •         | 1         | •         | •         | I | ŧ   | •         | ł         | •  | •   | ł  | •      | 1         | ۱   | 1   | t    | ł   | ł         | 1   | 1  | I  | 1  | ŧ         | ł  | I  | ł  | 1         | 1  | •  | 1   | ŧ | ł         | ł   | I         | ł         | ł | I  | ł  | ł         | 1  | •  | 1      | 1          | 1  | •         | 8  |
|       | T N T        | 84        |            |             |            | 2   | 2 U | , , | 2 0        |            | : נ        | Z            | D         | o         | z         | o         | z         | Z         | z | z   | z         | 0         | 05 | ∾ Z | 20 | Q      | 00        | 002 | Q   | C 02 | 22  | 02        | O Z | NZ | N2 | 22 | o         | 0  | D  | z  | 02        | 02 | NN | N 2 | C | CZ        | N Z | 0         | o         | o | z  | o  | 02        | 02 | 20 | 0<br>Z | Z          | zi | 2 2       | r  |
|       | VV(5)        | 0.0       |            |             |            |     |     |     |            |            | 0.0        | 50           | 0.0       | 0.0       | 0.0       | 0.0       | c • 0     | 0.0       |   |     | 0.0       | 0-0       |    |     |    |        | 0,0       |     |     |      |     | 0•0       |     |    |    |    | 0.0       |    |    |    | 0*0       |    |    |     |   | 0.0       |     | 0.0       | 0.0       |   |    |    | 0.0       |    |    | ,      | 1.0000 00  |    | 0.0       |    |
|       | <b>VV(4)</b> | 0.0       |            |             |            |     |     |     |            |            | 0          |              | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |   |     | 0.0       | 0•0       |    |     |    |        | 0.0       |     |     |      |     | 0.0       |     |    |    |    | 0.0       |    |    |    | 0*0       |    |    |     |   | 0.0       |     | 0.0       | 0.0       |   |    |    | 0.0       |    |    |        | 1.0000 00  |    | 0.0       |    |
| IPUT) | VV(3)        | 1.0000 00 |            | 1.0000.00   |            |     |     |     |            |            |            |              | 1.0000 00 | 2.0010 00 | 0.0       | 0.0       | 2.0000 01 | 2.0000 01 |   |     | 2.0000 01 | 2.0000 01 |    |     |    |        | 2.000 01  |     |     |      |     | 2.0000 01 |     |    |    |    | 10 00000  |    |    |    | 2.0000 01 |    |    |     |   | 2.000D 01 |     | 2.0000 01 | 2.0000 01 |   |    |    | 2.000 01  |    |    |        | 5+0000-01  |    | 1.0000 00 |    |
| 41.2  | VV(2)        | 2.9200-01 |            | 1 - 0600-01 |            |     |     |     |            |            |            | 00 00 11 1 1 | 1.1410 00 | 5.1000 01 | A.824D 00 | 4.7220 00 | 8.1000 01 | 1.0100 92 |   |     | 1.2100 02 | 1.4100 02 |    |     |    |        | 1.4100 02 |     |     |      |     | 1.4100 02 |     |    |    |    | 1-6100 02 |    |    |    | 1.8100 02 |    |    |     |   | 1.8100 02 |     | 2.0100 02 | 2.2100 02 |   |    |    | 2.410D 02 |    |    |        | 6.0000 00  |    | 1.0001 00 |    |
|       | (1)^/        | 2+5530 37 |            | 01 0000 3   | 1.4270.07  |     |     |     |            | -          | 1. 7390 02 | 1.6500 02    | 1.4200 02 | 1.0000    | 9.9830 12 | 9.9700 02 | 1.0000 00 | 1.0300 00 |   |     | 1.0000 00 | 1.0000 00 |    |     |    |        | 1.0000 00 |     |     |      |     | 1.0000 00 |     |    |    |    | 1.0000 00 |    |    |    | 1.0000 00 |    |    |     |   | 1.0000 00 |     | 1.0000 00 | 1.0000 00 |   |    |    | 1.0100 00 |    |    |        | 2.0000 20  |    | 2+2000-01 |    |
|       | 001100       | m         |            | F           | ) <b>r</b> | · • | n v | D   |            | •          | 4          | 4            | 14        | in        | 9         | ¢         | 5         | ŝ         |   |     | ស         | ŝ         |    |     |    |        | S         |     |     |      |     | 'n        |     |    |    |    | £         | 'n |    |    | ŝ         |    |    |     |   | ŝ         |     | ທ         | ŝ         |   |    |    | ŝ         |    |    |        | 6          |    | 4 1       |    |
|       | I NDE X      | 1         |            | ſ           | u m        |     | 7 ¥ | n   |            | ,          | ic i       | •            | ¢         | ¢         | C 1       | 11        | 12        | 13        |   |     | 14        | 15        |    |     |    |        | 16        |     |     |      |     | 17        |     |    |    |    | с<br>-    | ;  |    |    | 61        |    |    |     |   | 3 č       |     | 21        | 22        |   |    |    | 23        |    |    |        | <b>4</b> C | ;  | \$        |    |
|       | STEP         | 7         |            | ſ           | 4 17       | ) < | 3 V | ŋ   |            | •          | 0          | ~            | ł         | o         | 10        | 11        | 12        | 13        |   |     | 14        | 15        |    |     |    |        | 16        |     |     |      |     | 17        |     |    |    |    | 6<br>6    | •  |    |    | 19        |    |    |     |   | 20        |     | 21        | 22        |   |    |    | 23        |    |    |        | 24         | 1  | 25        |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UP14 | RE 16 - NATA<br>1-0000 00 | CODE OUTPUT - | TRANSPORT CROSS | SECTION EDIT | (INPUT) (Sec | cond Page) | z             | 2 N N       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------|---------------|-----------------|--------------|--------------|------------|---------------|-------------|
| 0.1171-01         1.11170         00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                         |      |                           |               |                 | •            | •            |            | z             | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9.1300-01                 | 1.1170 90     | 1.0000 00       | 0.0          | 0.0          |            | ខួ            | 0<br>0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9.5400-01                 | 1.1950 00     | 1.0000 00       | 0.0          | 0.0          |            | C02           | 00          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9.5100-01                 | 1.1240 00     | 1.0000 00       | 0.0          | 0.0          |            | N (           | 00          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 8.9100-01                 | 1.1190 00     | 1.0000 00       | 0.0          | 0.0          |            |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9.2300-01                 | 1.0620 00     | 1.0000 00       | 0•0          | <b>C •</b> C |            | 20            | 88          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9-6400-01                 | 1-0820 00     | 1-0000 00       | 0.0          | 0.0          |            |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                           |               |                 |              | •            |            | CZ            | - CO2       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.0000 00                 | 1.2740 00     | 1.0000 00       | 0•0          | 0.0          |            | 202           | - 002       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 9. 8200-01                | 1.1170 60     | 1.0000 00       | c•0          | c•0          |            | N<br>N<br>N   | - CO2 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9.4100-01                 | 1.1150 00     | 1.0000 00       | 0.0          | 0.0          |            | 20            | - 002       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 2.5000-01                 | 1.0000 00     | 1.0000 00       | 0.0          | 0.0          |            | ç             | o<br>z      |
| 1.0000       0.1       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td></td><td>5. 3000-31</td><td>1.0000 00</td><td>1.0000 00</td><td>0.0</td><td>0.0</td><td></td><td>N<br/>N</td><td>ç</td></t<>                       |      | 5. 3000-31                | 1.0000 00     | 1.0000 00       | 0.0          | 0.0          |            | N<br>N        | ç           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                           |               |                 |              |              |            | ۲<br>۲        | z           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.000D 00                 | 1.0000 00     | 1.0000 00       | 0.0          | 0.0          |            | NZ            | čz .        |
| 3.0000-01       1.0000 00       1.0000 00       1.0000 00       1.0000 00       0.0       0.0         7.0000 00       7.0000 00       1.0000 00       1.0000 00       1.0000 00       0.0       0.0         1.0000 00       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       7.1000 01       2.0000 01       0.0       0.0       0.0       0.0         1.0000 00       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 02       3.010 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1                                                                                                                                                  |      |                           |               |                 |              |              |            | 0             | - N2        |
| 7.0000         00         1.0000         00         1.0000         00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                     |      | 5.0000-01                 | 1.0000 00     | 1.0000 00       | 0•0          | 0.0          |            | 0             | 2<br>U      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                           |               |                 |              |              |            | 0             | ç<br>z      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                           |               |                 |              |              |            | z             | - 02        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                           |               |                 |              |              |            | 02            | 2<br>7<br>7 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                           |               |                 |              |              |            | 20            | ç           |
| $ \begin{bmatrix} 1 & 00005 & 0 & 2 & -6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 7.0000 00                 | 7.0000 00     | 1.0000 00       | 1.0000 00    | 1.0000       | 00         | z             | Z<br>U      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                           |               |                 |              |              |            | o<br>z        | z (         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.0005 30                 | 2.6100 02     | 2.0000 01       | 0.0          | 0.0          |            | י<br>שו       |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.0070 00                 | 2.6100 02     | 2.0000 01       | 0.0          | 0.0          |            | ۔<br>۱        |             |
| 1.0000 00 3.01(0 02       2.0000 01       0.0       0.0       0.0       0.0       0.0         1.0000 00       3.4100 02       2.0000 01       0.0       0.0       0.0       0.0         1.0000 00       3.4100 02       2.0000 01       0.0       0.0       0.0       0.0         1.0000 00       3.4100 02       2.0000 01       0.0       0.0       0.0       0.0         1.0000 00       3.4100 02       2.0000 01       0.0       0.0       0.0       0.0         1.0000 00       1.0000 00       1.0000 00       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       2.4530-01       1.0000 00       0.0       0.0       0.0       0.0       0.0         2.6450       0.0       2.4530-01       1.0000 00       0.0       0.0       0.0       0.0         2.64510       2.3530-01       1.0000 00                                                                                                                                                            |      | 1.0000 00                 | 7.1000 01     | 2.0000 00       | 0.0          | 0.0          |            |               | z (         |
| 1.00000 00       3.0100 02       2.0000 01       0.0       0.0       0.0       0.0         1.00000 00       3.0100 02       2.0000 01       0.0       0.0       0.0       0.0         1.00000 00       3.0100 02       2.0000 01       0.0       0.0       0.0       0.0         2.0000 00       3.0100 02       2.0000 01       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       1.0000 00       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       2.3330-01       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                              |      |                           |               |                 | •            | •            |            | 4  <br>14: 14 |             |
| $ \begin{bmatrix} 1.0000 & 00 & 3.210 \ 0 & 0 & 3.410 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1.0000 00                 | 3.0100 02     | 10 0000 2       | 0.00         |              |            |               | 52          |
| 1.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       3.4100 02       2.0000 00       0.0       0.0       0.0       0.0       0.0       0.0       2.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                   |      | 1.0000 00                 | 3.2100 62     | 2.0000 01       | 0.0          | 0.0          |            | 1<br>. W      | 2 Z Z       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.0000 00                 | 3.4100 02     | 2.0000 01       | 0.0          | 0.0          |            | 1             | 0           |
| 1.0000       00       3.6100       02       7.0000       01       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                               |      | 1.0000 00                 | 3.6100 02     | 2.0000 01       | J•0          | 0.0          |            | I<br>L        | - 02        |
| 2.0000 00       1.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.054*0 05       2.1530 05       2.1530 00       0.0       0.0       0.0       0.0       0.0       0.0         2.054*0 05       2.1530 05       2.1530 00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0<                                                                                                                                                        |      | 1.0000 00                 | 3.8100 02     | 2.0000 01       | 0.0          | 0.0          |            |               | AR -        |
| 2.0000 00       1.0000 00       0.0       0.0       0.0       1.0000 00       0.0         2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       1.0000 00       0.0         2.054 <sup>+</sup> D       06       2.353D-01       1.0000 00       0.0       0.0       1.0       1.0         2.054 <sup>+</sup> D       06       2.353D-01       1.0000 00       0.0       0.0       1.0       1.0       1.0         2.054 <sup>+</sup> D       06       2.353D-01       1.0000 00       0.0       0.0       0.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0                                                                                                                     |      | 2.0000 00                 | 1.0000 00     | 1.0000 00       | 0.0          | 0.0          |            | 1             | U<br>·      |
| 2.0000       00       1.0000       00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       <                                                                                                                                                         |      |                           |               |                 |              |              |            | 1             | z<br>v      |
| 2.0000 00       1.0000 00       0.0       0.0       0.0       6-       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td>80</td>                                                                                                                                                                |      |                           |               |                 |              |              |            | ł             | 80          |
| 2.0000 00       1.0000 00       0.0       0.0       0.0       0.0       0.0         2.6450 06       2.3530-01       1.0000 00       0.0       0.0       0.0       0.0       0.0         2.6470 06       2.3530-01       1.0000 00       0.0       0.0       0.0       0.0       0.0         2.6470 06       2.3530-01       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0         2.1530 05       2.3530-01       1.0000 00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                         |      |                           |               |                 |              |              |            | I<br>W        | - CD2       |
| 2.6450       06       2.J53D-01       1.0000       0.0       0.0       0.0       10       10         2.6450       06       2.J53D-01       1.0000       0.0       0.0       16       1       10         2.6470       06       2.J53D-01       1.0000       0.0       0.0       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       1       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16                                                                                                                                                                                                                   |      | 2.0000 00                 | 1.0000 20     | 1.0000 00       | 0.0          | 0*0          |            | +             | z           |
| 2.6450 06       2.4530-01       1.0000 00       0.0       0.0       6-       -       -       0         2.6450 06       2.4530-01       1.0000 00       0.0       0.0       6-       -       0       0         2.6470 06       2.3530-01       1.0000 00       0.0       0.0       0.0       145       -       145       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       -       1453       1453                                                                                                                                                                                    |      |                           |               |                 |              |              |            | i<br>L        | Q .         |
| 2.6450       06       2.4530-01       1.0000       0.0       0.0       0.0       HF       -       0.2         2.6450       06       2.4530-01       1.0000       0.0       0.0       HF       -       1.65         2.6450       06       2.4530-01       1.0000       0.0       0.0       0.0       HF       -       1.65         2.6450       06       2.3530-01       1.0000       0.0       0.0       0.0       HF       -       HF                                                                                                                                                                                                                          |      |                           |               |                 |              |              |            | י<br>ש        | - 22        |
| 2.6450       06       2.4530-01       1.0000       0.0       0.0       HE       -                                                                                                                                                                                                                                            |      |                           |               |                 |              |              |            | ı<br>L        | 0           |
| 2.6450       06       2.4530-01       1.0000       00       0.0       HE       H                                                                                                                                                                                                          |      |                           |               |                 |              |              |            | -             | - 02        |
| 2.64°D       06       2.353D-01       1.0000       00       0.0       HF35       HF155       HF                                                                   |      | 2.6450 06                 | 2.3530-01     | 1.0000 90       | 0.0          | 0.0          |            | W<br>I        | UH.         |
| 2.64°D       06       2.353D-01       1.000D       00       0.0       HF15       -                               |      |                           |               |                 |              |              |            | L             | - HE35      |
| 2.64°D       06       2.353D-01       1.000D       0.0       0.0       HF35       HF155       HF255                                                                          |      |                           |               |                 |              |              |            | u<br>I        | - HE1S      |
| 2.64 <sup>+</sup> D       06       2.353D-01       1.000D       00       0.0       HF15       HF25         5.153D       05       4.636D-01       1.000D       0.0       0.0       0.0       HF25       HF25       HF25       HF25       HF25       HF25       HF15       HF15       HF25       HF15       HF25       HF25 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- HFLS</td> |      |                           |               |                 |              |              |            |               | - HFLS      |
| 2.64*0       06       2.3530-01       1.0000       00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                           |      |                           |               |                 | •            |              |            | SDLL:         | - HEJS      |
| 5.153D       05       4.6360-01       1.0000       0.0       0.0       HE                                                                                                                                                                                                                 |      | 2.64°D 06                 | 2.3530-01     | 1.0000 00       | ••0          | 0.0          |            | HFIS.         | - HE15      |
| 5.1530 05       4.6360-01       1.0000 00       0.0       0.0       HE       -       HEE       -                                                                                                                                                                                                            |      |                           |               |                 |              |              |            |               |             |
| 5.153D       05       4.636D-01       1.0000       0.0       0.0       HF2       HF2       HF2         1.0000       0.0       0.0       0.0       0.0       HF35       HF25         1.0000       0.0       0.0       0.0       0.0       HF15       HF25         1.0000       0.0       0.0       0.0       0.0       HF15       HF25         1.0000       0.0       0.0       0.0       1.0       0.0       HF15       HF25         1.0000       0.0       0.0       0.0       0.0       0.0       1.0       HF15       HF25         1.0000       0.0       0.0       0.0       0.0       0.0       1.0       1.0       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 5.1530 05                 | 4.6360-01     | 1.0000 00       | 0•0          | 0*0          |            |               | - HEC       |
| 5.153D       05       4.6360-01       1.0000       0.0       0.0       HEIS                                                                                                             |      |                           |               |                 |              |              |            |               | - HF25      |
| 5.153D       05       4.6360-01       1.0000       0.0       0.0       HEIS                                                                                                             |      |                           |               |                 |              |              |            | IEC           | HE 32       |
| 5.153D       5.153D       05       4.636D-01       1.0000       0.0       0.0       HF25       HF25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>HEC.</td> <td>NEIS</td>         |      |                           |               |                 |              |              |            | HEC.          | NEIS        |
| 5.153D 05 4.636D-01 1.0000 00 0.0 0.0 0.0 HF35 - HF2C<br>HF15 - HF2C<br>HF2C - HF2C<br>1.000D 00 4.710D 02 2.000D 01 0.0 0.0 0.0 F HF3<br>F HF3S<br>F HF1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                           |               |                 |              |              |            | S III         | . HE?       |
| HFIS - HF2C<br>HE2C - HF2C<br>HE2C - HF2C<br>HE2C - HF2C<br>HE2C - HF2C<br>F HF3C<br>F HF3C<br>F HF3C<br>F HF3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 5.1530 05                 | 4.6360-01     | 1.0000 00       | 0.0          | •••          |            | HE3S          | HF2C        |
| 1.0000 00 4.7100 02 2.0000 01 0.0 0.0 0.0 F HF2<br>F HF35<br>F HF35<br>F HF35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                           |               |                 |              |              |            | HF15          | - HF26      |
| 1.0000 00 4.7100 02 Z.0000 01 0.0 0.0 0.0 F HF35<br>F HF35<br>F HE15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                           |               |                 | •            |              |            | HE26 -        | HEZ         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 1.0000 00                 | 4.7100 92     | 10 0000 *2      | 0.0          | 0.0          |            |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                           |               |                 |              |              |            | <br> L        | SPLE -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                           |               |                 |              |              |            |               | - HEIV      |

1

.

I

f

ţ

:

. .

1

|                      | >   |           | HEC         | SELL   | HEIS | HF35  | HFIS       | SPLI   | HE IS  | HFIS   | ະບ        | DON     | U          | 30     | z      | NC     | 0           | 30 | 84        | ARG   | AR AN  | A8 9A  | NOC        |
|----------------------|-----|-----------|-------------|--------|------|-------|------------|--------|--------|--------|-----------|---------|------------|--------|--------|--------|-------------|----|-----------|-------|--------|--------|------------|
|                      | >>  |           | I<br>I<br>I | ۱<br>۲ | HE - | HFC - | HFC -      | HE35 - | HE3S - | HE15 - | י<br>ט    | +<br>Ov | י<br>ט     | ۱<br>U | י<br>z | ı<br>z | •           | •  | 1<br>1    | A R . | ARAM - | AR#R - | •<br>Q     |
| (INPUT) (Third Page) | 0-0 |           |             |        |      |       | 0.0        |        |        |        | 0•0       |         | 0.0        |        |        |        | 0•0         |    | 0.0       |       |        |        | 0.0        |
| SECTION EDIT         | 0.0 | 1.0000 00 |             |        |      |       | 1.0000 00  |        |        | ,      | 0.0       |         | 1.0000 00  |        |        |        | 1.0000 00   |    | 1.0000 00 |       |        |        | 1.0000 00  |
| TRANSPORT CROSS      | υ   | 4 30 00   |             |        |      |       | 00 DE00**  |        |        |        | 0.0       |         | 1.4010 01  |        |        |        | 1.6000 01   |    | 3.994D 01 |       |        |        | 3.0010 01  |
| CODE OUTPUT -        | 0.0 | 1.1130 00 |             |        |      |       | 1.4130 00  |        |        |        | 2*0000 00 |         | 1.6000 00  |        |        |        | 1+5700 00   |    | 1.7000 00 |       |        |        | 1.6700 00  |
| IGURE 15 - NATA      | 0.0 | 1.3450 31 |             |        |      |       | 10 0045.1  |        |        |        | 30 000 0S |         | 10 0000 •1 |        |        |        | 10 0064 • 1 |    | 10 0565+1 |       |        |        | 10 002 * 1 |
| 4                    | 13  | 4         |             |        |      |       | 4          |        |        |        | D         | •       | ť          |        |        |        | 7           | •  | 2         |       |        | •      | đ          |
|                      | 3.0 | 51        |             |        |      | 0     | <b>C</b> O |        |        | 05     |           |         | 00         |        |        |        | 10          |    | 20        |       |        |        | n<br>0     |
|                      | 56  | 57        |             |        |      |       | 0          |        |        | 5      | •         | 4       | 2          |        |        |        | 5           |    | 2         |       |        |        | 5          |

.

ŧ

ş

!

•

1

1

1

-

1

Ţ

ļ

?

, •

ORIGINAL PAGE IS OF POOR QUALITY

.

FIGURE 17 - NATA CODE OUTPUT - ""ANSPORT CROSS SECTION EDIT (EDITED) TRANSPORT CROSS SE N DATA

-

.

\*\*\*\*

,

,

1

.

,

7

١

۱ I Ţ

Į

1

ł

۱

٢

•

| I NTERACT ION      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2</b> 0 :                                                                                                                                                                                                                                                                                                                                             | z<br>1<br>z                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | C<br>(<br>2                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 2 1 22                                                                                                                                                                                  | 0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0N - 07                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     | כ<br>י<br>י כ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                   | 02 - 20<br>12 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON - ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DZ<br>I<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N2 - N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DZ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VV (5)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | -                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (4)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VV(3)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0000 DI                                                                                                                                                                                                                                                                                                                                                | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      | 2.0000 01                                                                                                 | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0000 01                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0000 01                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10-0000*5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VV(2)<br>4.8240 00 | 4.7220 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.1000 01                                                                                                                                                                                                                                                                                                                                                | 1.0100 02                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      | 1.2100 02                                                                                                 | 1.4100 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           | 20 00 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            | 1.8100 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | 1.8100 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | 2.0100 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2100 02                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4100 02                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4*000D 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1000 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0100 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2100 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VV(1)<br>9.9830 32 | 9.9700 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0000 00                                                                                                                                                                                                                                                                                                                                                | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      | 1.0000 00                                                                                                 | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000 00                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000 00                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 0000 •r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2+5000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0000-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0070 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0P110N<br>6        | ى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŝ                                                                                                                                                                                                                                                                                                                                                        | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      | ŝ                                                                                                         | ю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŝ                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ý                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ų                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| STEP INDEX<br>1    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r;                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      | S                                                                                                         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(5)         INTERACTION         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(5)         INTERACTION           1         6         9-99.0         22         4-82.4         0         VV(3)         VV(5)         INTERACTION           2         6         9-9700         02         4-7220         00         N         N         N         N</td> <td>STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         INTERACTION           1         6         9-99300         22         4+8240         07         VV(3)         VV(5)         INTERACTION           2         5         9-9700         02         4+7220         00         N         - NE           3         5         1.0000         0         8-1000         0         2000         0</td> <td>STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(5)         INTERACTION           1         6         9-99870&lt;07</td> 4-8240<07 | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(5)         INTERACTION           1         6         9-99.0         22         4-82.4         0         VV(3)         VV(5)         INTERACTION           2         6         9-9700         02         4-7220         00         N         N         N         N | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         INTERACTION           1         6         9-99300         22         4+8240         07         VV(3)         VV(5)         INTERACTION           2         5         9-9700         02         4+7220         00         N         - NE           3         5         1.0000         0         8-1000         0         2000         0 | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(5)         INTERACTION           1         6         9-99870<07 | STEP       INDEX       OPTION       VV(1)       VV(2)       Interaction         1       6       9-9700<02 | STEP       INDEX       OPTION       VV(1)       VV(2)       VV(3)       INTERACTION         1       0       0.99870 02       4.8240 00       0       1       0       1       0         2       2       0       9.9700 02       4.7220 00       0       1       0       1       0         3       3       5       1.0000 00       8.1000 01       2.0000 01       1       0       1       0         3       5       1.0000 00       1.0100 02       2.0000 01       1       1       0       1       0         5       1.0000 00       1.2100 02       2.0000 01       1       1       0       1       0         5       1.0000 00       1.2100 02       2.0000 01       1       1       0       1       0         5       1.0000 00       1.2100 02       2.0000 01       1       1       0       1       0 | STEP       INDEX       OPTION       VV(1)       VV(3)       VV(3)       INTERACTION         1       0       9-9700 02       9-9700 02       4-5240 00       1       0       1       0         2       2       9-9700 02       0       9-9700 02       4-7220 00       0       1       0       1       0         3       5       1.0000 00       8-1000 01       2.0000 01       0       1       0       1       0         5       1.0000 00       1.0100 02       2.0000 01       1.0100 02       2.0000 01       1       0       1       0         5       1.0000 00       1.2100 02       2.0000 01       1.010       0       1       0       1       0         5       1.0000 00       1.010 02       2.0000 01       1       1       0       0       1       0         6       5       1.0000 00       1.010 02       2.0000 01       1       0       1       0       0         6       5       1.0000 00       1.010 02       2.0000 01       1       0       1       0       0         6       5       1.0000 00       1.010 02       2.0000 01       1       < | STEP       INDEX       OPTION       VV(1)       VV(3)       VV(4)       VV(1)         1       VV(1)       VV(1)       VV(1)       VV(1)       VV(1)       VV(1)         6       9-9930<02 | STEP       INDEX       OPTION       VV(1)       VV(2)       VV(3)       INTERACTION         1       vv(1)       vv(1)       vv(1)       vv(1)       vv(1)       vv(1)       vv(1)         0       9-9930       32       4-8243       00       1       vv(1)       vv(1)       vv(1)       vv(1)         0       9-9930       32       4-8243       00       1       vv(3)       vv(4)       vv(4)       vv(4)         0       9-9700       02       4-7220       00       0       1       vv(4)       vv(6)       1       vv(6)         0       9-9700       02       4-7220       00       0       1<000 | STEP         INDEX         OPTION         VV(1)         VV(2)         INTERACTION           1         0         9.9970<022 | STEP       INDEX       OPTION       VV(1)       VV(2)       INTERACTION         1       0       9-9700       22       9-9700       22       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0 <td< td=""><td>STEP       INDEX       V(1)       V(2)       V(3)       V(4)       INTERACTION         1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td><td>STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         V(4)         VV(1)         VV(2)           N         6         9-9930&lt;02</td>         4.82470&lt;07</td<> | STEP       INDEX       V(1)       V(2)       V(3)       V(4)       INTERACTION         1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         V(4)         VV(1)         VV(2)           N         6         9-9930<02 | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         INTEAACTION           1         6         9-9700 02         4-8240 01         4-8240 01         1         1         1         1           2         0         9-9700 02         4-8720 01         1         2-0000 01         1         1         1         1           3         1         000 00         1         0         1         2         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1 <t< td=""><td>STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(5)         INTERACTION           1         0         0-9970&lt;02</td>         4.8247&lt;01</t<> | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(5)         INTERACTION           1         0         0-9970<02 | STEP         INDEX         Definition         VV(1)         VV(2)         VV(2)         VV(3)         VV(4)         VV(4)         VV(1)           2         0         9:9370         23         4:8240         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | STEP         INDEX         OPTION         V(11)         V(2)         V(3)         V(4)         V(4)         V(6)         INTERACTION           2         0         9.9970<02 | STEP         INDEX         OPTION         V(1)         V(2)         V(3)         V(4)         V(4)         INTERACTION           1         0         0.0000002         0.000000         0.010000         0         0.000000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | STEP         INDEX         OPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(4) <th< td=""><td>STEP         INDEX         DPTION         W(11)         W 423         W (3)         W (4)         W (4)         INTERACTION           2         0         9-9970&lt;02</td>         4.7720&lt;00</th<> | STEP         INDEX         DPTION         W(11)         W 423         W (3)         W (4)         W (4)         INTERACTION           2         0         9-9970<02 | STEP         INDEX         DPTION         VV(1)         VV(2)         VV(3)         VV(4)         VV(1)         VV(4)         INTERACTION           2         0         9-9970 02         4-5727 00         0         4-722 00         0         4-722 00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | SIEP         INDEX         OPTION         V(11)         V(2)         V(13)         V(14)         V(13)         INTEACTION           1         0         9900002        7720000        772000         1         0         -         0           1         0         9900002        772000         0        772000         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         0         -         0         0 <td>SIEP         INDEX         UV(1)         VV(2)         VV(1)         VV 10         VV 10</td> <td>STEP         Index         OPTION         W(1)         W(2)         W(1)         W(1)</td> <td>SIEP         Index         OPTION         W(1)         W(2)         W(1)         W(1)</td> <td>SIFE         INDEX         OPTION         V(1)         V(1)</td> <td>1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>FIE         INCK         DFT(DN         W/V(1)         W/V(2)         W/V(3)         INTERIMINATION           2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>Tip         Number         Openation         Number         Numer         Numer         Numer<td>01:10         0.00010         0.00010         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         <th< td=""><td>FIE         Investigation         V(1)         V(1)</td><td>FIE         Interaction         V(1)         V(1)</td><td>11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11&lt;</td><td>Index         Derivation         <math>M(1)</math> <math>M(</math></td><td>Tip         Middle         Middle</td></th<><td>Interval         matrix         matri</td></td></td> | SIEP         INDEX         UV(1)         VV(2)         VV(1)         VV 10         VV 10 | STEP         Index         OPTION         W(1)         W(2)         W(1)         W(1) | SIEP         Index         OPTION         W(1)         W(2)         W(1)         W(1) | SIFE         INDEX         OPTION         V(1)         V(1) | 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | FIE         INCK         DFT(DN         W/V(1)         W/V(2)         W/V(3)         INTERIMINATION           2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | Tip         Number         Openation         Number         Numer         Numer         Numer <td>01:10         0.00010         0.00010         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         <th< td=""><td>FIE         Investigation         V(1)         V(1)</td><td>FIE         Interaction         V(1)         V(1)</td><td>11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11&lt;</td><td>Index         Derivation         <math>M(1)</math> <math>M(</math></td><td>Tip         Middle         Middle</td></th<><td>Interval         matrix         matri</td></td> | 01:10         0.00010         0.00010         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000 <th< td=""><td>FIE         Investigation         V(1)         V(1)</td><td>FIE         Interaction         V(1)         V(1)</td><td>11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11&lt;</td><td>Index         Derivation         <math>M(1)</math> <math>M(</math></td><td>Tip         Middle         Middle</td></th<> <td>Interval         matrix         matri</td> | FIE         Investigation         V(1)         V(1) | FIE         Interaction         V(1)         V(1) | 11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11< | Index         Derivation $M(1)$ $M($ | Tip         Middle         Middle | Interval         matrix         matri |

-76-

2 🕠

1

•

FIGURE 18 - NATA CODE OUTPUT - TRANSPORT CROSS SECTION EDIT (AVERAGED PAIR CROSS SECTIONS) JNCTIONS OF TEMPERATURE AVERAGED PAIR CROSS-SECTIONS / ł

١

7

ŧ.

| F ペ n € n v<br>Z<br>D<br>U                                                                      | COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT | COUNT<br>13<br>14<br>15<br>15<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COUNT<br>19<br>20<br>21<br>21<br>22<br>24                                          | C<br>2 2 4<br>2 2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2 5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                   |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                 | Ш<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Son Cles<br>Son Cles<br>FI 102<br>FI 10 | S<br>UZZZZZZ<br>UZZZZZ<br>UZZZZZZ<br>UZZZZZZ<br>UZZZZZZ<br>UZZZZZZ                 | а та                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>S              |
| I NDI CES<br>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                            | INDI CES<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 NDI CE<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I NDI CE<br>1                                                                      | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I NDI CE<br>1 - 1 - 1 - 1 - 1 - 1 - 5<br>5 - 5 - 5 - 5<br>5 - 5 - 5 - 5 - 5<br>5 - 5 -       |
| Q(3)<br>1.0230 05<br>3.4550 05<br>1.7850 04<br>1.7650 04<br>1.1080 04<br>7.6280 03<br>5.6080 03 | 26.3000 0(3)<br>74.7000 00<br>84.8000 00<br>94.5000 00<br>94.9000 00<br>14.0300 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 - 7000 00<br>3 - 5000 00<br>3 - 5000 00<br>3 - 5000 00<br>4 - 1000 00<br>4 - 1000 00<br>5 - 7000 00<br>5 - 7000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6(3)<br>5.0000 00<br>5.0000 00<br>5.0000 00<br>5.0000 00<br>5.0000 00<br>5.0000 00 | a(3)<br>1.0107 00<br>1.1407 07<br>1.3207 07<br>1.5007 77<br>1.6700 00<br>1.8500 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a.6070 00<br>5.0070 00<br>6.6070 00<br>6.6070 00<br>9.4077 00<br>1.7020 01                   |
| 0(2)<br>1.0610 05<br>3.5820 05<br>1.8510 05<br>1.1490 04<br>1.1490 04<br>7.9090 03<br>5.8155 03 | a(2)<br>5.3000 00<br>7.7000 00<br>8.8000 00<br>8.8000 00<br>9.5010 00<br>9.5010 00<br>9.5010 00<br>1.0300 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7000 00<br>3.5000 00<br>3.5000 00<br>3.5000 00<br>4.1000 00<br>4.8000 00<br>5.7000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0(2)<br>5.0000 00<br>5.0000 00<br>5.0000 00<br>5.0000 00<br>5.0000 00<br>5.0000 00 | 0(2)<br>1.0100 C0<br>1.1400 C0<br>1.3700 00<br>1.5000 00<br>1.6700 00<br>1.8500 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a+>00<br>a+>00<br>b+>00<br>b+>00<br>c+>00<br>a+>00<br>a+>00<br>1+000<br>1+1000<br>01         |
| 0(1)<br>6.5470 04<br>2.2120 04<br>1.1430 04<br>7.0940 03<br>4.3320 03<br>4.3320 03<br>3.5910 03 | 0(1)<br>5.3000 00<br>7.7000 00<br>8.8000 00<br>9.5000 00<br>9.5000 00<br>9.5000 00<br>1.0300 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7000 00<br>3.0000 00<br>3.5000 00<br>4.1000 00<br>4.1000 00<br>5.7000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00<br>01<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                           | 00 (1)0<br>01 (0)0 (1)0<br>00 (1)1 (0)0 (0)0<br>10 (1)0 (0)0 (0)0 (0)0 (0)0<br>10 (1)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0 | 3. 5000 00<br>5. 5000 00<br>5. 5000 00<br>6. 5000 00<br>6. 4000 00<br>1. 100 00<br>1. 100 01 |
| 11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>1000<br>1000<br>4000<br>6000<br>6000                                         | 11600<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1  |

DEIGINAL PAGE IS OF POOR QUALITY

I.

ł

I

ļ

))

.)

2

1

1

indices printed refer to the list of species for the current gas model, as given in the problem summary (Section 3.2 above).

### 3.10 Species Thermal Properties

Output from the edit of species thermal properties (invoked by input of a negative value for ISW6A) is illustrated by figures in Section 4 below. In these figures HOO denotes the species formation enthalpy, MUO the chemical potential at standard pressure (1 atm), H the enthalpy, CP the specific heat, and SO the entropy at standard pressure. The left half of the output gives the properties as calculated from the physical model, and the right half gives values based on the thermo fit (see Section 2.2 of Volume I). The right half is left blank for species for which no thermo fit has been supplied. In the case of a nonstandard species for which no physical model data are provided, the left half of the table is filled with zeros.

### 4. PRECODED DATA

1

1

ŧ.

To reduce the quantity of input data required for use of the code, NATA contains precoded data on the properties of elements and chemical species, on reaction rates and electronic nonequilibrium processes, on standard gas models, and on the geometries of nozzles and channels in use at the NASA/Johnson Space Center Arc Tunnel Facility. This information is compiled into the code by means of data statements. In the present section, these precoded data are both summarized and, where applicable, documented as to source. Section 4.1 deals with the data for elements, Section 4.2 with the thermochemical properties of species, Section 4.3 with reaction rates, and Section 4.4 with electronic nonequilibrium processes. Section 4.5 summarizes the six standard gas models available in NATA. Section 4.6 reviews the transport cross section data for all of the standard species. Finally, Section 4.7 discusses the standard nozzle and channel geometries.

### 4.1 Elements

The only data required for the chemical elements are the atomic weights (in normal units of g/mole) and the chemical symbols. These data are compiled into the present version of the code for six elements, as follows:

| Index (IE) | Element    |
|------------|------------|
| 1          | e <b>-</b> |
| 3          | Не         |
| 4          | с          |
| 5          | N          |
| 6          | 0          |
| 7          | Ar         |

This list will be referred to as the "master list of elements".

The data for elements are stored in an array EPRP(I,IE), contained in common block /ELEM/. This array is dimensioned (2,10). The entries in this array are defined as follows, for the element with index IE in the master list:

j

ţ

>

;

| EPRP(I,IE) | I | = | 1 | Name of | f element |
|------------|---|---|---|---------|-----------|
|            | Ι | = | 2 | Atomic  | weight    |

For convenience in adding to or altering the compiled-in data, EPRP is equivalenced to ten singly dimensioned arrays of dimension (2), as follows:

1

Ţ

I

1

ł

2.87

| EP1(I)  | Equivalent to EPRP(1,1)       |
|---------|-------------------------------|
| •       | •                             |
| •       | •                             |
| •       | •                             |
| EP10(I) | •<br>Equivalent to EPRP(I,10) |

The data provided for elements in the current code version are summarized in Table I.

### TABLE I

| IE | Name      | Atomic Weight              |
|----|-----------|----------------------------|
| 1  | E <b></b> | 5.48597 x 10 <sup>-4</sup> |
| 3  | HE        | 4.0026                     |
| 4  | с         | 12.0111                    |
| 5  | N         | 14.007                     |
| 6  | ø         | 16.000                     |
| 7  | AR        | 39.948                     |
|    |           |                            |

DATA FOR ELEMENTS

### 4.2 Thermochemical Data for Species

Data for the following chemical species are compiled into the current version of NATA:

| Index (IS) | Species                        |
|------------|--------------------------------|
| 1          | e <b>-</b>                     |
| 2          | N                              |
| 3          | ο                              |
| 4          | Ar (ground state)              |
| 5          | N <sub>2</sub>                 |
| 6          | °2                             |
| 7          | NO                             |
| 8          | NO <sup>+</sup>                |
| 9          | N <sup>+</sup>                 |
| 10         | o+                             |
| 11         | N2 <sup>+</sup>                |
| 12         | 0 <sub>2</sub> +               |
| 13         | co <sub>2</sub>                |
| 14         | co                             |
| 15         | CN                             |
| 16         | He (ground stare)              |
| 17         | c                              |
| 18         | c+                             |
| 19         | He <sup>d</sup> (ground state) |
| 20         | Ar <sup>+</sup>                |

1

-81-

| Index (IS) | Species                                                               |
|------------|-----------------------------------------------------------------------|
| 21         | He ( <sup>3</sup> S metastable state)                                 |
| 22         | He ( <sup>1</sup> S metastable state)                                 |
| 23         | He2 <sup>+</sup>                                                      |
| 24         | He <sub>2</sub>                                                       |
| 25         | co+                                                                   |
| 26         | Ar $({}^{3}P_{2} \text{ and } {}^{3}P_{0} \text{ metastable states})$ |
| 27         | Ar $({}^{3}P_{1}$ and ${}^{1}P_{1}$ resonant states)                  |
| 23         | $Ar_2^+$ ( $^2 \Sigma_u^+$ molecular ion)                             |

1

This is the "master list of species". The helium and argon species in specified electronic states are used in the electronic nonequilibrium models.

The thermochemical data for the above species are stored in an array SPRP(I,IS), contained in common block /SPEC/. This array is dimensioned (43,30). The entries in this array are defined as follows, for the species with index IS in the master list of species:

| SPRP(I,IS) | I = 1    | Name of species                                |
|------------|----------|------------------------------------------------|
|            | *I = 2   | Number of elements in species ( $\leq$ 3)      |
|            | *I = 3-5 | Indices of elements in master list of elements |
|            | I = 6-8  | Numbers of atoms of elements                   |

\*All values in the array are real. The values indicated by asterisks are converted by the program into integers. To ensure rounding down to the correct value, the stored values have been increased by 0.1.

-82-

SPRP(I,IS)

I = 9

а

I = 10b I = 11C Thermo-fit parameters\* I = 12d I = 13е I = 14k I = 15Formation enthalpy (cal/mole) r, number of atoms in a mole-I = 16cule of the species I = 17b, chemical constant\*\*  $\Theta_{v}$ , vibrational temperature ( $^{OK}$ ) I = 16\*\*\*I = 19IGM, number of electronic levels ( $\leq 10$ ) \*\*\*I = 20IGJ, 1 if thermo fit is used 0 if not gm, degeneracies of electronic I = 21 - 30levels I = 31-40 $E_m$ , energies of electronic levels (cal/mole above ground state) I = 41 - 43Second, third, and fourth vibrational temperatures for triatomic species

1

\*See equations (33), (34) in Volume I (ref. 1).

\*\*See equation (51) in Volume I.

\*\*\*All values in the array are real. The values indicated by asterisks are converted by the program into integers. To ensure rounding down to the correct value, the stored values have been increased by 0.1.

-83-

For convenience in adding to or altering the compiled-in data, SPRP is equivalenced to 30 singly dimensioned arrays of dimension (43), as follows:

| SP1(I)  | Equivalent to SPRP(I,1)       |
|---------|-------------------------------|
| •       | •                             |
| •       | •                             |
| SP30(I) | •<br>Equivalent to SPRP(I,30) |

The species thermochemical data compiled into the current version of NATA are summarized in Tables II through VI. The data are listed, in this series of tables, in the order in which they appear in the SPRP array, except that the species name is repeated in each table. Table II shows how positively charged ionic species are represented as containing a negative number of electrons. The thermo fits given in Table III are from reference 4, p. 131-132, except those for  $N_2^+$ ,  $O_2^+$ , CO, CN, and  $CO^+$ , which are based upon unpublished Avco calculations. The formation enthalpy values  $H_0^{\circ}$  in Table IV are based on data in the JANAF tables (ref. 5), NBS Circular 467 (ref. 6), the Handbook of Chemistry and Physics  $(N_2^+ \text{ and } O_2^+)$  (ref. 7), Herzberg (ref. 8) and a paper by Ginter and Brown (ref. 9). The electronic states for monatomic species in Tables V and VI are from NBS Circular 467. Some of the states listed are combinations of two or more actual states with nearly the same energy. The degeneracies g for the stoms and atomic ions were calculated from the total angular momentum quantum number J, which is also given in vircular 467, using the relation

 $g = 2J + 1 \tag{2}$ 

The electronic energy states, degeneracies, vibrational temperatures  $\Theta_{\rm V}$ , and rotational temperatures  $\Theta_{\rm r}$  for the diatomic species were obtained from the spectroscopic data summarized in Table VII. The sources of the data are indicated in the last column of this table. The states of NO<sup>+</sup> do not appear to be very well known. Rotational and vibrational constants are given in Table VII only for the ground state of each molecule, because the physical model in NATA assumes (as an approximation) that these constants are the same for all of the electronic states of each molecule. The chemical constants b and vibrational temperatures  $\Theta_{\rm V}$  in Table IV were calculated from the data of Table VII using

-84-

| TABLE | II |
|-------|----|
| _     |    |

1

1

1

1

.

-

å

T

>

ţ

| IS       | Name           | No. Of<br>Elements | Indices | IE of El | ements | Nos.<br>Of E | Of A<br>leme | toms<br>nts |
|----------|----------------|--------------------|---------|----------|--------|--------------|--------------|-------------|
| 1        | E-             | 1                  | 1       | 0        | 0      | 1.           | 0.           | 0.          |
| 2        | N              | 1                  | 5       | 0        | 0      | 1.           | 0.           | ο.          |
| 3        | ø              | 1                  | 6       | 0        | 0      | 1.           | 0.           | 0.          |
| 4        | AR             | 1                  | 7       | 0        | ა      | 1.           | 0.           | ο.          |
| 5        | N <sub>2</sub> | 1                  | 5       | 0        | 0      | 2.           | 0.           | •           |
| 6        | Ø2             | 1                  | 6       | 0        | 0      | 2.           | l c.         | 0.          |
| 7        | NØ             | 2                  | 5       | 6        | 0      | 1.           | 1.           | 10.         |
| 8        | NØ+            | 3                  | 1       | 5        | 6      | -1.          | 1.           | 11.         |
| 9        | N+             | 2                  | 1       | 5        | υ      | -1.          | Į –          | ٦.          |
| 10       | Ø+             | 2                  | 1       | 6        | 0      | -1.          | 1.           | 0.          |
| 11       | N2+            | 2                  | 1       | 5        | 0      | -1.          | 2.           | 0.          |
| 12       | ø2+            | 2                  | 1       | 6        | 0      | -1.          | 2.           | 0.          |
| 13       | CØ2            | 2                  | 4       | 6        | 0      | 1.           | 2.           | 0.          |
| 14       | СØ             | 2                  | 4       | 6        | 0      | 1.           | 1.           | 0.          |
| 15       | CN             | 2                  | 4       | 5        | 0      | 1.           | 1.           | 0.          |
| 16       | HE             | 1                  | 3       | 0        | 0      | 1.           | 0.           | 0.          |
| 17       | С              | 1                  | 4       | 0        | 0      | 1.           | 0.           | 0.          |
| 18       | _ C+           | 2                  | 1       | 4        | 0      | -1.          | 1.           | 0.          |
| 19       | HE+            | 2                  | 1       | 3        | 0      | -1.          | 11.          | 0.          |
| 20       | AR+            | 2                  | 1       | i        | 0      | -1.          | 11.          | 10.         |
| 21       | HE3S           | 1                  | 3       | 0        | 0      | 1.           | 0.           | 15.         |
| 22       | HEIS           | 1                  | 3       | 0        | U U    | 1.           | 0.           | 0.          |
| 23       | HE2+           | 2                  | 1       | 3        | - C)   | -1.          | 2.           | 0.          |
| 24       | HE2            | 1                  | 3       | 0        | 0      | 2.           | 0.           | 0.          |
| 25       | CØ+            | 3                  | 1       | 4        | 6      | -1.          | 11.          | 11.         |
| 26       | AR*M           | ] 1                | 7       | 0        | 0      | 1.           | 0.           | 0.          |
| 27       | AR*R           | 1                  |         | 0        | 0      | 1.           | C.,          | 0.          |
| 28       | AR2+           | 2                  | ] 1.    | 7        | 0      | -1.          | 2.           | 10.         |
| <b>)</b> |                | 1                  | l l     | 1        | ļ      | ł            | 1            | 1           |

COMPOSITION DATA FOR SPECIES

.

### TABLE III

THERMO FIT DATA\*

| IS  | Nar? | TFA             | 10 <sup>4</sup> . FB | 10 <sup>8</sup> x TFC | 10 <sup>12</sup> x TFD | 10 <sup>16</sup> x TFE | TFK      |
|-----|------|-----------------|----------------------|-----------------------|------------------------|------------------------|----------|
| 5   | N2   | 3.451483        | 3.088332             | -4.251428             | 2.729295               | -0.546832              | 3.071269 |
| 6   | ø2   | 3.249473        | 4.963449             | -6.701753             | 4.443339               | -1.000281              | 5.915022 |
| 7   | NØ   | 3.756216        | 2.083961             | -2.639548             | 1.690332               | -0.361152              | £.611167 |
| 8   | NØ+  | 3.397385        | 3.749384             | -6.062030             | 4.637506               | -1.107704              | 4.200563 |
| 11  | N2+  | <b>^_</b> 23806 | 4.47257              | -3,95880              | 1.52963                | -0,21145               | 4.95160  |
| 12  | ø2+  | 3.49213         | 3.37873              | -5.20841              | 4.16207                | -0.97275               | 4.66750  |
| 14  | cø   | 3.39468         | 3.22824              | -3.94364              | 2.17519                | -0.42966               | 4.20400  |
| L 5 | CN   | 3.25545         | 4.33773              | -3.93346              | 1.59712                | -0.23789               | 5.63340  |
| 25  | CØ+  | 3.49411         | 2.10083              | ~1.11714              | 0.58582                | -0.13605               | 4.2967   |

\*The thermo-fit technique is not used for monatomic species, for the helium and argon molecular species, or for carbon dioxide.

ł

١

I.

| ТA | BI | E | IV |  |
|----|----|---|----|--|
| A  | _  | - |    |  |

DATA FOR PHYSICAL MODEL

| IS | Name | H <sub>0</sub> °<br>cal/mole | n  | Ъ        | θv<br>°K | IGM | IGJ |
|----|------|------------------------------|----|----------|----------|-----|-----|
| 1  | E-   | 0.                           | 1. | -14.9276 | 0.       | 1   | 0   |
| 2  | Ň    | 112520.                      | 1. | 0.2944   | 0.       | 5   | 0   |
| 3  | ø    | 58989.                       | 1. | 0.4938   | 0.       | 7   | 0   |
| 4  | AR   | υ.                           | 1. | 1.8664   | 0.       | 1   | 0   |
| 5  | N2   | 0.                           | 2. | - 0.4106 | 3352.    | 5   | 1   |
| 6  | ø2   | 0.                           | 2. | 0.1140   | 2239.    | 5   | 1   |
| 7  | NØ   | 21456.                       | 2. | 0.5455   | 2699.    | 7   | 1   |
| 8  | NØ+  | 236660.                      | 2. | 0.3841   | 3373.    | 4   | 1   |
| 9  | N+   | 447600                       | 1. | 0.2943   | 0.       | 7   | 0   |
| 10 | Ø+   | 372940_                      | 1. | 0.4938   | 0.       | 3   | 0   |
| 11 | N2+  | 357680.                      | 2. | - 0.3763 | 3114.    | 4   | 1   |
| 12 | ø2+  | 288800.                      | 2. | - 0.0317 | 2628.    | 5   | 1   |
| 13 | CØ2  | 0.*                          | 3. | 1,8958   | 1977.**  | 1   | 0   |
| 14 | CØ   | 66770.*                      | 2. | 0.3169   | 3083.    | 5   | 1   |
| 15 | CN   | 197170.*                     | 2. | 0.2226   | 2939.    | 3   | 1   |
| 16 | HE   | 0.                           | 1. | - 1.5846 | 0.       | 1   | 0   |
| 17 | С    | 263550.*                     | 1. | 0.0637   | 0.       | 10  | 0   |
| 18 | C+   | 523310.*                     | 1. | 0.0636   | 0.       | 4   | 0   |
| 19 | HE+  | 566840.                      | 1. | - 1.5846 | 0.       | 1   | 0   |
| 20 | AR+  | 363318.                      | 1. | 1.8663   | 0.       | 2   | 0   |
| 21 | HE3S | 456910.                      | 1. | - 1.5846 | 0.       | 1   | 0   |
| 22 | HELS | 475260.                      | 1. | - 1.5846 | 0.       | 1   | 0   |
| 23 | HE2+ | 511490.                      | 1. | - 3.5619 | 2343.    | 1   | 0   |
| 24 | HE2  | 406170.                      | 1. | - 3.6287 | 2492.    | 1   | 0   |
| 25 | CØ+  | 389950.*                     | 2. | 0.2931   | 3142.    | 3   | 1   |
| 26 | AR*M | 266350.                      | 1. | 1.8663   | 0.       | 1   | 0   |
| 27 | AR*R | 267970.                      | 1. | 1.8663   | 0.       | 1   | 0   |
| 28 | AR2+ | 337040.                      | 2. | 3.597    | 115.     | 1   | 0   |

\*These formation enthalpies for the carb m-containing species are based on CO<sub>2</sub> as the reference state for carbon. They are 93970 cal/mole higher than the JANAF values, which are based on graphite as the reference state.

\*\*The other three vibrational temperatures for  $CO_2$  are 960, 960, and 3380°K.

| ТА | в | L | Е | V |
|----|---|---|---|---|
|    |   |   | - |   |

ļ

ł

ł

٩

:

1

1

### DEGENERACIES OF ELECTRONIC STATES

ł

F -

| IS        | Name       | 1  | 2   | 3   | 4   | 5   | 6  | 7   | 8   | 9   | 10   |
|-----------|------------|----|-----|-----|-----|-----|----|-----|-----|-----|------|
|           | E          | 2  |     |     |     |     |    |     |     |     |      |
| 2         | N          | 4. | 10. | 6.  | 12. | 18. |    |     |     |     |      |
| 3         | ø          | 5  | 3.  | 1.  | 5.  | 1.  | 8. | 24. | 1   |     |      |
| 4         | AR         | 1. |     |     |     |     |    |     |     |     |      |
| 5         | <u>N2</u>  | 1. | 3.  | 6   | 1.  | 2.  |    |     |     |     |      |
| 6         | ø2         | 3  | 2.  | 1.  | 3.  | 3.  |    |     |     |     |      |
| 7         | NØ         | 2. | 2   | 2.  | 4.  | 2.  | 2. | 2.  |     |     |      |
| 8         | NØ+        | 1. | 6.  | 3.  | 2.  |     |    |     |     |     |      |
| 9         | <u>N+</u>  | 1. | 3.  | 5.  | 5.  | 1.  | 5. | 15. |     |     |      |
| 10        | ø+         | 4, | 10. | 6.  |     |     |    |     |     |     |      |
| 11        | <u>N2+</u> | 2. | 4.  | 2.  | 2.  | 4.  |    |     |     |     |      |
| 12        | ø2+        | 2. | 2.  | 8.  | 4.  | 4.  |    |     |     |     |      |
| 13        | CØ2        | 1. |     |     |     |     |    |     |     |     |      |
| 14        | Cø         | 1. | 6.  | 3.  | 6.  | 2,  |    |     |     |     |      |
| 15        | CN         | 2. | 4.  | 2.  | 4.  | 2.  | 4. | 4.  | 4.  |     |      |
| <u>16</u> | HE         | 1. |     |     |     |     |    |     |     |     |      |
| <u>17</u> | C          | 9. | 5.  | 1.  | 5.  | 9.  | 3. | 15. | 34. | 99. | 401. |
| 18        | C+         | 2. | 4.  | 12. | 10. |     |    |     |     |     |      |
| 19        | HE+        | 2. |     |     |     |     |    |     |     |     |      |
| 20        | AR+        | 4. | 2.  |     |     |     |    |     |     |     |      |
| 21        | HE3S       | 3  |     |     |     |     |    |     |     |     |      |
| _22_      | HE1S       | 1. |     |     |     |     |    |     |     |     |      |
| 23        | HE2+       | 2. |     |     |     |     |    |     |     |     |      |
| 24        | HE2        | 3. |     |     |     |     |    |     |     |     |      |
| 25        | CØ+        | 2. | 4.  | 2.  |     |     |    |     |     |     |      |
| 26        | AR*M       | 6. |     |     |     |     |    |     |     |     |      |
| 27        | AR*R       | 6. |     |     |     |     |    |     |     |     |      |
| 28        | AR2+       | 2. |     |     |     |     |    |     |     |     |      |

TABLE VI

١

۲ .

ŧ

1

1 ]

-

e

.....

l

ſ

### ENERGIES OF ELECTRONIC STATES (CAL/MOLE)

| 10   |        |         |         |    |         |         |         |         |         |         |         |         |     |             |         |    | 243000. |         |     |       |      |      | 1    |     |         |      |      |      |
|------|--------|---------|---------|----|---------|---------|---------|---------|---------|---------|---------|---------|-----|-------------|---------|----|---------|---------|-----|-------|------|------|------|-----|---------|------|------|------|
| 6    |        |         |         |    |         |         |         |         |         |         |         |         |     |             |         |    | 214400. |         |     |       |      |      |      |     |         |      |      |      |
| 8    |        |         |         |    |         |         |         |         |         |         |         |         |     |             | 185220. |    | 200100. |         |     |       |      |      |      |     |         |      |      |      |
| 7    |        |         | 249820. |    |         |         | 173340. |         | 263740. |         |         |         |     |             | 174230. |    | 183240. |         |     |       |      |      |      |     |         |      |      |      |
| و    |        |         | 213990. |    |         |         | 151770. |         | 134860. |         |         |         |     |             | 170640. |    | 177213. |         |     |       |      |      |      |     |         |      |      |      |
| 2    |        | 250140. | 96616.  |    | 198110. | 142390. | 149100. |         | 93456.  |         |         | 138860. |     | 186055.     | 168570. |    | 172580. |         |     |       |      |      |      |     |         |      |      |      |
| 4    |        | 238270. | 45367.  |    | 171500. | 103200. | 131320. | 200000. | 43789.  |         | 184760. | 109760. |     | 178120.     | 154263. |    | 96452.  | 214240. |     |       |      |      |      |     |         |      |      |      |
| m    |        | 82456.  | 648.    |    | 170480. | 37726.  | 125700. | 160000. | 375.    | 115700. | 72797.  | 91206.  |     | 159830.     | 73759.  |    | 61894.  | 123040. |     |       |      |      |      |     | 131166. |      |      |      |
| 2    |        | 54962.  | 453.    |    | 143540. | 22639.  | 346.    | 106000. | 140.    | 76670.  | 25890.  | 558.    |     | 139200.     | 26069.  |    | 29146.  | 183.    |     | 4094. |      |      |      |     | 59278.  |      |      |      |
| ы    | 0      | •       | 0       | 0  | •       | 0       | 0       | 0       | 0       | 0.      | 0       | 0       | •   | 0           | .0      | •• | 85.     | 0.      | •   | •     | ••   | •    | •    | •   | •       | •    | •    | 0    |
| Name | L<br>E | N       | 8       | AR | N2      | Ø2      | ØN      | +ØN     | +N      | 4       | N2+     | ø2+     | cø2 | C<br>C<br>C | CN      | HE | ບ       | t<br>C  | HE+ | AR+   | HE3S | HELS | HE2+ | HE2 | cø+     | AR*M | AR*R | AR2+ |
| SI   | н      | 7       | m       | 4  | ഗ       | 9       | 7       | ω       | σ       | 10      | 11      | 12      | 13  | 14          | 15      | 16 | 17      | 18      | 19  | 20    | 21   | 22   | 23   | 24  | 25      | 26   | 27   | 28   |

equations (38), (40b), (51b), and (45) of Volume I, i.e.,

1

$$b = -3.66505 + \frac{3}{2} \ln W - (n - 1) \ln \left[ 1.43879 \quad \sigma(B_e - \frac{1}{2} \propto_e) \right]$$
(4)

F

 $\Theta_{\rm v} = 1.43879 \ (\omega_{\rm e} - 2 \ \omega_{\rm e} \ x_{\rm e} + \frac{13}{4} \ \omega_{\rm e} \ y_{\rm e})$  (5)

in which W denotes the molecular weight and n the number of atoms per molecule (for monatomic and diatomic species). The degeneracies g for the molecular states in Table V were obtained from the state symbols using the following rule, based on Herzberg (ref. 8):

<sup>n</sup>
$$\Sigma$$
 states  $g = n$  (6)  
<sup>n</sup> $\Pi$ , <sup>n</sup> $\Delta$ , etc.  $g = 2n$ 

Figures 19 through 46\* are tables of thermal properties for the compiled-in species, computed by NATA from the precoded data, under the option ISW6A = -1. For each species, the properties calculated from the physical model are given for temperatures up to 30,000°K. For the molecular species for which the thermo fit is used, corresponding results based on the thermo fit are given for comparison. At the normal switchover temperature,  $CTMXX = 5000^{\circ}K$ , the results from the two techniques are seen to be in reasonably good agreement. Above about 15,000°K, the properties calculated from the thermo fits become very inaccurate in all cases. This behavior results from the inability of the polynomial form used in the thermo fit to represent the actual property variations over excessively wide temperature ranges. This is not considered to be a serious problem because, at temperatures of 15000°K and higher, the mole fractions of the molecular species (for which the thermo fit is used) are quite small, so that errors in the thermal properties of these species have only very minor effects upon the properties of the gas mixture. However, at temperatures above about 20,000°K, the properties computed from the thermo fit show wild variations which could lead

\*The equipment used to produce these figures printed the BCD "+" sign appearing in some of the species names as an ampersand.

FIGTRE 19

KCAL/MOLE)

0•0

### THERMAL PROPERTIES OF E- 0=

•

# 

| 100.     | 2.722     | 0.497   | 4.968   | -0-440  |
|----------|-----------|---------|---------|---------|
| 200.     | 0.989     | 0.994   | 4,968   | 3.003   |
| 300      | -0.025    | 1.490   | 4.968   | 5.018   |
| 400+     | -0.744    | 1.997   | 4.958   | 6.447   |
| 500      | -1-302    | 2.484   | 4.968   | 7.555   |
| 60.0.    | -1.758    | 2.981   | 4.968   | 8 + 461 |
| 703.     | -2+143    | 3.478   | 4 • 968 | 9.227   |
| 80.0.    | -2.477    | 3.974   | 4.968   | 068.0   |
| 90.0.    | -2.772    | 4.471   | 4.968   | 10.476  |
| 1 30 0.  | -3.035    | 4.968   | 4.968   | 10.999  |
| 1200.    | -3.491    | 5.962   | 4 • 968 | 11.905  |
| 1400.    | -3.876    | 6.955   | 4.968   | 12.671  |
| 1 60 0 . | -4.210    | 7.949   | 4.968   | 426*21  |
| 1800.    | - 4 . 504 | 8,942   | 4.968   | 13.919  |
| 2003.    | -4.768    | 9.936   | 4.968   | 14.443  |
| 2200.    | -5+006    | 10+930  | 4.968   | 14.916  |
| 2400.    | -5.24     | 11.923  | 4.968   | 15.348  |
| 2600.    | -5.424    | 12.917  | 4.968   | 15.746  |
| 2850.    | -5.609    | 13.910  | 4.968   | 16.114  |
| 3000.    | -5.781    | 14.904  | 4 • 968 | 16.457  |
| 3500.    | -6.167    | 17.398  | 4.968   | 17.223  |
| 4000     | -6.501    | 19.872  | 4.968   | 17.886  |
| 4500.    | -6.795    | 22+356  | 4.968   | 18.471  |
| 5000.    | -7.059    | 24.840  | 4.968   | 18.995  |
| 5500.    | -7-297    | 27.324  | 4.968   | 19.468  |
| •0009    | -7.514    | 29.808  | 4.968   | 19.900  |
| 6500.    | -7.714    | 32.292  | 4.968   | 20.298  |
| 7000.    | - 7.900   | 34.776  | 4 • 968 | 20.666  |
| 7500.    | -8.072    | 37.260  | 4.968   | 21.009  |
| 8010.    | -8.234    | 39.744  | 4 • 968 | 21.330  |
| 8533.    | -8.385    | 42.228  | 4.968   | 21.631  |
| •0006    | -8.529    | 44.712  | 4.968   | 21.915  |
| 9500.    | -8.663    | 47.196  | 4.968   | 22.183  |
| •00001   | -8.791    | 49.680  | 4.968   | 22.438  |
| 1000     | 0E0*6     | 54.648  | 4 • 968 | 22.912  |
| 12000.   | -9.247    | 59.616  | 4.958   | 23.344  |
| JC       | -9.447    | 64.584  | 4 • 968 | 23.742  |
|          | -9+633    | 69.552  | 4.968   | 24.110  |
| 15000.   | -9+805    | 74.520  | 4.968   | 24.453  |
| 60000    | -9-966    | 79.488  | 4 • 968 | 24.773  |
| 17000.   | -10.118   | 84.456  | 4 • 968 | 25.074  |
| 18000.   | -10.261   | 89.424  | 4.968   | 25+358  |
| +00061   | -10-395   | 262*76  | 4.968   | 25.627  |
| -00003   | -10.524   | 99.360  | 4.968   | 25.882  |
| 22000.   | -10.763   | 109.296 | 4.968   | 26+355  |
| 24000.   | -10.980   | 119.232 | 4.968   | 26.788  |
| 26000.   | -11.180   | 129.168 | 4.968   | 27.185  |
| :80CO.   | -11-365   | 139.104 | 4 • 968 | 27+553  |
| 30000    | -11-538   | 140.040 | 4.968   | 27.896  |

ORIGINALI PAGE IS OF POOR QUALITY ŧ

ť

. . . . .

:

.

÷

. . .

. . . . .

£

5

.

1

I

ļ

ì

ł

- 45.00

דור אים 20 דאפאאן Properties of N 10= 112.520 אראראטוב) ſ

1

÷

٢

ł

ł

# \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*DHYSICAL MODEL\*\*\*\*\*\*\*\*\*\*\*\*\*\*

•

| -      | ( MU0-H00)/RT | 004-4     | e<br>U       | SO              |
|--------|---------------|-----------|--------------|-----------------|
|        |               | KCAL/MOLE | CAL/MDLE-DEG | CAL/MDLE-DEG    |
| 100    | -13-194       | 0.497     | 4.968        | 31.186          |
| 200-   | -14-926       | 0.994     | 4.968        | 34.630          |
| 30.0   | -15.940       | 1.490     | 4.968        | 36.644          |
| 4004   | -16.659       | 1.987     | 4.968        | 38.073          |
| 500.   | -17.217       | 2.484     | 4.968        | 39.182          |
| 600.   | -17.673       | 2.981     | 4.968        | 40.088          |
| 700.   | -18.058       | 3.478     | 4.968        | 40.854          |
| 800.   | -18.392       | 3.974     | 4.968        | 41.517          |
| •005   | -18-627       | 4.471     | 4 • 968      | 12.102          |
| 1025-  | -18,950       | 4.968     | 4.968        | 42.626          |
| 1200.  | -19.406       | 5.962     | 4.968        | 43.531          |
| 1400.  | -19.791       | 6.955     | 4.968        | 44.297          |
| 1600.  | -20+125       | 7.949     | 4.968        | 44.961          |
| 1800.  | -20+420       | 8.942     | 4.968        | 45.546          |
| 2000   | -20+683       | 9 • 9 3 6 | 4 • 969      | 46.069          |
| 2200.  | -20.921       | 10.930    | 4.971        | 46.54.3         |
| 2400.  | -21.139       | 11.925    | 4.975        | 46.976          |
| 2603.  | -21+339       | 12.920    | 4.982        | 47.374          |
| 2803.  | -21.524       | 13.917    | 4.993        | 47.744          |
| 3000   | -21.697       | 14.918    | 5.010        | 48.089          |
| 3500.  | -22+083       | 17.440    | 5.086        | 48.866          |
| 4000   | -22.418       | 20.012    | 5.213        | 49 <b>.</b> 553 |
| 4500.  | -22.716       | 22.661    | 5+390        | 50.176          |
| 5000.  | -22.984       | 25.409    | 5+608        | 50.755          |
| 5530.  | -23.229       | 28+273    | 5.850        | 51,301          |
| 6000.  | -23.456       | 31.260    | 6.100        | 51.821          |
| 6503.  | -23.667       | 34.372    | 6.344        | 52,319          |
| 7000.  | -23.866       | 37.601    | 6•569        | 52.797          |
| 7500.  | -24.054       | 40.937    | 6.768        | 53,258          |
| 8033.  | -24.232       | 44.364    | 6+935        | 53.700          |
| 8500.  | =24.403       | 47+866    | 7.068        | 54.124          |
| •0006  | -24,566       | 51.426    | 7.169        | 54.531          |
| 9500   | -24.722       | 55+029    | 7.239        | 54.921          |
| 10000  | -24.873       | 58+660    | 7.281        | 52°53           |
| 11000. | -25.157       | 65+957    | 7.300        | 55,989          |
| 12000. | -25.422       | 73.240    | 7.257        | 56.623          |
| 13000  | -25+670       | 80,461    | 7.180        | 57+201          |
| 14000+ | -25.902       | 87+595    | 7.089        | 57.729          |
| 15000. | -26.120       | 94.638    | 466*9        | 58.215          |
| 16000. | -26.326       | 101.593   | 6.914        | 58.664          |
| 17000. | -26.520       | 108.471   | 6+843        | 59.081          |
| 18600. | -26.704       | 115.284   | 6•786        | 59.471          |
| •00061 | -26.878       | 122.047   | 6.742        | 59.836          |
| -0070Z | -27.044       | 128.772   | 6.710        | 60.181          |
| -00022 | -27.354       | 142.151   | 6.674        | 60.819          |
| 24000. | -27-637       | 155.484   | 6,663        | 61•399          |
| 26000. | -27.899       | 168.808   | 6•663        | 61.932          |
| 28030. | -28.141       | 182.136   | 6.665        | 62 • 426        |
| 30000  | -28.367       | 195,464   | 6.563        | 62.8R6          |

ORIGINAL PAGE IS OF POOR QUALITY • }

Ī

ī

1

ì

,

1

# ╆╄╪╪╪╪╪╪╪╪╪╪╪╪╪╪╞┢┝╽┚╏CYL ₩OOEL÷╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪

•

| -      | (MUO-HCO)/RT | 00H-H     | СD           | SO              |
|--------|--------------|-----------|--------------|-----------------|
|        |              | KCAL/MDLE | CAL/MOLE-DEG | CAL/MOLE-DEG    |
| 100.   | -13.683      | 0.527     | 5.665        | 32.465          |
| -035   | -15+557      | 1.085     | 5.434        | 36.339          |
| 300    | -16.561      | 1.617     | 5•235        | 38,500          |
| 4004   | -17.438      | 2.135     | 5.135        | 39,991          |
| 500.   | -18.035      | 2.646     | 5.081        | 41.130          |
| 60.0.  | -18.519      | 3.152     | 5.049        | 42.05           |
| 700.   | -18,925      | 3.656     | 5.029        | 42.830          |
| +00P   | -19-275      | 4.158     | 5.015        | 43.500          |
| 900    | -19.582      | 4.659     | 5.076        | 44.091          |
| 1000.  | -19.855      | 5.159     | 4•999        | 44.618          |
| 1209.  | -20,328      | 6.158     | 4.990        | 45.528          |
| 1400.  | -20.725      | 7.155     | 4.984        | 46.297          |
| 1600.  | -21.068      | 8.152     | 4.981        | 46.962          |
| 1800.  | -21.370      | 9.147     | 4.978        | 47.549          |
| 2000   | -21+639      | 10.143    | 4.978        | 48.073          |
| 2200.  | -21.882      | 11.139    | 4.978        | 48.547          |
| 2400.  | -22.104      | 12.135    | 4.981        | 48.981          |
| 2600.  | -22.307      | 13+131    | 4.986        | 49.380          |
| 2900.  | -22 • 4 56   | 14.129    | 400.40       | 49.749          |
| 3000-  | -22.671      | 15.129    | 5.004        | 50.094          |
| 3500.  | -23.062      | 17+640    | 5.041        | 50.868          |
| 4000+  | -23.401      | 20.172    | 5+091        | 51.545          |
| 4500.  | -23.700      | 22.732    | 5.149        | 52.148          |
| 5000.  | -23,968      | 25.322    | 5.210        | 52.693          |
| 5500.  | -24.211      | 27+942    | 5• 269       | 53.193          |
| 60000  | -24.434      | 30+590    | 5.323        | 53+653          |
| 6500.  | -24 - 640    | 33.264    | 5.371        | 54.091          |
| 7000.  | -24.831      | 35+961    | 5.413        | 54.481          |
| 7500.  | -25.010      | 38.676    | 5.447        | 54.856          |
| 8000%  | -25.177      | 41.437    | 5.475        | 55.208          |
| 8530.  | -25.335      | 44.150    | 5.497        | 55.541          |
| •0006  | -25.485      | 46.903    | 5.514        | 55.856          |
| 9500.  | -25.627      | 49.663    | 5.527        | 56.154          |
| .0000  | -25.762      | 52+429    | 5+537        | 56.438          |
| 1000.  | -26.014      | 57,973    | 5.550        | 56+956          |
| 2002.  | -26.246      | 63+523    | 5.560        | 57.449          |
| 3000   | -26.459      | 69*093    | 5.571        | 57.895          |
| 4000+  | -26.658      | 74.672    | 5.598        | 58.308          |
| 5000.  | -26.843      | 80.271    | 5.612        | 58.695          |
| 6000.  | -27.017      | 85.899    | 5.645        | 59 <b>•</b> 058 |
| 7000.  | -27.182      | 91.565    | 5.688        | 59.401          |
| 8000.  | -27,337      | 97.277    | 5.738        | 59.728          |
| .0000  | -27.484      | 103.044   | 5.797        | 000000          |
| •0000  | -27.624      | 108.873   | 5.861        | 60+339          |
| :2000. | -27,886      | 120.735   | 6.002        | 60.904          |
| .0004  | -28.128      | 132.886   | 6.149        | 61.432          |
| .0000  | -28.352      | 145.326   | 6•289        | 61.930          |
| .0008  | -28.561      | 158.035   | 6.416        | 52.401          |
| •0000  | -28.758      | 170.978   | 6.524        | 62 • B4 7       |

;

. . . . . . . .

ETRICE 22 Fries of Ar 400= 0.0

KCAL /1.0LE?

ţ

**f** .....

1

!

| SO           | CAL/MOLE-DEG | 31.555  | 34.999  | 37+013  | 38.442  | 39,551  | 40.457  | 41.222  | 41.886  | 42.471     | 42 <b>.</b> 994 | 43.900  | 44 <b>.</b> 666 | 45 <b>.</b> 329 | 45.915  | 46.438  | 46.911  | 47.344  | 47.741  | 48.110  | 48.452  | 49. 18  | 49.882  | 50.467    | 50.990  | 51.464  | 51,296  | 52.294  | 52+662  | 53.004  | 53 <b>.</b> 325 | 53.626           | 53. 110 | 54.179  | 54.434  | 54.907  | 52°339  | 55.737  | 56.105  | 56.448  | 56,769  | 57.070  | 57.354  | 57.622  | 57.877          | 53.351  | 58.783  | 59.181  | 59.549  | 59.892  |
|--------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|-----------------|---------|-----------------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|-----------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------|---------|---------|---------|---------|---------|
| G            | CAL/MOLE-DEG | 4,968   | 4.963   | 4,968   | 4.968   | 4.968   | 4 • 968 | 4 • 968 | A. 968  | 4,968      | 4.968           | 4.968   | 4.968           | 4.968           | 4.968   | 4,968   | 4,968   | 4.968   | 4*968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968     | 4.958   | 4.969   | 4.958   | 4.968   | 4.968   | 4.968   | 4.968           | <b>4</b> • 0 • 8 | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.968   | 4.964   | 4.368           | 4.969   | 4.968   | 4,965   | 4.968   | 4,968   |
| 00H-H        | KCAL/MOLE    | 0.497   | 0.994   | 1.490   | 1.987   | 2.484   | 2.981   | 3.478   | 3.974   | 4.471      | 4.968           | 5.962   | 6.955           | 7.949           | 8.942   | 9.936   | 10.930  | 11.923  | 12.917  | 13.910  | 14.934  | 17.388  | 19.872  | 22.356    | 24.840  | 27.324  | 29.808  | 32.292  | 34.776  | 37.260  | 39+744          | 42.228           | 44.712  | 47.196  | 49.630  | 54.648  | 59.616  | 64.584  | 69-552  | 74.520  | 79.488  | 84.456  | 89°424  | 94.392  | 9 <b>6°3</b> 60 | 109.296 | 119.232 | 129.168 | 401*661 | 149.040 |
| (MU0-H00)/RT |              | -13+379 | -15.112 | -16.126 | -16.845 | -17.403 | -17.859 | -18.244 | -18.573 | -18.872    | -19.136         | -19.591 | -10-977         | -20.311         | -20+605 | -20.869 | -21.107 | -21.324 | -21.524 | -21.710 | -21,882 | -22.269 | -22,601 | -22 . 396 | -23.159 | 855-53- | -23.615 | -23.815 | -24.000 | -24.173 | -24.334         | -24.486          | -24+629 | -24.764 | -24.892 | -25.130 | -25,348 | -25+548 | -25.733 | -25+906 | -26+067 | -26.219 | -26.362 | -26.497 | -26.625         | -26.863 | -27.381 | -27.241 | -27-466 | -27.639 |
| +            |              | 100.    | 200.    | 300.    | 400     | 500.    | 600.    | 700.    | 800.    | <b>006</b> | 1000            | 1200.   | 1400.           | 1020.           | 1800.   | 2000.   | 2200.   | 2400.   | 2600.   | 2800.   | 3000    | 3500.   | 40C0+   | 4500.     | 5000.   | 5500.   | 6000    | 6500.   | 7000.   | 7500.   | 8003.           | 8500.            | 9000    | 9500.   | 10000   | 11000.  | 12000.  | 13000.  | 14000.  | 15000.  | 16000.  | 17003.  | 18003.  | 19000.  | 20000.          | 22000.  | 24000.  | 26000.  | 23000.  | 30000   |

DRIGINAL PAGE IS OF POOR QUALITY ł

;

i b

ł

ſ

3

F" "TRE 23 Thermal properties of N2 400= 0.0

,

KCAL/MOLE)

;;

į

| (MUO-HCO)/RT | 001-1     | đ            | 50              | (MU0-H00)/RT | 00H-H      | G            | \$1          |
|--------------|-----------|--------------|-----------------|--------------|------------|--------------|--------------|
|              | KCAL/MOLE | CAL/MOLE-DEG | CAL/MOLE-DEG    |              | K CAL/MDLE | CAL/MOLE-DFG | CAL/MOLE-DEG |
| -15+707      | 0.696     | 6.955        | 38.169          | -15.545      | 0.692      | 6•979        | 37.811       |
| -18.134      | 1.391     | 6.955        | 42.990          | -17.968      | 1.396      | 7.094        | 42.684       |
| -19.553      | 2+087     | 6•959        | 45,811          | -19-397      | 2.111      | 7.205        | 45.581       |
| -20.560      | 2.784     | 6.987        | 47.815          | -20.419      | 2•836      | 7.311        | 47.669       |
| -21+342      | 3.486     | 7.065        | 49.382          | -21.219      | 3+573      | 7.412        | 49.311       |
| -21+982      | 4.198     | 7.189        | 50.680          | -21.877      | 4.319      | 7.509        | 50.671       |
| -22+527      | 4+925     | 7.341        | 51.800          | -22.437      | 5.074      | 7.601        | 51.835       |
| -23-001      | 5.667     | 7.500        | 52.790          | -22.926      | 5.839      | 7.689        | 52 . 855     |
| -23.422      | 6.424     | 7.654        | 53.683          | -23,360      | 6.612      | 7.74         | 53.767       |
| -23.802      | 7.197     | 7.795        | 54.497          | -23.750      | 7.393      | 7.854        | 54.590       |
| -24.468      | 8•781     | 8.032        | 55.940          | -24.433      | 8.979      | 8.003        | 56+035       |
| -25.040      | 10-406    | 8.214        | 57.150          | -25.016      | 10.594     | 8.138        | 57.279       |
| -25+543      | 12.063    | 8,351        | 58+298          | -25.527      | 12.234     | 8+259        | 58.374       |
| -25+993      | 13.744    | 8.455        | 59.288          | -25,983      | 13.897     | 8•368        | 59.353       |
| -26.400      | 15.444    | 8+536        | 60 A3           | -26.394      | 15.580     | 8.465        | 60.240       |
| -26.772      | 17,157    | 8+599        | 61.300          | -26.769      | 17+282     | 8.552        | 61.051       |
| -27.115      | 18.882    | 8•649        | 61.750          | -27.114      | 19.000     | 8•628        | 61 • 798     |
| -27 + 433    | 20+616    | 8,689        | 62 <b>.</b> 444 | -27.434      | 20.732     | 8. 695       | 62.492       |
| -27.730      | 22.357    | 8.721        | 63.089          | -27.733      | 22.477     | 8.753        | 63.138       |
| -28.008      | 24.104    | 8.748        | 63.692          | -28.012      | 24 • 233   | 8.804        | 63°744       |
| -28.635      | 28.492    | 8.797        | 65.045          | -28,643      | 28.661     | 8.902        | 62.109       |
| -29.185      | 32,899    | 8.830        | 66•222          | -29.197      | 33.130     | 8.968        | 66.302       |
| -29.675      | 37+320    | 8.853        | 67.263          | -29.690      | 37.625     | 9.011        | 67.361       |
| -30.116      | 41.751    | 8.870        | 58 <b>.</b> 197 | -30.135      | 42.139     | 9.042        | 69.312       |
| -30.518      | 46.190    | 8•885        | 69.043          | -30.541      | 46.666     | 9.068        | 69 175       |
| -30.886      | 50.636    | 8,898        | 69.817          | -30,913      | 51.208     | 9.098        | 69.965       |
| -31.227      | 55.089    | 8•915        | 70.529          | -31.258      | 55.766     | 9.138        | 70.695       |
| -31+544      | 59.551    | 8.936        | 71.191          | -31.579      | 60.349     | 90196        | 71.374       |
| -31.839      | 64.026    | 8.967        | 71+808          | -31.879      | 64.965     | 9.275        | 72.011       |
| -32.117      | 68.520    | 600*6        | 72,388          | -32.161      | 69 • 62B   | 9.380        | 72.613       |
| -32+379      | 73.038    | 9.057        | 72.936          | -32,427      | 74.350     | 9.516        | . 73.186     |
| -32+626      | 77.590    | 9.143        | 73.456          | -32.679      | 79.149     | 9.684        | 73.734       |
| -32,861      | 82•184    | 9•239        | 73+953          | -32,919      | 84.041     | 9 • 888      | 74.263       |
| -33.085      | 86+833    | 9.358        | 74.430          | -33.148      | 69.043     | 10.129       | 74.776       |
| -33+503      | 96.335    | 9•661        | 75.335          | -33,578      | 99.455     | 10.719       | 75.769       |
| -33.889      | 106.183   | 10.049       | 76.192          | -33,978      | 110.528    | 11.450       | 76.731       |
| -34.247      | 116.455   | 10+504       | 77.014          | - 34 · 48    | 122.395    | 126.501      | 77.691       |
| -34.584      | 127.234   | 11.000       | 77.810          | -34.708      | 135.161    | 13.241       | 78.626       |
| -34 • 901    | 138.460   | 11.510       | 78.587          | -35.048      | 148.892    | 14 • 225     | 79.573       |
| -35+204      | 150.218   | 12+002       | 79.345          | -35+375      | 163.605    | 15.193       | 80+522       |
| -35.493      | 162.449   | 12.451       | 80.087          | -35+692      | 179.249    | 16.074       | 81.471       |
| -35.770      | 175.099   | 12.837       | 80.810          | -36.000      | 195+695    | 16.783       | 614.58       |
| -36.037      | 188.098   | 13.148       | 81.513          | -36.300      | 212.726    | 17 . 224     | 83,331       |
| -36.295      | 201.367   | 13.378       | 82.193          | =36,593      | 230.018    | 17.286       | . 84.218     |
| -36.785      | 228.398   | 13.601       | 83.481          | -37,157      | 263.493    | 15.763       | 85.814       |
| -37.246      | 255.606   | 13.567       | 84 • 655        | -37.686      | 290.959    | 11.069       | 87.012       |
| -37+679      | 282.547   | 13.350       | R5.743          | -38.168      | 304.756    | 1.859        | 87.569       |
| -38.0.88     | 308.937   | 13.028       | R6.721          | -38.586      | 294.303    | -13.458      | 87.189       |
|              |           |              |                 |              |            |              |              |

,

?

1

ş

ŗ

2

:

÷

|           | -          |
|-----------|------------|
| FICIRE 24 | =00        |
| -         | 05         |
|           | 9F         |
|           | PROPERTIES |
|           | THERMAL    |

### 32 00= 0.0 KCAL/MOLF)

1

# 

| S0<br>Fig             | 87       | 54               | 101      | 228     | 76      | 144     | 175     | 502     | 45      | 537     | 134     | 187     | 25      | 173     | 44      | 152           | 504     | 00          | 00                         | 00<br>172<br>174                                                       | 00<br>172<br>174<br>174                                                                     | 00<br>172<br>174<br>175                                  | 200<br>172<br>175<br>175<br>133                                         | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00<br>172<br>172<br>173<br>173<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00<br>172<br>00<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000<br>400<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 172<br>172<br>172<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00<br>170<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0                                              | 00<br>14<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000<br>000<br>000<br>000<br>000<br>000<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000<br>172<br>175<br>175<br>175<br>133<br>133<br>133<br>196<br>194<br>110<br>110<br>110<br>178<br>179                                                                                  | 000<br>172<br>175<br>175<br>175<br>196<br>19<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00<br>172<br>175<br>175<br>175<br>175<br>196<br>110<br>110<br>110<br>167<br>167<br>167<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000<br>174<br>175<br>175<br>175<br>175<br>196<br>196<br>196<br>174<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00<br>172<br>172<br>175<br>175<br>175<br>10<br>10<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00<br>572<br>575<br>575<br>575<br>65<br>76<br>74<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 2 4 0 5 6 0 0 1 8 1 0 4 1 4 0 7 4 1 0 5 0 0 1 8 1 0 0 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 2 4 0 0 6 0 0 1 8 1 0 4 1 4 0 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 7 7 6 7 6 7 6 7 6 7 7 6 7 6 7 6 7 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 2 4 0 10 0 0 0 1 8 1 0 4 7 7 0 0 0 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|----------|------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------------|---------|-------------|----------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 41.6     |                  | 51.5     | 52.6    | 54.1    | 55.3    | 56.3    | 57.3    | 58.1    | 59.6    | 60.5    | 62 • C  | 63.1    | 64.0    | 54.9    | 6 <b>5</b> •7 |         | 67 • 2      | 67 • 2<br>67 • 2<br>67 • 6 | n (v = 1<br>0 (v = 1)) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N N M M Q E G G F V H M<br>D N N G O O M N M G Q N<br>D N N G O O M N N N N N N N<br>D Q Q Q N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                  | N N B M B B B B B C M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N N B M B B B B B M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∩ ∧ @ ∩ @ © © ⊂ ∧ @ ∩ ∩ ~ € O ⊍ ∧ 4 ∪ U ∪ ↓ ↓<br>0 ∧ ∧ ∧ 0 − ∧ ∩ 4 ∪ ⊍ ∧ ∧ ∧ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Π Ν Β Φ Φ Φ Φ Φ Φ Ρ Φ Ρ Φ Ρ Φ Φ Φ Φ Φ Φ Φ Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □ < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAL/WOLE-DEG C        | 6.651    | 6.836<br>7.014   | 7 . 185  | 7.348   | 7.505   | 7.654   | 797.7   | 7.934   | 8.065   | 8.308   | 8.529   | 8.729   | 8, 939  | 9.071   | 9.216   | 9. 345        | 3.461   | 9.563       | 9. 563<br>9. 653           | 9 • 563<br>9 • 653<br>9 • 833                                          | 9.563<br>9.653<br>9.633<br>9.833                                                            | 9.563<br>9.553<br>9.833<br>9.962<br>10.055               | 9.563<br>9.553<br>9.833<br>9.962<br>10.055<br>10.126                    | 9.553<br>9.553<br>9.833<br>9.962<br>10.055<br>10.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.563<br>9.653<br>9.653<br>9.933<br>10.055<br>10.128<br>10.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.553<br>9.553<br>9.553<br>9.553<br>10.0000<br>10.0100<br>10.01100<br>10.01100<br>10.020<br>10.251<br>20.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.553<br>9.553<br>9.553<br>9.653<br>10.055<br>10.126<br>10.255<br>10.251<br>10.251<br>10.417<br>10.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.553<br>9.553<br>9.553<br>9.833<br>9.833<br>10.125<br>10.125<br>10.128<br>10.251<br>10.251<br>10.535<br>10.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.553<br>9.553<br>9.553<br>9.653<br>9.653<br>10.128<br>10.128<br>10.251<br>10.251<br>10.539<br>10.631<br>10.631<br>10.631<br>10.631 | 9.553<br>9.553<br>9.553<br>9.653<br>9.653<br>10.126<br>10.255<br>10.255<br>10.251<br>10.534<br>10.651<br>10.651<br>10.651<br>10.651<br>10.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.555<br>9.555<br>9.555<br>9.553<br>9.553<br>10.1255<br>10.1255<br>10.255<br>10.255<br>10.255<br>10.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.255<br>11.2555<br>11.255<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.2555<br>11.25555<br>11.25555<br>11.25555<br>11.255555<br>11.25555555555 | 9.553<br>9.553<br>9.553<br>9.553<br>9.653<br>10.055<br>10.1255<br>10.325<br>10.325<br>10.251<br>10.653<br>11.0551<br>11.0551<br>11.0751<br>11.0751<br>11.0751                          | 9.553<br>9.553<br>9.553<br>9.952<br>9.952<br>10.055<br>10.125<br>10.251<br>10.251<br>10.251<br>10.631<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.075<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.0555<br>11.0555<br>11.0555<br>11.0555<br>11.05555<br>11.05555<br>11.055                                                                                                                                  | 9.553<br>9.553<br>9.553<br>9.653<br>10.055<br>10.125<br>10.251<br>10.251<br>10.251<br>10.634<br>11.0553<br>11.0553<br>11.0553<br>11.0553<br>11.0553<br>11.0553<br>12.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.553<br>9.553<br>9.553<br>9.553<br>9.553<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.0000<br>10.0000<br>10.0000<br>10.0000<br>10.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.553<br>9.553<br>9.553<br>9.553<br>9.653<br>10.0555<br>10.1255<br>10.255<br>10.255<br>10.255<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.055<br>11.0555<br>11.0555<br>11.0555<br>11.0555<br>11.0555<br>11.0555<br>11.0555<br>11.0555<br>11.0                                                                                                                                              | 9.553<br>9.553<br>9.553<br>9.553<br>9.553<br>10.050<br>10.1255<br>10.251<br>10.251<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.0551<br>11.                                                                                                                                                                                                                                                          | 9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 553<br>10. 058<br>10. 128<br>10. 251<br>10. 251<br>10. 251<br>11. 076<br>11. | 9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 553<br>10. 125<br>10. 125<br>10. 251<br>10. 251<br>10. 251<br>11. 075<br>11. 075<br>12. 079<br>12. 079<br>15. | 9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 653<br>10. 120<br>10. 125<br>10. 251<br>10. 251<br>10. 251<br>11. 25<br>11. | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 553<br>10. 10. 058<br>10. 128<br>10. 128<br>10. 251<br>10. 251<br>11. 075<br>11. 075                                                                                                                 | 9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 553<br>9. 553<br>10. 10. 055<br>10. 125<br>10. 125<br>10. 251<br>10. 251<br>11. 053<br>11. 055<br>11. 055 |
| H-H00<br>KCAL/MDLE    | 0.655    | 1.330            | 2.732    | 3.459   | 4.202   | 4.960   | 5.733   | 6.519   | 7.319   | 8.957   | 10.641  | 12.367  | 14.131  | 15.930  | 17.759  | 19.615        | 21.496  | 23.398      | 23• 398<br>25• 320         | 23•398<br>25•320<br>30•194                                             | 23.398<br>25.320<br>30.194<br>35.144                                                        | 23, 398<br>25, 320<br>30, 194<br>35, 144                 | 23, 398<br>25, 320<br>30, 194<br>35, 144<br>40, 150<br>45, 195          | 23,398<br>25,320<br>25,194<br>20,194<br>405,194<br>50,195<br>50,1950<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,274<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,575<br>50,5750 | 23,398<br>25,320<br>25,154<br>20,154<br>20,154<br>20,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155<br>255,155,155<br>255,155,155,155,155,155,155,155,155,155, | 23,308<br>25,308<br>25,19<br>25,19<br>25,219<br>25,219<br>25,23<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,48<br>25,488<br>25,488<br>25,488<br>25,4882<br>25,4882252525252525252525252525252525252525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,398<br>25,398<br>25,199<br>25,199<br>25,2195<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24,24<br>25,24<br>25,24<br>25,24<br>25,24<br>25,24,24<br>25,24,24<br>25,24,24<br>25,24,24,24<br>25,24,24,24,24,24,24,24,24,24,24,24,24,24,                                                                                                                                                                                                                                                                                                    | 23,398<br>25,398<br>25,195<br>25,195<br>25,2195<br>25,2195<br>25,234<br>26,5324<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,524<br>26,5244<br>26,524<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,5244<br>26,52444<br>26,52444<br>26,52444<br>26,52444<br>26,524444<br>26,5244444<br>26,5244444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25                                                            | 23,398<br>25,320<br>25,320<br>25,320<br>25,215<br>25,215<br>25,215<br>25,215<br>25,215<br>25,215<br>25,215<br>25,215<br>25,215<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22<br>21,22       | 23.398<br>25.320<br>25.320<br>35.195<br>40.194<br>40.194<br>40.194<br>55.320<br>55.324<br>55.328<br>705.527<br>705.528<br>715.228<br>815.228<br>811.65<br>7115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.398<br>25.320<br>25.320<br>35.194<br>40.194<br>40.194<br>40.194<br>55.320<br>55.328<br>55.384<br>55.384<br>705.775<br>715<br>81.6257<br>717<br>81.6251<br>81.6251<br>717<br>87.1135 | 23.398<br>25.320<br>25.320<br>35.150<br>25.320<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.150<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>2 | 23.398<br>25.320<br>35.120<br>35.144<br>40.154<br>40.156<br>55.329<br>55.329<br>55.329<br>55.329<br>55.329<br>55.31<br>76.251<br>76.251<br>71.2<br>92.711<br>92.711<br>92.7119<br>92.7119<br>92.7119<br>92.7119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.398<br>25.320<br>35.194<br>35.194<br>35.194<br>45.194<br>55.194<br>55.194<br>55.195<br>60.527<br>55.195<br>71.2<br>60.527<br>55.113<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.653<br>71.754<br>724<br>724<br>724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.398<br>25.320<br>25.320<br>35.194<br>45.195<br>45.195<br>45.195<br>55.320<br>55.328<br>705.258<br>715.238<br>81.6531<br>705.258<br>81.038<br>81.038<br>71.18<br>723.135<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.7177<br>92.7177<br>92.7177<br>92.7177<br>92.7177<br>92.7177<br>92.7177<br>92.71777<br>92.71777<br>92.717777<br>92.7177777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.398<br>25.320<br>25.320<br>35.194<br>40.194<br>40.194<br>40.194<br>55.320<br>55.320<br>55.320<br>55.320<br>55.320<br>705.328<br>81.6227<br>81.6221<br>705.493<br>717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.7177<br>92.7177<br>92.71777<br>92.7177777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                      | 23.398<br>25.320<br>25.320<br>35.154<br>40.194<br>40.194<br>55.320<br>55.320<br>55.320<br>55.320<br>55.320<br>775<br>775<br>775<br>717<br>775<br>712<br>92.712<br>92.717<br>92.715<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717<br>92.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.398<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.321<br>25.320<br>25.321<br>25.321<br>25.321<br>25.320<br>25.320<br>25.321<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.3200<br>25.32000<br>25.32000<br>25.32000<br>25.32000<br>25.3200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.398<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>55.320<br>55.320<br>21.50<br>22.41<br>22.50<br>22.41<br>23.33<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.550<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.5500<br>22.55000<br>22.55000<br>22.55000<br>22.550000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.0<br>25.320<br>25.320<br>25.320<br>25.154<br>40.154<br>40.154<br>40.150<br>55.274<br>55.274<br>55.274<br>705.254<br>81.23.0354<br>92.411<br>100.5774<br>92.411<br>1100.5376<br>11105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21105<br>21005<br>2105<br>21 | 23.398<br>25.320<br>25.320<br>25.320<br>25.320<br>25.45<br>25.159<br>25.27<br>25.27<br>25.27<br>25.27<br>25.27<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25<br>25.25 | 23,398<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200<br>25,3200000000000000000000000000000000000                                                                                                                                                                                                                                                                               | 23,398<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>25,320<br>20,020<br>20,020<br>20,020<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,0000<br>20,00000000                                                                                                                                                                                                                                                                                                                                                    | 23.398<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>20.220<br>22.020<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>22.050<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.0500<br>20.05000<br>20.05000<br>20.05000<br>20.050000000000                                                                                                                                                                                                                                                                                               | 23.398<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.320<br>25.450<br>25.450<br>25.450<br>25.557<br>25.557<br>25.557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.55577<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5557<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.5577<br>25.55777<br>25.55777<br>25.55777<br>25.55777<br>25.557777<br>25.557777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (MU0-HO0)/RT          | -17.679  | -19.980          | -22.328  | -23.100 | -23.738 | -24.285 | -24.763 | -25.190 | -25.576 | -26.254 | -26.939 | -27.354 | -27.815 | -28+235 | -28.619 | -28.975       | -29.306 | <br>-29.616 | -29.907                    | -29.616<br>-29.907<br>-30.569                                          | -29.016<br>-29.907<br>-30.569<br>-31.154                                                    | - 29.616<br>- 29.907<br>- 30.569<br>- 31.154<br>- 31.679 | - 29.010<br>- 29.017<br>- 30.0569<br>- 31.0154<br>- 31.0559<br>- 32.155 | - 29.016<br>- 29.017<br>- 30.569<br>- 31.0156<br>- 31.6156<br>- 32.6155<br>- 32.655<br>- 32.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 29.616<br>- 29.607<br>- 30.569<br>- 31.6154<br>- 32.679<br>- 32.679<br>- 32.5591<br>- 32.6994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 29.616<br>- 29.607<br>- 30.569<br>- 31.6154<br>- 32.6155<br>- 32.6951<br>- 32.6951<br>- 33.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 29,016<br>- 29,017<br>- 30,0569<br>- 31,0156<br>- 32,0156<br>- 32,0156<br>- 32,0155<br>- 32,015<br>- 33,016<br>- 33,367<br>- 33,367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1<br>-200<br>-100<br>-100<br>-100<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-100000<br>-1000000<br>-1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1<br>-200<br>-100<br>-100<br>-1000<br>-1000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-10000<br>-100000<br>-100000<br>-100000<br>-1000000<br>-1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1<br>-200<br>-200<br>-200<br>-200<br>-200<br>-200<br>-200<br>-200<br>-100<br>-200<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-1000<br>-10000<br>-10000<br>-10000<br>-10000<br>-100000<br>-100000<br>-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \cdot \\ \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |          |                  |          |         |         |         |         |         |         |         |         |         |         |         |         |               |         |             |                            |                                                                        |                                                                                             |                                                          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SC<br>AL/MOLE-DEG     | 41 • 395 | 46.216<br>40.046 | 51.086   | 52.714  | 54.087  | 55.282  | 56.343  | 57.297  | 58.165  | 59.692  | 61.007  | 62.161  | 63.192  | 64.124  | 64.977  | 65.762        | 66.492  | <br>\$11.JO | 67.814                     | 67.814<br>67.814<br>69.262                                             | 67.814<br>69.262<br>70.535                                                                  | 01.114<br>67.814<br>69.262<br>70.535<br>71.669           | o/.1/4<br>67.814<br>69.262<br>70.535<br>71.669<br>72.690                | 67.814<br>69.8362<br>70.6535<br>71.6535<br>72.659<br>73.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0,1,4<br>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.4<br>60.2<br>60.2<br>60.2<br>70.5<br>50<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.2<br>60<br>71.6<br>60<br>71.2<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>71.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>72.6<br>60<br>70.7<br>72.6<br>60<br>70.7<br>70.6<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.6<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7<br>70.7                                                                                                                                                                         | 60.<br>60.<br>60.<br>60.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>60.<br>71.<br>60.<br>60.<br>60.<br>71.<br>60.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>70.<br>60.<br>60.<br>71.<br>70.<br>60.<br>60.<br>71.<br>70.<br>60.<br>60.<br>70.<br>70.<br>70.<br>70.<br>70.<br>70.<br>70.<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.<br>60.<br>60.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>70.<br>60.<br>71.<br>60.<br>60.<br>71.<br>60.<br>60.<br>71.<br>70.<br>60.<br>71.<br>70.<br>60.<br>71.<br>70.<br>60.<br>71.<br>70.<br>60.<br>71.<br>70.<br>60.<br>71.<br>70.<br>70.<br>70.<br>70.<br>70.<br>70.<br>70.<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 601<br>601<br>601<br>601<br>601<br>70<br>602<br>602<br>602<br>602<br>602<br>602<br>602<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 601<br>601<br>601<br>601<br>601<br>70<br>601<br>70<br>601<br>70<br>600<br>701<br>600<br>702<br>702<br>702<br>702<br>702<br>702<br>702<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 601<br>601<br>601<br>601<br>71<br>601<br>72<br>602<br>602<br>602<br>602<br>602<br>602<br>602<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>&gt;</li> <li>&gt;&lt;</li></ul>                                                                                                                                                                                                  |
| L/MOLE-DEG C          | 6+955    | 6•959<br>7.010   | 7.188    | 7.418   | 7.651   | 7.857   | 8.030   | 8 171   | 8.287   | 8.463   | 8.594   | 8•702   | 8• 901  | 8.895   | 8•987   | 9.075         | 9.160   | 9+240       | 9•240<br>9•314             | 9.240<br>9.314<br>9.471                                                | 9.240<br>9.314<br>9.471<br>9.586                                                            | 9. 240<br>9. 314<br>9. 570<br>9. 586<br>9. 564           | 9.240<br>9.314<br>9.571<br>9.586<br>9.664<br>9.71?                      | 9, 240<br>9, 240<br>9, 536<br>9, 536<br>9, 536<br>9, 536<br>9, 738<br>9, 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9, 240<br>9, 240<br>9, 671<br>9, 586<br>9, 586<br>9, 738<br>9, 738<br>9, 749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9, 240<br>9, 240<br>9, 471<br>9, 586<br>9, 586<br>9, 71<br>9, 732<br>9, 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.240<br>9.240<br>9.471<br>9.586<br>9.586<br>9.71?<br>9.738<br>9.752<br>9.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9, 314<br>9, 314<br>9, 571<br>9, 571<br>9, 738<br>9, 738<br>9, 752<br>9, 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9, 314<br>9, 514<br>9, 571<br>9, 56<br>9, 73<br>9, 73<br>9, 75<br>9, 75<br>9, 750<br>9, 750                                         | 9, 314<br>9, 514<br>9, 514<br>9, 558<br>9, 717<br>9, 752<br>9, 755<br>9, 755<br>9, 755<br>9, 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9, 314<br>9, 540<br>9, 540<br>9, 556<br>9, 712<br>9, 752<br>9, 752<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9, 240<br>9, 214<br>9, 536<br>9, 536<br>9, 536<br>9, 732<br>9, 750<br>9, 750<br>9, 757<br>9, 757<br>9, 757<br>9, 757<br>9, 757                                                         | 9, 314<br>9, 540<br>9, 541<br>9, 541<br>9, 540<br>9, 752<br>9, 752<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9, 314<br>9, 540<br>9, 541<br>9, 541<br>9, 546<br>9, 752<br>9, 755<br>9, | 9, 314<br>9, 314<br>9, 571<br>9, 571<br>9, 571<br>9, 755<br>9, | 9, 814<br>9, 814<br>9, 814<br>9, 871<br>9, 866<br>9, 752<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 830<br>9, 830<br>9, 830<br>9, 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9, 314<br>9, 540<br>9, 541<br>9, 541<br>9, 565<br>9, 71,<br>9, 752<br>9, 755<br>9, 755<br>9, 803<br>9, 903<br>9, 903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9, 9, 140<br>9, 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9, 9, 140<br>9, 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9, 9, 140<br>9, 140<br>9, 140<br>9, 140<br>9, 140<br>9, 149<br>9, 149<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9, 9, 140<br>9, 140<br>9, 140<br>9, 140<br>9, 141<br>9, 140<br>9, 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9, 9, 140<br>9, 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9, 31, 4<br>9, 5, 4<br>9, 5, 4<br>9, 5, 4<br>9, 5, 4<br>9, 7, 5<br>9, 7, 5<br>9, 7, 5<br>9, 9, 7<br>9, 9, 9<br>9, 9, 7<br>9, 9, 7<br>9, 9, 9<br>9,                                             | 9, 314<br>9, 314<br>9, 541<br>9, 541<br>9, 541<br>9, 568<br>9, 751<br>9, 752<br>9, 757<br>9, 757<br>9, 973<br>9, 973<br>9, 973<br>9, 973<br>9, 973<br>9, 973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9, 9, 14<br>9, 14<br>14, 14<br>14                                  | 9, 240<br>9, 240<br>9, 566<br>9, 566<br>9, 712<br>9, 752<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 903<br>9, 903<br>9, 903<br>9, 903<br>9, 901<br>9, 975<br>9, | 9, 314<br>9, 314<br>9, 571<br>9, 571<br>9, 571<br>9, 752<br>9, 755<br>9, 755<br>9, 755<br>9, 755<br>9, 903<br>9, 975<br>9, 975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H-HOO<br>KCAL/MGLE CA | 0.696    | 1•391            | 2.799    | 3.529   | 4.282   | 5.053   | 5.853   | 6.663   | 7.496   | 9.162   | 10.868  | 12.598  | 14.349  | 16.118  | 17.907  | 19.713        | 21+537  | 23.377      | 23•377<br>23•232           | 23•377<br>23•232<br>29•930                                             | 23.377<br>23.232<br>29.930<br>34.696                                                        | 23.377<br>23.232<br>29.930<br>34.696<br>39.510           | 23,377<br>25,232<br>29,696<br>39,516<br>49,516                          | 23,377<br>25,232<br>29,230<br>34,595<br>34,510<br>44,355<br>49,218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.377<br>25.22<br>29.23<br>29.59<br>29.510<br>49.510<br>59.215<br>54.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23,377<br>25,923<br>29,532<br>29,536<br>39,555<br>49,555<br>59,555<br>58,555<br>58,555<br>58,555<br>565<br>565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23,377<br>25,222<br>29,223<br>29,559<br>29,559<br>29,555<br>59,956<br>59,956<br>53,842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23,377<br>25,232<br>29,20<br>29,50<br>29,50<br>29,210<br>59,218<br>53,355<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,218<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,217<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,517<br>54,51755555555555555555555555555555555555 | 23.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25                                                            | 23.377<br>25.932<br>25.92<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>29.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.65<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.55<br>20.5 | 23.<br>24.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                 | 23<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.377<br>25.932<br>29.933<br>29.595<br>29.595<br>29.510<br>59.955<br>59.955<br>59.955<br>71.7<br>73.55<br>71.7<br>73.55<br>71.7<br>73.55<br>71.7<br>73.55<br>71.7<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>73.55<br>74.55<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.377<br>25.932<br>29.632<br>29.634<br>29.559<br>29.559<br>58.956<br>58.956<br>58.956<br>58.956<br>73.571<br>73.559<br>23.248<br>23.248<br>102.897<br>12.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.377<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.232<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.24<br>25.25 | 23.377<br>25.932<br>24.65<br>24.69<br>24.69<br>24.69<br>25.69<br>25.69<br>25.65<br>25.65<br>25.65<br>25.65<br>23.34<br>24.65<br>23.34<br>23.59<br>23.24<br>23.59<br>23.24<br>23.59<br>23.59<br>23.59<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.5 | 23.377<br>25.59<br>24.69<br>24.69<br>24.69<br>24.69<br>25.69<br>25.69<br>25.69<br>25.69<br>25.69<br>23.44<br>24.44<br>25.69<br>23.444<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.44<br>24.444<br>24.444<br>24.444<br>24.444<br>24.4444<br>24.44444<br>24.44444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.337<br>25.532<br>25.532<br>24.532<br>24.532<br>24.532<br>25.54<br>25.54<br>25.54<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>25.5555<br>25.5555<br>25.5555<br>25.5555<br>25.55555<br>25.555555<br>25.55555555                                                                                                                                                                                                                                                                                                                                                       | 23.377<br>25.92,377<br>25.92,232<br>294,596<br>294,359<br>594,359<br>594,359<br>594,359<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>234,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244,592<br>244                                                                                                            | 23.377<br>255.3232<br>255.232<br>255.232<br>255.232<br>256.233<br>256.233<br>256.235<br>256.235<br>256.235<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.25<br>257.257.25<br>257.257.257.257.257.257.257.257.257.257. | 23.377<br>25.92,2377<br>25.923<br>25.923<br>25.923<br>25.923<br>25.923<br>25.923<br>25.923<br>25.923<br>25.923<br>25.923<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.244<br>25.2444<br>25.2444<br>25.2444<br>25.24444<br>25.244444<br>25.24444444444                                                                                                                                                                                                                                                                                                                                        | 23.377<br>25.923<br>24.695<br>24.695<br>24.695<br>54.695<br>558.956<br>558.956<br>558.956<br>558.956<br>533.344<br>738.452<br>933.344<br>132.456<br>1122.456<br>933.344<br>132.456<br>132.455<br>132.455<br>132.455<br>132.455<br>132.455<br>132.455<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>132.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.255<br>12.2555<br>12.2555<br>12.2555<br>12.2555<br>12.2555<br>12.25                                                                                                                                                                                                                                 | 23.377<br>25.532<br>25.524<br>24.532<br>24.535<br>54.54<br>55.54<br>55.55<br>55.55<br>55.55<br>55.55<br>55.55<br>55.55<br>13.25<br>55.55<br>13.25<br>55.55<br>13.25<br>55.55<br>13.25<br>55.55<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>1 | 23.337<br>25.532<br>25.532<br>24.655<br>24.532<br>25.555<br>25.555<br>25.555<br>25.555<br>25.555<br>13.22<br>23.555<br>15.22<br>13.22<br>23.24<br>15.22<br>13.22<br>23.24<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>15.22<br>1 | 23.337<br>25.532<br>25.532<br>29.510<br>29.510<br>59.559<br>59.559<br>59.556<br>59.559<br>59.559<br>59.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1322.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.559<br>1522.55                                                                                                                                                                                              | 23.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1U0-H00)/RT           | -17.331  | -19.757          | -22.1.86 | -22.975 | -23+626 | -24.183 | -24.672 | -25.108 | -25+502 | -26,196 | -26,793 | -27,319 | -27,788 | -28.213 | -28.602 | -29.960       | -20.202 | 200+62+     | -29.893                    | -29.893<br>-29.893<br>-30.551                                          | -29.893<br>-29.893<br>-30.551<br>-31.130                                                    | -24.000<br>-29.893<br>-30.551<br>-31.130<br>-31.647      | - 24 - 202<br>- 29 - 893<br>- 31 - 130<br>- 31 - 647<br>- 32 - 115      | - 24.894<br>- 29.893<br>- 30.551<br>- 31.547<br>- 32.1130<br>- 32.542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 24.894<br>- 29.894<br>- 310.551<br>- 31.647<br>- 32.1130<br>- 32.542<br>- 32.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 24<br>- 29<br>- 29<br>- 29<br>- 31<br>- 130<br>- 32<br>- 115<br>- 32<br>- 115<br>- 32<br>- 935<br>- 33<br>- 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 24<br>- 29<br>- 29<br>- 29<br>- 31<br>- 130<br>- 32<br>- 130<br>- 32<br>- 130<br>- 32<br>- 130<br>- 33<br>- 330<br>- 33<br>- 330<br>- 33<br>- 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 24<br>- 24<br>- 29<br>- 29<br>- 29<br>- 29<br>- 29<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20                | - 200<br>- 200  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -749<br>-749<br>-749<br>-749<br>-749<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740<br>-740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Y</li> <li>Y&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>1</li> <li>1&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>1</li> <li>2</li> <li>4</li> <li>4&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T ()                  | 100.     | -007<br>         | •00•     | 500.    | 600.    | 700.    | 80.3.   | 000 e   | 1000    | 1200.   | 1400.   | 1600.   | 1000    | 20:0-   | 2206 -  | 2400.         | 2630.   | 2800.       | 2800.<br>3000.             | 2800.<br>3000.<br>3500.                                                | 2800.<br>2000.<br>4500.                                                                     | • • • • •<br>• • • • •<br>• • • • •<br>• • • • •         | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                   | 8 m m 4 m 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>% # # # # # # # # # # # # # # # # # # #</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 m m 4 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>M m m 4 4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M m M 4 M 4 M M M M M M 4 M M M M 4 M M M M M M M M M M M M M M M M M M M M                                                                                                            | M m M 4 M 4 M M M M 4 M M M M 4 M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M m M 4 M M M 4 M M M 4 M M M M 4 M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M m M 4 M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>M m m 4 f f f o s o s o s o s o s o s o s o s o</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M m M 4 M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M m m 4 M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M m m 4 M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M m 4 4 5 M 3 9 K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M m 4 4 55 4 9 4 5 4 8 8 6 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>M m 4 4 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M m 4 4 55 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ммм 4 б б ю 9 м м м м м м м 4 б б ю 9 м о 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

,

i

1.....
|           | KCAL/MDLE)  |
|-----------|-------------|
|           | 21.460      |
| FJTTRE 25 | <b>=0</b> C |
| -         | Q           |
|           | ЧO<br>Ц     |
|           | RIES        |

2

化合物 化分子 化化分子 化分子子 化分子子 化合金属 化合物 化合物 医外外的 化分子 化分子 化化合物 化合物 计字母 化合物

٠ . ; ; ; ; ; ; ; ;

|   | =0C         |
|---|-------------|
| • | ç           |
|   | Ч<br>Ч<br>С |
|   | I ES        |
|   | PROPERT     |
|   | THERMAL     |

,

.

ł.

| * * * * * * * * * * |                           |                     |                   | 2         |                               |                  |                                         |                                             |
|---------------------|---------------------------|---------------------|-------------------|-----------|-------------------------------|------------------|-----------------------------------------|---------------------------------------------|
|                     |                           | â                   |                   | N )       |                               |                  | ţ                                       |                                             |
|                     | H-HCO                     |                     | SO                | •         | U0-H00)/RT                    | DDH-H            | 5                                       | S0                                          |
|                     | KCAL/MULE                 | CAL/MULE-DEG        | CAL/MULE-DEG      |           |                               | KCAL/MULE        | CAL/MULE-DEG                            | CAL/MULE-DEG                                |
|                     | 100 101                   | 7- 260              | 42.•284<br>47.474 |           | -17-174                       | 10/3-1           | 000 1                                   | 41+033<br>44,847                            |
|                     | 2.211                     | 7.129               | 50 - 387          |           | -21-341                       | 2.275            | 7.699                                   | 266°6¥                                      |
|                     | 2.924                     | 7.151               | 52+438            |           | -22.441                       | 3+049            | 7.71                                    | 52.217                                      |
|                     | 3.645                     | 7.278               | 54.046            |           | -23+299                       | 3.829            | 7.841                                   | 53.959                                      |
|                     | 4.382                     | 7.454               | 55.388            |           | -24.004                       | 4.617            | 7.908                                   | 55+395                                      |
|                     | 5.136                     | 7.638               | 56.551            |           | -24.602                       | 5.411            | 7.972                                   | 56.618                                      |
|                     | 5.909                     | 7.809               | 57,532            |           | -25.122                       | 6•211            | 8.033                                   | 57.687                                      |
|                     | 5.697<br>7 600            | 7.950               | 58.511            |           | -25,583                       | 7.017            | 260 8                                   | 020 8C                                      |
|                     |                           | 8.090               |                   |           | -25 -110                      | 628+1            | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 761 67<br>60 67                             |
|                     | 90 1 99<br>1 0 - 0 1 9    | 0.434               |                   |           | 611907-                       |                  |                                         | 796 - 69                                    |
|                     | 12.510                    | 00 404<br>6 6 7 7 4 |                   |           | -27.860                       | 12.810           |                                         | 53+30<br>63-368                             |
|                     | 14-226                    | 8.613               | 64.283            |           | -28-345                       | 14-536           | 8.520                                   | 64.387                                      |
|                     | 15.954                    | 8.670               | 65.194            |           | -28.774                       | 16.217           | 8.593                                   | 65.288                                      |
|                     | 17-693                    | 8.714               | 66.022            |           | -29.164                       | 17.942           | 8.660                                   | 66.110                                      |
|                     | 19.439                    | 8.748               | 66.782            |           | -29.522                       | 19.680           | 8.720                                   | 66.866                                      |
|                     | 21.192                    | 8.775               | 67,483            |           | -29.853                       | 21.430           | 8.774                                   | 67.566                                      |
| •••                 | 22.949                    | 8.797               | 68.135            | ſ         | -30.161                       | 23+190           | 8.823                                   | 68.219                                      |
| ~                   | 24.710                    | 8.815               | 68.742            | 0]<br>0]  | -30.449                       | 24.959           | 8 867                                   | 66.823                                      |
| _                   | 29+127                    | 8.848               | 70.104            | RI<br>F   | -31.098                       | 29.416           | 8.958                                   | 70.203                                      |
|                     | 33.555                    | 8.870               | 71.287            | G<br>P(   | -31.665                       | 33+913           | 9.028                                   | 71.404                                      |
| 0                   | 37.995                    | 8.895               | 72.332            | IN<br>DC  | -32+170                       | 38.441           | 9.082                                   | 72.470                                      |
| õ                   | 42.441                    | 8.897               | 73.269            | A         | -32.624                       | 42,993           | 9.127                                   | 73.429                                      |
| 1                   | 46.892                    | 8• 907              | 74.117            | IJ        | -33•038                       | 47.567           | 9.167                                   | 102 44 301                                  |
| 18                  | 51.348                    | 8,918               | 74.893            | P.<br>20  | -33.417                       | 52.160           | 9.206                                   | 75.100                                      |
| 0 1                 | 018 666                   | 8,931               | 100001            | A(        | 901 • 7 7 - 1<br>900 • 7 10 1 | 61 / 40C         | 0, 200<br>0, 200                        | 900 °C 1<br>900 ° 146                       |
|                     | 000C/9                    | 040.0               | 012401<br>76.000  | GE        |                               | 014010<br>920-93 | 0.350                                   | 77.1.77                                     |
|                     | 04 • • • 0<br>• • • • • • | 006 °0              | 1000001           | 3 (<br>[T | -34.487                       | 70-770           |                                         | 77 - 77                                     |
| - 0                 | 73.758                    | 9-6-034             | 78-014            | 19<br>Y   | -34.957                       | 75-505           |                                         | 78.350                                      |
|                     | 78.236                    | 9.078               | 78.532            |           | -35.213                       | 80.296           | 9.013                                   | 78.896                                      |
| 8                   | 82•838                    | 9•130               | 79.024            |           | -35.457                       | 85.120           | 9.728                                   | 79.419                                      |
| 4                   | 87.417                    | a.190               | 79.494            |           | -35•688                       | 90.015           | 9.859                                   | 79.921                                      |
| 24                  | 96.676                    | 9.331               | 80.376            |           | -36.122                       | 100.023          | 10.164                                  | 80.875                                      |
| 5                   | 106.086                   | 9.494               | 81.195            |           | -36.522                       | 110.362          | 10.520                                  | B1+774                                      |
| 57                  | 115.668                   | 9.672               | 81.962            |           | -36+895                       | 121.074          | 10.998                                  | 82+632                                      |
| 0                   | 125.432                   | 9.855               | 82.685            |           | -37+245                       | 132.183          | 106 • 11                                | 83.454                                      |
| N                   | 135.378                   | 10.037              | 115.83            |           | -37+575                       | 143,656          | 11.663                                  | R4 . 247                                    |
| •                   | 145.502                   | 10.209              | 84.024            |           | -37.888                       | 155.480          | 11.950                                  | 85.909                                      |
| ŝ                   | 155•791                   | 10.366              | 84 <b>•</b> 648   |           | -38.187                       | 167.523          | 12.109                                  | 85.739                                      |
| •                   | 166.229                   | 10.506              | 85•245            |           | -38.472                       | 179+635          | 12.079                                  | R6.431                                      |
| N                   | 176.797                   | 10.626              | 85.816            |           | -38.745                       | 191.593          | 11.788                                  | 87.078                                      |
| m                   | 187.474                   | 10.725              | 86.364            |           | -39.096                       | 203.098          | 11.160                                  | 87.569                                      |
|                     | 209.073                   | 10.861              | 87.393            |           | -30°404                       | 223.137          | R. 531                                  | 89.625                                      |
| <b>.</b>            | 230.870                   | 10.925              | 88.341            |           | 50°65-                        | 235+550          | 68E * E                                 | 89.169                                      |
|                     | 252+733                   | 10.9.50             | 66° 500           |           | -40.314                       | 234 190          | CD2+C+                                  | 121469                                      |
|                     | 296.472                   | 10.893              | GZD*06            |           | -40.020                       | 211 • 112        | 625°91-                                 | 57 999<br>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
|                     | 296•285                   | 10.820              | 90.174            |           | 168+04-                       | 662 • 26 1       | 971 • 1 6 -                             | 120000                                      |

ł

;
}

[

,

. ... . . ...

.

:

ţ

.

.

••••

• • •

5,

17

0

 $\mathbf{\hat{n}}$ 

ΞŊ.

FT "RE 26 Thermal Properties of ND6 00= 236.660 KCAL/MDLE) 1

, ; ; ;

.

:

1

| ۲     | (MU0-H00)/RT | 00н-н     | e<br>U         | SC              | <pre><muo-moo) pre="" rt<=""></muo-moo)></pre> | 00H-H     | e<br>U       | SO           |
|-------|--------------|-----------|----------------|-----------------|------------------------------------------------|-----------|--------------|--------------|
|       |              | KCAL/MOLE | CAL/MOLE-DEG   | CAL/MCLE-DEG    |                                                | KCAL/MOLE | CAL/MOLE-DEG | CAL/WOLE-DEG |
| •••   | -16.502      | 0.696     | 6.955          | 39.748          | -16.486                                        | 0.682     | 6 897        | 39.985       |
| • • • | -18,928      | 102.01    | 6.955          | 44.569          | -10-877                                        | 1 • 379   | 7.035        |              |
| ••••  | -20.347      | 2.087     | 6.958          | 47.390          | -29.291                                        | 2.089     | 7.167        | 47.286       |
| •••   | -21.354      | 2.784     | 6.986          | 49.394          | 402.121                                        | 2.812     | 7.292        | 50E • 6 • 1  |
| •••   | -22+136      | 3445      | 7.062          | 50.960          | 160-22-                                        | 7 4 5 4 5 | /•411        | 560•16       |
| •     | -22.777      | 4.197     | 7.184          | 52.258          | -22.750                                        | 4.294     | 1.523        | 005 • 20     |
| •     | -23.321      | 4.923     | 7.334          | 53.377          | -23+308                                        | 5.052     | 7.630        | 53+534       |
| •••   | -23+795      | 5.665     | 7.492          | 54.366          | -23-795                                        | 5.820     | 7.731        | 54.560       |
| •     | -24.216      | 6.421     | 7.645          | 55+258          | -24.228                                        | 6.598     | 7.826        | 55.476       |
| ••    | -24.596      | 7.193     | 7.786          | 56.071          | -24.618                                        | 7.385     | 7.916        | 56.305       |
| •     | -25.261      | 8.775     | 8.024          | 57+512          | -25.300                                        | 8.995     | 8.090        | 57.763       |
| •     | -25.833      | 10.399    | 9.207          | 58+763          | -25.484                                        | 10.616    | R.226        | 59.020       |
| •     | -26-336      | 12.055    | 8.345          | 59*869          | -26.397                                        | 12.274    | R. 354       | 60.127       |
| •0    | -20,785      | 13.735    | 8.450          | 60.858          | -26.854                                        | 13,956    | 8.466        | 61.117       |
|       | -27.192      | 15.434    | 8 531          | 61.753          | -27.267                                        | 15.660    | 8,563        | 62.015       |
|       | -27.564      | 17.145    | 8 <b>.</b> 595 | 62.569          | -27.644                                        | 17.381    | 8.647        | 62.835       |
| •     | -27.907      | 18.871    | 8.645          | 63.319          | -27.992                                        | 19.118    | 8.719        | 63-593       |
| •     | -28+225      | 20+604    | 8.686          | 64.013          | -28.314                                        | 20.868    | 8.780        | 64.291       |
| • •   | -28.521      | 22.344    | 8.719          | 64 • 65B        | -24.614                                        | 22 • 629  | 8.832        | 64.943       |
| •     | -28.799      | 24.091    | 8.745          | 65.260          | -28.895                                        | 24.400    | 8.875        | 65+554       |
| •     | -29.426      | 28.477    | 8 796          | 66 <b>.</b> 612 | -29.531                                        | 28.859    | B. 955       | 66.929       |
| •     | -29.976      | 32+835    | 8.832          | 67.789          | -30.085                                        | 33.350    | 6. CO7       | 68.128       |
| •     | -30.465      | 37.309    | 8.864          | 68+831          | -30-584                                        | 37.864    | 9.047        | 69.191       |
| •     | 906*02-      | 41.749    | 8.930          | 69.767          | -31.032                                        | 42.397    | 9• 087       | 70.147       |
| •     | -31-308      | 46.211    | 8•951          | 70.618          | 044-101                                        | 46,953    | 9.141        | 71.015       |
| •     | -31.677      | 50.734    | 9.022          | 71.399          | -31.815                                        | 51.542    | 9.218        | 71.814       |
| :     | -32.018      | 55.238    | 9.121          | 72.125          | -32.162                                        | 56.177    | 9.327        | 72.555       |
| •     | -32,336      | 59.830    | 9.250          | 72.806          | -32.486                                        | 60.876    | 9.475        | 73,252       |
| :     | -32.634      | 64.494    | 9.412          | 73.419          | -32.789                                        | 65+659    | 9.668        | 73.912       |
|       | -32-914      | 69°247    | 9.604          | 74.063          | -33+074                                        | 70.552    | 606 *6       | 74.543       |
| ;     | 02 T * DD -  | 74.103    | 9.824          | 74.651          | 44E+EE-                                        | 75.577    | 10.200       | 75.152       |
| •     | 104-00-      | 79.075    | 10.067         | 75.220          | -33-601                                        | 80.760    | 10+541       | 75.745       |
|       | -33.671      | 84.173    | 10+328         | 75.771          | -33.846                                        | 86.126    | 10.932       | 76.325       |
| •     | 106*88-      | 89.404    | 1 C• 599       | 76.338          | -34.082                                        | 002.06    | 11.370       | 76.897       |
| •     | ELE*tE-      | 100.279   | 11.148         | 77.344          | -34.527                                        | 103.555   | 12.354       | 78.026       |
| •     | -34.737      | 111.690   | 11.666         | 78.336          | -34-945                                        | 116.466   | 13.469       | 79.143       |
| •     | -35+115      | 123.587   | 12.114         | 79.288          | 040°001                                        | 130-502   | 14.600       | 8C • 272     |
| •     | -35.474      | 135+887   | 12.470         | 80.200          | -35.724                                        | 145+639   | 15+650       | 81.393       |
| •     | -35,814      | 148.474   | 12.725         | 31.069          | -36.091                                        | 161.730   | 16.483       | 82.503       |
| •     | -36.139      | 161.335   | 12.881         | 81.896          | -36.448                                        | 178.479   | 16.936       | 83.583       |
| •     | -36.449      | 174.226   | 12.947         | 82.679          | -36.793                                        | 195.414   | 16.823       | 84.610       |
| •     | -36.746      | 187.175   | 12+940         | 93.419          | -37.128                                        | 211.854   | 15.927       | 85.551       |
| •     | -37.633      | 200.085   | 12.8.3         | 84.118          | -37.451                                        | 226.927   | 14.038       | 86.366       |
| •     | 400+LU-      | 212.906   | 12.763         | 84.775          | -37.760                                        | 239.451   | 1 0. 799     | 87.009       |
| •     | -37.819      | 238.142   | 12.460         | 85.978          | -38.324                                        | 259.828   | -0.692       | 87.559       |
| ••    | -38+296      | 262.717   | 12.112         | 87.047          | -38.790                                        | 230.669   | -21.217      | 86.695       |
| •     | -39.738      | 285.590   | 11.763         | 88.003          | 39-114                                         | 157+898   | -53.864      | 93•800       |
| :     | -39.1        | 309.787   | 11.439         | 88 <b>.</b> P63 | -39.240                                        | 4.797     | -102.149     | 78.149       |
| •     | +09-68-      | 332,369   | 11.148         | 89•642          | -39+102                                        | -263.745  | -179.006     | 68.912       |
|       |              |           |                |                 |                                                |           |              |              |

Ł

1

í

FTGURE 27

447.600 KCAL/MDLE) í THERMAL PROPERTIES OF NI

;

I

:

| •         |           |                 | Ę            |              |
|-----------|-----------|-----------------|--------------|--------------|
| -         |           | KCAL/VOLE       | CAL/MOLE-DEG | CAL/MOLE-DEG |
| 100.      | -12.983   | 0.649           | 5.915        | 32.285       |
| 200.      | -15.161   | 1.196           | 5.235        | 36.109       |
| -005      | -16.352   | 112.1           | 5.996        | 191.85       |
| ·0Cv      | -17.165   | 2.217           | 5.034        | 39.652       |
| 500       | -17+782   | 2.719           | 5.010        | 677.04       |
| •009      | -18.277   | 3.219           | 4.397        | 41.695       |
| 700.      | -18.691   | 912°E           | 4.989        | 42.455       |
| 9009      | -19.047   | 4.217           | 4.984        | 43.120       |
| •006      | -19,358   | 4.715           | 4.981        | 43.707       |
| 1000-     | -19.635   | 5.213           | 4.978        | 44 ° 232     |
| 1200.     | -20.112   | 1208            | 4.975        | 45,139       |
| 1400.     | -20.512   | 7.203           | 4.973        | 45.906       |
| 1600.     | -20.857   | 8.198           | 4.972        | 46.570       |
| 1800.     | -21.160   | 9.192           | 4.972        | 47.156       |
| 2000-     | -21.430   | 10.186          | 4.973        | 47.679       |
| 2270.     | -21.674   | 11.181          | 4.975        | 48.153       |
| 2400.     | -21.897   | 12.177          | 4.980        | 48.537       |
| 2600.     | -22.101   | 13.173          | 4.987        | 48.985       |
| 2800.     | -22.230   | 14.172          | 4.996        | 49.355       |
| 3003.     | -22.465   | 15.172          | 5.009        | 49.700       |
| 3500.     | -22.857   | 17.686          | 5.051        | 50.476       |
| 4000      | -23.197   | 20+226          | 5.107        | 51.154       |
| 4 50 0 •  | -23.497   | 22.794          | 5.169        | 51.759       |
| 5000.     | -23.766   | 25.394          | 5.232        | 52.306       |
| 5500.     | -24.010   | 28°025          | 5.292        | 52,898       |
| 6000      | -24.233   | 30.605          | 5+347        | 53.271       |
| 6500.     | -24.440   | 33,371          | 5.395        | 53.701       |
| 7000.     | -24 + 632 | 36+079          | 5.437        | 54.102       |
| 750.0.    | -24.811   | 38.807          | 5.472        | 54.478       |
| 8000.     | -24.979   | 41.551          | 5.503        | 54.833       |
| 8500.     | -25.138   | 44.309          | 5,528        | 55.167       |
| +C 006    | -25.288   | 47.078          | 5.550        | 55.484       |
| 9500      | -25.431   | 49 <b>.</b> 858 | 5.569        | 55.784       |
| •0000     | -25,566   | 52.647          | 5,5,5,5      | 56.070       |
| 1003.     | -25.820   | 58.247          | 5.613        | 56.604       |
| 2000      | -26.052   | 63.871          | 5.636        | 57.093       |
| 3000      | -26+267   | 69°517          | 5.655        | 57.545       |
| 4000.     | -26.467   | 75.184          | 5.676        | 57.965       |
| • 0 0 0 S | -26.654   | 80.873          | 5.696        | 58.357       |
| 6000.     | -26.829   | 86.576          | 5.717        | 58.726       |
| 7000-     | -26.994   | 92.304          | 5.739        | 59+073       |
| 3000.     | -27.151   | 98.055          | 5,762        | 59.402       |
| •0006     | -27.299   | 103.829         | 5.796        | 59.714       |
| 0000      | -27.441   | 109.627         | 5,811        | 60.011       |
| 2000      | -27.704   | 121.300         | 5.862        | 60.567       |
| 4000.     | -27.946   | 133.075         | 5.913        | 61.080       |
| .6000.    | -28.170   | 144.951         | 5.961        | 61,555       |
| 8000      | -28,379   | 156+918         | 6.004        | 61.998       |
| .0000     | -28.574   | 168.963         | 6.040        | 62.414       |

ORIGINALI PAGE IS OF POOR QUALITY

4

1

\* 3 \* 2 \* \$

5

ł

ŧ

FTCIJRE 28 Thermal properties of OL 400= 372.940 KCAL/MOLE) ١

. } .

1

# 

.

.

|        |         | KCAL/MCLE | CAL/MOLE-DEG | CAL/MOLE-DEG |
|--------|---------|-----------|--------------|--------------|
| 100.   | 565•51- | C.497     | 4.968        | 31.583       |
| 200    | -15.126 | 0.994     | 4.968        | 35.326       |
| 30.0.  | -16.140 | 1.490     | 4.968        | 37.041       |
| 400+   | -16.859 | 1.987     | 4 • 968      | 38.470       |
| 500.   | -17.417 | 2.484     | 4 • 968      | 39.578       |
| 60.0   | -17.872 | 2.981     | 4.968        | 40.484       |
| -004   | -18.258 | 3.478     | 4.968        | 41.250       |
| 800.   | -18.592 | 3•974     | 4.968        | 41.913       |
| •006   | -18.885 | 4.471     | 4 • 968      | 42.498       |
| 1000.  | -19.149 | 4.968     | 4 • 968      | 43.022       |
| 1200.  | -19.605 | 5,962     | 4.968        | 43,928       |
| 1400.  | 166*61- | 6+955     | 4.968        | 44.693       |
| 1600.  | -20.324 | 7.949     | 4 • 968      | 45.357       |
| 1800.  | -20.613 | 8.942     | 4.968        | 45.942       |
| 2000.  | -20.882 | 9.936     | 4.968        | . 46.465     |
| 2200.  | -21.121 | 1 7.930   | 4.968        | 46.939       |
| 2400.  | -21,338 | 11.923    | 4.968        | 47.371       |
| 2603.  | -21.539 | 12.917    | 4.968        | 47.769       |
| 2800.  | -21.724 | 116.51    | 4.969        | 48.137       |
| 3000   | -21.896 | 14.904    | 4.970        | 48.480       |
| 3500.  | -22.291 | 166.71    | 4.978        | 49.247       |
| 40004  | -22.615 | 19.884    | 4.993        | 49.912       |
| 4500.  | -22.910 | 22.393    | 5.038        | 50.503       |
| 5000.  | -23.174 | 24.927    | 5+103        | 51.037       |
| 5530.  | -23.414 | 27.500    | 5.195        | 51.528       |
| 60000  | -23.633 | 30.126    | 5.313        | 51.985       |
| 6500.  | -23+836 | 32.817    | 5.455        | 52.415       |
| 1000.  | -24.025 | 35•584    | 5.614        | 52,825       |
| 7500.  | -24+202 | 38.434    | 5.786        | 53.218       |
| 9000   | -24.369 | 41.371    | 5.964        | 53.598       |
| 9500.  | -24.528 | 44. 98    | 6+143        | 53,964       |
| 9000   | -24.679 | 4713      | 6.317        | 54.321       |
| 9500.  | -24.823 | 50+713    | 6•481        | 54.667       |
| .00001 | -24.962 | 23+993    | 6.534        | 55+003       |
| •00011 | -25+223 | 6C.761    | 6.893        | 55.648       |
| 12000. | -25.468 | 67.755    | 7.084        | 56.256       |
| 13000  | -25.698 | 74.906    | 7.207        | 56.829       |
| 4000+  | -25.915 | 82.149    | 7.270        | 51+302       |
| 15000. | -26.120 | 89.429    | 7.283        | 57.868       |
| 15000. | -26.315 | 96.732    | 7.257        | 58.337       |
| 17000+ | -26.500 | 103.933   | 7.201        | 58.775       |
| 18000. | -26.677 | 111.098   | 7.126        | 59.185       |
| 19000  | -26.846 | 118.180   | 7.037        | 59.568       |
| •00002 | -27.007 | 125.169   | 6.940        | 59.926       |
| -00023 | -27.308 | 138.850   | 6.740        | 60.578       |
| 24000+ | -27.595 | 152.135   | 6.546        | 61.157       |
| 26000. | -27.841 | 165.046   | 692.90       | 61.673       |
| 59000° | -28.078 | 177.622   | 6.210        | 62+139       |
| 30000  | -28,298 | 189.930   | 6.071        | 62,553       |

ł

•

357.680 KCAL/MDLE) THERMAL PROPERTIES OF N21\_\_\_\_\_ 100= F\*\*1RE 29

, ,

1

÷

÷

----

. . .

1

| Ĵ | <b>YUO-HOO)/RT</b> | 001-1     | 9              | SO           | (NUO-HOO)/RT       | 00H-H      | <b>e</b><br>U |              |
|---|--------------------|-----------|----------------|--------------|--------------------|------------|---------------|--------------|
|   |                    | KCAL/MOLE | CAL/MOLE-DEG   | CAL/MOLE+DEG |                    | KCAL/MOLE  | CAL/MOLE-DEG  | CAL/MOLE-DEG |
|   | -16+435            | 0•696     | 6 <b>•</b> 955 | 39.615       | -16.670            | 0.652      | 6.610         | 39.549       |
|   | -18.861            | 102.1     | 6.955          | 44.436       | -16-956            | 1.322      | 6.781         | 44.254       |
|   | -20.283            | 2.087     | 6.962          | 47.256       | -20.315            | 2.008      | 6.947         | 47.965       |
|   | -21.287            | 2.785     | 7.004          | 49°264       | -21.290            | 2.715      | 7.109         | 49.085       |
|   | -22.070            | 3.490     | 7.106          | 50 • A 37    | -22.056            | 3.430      | 7.266         | 50.689       |
|   | -22.712            | 4.207     | 7.254          | 52.145       | -22 4 689          | 4.164      | 7.419         | 52+01/       |
|   | -23+257            | 4.941     | 7.422          | 53.275       | -23.230            | 4.914      | 7.567         | 53.182       |
|   | -23.733            | 5.692     | 7.591          | 54.278       | -23-704            | 5+678      | 7.712         | 54.202       |
|   | -24.157            | 6.459     | 7.748          | 55.181       | -24.127            | 6.456      | 7 • 852       | 55.11E       |
|   | -24.539            | 7.241     | 7.890          | 56.005       | -24.509            | 7.248      | 7.046         | 55+951       |
|   | -25.209            | 8.844     | 8.127          | 57.465       | -25.181            | 8.872      | 8.248         | 57.432       |
|   | -25.785            | 10.489    | 8.329          | 58.733       | -25 60             | 10.546     | 8.493         | 56.722       |
|   | -26.293            | 12.170    | 8.492          | 59.855       | -25.270            | 12.268     | 8.723         | 50°672       |
|   | -26.747            | 13.885    | 8.660          | 60.865       | -26.728            | 14.034     | 8.938         | 60°912       |
|   | -27.158            | 15.634    | 8.832          | 61.786       | -27-145            | 15.842     | 9.140         | 61.864       |
|   | -27.536            | 17.418    | 600 *6         | 62.636       | -27.528            | 17.689     | 9.328         | 52.744       |
|   | -27.884            | 19.239    | 9.189          | 63.428       | -27.582            | 19+573     | 503 • 6       | 63.563       |
|   | -28.209            | 21.094    | 9.368          | 64.170       | -28.213            | 21.493     | 9.665         | 64.339       |
|   | -28.514            | 22.985    | 9.539          | 64.871       | -28,523            | 23.438     | 918°6         | 65.052       |
|   | -28.900            | 24.909    | 9.699          | 65.535       | -28.816            | 25.415     | 516 ° 6       | 65.734       |
|   | -29.453            | 29.846    | 10.033         | 67 • C56     | -29.412            | 30.470     | 10.255        | 67.292       |
|   | - 30 • 0 33        | 34.924    | 10.259         | 68 • 4 I 2   | 410.001            | 35.660     | 10.493        | 69.671       |
|   | -30+555            | 40.089    | 10•390         | 69•629       | -30+608            | 40.954     | 10+676        | 69°925       |
|   | -31.032            | 45.301    | 10.447         | 70.727       | 560*18-            | 46.325     | 10.411        | 71.057       |
|   | -31.470            | 50.528    | 10.454         | 71.723       | -31.542            | 51.758     | 10.903        | 72.092       |
|   | -31,874            | 55.749    | 10.429         | 72.632       | -31.957            | 57+225     | 10.958        | 73.041       |
|   | -32.250            | 60.954    | 10.387         | 73.465       | 440°044            | 62 • 711   | 10.982        | 73.921       |
|   | -32+601            | 66.135    | 10.335         | 74.233       | -32.705            | 68•202     | 10.979        | 74.735       |
|   | -32 - 930          | 71.288    | 10.279         | 74.944       | 540*57             | 73.686     | 10.956        | 75.492       |
|   | -33.240            | 76.414    | 10.223         | 75.606       | 1940 * 10 <b>*</b> | 79.155     | 10.916        | 101-01       |
|   | -33,532            | 81.511    | 10.168         | 76.224       | -33.668            | 84.600     | 10.863        | . 76.956     |
|   | -33.868            | 86.582    | 10-116         | 76.803       | 556°52-            | 90.016     | 10.802        | 77.477       |
|   | -34.070            | 91.628    | 10.046         | 77.349       | -34.228            | 95.401     | 10.735        | 78°024       |
|   | -34.319            | 96.649    | 10.920         | 77.864       | NC4*40-            | 100.751    | 10.667        | 78.60        |
|   | -34.784            | 106.627   | 9.938          | 78.815       | -34.972            | 111.353    | 10.538        | 19.01        |
|   | -35.208            | 116.529   | 9.869          | 79.677       | -35.416            | 121.836    | 404.01        | 80.531       |
|   | -35,600            | 126.366   | 9.808          | 80.454       | -35.825            | 1 32 • 235 | 10.370        | 61.010       |
|   | -35,962            | 136.148   | 9.758          | 81.189       | -36+205            | 142.593    | 10.356        | 92.131       |
|   | -36,300            | 145+885   | 9116           | 81.861       | -36+559            | 152.964    | 10.396        | 85 ° 87      |
|   | -36.616            | 155.584   | 9.681          | 82.487       | - 36 · A90         | 163.403    | 10.491        | A3.520       |
|   | -36.912            | 165.249   | 9.651          | 83•C13       | -37.202            | 173.963    | 10.636        | 84 • 1 6 1   |
|   | -37.192            | 174.897   | 9•626          | 83.624       | -97.497            | 194.548    | 10.819        | 84 . 77.     |
|   | -37+456            | 184.532   | 9.604          | 84.144       | -37.76             | 1 95. 609  | 11.026        | 92 • 39      |
|   | -37.707            | 194.095   | 9°540          | 84.636       | -36.042            | 206.742    | 11.237        | 85.935       |
|   | -38.172            | 213.230   | 9.552          | 85.548       | - 38 - 540         | 229.577    | 11.563        | 87.023       |
|   | -38.595            | 232.307   | 9.525          | 84,378       | -39+000            | 252.759    | 11.533        | 88°031       |
|   | -38.986            | 251.333   | 9.502          | 87.139       | -39.425            | 275.245    | 10.803        | 89.933       |
|   |                    |           |                |              |                    |            |               |              |
|   | 047+771            | C16.075   | 9.480          | 87.6542      | -39.819            | 202 223    | 8.948         | 20.00        |

ŧ

•

ļ

|                                         |                      |                   | THERMAL PROP   | PTA<br>PERTIES OF 02                    | URE 30<br>H00= 28 | 8-000 KCAL/MOLI | 6                                       |                                       |                    |
|-----------------------------------------|----------------------|-------------------|----------------|-----------------------------------------|-------------------|-----------------|-----------------------------------------|---------------------------------------|--------------------|
|                                         | ********             | ********          | L MODEL ###### | *********                               |                   |                 | *****                                   |                                       | **********         |
| ⊨                                       | (MU0-H00)/RT         | оон <del>-н</del> | d D            | SO                                      |                   | (MU0-H00)/RT    | 00111                                   | Û                                     |                    |
|                                         |                      | KCAL/MOLE         | CAL/MOLE-DEG   | CAL/MOLE-DEG                            |                   |                 | KCAL/MOLF                               | CAL/MOLE-DFG                          | CAL/MULE-DEG       |
| 100.                                    | -10+8.45<br>-10 A 25 | 121.121           | 7.576          | 40                                      |                   | -10-74          |                                         | 7.196                                 |                    |
|                                         | -20.956              | 2.245             | 166.7          | 49.125                                  |                   | -21.193         | 2.140                                   | 7.315                                 | 49.246             |
| 400.                                    | -22.036              | 2.974             | 7.293          | 21.225                                  |                   | -22,229         | 2.977                                   | 7.429                                 | 51.366             |
| 500.                                    | -22 - 869            | 3.708             | 7.390          | 52.861                                  |                   | -23+040         | 3,625                                   | 7.537                                 | 53+035             |
| e00-                                    | -23,550              | 4:424             | 7.548          | 54.221                                  |                   | -23.708         | 460.4                                   | 7.641                                 | 54.419             |
| 700.                                    | -24.126              | 5.218             | 7.720          | 55.398                                  |                   | -24.277         | 5,153                                   | 667.4                                 | 55.605             |
| 800.                                    | -24+629              | 5.998             | 7.881          | 56.439                                  |                   | -24.773         | 5.932                                   | 7.832                                 | 56.644             |
| •0 06                                   | · -25.075            | 6.793             | 8.023          | 57+376                                  |                   | -25.214         | 6110<br>9.719                           | 7.920                                 | 57.572             |
| 1000.                                   | -25.476              | 7.602             | 8.145          | 56.228                                  |                   | -25.611         | 7.516                                   | 100 B                                 | 56.410             |
| 1200.                                   | -26.178              | 9.251             | 8.334          | 59.731                                  |                   | -26.305         | 9.132                                   | 8,159                                 | 59.85<br>20.100    |
| 1400.                                   | -26.780              | 10.932            | 8.469          | 61.026                                  |                   | -26.A99         | 10.778                                  | 8.295                                 | 201010             |
| 1600.                                   | -27.308              | 12.636            | 8.565          | 62 · 164                                |                   | -27.419         | 12.450                                  | 524 • 6                               | 802020             |
| 1800.                                   | -27.778              | 14.356            | 8.636          | 63+177                                  |                   | -27.882         | 14.146                                  | 555.5                                 | 102.50             |
| 2000.                                   | -28+203              | 16.089            | 8.689          | 64.090                                  |                   | 102.85-         | 10.000                                  |                                       |                    |
| 2200.                                   | -28.590              | 17,831            | 8.730          | 026.49                                  | I                 | 540°97-         | 940 1 1                                 | 12/00                                 |                    |
| 2400.                                   | -28.946              | 19+581            | 8.762          | 02.031                                  | 0)<br>0]          | 000°68-         | 109461                                  |                                       |                    |
| 2600.                                   | -29.276              | 21.336            | 8.787          | 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | RI<br>F           | -20.42          | 611012<br>600 600                       | 010                                   | 504000<br>761-73   |
| 2800.                                   | -29.583              | 23.095            | 808.808        |                                         | IG.<br>P          | 600°62"         |                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 57.745             |
| 3000.                                   | 0/8*62-              |                   | 22000<br>2200  | 6 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 | IN<br>00          |                 | 510.050                                 | 001 0                                 | 64140<br>64140     |
| • • • • • • • • • • • • • • • • • • • • |                      | 6/7062<br>212-210 |                | 70-100                                  | IA<br>DR          |                 | 31.796                                  | 612.6                                 | 70.364             |
|                                         |                      | 38-160            | 8.906          |                                         |                   | -31.660         | 36.428                                  | EIE . 6                               | 71.454             |
| - 0004                                  |                      | 00100             | AFO A          | 72.178                                  | P<br>QU           | -32,115         | 111-24                                  | 9.423                                 | 72.441             |
| 5500.                                   | -32-442              | 47.101            | 6.983          | 73.032                                  | <b>J</b> A        | -32.530         | 47.853                                  | 9.552                                 | 73+345             |
|                                         |                      | 51.607            | 0.044          | 73-816                                  | G                 | -32.913         | 52.669                                  | 9.712                                 | 74.183             |
| 6500-                                   | -33.165              | 56.148            | 9.123          | 54042                                   |                   | -33.268         | 57.57                                   | 606 * 6                               | 74.948             |
| -0002                                   |                      | 60.733            | 9.220          | 75.222                                  |                   | -33.690         | 62.545                                  | 10.152                                | 75.711             |
| 7500.                                   | -33.789              | 65.371            | 9.335<br>9.335 | 75.862                                  | 3                 | -33+912         | 67.732                                  | 10.444                                | 76.421             |
| 8000+                                   | -34.073              | 70.070            | 9 + 4 6 4      | 76.469                                  |                   | -34.207         | 73.038                                  | 10-790                                | 77.106             |
| 8500.                                   | 146.46-              | 74.837            | 9.605          | 77.047                                  |                   | 184°481         | 18.531                                  | 11.192                                | 77.77              |
| •0006                                   | -34.595              | 79.677            | 9.755          | 77.600                                  |                   | -34+754         | 84.239                                  | 11.651                                | 78.424             |
| 9500.                                   | -34.836              | 84.593            | 606*6          | 78.132                                  |                   | -35.011         | 161.06                                  | 12.166                                | 79.067             |
| • 0 0 0 0                               | -35+067              | 89.587            | 10-065         | 78.544                                  |                   | -35,258         | 96.414                                  | 967 • 21                              | 901°61             |
| 1000.                                   | -35.499              | 00°804            | 10.366         | 79.617                                  |                   | -35.728         | R/1 *601                                |                                       |                    |
| •000Z                                   | 559°CE-              | 50E-011           | 150.01         | 100.08                                  |                   | C/100C=         | 5 4 5 4 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 100 - 2 1                             |                    |
| - 0000                                  | 2/2001               | 100 0 1 7 1       |                |                                         |                   |                 |                                         |                                       | RA.874             |
| 4000.4                                  | -30-021              | 132.023           | 11040          | 802420<br>802011                        |                   | -37.415         | 177.767                                 | 19.945                                | 86.202             |
|                                         |                      | 154.748           | 11.250         |                                         |                   | -37-808         | 198.319                                 | 21.104                                | 87.52F             |
| 7000                                    | -37.558              | 165.621           | 11.288         | 84.378                                  |                   | -38.195         | 219.836                                 | 21.846                                | 88 • 832           |
| 8000                                    | -37.839              | 176.913           | 11.291         | 85.023                                  |                   | -38,574         | 241.811                                 | 21 • 988                              | 90°0-8             |
| .0006                                   | -34.108              | 188.194           | 11.265         | 85+633                                  |                   | -38,946         | 263.543                                 | 21.322                                | 91.253             |
| .0000:                                  | -38,365              | 199.438           | 11.219         | 86•210                                  |                   | -39.30B         | 284.110                                 | 19.618                                | 615.99             |
| .0002                                   | -38.845              | 221.746           | 11.082         | 87.273                                  |                   | -39,997         | 316.832                                 | 12.056                                | 93.684             |
| +000+                                   | -39.289              | 243.744           | 10.914         | 86.230                                  |                   | -40.615         | 327+344                                 | 200°E-                                | 94.350             |
| \$6000.                                 | -39.699              | 265.397           | 10.739         | 89.097                                  |                   | -41.127         | 298.026                                 | 192 82-                               | 051°65             |
| :9000                                   | -40.080              | 286.703           | 10.50A         | 89.886                                  |                   | -41.480         | 202 225                                 | 677 ° 66                              | 19/055             |
| .0003                                   | -40.436              | 307.678           | 10.409         | 90.610                                  |                   |                 | 20.011                                  | 100 • 1 7 [ =                         | 5 ) <b>*</b> • 5 D |

1

ŧ

ì

t

.

4

1

i

1

ŧ

-102-

ł

٠

÷

a

;

.

. .

. .

٦

2

s ,

1

T A TOTANT TANK

| _   | х. |
|-----|----|
| •   | •  |
|     |    |
|     |    |
|     |    |
| •   | •  |
|     |    |
| -   |    |
| -   | •  |
|     |    |
| -   | -  |
| -   | •  |
| -   |    |
| χ.  |    |
| £ • |    |
| · · |    |
| •   |    |
| -   | e  |
| •   | •  |
| e.  |    |
| u   |    |
| -   |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |

THERMAL PROPERTIES OF CO2 00 0.0 KCAL/MOLE)

1

;

>

- Mari

# 

•

| +           | (MU0-H00)/RT        | 001-1     | e<br>U       | 80             |
|-------------|---------------------|-----------|--------------|----------------|
|             |                     | KCAL/MOLE | CAL/MOLE-DEG | CAL/MOLE-DEG   |
| • > 0 1     | -18.014             | 0•696     | 6.980        | 42.755         |
| • • • • • • | -20.456             | 1.423     | 7.731        | 47.766         |
| 303.        | -21.944             | 2.254     | 8.380        | 51.120         |
| 400.        | -23.06/             | 3•192     | 9+849        | 53.813         |
| 500.        | -23,985             | 4.218     | 10.629       | 56.097         |
| 600.        | -24.777             | 5.314     | 11.270       | 58°007         |
| 700.        | -25.479             | 6.468     | 11.301       | 59+872         |
| 800.        | -26.112             | 7.671     | 12.243       | 61.478         |
| -006        | -76.689             | 3.914     | 12.610       | 62+942         |
| 1000.       | -24 - 22            | 10101     | 12.916       | 64 • 286       |
| 1200.       |                     | 12.323    | 13,384       | 66.685         |
| 1400.       | -< <sup>a</sup> 025 | 15.52     | 13.714       | 68.775         |
| 1600.       | -29 : 782           | 18+300    | 13,953       | 70.622         |
| 1800.       | -30.459             | 21.112    | 14.129       | 72.276         |
| 2007.       | 190.16-             | 23.952    | 14.262       | . 172          |
| 2200.       |                     | 26.815    | 14.364       | 75 136         |
| 2400.       | -32+214             | 29•696    | 14.444       | 76.390         |
| 2600.       | -32.716             | 32,592    | 14.508       | 77.549         |
| 2800.       | -33.186             | 35.499    | 14.550       | 78.626         |
| 3000-       | -33.629             | 38.415    | 14.602       | 79.632         |
| 3500.       | -34.632             | 45.737    | 14.680       | 81.889         |
| 4000+       | -35+517             | 53.090    | 14.731       | 83•853         |
| 4500.       | -36.309             | 60.465    | 14.766       | 85.590         |
| 5000.       | -37+025             | 67.855    | 14.792       | 87.147         |
| 5500.       | -37.679             | 75+256    | 14.811       | 88.558         |
| 6000 ·      | -38.280             | 82•666    | 14.826       | 99.847         |
| 6500.       | -38,837             | 90.082    | 14.837       | 91.035         |
| 7000.       | -39,355             | 97+503    | 14.846       | 92.135         |
| 7500.       | -39.839             | 104.928   | 14.854       | 93.159         |
| 8000        | -40+252             | 112.356   | 14.860       | 94.118         |
| 8500.       | -40.724             | 119.738   | 14, 865      | 95.019         |
| •0006       | -41.130             | 127•221   | 14.869       | 95.869         |
| 9500.       | -41.515             | 134+656   | 14.873       | 96.673         |
| 100001      | -41.881             | 142.094   | 14.876       | 92.436         |
| 11000.      | -42.564             | 156.972   | 14.881       | 98*82 <b>4</b> |
| 12000       | -43.190             | 171+854   | 14.884       | 100.149        |
| 1300 .      | -43.768             | 186.740   | 14.887       | 101.340        |
| 14004       | 406.44-             | 201.629   | 14.890       | 102 .444       |
| 15000.      | -44.805             | 216.519   | 14.891       | 103 471        |
| 16000.      | -45+274             | 231.411   | 14.893       | 104.432        |
| 17000.      | -45.716             | 246.305   | 14.894       | 105+335        |
| 18000.      | -46.133             | 261.199   | 14.895       | 106.186        |
| 19000.      | -46.528             | 276.095   | 14.896       | 106.992        |
| 20000       | -46+903             | 290.992   | 14.897       | 107.756        |
| 22000.      | -47.602             | 320.787   | 14.895       | 109+176        |
| 24000.      | -48.241             | 350+584   | 14.899       | 110.472        |
| 26000.      | -48+830             | 380.383   | 14.900       | 111 • 665      |
| 28000.      | -49.376             | 410.183   | 14.900       | 112.769        |
| 30000       | -49.885             | 439,984   | 14.901       | 113+797        |

ŧ

ł

, ,

[

• FTGURE 32 Thermal properties of CO H00=

.

66.770 KCAL/MOLE)

1.77

i.

i

| -  | ( MU0-H00)/RT | 004-4      | G            | SO               | ( MU0-H00)/RT       | 00H-H     | 9            | SO           |
|----|---------------|------------|--------------|------------------|---------------------|-----------|--------------|--------------|
|    |               | K CAL/MOLE | CAL/MOLE-DEG | CAL/MOLE-DEG     |                     | KCAL/MOLE | CAL/MOLE-DEG | CAL/MOLE-DEG |
| •  | -16.435       | 0.696      | 6.955        | 39 61 5          | -16.474             | 0.681     | 6.872        | 39.547       |
| •  | -18.861       | 1.391      | 6.955        | 44 <b>.</b> 436  | -18.859             | 1.374     | 6.993        | 040.44       |
| •  | -20.280       | 2.087      | 6.962        | 47.e257          | -20.257             | 2.079     | 7.110        | A7.206       |
| •0 | -21.287       | 2+785      | 7.008        | 49.265           | -21.274             | 2 • 796   | 7.223        | 49.267       |
| •  | -22.070       | 3.497      | 7.114        | 50 e 839         | -22.062             | 3.524     | 166 • 1      | 50.693       |
| •  | -22.712       | 4.209      | 7.267        | 52.149           | -22.712             | 4.262     | 7.435        | 52.236       |
| •  | -23+258       | 4•944      | 7.438        | 53+282           | -23+265             | 5.011     | 7.535        | 53.390       |
| •  | -23.734       | 5.697      | 7.608        | 54.286           | -23.747             | 5.769     | 7.631        | 54.402       |
| •  | -24.158       | 6.465      | 7.766        | 55 <b>.</b> 192  | -24.176             | 6.537     | 7.723        | 55.306       |
| •  | -24.541       | 7.249      | 7.906        | 56.017           | -24.563             | 2.313     | 7.811        | 56.124       |
| •  | -25.212       | 8.854      | 8.134        | 57.480           | -25+238             | 8.892     | 7.976        | 57.563       |
| •  | -25.789       | 10.499     | 8.302        | 58°747           | -25.816             | 10.503    | B.127        | 58 - 80 +    |
| •  | -26+296       | 12.172     | 8.427        | . 59.864         | -26.323             | 12.142    | 8.265        | 59.899       |
| •  | -26.750       | 13.868     | 8.520        | 60.862           | -26.776             | 13.808    | 8,390        | 60 + 879     |
| •  | -27.161       | 15.579     | 8.592        | 61.764           | -27.184             | 15.497    | 8.573        | 61.769       |
| •  |               | 17.303     | 8.647        | 62.585           | -27.558             | 17.208    | 8.605        | 62.585       |
| •  | -27.882       | 19+037     | 8.690        | 63 <b>.</b> 340  | -27.902             | 18.979    | B. 695       | 63+337       |
| •  | -28.203       | 20.779     | 8,725        | 64.037           | -28.221             | 20.676    | 8 . 777      | 54.037       |
|    | -28+502       | 22+527     | 8.753        | 64 • 68 <b>4</b> | -28.519             | 22.449    | 8+8+8        | 64 • 693     |
|    | -28.782       | 24.280     | 8.776        | 65.289           | -28.798             | 24.225    | 8.911        | 65.302       |
|    | -29.414       | 28.679     | 8.819        | 66.645           | -29.429             | 28.713    | 9E0 ° 6      | 66.686       |
| •  | -29,967       | 33.096     | 8.847        | 67 + 825         | -29,984             | 33+251    | 9.114        | 67.893       |
|    | -30.460       | 37.525     | 8.867        | 68.86R           | -30.480             | 37.921    | ġ•120        | 69.974       |
| :  | E06.0E-       | 41.962     | 8.833        | 69+803           | 100° 00 1           | 42.406    | 9.178        | 69.945       |
| •  | -31.307       | 46.407     | 8-8-8        | 70.653           | -31.336             | 46.995    | 9.177        | 70.815       |
|    | -31.677       | 50.861     | 8.916        | 71.425           | -31.711             | 51.581    | 9.162        | 71.613       |
|    | -32.019       | 55+324     | 8,941        | 72.140           | -32,058             | 56.156    | 9.139        | 72.346       |
| •  | -32.337       | 59.804     | 8.979        | 72.804           | -32,381             | 60*719    | 9.113        | 73.022       |
| •  | -32+634       | 64.306     | 9.034        | 73.425           | -3 <sup>+</sup> 683 | 65.269    | 9.088        | 73.653       |
| *  | -32.913       | 68.842     | 9.112        | 74.011           | -32,966             | 69.807    | 9 • 067      | 74.236       |
| •  | -33.176       | 73.423     | 9.217        | 74.556           | - 33, 232           | 74.337    | 9.055        | 74.785       |
| •  | -33.425       | 78.064     | 9.353        | 75.097           | 484 ° M M - 1       | 78.864    | 9. 053       | 75+302       |
|    | -33.662       | 82.781     | 9.521        | 75.607           | -33.723             | 83+393    | 9.063        | 75.792       |
| •  | -33.887       | 87.591     | 9.722        | 76 . 100         | =33°950             | 87.930    | 9.087        | 76.257       |
| •  | -34-310       | 97.552     | 10+221       | 77.049           | -34.372             | 97.056    | 9.174        | 77.127       |
| •  | -34.701       | 108.069    | 10.826       | 77.964           | -34.759             | 106.296   | 9.312        | 77.931       |
| •  | -35+067       | 119.228    | 11.498       | 78.856           | -35.117             | 115+693   | 9.486        | 78.683       |
| •  | -35.412       | 131.070    | 12.185       | 79.734           | -35°449             | 125.272   | 9.672        | 79.303       |
| •  | -35.741       | 143.585    | 12.836       | 80.597           | -35.761             | 135.029   | 9.835        | AC.065       |
|    | -36,055       | 156.714    | 13.407       | 81.444           | -36.054             | 144.919   | 9.930        | 80.704       |
| •  | -36.358       | 170.362    | 13.868       | 82.271           | -36.331             | 154.849   | 6 • 603      | 51.306       |
| •  | -36.649       | 184.407    | 14.202       | 83.C74           | -36.594             | 164.663   | 9 • 688      | 81.867       |
| :  | -36,931       | 198.722    | 14.407       | 83 • 84 8        | -36.843             | 174.136   | 9°509        | 82.389       |
| •  | -37+203       | 213.162    | 14.493       | 64.590           | -37+080             | 182.964   | 8.350        | 55°-35       |
| •  | -37.723       | 242.101    | 14.371       | 85.968           | -37.515             | 195.994   | 5.281        | 83+504       |
| •• | -38.211       | 270.491    | 13.988       | 87 • 203         | -37.897             | 202.304   | -0-501       | 83.735       |
| •  | -38,669       | 297.972    | 13.4R2       | R8.303           | -38.218             | 192.502   | -10.022      | 83+351       |
| •0 | 000-01-       | 205-20E    |              | <b>LOC 00</b>    |                     |           |              |              |
| ,  |               | トトラートリフ    | 0+6 • 7 1    | 0 5 × + A D      | 0000000             | 014001    | -24 - 530    | 82.113       |

,

, ž

•

١

ł

:

| S             | CAL/MOLE-DEG | 41°128    | 45.811         | 48.601                                  |           | 53-571  | 54.725  | 55°745  | 56.661  | 57.493  | 58°969  | 60.254       | 61.398  | 62.432             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65-065<br>65-065 | 65. A25  | 66.541   | 67+216   | 68.757                  | 70.126    | 71.358  | 72.475  | 13.496        | 404°41               |         | 76.859      | 77.548  | . 78.200 | 78.813  | 79.390    | 79.934                                   | 81, 8A0 | 82.682  | 83.452  | 84.171  | 84998   | A5.449  | 86.103  | 96.684  | R7.242  | 86.275   | 89.177  | 89.807  |  |
|---------------|--------------|-----------|----------------|-----------------------------------------|-----------|---------|---------|---------|---------|---------|---------|--------------|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|-------------------------|-----------|---------|---------|---------------|----------------------|---------|-------------|---------|----------|---------|-----------|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|--|
| e<br>U        | CAL/MOLE-DEG | 6.639     | 6. R05         | 0•966<br>•                              | 10122     | 7-422   | 7.565   | 7.705   | 7.840   | 7.971   | 8.222   | 8.457        | 8.678   | 8.884              | 110 • 6<br>• • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 424 6            | 9.579    | 9.722    | 9.854    | 10.139                  | 10.365    | 10.539  | 19•666  | 10.753        | 108 01               | 10.834  | 10.817      | 10.785  | 10.743   | 10.695  | 10.643    | 10.591                                   | 10.425  | 10.301  | 10.399  | 10.447  | 10.531  | 10.637  | 10.749  | 10, 844 | 104893  | 10.708   | 9.852   | 7.840   |  |
| 00H-H         | KCAL/MOLE    | 0.655     | 1.328          | 010-2                                   | 12/02     | 54148   | 4.925   | 5.688   | 6.466   | 7.256   | 8.876   | 10.544       | 12.258  | 14.014             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19-512           | 21.413   | 23+343   | 25.301   | 30- 302                 | 35+430    | 40.658  | 45.961  | 51.318        | 60/ 005<br>V 0 1 0 V | 67.537  | 72.950      | 78.351  | 83.734   | 89•094  | 94 • 428  | 99.736                                   |         | 131.141 | 141+533 | 151.953 | 162.439 | 173.022 | 183.715 | 194.515 | 205.388 | 227.070  | 247.775 | 265.741 |  |
| MU0-H00)/RT   |              | -17.413   | -19.712        | 510°12-                                 |           | -23.456 | -23.999 | -24.474 | -24.898 | -25.280 | -25+952 | -26.531      | -27.042 | -27.499            | 0100-00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -28-651          | -28.980  | -29.289  | -29,580  | -30.243                 | -30,832   | -31.362 | -31.845 | -32.289       |                      |         | -33.778     | -34,095 | -34.395  | -34.679 | 646°40-   | -35,206                                  | -36.125 | -36.531 | -36.908 | -37.259 | -37.588 | -37.898 | -38.191 | -38.470 | -38,734 | -39.22R  | -39.680 | -40-095 |  |
| -             |              |           |                |                                         |           |         |         |         |         |         |         |              |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Ķ        | )R<br>OF | . ]<br>K | 11<br>PO                | N7<br>10] | R<br>R  | ]<br>Q  | PA<br>U       | lg<br>AI             | E       | R<br>R<br>N | 8       |          |         |           |                                          |         |         |         |         |         |         |         |         |         |          |         |         |  |
| SO            | CAL/MOLE-DEG | 40 • 80 5 | 45.626         | 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7 6 6 6 8 | 53.055  | 54.496  | 55.509  | 56.422  | 57.254  | 58+728  | 60.006<br>22 | 61•135  | 62•150<br>41 016   | 0 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A = C 4 / A | 64.721           | 65 • 465 | 66.166   | 66+830   | 68 <b>.3</b> 5 <b>2</b> | 69.70B    | 70.925  | 72.023  | 73.020        | 74.47                | 75-532  | 76.245      | 76.908  | 77.529   | 79.113  | 78.664    | 79.185                                   | 140-18  | 81.861  | 82.626  | 83+345  | 84.023  | 84.667  | 85.278  | 85•862  | 86.419  | 87.462   | 88.419  | 89.300  |  |
| e<br>C        | CAL/MOLE-DEG | 6.955     | 6.955<br>6.955 | 0*400<br>7-03*                          | 7.1.40    | 7.316   | 7.497   | 7.672   | 7.830   | 7.969   | 8.197   | 8.379        | 8.540   | 8.6.48<br>9.6.9    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.205            | 9.379    | 9+547    | 9.704    | 10.035                  | 10.261    | 10.393  | 10.451  | 10.460        | 10.401               | 10-351  | 10.304      | 10.261  | 10.224   | 10.195  | 10.175    | 10.165                                   | 410-01  | 10.282  | 10.369  | 10.465  | 10.565  | 10.661  | 10.749  | 10.827  | 10.892  | 10.979   | 11.013  | 11.002  |  |
| 001-1         | KCAL/MOLE    | 0.696     | 162.1          | 2.007                                   | 90 V 4 7  | 4.217   | 4.958   | 5.716   | 6 4 92  | 7+282   | 8•899   | 10.557       | 12.249  | 13.973             | 17.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.342           | 21.200   | 23+093   | 25.018   | 29.957                  | 35.035    | 40.202  | 45.416  | 50.640<br>510 | 53.870               | 66.267  | 71.431      | 76.572  | 81.692   | 86.797  | 91.889    | E10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 117.331 | 127.577 | 137.902 | 148.318 | 158.833 | 169•446 | 180.152 | 190.941 | 201+802 | 223+682  | 245.683 | 267.705 |  |
| ( MU0-H00)/RT |              | -17-034   | 194451-        | -21-887                                 | -22.670   | -22.312 | -23+860 | -24.338 | -24.763 | -25+147 | -25.821 | -26.401      | 216-02- | -21-305<br>-27-403 | 501017-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -28.513          | -28+840  | -29.146  | -29.434  | -30.089                 | -30.671   | -31.195 | -31.673 |               | 408-26-              | -33.246 | -33+575     | -33+865 | -34.178  | -34.455 | -34 • 718 |                                          | -35-861 | -36.256 | -36+522 | -36+965 | -37.287 | -37+590 | -37.877 | -38+150 | -38.410 | -38 × 96 | -39.343 | -39.756 |  |
| +             | •            | 100.      | • 0 0 P        |                                         |           | 600.    | 700.    | BC 0 .  | •006    | 1000    | 1200.   | 1400.        | 1500.   | -0000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2400.            | 2600.    | 2800.    | 3000     | 3500.                   | +000      | 4500.   | 5000.   |               | 6500.                | 7000    | 7500.       | 8000.   | 95CO.    | •0006   | 9500.     |                                          | 12000   | 13000.  | 14000.  | 15000.  | 16000.  | 17000.  | 13000.  | 19200.  | 20000-  | 22000.   | 24000.  | 26000.  |  |

Ţ

è

1

F" "RE 33 Thermal properties of CN 100= 197.170 KCAL/MOLE) 1

ì

,

|         | *****        |                | MODELTTTTT   |              |
|---------|--------------|----------------|--------------|--------------|
| -       | (%U0-H00)/RT | 001-1          | e<br>U       | so           |
|         |              | KCAL/MOLE      | C/= MOLE-DEG | CAL/MOLE-DEG |
| • 0 0 1 | 676 6 -      | 0.497          | 4.908        | 24.098       |
| 200.    | -11.661      | 0°994          | 4.968        | 28.141       |
| - O 0 0 | -12.675      | 1.490          | 800 • 4      | 30•198       |
| 4004    | -13-394      | 1.987          | 4.968        | 31+585       |
| 500.    | -13+952      | 2.484          | 4.958        | 32,693       |
| 600     | -14.408      | 2.981          | 4.908        | 555 • 5 5    |
| 700+    | -14.793      | 3.478          | 4.958        | 000 • • 000  |
| 800.    | -15.127      | 7.974          | 4 • 968      | 35.028       |
| •006    | -15.421      | 4.471          | 4.968        | 35.613       |
| 1000    | -15.685      | 4.968          | 4.968        | 36.137       |
| 1200.   | -16.141      | 5.902          | 4 • 968      | 37.043       |
| 1430.   | -16.526      | 6.955          | 4.968        | 37+808       |
| 1630.   | -16.860      | 7.949          | 4.968        | 38.472       |
| 1800.   | -17.154      | 8.942          | 4 • 968      | 39.057       |
| 2020.   | -17.418      | 9.936          | 4.968        | 39.580       |
| 2200.   | -17.656      | 10.930         | 4.968        | 40.054       |
| 2403.   | -17.973      | 11.923         | 4.968        | 40.486       |
| 2600.   | -18.374      | 12.917         | 4,968        | 40.884       |
| 2800.   | -18.259      | 13.910         | 4.968        | 41.252       |
| 3000.   | -18.431      | 14.904         | 4.968        | 41+595       |
| 3500.   | -18.817      | 17.388         | 4.968        | 42,361       |
| 4000.   | -19.151      | 19.872         | 4.968        | 43.024       |
| 4500.   | -19.445      | 22.356         | 4+968        | 43.609       |
| 5000.   | -19.708      | 24.840         | 4.968        | 44.132       |
| 5500.   | -19-947      | 27.324         | 4.968        | 44.606       |
| 6000    | -20.164      | 29,808         | 4.968        | 45.038       |
| 6500.   | -20-364      | 32+292         | 4.968        | 45.436       |
| 7000.   | -20.550      | 34.776         | 4.968        | 45+834       |
| 7500.   | -20.722      | 37+260         | 4.968        | 46.147       |
| 8020°   | -20.883      | 39.744         | 4.968        | 46.467       |
| 8500.   | -21.035      | 42+228         | 4.958        | 46.769       |
| 9000    | -21.178      | 44.712         | 4.968        | 47.053       |
| 9500.   | -21.313      | 42.196         | 4.968        | 47.321       |
| 10000   | -21.441      | 49.690         | 4.968        | 47.576       |
| 11000.  | -21.680      | 54.648         | 4 • 968      | 48.050       |
| 12000.  | -21.897      | 59.616         | 4.968        | 48.482       |
| 13000.  | -22.097      | 64+584         | 4 • 968      | 48+879       |
| 14000.  | -22.282      | 69.552         | 4.968        | 49•248       |
| 15000.  | -22.455      | 74.520         | 4.968        | 49.590       |
| 16000.  | -22.616      | 79.488         | 4.968        | 49.911       |
| 17000.  | -22.768      | 84.456         | 4.968        | 50.212       |
| 18030.  | -22,911      | 89.424         | 4.968        | 50.496       |
| 19000.  | -23.046      | 94.392         | 4.968        | 50.765       |
| 20000   | -23.174      | <b>99</b> •350 | 4.968        | 51.020       |
| 22000.  | -23.412      | 109.296        | 4.968        | 51.493       |
| 24000.  | -23+630      | 119.232        | 4.968        | 51.925       |
| 26000.  | -23.830      | 129.168        | 4 9 9 6 8    | 52.323       |
| 28000.  | -24.015      | 139.104        | 4.968        | 52.691       |
| 30000   | -24.188      | 149.040        | 4.968        | 53.034       |

ł

[

₽.

• • •

: 7

. . . . . .

. . . . . . . .

. . . . . . . .

. . . .

1

111

( :

0.0 KCAL/MDLE)

דיריוזעב 34 Thermal properties of me 100=

۰

Ì

|         | - |
|---------|---|
|         |   |
|         |   |
| ម<br>ខា |   |
| ET CUR  |   |
|         | , |
|         | ļ |
|         | 9 |

## THERMAL PROPERTIES OF C 400= 263+550 KCAL/MOLE)

1. 7

# 

| ٣        | 4 MU0-H00 >/RT | 00H-H     | Ð            | S0            |
|----------|----------------|-----------|--------------|---------------|
|          |                | KCAL/MOLE | CAL/MOLE-DEG | CAL/MOLE-DEG  |
| 100.     | -13-346        | 0.582     | 4.968        | 32.339        |
| 200-     | -15+293        | 1.079     | 4.968        | 35.783        |
| 300.     | -16-378        | 1.575     | 4.968        | 37.797<br>797 |
| 400+     | -17+133        | 2.072     | 4.968        | 39.227        |
| 500.     | -17.712        | 2.569     | 4.958        | 40°335        |
| 600.     | -18.182        | 3.066     | 4.968        | 41.241        |
| 700.     | -18.578        | 3+563     | 4,968        | 42+007        |
| 800.     | -18.919        | 4.059     | 4.968        | 42.670        |
| 9006     | -19.219        | 4.556     | 4.968        | 43.255        |
| 1000     | -19.488        | 5.053     | 4.968        | 43.779        |
| 1200.    | -19.950        | 6.047     | 4.969        | 44°684        |
| 1400.    | -20.341        | 7.041     | 4.972        | 45.451        |
| 1620.    | -20.679        | 8.035     | 4.97B        | 46.115        |
| 1 80 0 . | -20+976        | 9.032     | 4.990        | 46.702        |
| 2000.    | -21.242        | 10.032    | 5.007        | 47.228        |
| 2200.    | -21.483        | 11.036    | 5.031        | 47.707        |
| 2400.    | -21.702        | 12.045    | 5.060        | 48.146        |
| 2600.    | -21.905        | 13+060    | 5.094        | 48.552        |
| 2800.    | -22+092        | 14.082    | 5.130        | 48.931        |
| 3000.    | -22.267        | 15.112    | 5.167        | 49.286        |
| 3500.    | -22.658        | 17.719    | 5.261        | 50.090        |
| 4000-    | -23.000        | 20+371    | 5.345        | 50.798        |
| 4500.    | -23.302        | 23.062    | 5.414        | 51.431        |
| 5000-    | -23,575        | 25.783    | 5.468        | 52.005        |
| 5503.    | -23.823        | 28.528    | 5.509        | 52.528        |
| 60CC.    | -24.051        | 31.290    | 5.541        | 53*000        |
| 6500.    | -24.261        | 34.067    | 5•565        | 53.453        |
| 7000.    | -24.457        | 36.855    | 5.586        | 53,896        |
| 7500.    | -24.640        | 39.652    | 5.605        | 54+252        |
| 8000.    | -24.812        | 42.461    | 5.628        | 54.615        |
| 8500.    | -24.975        | 45.281    | 5+655        | 54.957        |
| •0006    | -25.128        | 48.117    | 5• 692       | 55.281        |
| 9500.    | -25.274        | 50.976    | 5.743        | 55.590        |
| 10000    | -25.413        | 53•863    | 5.811        | 55.886        |
| 11000-   | -25.672        | 59.768    | 6.016        | 56.449        |
| 12000.   | -25.911        | 65.933    | 6• 336       | 56.985        |
| 13000.   | -26.134        | 72.485    | 6•792        | 57.509        |
| 14000.   | -26,344        | 79+563    | 7.386        | 58.034        |
| 15000.   | -26,543        | 87.297    | 8.101        | 58.567        |
| 16000.   | -26.735        | 95.795    | 8.905        | 59.115        |
| 17000.   | -26+921        | 105.122   | 9.751        | 59.680        |
| 1 RC70.  | -27.102        | 115.293   | 10.584       | 60.261        |
| 19300.   | -27.279        | 126.268   | 11.351       | 60.855        |
| 20000-   | -27.454        | 137.957   | 12.007       | 61.454        |
| 22000.   | -27.797        | 162.945   | 12.974       | 62 • 64 4     |
| 24000.   | -28.131        | 189.031   | 13.112       | 63.779        |
| 26000.   | -28.457        | 215.045   | 12.831       | 64.820        |
| 28000.   | -28.771        | 240.134   | 12•218       | 65.750        |
| 30000    | -29.073        | 263+815   | 11.449       | 66.567        |

•

t

1

ì

,

# 

| -      | ( MU0-H00)/RT | 004-4     | Ð            | SO           |
|--------|---------------|-----------|--------------|--------------|
|        |               | KCAL/MOLE | CAL/MOLE-DEG | CAL/MOLE-DEG |
| .001   | -12,855       | 0.578     | 5.384        | 31.326       |
| 203.   | -14.819       | 1.096     | 5.072        | 34.926       |
| 30.0.  | -15•921       | 1.599     | 5.013        | 36-969       |
| +00+   | -16.687       | 2.100     | 4.993        | 38,408       |
| 500.   | -17.273       | 2.598     | 4.984        | 39.521       |
| e00•   | -17.748       | 3.096     | 4.979        | 40.430       |
| 700.   | -18.147       | 3+594     | 4.976        | 41.197       |
| 800.   | -18.492       | 4 0 92    | 4.974        | 41.861       |
| •005   | -18.794       | 4.589     | 4.973        | 42.447       |
| 1003.  | -19.064       | 5.036     | 4.972        | 42.971       |
| 1200.  | -19.530       | 6.080     | 4.971        | 43+877       |
| 1409.  | -19,923       | 7.074     | 4.970        | 649.643      |
| 1600.  | -20.262       | 8.068     | 4•969        | 45.307       |
| 1820.  | -20.560       | 9.062     | 4.969        | 45.892       |
| 2000-  | -20.827       | 10.056    | 4.969        | 46.416       |
| 2200.  | -21.068       | 11.050    | 4.969        | 46.889       |
| 2400.  | -21.288       | 12.044    | 4.969        | 47.322       |
| 2600.  | -21.4-0       | 13.037    | 4.963        | 47.719       |
| 2800.  | -21.677       | 14.031    | 4.968        | 48.088       |
| 3000   | -21-801       | 15.025    | 4.968        | 48.430       |
| 3500.  | -22+233       | 17.509    | 4 • 968      | 49.196       |
| 40004  | -22+575       | 19.993    | 4.968        | 49.860       |
| 4500.  | -22.871       | 22.477    | 4.969        | 50.445       |
| 5200.  | -23+135       | 24.962    | 4.971        | 50.969       |
| 5500.  | -23.376       | 27.449    | 4+975        | 51.442       |
| 6000.  | -23+594       | 29.938    | 4.982        | 51.876       |
| 0000   | -23.795       | 32.432    | 4.995        | 52.275       |
| 7000.  | -23.981       | 34.933    | 5.013        | 52.646       |
| 7500.  | -24.154       | 37.446    | 5,039        | 52.992       |
| 8000 . | -24.317       | 39.974    | 5.073        | 53+319       |
| 8500.  | -24.469       | 42.520    | 5.115        | 53.627       |
| 9000   | -24.613       | 45.090    | 5.165        | 53.921       |
| 9500.  | -24.750       | 47.686    | 5.222        | 54.202       |
| 100001 | -24.879       | 50.313    | 5+287        | 54.471       |
| 11000. | -25.121       | 55.671    | 5.433        | 54.982       |
| 12000. | -25.344       | 61.185    | 5.596        | 55.462       |
| 13000. | -25,550       | 66.867    | 5•769        | 55.916       |
| 14000. | -25.743       | 72.724    | 5.944        | 56.350       |
| 15000. | -25.924       | 78.753    | 6.114        | 56.766       |
| 15000. | -26.095       | 84.949    | 6+275        | 57.166       |
| 17000  | -26.258       | 91.299    | 6.423        | 57+551       |
| :9010- | -25.414       | 97.789    | 6+555        | 57.922       |
| 19000. | -26.562       | 104.403   | 6.670        | 58.279       |
| 20000. | -26.705       | 111.124   | 6.768        | 58.624       |
| 22000. | -26.974       | 124.816   | 6.912        | 59.276       |
| 24000. | -27.25        | 138.731   | 6.994        | 59.882       |
| 26000. | -27.460       | 152.755   | 7.022        | 60.443       |
| 23000. | -27.680       | 166•793   | 7.010        | 60°963       |
| 30000  | -27.988       | 180.775   | 6.967        | 61.446       |

۰.

۰. ۲

į

··········

. : :

•••••

· · · · · · · · · ·

5

۱ ; ;

\* \*\* \* \*\*

į

1

١.

1

ł

;

ף' "וווים 37 Thermal propertics of me 100= 566.840 KCAL/MOLE) ١

;

\* 1

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| +         | ( MU0-H00)/RT | 00H-H      | СЪ            | S0              |
|-----------|---------------|------------|---------------|-----------------|
|           |               | K CAL/MOLE | CAL/MOLE-DEG  | CAL/MOLE-DE     |
| 100.      | -10-621       | C.497      | 4.968         | 26.075          |
| 200       | -12-354       | 0.994      | 4.968         | 29.515          |
| 30.0 •    | -13-368       | 1.493      | 4 • 968       | 31.533          |
| •00•      | -14.087       | 1.987      | 4.968         | 32.962          |
| 500.      | -14.645       | 2.484      | 4.968         | 34.071          |
| 600.      | -15.101       | 2.981      | 4.969         | 34 • 976        |
| 700.      | -15.486       | 3.478      | <b>4</b> •058 | 35.742          |
| 80.0      | -15.820       | 3•974      | 4.968         | 36.406          |
| •006      | -16.115       | 4.471      | 4.968         | 36.991          |
| 1000.     | -16.378       | 4.968      | 4.968         | 37.514          |
| 1200.     | -16.834       | 5.962      | 4.968         | 38.420          |
| 1400.     | -17.219       | 6.955      | 4.968         | 39.186          |
| 1600.     | -17.553       | 7.949      | 4.968         | 39.845          |
| 1800.     | -17.847       | 8.942      | 4.968         | 40 <b>•</b> 434 |
| 2000      | -18.111       | 959.936    | 4.968         | 40.958          |
| 2200.     | -18,349       | 10.930     | 4.968         | 41.431          |
| 2400.     | -18-567       | 11.923     | 4.968         | 41.864          |
| 2600.     | -18.767       | 12.917     | 4.968         | 42.261          |
| 2800.     | -18.952       | 13.910     | 4 • 963       | 42 • 629        |
| 3000.     | -19.120       | 14.904     | 4.968         | 42.972          |
| 3500.     | -19.510       | 17.388     | 4.968         | 43.736          |
| 4000      | -19.844       | 19.872     | 4.968         | 44.401          |
| 4500.     | -20.138       | 22.356     | 4.968         | 44.986          |
| 5000.     | -20.402       | 24.840     | 4.968         | 45.510          |
| 5500.     | -20.640       | 27.324     | 4.968         | 45+983          |
| 6000.     | -20.857       | 29.808     | 4.968         | 46.416          |
| 6500.     | -21.057       | 32•292     | 4.968         | 46.813          |
| 7000.     | -21.243       | 34.776     | 4.968         | 47.182          |
| 7500.     | -21.415       | 37.260     | 4.968         | 47.524          |
| .0008     | -21.577       | 39.744     | 4.968         | A7.845          |
| 8500.     | -21.728       | 42.228     | 4.968         | 48.146          |
| 9000      | -21.871       | 44.712     | 4.968         | 48.430          |
| 9500.     | -22.006       | 47.196     | 4.968         | 48.699          |
| .0000     | -22.134       | 49.680     | 4.958         | 48+953          |
| 1000      | -22,373       | 54.648     | 4.968         | 49.427          |
| 2000-     | -22.590       | 59.616     | 4.968         | 49.859          |
| 3000      | -22•790       | 64.584     | 4+968         | 50.257          |
| 4000.     | -22.976       | 69° 552    | 4.968         | 50.625          |
| .500.0.   | -23.148       | 74.520     | 4.968         | 50.968          |
| 6000.     | -23+309       | 79.488     | 4.968         | 51.288          |
| .7000+    | -23.461       | 84.456     | 4.968         | 51.590          |
| 8000.     | -23.604       | 89.424     | 4.968         | 51.874          |
| 9000      | -23.739       | 54°392     | 4.968         | 52.142          |
| •0000     | -23.867       | 99.360     | 4.968         | 52+397          |
| 2000      | -24.106       | 109.296    | 4.968         | 52.871          |
| 4000*     | 124+323       | 119•232    | 4.968         | 53+303          |
| 6000+     | -24.523       | 129.168    | 4.968         | 53+700          |
| .90.38    | -24.708       | 139.104    | 4.968         | 54.069          |
| • 0 0 0 0 | -24.881       | 149-040    | 4.968         | 54.411          |

ORIGINAL PAGE IS OF POOR QUALITY

1

١

# 

.

| T         (MUD-HOD)/RT         H-HOO         CAL/MOLE                                                        | 63.451           | 4.970          | 150.343         | -29.408      | 30000      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------|--------------|------------|
| T         (MUD-HOD)/RT         H-HOD         CAL/MOLE         The CAL/MOLE | 62•740<br>63-108 | 4.971          | 130-462         | -29.047      | 26000.     |
| T         (MUD-HOD/RT         H-HOO         CAL/MOLE         C                                               | 62.342           | 4+971          | 120.520         | -28.845      | 24000+     |
| T         (MUD-HOD/RT         H-HOD         CP         CAL/MOLE         CAL/MOL                                               | 61.909           | 4.972          | 110.577         | -28.625      | 22030.     |
| T         (MUD-HOD/RT         H-HOD         CP         CAL/MOLE         CAL/MOL                                               | 61.436           | 4.973          | 100+633         | -28.384      | 20000      |
| T         (MU0-HOD/RT         KCAL/MOLE         CP         CAL/MOLE         T         CAL/MOLE                                                                    | 61.180           | 4.973          | 95.663          | -28.254      | 19360.     |
| T         (MU0-H001/RT         KCAL/MDLE         CP         CAL/MDLE         CP         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S <ths< th="">         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         <ths< td=""><td>60.912</td><td>4.974</td><td>90.687</td><td>-28.117</td><td>1 8000.</td></ths<></ths<>                                                                                                                                                                                        | 60.912           | 4.974          | 90.687          | -28.117      | 1 8000.    |
| T         (MU0-H001/RT         KCAL/MULE         CAL/MULE                                                    | 60.627           | 4.974          | 85.713          | -27.972      | 17000.     |
| T         (MU0-H00/)         KCAL/MOLE         CP         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A                                                                                                                                                                                                                                                                                                          | 60.326           | 4.975          | 80•738          | -27.813      | 16000.     |
| T         (MUD-HOD)/RT         H-HOD         CAL/MOLE         CAL/MOLE         S0           2000         -14.766         0.497         4.969         34.310           2001         -16.476         0.497         4.969         34.310           2001         -16.476         0.497         4.973         34.310           2001         -16.476         0.497         4.973         34.310           2001         -16.476         0.497         4.973         34.310           2001         -16.477         3.545         5.129         34.3117           2001         -19.656         3.545         5.434         44.179           7001         -20.501         3.545         5.434         44.117           901         -20.501         3.545         5.434         44.117           901         -20.501         4.125         5.319         44.117           901         -20.501         4.125         5.319         44.117           901         -20.501         4.125         5.319         44.117           901         -20.501         -20.503         5.434         44.117           11000         -21.472         5.219         5.416                                                                                                                                                                                                                                                                          | 60.005           | 4.976          | 75.763          | -27.654      | 15000.     |
| T         (MUD-HOD)/RT         H-HOO         CP         SO           2000 $-14.766$ $0.4973$ $34.310$ $34.310$ 2000 $-14.766$ $0.4973$ $34.310$ $34.310$ 2000 $-16.499$ $0.4973$ $34.310$ $34.310$ 2000 $-16.761$ $1.4993$ $5.120$ $34.312$ 2000 $-18.234$ $1.9993$ $5.120$ $34.312$ 7000 $-18.234$ $1.9993$ $5.139$ $42.212$ 7000 $-20.20.303$ $5.238$ $42.903$ $42.127$ 7000 $-20.3168$ $5.213$ $42.3193$ $44.179$ 7100 $-20.3168$ $5.213$ $5.446$ $45.544$ 7000 $-20.3162$ $5.213$ $44.107$ $47.107$ 11000 $-21.472$ $5.213$ $47.107$ $5.3193$ 11000 $-21.472$ $5.213$ $44.107$ $47.107$ 11000 $-22.419$ $5.239$ $47.107$ 11000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.661           | 4.977          | 70.786          | -27.478      | 14000+     |
| T         (MUD-HOD)/RT         H-HOO         CP         S0           2000         -114.766         C.4972         34.310           2001         -16.448         0.4973         34.310           2001         -16.448         0.4973         34.310           2001         -16.448         0.4973         34.310           2001         -16.448         0.4973         34.310           2001         -16.476         0.4973         34.310           2001         -18.234         1.999         49.073           2001         -19.6261         3.543         42.179           7501         -20.5011         4.125         5.434         42.179           7001         -20.5013         4.125         5.434         43.179           70107         -20.5013         4.125         5.434         45.117           70107         -20.513         5.513         5.434         45.117           70101         -20.513         5.213         5.434         45.117           70102         -20.513         5.213         5.434         45.117           70103         -20.513         5.213         5.434         5.117           70101 <t< td=""><td>59.292</td><td>4.978</td><td>65.808</td><td>+27+290</td><td>13020.</td></t<>                                                                                                                                                                                             | 59.292           | 4.978          | 65.808          | +27+290      | 13020.     |
| T         (MUD-H00)/RT         H-H00         S0         S0 <ths0< th=""> <ths0< th="">         S0</ths0<></ths0<>                                                                                                                                                                                                                                       | 58.894           | 4.980          | 60.629          | -27.086      | 12000.     |
| T         (MUD-H001/RT $M-H00$ $A_{0}$ % % $A_{0}$ % % $A_{0}$ % % $A_{0}$ % % $A_{0}$ %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58.460           | 4.982          | 55 <b>.</b> P48 | -26.864      | .00011     |
| T         (MU0-H00)/RT         H-H00         CAL/MOLE         T54         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.312         34.310         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312         34.312                                                                                                   | 57+585           | 4 • 985        | 50.854          | -26.620      | 10000      |
| T         (MU0-H001/RT         H-H00         CP         S0           2000 $-14.766$ $0.4972$ $34.310$ $34.310$ 2000 $-14.766$ $0.4972$ $34.310$ $34.310$ 2000 $-17.513$ $1.4933$ $5.017$ $34.310$ 2000 $-18.757$ $2.517$ $5.238$ $34.310$ 2000 $-18.757$ $2.517$ $5.2334$ $42.663$ $5000$ $-19.261$ $3.545$ $5.446$ $42.663$ $6001$ $-19.261$ $3.543$ $42.663$ $42.663$ $6001$ $-19.261$ $3.543$ $42.643$ $42.963$ $6002$ $-19.261$ $3.543$ $42.663$ $42.663$ $80002$ $-220.362$ $3.523$ $5.443$ $45.6544$ $10002$ $-220.362$ $5.213$ $45.6564$ $45.6564$ $10002$ $-220.362$ $5.213$ $5.434$ $45.963$ $10002$ $-220.310$ $5.213$ $5.434$ $45.653$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.730           | 4.987          | 48.371          | -26.488      | 9500.      |
| T         (MU0-H00)/RT         H-H00         CCAL/MOLE         CAL/MOLE         T54         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         35.313         35.313         35.313         35.313         34.310         34.310         35.313         34.310         34.310         34.310         34.310         34.310         34.310         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300         34.300 </td <td>57.460</td> <td>4.989</td> <td>45.877</td> <td>-26.350</td> <td>•0006</td>          | 57.460           | 4.989          | 45.877          | -26.350      | •0006      |
| T         (MU0-H001/RT $H-H00$ $CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.175           | 4 • 992        | 43•382          | -26+203      | 8500.      |
| T         (MU0-H00)/RT $H-H00$ CP         CP         S0           100 $-14.765$ $0.0947$ $4.972$ $34.310$ $37.754$ 200 $-16.496$ $0.9947$ $4.972$ $34.310$ $37.754$ 200 $-17.513$ $1.4933$ $5.017$ $34.5176$ $37.754$ 3000 $-18.234$ $1.999$ $5.233$ $41.232$ $37.756$ 5000 $-19.656$ $3.543$ $5.334$ $43.352$ $37.756$ 700 $-19.656$ $3.543$ $5.334$ $43.352$ $37.756$ 700 $-19.2613$ $3.543$ $5.334$ $43.352$ $44.179$ 700 $-20.3164$ $5.233$ $43.352$ $44.179$ $44.179$ 900 $-22.613$ $3.5233$ $5.444$ $47.107$ $7107$ 900 $-22.613$ $5.213$ $45.179$ $47.107$ $7107$ 900 $-22.133$ $5.233$ $5.234$ $45.617$ $47.107$ 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.872           | 4.994          | 40.885          | -26.047      | 8000       |
| T         M-HO0         CP         CAL/MOLE         CAL/MOLE         CAL/MOLE         CAL/MOLE         CAL/MOLE         CAL/MOLE         CAL/MOLE         So         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310         34.310                                                                                                     | 56.550           | 4.938          | 38.387          | -25.881      | 7500.      |
| T         (MU0-H00)/RT         H-H00         CP         S0           100 $-14 \cdot 766$ $0.9947$ $4.972$ $37.34.310$ $37.34.310$ 200 $-17.513$ $1.4993$ $5.017$ $37.754$ $37.754$ 200 $-17.513$ $1.4993$ $5.017$ $37.754$ $37.754$ 200 $-17.513$ $1.4993$ $5.120$ $41.972$ $37.754$ 500 $-19.656$ $3.543$ $5.334$ $42.372$ $37.756$ 500 $-19.656$ $3.543$ $5.334$ $42.903$ $47.903$ 700 $-20.308$ $3.543$ $5.334$ $47.903$ $47.903$ 900 $-20.358$ $5.213$ $4.5337$ $5.446$ $47.903$ 900 $-21.064$ $6.5299$ $5.446$ $47.903$ $47.107$ 1000 $-21.417$ $7.377$ $5.446$ $47.903$ $47.107$ 1000 $-22.419$ $10.526$ $5.446$ $47.903$ $47.107$ 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56+205           | 5.002          | 35.887          | 210°02-      | 1000       |
| T         (MU0-H001/RT         H-H00         CP         S0           100 $-14 \cdot 766$ $0.9947$ $4.972$ $37.34.31.0$ 200 $-16 \cdot 766$ $0.9947$ $4.972$ $37.754$ 200 $-17.513$ $1.4999$ $4.972$ $37.754$ 200 $-17.513$ $1.4999$ $5.120$ $37.754$ $760$ $-19.656$ $3.543$ $5.334$ $42.372$ $500$ $-19.656$ $3.543$ $5.334$ $44.903$ $700$ $-19.656$ $3.543$ $5.334$ $44.903$ $700$ $-19.656$ $3.543$ $5.334$ $44.903$ $700$ $-20.308$ $3.546$ $44.903$ $44.903$ $900$ $-20.308$ $4.669$ $5.334$ $44.903$ $900$ $-20.308$ $5.213$ $47.107$ $900$ $-22.538$ $4.669$ $5.446$ $44.903$ $1000$ $-21.4064$ $5.233$ $46.117$ $107.237$ $1000$ <t< td=""><td>55.433</td><td>5.013</td><td>30.880</td><td>-25+305</td><td>e000e</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.433           | 5.013          | 30.880          | -25+305      | e000e      |
| T         (MU0-H00)/RT         H-H00         CP         S0           200         -14.766         0.497         4.972         34.310           200         -16.4766         0.497         4.972         37.753           200         -17.513         1.493         5.017         39.776           300         -17.513         1.493         5.017         39.776           300         -18.757         2.517         5.017         39.776           400         -18.234         1.999         41.23         39.776           500         -19.261         3.543         5.017         39.776           500         -19.261         3.543         5.017         39.776           700         -19.261         3.543         5.017         39.776           800         -20.584         5.633         42.836         46.117           900         -20.584         5.213         44.903         47.107           900         -20.584         5.213         46.117         71.717           900         -21.645         5.213         45.544         46.117           1200         -21.826         5.213         5.319         46.117                                                                                                                                                                                                                                                                                         | 54.996           | 5.021          | 28.371          | -25,079      | 5500.      |
| T         (MU0-H00)/RT         H-H00         CP         S0           200 $-16 \cdot 766$ $0.4977$ $4.972$ $34.310$ 200 $-16 \cdot 766$ $0.4977$ $4.972$ $37.754$ 200 $-17 \cdot 5113$ $1.4933$ $5.017$ $39.776$ 300 $-17 \cdot 5113$ $1.4933$ $5.017$ $39.776$ 300 $-18 \cdot 757$ $2.517$ $5.017$ $39.776$ 500 $-18 \cdot 757$ $2.517$ $5.334$ $42.3333$ 500 $-19 \cdot 261$ $3.543$ $5.334$ $42.903$ 700 $-19 \cdot 261$ $3.543$ $5.334$ $42.972$ 900 $-19 \cdot 261$ $3.543$ $5.334$ $42.938$ 900 $-20.503$ $4.659$ $44.907$ $5.334$ 900 $-20.503$ $4.659$ $44.907$ $5.334$ 900 $-20.528$ $5.213$ $45.117$ 900 $-22.605$ $5.213$ $45.107$ 9000 $-22.413$ $5.213$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.517           | 5.031          | 25.858          | -24.832      | 5000.      |
| T       (MU0-H00)/RT       H-H00       CP       S0         200       -14.766       0.497       4.972       34.310         200       -16.496       0.497       4.972       37.754         200       -17.513       1.493       5.017       39.776         300       -17.513       1.493       5.017       39.776         300       -18.234       1.999       4.123       5.017       39.776         500       -19.656       3.543       5.017       39.776       31.753         500       -19.251       3.543       5.334       41.233       35.334         700       -19.656       3.543       5.334       42.903       44.177         800       -20.511       3.543       5.446       47.903       47.107         800       -20.584       5.213       5.446       47.107       47.107         1000       -21.472       7.377       5.445       46.117       17.17         1200       -21.472       7.377       5.445       46.117       17.17         1200       -21.647       5.213       46.117       17.17       14.007       17.17         1200       -22.6013       10.655                                                                                                                                                                                                                                                                                                                                        | 53.986           | 5.044          | 23.340          | -24.557      | 4500.      |
| T       (MU0-H00)/RT       H-H00       CP       S0         100       -16.4766       0.497       34.310       34.310         200       -16.4766       0.497       4.972       37.754         200       -17.513       1.493       5.017       39.776         300       -17.513       1.493       5.017       39.776         300       -18.234       1.999       5.017       39.776         500       -19.656       3.543       5.017       39.776         500       -19.261       3.543       5.017       39.776         500       -19.261       3.543       5.017       39.776         700       -19.261       3.543       5.017       39.776         700       -19.656       3.543       5.034       42.903         700       -20.465       4.125       5.446       45.644         10001       -21.064       6.299       5.445       44.903         10001       -21.064       6.299       5.445       46.117         12000       -21.064       6.299       5.445       46.117         12001       -21.064       6.299       5.445       46.117         1200 <td>53.391</td> <td>5.061</td> <td>20-814</td> <td>-24.249</td> <td>4000.</td>                                                                                                                                                                                                                                                                             | 53.391           | 5.061          | 20-814          | -24.249      | 4000.      |
| T       (MU0-H00)/RT       H-H00       CP       S0         100       -16.766       0.993       4.972       34.310         200       -16.496       0.993       4.972       37.754         200       -17.513       1.493       5.017       39.776         200       -17.513       1.493       5.017       39.776         200       -18.234       1.999       4.972       37.75         500       -18.234       1.999       5.017       39.776         500       -18.234       1.999       5.017       39.776         500       -19.655       3.543       5.017       39.776         500       -19.261       3.543       5.120       41.223         700       -19.655       3.543       5.334       42.973         700       -20.465       5.434       44.903       71.76         800       -20.584       5.213       5.434       44.903         1000       -21.472       7.377       5.445       46.117         1200       -21.472       7.377       5.319       45.544         1000       -22.613       5.213       5.445       46.107         1000       <                                                                                                                                                                                                                                                                                                                                                             | 52.714           | 5.085          | 18.277          | -23+899      | 3500.      |
| T         (MU0-H00)/RT         H-H00         CP         S0           100 $-16.766$ $0.497$ $4.972$ $34.310$ 200 $-16.766$ $0.994$ $4.972$ $37.756$ 200 $-17.513$ $1.499$ $5.017$ $39.776$ 200 $-17.513$ $1.999$ $4.972$ $37.765$ 200 $-18.727$ $2.517$ $5.017$ $39.776$ 400 $-18.727$ $2.517$ $5.238$ $42.372$ 500 $-19.261$ $3.543$ $5.434$ $42.973$ 500 $-19.261$ $3.543$ $5.434$ $44.903$ 700 $-20.516$ $3.543$ $5.434$ $44.903$ 800 $-20.513$ $4.659$ $5.434$ $44.903$ 800 $-20.513$ $4.659$ $5.434$ $46.117$ 900 $-20.528$ $5.213$ $45.5544$ $46.117$ 900 $-20.504$ $5.213$ $45.565$ $46.117$ 900 $-22.672$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51.928           | 5.119          | 15.727          | -23.493      | 3000       |
| T       (MU0-H00)/RT       H-H00       CP       S0         100       -14.766       0.497       4.963       34.310         2000       -14.766       0.497       4.963       34.310         2000       -17.513       1.499       4.963       34.310         2000       -17.513       1.499       5.017       39.776         2000       -18.757       1.499       5.017       39.776         400       -18.757       3.543       5.017       39.776         500       -18.757       3.543       5.017       39.776         500       -19.261       3.543       5.017       39.776         500       -19.261       3.543       5.334       42.338         600       -19.251       3.545       5.339       42.3352         700       -20.513       3.546       44.6177       47.107         900       -20.513       5.443       46.117       47.107         900       -21.472       7.337       5.443       46.117         1000       -21.472       7.337       5.443       46.117         1000       -21.472       7.337       5.443       46.117         1000                                                                                                                                                                                                                                                                                                                                                             | 51.574           | 5.136          | 14-702          | 115-52-      | 2800.      |
| T       (MU0-H00)/RT       H-H00       CP       S0         100       -16.766       0.497       4.963       34.310         200       -16.4766       0.497       4.963       34.310         200       -16.4766       0.497       4.963       34.310         200       -17.513       1.499       4.963       34.765         300       -17.513       1.499       5.017       39.776         400       -18.757       3.543       5.017       39.776         500       -18.757       3.543       5.017       39.776         500       -18.757       3.543       5.017       39.776         500       -18.757       3.543       5.017       39.776         500       -19.261       3.543       5.017       39.776         500       -19.261       3.543       5.334       42.333         700       -20.501       4.125       5.434       44.177         800       -20.601       4.125       5.434       45.107         900       -21.654       5.445       5.434       45.107         900       -21.654       5.445       5.445       45.107         100 <t< td=""><td>51.192</td><td>5.156</td><td>13-673</td><td>-21155-</td><td>2600-2</td></t<>                                                                                                                                                                                                                                                                           | 51.192           | 5.156          | 13-673          | -21155-      | 2600-2     |
| T         (MU0-H00)/RT         H-H00         CP         S0           100 $-14.766$ $0.497$ $4.976$ $34.310$ 2000 $-14.766$ $0.497$ $4.976$ $34.310$ 2000 $-17.513$ $1.493$ $5.017$ $39.776$ 3000 $-17.513$ $1.493$ $5.017$ $39.776$ 3000 $-17.513$ $1.493$ $5.017$ $39.776$ $3000$ $-17.513$ $1.493$ $5.017$ $39.776$ $4000$ $-18.757$ $2.517$ $5.238$ $42.338$ $5000$ $-18.757$ $2.517$ $5.334$ $42.332$ $5000$ $-19.261$ $3.543$ $5.334$ $42.338$ $700$ $-19.256$ $3.543$ $5.334$ $42.338$ $700$ $-10.220.001$ $4.125$ $5.446$ $45.544$ $700$ $-20.601$ $4.659$ $46.117$ $11400$ $1000$ $-21.064$ $6.299$ $5.443$ $46.117$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50-779           | 5-179          | 12.634          |              | 2400-      |
| T       (MU0-H00)/RT       H-H00       CP       S0         100       -14.766       0.497       4.9763       34.310         2000       -16.4766       0.497       4.9763       34.310         2000       -16.498       0.497       4.9763       34.310         2000       -17.513       1.493       5.017       39.776         3000       -17.513       1.493       5.017       39.776         4000       -18.234       1.999       41.232       39.776         5000       -18.757       2.517       5.334       42.388         5000       -19.261       3.543       5.120       41.232         5000       -19.2561       3.543       5.334       42.338         700       -20.011       4.125       5.334       43.34         800       -20.011       4.6569       5.446       45.544         9000       -20.584       5.213       5.446       45.544         10000       -21.054       6.299       5.445       46.117         1400       -21.472       7.377       5.319       46.117         1400       -21.472       7.377       5.319       46.117                                                                                                                                                                                                                                                                                                                                                                 | 50.327           | 5.205          | 10,000          | -22.419      | • 0 0 0 0  |
| T       (MU0-H00)/RT       H-H00       CP       S0         100       -14.766       0.497       4.976       34.310         2000       -16.4766       0.497       4.976       34.310         2000       -16.498       0.497       4.976       34.310         2000       -17.513       1.493       5.017       39.776         3000       -17.513       1.493       5.017       39.776         3000       -18.234       1.999       41.232       39.776         4000       -18.234       1.999       5.120       41.232         5000       -19.2561       3.543       5.334       42.338         5000       -19.2561       3.543       5.334       42.338         7000       -19.2561       3.543       5.334       42.338         7000       -19.2561       3.543       5.334       44.177         8000       -20.501       4.125       5.446       45.544         8000       -21.064       6.299       5.443       46.117         1200       -21.472       7.377       5.365       46.117         1400       -21.472       7.445       5.365       46.117 <td< td=""><td>C12.94</td><td>0/2.6</td><td>365<b>*</b>6</td><td>-22.139</td><td>1900</td></td<>                                                                                                                                                                                                                                                               | C12.94           | 0/2.6          | 365 <b>*</b> 6  | -22.139      | 1900       |
| T         (MU0-H00)/RT         H-H00         CP         S0           100         -14.766         0.497         A.972         34.310           200         -16.4766         0.497         A.972         37.754           200         -17.513         1.493         5.017         39.776           200         -17.513         1.493         5.017         39.776           300         -17.513         1.493         5.017         39.776           400         -18.234         1.999         4.123         39.776           500         -18.234         1.999         5.120         41.232           500         -18.757         2.517         5.238         42.388           500         -19.261         3.543         5.334         42.338           700         -19.251         3.543         5.334         42.338           700         -19.256         3.543         5.436         45.544           800         -20.501         4.125         5.445         45.544           900         -21.064         6.299         5.445         45.117           1200         -21.064         6.299         5.411         45.107                                                                                                                                                                                                                                                                                             | 48,651           | 5.319          | 1,445           | -21.826      | 1600.      |
| T         (MU0-H00)/RT         H-H00         CP         S0           100         -14.766         0.497         A.972         34.310           200         -16.766         0.497         A.972         37.754           200         -17.513         1.493         5.017         39.776           200         -17.513         1.493         5.017         39.776           300         -17.513         1.493         5.017         39.776           400         -18.234         1.999         4.123         39.776           500         -18.234         1.999         5.120         41.232           500         -18.757         2.517         5.238         42.338           500         -18.757         2.517         5.238         42.336           500         -19.656         3.546         5.334         43.352           700         -20.501         4.659         5.446         45.548           800         -20.508         5.213         5.445         45.544           900         -21.064         5.213         5.445         45.544           900         -21.064         5.213         5.445         45.107                                                                                                                                                                                                                                                                                               | 47.938           | 5.365          | 7.377           | -21.472      | 1400+      |
| T         (MU0-H00)/RT         H-H00         CP         S0           100         -14.766         0.497         34.310         34.310           200         -16.766         0.497         4.972         37.754           200         -17.513         1.493         5.017         39.776           300         -17.513         1.493         5.017         39.776           300         -17.513         1.493         5.017         39.776           300         -18.234         1.9999         4.972         39.776           400         -18.234         1.9999         5.120         41.232           500         -18.777         2.517         5.238         42.338           600         -18.777         3.646         5.334         43.352           700         -19.656         3.543         5.334         42.335           700         -20.501         4.659         5.446         45.549           90.01         -20.584         5.213         5.445         46.117                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.107           | 5.411          | 6•239           | -21.064      | 1200.      |
| T         (MU0-H00)/RT         H-H00         CP         S0           100         -14.766         0.497         A.972         34.310           200         -14.766         0.497         4.972         34.310           200         -17.513         1.493         5.017         39.776           300         -17.513         1.493         5.017         39.776           400         -18.234         1.999         5.017         39.776           500         -18.234         1.999         5.017         39.776           500         -18.234         1.999         5.120         41.232           500         -18.234         1.999         5.120         41.232           500         -19.261         3.543         5.334         43.352           700         -19.2656         3.5543         5.334         43.352           700         -20.465         5.446         44.903         5.446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.117           | 5.443          | 5.213           | -20.584      | • C 0 0 1  |
| T         (MU0-H00)/RT         H-H00         CP         S0           100.         -14.766         0.497         4.972         34.310           200.         -16.766         0.994         4.972         37.754           200.         -17.513         1.493         5.017         39.776           300.         -17.513         1.493         5.017         39.776           400.         -18.234         1.999         5.017         39.776           400.         -18.234         1.999         5.017         39.776           500.         -118.234         1.9999         5.120         41.232           500.         -18.777         2.517         5.238         42.333           500.         -19.6556         3.543         5.334         42.353           700.         -19.6556         3.543         5.434         44.903           700.         -21.0.701         4.125         5.434         44.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.544           | 5.446          | 4.659           | -20.368      | •006       |
| T         (MU0-H00)/RT         H-H00         CP         S0           100.         -14.766         0.497         4.963         34.310           200.         -14.766         0.497         4.963         34.310           200.         -16.498         0.493         5.017         39.776           300.         -17.513         1.4933         5.017         39.776           300.         -17.513         1.9999         5.017         39.776           300.         -17.513         1.9999         5.017         39.776           300.         -17.513         1.9999         5.017         39.776           400.         -18.234         1.9999         5.238         42.338           500.         -19.261         3.646         5.334         43.352           500.         -19.261         3.545         5.339         44.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.903           | 5.434          | 4.125           | -20.001      | 8008       |
| T         (MU0-H00)/RT         H-H00         CP         S0           100.         -14.766         0.497         4.969         34.310           200.         -14.766         0.497         4.969         34.310           200.         -14.766         0.497         4.969         34.310           200.         -17.513         1.4933         5.017         39.776           300.         -17.513         1.9999         5.017         39.776           4000.         -18.234         1.9999         5.238         42.338           5000.         -19.261         3.046         5.238         42.3352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.179           | 5+399          | 3.543           | -19.656      | 700+       |
| T         (MU0-H00)/RT         H-H00         CP         S0           100.         -14.766         0.497         4.963         34.310           200.         -14.766         0.497         4.963         34.310           200.         -16.498         0.493         5.017         39.7764           300.         -17.513         1.4933         5.017         39.7754           400.         -18.234         1.9999         5.120         41.272           500.         -18.777         2.517         5.238         42.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.352           | 5.334          | 3.046           | -19-261      | 600.       |
| T         (MU0-H00)/RT         H-H00         CP         S0           100.         -14.766         0.497         4.963         34.310           200.         -14.766         0.497         4.963         34.310           200.         -16.428         0.497         4.963         34.310           200.         -16.428         0.493         5.017         39.7754           300.         -17.513         1.493         5.017         39.7754           400.         -18.234         1.999         5.120         41.6232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.388           | 5.238          | 2.517           | -18.797      | 500.       |
| T         (MU0-H00)/RT         H-H00         CP         S0           100.         -14.766         0.497         4.963         34.310           200.         -16.408         0.493         4.963         34.310           200.         -16.408         0.9944         4.972         37.75           300.         -17.513         1.493         5.017         39.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.232           | 5.120          | 1.999           | -18.234      | 400.       |
| T (MU0-H00)/RT H-H00 CP 50<br>KCAL/MOLE CAL/MOLE-DEG CAL/MOLE-DEG<br>10014.766 0.497 4.963 34.310<br>20016.498 0.994 4.972 37.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39.776           | 5+017          | 1.493           | -17.513      | 300        |
| T (MUD-HOD)/RT H-HOO CP SO<br>KCAL/MOLE CAL/MDLE-DEG CAL/MOLE-DEG<br>10014.766 0.497 4.969 34.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.754           | 4.972          | 0.994           | -16.498      | 200.       |
| T (MUD-HOO)/RT H-HOO CP CP SO<br>Kraitwore raitwore-raitwore-daitwore-deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.310           | 4-968          | 0.497           | -14-766      | 100.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | CP<br>CP<br>CP | 00H-H           | (MU0-H00)/RT | <b>H</b> - |

ł.

1.1.4

. . . .

•

456.910 KCAL/MOLE) FJ~1RE 39 53 00= THERMAL PROPERTIES OF HEB

# 

۰.

| -      | ( MU0-H00)/RT | 00H-H      | 9            | SO           |
|--------|---------------|------------|--------------|--------------|
|        |               | K CAL/MDLE | CAL/MOLE-DEG | CAL/MOLE-DEG |
| 100.   | -11-027       | 0.497      | 4.968        | 26.881       |
| 200.   | -12.760       | 0.994      | 4.968        | 30.324       |
| 900    | -1:+773       | 1.490      | 4.968        | 32.539       |
| 400+   | E67.41-       | 1•987      | 4.968        | 33.768       |
| 500.   | -15,051       | 2.484      | 4.968        | 34.876       |
| 600.   | -15.506       | 2,981      | 4.968        | 35+782       |
| 700.   | -15+892       | 3.478      | 4.969        | 36.548       |
| 800.   | -16.226       | 3•974      | 4.968        | 37.211       |
| •006   | -16.520       | 4.471      | 4.968        | 37.797       |
| 1000   | -16.783       | 4.968      | 4,968        | 38,320       |
| 1200.  | -17.239       | 5•962      | 4.968        | 39.226       |
| 1400.  | -17.625       | 6.955      | 4.968        | 39,992       |
| 1600.  | -17-958       | 7.949      | 4 • 968      | 40.655       |
| 1800.  | -18.253       | 8.942      | 4,968        | 41.240       |
| 2003-  | -18-516       | 9*936      | 4.968        | 41.764       |
| 2200.  | -18.755       | 10.930     | 4.968        | 42.237       |
| 2400.  | -18-972       | 11-923     | 4.968        | 42.669       |
| 2600.  | -19.172       | 12.917     | 4.968        | 43.067       |
| 2800.  | -19.357       | 13.910     | 4.968        | 43.435       |
| 3000   | -19-530       | 14.904     | 4.968        | 43.778       |
| 3500.  | -19-915       | 17.388     | 4.968        | 44°244       |
| 4000-  | -20.249       | 19.872     | 4.968        | 45.207       |
| 4500.  | -20.544       | 22+356     | 4,968        | 45.792       |
| 5000.  | -20.867       | 24.840     | 4.968        | 46.316       |
| 5500.  | -21.045       | 27.324     | 4.968        | 46.789       |
| 6000.  | -21.263       | 29.808     | 4.968        | 47.221       |
| 6500.  | -21.463       | 32•292     | 4.968        | 47.619       |
| 1000.  | -21.648       | 34.776     | 4.968        | 47.987       |
| 7500.  | -21.821       | 37+260     | 4.968        | 48.330       |
| 3000   | -21.982       | 39.744     | 4,968        | 48.651       |
| e 500. | -22 + 1 34    | 42+228     | 4.968        | 48.952       |
| 9000   | -22.276       | 44.712     | 4.958        | 49.236       |
| 9530.  | -22+412       | 47.196     | 4,968        | 49.504       |
| 10000. | -22+540       | 49.680     | 4.968        | 49.759       |
| 11000. | -22.778       | 54.648     | 4.968        | 50.233       |
| 12000. | -22.996       | 59.616     | 4,968        | 50.665       |
| 13000. | -23,196       | 64.584     | 4,963        | 51.063       |
| 14000. | -23.381       | 69.552     | 4.968        | 51.431       |
| 15000. | - 23, 554     | 74.520     | 4,968        | 51.774       |
| 16000. | -23.715       | 79.458     | 4.968        | 52.094       |
| 17000. | -23,866       | . 84.456   | 4.968        | 52.395       |
| 18030. | -24.009       | 89.424     | 4.968        | 52.679       |
| 19000. | -24.144       | 91.392     | 4.968        | 52.948       |
| -00002 | -24.273       | 9. • 360   | 4.968        | 53.203       |
| 22000. | -24.511       | 109.296    | 4.968        | 53.676       |
| 24000. | -24.729       | 119•232    | 4.968        | 54.109       |
| 25000. | -24.929       | 129.168    | 4.968        | 54.506       |
| 29000. | -25.114       | 139.104    | 4.968        | 54.874       |
| 30000  | -25.286       | 149.040    | 4.968        | 55.217       |

,

ş

1

•

•

\$ ....

<

÷

. . . . . . . . . .

:

. . .. / .. .

-

• • • • •

## 

١

ì

, ,

475+260 KCAL/MOLE)

че 40 00=

| СР 50         | EG CAL/MOLE-DEG | 68 24.698 | 58 28.141 | 68 30.155 | 58 31.585 | 68 32,693 | 68 33.509 | COC • • · · · · · · · · · · · · · · · · · | 35.028  | 35.613  | 68 36.137 | 68 37.043 | 68 37.808 | 68 38.472 | 69 39-057 | 69 39.580     | 6A 40.054 | 68 40.486 | 68 40.884 | 68 41.252 | 68 41.595 | 68 42.361 | 68 43.024 | 68 43+609 | 68 44.132 | 68 44.606 | 68 45°C38 | 68 45.436 | 168 45.R04    | 46.147  | 46.467  | 46.769         | 168 47.053 | 68 47•321 | 168 47,576 | 168 48•050 | 68 48.482 | 168 48•879 | 169 49•24B | 168 49•59C | 110 49.011 | 50.212  | 368 50 <b>.</b> 496 | 968 50.765 | 358 51•020    | 96A 51.493 | 968 51.925 |       | 968 52•323 |
|---------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------------------------------|---------|---------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|---------|---------|----------------|------------|-----------|------------|------------|-----------|------------|------------|------------|------------|---------|---------------------|------------|---------------|------------|------------|-------|------------|
| с<br>С        | E CAL./MOLE-DE  | 7 4.96    | 4.95      | 0 V V     | 7 4.96    | 4 4.96    | 1 4.9(    | 8 4.90                                    | 4 4.9(  | 1 4.9(  | 8 4.91    | 2 4.90    | 5 4.9(    | 9 4.91    | 2 4.91    | 6 <b>4</b> .9 | 0 V 0     | 3 4.9     | 7 4.9     | 0 4.9     | 4 4.9     | 8 4.9     | 2 4.9     | 6 4.9     | 0 4.9     | 4 4.9     | 8 4.9     | 2 4.9     | 6 <b>4</b> .9 | 0 4.9   | A 4.9   | 8              | ک<br>4     | 6 4.9     | 0 4.9      | 8 4.9      | 6 4.9     | 4 4.9      | 2 4.9      | 0          | 8 4.9      | 6 4.9   | 4 4.9               | 2 4.9      | 0.4.9         | 16 4.9     | 12 4.9     | 0.00  |            |
| H-HCC         | K C AL/MDLE     | C • 497   | 0.994     | 1.490     | 1.987     | 2.484     | 2+981     | 3• 4 78                                   | 3.974   | 4 • 471 | 4.96      | 5° 305    | 6.955     | 7.949     | 8.942     | 9646          | 10+93     | 11.92     | 12.91     | 13.91(    | 14.90     | 17.38     | 19-87     | 22+35(    | 24.84(    | 27.32     | 29.80I    | 32+29     | 34.77         | 37+26   | 39+74   | 42+22          | 44.71      | 47.19     | 49-68      | 54.64      | 59.61     | 64.58      | 69•55      | 74.52      | 79.48      | 84.45   | 89.42               | 94.39      | <b>66</b> *36 | 109.29     | 119-23     |       | 01.421     |
| ( MU0-H00)/RT |                 | -9-928    | -11.661   | -12.675   | -13,394   | -13.952   | -14.409   | -14.793                                   | -15.127 | -15.421 | -15.685   | -16.141   | -16.526   | -16.860   | -17.154   | -17.418       | -17.656   | -17.873   | -18.074   | -18.259   | -18.431   | -18.817   | -19.151   | -19.445   | -13.708   | -19.947   | -20.164   | -20.364   | -20.550       | -20.722 | -20.883 | -21.035        | -21.173    | -21.313   | -21.441    | -21.683    | -21.897   | -22.097    | -22.282    | -22.455    | -22.016    | -22.768 | -22.911             | -23.046    | -23.174       | -23.412    | -23.630    |       | -23.833    |
| -             |                 | 100.      | 200.      | 300.      | 400.      | 500+      | 600.      | -002                                      | RC 0 -  | 90.0    | 1000.     | 1200-     | 1400.     | 1600.     | 1 80 0 .  | 2003.         | 2200.     | 2403.     | 2600.     | 2800.     | 3000      | 3500.     | 4000      | 4500.     | 5000.     | 5500.     | 6009      | 6500.     | 7000.         | 7500.   | 8000    | 850 <b>0</b> . | 9000       | 9500.     | 10003.     | 11000.     | 12000.    | 13000      | 14000.     | 15000.     | 16000.     | 17000.  | 18020.              | .00091     | 20000         | .0000      | 24000-     | 26111 |            |

## ORIGINAL PAGE IN OF POOR QUALITY

ì

ţ

5

;

۰.

-112-

## FIGURE 41 Thermal Properties of Here (Hoo= 511,720 Keal/Mole)

1

•

.

ς.

٩

Ŧ

١

1

i

# 

| 80.010    | 8.941            | 265.974    | -35,801             | 30000  |
|-----------|------------------|------------|---------------------|--------|
| E6E 64    | 8.941            | 246-092    |                     | 28030. |
| 78.015    | 8.941            | 212.327    | -34-807             | 24003  |
| 77.237    | 8.341            | 194.446    | -34.419             | 22000. |
| 76.385    | 9494             | 176-565    | -33,996             | 20000. |
| 75.926    | 8.940            | 167.625    | -33,769             | 1 9000 |
| 75.443    | 8.947            | 158.686    | -33+528             | 19000. |
| 74.032    | 8.939            | 149.746    | -33.275             | 17000. |
| 74.390    | 8.939            | 140.807    | -33,006             | 16000. |
| 73.813    | 8.938            | 131.869    | -32.720             | 15000. |
| 73.196    | 8.938            | 122.930    | -22.415             | 14000. |
| 72.534    | 8.937            | 113.993    | -32.098             | 13009. |
| 71.819    | 8,936            | 105.056    | -31.735             | 12000. |
| 71.041    | 8,935            | 96.121     | -31.352             | 11000. |
| 70.190    | 8,933            | 87.187     | -30.933             | 10000. |
| 69.731    | 8, 032           | 82.720     | -30.709             | 9500.  |
| 69.249    | 8.931            | 78.254     | -30.472             | •0006  |
| 68.738    | 8.930            | 73.789     | -30.222             | 8530.  |
| 68 197    | 8.928            | 69.325     | -29.957             | 8000.  |
| 67.621    | 9.926            | 64.861     | -29.676             | 7500-  |
| 500°29    | 8.924            | 50°-398    | -29.376             | 1000   |
| 65.630    | 8.917            | 51.478     | -24.709             | 6000.  |
| 64 • 85 4 | 8,913            | 47.020     | •334                | 5520.  |
| 64.005    | 8,906            | 42+565     | 520                 | 5000.  |
| 63.067    | 86888            | 38.114     | -2- 474             | 4500.  |
| 62.019    | 8.537            | 33.668     | -26.974             | 4000 . |
| 458-09    | 8.870            | 29+228     | -26.411             | 3503.  |
| 59.468    | 8.844            | 24.799     | -75.766             | •000E  |
| 58.859    | 8.830            | 23.032     | -25.480             | 2800.  |
| 58 205    | 6.813            | 21.267     | -25.174             | 2600.  |
| 57-500    | 8.792            | 19.507     | 12 4 1 4 C -        | 2400   |
| 56.736    | 8.765            | 17.751     | -24.491             | 2200.  |
|           |                  |            |                     |        |
| 206°00    | 270.00<br>270.00 | 14-260     | 513157-<br>5197555- | -000-1 |
| 52.820    | 8.537            | 10.812     | -22.694             | 1400.  |
| 51.513    | 8.415            | 9.116      | -22+100             | 1200.  |
| 49.995    | 8.237            | 0~ + + 1   | -21.410             | 1000.  |
| 49+133    | R.115            | 6.632      | -21.017             | •006   |
| 48.105    | 7.972            | 5+827      | -20.582             | 800.   |
| 47.132    | 7.797            | 5.033      | -20.096             | 70.0.  |
| 45.946    | 7.591            | 4.269      | -19-541             | 6009   |
| 44.583    | 7.365            | 3.521      | -18.892             | 500.   |
| 42 765    | 7.151            | 2.705      | -18.104             | •004   |
| A 7 - 932 | 7.004            | 2.088      | -17.095             | 300    |
| 38+135    | 6.937            | 162.1      | -15.675             | 200.   |
| 33.284    | 6.955            | 0.696      | -13.249             | 100.   |
|           | CAL/MOLE-DEG     | K LALZMOLE |                     | -      |
| CV        | ú                | 00H-H      | (MUG-HOO)/RT        | •      |

ŧ

•

1

1

ŗ

| <b>SO</b>    | CAL/MOLE-DEG | 106*70<br>044 0F | 51790C  | 43.628  | 45.233  | 46.583  | 47.756  | 48.798  | 49.736  | 50,591  | 52.098  | 23.347  | 54.537  | 55.553  | 56.467  | 57.299    |        | 50.417  | 60.025  | 61.389  | 62.574  | 63.620  | 64.558  | 65.406  | 66.182  | 66.895  | 67.557  | 08.172<br>68.748    | 69.289  | 69.ROC  | 70.283  | 70.741  | 71.592  | 72,370  | 73-747  | 74.354  | 74.941  | 75.482  | 75.993  | 76.477  | 76.935  | 77.787  | 78,565  | 79.281  |  |
|--------------|--------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|
| 0            | CAL/MOLE-DEG | CCV 40           | 0.000   | 7.108   | 7.298   | 7.511   | 7.714   | 7.892   | 8+043   | 8.169   | 8.359   | 8.491   | 0.585   | 8.653   | 8•704   | 8.743     | 00110  | 8.816   | 8 832   | 8.961   | 8.879   | 8.892   | B. 902  | 8.909   | 8.914   | 5.918   | 8.922   | 8,026               | 8.928   | 8.930   | 8.931   | 8•932   | 8+934   | 8.935   | 8.937   | 8.938   | 8.938   | 6E ó 30 | 8,939   | 8+940   | 8.940   | 8,940   | 8.94]   | 8,941   |  |
| 00H-H        | KCAL/MULE    | 0.040            | 2.088   | 2.792   | 3.512   | 4.252   | 5.014   | 5.794   | 6.591   | 7.402   | 9.056   | 10.742  | 12.450  | 14.174  | 016.51  | 17+055    | 104401 | 22.925  | 24.690  | 29.114  | 33.549  | 37.992  | 42.441  | 46.893  | 51.349  | 55.807  | 60.267  | 64•129<br>60-101    | 73.655  | 78.120  | 82+585  | 87.051  | 95.994  | 113.850 | 122.791 | 131.728 | 140.667 | 149.605 | 158.544 | 167.484 | 176.423 | 194.303 | 212.184 | 230.066 |  |
| (MUD-HOO)/RT | 903-51-      |                  | -17.433 | -19.442 | -19.228 | -19.875 | -20.428 | -20.911 | -21+343 | -21.733 | -22.419 | -23+000 | -23.529 | -23-993 | -24.412 | 66/•62-   |        | -25.779 | -26.064 | -26.705 | -27.268 | -27.766 | -28.215 | -28.623 | -28.957 | -29-343 | -29,663 | 500-62-<br>- 30-243 | -30.507 | -30.757 | -30+995 | -31.218 | -31.636 | -32.018 | -32.697 | -33+002 | -33.287 | -33-556 | -33.809 | -34.049 | -34.276 | -34.700 | -35.087 | -35-443 |  |
| *            |              |                  | 30.0    | 40.0.   | 500.    | 6000    | 700.    | 800.    | •C06    | 1000    | 1200.   | 1400+   | 1500.   | 1800.   | 2000    | • 0 0 7 N | 2630.  | 2800.   | -000E   | 3500.   | 4000.   | 4500.   | 5000.   | 5500.   | 60000   | 6500.   | 7000.   | ACCO.               | 8500.   | •0006   | 9500.   | •000    | 1000.   | •000E   | 4000.   | 5000.   | 6000.   | 70. 3.  | 8000°   | •0006   | .0000   | 2000.   | 4000.   | .6000.  |  |

. . . .

1 1

ì

ŧ

· 1

413-650 KCAL/MDLE)

ЕТ~11RE 42 2 00=

THERMAL PROPERTIES OF HE2

•

,

DE POOR QUALITY

í

•

ì

2 1 V V

\* 11. \*

389.950 KCAL/MOLE) FIGURE 43 Thermal properties of COC (H00=

Ţ

1

1

ţ

1

----\*\*PHYSICAL \*\*\*\*\*\*\*\*\*\*\*

| ⊢  | (MU0-H00)/RT | 00H-H     | CP           | 50             | (MU0-H00)/RT | 001-1     | 9            | 50           |
|----|--------------|-----------|--------------|----------------|--------------|-----------|--------------|--------------|
|    |              | KCAL/MOLE | CAL/MOLE-Drg | CAL/MOLE-DEG   |              | KCAL/MOLF | CAL/MOLE-DEG | CAL/MOLE-DEG |
| •  | -17.104      | 0.696     | 6.955        | 40 • 945       | -16.915      | 0.599     | 7.026        | 40.598       |
| •  | -19-530      | 1•391     | 6.955        | 45.766         | -19.357      | 1.405     | 7.105        | 45.493       |
| •  | -20.950      | 2.087     | 6•961        | 48.587         | -20.795      | 2.120     | 7.158        | 46.393       |
| •  | -21.957      | 2+785     | 2:00         | 50.594         | -21.821      | 2.843     | 7.267        | 50.469       |
| •  | -22.739      | 3.489     | 7.102        | 52.166         | -22.621      | 3+573     | 7 . 345      | 52.099       |
| •  | -23,381      | 4.207     | 7.24B        | 53.473         | -23.278      | 4.312     | 7.422        | 53.445       |
| •  | -23.926      | 4.940     | 7.415        | 54.603         | -23+837      | 5.058     | 7.497        | 54.594       |
| •  | -24.402      | 5.690     | 7.583        | 55.604         | -24.324      | 5.811     | 7.571        | 55.600       |
| •  | -24.826      | 6.456     | 7.740        | 56.507         | -24.756      | 6.572     | 7.544        | 56.495       |
|    | -25+209      | 7.237     | 7.881        | 57.330         | -25.144      | 7.340     | 7.717        | 57.306       |
|    | -25.877      | 8.837     | 8.111        | 58.7AB         | +25+820      | 5.937     | 7.859        | 59.725       |
|    | -26.453      | 10.478    | A-283        | 60.052         | -26.398      | 10.493    | 7.005        | 59.947       |
|    | -26.960      | 12.148    | 8.410        | 61.156         | -26.904      | 12.095    | 8.129        | 61.023       |
|    | -27.412      | 13.840    | 8.506        | 62.163         | -27-354      | 13.734    | A. 259       | 5.0.985      |
|    | -27.822      | 15.549    | 8.580        | 63+063         | -27.760      | 15.399    | 8,386        | 62.865       |
|    | -28.197      | 17.271    | 8.637        | 63.884         | -28.131      | 17.089    | 8.511        | 63.670       |
|    | -28,542      | 19.003    | 8.684        | 64+637         | -28.473      | 18.603    | 8.633        | 64.415       |
|    | -28.852      | 20.744    | R. 723       | 65.334         | -24.790      | 20.541    | 6 . 752      | 65.112       |
|    | -29.161      | 22.492    | 9, 757       | 65+981         | -29.086      | 22.304    | 8. 670       | 65.764       |
|    | -29.441      | 24.246    | 9.739        | 66 • 587       | -29.363      | 24.089    | 6.986        | 66. 187      |
|    | -30.072      | 28.651    | A.872        | 67.948         | -29.992      | 28.653    | 9.270        | 67.787       |
| ۰. | -30+625      | 33.121    | 8+971        | 69.13a         | -30.547      | 33, 359   | 9.550        | 69.043       |
|    | -31.118      | 37+636    | Eru *6       | 70.202         | -31+046      | 38.204    | 9.632        | 70 - 1 64    |
|    | -31.564      | 42.218    | 0,238        | 71.167         | -31+500      | 43+191    | 10.120       | 71.235       |
|    | -31.971      | 46.876    | 9•398        | 72.055         | -31.018      | 44.325    | 10.420       | 72.213       |
|    | -32+346      | 51.616    | 9•564        | 72.8AO         | -32+305      | 53.614    | 10.737       | 73+133       |
|    | -32.694      | 56.440    | 9.729        | 73.652         | -32.669      | 59.066    | 11.077       | 74.006       |
|    | -33.019      | 61.344    | 9.885        | 74.379         | -33.010      | 64.696    | 11.447       | 74.840       |
|    | -33.325      | 66.323    | 10.029       | 75.066         | 400-00-      | 70.519    | 11.452       | 75.644       |
|    | -33+613      | 71.371    | 10.158       | 75.717         | -33.642      | 76.554    | 12.299       | 76.423       |
|    | -33.886      | 76.478    | 10.269       | 76.337         | 926*22       | 82.825    | 12.794       | 77.183       |
|    | -34.146      | 81.636    | 10.362       | 76.926         | -34.219      | 89.358    | 13+3+8       | 77.929       |
|    | -34°394      | 86.837    | 10.438       | 77.489         | -34.492      | 96.1.81   | 13,958       | 78.667       |
|    | 134.631      | 92.072    | 10.499       | 78.026         | -34.756      | 103+328   | 14.641       | 79.400       |
|    | -35.075      | 102.615   | 10.573       | 79.030         | -35.262      | 118.744   | 16.247       | 808°38       |
|    | -35+483      | 113+213   | 10.611       | 79+953         | -35.746      | 135+944   | 1 8 . 222    | 82+354       |
|    | -35,868      | 123.326   | 10.611       | B0+802         | -36.215      | 155.333   | 20.634       | 83.914       |
| _  | -36+225      | 134.427   | 10.586       | <u> 91.588</u> | -36.673      | 177.380   | 23.550       | 85 • 54 7    |
|    | -36+559      | 144.993   | 10.545       | 82.317         | 37.127       | 202+625   | 27.042       | R7.287       |
|    | -36.874      | 155+513   | 10.493       | 82.996         | -37.581      | 231.682   | 31.186       | A9.161       |
|    | -37.171      | 165.977   | 10.435       | 83•630         | - 38 • 0 39  | 265.240   | 36+058       | ¥61°16       |
|    | -37+453      | 176.382   | 10.373       | 84.225         | -38-506      | 304.069   | 41.742       | 93.412       |
|    | -37.720      | 186.724   | 10.310       | 84.784         | -385°88-     | 349.023   | 49.321       | 95.841       |
|    | -37.974      | 197.003   | 10.248       | 85.311         | -39.480      | 401.040   | 55.884       | 98.507       |
|    | -38+447      | 217.377   | 10.127       | 86+282         | 405-04-      | 530.472   | 74.328       | 104.561      |
|    | -38.8P0      | 237+519   | 10.015       | A7.159         | -41+595      | 701.731   | 97 . RA3     | 112.097      |
|    | -39.279      | 257.448   | 919.915      | 87.956         | -42.996      | 925.769   | 127.249      | 121-048      |
|    | -39.648      | 2-7.187   | 9.825        | <u>8</u> 8.698 | E94.441      | 1215+233  | 153.418      | 1 31 • 757   |
|    | .00*00-      | 296.756   | 9.745        | 89.363         | -46.126      | 1584.565  | 297.275      | 144.480      |

¥

;

.

ŗ

•

÷

ç •

-

;

• • • • •

1

;;

;

i

1 1

# 

| -      | ( MU0-H00)/RT | 001-1         | e<br>D       | SO           |
|--------|---------------|---------------|--------------|--------------|
|        |               | KCAL/MOLE     | CAL/MOLE-DEG | CAL/MOLE-DFG |
| 100.   | -15.171       | 0.497         | 4.968        | 35.116       |
| 200    | -16-904       | 0.994         | 4.958        | 38.559       |
| 300    | -17.918       | 1.490         | 4.968        | 40.574       |
| +00+   | -18+637       | 1.987         | 4,968        | 42.003       |
| 500.   | -19.195       | 2.484         | 4.968        | 43.111       |
| 600.   | -19.650       | 2.981         | 4.968        | 44.017       |
| -002   | -20.036       | 3.478         | 4.968        | 44.783       |
| 800.   | -20.370       | 3.974         | 4.968        | 45.446       |
| -006   | -20.664       | 4.471         | 4.968        | 46.032       |
| 1000   | -20.927       | <b>4</b> .965 | 4 • 968      | 46.555       |
| 1200.  | -21.383       | 5.962         | 4.968        | 47.461       |
| 1400+  | -21.769       | 6.955         | 4 • 968      | 48.227       |
| 1600.  | -22.102       | 7.949         | 4 • 968      | 48.890       |
| 1800.  | -22.397       | 8.942         | 4.968        | 19.475       |
| 2000.  | -22.660       | 9°636         | 4.968        | 49.999       |
| 2200.  | -22.899       | 10.930        | 4.968        | 50.472       |
| 2400-  | -23.116       | 11.923        | 4 • 968      | 50.904       |
| 2630.  | -23.316       | 12.917        | 4.958        | 51+302       |
| 2800.  | -23.501       | 13.910        | 4.968        | 51.670       |
| 3000.  | -23.674       | 14.904        | 4.968        | 52.013       |
| 3500.  | -24.059       | 17.398        | 4.968        | 52.779       |
| 4000.  | -24.393       | 19.872        | 4 • 968      | 53.442       |
| 4500.  | -24.688       | 22.356        | 4.968        | 54.027       |
| 5000   | -24,951       | 24.840        | 4.968        | 54.551       |
| 5500.  | -25.189       | 27.324        | 4.968        | 55.024       |
| 6000.  | -25.407       | 29.808        | 4 • 968      | 55.456       |
| 6500.  | -25.607       | 32.292        | 4.968        | 55.654       |
| 7000.  | -25.792       | 34.776        | 4.968        | 56.222       |
| 7500.  | -25.965       | 37.260        | 4.968        | 56.565       |
| 8003.  | -26.126       | 39.744        | 4 • 968      | 56.886       |
| 8500.  | -26.278       | 42.228        | 4.968        | 57.187       |
| -0006  | -26.421       | 44.712        | 4.968        | 57.471       |
| 9500.  | -26.556       | 47.196        | 4+968        | 57.739       |
| 10000  | -26.684       | 49.680        | 4 • 968      | 57.994       |
| 11000. | -26.922       | 54.648        | 4 • 968      | 58.468       |
| 12000  | -27.140       | 59.616        | 4.968        | 58,900       |
| 13000  | -27.340       | 64.584        | 4.968        | 59•29B       |
| 14000. | -27+525       | 69.552        | 4 • 968      | 59.666       |
| 15000. | -27.598       | 74.520        | 4 • 968      | 60.009       |
| 16000. | -27.859       | 79.488        | 4 • 968      | 60.329       |
| 17000. | -28.010       | 84.456        | 4 • 968      | 60.630       |
| 18030. | -28.153       | 8°•424        | 4.968        | 60.914       |
| 19000. | -28.289       | 94.392        | 4 • 968      | 61.183       |
| 20000  | -28.417       | 99° 360       | 4 • 968      | 61.438       |
| 22000. | -28.655       | 109.296       | 4.968        | 61.911       |
| 24000. | -28.873       | 119.232       | 4 • 968      | 62,344       |
| 26000. | -29.073       | 129.168       | 4.968        | 62.741       |
| 28030. | -29.258       | 139.104       | 4.958        | 63.109       |
| 33000. | -29.430       | 149.040       | 4 • 968      | 63.452       |

`**†** ~

Í

FT^TRE 45 Thermal properties of AR\$ 00\* 267.970 Kcal/Mole)

. · ·

.

---

. . . .

, . ,

.

-

-

ď

.

\* \* \* \*

1 march

ļ

| ►            | (MUD-HOO)/RT | 00H-H                                   |         |          |
|--------------|--------------|-----------------------------------------|---------|----------|
|              |              |                                         |         |          |
| • • • • •    |              | 400 TO                                  | 840 V   |          |
|              | -17-018      | 1-490                                   | 4.958   | A0.57    |
|              |              | 1.087                                   | 890 V   | 00.4     |
| 2005         |              | 2 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 004 °   |          |
| \$00°        | -19-650      | 2.981                                   | 4.058   | 44.01    |
| 700.         | -20.036      | 3.478                                   | 4 . 958 | 64.79    |
| 80.0         | -20.370      | 3.974                                   | 4.968   | 45.44    |
| •006         | -20.664      | 4.471                                   | 4.968   | 46.03    |
| 1000         | -20.927      | 4.968                                   | 4.968   | 46.55    |
| 1200.        | -21+383      | 5.962                                   | 4.968   | 47.45    |
| 1 400 -      | -21.769      | 6.955                                   | 4.968   | A8.22    |
| 1600.        | -22.102      | 7.949                                   | 4.968   | 49.84    |
| 1830.        | -22.397      | 8° ù 45                                 | 4 . 968 | 49.47    |
| 2000.        | -22 • 660    | 9•936                                   | 4.968   | 40.00    |
| 2200.        | -22.899      | 10-930                                  | 4.968   | 50.47    |
| 2400.        | -23.116      | 11.923                                  | 4,968   | 20*05    |
| 2600.        | -23,316      | 12.917                                  | 4.968   | 51.30    |
| 2830.        | -23.501      | 13.910                                  | 4.968   | 51.67    |
| 3000°        | -23.674      | 14.904                                  | 4.968   | 52.01    |
| 4500.        | -24.059      | 17.388                                  | 4.968   | 52.77    |
| +000+        | -24.393      | 19.872                                  | 4.968   | 53.44    |
| <b>\$500</b> | -24.688      | 22.356                                  | 4.968   | 54.02    |
| 5000-        | -24.951      | 24.840                                  | 4.968   | 54.55    |
| 5500.        | -25.189      | 27.324                                  | 4.968   | 52 ° 05' |
| 60009        | -25.407      | 29. R08                                 | 4.968   | 55.450   |
| 6500.        | -25.607      | 32+292                                  | 4.968   | 55.85    |
| 7020.        | -25.792      | 34.776                                  | 4.968   | 56+22    |
| 7500.        | -25+965      | 37.260                                  | 4.968   | 56.56    |
| 8000.        | -26.126      | 39.744                                  | 4.968   | 56.89    |
| 8500.        | -26.278      | 42.228                                  | 4.968   | 57.18    |
| .0006        | -26.421      | 44.712                                  | 4.965   | 57.47    |
| 9500.        | -26.556      | 47.196                                  | 4 • 968 | 57.73    |
| 10000        | -26.684      | 49.680                                  | 4.968   | 51.99    |
| 11000.       | -26+922      | 54+648                                  | 4,968   | 58.461   |
| 12003.       | -27+140      | 59.616                                  | 4.968   | 28+90    |
| 13000.       | -27.340      | 64.584                                  | 4 • 968 | 50°591   |
| 14000+       | -27.525      | 69.552                                  | 4.968   | 59 • 66  |
| 15000.       | -27.698      | 74.520                                  | 4.968   | 60.00    |
| 16000.       | -27.859      | 79.498                                  | 4.968   | 60.32    |
| 17000-       | -28.010      | 84.456                                  | 4.968   | 60.63    |
| 18000.       | -28.153      | 89+424                                  | 4.968   | 09 09    |
| 19000.       | -28.289      | 94.392                                  | 4.968   | 61.18    |
| -00002       | -28.417      | 99.960                                  | 4.968   | 61.431   |
| 22000.       | -28.655      | 109.296                                 | 4,968   | 61.91    |
| 24000.       | -28.873      | 119•232                                 | 4.968   | 62+34    |
| 26000.       | -29+073      | 129.168                                 | 4.968   | 62.74    |
| 28000.       | -29.258      | 139+104                                 | 4.968   | 63.10    |
| 30000        | -29.430      | 149•040                                 | 4.968   | 63.45    |

## ORIGINAL PAGE E

Ż

 $\mathbb{C}^{\mathbf{N}}$ 

).

## FIGURE 46 Thermal properties of AR26 (H00= 337.040 KCAL/MOLE)

r t

\$

•

1

~

# ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

.

| F           | ( MUQ-H00)/RT | 00H-H     | ð            | 50           |
|-------------|---------------|-----------|--------------|--------------|
|             |               | KCAL/MOLE | CAL/MULE-DEG | CAL/MOLE-DEG |
| 100.        | -20.789       | C.801     | 8.737        | 49.326       |
| 200         | -23.661       | 1.685     | 8•889        | 55.445       |
| 300         | -25,398       | 2.576     | 916*6        | 59.056       |
| 400.        | -26.647       | 3.468     | 8.929        | 61.624       |
| 500.        | -27.624       | 4.361     | 4°E6*8       | 63.617       |
| 600.        | -28.426       | 5+255     | 926 936      | 65.246       |
| 70.0.       | -29.106       | 6•149     | 8.938        | 66.623       |
| +00A        | -29.697       | 7.042     | . 8+939      | 67.817       |
| •006        | -30.219       | 7.936     | 8.940        | 68.870       |
| 1000        | -30.687       | 8.830     | 8. 340       | 69.812       |
| 1200.       | -31.498       | 10.618    | 8•541        | 71.442       |
| 1400.       | -32+185       | 12.407    | 8•94)        | 72+820       |
| 1600.       | -32.781       | 14.195    | 8.942        | 74.014       |
| 1800.       | 100 ° 00 1    | 15.983    | 8,942        | 75.067       |
| 2000-       | -33.778       | 17.772    | 8.942        | 76.009       |
| 2200.       | -34°204       | 19.560    | 8,942        | 76.861       |
| 2400.       | -34°504       | 21.348    | 8,942        | 77.640       |
| 2600.       | -34.952       | 23.137    | 8.942        | 78.355       |
| 2900.       | -35.264       | 24.925    | 8,942        | 79.018       |
| 3000.       | -35+593       | 26.714    | 8.942        | 79.635       |
| 3500.       | -36.284       | 31.185    | 8,942        | 81.013       |
| 4000.       | -36.883       | 35+656    | 8.942        | 82.207       |
| 4500.       | -37.411       | 40.127    | 8,942        | 83.261       |
| 5000.       | -37.884       | 44.598    | 8,942        | 84.203       |
| 5507.       | -38,312       | 49.069    | 8,942        | A5.055       |
| 6003        | -38.703       | 53.540    | 8,942        | 85,833       |
| 6500.       | -39.062       | 58.012    | 8.942        | 86.549       |
| 7000.       | -39 395       | 62°483    | 8,942        | 87.212       |
| 7500.       | -39.705       | 66+954    | 8•942        | 87.829       |
| 8000.       | -39,995       | 71.425    | 8.942        | 88.406       |
| 8500.       | -40.267       | 75.896    | 8,942        | 894948       |
| <b>0006</b> | -40.524       | 80•368    | 8.942        | 89.459       |
| 9500.       | -40.767       | 84.839    | 8,942        | 89.943       |
| 10000       | -40.957       | 89.310    | 8,942        | 90 • 401     |
| 11000.      | -41.426       | 98.252    | 8,942        | 91.253       |
| 12000.      | -41.817       | 107.195   | 8,942        | 2E0°65       |
| 13000.      | -42.177       | 116.137   | 8+942        | 92.747       |
| 14000.      | -42.510       | 125.079   | 8.942        | 01t. EQ      |
| 15000.      | -42.820       | 134.022   | 8.942        | 64 · 22      |
| 16000.      | -43.110       | 142.964   | 8.942        | 44.004       |
| 17050.      | 880°D4-       | 151.907   | 8.942        | 95.:46       |
| 18000.      | -43.640       | 160.849   | 8,942        | 95 • An 7    |
| 19000.      | -43.883       | 169.791   | 8.942        | 96.141       |
| -ccocz      | -44.114       | 178.734   | 8.942        | 96.4670      |
| 22000.      | -44.542       | 196.619   | 8,942        | 97.452       |
| 24000.      | -44.934       | 214.503   | 8.042        | 98.230       |
| 26000.      | -45+24        | 232.348   | 8.942        | 38.946       |
| 23000.      | -43.627       | 250.273   | 8.942        | 99.608       |
| 30000       | -45.937       | 268.158   | 8,942        | 100.225      |

¥

•

ſ

ORIGINAL PAGE IN OF POOR QUALITY

TABLE VII

1

Ì

١

(ref. 10) Herzberg (ref. 11) 8 JANAF (ræf. 5) Herzberg (ref. 8 Reference 8 Reference 8 Reference 8 Reference 5 Predvodítelev ( Reference 10 Reference 10 Source Reference 10 Reference 10 Reference 8 Reference 8 ° S ოთთით Reference 5 Reference 8 Reference 8 Reference 8 Reference 8 Reference 8 Reference E Reference 1 Reference Reference Reference Reference Reference 0.0303 ..... 1111 14.059 12.071 13.19 16.53 16.35 Sex Carl 13.97 1580.246 1388.17 667.40 667.40 2349.16 SPECTROSCOPIC DATA FOR MOLECULES Be cm<sup>-1</sup> cm<sup>-1</sup> cm<sup>-1</sup> 2357.55 1903.60 2191.02 1859.87 2377.1 3 E 0.01984 0.01791 0.0158 0.0178 0.0202 0.02 0.39021 1.99825 1.7042 1.6722 1.445 2.002 1.932 N 2 N 2 н н 2 ь 0. 22.639 37.726 103.20 142.39 El kcal/mole 0 0.346 125.70 131.32 149.10 151.77 173.34 0. 25.89 72.797 184.75 0. 143.54 170.48 171.55 198.11 0. 558. 91206. 109760. 138860. 0. 166. 200. • State F.F.W.W. E WE W WW .н. 9 4. 54. WEWE WWFWE ×1/2 >5 XXKOUDW XABU XGDGW × X4 Q G G Species c02 + • • N2 + °3<sup>+</sup> N2 N 0Z 8

ł

.

ORIGINAL PAGE IS OF POOR QUALITY

1

• †

ì

ł

TABLE VII (CONCL'D)

SPECTROLCOPIC DATA FOR MOLECULES

| Source                   | Reference 5<br>Reference 8<br>Reference 8<br>Reference 8<br>Reference 8 | Reference 5<br>Reference 5<br>Reference 5<br>Reference 5<br>Reference 5<br>Reference 5<br>Reference 5<br>Reference 5 | Ginter (refs. 9, 12)           | Reference 9, 12 | Reference 8<br>Reference 8<br>Reference 8                                            | Teng and Conway (ref. 13) |
|--------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------|---------------------------|
| 4Je.ye<br>cm−1           | -                                                                       | 1                                                                                                                    |                                | 1               |                                                                                      | 1                         |
| ⊌exe<br>cm−1             | 13.453                                                                  | 13.114                                                                                                               | 35                             | 38,8            | 15,164                                                                               |                           |
| ی۔<br>دس <sup>1</sup> 1  | 2169.52                                                                 | 2068, 61                                                                                                             | 1698.5                         | 1809.9          | 2214.24                                                                              | 80.                       |
| کرو<br>دس <sup>-</sup> ا | 0.01746                                                                 | 0.0172                                                                                                               | 0.224                          | 0.243           | 0,01896                                                                              | 1                         |
| Be<br>cm <sup>-</sup> 1  | 1.9305                                                                  | 1.8989                                                                                                               | 7.211                          | 7.710           | 1.9772                                                                               | 0.174                     |
| D                        | Ч                                                                       | 1                                                                                                                    | 2                              | 2               | н                                                                                    | 7                         |
| El<br>kcal/mole          | 0.<br>139.20<br>159.83<br>178.12<br>186.055                             | 0.<br>26.069<br>73.759<br>154.263<br>168.57<br>170.64<br>174.23<br>185.22                                            | °0                             | **0             | 0.<br>59.278<br>131.166                                                              | ••                        |
| State                    | × を                                                                     | × 4 8 1 1 1 1 1                                                                                                      | ,× <sup>+</sup> ∑ <sup>+</sup> | a ³Σ"           | × <sup>2</sup> Σ <sup>+</sup><br>Α <sup>2</sup> Π;<br>13 <sup>2</sup> Σ <sup>+</sup> | 32°                       |
| Species                  | C                                                                       | х<br>О                                                                                                               | He2 +                          | He 2            | +<br>00                                                                              | Ar2 <sup>+</sup>          |

\*The excitation energy of the a state of He2 is included in the formation enthalpy.

ł

ſ

ş

;

ş

į,

to code failure or grossly inaccurate results. Since the thermo fit is not used in the helium and argon models, these models can be used at higher temperatures, up to the onset of significant second ionization. 1

١Ŧ

## 4.3 Data for Reactions

Tables VIII, IX, X, and XI list the chemical reactions for which data have been compiled into the current version of NATA. These tables define the "master list of reactions". They also give the parameters A,  $\eta$ , and E<sub>a</sub> in the curvefit\*

$$k_{f} = A \left(\frac{T}{10,000^{\circ}K}\right)^{\eta} e^{-E_{a}/R_{0}T}$$
 (7)

to the forward rate constant  $k_f$  for each reaction. The reaction system for air (Table VIII) is one recommended recently by Cornell Aeronautical Laboratory (ref. 14). Those for argon and helium (Tables IX, X) are documented in Appendix A of the present report. The reactions for the carbon-containing species (Table XI) are from Dunn (ref. 15), except the CN reactions which are from McKenzie and Arnold (ref. 16).

The rate constants of interest in NATA applications are not accurately known. Experimental determinations of the rate for a given reaction at a given temperature typically differ by factors ranging from 2 up to an order of magnitude or more. In many cases, the temperature range over which the rate has been measured is considerably smaller than the range over which it is used in NATA. The extrapolation which is thus required is a further source of error. However, in spite of these uncertainties, calculations based on the reaction system for air (Table VIII) have given results in reasonable agreement with experimental data (ref. 14).

The main sources for the data in Table VIII are cited in reference 14. The reactions for the neutral species in high temperature air have been reviewed by Wray (ref. 17), those for the charged species by Dunn and Treanor (ref. 18).

\*Equation (69) of Volume I.

-121-

TABLE VIII

REACTION SYSTEM FOR AIR

| OR | IGINAI | PAGE    |
|----|--------|---------|
| 0F | POOR   | QUALITY |

1

| Third Bodies (M)                                                         | N, NO, AF, C, CO, CN, CO2                                                                            | 0, NO, O2, Ar, C, CO, CN, CO2                                | 02, N2, AF, CO, CO2<br>O, N, NO, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>a</sub><br>cal/mole                                               | 117980<br>117980<br>117980                                                                           | 225040                                                       | 11500550<br>39150<br>39150<br>75150<br>7510<br>75150<br>7510<br>7510<br>7510<br>7510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| h                                                                        |                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A<br>cm <sup>3</sup> /mole sec or cm <sup>6</sup> /mole <sup>2</sup> scc | 3.6 × 10 <sup>14</sup><br>9.0 × 10 <sup>15</sup><br>3.2 × 10 <sup>15</sup><br>3.2 × 10 <sup>14</sup> | 1.9 × 10 <sup>15</sup><br>4.1 × 10 <sup>15</sup>             | 2.2 × 1014<br>2.8 × 1014<br>2.2 × 1014<br>2.2 × 1013<br>2.2 × 1013<br>2.2 × 1013<br>2.2 × 1013<br>2.2 × 1013<br>2.2 × 1013<br>2.2 × 1013<br>8.8 × 1013<br>8.8 × 1014<br>8.8 × 1014<br>8.8 × 1014<br>1.6 × 1004<br>1.6 × 1004 |
| Reaction                                                                 | 02 + M = 2 0 + M<br>02 + 0 = 2 0 + 0<br>02 + 02 = 2 0 + 02                                           | 02 + 52 7 2 0 + 12<br>N2 + M 15 2 N + M<br>52 + N 15 2 N + N | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Index<br>(IR)                                                            | -1 N M 1                                                                                             | <del>1</del> თ დ ი                                           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

ORIGINAL PAGE IS OF POOR QUALITY TABLE DX

| ARGON    |
|----------|
| FOR      |
| SYSTEM   |
| REACTION |

| BPAR*                                                                                                  |                                                                          |                          |                                                        |                         | $2 \times 10^{7}$     |                       |                      |                      |                         |                       |                     |                       |                        |                                  | •                                         |                                             |                                    |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|--------------------------------------------------------|-------------------------|-----------------------|-----------------------|----------------------|----------------------|-------------------------|-----------------------|---------------------|-----------------------|------------------------|----------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------|--|
| kTP *                                                                                                  | 2                                                                        | 0                        | 7                                                      | ~                       | 4                     | 2                     | 7                    | ŝ                    | 2                       | щ                     | Ч                   | 1                     | -                      | ч                                | m                                         | m                                           | 7                                  |  |
| Ea<br>cal/mole                                                                                         | 0.                                                                       |                          | •                                                      | •                       |                       | •                     | •                    | •                    | •                       | ••                    | 0                   | •                     | •                      | •                                | 1252.                                     | 1252.                                       | •                                  |  |
| μ                                                                                                      | -4.3                                                                     | -4,3                     | -0.81                                                  | -0.81                   | -0.5                  | 0.5                   | <u> </u>             | •                    | -0.5                    | 0.5                   | -0.56               | 0.5                   | -0.56                  | -0.75                            | -0.67                                     | -0.67                                       | -4.3                               |  |
| sec <sup>-1</sup> , cm <sup>3</sup> /mole-sec, or cm <sup>6</sup> /mole <sup>2</sup> -sec <sup>2</sup> | 3.64 × 10 <sup>21</sup>                                                  | 3.64 × 10 <sup>2</sup> 1 | 8.22 × 10 <sup>10</sup>                                | 8.22 × 10 <sup>10</sup> | 6. × 10 <sup>10</sup> | 5. × 10 <sup>14</sup> | $7.2 \times 10^{13}$ | 8. × 10 <sup>4</sup> | $1. \times 10^{17}$     | 3.5 × 10 <sup>9</sup> | 8.7 × 1014          | 3.5 × 10 <sup>9</sup> | 8.7 × 10 <sup>14</sup> | 5.2 × 10 <sup>15</sup>           | 2.8 × 10 <sup>16</sup>                    | 2.8 × 10 <sup>16</sup>                      | $2. \times 10^{21}$                |  |
| Reaction                                                                                               | Ar <sup>+</sup> + 2e <sup>-</sup> = Ar <sup>*</sup> (m) + e <sup>-</sup> | Art + 26 - Ar*(r) + 6    | Ar <sup>+</sup> + e <sup>-</sup> = Ar <sup>*</sup> (m) | $Ar^+ + e^- = Ar^*(r)$  | Art + e ter Ar        | Ar*(m) + c - Ar + e   | Ar*(r) + 6 == Ar + 6 | Ar*(r) = Ar + hv     | Ar*(r) + e - Ar*(m) + e | Ar*(m) + Ar == 2Ar    | Ar*(m) + 2Ar == 3Ar | Ar*(r) + Ar == 2Ar    | Ar*(r) + 2Ar == 3Ar    | $ix^{+} + 2Ar = Ar_{2}^{+} + Ar$ | $Ar_{3}^{+} + e^{-} = Ar^{+}_{1}(m) + Ar$ | $Ar_{3}^{+} + e^{-} + e^{-} Ar^{+}(r) + Ar$ | $Ar_2^{*+} + 2e^{-} = 2Ar + e^{-}$ |  |
| Index<br>(IR)                                                                                          | 76                                                                       | 77                       | 78                                                     | 79                      | 80                    | 81                    | 82                   | 83                   | 84                      | 85                    | 53                  | 87                    | 88                     | 68                               | 60                                        | ï6                                          | 92                                 |  |

\*The various forward reaction rate constant formulas indexed by KTF are explained in Section 2.3 under Group 9.

| ×     |  |
|-------|--|
| TABLE |  |
|       |  |

1

| ole Third Bodies                                                         | " <b>u</b>                     | fe)                                   |                          |                              | al.                                                        | "u                              | " <b>u</b>                              |                                     |                           | <b>'</b> •                      | 2 e,                             | 2 <mark>-</mark> •             | 0 He                        |                                                              |                                                 |                                                                     | He                                                          |                                                                     | 2   e'               |
|--------------------------------------------------------------------------|--------------------------------|---------------------------------------|--------------------------|------------------------------|------------------------------------------------------------|---------------------------------|-----------------------------------------|-------------------------------------|---------------------------|---------------------------------|----------------------------------|--------------------------------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|----------------------|
| Ea<br>cal/m                                                              | •                              | °                                     | •                        | °                            | •                                                          | •                               | •                                       | °                                   | •                         | •                               | 127                              | 127                            | 1 159                       | °                                                            | •                                               | °                                                                   | •                                                           | 0                                                                   | 127                  |
| £                                                                        | -4.3                           | -4.3                                  | -0.81                    | -0.85                        | •                                                          | -4.3                            | -4.3                                    | •                                   | •                         | -0.5                            | -0.25                            | -0.25                          |                             | 0.167                                                        | 0.167                                           | 0.167                                                               | 0.5                                                         | 0,167                                                               | -0.25                |
| A<br>cm <sup>3</sup> /mole sec or cm <sup>6</sup> /mole <sup>2</sup> sec | $5.46 \times 10^{21}$          | $1.82 \times 10^{21}$                 | $1.27 \times 10^{11}$    | 3.8 × 1010                   | 3.92 × 10 <sup>16</sup>                                    | $1.54 \times 10^{21}$           | 5.13 × 10 <sup>2</sup> 0                | $2.26 \times 10^{14}$               | 7.5 × 10 <sup>13</sup>    | $3.65 \times 10^{10}$           | 8 x 10 <sup>14</sup>             | $8 \times 10^{14}$             | 5.2 × 10 <sup>40</sup>      | $1.87 \times 10^{15}$                                        | $5.05 \times 10^{15}$                           | $6.28 \times 10^{15}$                                               | $5.2 \times 10^{14}$                                        | 1.87 × 10 <sup>15</sup>                                             | 8 × 10 <sup>14</sup> |
| Reaction                                                                 | $e^- + He^+ + M = He(^3S) + M$ | e + He + A = He ( <sup>1</sup> S) + M | $e^- + He^+ = He^{(3S)}$ | $e^{-} + He^{-} = He^{(LS)}$ | He + $\text{Ee}^+$ + $\text{ = }^{\text{He}}$ He $2^+$ + N | $e^{-} + He2^{+} + M = He2 + M$ | $e^{-} + He_{2}^{+} + M = 2 He_{-} + M$ | $e^{-} + He_2^{+} = He + He^{(3S)}$ | $e^- + He2^+ = He + (LS)$ | $He(^{1}S) + M = He(^{3}S) + M$ | He $(^{3}S) + M \implies He + M$ | He $(^{\perp}S)$ + M $$ He + M | He $(^{L}S)$ + M $=$ He + M | He $(^{3}S)$ + Hc $(^{3}S)$ $= e^{-}$ + He + He <sup>+</sup> | He $(^{3}S)$ + He $(^{1}S)$ = $e^{-}$ + He + He | He $(^{1}S)$ + He $(^{1}S)$ = e <sup>-</sup> + He + He <sup>+</sup> | He + He $(^{3}S)$ + M $\longrightarrow$ He <sub>2</sub> + M | He2 + He2 $\longrightarrow$ e <sup>-</sup> + 3 He + He <sup>+</sup> | He2 + M == 2 He + M  |
| Inčex<br>(IR)                                                            | 35                             | 36                                    | 37                       | 38                           | 39                                                         | 40                              | 41                                      | 42                                  | 43                        | 44                              | 45                               | 46                             | 47                          | 48                                                           | 49                                              | 05                                                                  | 51                                                          | 52                                                                  | n<br>S               |

1

ł

5

5 ,

ORIGINAL PAGE IS OF POOR QUALITY

1

TABLE XI

| MODELS     |
|------------|
| ATHOSPHERE |
| PLANETARY  |
| THE        |
| NI         |
| SPECIES    |
| ARGON      |
| <b>E</b>   |
| CARBON     |
| FOR        |
| SYSTEM     |
| REACTION   |
|            |

|      |                                                         |                                                                     | 2    | ß        |                                      |
|------|---------------------------------------------------------|---------------------------------------------------------------------|------|----------|--------------------------------------|
| (IR) | Reaction                                                | cm <sup>3</sup> /mole sec or cm <sup>6</sup> /mole <sup>2</sup> sec |      | cal/mole | Third Bodies                         |
| 54   | C0 + W <del>= C</del> C + O + W                         | 4.48 × 10 <sup>15</sup>                                             | -1.0 | 256000   | N, O, Ar, N, O, CO, CO, CM, C        |
| 55   | CO2 + M 1 0 + CO + M                                    | 8.81 × 10 <sup>14</sup>                                             | -2.0 | 125600   | N, O, Ar, N2, O2, CO2, CO, CN, C     |
| 56   | CO + CO 1 C + CO2                                       | $2.33 \times 10^{11}$                                               | 0.5  | 130500   |                                      |
| 57   | 0 + C0 - C + 02                                         | $2.73 \times 10^{13}$                                               | 0.5  | 138100   |                                      |
| 58   | CO + N 1 NO + C                                         | $2.86 \times 10^{13}$                                               | 0.5  | 106500   |                                      |
| 59   | NO + CO - CO2 + N                                       | 4.59 x 10 <sup>10</sup>                                             | 0.5  | 23970    |                                      |
| 60   | CO2 + 0 === 02 + CO                                     | $2.55 \times 10^{11}$                                               | 0.5  | 7606     |                                      |
| 61   | $c_0 + c_0^{+} = c_0^{-} + c_1^{+}$                     | $1.07 \times 10^{14}$                                               | 0.5  | 67050    |                                      |
| 62   | $c_0 + c_+ = c + c_0^+$                                 | $6.03 \times 10^{13}$                                               | 0.5  | 63360    |                                      |
| 63   | 0 + c+ 1 = c + o+                                       | 6.66 × 10 <sup>14</sup>                                             | 0.5  | 54160    |                                      |
| 64   | $c_0 + 0^+ = 0 + c_0^+$                                 | 1.09 x 10 <sup>14</sup>                                             | 0.5  | 9222     |                                      |
| 65   | $0 + co^{+} = 0_{2} + c^{+}$                            | $5.47 \times 10^{14}$                                               | 0.5  | 74700    |                                      |
| 65   | $co^{+} + e^{+} \rightarrow c + 0$                      | 1.5 x 10 <sup>16</sup>                                              | -1.5 | 0        |                                      |
| 63   | C <sup>+</sup> + 2e <sup>-</sup> = C + e <sup>-</sup>   | $2_{2} \times 10^{2}$                                               | -4.5 | •        |                                      |
| 68   | CO + NO <sup>+</sup> - CO <sup>+</sup> + NO             | 4.59 x 10 <sup>14</sup>                                             | 0.5  | 109600   |                                      |
| 69   | $1 c_0 + 0_2^+ = c_0^+ + 0_2$                           | 4.53 x 10 <sup>14</sup>                                             | 0.5  | 44490    |                                      |
| 70   | $c + No^{+} = co^{+} + N$                               | $5.96 \times 10^{4}$                                                | 0.5  | 3227     |                                      |
| 71   | Ar <sup>+</sup> + 2e <sup>-</sup> - Ar + e <sup>-</sup> | $2.2 \times 10^{22}$                                                | -4.5 | 0        |                                      |
| 72   | $CN + M \longrightarrow C + N + M$                      | $3.6 \times 10^{15}$                                                | -1.0 | 131160   | N, O, Ar, N2, O2, NO, CO2, CO, CN, C |
| 73   | CO + N - CN + O                                         | 4.3 x 10 <sup>14</sup>                                              | 0.5  | 69670    |                                      |
| 5.   | $N_2 + C$ - CN + N                                      | 1.5 × 10 <sup>13</sup>                                              | 0.5  | 51.670   |                                      |
| 75   | $c_{N} + 0  c + x_{0}$                                  | 2 x 10 <sup>14</sup>                                                | 1.0  | 55640    |                                      |
|      |                                                         |                                                                     |      | -        |                                      |

ş

-125-

In Table VIII, the reactions given in reference 14 have been rearranged to place the reactions having the same effect (e.g., dissociation of  $O_2$ ) together, and to place the reactions involving only neutral species ahead of those involving charged species. Reference 14 gives both forward and backward rates for each reaction. In each case, the rate coefficient in one direction is based directly on chemical kinetic data, while that in the other direction is a curvefit to the results of calculations based on equation (62) of Volume I. In Table VIII, the reactions have been written in such a form that the rate based on experimental data is in the forward direction. In NATA, the backward rate is computed internally using equation (62) of Volume I.

The reaction rate data summarized in Tables VIII to XI are stored in an array RPRP(I,IR), contained in common block /REAC/. This array is dimensioned (29,92). The entries in this array are defined as follows, for the reaction with index IR in the master list of reactions:

| RPRP(I,IR) | I = 1              | Coefficient A in eq. (7)<br>(cm <sup>3</sup> mole sec or cm <sup>6</sup> /mole <sup>2</sup> sec) |
|------------|--------------------|--------------------------------------------------------------------------------------------------|
|            | I = 2 <sup>·</sup> | Exponent $\eta$ in eq. (7)                                                                       |
|            | I = 3              | Activation energy E <sub>a</sub> in eq. (7),<br>cal/mole                                         |
|            | I = 4              | QQ: 1.0 if a third-body list is<br>provided in I = 20-29<br>0.0 if not                           |
|            | *I = 5             | Number of reactant species ( $\leq$ 3)                                                           |
|            | *I = 6             | Number of product species ( $\leq 3$ )                                                           |
|            | *I = 7 <b>-</b> 9  | Indices of reactant species in master list of species                                            |
|            | *I = 10-12         | Indices of product species in master list of species                                             |

<sup>\*</sup>All values in the array are real. The values indicated by asterisks are converted by the program into integers. To ensure rounding down to the correct value, the stored values have been increased by 0.1

| I = 13-15      | Numbers of molecules of reac-<br>tants                     |
|----------------|------------------------------------------------------------|
| I = 16-18      | Numbers of molecules of pro-<br>ducts                      |
| <b>*I = 19</b> | Number of third bodies ( $\leq 1$ ?)                       |
| *I = 20-29     | Indices of third body species<br>in master list of species |

For convenience in adding to or altering the compiled-in data, RPRP is equivalenced to 92 singly dimensioned arrays of dimension (29), as follows:

| RPl(I)  | Equivalent to RPRP (I,1) |
|---------|--------------------------|
| •       | •                        |
| •       | •                        |
| RP92(I) | Equivalent to RPRP(I,92) |

## 4.4 Electronic Nonequilibrium Data

When an ionized gas expands to low density, as in the diverging nozzle section of an arc-heated wind tunnel, a condition of nonequilibrium between the electron temperature and the heavyparticle temperature develops. This phenomenon is a result of the smallness of the cross section for elastic energy transfer between electrons and heavy particles. At high gas densities, there are enough collisions to keep the two temperatures approximately in equilibrium in spite of the small cross section; but at low densities this is no longer true. In an expanding plasma flow, electron-ion recombination processes supply energy to the electron gas, so that the electron temperature normally falls more slowly than the gas temperature.

The forward rate for a reaction which includes the electron, as either a reactant or a third body, usually depends upon the electron temperature rather than the gas temperature. Thus, thermal nonequilibrium between the electrons and the heavy particles can affect the rates of production and destruction of species. This phenomenon is not considered in the current NATA models for air. It has been studied, for the case of an atomic

-127-

nitrogen plasma, by Bowen and Park (ref. 19). Nonequilibrium betweer the electron and gas temperatures is included explicitly in the NATA models for helium and argon (Volume I, Sec. 7.1.2). These noble gas models require additional data for each reaction to specify the dependence of the forward and backward rate constants upon the electron and gas temperatures and to specify the partition of the energy of reaction between electron kinetic energy and radiative losses. Data are also required to provide the elastic collision cross section between the electrons and the neutral heavy particles (assumed to be the same for all neutral spec-These extra data for the thermal nonequilibrium models are ies). stored in an array TNEP(I,INT), contained in common block /TNE/. This array is dimensioned (186,2). The index INT specifies the gas model in which the data are to be used. For helium, INT = 1, and for argon, INT = 2. The entries in TNEP(I, INT) are defined below in terms of the reaction index JR for whichever gas model is being used. The index JR runs from 1 up to ISR. The armensioning of TNEP allows the number of reactions ISR to be as high as 25 for gas models involving electronic nonequilibrium. For conventional gas models, ISR can be as high as 64.

I

The entries in TNEP(I, INT) are defined as follows:

 $\begin{array}{ll} \mathrm{KTF} = 2 & \mathrm{k_{f} \ given \ by \ (7) \ as \ a \ function} \\ \mathrm{of \ electron \ temperature \ T_{e}} \\ \mathrm{KTF} = 3 & \mathrm{k_{f}} = \mathrm{A} \ \left(\mathrm{T_{e}}/\mathrm{10^{4}}\right)^{\eta} \ \left(\mathrm{1 - e^{-E_{a}}/R_{0}T}\right) \\ \mathrm{KTF} = 4 & \mathrm{k_{f}} = \mathrm{A} \ \left(\mathrm{T_{e}}/\mathrm{10^{4}}\right)^{\eta} \ /\mathrm{max} \ (\mathrm{1, } \tau \ ) \\ & \mathrm{where} \ \tau = \mathrm{b} \ \mathrm{n_{p}} \ \mathrm{R/N_{0}} \\ \mathrm{KTF} = 5 & \mathrm{k_{f}} = \mathrm{A}/\sqrt{\mathrm{R}} \end{array}$ 

Note: R denotes the local nozzle radius (or a corresponding effective value in the case of a channel). Also,  $n_p$  is the number density of the atomic species appearing on the product side of the reaction, and b is a coefficient stored as BPAR (below). The types KTF = 3, 4, and 5 are used only in the model for argon (IGAS = 3); see Appendix A.

\*All values in the array are real. The values indicated by asterisks are converted by the program into integers. To ensure rounding down to the correct value, the stored values have been increased by 0.1.

| •            |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *I = JR + 25 | KTR(JR), equation of Vol, I (3)                                                                                      | ual to 0 if t backward rate con-<br>0 for the JRth reaction; equal to 1 if<br>equal to 2 if $k_r = k_r(T_e)$ , where the<br>dependence is given by equations (277-278)<br>ref. 1).                                                                                                                                              |
| *I = JR + 50 | ITR(JR), ind<br>reaction end<br>definitions<br>ergies gain<br>in the forw<br>and $q_{f}$ , - $q_{r}$<br>by radiation | dicator of rule for partitioning the<br>ergy for the JRth reaction. In the<br>below, $\epsilon_f$ and - $\epsilon_r$ denote the en-<br>ed by the electron gas in N <sub>0</sub> reactions<br>ard and reverse directions, respectively,<br>denote the corresponding energies lost<br>n. Also N <sub>0</sub> = Avogadro's number. |
|              | ITR = 1                                                                                                              | $\epsilon_{f} = -a R_{0} T_{e}$                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                      | $q_f = \epsilon_0 - \epsilon_f$                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                      | $\epsilon_r = q_r = 0$                                                                                                                                                                                                                                                                                                          |
|              | ITR = 2                                                                                                              | $\epsilon_{f} = -\frac{3}{2} R_{0} T_{e}$                                                                                                                                                                                                                                                                                       |
|              |                                                                                                                      | $q_f = \epsilon_0 - \epsilon_f$                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                      | $\epsilon_{r} = q_{r} = 0$                                                                                                                                                                                                                                                                                                      |
|              | ITR = 3                                                                                                              | $\epsilon_{f} = q_{f} = \epsilon_{r} = q_{r} = 0$                                                                                                                                                                                                                                                                               |
|              | ITR = 4                                                                                                              | $\epsilon_{f} = \epsilon_{r} = -\frac{3}{2} R_{0} T_{e}$                                                                                                                                                                                                                                                                        |
|              |                                                                                                                      | $q_f = q_r = 0$                                                                                                                                                                                                                                                                                                                 |
|              | ITR = 5                                                                                                              | $\epsilon_{f} = \epsilon_{r} = \epsilon_{0}$                                                                                                                                                                                                                                                                                    |
|              |                                                                                                                      | $q_f = q_r = 0$                                                                                                                                                                                                                                                                                                                 |
|              | ITR = 6                                                                                                              | $q_f = \epsilon_0$                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                      | $\epsilon_{f} = \epsilon_{r} = q_{r} = 0$                                                                                                                                                                                                                                                                                       |
|              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |

<sup>\*</sup>All values in the array are real. The values indicated by asterisks are converted by the program into integers. To ensure rounding down to the correct value, the stored values have been increased by 0.1.

| I = JR + 75  | EPAR(1,JR), parameter $\epsilon_0$ for the JRth reaction (tal per N <sub>0</sub> reactions)                        |
|--------------|--------------------------------------------------------------------------------------------------------------------|
| I = JR + 100 | EPAR(2,JR), parameter "a" for the JRth reaction<br>if ITR(IR) = 1                                                  |
| I = 126-155  | TLIST(J), temperature values for table of elastic collision cross section, $\overline{Q}^{(1,1)}$ (see Appendix A) |
| I = 156-185  | $P \not M(J), \overline{Q}^{(1,1)}$ values for table                                                               |
| I = 186      | BPAR, parameter b for all reactions with $KTF = 4$                                                                 |

For convenience in adding to or altering the compiled-in data for reactions involving electronic nonequilibrium, TNEP is equivalenced to two singly dimensioned arrays of dimension (186), as follows:

| TN1(K)  | Equivalent | to | TNEP $(K, 1)$ |
|---------|------------|----|---------------|
| TN2 (K) | Equivalent | to | TNEP $(K, 2)$ |

Tables XII through XV summarize the precoded electronic nonequilibrium data for the helium and argon models (IGAS = 4 and 3). The data in these tables are documented in Appendix A.

| TAB | LE | XII                                                                                                             |
|-----|----|-----------------------------------------------------------------------------------------------------------------|
|     |    | the second se |

ELECTRONIC NONEQUILIBRIUM DATA FOR HELIUM MODEL

| JR  | IR | KTF (JR) | KTR(JR) | ITR (JR) | EPAR(1,JR) |
|-----|----|----------|---------|----------|------------|
|     |    |          |         |          | cal/mole   |
| 1   | 35 | 2        | 2       | 5        | 109890     |
| 2   | 36 | 2        | 2       | 5        | 91540      |
| 3   | 37 | 2        | 0       | 2        | 109890     |
| 4   | 38 | 2        | 0       | 2        | 91540      |
| 5   | 39 | 1 1      | 1       | 3        | 0          |
| 6   | 40 | 2        | 2       | 5        | 98040      |
| 7   | 41 | 2        | 2       | 5        | 458270     |
| 8   | 42 | 2        | 1       | 4        | 0          |
| 9   | 43 | 2        | 1       | 4        | 0          |
| 10  | 44 | 2        | 2       | 5        | 18350      |
| 11  | 45 | 2        | 2       | 5        | 456730     |
| 1.2 | 46 | 2        | 2       | 5        | 475080     |
| 1.3 | 47 | 1        | 0       | 6        | 475080     |
| 14  | 48 | 1        | 2       | 5        | 346840     |
| 15  | 49 | 1        | 2       | 5        | 365190     |
| 16  | 50 | 1        | 2       | 5        | 383540     |
| 17  | 51 | 1        | 1       | 3        | 0          |
| 1.8 | 52 | 1        | 2       | 5        | 260350     |
| 19  | 53 | 2        | 2 .     | 5        | 413480     |
|     |    |          |         |          |            |

-130-

.

## TABLE XIII

-

;

## ELECTRONIC NONEQUILIBRIUM DATA FOR ARGON MODEL

1

•

| JR | IR | KTF (JR) | KTR (JR) | ITR(JR) | EPAR(1,JR)<br>cal/mole | EPAR(2,JR) | BPAR            |
|----|----|----------|----------|---------|------------------------|------------|-----------------|
|    |    |          |          |         |                        |            |                 |
| 1  | 76 | 2        | 2        | 5       | 96970                  | 0          | -               |
| 2  | 77 | 2        | 2        | 5       | 95360                  | 0          | -               |
| 3  | 78 | 2        | 0        | 1       | 96970                  | 0.7        | -               |
| 4  | 79 | 2        | 0        | 1       | 95360                  | 0.7        | -               |
| 5  | 80 | 4        | 0        | 1       | 363330                 | 1.0        | $2 \times 10^7$ |
| 6  | 81 | 2        | 2        | 5       | 266350                 | 0          | -               |
| 7  | 82 | 2        | 2        | 5       | 267970                 | 0          | -               |
| 8  | 83 | 5        | 0        | 6       | 267970                 | 0          | -               |
| 9  | 84 | 2        | 2        | 5       | 1600                   | 0          | -               |
| 10 | 85 | 1        | 1        | ·3      | 0                      | 0          | • 🕳             |
| 11 | 86 | 1        | 0        | 6       | 226000                 | 0          | -               |
| 12 | 87 | 1        | 1        | 3       | 0                      | 0          | -               |
| 13 | 88 | 1        | 0        | 6       | 226000                 | 0          | -               |
| 14 | 89 | 1        | 1        | 3       | 0                      | 0          | -               |
| 15 | 90 | 3        | 2        | 5       | 70680                  | 0          | -               |
| 16 | 91 | 3        | 2        | 5       | 69070                  | 0          | -               |
| 17 | 92 | 2        | 2        | 5       | 337040                 | 0          | -               |
|    |    |          |          |         |                        |            |                 |

## TABLE XIV

١

## e - He MOMENTUM TRANSFER CROSS SECTION

| Te<br>o <sub>K</sub> | $\overline{O}_{A}^{(1,1)}$ | Te<br>°K | <u></u> |
|----------------------|----------------------------|----------|-----------------------------------------------------------------------------------------------------------------|
| 0                    | 0.00                       | 9000     | 6.80                                                                                                            |
| 100                  | 5.00                       | 10000    | 6.77                                                                                                            |
| 200                  | 5.59                       | 12000    | 6.57                                                                                                            |
| 400                  | 5.83                       | 14000    | 6.55                                                                                                            |
| 600                  | 5.99                       | 16000    | 6.42                                                                                                            |
| 800                  | 6.11                       | 18000    | 6.29                                                                                                            |
| 1000                 | 6.21                       | 20000    | 6.15                                                                                                            |
| 1500                 | 6.39                       | 25000    | 5.80                                                                                                            |
| 2000                 | 6.51                       | 30000    | 5.46                                                                                                            |
| 3000                 | 6.67                       | 35000    | 5.14                                                                                                            |
| 4000                 | 6.76                       | 40000    | 4.85                                                                                                            |
| 5000                 | 6.81                       | 45000    | 4.60                                                                                                            |
| 6000                 | 6.84                       | 50000    | 4.32                                                                                                            |
| 7000                 | 6.84                       | 70000    | 3.4                                                                                                             |
| 8000                 | 6.83                       | 100000   | 2.4                                                                                                             |
# TABLE XV

F

r .

!

٢

ŝ

T ; 

# e -Ar MOMENTUM TRANSFER CROSS SECTION

| Te<br>o <sub>K</sub>                                                                                   | $\overline{Q}_{A^2}^{(1,1)}$                                                                                             | Te<br>°K                                                                                                                         | $\overline{Q}_{\substack{0\\ A^2}}^{(1,1)}$                                                                         |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 0<br>25<br>50<br>100<br>200<br>300<br>400<br>600<br>800<br>900<br>1000<br>1200<br>1400<br>1600<br>2000 | 10.<br>10.<br>6.<br>3.57<br>2.12<br>1.39<br>0.97<br>0.57<br>0.40<br>0.35<br>0.32<br>0.29<br>0.29<br>0.29<br>0.31<br>0.38 | 2500<br>4000<br>6000<br>8000<br>12000<br>12000<br>15000<br>20000<br>25000<br>30000<br>35000<br>40000<br>45000<br>50000<br>100000 | 0.51<br>0.98<br>1.69<br>2.40<br>3.08<br>3.73<br>4.65<br>6.02<br>7.19<br>8.11<br>8.81<br>9.30<br>9.63<br>9.82<br>10. |

#### 4.5 Standard Gas Models

A "gas model" is the specification of a set of species with their thermochemical properties, a system of reactions among these species with their rate constants, and other data. The NATA code contains provisions for invoking certain standard gas models by input of a single index value, IGAS. The standard gas models available are summarized in Table XVI. The third and fourth columns in this table specify the pair of species whose binary diffusion coefficient is used in computing the Lewis number. The variable INT pertains to the treatment of electronic nonequilibrium in the model. For INT = 0, electronic nonequilibrium is For INT > 0, electronic nonequilibrium is taken into neglected. account, and INT is the index for selecting the reaction parameters from TNEP(I, INT). If the indicator LEWIS is equal to 1, the Fay-Riddell Lewis number factor is used in calculating the stagnation point heat flux. For LEWIS = 2, it is not. The reaction indices in Table XVI refer to the master list of reactions.

AIR-1 is the general model for argon-free air, suitable for use in cases with reservoir temperatures up to about 15,000-20,000°K. Temperatures above 15000°K are beyond the range of validity of the thermo fits for the diatomic molecules. Above 20,000°K, the specific heats for some of these species (as computed from the thermo fit) go negative, and the chemical potentials begin to decrease with increasing temperature. However, the temperature capability of the AIR-1 model appears more than adequate for describing the flow in state-of-the-art arc heated wind tunnels.

1

AIR-2 is a truncated air model obtained from AIR-1 by deleting all of the ion species except  $NO^+$ . It is suitable for use in cases with reservoir temperatures up to about 6000°K. The ion  $NO^+$  is retained because the ionization potential of NO (9.5 ev) is much lower than those of the other neutral species in high temperature air (12.5-15.5 ev). In problems with reservoir temperatures below 6000°K, use of the AIR-2 model in place of AIR-1 economizes on computer time without significantly affecting the results.

HELIUM and ARGON are the electronic nonequilibrium models for helium and argon. Since the thermo fit is not used in these models, they are suitable for use up to temperatures at which the doubly ionized species  $He^{++}$  and  $Ar^{++}$  become important.

-134-

| ORIGINAL PAGE IS<br>OF POOR QUALITY |
|-------------------------------------|
|-------------------------------------|

1

\* 1 ٢

<u>TABLE XVI</u> STANDARD GAS MODELS

| Reactions                      | 1-26                                                                                                                                                                     | 1-12, 19-20, 26                       | 76-92                                                                     | 35-53                                                                                                     | 1-26, 54-75                                                                                                                                                                                                                                                            | 1-12, 19-20<br>26, 54-62,<br>65-68, 70, 72-75                                                                                                                   |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                        | е <sup>-</sup> , <sup>N2</sup> , <sup>O2</sup> , <sup>N,</sup> O, NO, NO <sup>+</sup> , N <sup>+</sup><br>O <sup>+</sup> , N <sup>2</sup> <sup>+</sup> , O2 <sup>+</sup> | e", N2, O2, N, O, NO, NO <sup>+</sup> | e <sup>-</sup> , Ar, Ar <sup>+</sup> , Ar*(m),<br>Ar*(r), Ar <sub>2</sub> | е <sup>-</sup> , Не, Не( <sup>3</sup> S), Не( <sup>1</sup> S), Не2,<br>Не <sup>+</sup> , Не2 <sup>+</sup> | e <sup>-</sup> , Ar, CO <sub>2</sub> , N <sub>2</sub> , O <sub>2</sub> , N, O, NO,<br>CO, CN, C, NO <sup>+</sup> , N <sup>+</sup> , O <sup>+</sup> , N <sub>2</sub> <sup>+</sup> ,<br>O <sub>2</sub> <sup>+</sup> , C <sup>+</sup> , Ar <sup>+</sup> , CO <sup>+</sup> | e <sup>-</sup> , Ar, CO <sub>2</sub> , N <sub>2</sub> , O <sub>2</sub> , N <sub>4</sub> O, NO,<br>Co, CN, C, NO <sup>+</sup> , C <sup>+</sup> , CO <sup>+</sup> |
|                                |                                                                                                                                                                          |                                       |                                                                           |                                                                                                           | N2<br>(0.05)                                                                                                                                                                                                                                                           | (0,05)                                                                                                                                                          |
| Cold Species<br>ole Fractions) | 02<br>(0.21177)                                                                                                                                                          | 02<br>(0.21177)                       |                                                                           |                                                                                                           | Ar<br>(0.20)                                                                                                                                                                                                                                                           | Ar<br>(0.20)                                                                                                                                                    |
| (W                             | N2<br>(0.78823)                                                                                                                                                          | (0.76823)                             | Ar<br>(1.0000)                                                            | He<br>(1.0000)                                                                                            | co <sub>2</sub><br>(0.75)                                                                                                                                                                                                                                              | co <sub>2</sub><br>(0.75)                                                                                                                                       |
| LEWIS                          | F                                                                                                                                                                        | -1                                    | 7                                                                         | 7                                                                                                         | < 1                                                                                                                                                                                                                                                                    | 2                                                                                                                                                               |
| TNI                            | o                                                                                                                                                                        | 0                                     | 2                                                                         | ы                                                                                                         | o                                                                                                                                                                                                                                                                      | o                                                                                                                                                               |
| Molecule<br>for Le             | N2                                                                                                                                                                       | N2                                    | Ar                                                                        | en<br>H                                                                                                   | ទ                                                                                                                                                                                                                                                                      | ទ                                                                                                                                                               |
| Atom<br>for Le                 | 0                                                                                                                                                                        | 0                                     | Ar+                                                                       | He+                                                                                                       | 0                                                                                                                                                                                                                                                                      | 0                                                                                                                                                               |
| Model<br>Name                  | AIR-1                                                                                                                                                                    | AIR-2                                 | ARGON                                                                     | WNITZH                                                                                                    | CONAR                                                                                                                                                                                                                                                                  | CONAR2                                                                                                                                                          |
| IGAS                           | -                                                                                                                                                                        | 2                                     | e                                                                         | 4                                                                                                         | S                                                                                                                                                                                                                                                                      | ە                                                                                                                                                               |

t

i

CONAR\* is a model for a planetary atmosphere containing 75 mole percent  $CO_2$ , 20 mole percent argon, and 5 mole percent  $N_2$ . These mole fractions can be adjusted easily in the code input, so that CONAR is usable as a general  $CO_2$ -Ar- $N_2$  model for the atmospheres of Venus and Mars.

CONAR2 is a smaller version of CONAR with some of the ion species omitted, designed for use at temperatures up to  $7000^{\circ}$ K. In this temperature range, it gives practically the same results as CONAR with less expenditure of computer time.

The data required for generating these standard gas models are stored in an array GPRP(I,IGAS), which is contained in common block /MIXT/. This array is dimensioned (124,6). Its entries are defined as follows, for the model with index IGAS:

| I   | H | 1             | Mixture name                                            |
|-----|---|---------------|---------------------------------------------------------|
| **I | = | 2             | Number of elements in mixture (ISC)                     |
| **I | = | 3             | Number of species in mixture (ISS)                      |
| **I | = | 4             | Number of reactions included (ISR)                      |
| **I | = | 5             | Number of ion species (IC)                              |
| **I | H | 6-15          | Indices (IE) of elements in master list of elements     |
| I   | = | <b>16-2</b> 5 | Mole fractions of cold species (QPJ)                    |
| **I | Ħ | 26 <b></b> 45 | Indices (IS) of species in master list of species       |
| **I | = | 46-109        | Indices (IR) of reactions in master list of reactions   |
| **I | n | 110–119       | Indices (JCS) of cold species in master list of species |
| **I | = | <b>1</b> 20   | Number of cold species (NCS)                            |
|     |   |               |                                                         |

\*Acronym for Carbon-Oxygen-Nitrogen-Argon.

\*\*All values in the array are real. The values indicated by asterisks are converted by the program into integers. To ensure rounding down to the correct value, the stored values have been increased by 0.1.

1

-136-

\*I = 121 Atom index (ISATØM) for Lewis number in master list
 of species

ł

- \*I = 122 Molecule index (ISMØL) for Lewis number in master list of species
- \*I = 123 INT. If INT = 0, electron temperature equals gas temperature. If INT > 0, the model includes electronic nonequilibrium, and INT is the index of extra r\_action properties required in TNEP(I,INT)

Most of these definitions are self explanatory. However, the reference to "cold species" requires some discussion. In NATA, the overall composition of the gas in terms of the chemical elements is specified by giving the composition of the cold gas mixture which is fed into the arc heater. The chemical species in this cold gas are called cold species. For example, the cold species in argon-free air are N<sub>2</sub> and O<sub>2</sub>, and their mole fractions are assumed to be 0.78823 and 0.21177, respectively. The weight fractions of the elements nitrogen and oxygen, which are determined by these data, are invariant under all chemical changes in the system.

For convenience in adding to or altering the compiled-in gas models, GPRP is equivalenced to 6 singly dimensioned arrays of dimension (124) as follows:

| GP1(I) | Equivalent | to      | GPRP(I,1) |
|--------|------------|---------|-----------|
| •      |            | ٠       |           |
| •      |            | ٠       |           |
| GP6(I) | Equivalent | •<br>to | GPRP(I,6) |

#### 4.6 Transport Cross Section Data

The cross section data required for calculating the transport properties of arbitrary mixtures of the standard species (listed in Section 4.2) are compiled into NATA. The methods used in the transport property calculations have been explained in Section 3 of Volume I (ref. 1). Briefly, the transport coefficients are computed from formulas involving the cross sections

 $\overline{\Omega}(2,2)$  $\Omega(1,1)$ and  $B^*$ ,  $\overline{\Omega}^{(1,1)}$  for collisions between pairs of species (1,j). These cross sections are calculated in a series of steps. First, the cross sections for all pairs are set to zero. Then, in each step, the values of  $\overline{\Omega}^{(1,1)}$ ,  $\overline{\Omega}^{(2,2)}$ , and B\*  $\overline{\Omega}^{(1,1)}$  are computed by a particular method (or "option") with a particular set of parameter values, and these values are added to the corresponding cross sections for each pair of species to which the step is applicable. The information concerning the applicability of steps to species pairs is stored in index arrays KKQ(M), NNQ(M), as explained below. If only one step of the cross section calculation is applicable to a particular species pair, then the cross sections for the pair are the values computed during that step. If two or more steps are applicable to the pair, the cross sections for the pair are built up by adding contributions from the different steps. If the cross sections are poorly known for several minor pairs of species, but are considered likely to be roughly the same for all pairs, then the cross sections for all of these pairs can be set in a single step.

In the present section, the twelve options for calculating cross sections are defined, and the default methods used by the code to determine unspecified cross sections are explained. The variables and arrays used to store the precoded transport cross section data are then defined. Finally, the precoded data for the standard species are tabulated and documented as to source.

The options for calculating cross sections are selected by an index KKQ. For each option, three is an associated list of input parameters, VV(J). Array dimensions limit the number of these parameters to five. Other numerical data required by some of the options are stored at specified locations in four arrays (TL, ØMEGA1, ASTAR, BSTAR), as explained below. Each of these arrays is dimensioned (1000). The cross section options available in NATA are as follows:

#### KKQ = 2 Coulomb Cross Sections

Here

$$\bar{\Omega}^{(1,1)} = 0.8 \text{ VV}(1) \Omega_{c}$$

$$\bar{\Omega}^{(2,2)} = \text{VV}(2) \quad \bar{\Omega}^{(1,1)}$$

$$B^{*} = 1.5625$$
(8)

where  $Q_{c}$  is defined by

$$Q_{c} = \left(\frac{e^{2}}{kT}\right)^{2} \ln \left(\gamma \wedge\right)$$
 (9a)

$$\Lambda = \frac{3}{2} - \frac{(kT)^{3/2}}{e^3 (\pi n_e)^{1/2}}$$
(9b)

$$\gamma = \left[1 + \frac{64\pi}{9} \quad \frac{e^2}{kT} \quad n_e^{1/3}\right]^{\frac{1}{2}}$$
(9c)

(Section 3.2 of Volume I). In equations (9), e denotes the electron charge, k Boltzmann's constant, T the absolute temperature and  $n_e$  the electron density.

### KKQ = 3 Exponential Potential

In this option, the cross sections are obtained from Monchick's (ref. 20) tabulated collision integrals for the exponential potential

$$\phi = A e^{-r/\rho} \tag{10}$$

which are compiled into NATA in the TL, ØMEGAl, ASTAR, and BSTAR arrays starting at location 1 in each array. The parameters are

$$VV(1) = A/k in^{O}K$$

$$VV(2) = \rho \quad n \stackrel{O}{A}$$

$$VV(3) = 1.0 = \text{position of first entry in tabulated}$$

$$collision integrals$$
(11)

KKQ = 4 Charge Exchange Cross Section

In this option,  $\bar{\Omega}^{(1,1)}$  and B\* are calculated for a resonant charge exchange cross section of the form

$$Q_{ex} = (A - B \log_{10} v)^2$$

-139-

where v is the relative velocity in cm/sec.  $\tilde{\Omega}^{(2,2)}$  is not calculated in this option. The required input parameters are

VV(1) = A in A VV(2) = B in A VV(3) = molecular weight of atom VV(4) = control parameter (12)

ł

!

For VV(4) > 0., the computed cross sections  $\tilde{\Omega}^{(1,1)}$  and B\* replace those computed in earlier steps of the calculations, while for VV(4)  $\leq$  0., they are added to the earlier values.

#### KKQ = 5 Tabulated Cross Section

In this option, the cross section data are given in tabular form as a function of temperature. The input parameters are

- VV(1) = A = factor by which the tabulated values mustbe multiplied to give the collision integralsin A<sup>2</sup>
- VV(2) = I = position of first entry in tabulated cross section data
- VV(3) = N = number of entries in cross section table

The cross section data themselves are stored in the TL, OMEGAL, ASTAR, and BSTAR arrays, starting at element I, as follows:

| TL(I) to TL(I - 1 + N)    | Ξ | temperatures at which cross<br>section data are tabulated in<br>$^{\circ}$ K. Values must be in order of<br>increasing temperature. |
|---------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------|
|                           | = | values of $\overline{\Omega}$ (1,1) at the tab-<br>ulated temperatures                                                              |
| ASTAR (I to $I - l + N$ ) | = | values of $\overline{\Omega}^{(2,2)}$ at the tabulated temperatures                                                                 |

# BSTAR(I to I - 1 + N) = values of E\* at the tabulated temperatures

ş

# KKQ = 6 Power Law Potential

This option calculates cross sections for an inverse power potential,

$$\phi = Ar^{-\eta}$$
(13)

based on the analysis of Kihara, Taylor, and Hirschfelder (ref.21). The parameters are

VV(1) = ITL = index in ØMEGAL, ASTAR, BSTAR arrays where data are stored

 $VV(2) = \gamma$ 

For each value of  $\boldsymbol{\gamma}$  used, the following additional data are stored:

BSTAR (ITL) = 
$$(1 - \frac{2}{3\eta}) (1 + \frac{2}{\eta})$$
 (14c)

where A/k is in  ${}^{O}K$ , A<sup>(1)</sup>( $\gamma$ ) and A<sup>(2)</sup>( $\gamma$ ) are tabulated functions which are given for both attractive and repulsive potentials in reference 21, and  $\Gamma$  denotes the gamma function.

# KKQ = 8 Lennard-Jones (6-12) Potential

This option calculates cross sections for the Lennard-Jones (6-12) potential,

$$\phi(\mathbf{r}) = 4 \in \left[ \left( \frac{\sigma}{\mathbf{r}} \right)^{1/2} - \left( \frac{\sigma}{\mathbf{r}} \right)^6 \right]$$
(15)

-141-

The parameters are

$$VV(1) = \epsilon/k \text{ in } ^{\alpha}K$$
$$VV(2) = \sigma \text{ in } \overset{\alpha}{A}$$
$$VV(3) = 501.$$

Tabulated collision integrals for the Lennard-Jones potential are compiled into the code in the TL, ØMEGA1, ASTAR, and BSTAR arrays, starting at location 501.

1

1

Ŧ

## <u>KKQ = 9</u> <u>Scaling of Previously Computed Cross Sections for Other</u> <u>Species</u>

This option allows cross sections calculated for one pair of species to be used also for other species, possibly with a constant multiplying factor. The cross sections are calculated from the formulas

$$\bar{\Omega}^{(1,1)} = c_1 \quad \bar{\Omega}^{(1,1)}_{ij}$$

$$\bar{\Omega}^{(2,2)} = c_1 c_2 \quad \bar{\Omega}^{(2,2)}_{ij}$$

$$B^* = c_3 B^*_{ij}$$
(16)

where the  $C_k$  are constant factors and the subscript ij indicates cross sections calculated previously for the pair (i,j). The parameters for the option are

- VV(1) = i = first index of previously calculated cross section
- VV(2) = j = second index of previously calculated cross section
- $VV(3) = C_{1}$
- $VV(4) = C_2$
- $VV(5) = C_3$

-142-

The second secon

#### KKQ = 10 Empirical Mixing Rule

I

This option calculates the cross sections for a pair of unlike species i,j (i  $\neq$  j) from the empirical mixing rule

$$\overline{\Omega}_{ij}^{(l,s)} = \frac{1}{4} \left[ \sqrt{\overline{\Omega}_{(l,s)}} + \sqrt{\overline{\Omega}_{(l,s)}} \right]^2$$
(17)

The values calculated from (17) are then added to the previously calculated cross sections for the pair. This option uses no VV parameters.

#### KKQ = 11 Fairing Option

This option modifies the previously calculated cross value for a species pair according to the formula

$$\overline{\widehat{\Omega}} \begin{array}{c} (l,s) \\ new \end{array} = f(T) \quad \overline{\widehat{\Omega}} \begin{array}{c} (l,s) \\ old \end{array}$$
(18a)

where f(T) is a linear fairing factor given by

$$f(T) = \max \left[0, \min \left(1, \frac{T-T_0}{T_1-T_0}\right)\right]$$
 (18b)

Use of this option thus permits different forms to be used for the cross section in different parts of the temperature range, with a smooth transition between them. The parameters are

- $VV(1) = T_0 = temperature at which the <math>\overline{\Omega}$  are to be set to zero
- $VV(2) = T_1 = temperature at which the <math>\overline{\Omega}$  are to remain unchanged

#### KKQ = 12 Generalized Mixing Rule

This option is a generalization of the empirical mixing rule KKQ = 10 in which the cross sections are calculated from

-143-

the formula

$$\overline{\Omega}^{(\ell,s)} = \frac{1}{4} \left\{ \sqrt{\overline{\Omega}^{(\ell,s)}}_{ij} + \sqrt{\overline{\Omega}^{(\ell,s)}}_{mn} \right\}^2$$
(19)

!

1

;

1

where i, j, and m, n are any specified molecular pairs. The parameters are

$$VV(1) = i$$
  
 $VV(2) = j$   
 $VV(3) = m$   
 $VV(4) = n$ 

I

### KKQ = 13 Scaling of Previously Computed Cross Section for the Same Species Pair

This option calculates <u>one</u> of the averaged collision cross sections  $\overline{\Omega}^{(l,s)}$  for a pair of species from previously calculated values of a different  $\overline{\Omega}^{(l,s)}$  for the pair. In terms of the notation

$$\bar{\Omega}_{ij}^{(1)} \equiv \bar{\Omega}_{ij}^{(1,1)}$$

$$\bar{\Omega}_{ij}^{(2)} \equiv \bar{\Omega}_{ij}^{(2,2)}$$

$$\bar{\Omega}_{ij}^{(3)} \equiv B^{*}_{ij} \bar{\Omega}_{ij}^{(1,1)}$$
(20)

the option calculates a new value of the cross section  $\tilde{\Omega}^{(m)}_{ij}$  ij

$$\overline{\Omega}_{ij}^{(m)} = C \ \overline{\Omega}_{ij}^{(n)}$$
(21)

3 -

where m and n are two specified integers in the range  $1 \le m \le 3$ ,  $1 \le n \le 3$  and C is a constant. The newly calculated value of

-144-

 $\Omega$  (m) ij then replaces the previous value of this cross section. The parameters are

1

$$VV(1) = m$$
  
 $VV(2) = n$   
 $VV(3) = C$ 

# KKQ = 14 Multiplication by a Constant

This option multiplies previously calculated values of the collision cross sections for a pair of species by a constant factor, according to the formulas

$$\bar{\Omega}_{ij}^{(1,1)} = c_{1} \bar{\Omega}_{ij}^{(1,1)}$$

$$\bar{\Omega}_{ij}^{(2,2)} = c_{1}c_{2} \bar{\Omega}_{ij}^{(2,2)}$$

$$B_{ij}^{*} = c_{3}B_{ij}^{*} \text{ (old)}$$
(22)

The option is the same as KKQ = 9, except that here the cross sections for a species pair are obtained from previously calculated values for the same pair, instead of from values for a different pair as in KKQ = 9. Parameters for the option are

$$vv(1) = c_1$$
  
 $vv(2) = c_2$   
 $vv(3) = c_3$ 

NATA contains default provisions for estimating some cross sections if they are not specified explicitly in the precoded data or the input. If none of the specified steps in the cross section calculation is applicable to a particular pair, and if both of the species are ions, then the effective Coulomb cross sections(8) are used. If one species is neutral and the other ionized, the formulas

-145-

$$\bar{\Omega}^{(1,1)} = A^{(1)} T^{-0.4}$$

$$\bar{\Omega}^{(2,2)} = A^{(2)} T^{-0.4}$$

$$B^{*} \bar{\Omega}^{(1,1)} = A^{(3)} T^{-0.4}$$
(23)

give the default option. The constants  $A^{(m)}$  are compiled into the program in the locations otin MEGA1 (996), ASTAR(996), andBSTAR(996) for m = 1, 2, 3, respectively. If both species areneutral and unlike (not the same species), the cross sectionsare estimated using the mixing rule (17). However, if crosssection data are not specified for like-like collisions of aneutral species, the code does not attempt to provide estimatesof the cross sections, but returns an error message and terminates the care.

The variables and arrays used to store the precoded cross section data are as follows:

| Variable           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name               | Dimension | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NNKQ               | 1         | Number of steps in the cross section cal-<br>culation for which data are specified.                                                                                                                                                                                                                                                                                                                                                                                                          |
| NNQ (M)            | 100       | Index specifying the option to be used<br>in the Mth step of the cross section cal-<br>culation (see above).                                                                                                                                                                                                                                                                                                                                                                                 |
| NNQ (M)            | 100       | Number of species pairs to which the cross sections calculated in the Mth step are to be applied (NNQ(M) $\leq$ 5).                                                                                                                                                                                                                                                                                                                                                                          |
| IIM (K)<br>JJM (K) | 5<br>5    | Indices of the species to which the cross<br>sections calculated in the mth step are<br>to be applied, referred to the master list<br>of species (Section 4.2). In these vari-<br>able names, m denotes an integer which is<br>part of each name. Thus, for example,<br>II23(2) and JJ23(2) are the indices de-<br>fining the second pair of species to which<br>the cross sections calculated in the 23rd<br>step are applied. There are 100 arrays<br>of each type, c.g., II1(K), II2(K),, |

-146-

II100(K). There are NNQ(m) pairs of indices set for each step m. Only pairs with  $IIm(K) \leq JJm(K)$  are used in the calculations.\*

ţ.

VVm(K) 5 Parameter values for the mth step of the cross section calculation (see discussion of KKQ options above). There are 100 of these arrays, VV1(K), ..., VV100'K).\*

ISEQ(L) 100 Sequencing array for specifying the order in which the defined steps are carried out during the cross section calculation. The index M or m in the preceding arrays is given by M = ISEQ(L), where L = 1, 2, 3, ..., NNKQ.

TL1000Additional array storage for cross sec-ØMEGA11000tion data. The data compiled into theseASTAR1000arrays are discussed below.BSTAR1000

To prevent the data statements used in setting the TL,  $\emptyset$ MEGAl, ASTAR and BSTAR arrays from exceeding the 20-card limit in Fortran IV, these arrays are equivalenced to 40 arrays each of dimension (100), as follows:

| TL1(1)  | equivalent | to | TL(1)       |
|---------|------------|----|-------------|
| TL2(1)  | equivalent | to | TL(101)     |
| •       | •          |    |             |
| •       | •          |    |             |
| •       | •          |    |             |
| TL10(1) | equivalent | to | TL(901)     |
| TL11(1) | equivalent | to | ØMEGAl(1)   |
| •       | •          |    |             |
| •       | •          |    |             |
| •       | •          |    |             |
| TL20(1) | equivalent | to | ØMEGA1(901) |

1

Į.

\*The arrays IIm(K), JJm(K), VVn(K) are the same as the input arrays Im(K), Jm(K), Vm(K) discussed in Section 2.4. The shorter names are used for input to keep the defining statement for namelist TINPUT within the 20-card limit allowed by Fortran IV.

| TL21(1) | equivalent | to | ASTAR (1)   |
|---------|------------|----|-------------|
| •       |            | •  |             |
| •       |            | •  |             |
| •       |            | •  |             |
| TL30(1) | equivalent | to | ASTAR (901) |
| TL31(1) | equivalent | to | BSTAR(1)    |
| •       |            | •  |             |
| •       |            | •  |             |
| •       |            | •  |             |
| TL40(1) | equivalent | to | BSTAR (901) |

The precoded data for cross section calculations will now be tabulated and documented. These data have been taken from previous transport property studies at Avco Systems Division and have not been revised during the present program. Thus, in some cases the values used in NATA may not represent the latest available data. Nevertheless, the data in the code should be generally satisfactory for most engineering applications.

For most of the important cross sections, with the exceptions of those involving carbon-containing species, the precoded cross section data should be accurate to within 20 to 40 percent. For the carbon-containing species, very few data are currently available on the collision cross sections at high temperatures, and the values used in NATA are based for the most part on rough estimates. In general, it is believed that these estimates should be accurate to within about a factor of two. For some interactions involving minor species such as the metastable states of He and Ar, nominal cross sections are used which may be in error by large factors. However, because of the low concentrations of the species in question, the effects of these cross section errors upon the calculated gas transport properties are small.

The sources of the cross section data used in NATA are indicated, for each pair of species in the master list, in Table XVII. In this table, the numbers preceded by A in the third column refer to the notes at the end of the table, while the numbers in the final column indicate the steps in the cross section calculation where computations for the given species pair are specified. The steps defined in the compiled-in data for the standard species are summarized in the cross section edit, figure 16. In the many cases where the final column contains no entry for a species pair, one of the default options is used as indicated in the Notes.

# TABLE XVII

\$

1

| SOURCES OF | CROSS | SECTION | DATA |
|------------|-------|---------|------|
|------------|-------|---------|------|

| Species<br>Indices | Species<br>Names                              | Notes                                  | Computation<br>Steps |
|--------------------|-----------------------------------------------|----------------------------------------|----------------------|
|                    |                                               | ······································ |                      |
| 1-1                | e <sup>-</sup> - e <sup>-</sup>               | Al                                     |                      |
| 1-2                | e" - N                                        | A2                                     | 43,50                |
| 1-3                | e <b>-</b> - 0                                | A2                                     | 46,50                |
| 1-4                | e - Ar                                        | A5, A6, A7, A8                         | 48                   |
| 1-5                | $e^{-} - N_{2}$                               | A2                                     | 45,50                |
| 1-6                | e" - 0                                        | A2                                     | 47,50                |
| 1-7                | e <sup>-</sup> - NÓ                           | A2                                     | 44,50                |
| 1-8                | $e^ NO^+$                                     | Al                                     |                      |
| 1-9                | $e^ N^+$                                      | Al                                     |                      |
| 1-10               | e" - 0+                                       | Al                                     |                      |
| 1-11               | $e^{-} - N_{2}^{+}$                           | Al                                     |                      |
| 1-12               | $e^{-} - O_{2}^{2+}$                          | Al                                     |                      |
| 1-13               | e – CŹ,                                       | A5,A6,A9                               | 42,49                |
| 1-14               | e – CO                                        | A5, A6, A9                             | 41,49                |
| 1-15               | e - CN                                        | A11                                    | 44,49                |
| <b>1-</b> 16       | e - He                                        | <b>A8</b>                              | 55                   |
| 1-17               | e – C                                         | A10                                    | 43,49                |
| 1-18               | e <b>" -</b> C <sup>+</sup>                   | Al                                     |                      |
| 1-19               | e – He+                                       | Al                                     |                      |
| <b>1-</b> 20       | $e^ Ar^+$                                     | Al                                     |                      |
| 1-21               | e – He( <sup>3</sup> S)                       | A33                                    | 55                   |
| <b>1-</b> 22       | e <sup>-</sup> - He( <sup>1</sup> S)          | A33                                    | 55                   |
| 1-23               | e <sup>-</sup> - He <sub>2</sub> <sup>+</sup> | Al                                     |                      |
| 1-24               | $e^ He_2$                                     | A33                                    | 55                   |
| <b>1-</b> 25       | e CO <sub>t</sub>                             | Al                                     |                      |
| <b>1-</b> 26       | e - Ar*(m)                                    | A14                                    |                      |
| 1-27               | $e^{-}$ - Ar*(r)                              | A14                                    |                      |
| 1-28               | $e^ Ar_2^+$                                   | Al                                     |                      |
| 2-2                | N - N                                         | A2,A4                                  | 12,60                |
| 2-3                | N - O                                         | A2                                     | 14,26                |
| 2-4                | N - Ar                                        | A12                                    | 4                    |
| 2-5                | $N - N_2$                                     | A2                                     | 13,26                |
| 2-6                | $N - 0_{2}^{2}$                               | A2                                     | 18,22,39             |
| 2-7                | $N - N\overline{O}$                           | A2                                     | 13,24,25             |
| 2-8                | $N - NO^{+}$                                  | A14                                    |                      |
| 2-9                | $N - N^{+}$                                   | A2,A3                                  | 10,60                |
| 2-10               | $N - O^+$                                     | A2                                     |                      |
| 2-11               | $N - N_2^+$                                   | Λ14                                    |                      |
| 2-12               | $N - O_2^{2+}$                                | A14                                    |                      |

-149-

1.00

-

| Species | Species                   | Notes      | Computation |
|---------|---------------------------|------------|-------------|
|         | names                     |            | sceps       |
| 2-13    | $N = CO_{2}$              | רומ        |             |
| 2-14    | N = CO                    | בבג<br>גוג |             |
| 2-15    | N - CN                    | A11        | 13 24 25    |
| 2-16    | N - He                    | A13        | 13,24,23    |
| 2-17    | N - C                     | A18.A19    | 57          |
| 2-18    | $N - C^+$                 | A14        | 5,7         |
| 2-19    | $N - He^+$                | A14        |             |
| 2-20    | $N - Ar^+$                | A14        |             |
| 2-21    | $N - He(^{3}S)$           | A13        |             |
| 2-22    | $N - He(l_S)$             | A13        |             |
| 2-23    | $N - He_2^+$              | A14        |             |
| 2-24    | $N - He_2^2$              | A13        |             |
| 2-25    | $N \sim co^{f}$           | A14        |             |
| 2-26    | $N - Ar^{*}(m)$           | A13        |             |
| 2-27    | $N - Ar^{*}(r)$           | A13        |             |
| 2-28    | $N - Ar_{2}^{+}$          | A14        |             |
| 3-3     | 0 - 0 2                   | A2.A4      | 21.61       |
| 3-4     | 0 - Ar                    | A13        | /           |
| 3-5     | $O - N_2$                 | A2         | 18.38       |
| 3-6     | $0 - 0_{2}^{2}$           | A2         | 22          |
| 3-7     | O - NO                    | A2         | 18.22.39    |
| 3-8     | $O \sim NO^+$             | A14        |             |
| 3-9     | $O - N^+$                 | A2         |             |
| 3-10    | o – o <sup>+</sup>        | A2,A3      | 11.61       |
| 3-11    | $0 - N_{2}^{+}$           | A14        | •           |
| 3-12    | $0 - 0_2^{2+}$            | A14        |             |
| 3-13    | $o - c\bar{o}_2$          | A13        |             |
| 3-14    | 0 - CO <sup>-</sup>       | A13        |             |
| 3-15    | O - CN                    | All        | 18,22,39    |
| 3-16    | O - He                    | A13        |             |
| 3-17    | 0 – C                     | A18,A20    | 5,8,9       |
| 3-18    | 0 <b>-</b> C <sup>+</sup> | A14        |             |
| 3-19    | $O - He_{+}^{+}$          | A14        |             |
| 3-20    | $O - Ar^{T}$              | A14        |             |
| 3-21    | $O - He(^{3}S)$           | A13        |             |
| 3-22    | $O - He(^{L}S)$           | A13        |             |
| 3-23    | 0 - He <sub>2</sub> +     | A14        |             |
| 3-24    | $0 - He_2^2$              | A13        |             |
| 3-25    | 0 – CO <sup>T</sup>       | A14        |             |
| 3-26    | O - Ar*(m)                | A13        |             |

TABLE XVII (Cont'd)

Ţ

A.

**z**.

ł

-150-

ىد كېچېرى ، يىدالامىيىلاقلار ، بىرسۇلەرسلالەكا، بىف غار باراتلاكىغا 6.6 بىگەمىر ، ئەندا قار

| Species    | Species                            | Notes       | Computation |
|------------|------------------------------------|-------------|-------------|
| Indices    | Names                              |             | DLeps       |
| 3-27       | 0 - Art(r)                         | 213         |             |
| 3-28       | $0 = Ar_{0}^{+}$                   | A14         |             |
| <u>Δ-Δ</u> | Ar - Ar                            | A17.A4      | 1.62        |
| 4-5        | $Ar - N_{a}$                       | A12         | 3           |
| 4-6        | $Ar = 0_{0}$                       | A13         | •           |
| 4-7        | Ar - NO                            | A13         |             |
| 4-8        | $Ar - NO^+$                        | A14         |             |
| 4-9        | $Ar - N^+$                         | A14         |             |
| 4-10       | $Ar - 0^+$                         | A14         |             |
| 4-11       | $Ar - N_2^+$                       | A14         |             |
| 4-12       | Ar - $0_{2}^{2+}$                  | A14         |             |
| 4-13       | $Ar - CO_2$                        | A13         |             |
| 4-14       | $Ar - CO^2$                        | A13         |             |
| 4-15       | Ar - CN                            | A13         |             |
| 4-16       | Ar - He                            | A13         |             |
| 4-17       | Ar - C                             | A13         |             |
| 4-18       | $Ar - C^+$                         | A14         |             |
| 4-19       | Ar - He <sup>+</sup>               | A14         |             |
| 4-20       | $Ar - Ar^+$                        | A17         | 2,62        |
| 4-21       | Ar - He $(^{3}S)$                  | A13         |             |
| 4-22       | Ar - He $(^{1}S)$                  | A13         |             |
| 4-23       | $Ar - He_2^+$                      | A14         |             |
| 4-24       | $Ar - He_2$                        | A13         |             |
| 4-25       | $Ar - CO^{\ddagger}$               | A14         |             |
| 4-26       | $Ar - Ar^{*}(m)$                   | A13         |             |
| 4-27       | $Ar - Ar^{*}(r)$                   | A13         |             |
| 4-28       | $Ar - Ar_2^+$                      | A14         |             |
| 5-5        | $N_2 - N_2$                        | A2          | 17,38       |
| 5-6        | $N_2 - O_2$                        | A2          | 20          |
| 5-7        | $N_2 - N\bar{O}$                   | A2          | 17,19,37    |
| 5-8        | $N_2 - NO^+$                       | A14         |             |
| 5-9        | $N_2^2 - N_+^+$                    | A14         |             |
| 5-10       | N <sub>2</sub> - 0'                | A14         |             |
| 5-11       | $N_2 - N_2^+$                      | A14         |             |
| 5-12       | $N_2 - O_2^+$                      | A14         |             |
| 5-13       | $\mathbb{N}_2^-$ - $\mathbb{CO}_2$ | A22,A24,A26 | 16,34       |
| 5-14       | $N_2 - CO$                         | A22,A23     | 15,29       |
| 5-15       | $N_2^ CN$                          | A11         | 17,19,37    |
| 5-16       | N <sub>2</sub> – He                | A13         |             |
| 5-17       | $N_2 - C_1$                        | A13         |             |
| 5-18       | $N_2 - C^+$                        | А14         |             |

TABLE XVII (Cont'd)

ş

-151-

··· ··

マクノスポーティップ

| Species        | Species                          | Notes   | Computation        |
|----------------|----------------------------------|---------|--------------------|
| <u>Indices</u> | Names                            |         | Steps              |
|                |                                  |         |                    |
| 5-19           | $N_2 - He_1$                     | A14     |                    |
| 5-20           | $N_2 - Ar'$                      | A14     |                    |
| 5-21           | $N_2 - He(3S)$                   | A13     |                    |
| 5-22           | $N_2 - He(LS)$                   | A13     |                    |
| 5-23           | $N_2 - He_2^{+}$                 | A14     |                    |
| 5-24           | $N_2 - He_2$                     | A13     |                    |
| <b>5-</b> 25   | $N_2 - CO^+$                     | A14     |                    |
| 5-26           | $N_2 - Ar^{(m)}$                 | A13     |                    |
| 5-27           | $N_2 - Ar^*(r)$                  | Al3     |                    |
| 5-28           | $N_2 - Ar_2$                     | A14     |                    |
| 6-6            | $0_2 - 0_2$                      | A2      | 23                 |
| 6-7            | $O_2 - NO_1$                     | A2      | 19,23,39           |
| 6-8            | $O_2 - NO^+$                     | A14     |                    |
| 6-9            | $0_2 - N^+$                      | A14     |                    |
| 6-10           | $o_2^ o^+$                       | A14     |                    |
| 6-11           | $0_{2} - N_{2}^{+}$              | A14     |                    |
| 6-12           | $o_2^{-} - o_2^{-+}$             | A14     |                    |
| 6-13           | $o_2^ co_2$                      | A22,A24 | 17,35              |
| 6-14           | $o_2^{-} - co^{-}$               | A22,A24 | 15,30              |
| 6-15           | $O_2 - CN$                       | All     | 19,23,39           |
| 6-16           | $O_2 - He$                       | A13     |                    |
| 6-17           | $o_2^2 - c_1$                    | A13     |                    |
| 6-18           | $o_2^ c^+$                       | A14     |                    |
| 6-19           | $O_2^ He_1^+$                    | A14     |                    |
| 6-20           | $O_2 - Ar_2$                     | A14     |                    |
| 6-21           | $O_{2}^{2} - \text{He}({}^{3}S)$ | A13     |                    |
| 6-22           | $O_2^2 - He(^1S)$                | A13     |                    |
| 6-23           | $0_{2}^{2} - He_{2}^{+}$         | A14     |                    |
| 6-24           | $O_2^2 - He_2^2$                 | A13     |                    |
| 6-25           | $o_3 - co^4$                     | A14     |                    |
| 6-26           | $O_2^2 - Ar^*(m)$                | A13     |                    |
| 6-27           | $0_{2}^{2} - Ar^{*}(r)$          | A13     |                    |
| 6-28           | $O_2^2 - Ar_2^+$                 | A14     |                    |
| 7-7            | $NO - NO^{2}$                    | A2      | 17, 19, 20, 23, 36 |
| 7-8            | $NO - NO^+$                      | A2      | 59,63              |
| 7-9            | $NO - N^{+}$                     | A14     | -                  |
| 7-10           | NO - 0 <sup>+</sup>              | A14     |                    |
| 7-11           | $NO - N_2^+$                     | A14     |                    |
| 7-12           | NO - $0_{2}^{2+}$                | A14     |                    |
| 7-13           | NO $-co_2$                       | A30     | 16,32              |
|                | <i>L A</i>                       |         | -                  |

TABLE XVII (Cont'd)

ļ

1

ţ

7

ţ

?

ļ

| Species        | Species                           | Notés                                  | Computation |
|----------------|-----------------------------------|----------------------------------------|-------------|
| <u>Indices</u> | Names                             | ************************************** | Steps       |
|                |                                   |                                        |             |
| 7-14           | NO - CO                           | A29                                    | 15,31       |
| 7-15           | NO – CN                           | A11                                    | 40          |
| 7-16           | NO - He                           | A13                                    |             |
| 7-17           | NO - C                            | A13                                    |             |
| 7-18           | NO $- C^+$                        | A14                                    |             |
| 7-19           | $NO - He^+$                       | A14                                    |             |
| 7-20           | $NO - Ar^+$                       | A14                                    |             |
| 7-21           | NO - He $(^{3}S)$                 | A13                                    |             |
| 7-22           | NO - He(ls)                       | A13                                    |             |
| 7-23           | $NO - He_2^+$                     | A14                                    |             |
| 7-24           | NO – $He_2$                       | A13                                    |             |
| 7-25           | NO – $CO^{\mp}$                   | A14                                    |             |
| 7-26           | NO - Ar*(m)                       | A13                                    |             |
| 7-27           | NO - Ar*(r)                       | A13                                    |             |
| 7-28           | $NO_{-}Ar_{2}^{+}$                | A14                                    |             |
| 8-8            | $NO^+ - N\bar{O}^+$               | Al                                     |             |
| 8-9            | $NO^+ - N^+$                      | Al                                     |             |
| 8-10           | $NO^+ - O^+$                      | Al                                     |             |
| 8-11           | $NO^{+} - N2^{+}$                 | Al                                     |             |
| 8-12           | $NO^{+} - O_{2}^{-+}$             | Al                                     |             |
| 8-13           | $NO^+ - CO_2$                     | Ai4                                    |             |
| 8-14           | $NO^+ - CO^2$                     | A14                                    |             |
| 8-15           | $NO^+$ - CN                       | A14                                    |             |
| 8-16           | $NO^+$ - He                       | A14                                    |             |
| 8-17           | $NO^+ - C$                        | A14                                    |             |
| 8-18           | $NO^+ - C^+$                      | Al                                     |             |
| 8-19           | NO <sup>+</sup> - He <sup>+</sup> | Al                                     |             |
| 8-20           | $NO^+ - Ar^+$                     | Al                                     |             |
| 8-21           | $NO^+ - He(^3S)$                  | A14                                    |             |
| 8-22           | $NO^+ - He(^+S)$                  | A14                                    |             |
| 8-23           | $NO^+ - He_2^+$                   | Al                                     |             |
| 8-24           | $NO^+ - He_2$                     | A14                                    |             |
| 8-25           | $NO^+ - CO^+$                     | Λl                                     |             |
| 8-26           | $NO^+ - Ar^*(m)$                  | A14                                    |             |
| 8-27           | $NO^+ - Ar*(r)$                   | A14                                    |             |
| 8-28           | $NO^{\tau} - Ar_2^{+}$            | Лl                                     |             |
| 9-9            | $N^{+} - N^{+}$                   | Al                                     |             |
| 9-10           | $N_{+}^{+} - O_{+}^{+}$           | λl                                     |             |
| 9-11           | $N^+ \sim N_2^+$                  | Λl                                     |             |
| 9-12           | $N^{+} - O_{2}^{2+}$              | Лl                                     |             |

TABLE XVII (Cont'd)

ł

.

· 1

· • •

, s**.** 

**P4** 

All a share as

7

-153-

an ing **kapa pa** 

| Species      | pecies                               | Notes | Computation |
|--------------|--------------------------------------|-------|-------------|
| Indices      | Names                                |       | Steps       |
|              |                                      |       |             |
| 9-13         | $N^+ - CO_2$                         | A14   |             |
| 9-14         | $N^+ - CO$                           | A14   |             |
| <b>9-</b> 15 | $N^+$ – CN                           | A14   |             |
| 9-16         | N <sup>+</sup> - He                  | A14   |             |
| 9-17         | $N^+ - C$                            | A14   |             |
| 9-18         | $N^+ - C^+$                          | Al    |             |
| 9-19         | $N^+ - He^+$                         | A1    |             |
| 9-20         | $N^+ - Ar^+$                         | Al    |             |
| 9-∠l         | $N_{+}^{+} - He(_{3}^{3}S)$          | A14   |             |
| 9-22         | N' - He(1S)                          | A14   |             |
| 9-23         | $N^+ - He_2^+$                       | A1    |             |
| 9-24         | $N^+ - He_2^2$                       | A14   |             |
| <b>9-2</b> 5 | $N^+ - CO^+$                         | Al    |             |
| 9-26         | $N^{+} - Ar^{*}(m)$                  | A14   |             |
| 9-27         | $N^+ - Ar^*(r)$                      | A14   |             |
| 9-28         | $N^+ - Ar_2^+$                       | Al    |             |
| 10-10        | $0^+ - 0^{+-}$                       | Al    |             |
| 10-11        | $O_{+}^{+} - N_{2}^{+}$              | F.T   |             |
| 10-12        | $o_{1}^{+} - o_{2}^{-+}$             | ΑL.   |             |
| 10-13        | $O_{1}^{+} - C\bar{O}_{2}$           | A14   |             |
| 10-14        | $0^+$ – CO                           | A 14  |             |
| 10-15        | $O^+ - CN$                           | A14   |             |
| 10-16        | 0 <sup>+</sup> - He                  | A14   |             |
| 10-17        | o+ - c                               | A14   |             |
| 10-18        | $0^{+} - C^{+}$                      | Al    |             |
| 10-19        | $O^+ - He^+$                         | Al    |             |
| 10-20        | $O^+$ - Ar <sup>+</sup>              | Al    |             |
| 10-21        | $O^{T} - \operatorname{He}({}^{3}S)$ | A14   |             |
| 10-22        | $0^{+} - He(1S)$                     | A14   |             |
| 10-23        | $0^{+} - He_{2}^{+}$                 | Al    |             |
| 10-24        | $O^+ - He_2$                         | A14   |             |
| 10-25        | 0 <sup>+</sup> - C0 <sup>+2</sup>    | Al    |             |
| 10-26        | $O^{+} - Ar^{*}(m)$                  | A14   |             |
| 10-27        | $0^{+} - Ar^{*}(r)$                  | A14   |             |
| 10-28        | $0^+ - Ar_2^+$                       | Al    |             |
| 11-11        | $N_{2_{+}}^{+} - N_{2_{+}}^{-+}$     | Al    |             |
| 11-12        | $N_2^{-+} - O_2^{}$                  | Лl    |             |
| 11-13        | $N_{2}^{-+} - C\bar{O}_{2}$          | A14   |             |
| 11-14        | $N_2^{-+} - CO^{}$                   | A14   |             |
| 11-15        | $N_2^+$ - CN                         | A14   |             |
| 11-16        | $N_2^+$ – He                         | A14   |             |

TABLE XVII (Cont'd)

1

ł

I

1

-154--

THE OF THE REPORT OF THE

------

PL., r

\* . . .

-

| Species | Species                                       | Notes       | Computation |
|---------|-----------------------------------------------|-------------|-------------|
| Indices | Names                                         |             | Steps       |
|         |                                               |             |             |
| 11-17   | $N_2^+ - C$                                   | A14         |             |
| 11-18   | $N_{2}^{-+} - C^{+}$                          | Al          |             |
| 11-19   | $N_2^{2+} - He^+$                             | Al          |             |
| 11-20   | $N_2^+ - Ar^+$                                | Al          |             |
| 11-21   | $N_{2}^{-+} - He(^{3}S)$                      | A14         |             |
| 11-22   | $N_{2}^{+} - He(1S)$                          | A14         |             |
| 11-23   | $N_2^{-+} - He_2^+$                           | Al          |             |
| 11-24   | $N_2^+ - He_2$                                | A14         |             |
| 11-25   | $N_{2}^{-+} - CO^{+}$                         | Al          |             |
| 11-26   | $N_{2}^{-+} - Ar*(m)$                         | A14         |             |
| 11-27   | $N_2^{-+}$ -Ar*(r)                            | A14         |             |
| 11-28   | $N_{2}^{-+} - Ar_{2}^{++}$                    | Al          |             |
| 12-12   | $0_2^{-+} - 0_2^{+}$                          | Al          |             |
| 12-13   | $o_2^{-+} - c\bar{o}_2$                       | A14         |             |
| 12-14   | $n_{2}^{-+} - co^{}$                          | A14         |             |
| 12-15   | $0_{2}^{-+} - CN$                             | A14         |             |
| 12-16   | 9 <mark>2<sup>+</sup> –</mark> Не             | A14         |             |
| 12-17   | $0_{2}^{+} - C_{1}$                           | A14         |             |
| 12-18   | $0_{2}^{-+} - C^{+}$                          | Al          |             |
| 12-19   | $0_2^{-+} - He^+$                             | Al          |             |
| 12 20   | $0_2^+$ Ar <sup>+</sup>                       | Al          |             |
| 12-21   | $0_2^{-+} - \text{He}(^3S)$                   | A14         |             |
| 12-22   | $O_2^{-+} - He(1S)$                           | A14         |             |
| 12-23   | $0_2^+ - He_2^+$                              | Al          |             |
| 12-24   | $0_2^+ - He_2^-$                              | A14         |             |
| 12-25   | 0 <sub>2</sub> <sup>+</sup> − c0 <sup>+</sup> | Al          |             |
| 12-26   | 0 <sub>2</sub> <sup>+</sup> - Ar*(m)          | A14         |             |
| 12-27   | $0_2^+ - Ar^*(r)$                             | A14         |             |
| 12-28   | $0_2^{-+} - Ar_2^{+}$                         | Al          |             |
| 13-13   | $co_2 - co_2$                                 | A22,A25,A27 | 16,33       |
| 13-14   | $co_2 - co^-$                                 | A31         | 15,28       |
| 13-15   | $CO_2 - CN$                                   | A11         | 16,32       |
| 13-16   | CO <sub>2</sub> - He                          | A13         |             |
| 13-17   | $co_2 - c_1$                                  | A13         |             |
| 13-18   | CO <sub>2</sub> − C <sup>+</sup>              | A14         |             |
| 13-19   | $CO_2^2$ - He <sup>+</sup>                    | . 4         |             |
| 13-20   | $CO_2^ Ar^+$                                  | 4           |             |
| 13-21   | $CO_2^{-}$ - He( <sup>3</sup> S)              | A13         |             |
| 13-22   | $CO_{2}^{-} - He(^{1}S)$                      | A13         |             |
| 13-23   | $CO_2^ Ho_3^+$                                | A14         |             |

TABLE XVII (Cont'd)

- 155-

| Species          | Species                | Notes       | Computation<br>Steps |
|------------------|------------------------|-------------|----------------------|
| Indices          | Manes                  |             | всера                |
| 13-24            | CO <sub>o</sub> - He   | A13         |                      |
| 13-25            | $co_2 - co^{\dagger}$  | A14         |                      |
| 13-26            | $CO_2 = Ar^*(m)$       | A13         |                      |
| 13-27            | $CO_2 - Ar^*(r)$       | A13         |                      |
| 13-28            | $CO_2 - Ar_2^+$        | A14         |                      |
| 14-4             | $c_{0} - c_{0}$        | A22.A23.A28 | 15.27                |
| 14-15            | CO - CN                | All         | 16.31                |
| 14-16            | CO - He                | A13         |                      |
| 14 10<br>14 - 17 | CO - C                 | A13         |                      |
| 14-18            | $c_{0} - c^{+}$        | A14         |                      |
| 14-19            | $CO - He^{+}$          | A14         |                      |
| 14-20            | $CO - Ar^{+}$          | A14         |                      |
| 14-20            | $CO - He(^{3}S)$       | A13         |                      |
| 14-22            | $CO - He(\frac{1}{S})$ | A13         |                      |
| 14-23            | $CO - Hen^+$           | A14         |                      |
| 14-24            | $CO - He_2$            | A13         |                      |
| 14-25            | $c_0 - c_0^{+}$        | A14         |                      |
| 14-26            | $CO - Ar^*(m)$         | A13         |                      |
| 14-27            | $CO - Ar^*(r)$         | A13         |                      |
| 14-28            | $CO - Arc^+$           | A14         |                      |
| 15-15            | CN - CN                | A11         | 40                   |
| 15-16            | CN - He                | A13         |                      |
| 15-17            | CN - C                 | A13         |                      |
| 15-18            | $CN - C^+$             | A14         |                      |
| 15-19            | $CN - He^{+}$          | A14         |                      |
| 15-20            | $CN - Ar^+$            | A14         |                      |
| 15-21            | $CN - He(^{3}S)$       | A13         |                      |
| 15-22            | CN - He(ls)            | A13         |                      |
| 15-23            | $CN - He^+$            | A14         |                      |
| 15-24            | $CN - He_{2}$          | A13         |                      |
| 15-25            | $CN - CO^{\ddagger}$   | A14         |                      |
| 15-26            | CN - Ar*(m)            | A13         |                      |
| 15-27            | $CN - Ar^{*}(r)$       | A13         |                      |
| 15-28            | $CN - Ar_{a}^{+}$      | A14         |                      |
| 16-16            | He - He                | A34,A4      | 51,57                |
| 16-17            | He - C                 | A13         | · - • - ·            |
| 16-18            | $He - C^+$             | A14         |                      |
| 16-19            | He - He <sup>+</sup>   | A35         | 53.57                |
| 16-20            | He $- Ar^+$            | A14         | /                    |
| 16-21            | He - He $(^{3}s)$      | A33         | 51.57                |
|                  |                        |             | 0                    |

TABLE XVII (Cont'd)

1

!

ł

ç

ŧ

1

•

•

P

t

1

ļ

| Species | Species                              | Notes        | Computation |
|---------|--------------------------------------|--------------|-------------|
| Indices | Namee                                | NULCO        | Stone       |
|         | Mailes                               |              |             |
| 16-22   | не – не ( <sup>1</sup> S)            | A33          | 51.57       |
| 16-23   | He $-$ He $+$                        | A33          | 53          |
| 16-24   | He $-$ He                            | A13          |             |
| 16-25   | He $- CO^{T}$                        | A14          |             |
| 16-26   | He - $Ar^*(m)$                       | A13          |             |
| 16-27   | He $-$ Ar*(r)                        | A13          |             |
| 16-28   | $He - Ar_{2}^{+}$                    | A14          |             |
| 17-17   | C - C                                | A18, A21, A4 | 5,6,60      |
| 17-18   | c – c <sup>+</sup>                   | A32          | 59,60       |
| 17-19   | С - Не <sup>+</sup>                  | A14          | •           |
| 17-20   | $C - Ar^+$                           | A14          |             |
| 17-21   | С – Не( <sup>3</sup> S)              | A13          |             |
| 17-22   | $C - He(^{1}S)$                      | A13          |             |
| 17-23   | $C - He_2^+$                         | A14          |             |
| 17-24   | $C - He_{2}$                         | A13          |             |
| 17-25   | c – co <del>f</del>                  | A14          |             |
| 17-26   | C - Ar* <u>(</u> m)                  | A13          |             |
| 17-27   | C - Ar* <u>(</u> r)                  | A13          |             |
| 17-28   | $C - Ar_2^+$                         | A14          |             |
| 18-18   | c+ - c <del>f</del>                  | Al           |             |
| 18-19   | C <sup>+</sup> - He <sup>+</sup>     | Al           |             |
| 18-20   | $C^+ - Ar^+$                         | Al           |             |
| 18-21   | $C^{+} - He(^{3}S)$                  | A14          |             |
| 18-22   | $C^{+} - He(^{1}S)$                  | A14          |             |
| 18-23   | $C^+$ - He <sub>2</sub> <sup>+</sup> | Al           |             |
| 18-24   | $C^+$ - He <sub>2</sub>              | A14          |             |
| 18-25   | C <sup>+</sup> − CO <sup>+</sup>     | Al           |             |
| 18-26   | $C^{+} - Ar^{*}(m)$                  | A14          |             |
| 18-27   | $C^+ - Ar^*(r)$                      | A14          |             |
| 18-28   | $C^+ - Ar_2^+$                       | Al           |             |
| 19-19   | $He^+ - He^+$                        | Al           |             |
| 19-20   | $He^+_+ - Ar^+$                      | Al           |             |
| 19-21   | He $-$ He $(^{3}S)$                  | A33          | 53,57       |
| 19-22   | $He^+ - He(^{\perp}S)$               | A33          | 53,58       |
| 19-23   | $He_{+}^{+} - He_{2}^{+}$            | Al           |             |
| 19-24   | $He_{\perp} - He_{2}^{-}$            | A33          | 53          |
| 19-25   | $He_{\pm}^{+} - CO^{+}$              | Al           |             |
| 19-26   | $He^{-}$ - Ar*(m)                    | A14          |             |
| 19-27   | $He^+ - Ar^*(r)$                     | A14          |             |
| 19-28   | $He^+ - Ar_2^+$                      | Al           |             |

TABLE XVII (Cont'd)

I

ł

I

Ţ

- 1

-157-

| Species       | Species                                                           | Notes       | Computation |
|---------------|-------------------------------------------------------------------|-------------|-------------|
| Indices       | Names                                                             |             | Steps       |
|               |                                                                   |             |             |
| 20-20         | $Ar^+ - Ar^+$                                                     | Al          |             |
| 20-21         | $Ar^{+}_{1} - He(^{3}S)$                                          | A14         |             |
| 20-22         | $Ar^{+} - He(1S)$                                                 | A14         |             |
| 20-23         | $Ar^+ - He_2^+$                                                   | Al          |             |
| 20-24         | $Ar^{+} - He_{2}^{-}$                                             | A14         |             |
| 20-25         | $Ar^+ - CO^{\pm}$                                                 | Al          |             |
| 20-26         | $Ar^+ - Ar^*(m)$                                                  | A14         |             |
| 20-27         | Ar <sup>+</sup> - Ar*(r)                                          | A14         |             |
| 20-28         | $Ar^+ - Ar_2^+$                                                   | Al          |             |
| 21-21         | не( <sup>3</sup> S) – ́Не( <sup>3</sup> S)                        | A33         | 51,58       |
| 21-22         | He( <sup>3</sup> S) - He( <sup>1</sup> S)                         | A33         | 51,58       |
| <b>21-2</b> 3 | $He(^{3}S) - He_{2}^{+}$                                          | A33         | 54          |
| 21-24         | $He(^{3}S) - He_{2}^{2}$                                          | A13         |             |
| 21-25         | $He(^{3}S) - CO^{4}$                                              | A14         |             |
| 21-26         | $He({}^{3}S) - Ar^{*}(m)$                                         | A13         |             |
| 21-27         | $He(^{3}S) - Ar*(r)$                                              | A13         |             |
| 21-28         | $He({}^{3}S) - Ar_{2}^{+}$                                        | A14         |             |
| 22-22         | $He(^{1}S) - He(^{1}S)$                                           | A33         | 52,58       |
| 22-23         | $\operatorname{He}(\frac{1}{S}) - \operatorname{He}_2^+$          | A33         | 54          |
| 22-24         | $He(1S) - He_2$                                                   | A13         |             |
| 22-25         | $He(^{1}S) - CO^{+}$                                              | <b>Al</b> 4 |             |
| 22-26         | $He(\frac{1}{3}S) - Ar*(m)$                                       | A13         |             |
| 22-27         | He(LS) - Ar*(r)                                                   | A13         |             |
| 22-28         | $He(^{1}S) - Ar_{2}^{+}$                                          | A14         |             |
| 23-23         | $\operatorname{He}_{2}^{+} \rightarrow \operatorname{He}_{2}^{+}$ | Al          |             |
| 23-24         | $He_2^+ - He_2^-$                                                 | A33         | 54          |
| <b>23-</b> 25 | $He_{2}^{-+} - CO^{+}$                                            | Al          |             |
| 23-26         | $He_{2}^{+} - Ar^{*}(m)$                                          | A14         |             |
| 23-27         | $He_{2}^{+} - Ar^{*}(r)$                                          | A14         |             |
| <b>2</b> 3–28 | $He_2^+ - Ar_2^+$                                                 | Al          |             |
| 24-24         | $He_2 - He_2$                                                     | A33         | 52          |
| 24-25         | He <sub>2</sub> - CO <sup>+</sup>                                 | A14         |             |
| 24-26         | $He_2 - Ar^*(m)$                                                  | A13         |             |
| 24-27         | $He_2 - Ar*(r)$                                                   | A13         |             |
| 24-28         | $He_2^ Ar_2^+$                                                    | A14         |             |
| 25-25         | $CO_{\pm} - CO_{\pm}$                                             | A1          |             |
| 25-26         | $CO^+ - Ar^*(m)$                                                  | <b>Al</b> 4 |             |
| 25-27         | $CO^{+} - Ar^{*}(r)$                                              | A14         |             |
| 25-28         | $CO^{+} - Ar_{2}^{+}$                                             | Al          |             |
| 26-26         | $Ar^{(m)} - Ar^{(m)}$                                             | A15         | 1,62        |

TABLE XVII (Cont'd)

------

| Species<br>Indices | Species<br>Names                                                | Notes      | Computation<br>Steps |
|--------------------|-----------------------------------------------------------------|------------|----------------------|
| 26.27              | $\lambda r t (m) - \lambda r t (r)$                             | גוא        |                      |
| 26-27              | $Ar^{*}(m) - Ar^{+}$                                            | A13<br>A14 |                      |
| 27-27              | $Ar^{*}(r) - Ar^{*}(r)$                                         | A15        | 1,62                 |
| 27-28              | $\operatorname{Ar}^{*}(\mathbf{r}) - \operatorname{Ar}_{2}^{+}$ | A14        |                      |
| 28-28              | $Ar_2^+ - Ar_2^{+2}$                                            | Al         |                      |

TABLE XVII (Cont'd)

Notes to Table XVII

- Al. Default option; uses effective Coulomb cross sections calculated from equations (100) of Volume I (ref. 1).
- A2. Reference 22.
- A3. Reference 23.

- A4. The self-diffusion coefficient for atoms is set equal to the atom-ion charge exchange cross section in calculating the internal thermal conductivity, in order to account approximately for the effects of resonant excitation energy exchange (see ref. 22).
- A5. Effective cross sections are used, based on curvefit to mobility data.
- A6. Reference 24.
- A7. References 25, 26, 27.
- A8. Reference 28.
- A9. Reference 29.
- Alo. For electron-carbon atom collisions, we assume a constant collision cross section  $\pi \overline{\Omega}(1,1) = \pi \overline{\Omega}(2,2) = 5 \times 10^{-16}$  cm<sup>2</sup>, in analogy to the case of e-N. This value appears to be consistent with available theoretical estimates (see ref. 30).

**-1**59**-**

All. The collision cross sections for CN have arbitrarily been set equal to the corresponding cross sections for NO.

Ţ

- Al2. Curvefit to data of reference 31.
- Al3. Default option; cross sections calculated from the empirical mixing rule, equation (17).
- Al4. Default option; cross sections arbitrarily set equal to the estimated values for  $N O^+$  collisions. See equation (23).
- Al5. Cross sections of excited argon arbitrarily assumed equal to those for the ground state atoms.
- Al6. Curvefit to data of reference 32.
- Al7. Reference 33.

ı.

- Al8. Cross sections estimated from an approximate perfect pairing calculation, with the parameters determined from available spectroscopic data and by analogy with the oxygen and nitrogen results (refs. 34-37).
- Al9. Reference 38.
- A20. Reference 39.
- A21. References 40, 41.
- A22. Cross sections obtained by fitting experimental transport property data below about  $1000^{\circ}$ K and extrapolating to higher temperatures assuming the same temperature dependence as for N<sub>2</sub>-N<sub>2</sub> collisions.
- A23. Reference 42.
- A24. References 43, 44.
- A25. Reference 45.
- A26. Reference 46.
- A27. Reference 47.

-160-

A28. Reference 48.

A29. Mean of CO-N<sub>2</sub> and CO-O<sub>2</sub> cross sections.

1

- A30. Mean of  $CO_2-N_2$  and  $CO_2-O_2$  cross sections.
- A31. Mean of CO-CO and CO<sub>2</sub>-CO<sub>2</sub> cross sections.
- A32. For C-C<sup>+</sup> collisions, the charge exchange cross section is arbitrarily set equal to the N-N<sup>+</sup> cross section, while the gas kinetic cross section is set equal to the N-O<sup>+</sup> value.
- A33. Cross sections of excited He arbitrarily assumed equal to those for ground-state He.
- A34. Reference 49.
- A35. Reference 50.

The precoded data for NNKQ, NNQ, IIm, JJm, VVm, and ISEQ can all be read or inferred from the cross section edit, figure 16. The steps are performed in the order listed. The first column in figure 16 is a counter for the steps in this order. The second column gives the values of the sequencing array, ISEQ. For the precoded data, ISEQ(L)=L. The third column gives the values of the option index, KKQ. The columns headed V(1),..., VV(5) list the parameter values for each step. Finally, the last column gives the pairs of species to which the step is applied. In some cases (e.g., steps 51 and 52), a step is repeated to circumvent the limit of five species pairs per step.

Table XVIII summarizes the precoded contents of the TL,  $\emptyset$ MEGAl, ASTAR, and BSTAR arrays. In the many cases in which "cross section table" is entered under "Remarks" the data are tabulated cross sections for use with the option KKQ=5. In these cases, the TL,  $\emptyset$ MEGAl, ASTAR, and BSTAR arrays contain data as specified above in the discussion of this option. For the indices 996-999 containing data for the power law interaction (KKQ=6), no data are stored in TL, and the data in the other arrays are as specified in equations (14).

-161-

| TAR, AND BSTAR ARRAYS      | Remarks     | TL contains values of $\alpha = \lambda n(A/kT)(1,1)/$<br>$\beta MEGAl contains corresponding \overline{\overline{\Omega}}(1,1)/$<br>$(4 \pi \alpha^2 \rho^2)$<br>ASTAR contains corresponding $\overline{\overline{\Omega}}^{(2,2)}/\overline{\overline{\Omega}}(1,1)$<br>BSTAR contains corresponding B* | Cross section table | Cross section table | Cross section table | Cross section table          | Cross section table | Cross section table | Cross section table | Cross section table                       |
|----------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|------------------------------|---------------------|---------------------|---------------------|-------------------------------------------|
| MEGAL. AS                  | Step        | 1                                                                                                                                                                                                                                                                                                          | 6                   | 43                  | 12                  | 13                           | 14                  | 15                  | 18                  | 19                                        |
| PRECODED DATA IN THE TL. Ø | Description | Exponential potential (KKQ=3)                                                                                                                                                                                                                                                                              | O-C interaction     | e"-N interaction    | N-N interaction     | N-N <sub>2</sub> interaction | N-O interaction     | N2-N2 interaction   | O-N2 interaction    | <sup>N</sup> 2-0 <sub>2</sub> interaction |
|                            | Index       | 1-50                                                                                                                                                                                                                                                                                                       | 51-52               | 71-72               | 001-18              | 101-120                      | 121-140             | 141-160             | 161-180             | 161-200                                   |

1

:

1

ł

TABLE XVIII

-162-

TABLE XVIII (Cont'd)

ı

7

1

| Step   Remarks | 21 Cross section table | 22 Cross section table | 23 Cross section table | 41 Cross section table | 42 Cross section table                     | 44 Cross section table | 45 Cross section table | 46 Cross section table | 47 Cross section table       | 48 Cross section table | 55 Cross section table |
|----------------|------------------------|------------------------|------------------------|------------------------|--------------------------------------------|------------------------|------------------------|------------------------|------------------------------|------------------------|------------------------|
| Description    | 0-0 interaction        | 0-02 interaction       | 02-02 interaction      | eCO interaction        | e <sup></sup> -CO <sub>2</sub> interaction | eNO interaction        | e"-N2 interaction      | eO interaction         | e <sup>0</sup> 2 interaction | e-Ar interaction       | eHe interaction        |
| Index          | 201-220                | 221-240                | 241-260                | 261-280                | 587-300                                    | 301-320                | 321-340                | 341 <b>-</b> 360       | 361-380                      | 381-400                | 471-490                |

ł

ļ

1

ł

1

2

-1.6.3-

TABLE XVIII (Concl'd)

2

|             | т <sup>2</sup> )                                                                                                                                                                                                        | ۵<br>۵                                               |                                |                                |                                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Remarks     | TL contains values of $T^* = \psi'(\epsilon/k)$<br>$\phi$ MEGAl contains corresponding $\tilde{\Omega}(1,1)/($<br>ASTAR contains corresponding $\tilde{\Omega}(2,2)/\tilde{\Omega}($ BSTAR contains corresponding $B^*$ | Default for neutral-ion interaction; se<br>eq. (23). | Power law interaction, KKQ = 6 | Power law interaction, KKQ = 6 | Power law interaction, KKQ = 6 |
| Step        | }                                                                                                                                                                                                                       | 2<br>1                                               | 11                             | 10                             | IJ                             |
| Description | Lennard-Jones (6-12) potential                                                                                                                                                                                          | N-O <sup>+</sup> interaction                         | 0-0 <sup>+</sup> interaction   | N-N <sup>+</sup> interaction   | C-C, N-C, and O-C interactions |
| Index       | 501-537                                                                                                                                                                                                                 | 996                                                  | 266                            | 866                            | 666                            |

# -164-

ţ

#### 4.7 Nozzle and Channel Geometries

The geometric profiles for ten standard NASA Johnson Space Center nozzles and two rectangular channels are compiled into NATA. These data are indexed as explained in the definitions of NOZZLE and NPRØFL in Section 2.3 (Group 4). NATA users at other laboratories can advantageously replace these data with geometric descriptions applicable to their own facilities.

The geometry of an axisymmetric nozzle is defined by a single profile. That of a rectangular channel requires two profiles for its description. As explained in Section 4.3 of Volume I (ref. 1), each profile is represented by an analytical curvefit containing up to 12 sections. The sections are joined end to end with value and slope continuity. At least two sections must be upstream of the throat, and at least two must lie donwstream. The throat must be a section boundary. Each section in a profile fit may have one of three forms:

(1) Straight Line (ISHAPE = 1)  

$$_{x}(x) = P_{1} + P_{2} x$$
 (24a)

- (2) Circular Arc Convex Downward (ISHAPE = 2)  $y(x) = P_1 - \sqrt{P_3^2 - (x-P_2)^2}$  (24b)
- (3) Circular Arc Convey Upward (ISHAPE = 3)

$$y(x) = P_1 + \sqrt{P_3^2 - (x - P_2)^2}$$
 (24c)

In the second and third forms, P3 is the radius of the circular arc and  $(P_2, P_1)$  are the x and y coordinates, respectively, of the circle center. The geometric summary in figure 4 gives an illustration of a NATA profile curvefit. The inlet position listed is the starting point for boundary layer calculations. The column headed "ATPI(J)" contains the downstream boundaries of the sections. The parameters P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub> are listed as PARAM(1,J), PARAM(2,J), PARAM(3,J), respectively

-165-

The precoded profile data are stored in an array ZPRP(I,NOZZLE), dimensioned (64,20). The dimensions allow as many as 20 compiled-in profiles. For convenience in adding to or altering the precoded data, ZPRP is equivalenced to 20 singly dimensioned arrays (ZP1(I), ZP2(I), etc., as follows:

| ZP1(1)  | equivalent to ZPRP(1,1)       |
|---------|-------------------------------|
| •       | •                             |
| •       | •                             |
| •       | •                             |
| ZP20(1) | •<br>equivalent to ZPRP(1,20) |

Thus, ZP1 contains the precoded data for N $\emptyset$ ZZLE = 1, ZP2 those for N $\emptyset$ ZZLE = 2, and so forth. The data in each ZPn array are as follows:

| Array Element | Definition                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
| ZPn(1)        | Throat radius (cm)                                                                                                              |
| ZPn(2)        | Starting point for boundary layer calculations (negative value in cm upstream of the throat).                                   |
| ZPn(3)        | Number of profile sections upstream of the throat.*                                                                             |
| ZPn (4)       | Number of profile sections downstream of the throat.*                                                                           |
| ZFn(4+I)      | For $I = 1$ to 12, ISHAPE value for the Ith pro-<br>file section.*                                                              |
| SPn(16+I)     | For $I = 1$ to 11, the downstream boundary of<br>the Ith profile section in centimeters from<br>the throat (negative upstream). |

\*These integer data are stored as real values, increased by 0.1 in each case to ensure reliable rounding down to the original integer values when the data are used.

-166-

| Array Element | Definition                                                                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZPn (24+3I+K) | For $K = 1$ to 3 and $I = 1$ to 12, the Kth parameter value $P_{K}$ (see eqs. 24) for the Ith profile section. The parameters having length dimension are given in centimeters. |
| ZPn(64)       | Facility name (Hollerith data)                                                                                                                                                  |

ţ

The precoded data for standard channels are stored in an array CP(I,ICHAN), dimensioned (5,5). CP is equivalenced to five singly dimensioned arrays, CP1(I), CP2(I),..., CP5(I). each of which contains or can contain the data for a channel. For example, CP1(I) contains the data for ICHAN = 1. The contents of these arrays are defined as follows:

| Array Element  | Definition                                                                                                                                                       |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>C</b> Pn(1) | NPRØFL(1), the index specifying the precoded<br>data for the first profile of the channel;<br>these data are stored in ZPRP(I,NFRØFL(1))<br>for I = 1 to 64.     |
| CPn(2)         | NPRØFL(2), the index specifying the precoded data for the second profile of the channel.                                                                         |
| CPn(3)         | Channel name (Pollerith data).                                                                                                                                   |
| CPn(4)         | Index (1 or 2) specifying the profile which<br>diverges from the axis least rapidly downstream<br>of the throat (corresponds to NBL in Section<br>2.3, Group 4). |
| CPn(5)         | Facility name (Hollerith data).                                                                                                                                  |

NATA includes precoded data for two channels, as indicated in the definition of ICHAN in Section 2.3 (Group 4).

Figures 47 to 59 erc plots showing the throat regions of all of the precoded profiles. Each of these figures shows a 15.24-cm (6-inch) long portion of a profile. The profile actually continues indefinitely far to the right and left of the figure boundaries;

-167-

FIGURE 47 - PROFILE FOR DCA 1.90-cm THROAT (NØZZLE=1)



# DCA 0.75-INCH THROAT

1

٢

-168-

-----


DCA 1.5-INCH THROAT

3

ł

1

1

FIGURE 48 - PROFILE FOR DCA 3.81-cm THROAT (NØZZVE=2)

ŧ

T

!

-169-

~1



MRA 2.25-INCH NOZZLE

1

1

1

FIGURE 49 - PROFILE FOR MRA 5.72-cm THROAT (NØZZLE=3)

! !

ļ

ł

>

~170-



ι.

ł

1

FIGURE 50 - PROFILE FOR MRA 2.54-cm THROAT (NØZZLE=4)

1 1

-----

!

1

>

-171-



1

ł

FIGURE 51 - PROFILE FOR EOS 0.81-cm THROAT (NØZZLE=5)

ļ

1

ŧ

~~~

-172-



FIGURE 52 - PROFILE FOR EOS 1.97-cm THROAT (NØZZLE=6)

1

1 1

!

1

>

1

I



FIGURE 53 - PROFILE FOR MRA 1.90-cm THROAT (NØZZLE=7)

.

1

1

ŗ

MRA 0.75-INCH THROAT

!

.

► T ] [

-174-

----

البرام متراجا

-------

-----

----



FIGURE 54 - PROFILE FOR MRA 3.81-cm THROAT (NØZZLE=8)

1

ŧ

1

:

1

-1"5-



FIGURE 55 - PROFILE FOR 10 MW 5.72-cm THROAT (NØZZLE=9)

I

1 1

, j

> 1

ł

i

.

,

-176-

a a star a st



1

I.

FIGURE 56 - PROFILE FOR EOS 2.77-cm THROAT (NØZZLE=10)

1

1

ľ

ł

5

-177-

FIGURE 57 - FIRST PROFILE FOR T12 AND T22 CHANNELS (NPRØFL=11)

1

1

ţ

t

I



DCA T12 CHANNEL, PROFILE 1

-178-

FIGURE 58 - SECOND PROFIL: FOR T12 CHANNEL (NPRØFL=12)

-

Ţ

;



÷

-179-



FIGURE 59 - SECOND PROFILE FOR T22 CHANNEL (NPRØFL=13)

1

1

1

;

1

ł

ł

>

-180-

3

the program uses as much of the mathematically defined profile as it needs in each problem. The plots shown in figures 47-59 were produced by the NOZFIT code, an auxiliary computer program for setting up NATA-type profile curvefits from data provided by nozzle design drawings. A user's manual for NOZFIT is included in the present report (Appendix D).

The profiles as used in NATA, and as shown in the figures, differ in several respects from the profiles of the actual nozzle hardware:

- The NATA profiles expand conically to the left (in the upstream direction), while the actual nozzles have finite-diameter plenum or arcchamber radii.
- (2) Sharp corners in the actual nozzle profiles are rounded in the NATA fits, to provide continuity of the profile slope (dy/dx) as required by the code. A standard 0.127 cm (50-mil) rounding radius is used, except in cases where a larger radius has proved necessary for code reliability.
- (3) In the fits for many of the nozzles, sections of constant radius near the throat are represented as conical, usually with a 3° convergence half angle. This is done to avoid instabilities in the nonequilibrium solution (Section 4.3, Volume I).

## APPENDIX A

### REACTION DATA FOR THE HELIUM AND ARGON MODELS

This appendix documents the reaction system: and the electronic nonequilibrium parameters assumed in the standard gas models for helium (IGAS = 4) and argon (IGAt = 3). In addition to chemical nonequilibrium these models include effects of nonequilibrium excitation of the gases by treating each of the important excited states as a separate species. Approximate reaction parameters for the important reactions among these states are then obtained from a survey of the available literature.

The species and parameter values used in the models are given in Tables XIX, XX, XXI, and XXII. The reasons for choice of the tabulated values are discussed below.

# A.1 Helium Model.

<u>Elastic collisions</u> -- The simplest type of collision process occurring in a gas is the elastic collision in which kinetic energy is transferred from one particle to another without any change in the internal structure or excitation of the particles. Although such collisions obtiously do not contribute to the species production term  $\dot{r}_j$  in equation (321a) of Volume I, the kinetic energy transferred between electrons and heavy particles in elastic collisions can be important in determining the net chargy gain term  $\dot{q}_e$  for the electron gas. Under the issumption that the electrons and heavy particles have Mixwellian velocity distributions corresponding to the temperatures  $T_e$  and T, respectively, it can be shown (ref. 51) that the contribution to the electron energy gain term  $\dot{q}_e$  in equation (321c) (Volume I) due to elastic collisions is given to a very good approximation by the formula\*

$$\dot{q}_{elas} = \sum_{j=2}^{n} \epsilon_{j,elas} \frac{N_{\gamma j,elas}}{N_0}$$
 (25)

\*It is assumed in equation (25) and throughout this Appendix that the species j = 1 re-resents the electrons.

-182-

ORIGINAL PAGE IS OF POOR QUALITY

TABLE XIX

1

ł

r

:

ŧ

THERMOCHEMICAL DATA FOR HELIUM SPECIES

| Xo.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e_1}$ $\omega_{$ |                                       | <b></b>  |                          |                                               |                                               |                                                                | 20                                                                       | 2                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Xo.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e_1}$ $\omega_{e_1}$ $(e_1^m, 1)$ $(X)$ $X^n$ 1 $e^-$ Electron0.022 $Weight$ $(em^-)$ $(em^-)$ $(M^-)$ $(X^n, 1)$ $X^n$ 2HeGround-state helium atom0.011883He( <sup>1</sup> S)Metagtable helium atom0.01884He( <sup>1</sup> S)Metagtable helium atom19.8133885HeStatable helium atom20.6091886HeIs2s <sup>1</sup> SMetagtable helium moteule17.93731809.938.87.71024386He2Mesatable helium molecule17.93731809.938.87.7102431.06587He2 <sup>+</sup> Ground-state helium molecule17.93731809.9357.211.2241.0887He2 <sup>+</sup> State helium molecular22.19021698.5357.211.2241.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erence                                | f. 6     | f. 6                     | .9 °J                                         | £. 6                                          | f. 6                                                           | 9, 12,                                                                   | 9, 12,                                                                   |
| Xo.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e_1}$ $\omega_{e_2}$ $B_{e_1}$ $(c_m^-1)$ <th>Ref</th> <th>2</th> <th>Re</th> <th>Re</th> <th>Re</th> <th>Re</th> <th>Refs.</th> <th>Refs.</th>                                                                                                                                                                                                                                                                                                                                                                                                  | Ref                                   | 2        | Re                       | Re                                            | Re                                            | Re                                                             | Refs.                                                                    | Refs.                                                                    |
| XO.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e,t}$ $B_{e,t}$ $B_{e,t}$ $(cm^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ۲.<br>(۲.)                            |          |                          |                                               |                                               |                                                                | 1.045                                                                    | 1.08                                                                     |
| No.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e_1}$ $\omega_{e_2}$ $B_{e_1}$ $\omega_{e_2}$ $B_{e_1}$ $\omega_{e_2}$ $B_{e_1}$ $B_{e_2}$ $B_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (T E)                                 |          |                          |                                               |                                               |                                                                | . 243                                                                    | . 224                                                                    |
| No.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e_1}$ $\omega_{e_2}$ 1e^-Electron0.02 $(cm^-)$ $(cm^-)$ $(cm^-)$ 2HeGround-state helium atom0.01 $(cm^-)$ $(cm^-)$ 3He( <sup>3</sup> s)Metastable helium atom0.01 $(cm^-)$ $(cm^-)$ 4He( <sup>1</sup> s)Metastable helium atom19.8133 $(cm^-)$ $(cm^-)$ 5He <sup>+</sup> Is2s <sup>5</sup> sSound-state atom20.6091 $(cm^-)$ 6He <sup>2</sup> Ground-state atomic ion24.5802 $(cm^-)$ 38.87He2 <sup>+</sup> Ground-state helium molecule17.93731809.938.87He2 <sup>+</sup> Ground-state helium molecular22.19021698.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bel<br>(cm <sup>2</sup> 1)            |          |                          |                                               |                                               |                                                                | 7.710                                                                    | 7.211                                                                    |
| No.SymbolSpecies IdentificationGround-StateStatistical $\omega_{e_1}^{o_2}$ 1e^-Electron0.02 $(cm^-)$ 2HeGround-state helium atom0.01 $(cm^-)$ 3He( <sup>3</sup> s)Metastable helium atom0.01 $(cm^-)$ 3He( <sup>1</sup> s)Metastable helium atom19,8133 $(cm^-)$ 4He( <sup>1</sup> s)Metastable helium atom19,8133 $(cm^-)$ 5He <sup>+</sup> Ground-state atomic ion20.6091 $(cm^-)$ 6He2Metastable helium molecule17.93731809.97He2 <sup>+</sup> Ground-state helium molecular22.19021698.57He2 <sup>+</sup> ion He2 <sup>+</sup> $X \cdot \Sigma_{u}^{+}$ 1698.51698.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wexe<br>(cm <sup>-1</sup> )           |          |                          |                                               |                                               |                                                                | 38.8                                                                     | 35                                                                       |
| No.SymbolSpecies IdentificationGround-StateStatistical1 $e^-$ Electron0.022HeGround-state helium atom0.013He( $^3$ S)Metastable helium atom0.013He( $^1$ S)Metastable helium atom19.81334He( $^1$ S)Metastable helium atom20.60915He <sup>+</sup> Ground-state atomic ion24.58026He2 $a \sum_{i=2}^{i}$ )Metastable helium molecule17.93737 $He_2^+$ Ground-state helium molecular22.19027 $He_2^+$ forund-state helium molecular22.1902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ω <sub>e</sub><br>(cm <sup>-1</sup> ) |          |                          |                                               |                                               |                                                                | 1809.9                                                                   | 1698.5                                                                   |
| Xo.SymbolSpecies IdentificationGround-State1 $e^-$ Electron0.02HeGround-state helium atom0.03He( $^3$ S)Metastable helium atom19.8134He( $^1$ S)Metastable helium atom19.8135HeState atomic ion20.6096He2Ground-state atomic ion24.5807He2Ground-state helium molecule17.9377He2Ground-state helium molecular22.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Statistical<br>Weight                 | ъ        | ч                        | m                                             | -1                                            | 7                                                              | m                                                                        | 2                                                                        |
| Xo.SymbolSpecies Identification1 $e^-$ Electron1 $e^-$ Electron2HeGround-state helium atom3He( $^3$ S)Metastable helium atom4He( $^1$ S)Metastable helium atom5He( $^1$ S)Metastable helium atom6He( $^1$ S)Metastable helium atom7He2 $a^3\Sigma_4^+$ )7He2 $a^3\Sigma_4^+$ )7He2foound-state helium molecule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ground-State<br>Energy* (ev)          | 0.0      | 0.0                      | 19,813                                        | 20.609                                        | 24.580                                                         | 17.937                                                                   | 22.190                                                                   |
| Xo.         Symbol           1         e           1         e           2         He           3         He ( <sup>3</sup> S)           4         He ( <sup>1</sup> S)           5         He <sup>+</sup> 6         He <sup>2</sup> 7         He <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Species Identification                | Electron | Ground-state helium atom | Metastable helium atom<br>1s2s <sup>3</sup> s | Metastablo helium atom<br>1s2s <sup>1</sup> S | Ground-state atomic ion<br>He <sup>+</sup> (1s <sup>2</sup> S) | Metastable helium molecule $\operatorname{He}_2(\alpha^3 \Sigma_4^{-1})$ | Ground-state helium molecular ion $\text{He}_2^+$ ( X ${}^3\Sigma_4^+$ ) |
| .0. 1 0 0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Symbol                                | ۵        | He                       | He ( <sup>3</sup> S)                          | не ( <sup>1</sup> s)                          | He+                                                            | He 2                                                                     | He2+                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.                                   | 1        | 2                        | m                                             | 4                                             | 'n                                                             | Q                                                                        | ٢                                                                        |

\*For molecular species, the tabulated ground-state energy is the energy of the lowest vibrational level, v = 0.

ł

.

. . . . . . . . . . . . .

もないという

2

(.3

RIGINAL PAGE IS

.

.

¢

1 1 - 1-2

TABLE XX

1

1

:

i

ļ

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •1    |                                                                                     | REACTI                                         | ON RATE P             | ARAMETCE            | S FOR            | HELIUM                             |                                    |                        |                   |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|---------------------|------------------|------------------------------------|------------------------------------|------------------------|-------------------|----|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                     | Forwar<br>k <sub>f</sub> = A(T <sub>j</sub> /1 | d Reaction 04 OK)7 of | on Rate<br>exp(-E/R | ( <sup>f</sup> 0 | Reverse                            | Bner.                              | JY Transfer T          | erms (kcal/mole)  |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion . | Reaction                                                                            | Б.А.                                           | ٤                     | E/R<br>(ok)         | ąŗ               | Reaction<br>Rate <sup>C</sup> , kr | et -                               | ر<br>ب<br>ب            | •₽<br>₩           | ġr |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He <sup>+</sup> + e <sup>-</sup> + e - Fie ( <sup>3</sup> S) + e <sup>-</sup>       | $5.46 \times 10^{21}$                          | -4.3                  | 0.0                 | e                | 2                                  | 109,89                             | 109.89                 | .0                | •  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | ie⁺ + e⁻⊥ e → ie ( <sup>1</sup> S) + e <sup>-</sup>                                 | $1.92 \times 10^{21}$                          | -4.3                  | 0.0                 | ¢                | 7                                  | 91.54                              | 91.54                  | ·                 |    |
| $ \begin{split} & \mbox{I} e^{-1} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} \\ & \mbox{I} e^{-1} \mbox{I} \mbox{I} e^{-1} \mbox{I} e^{-1} \mbox{I} e^{-1} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | He⁺ + rī-≯He ( <sup>3</sup> 5)                                                      | 1.27 × 10 <sup>11</sup>                        | -0.81                 | 0.0                 | 0                | o                                  | -3/2 R <sub>0</sub> T <sub>e</sub> | 1                      | 109.69 + 3/2 ROTe | 1  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Ee <sup>+</sup> + c <sup>-</sup> He( <sup>1</sup> S)                                | 3.30 × 10 <sup>10</sup>                        | - 0. 85               | 0.0                 | •                | 0                                  | -3/2 R <sub>0</sub> T <sub>e</sub> | ł                      | 91.54 + 3/2 RoTe  | 1  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 1e++ e-+ Ee                                                                         | 0                                              | -0.47                 | 0.0                 | U                | 0                                  | -3/2 R <sub>0</sub> Te             | 1                      | 566.6 + 3/2 R0Te  | I  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He( <sup>3</sup> S) + e <sup>-</sup> → He + e <sup>-</sup>                          | 8.0 × 10 <sup>14</sup>                         | - 0. 25               | 640.                | Q                | ñ                                  | 456,73                             | 456,73                 | .0                |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He ( <sup>1</sup> S) + e <sup></sup> He + e <sup>-</sup>                            | 8.0 × 10 <sup>14</sup>                         | - 0, 25               | 640.                | 0                | 2                                  | 475.0H                             | 475.0.3                | .0                | •  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He( <sup>1</sup> S) + e <sup>-</sup> →He( <sup>3</sup> S) + e <sup>-</sup>          | 3.65 × 10 <sup>16</sup>                        | - 0, 5                | •                   | Ű                | 7                                  | 18,35                              | 18,35                  |                   | .0 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He $(^{3}S)$ + He $(^{3}S)$ $\rightarrow$ He + He <sup>+</sup> + e <sup>-</sup>     | 1.87 × 10 <sup>15</sup>                        | 0.167                 |                     | σ                | 2                                  | 346,84                             | 346.84                 | •                 |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He $(^{3}S)$ + He $(^{1}S)$ -> He + Ho <sup>+</sup> + e <sup>-</sup>                | 3.05 :: 10 <sup>15</sup>                       | 0.167                 | •                   | ð                | 1                                  | 365.19                             | 365,19                 |                   | •  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | He ( <sup>1</sup> S) + He ( <sup>1</sup> S) - He + He <sup>+</sup> + e <sup>-</sup> | 6.28 x 10 <sup>15</sup>                        | 0.167                 | •                   | ъ                | ~                                  | 383,54                             | 383,54                 | .0                | •  |
| $\begin{aligned} & \operatorname{He}^{-3}(5) + 2\operatorname{He} \rightarrow \operatorname{He}^{-5} + \operatorname{He} & 5.2 \times 10^{14} & 0.5 & 0.0 & g & 1 & 0. & 0. & 0. & 0. \\ & \operatorname{He}^{+} + \operatorname{He} - \operatorname{He}^{-2} + \operatorname{He} & 3.92 \times 10^{16} & 0. & 0.0 & g & 1 & 0. & 0. & 0. & 0. \\ & \operatorname{He}^{-2} + e^{-2} - \operatorname{He}^{-2} + e^{-2} & 1.54 \times 10^{21} & -4.3 & 0.0 & e & 2 & 98.04 & 98.04 & 0. & 0. \\ & \operatorname{He}^{-2}^{+} + e^{-2} - \operatorname{He} + e^{-2} & 5.13 \times 10^{20} & -4.3 & 0.0 & e & 2 & 458.27 & 458.27 & 6. & 0. \\ & \operatorname{He}^{-2}^{+} + e^{-2} - \operatorname{He}^{-3}(5) + \operatorname{He} & 2.26 \times 10^{14} & 0.0 & 0.0 & e & 2 & 458.27 & 458.27 & c. & 0. \\ & \operatorname{He}^{-2}^{+} + e^{-2} - \operatorname{He}^{-1}(5) + \operatorname{He} & 7.5 \times 10^{13} & 0.0 & 0.0 & e & 1 & -3/2 \ \operatorname{R}_{0}^{-1} & e^{-3/2} \ $ |       | Ha (1S) + He -> 2He                                                                 | 5.2 × 10 <sup>10</sup>                         | 0.0                   | 800.                | σ                | 0                                  | •                                  | 1                      | 475.08            | 1  |
| $He^{+} + He^{-} He^{-} + He^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Не( <sup>3</sup> S) + 2Hе→ He <sub>2</sub> + He                                     | 5.2 × 10 <sup>14</sup>                         | 0°2                   | 0.0                 | σ                |                                    | •                                  | •                      |                   |    |
| $He_2^+ + e^- + He_2^- + e^- = 1.54 \times 10^{21} -4.3  0.0  e = 2  98.04  98.04  98.04  0.0  0.$ $He_2^+ + e^- + He + e^-  5.13 \times 10^{20} -4.3  0.0  e = 2  458.27  458.27  0.0  0.$ $He_2^+ + e^- + He^{-1}(35) + He  7.5 \times 10^{13}  0.0  0.0  e = 1  -3/2 \ R_0 Te^- & 0.  0.$ $He_2^+ + e^ + He^{-1}(5) + He  7.5 \times 10^{13}  0.0  0.0  e = 1  -3/2 \ R_0 Te^- & -3/2 \ R_0 Te^- & 0.  0.$ $He_2^- + e^ 2He^{-1}(5) + He^- + e^-  1.87 \times 10^{15}  0.0  0.0  0.0  e = 1  -3/2 \ R_0 Te^- & -3/2 \ R_0 Te^- & 0.  0.  0.  0.  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | He <sup>+</sup> + He + He -> He2 <sup>+</sup> + He                                  | 3.92 × 10 <sup>16</sup>                        | •                     | 0.0                 | br               | н                                  | •                                  | ò                      | .0                | •  |
| $He_2^+ + \vec{e^-} + He^+ + \vec{e^-} = 5.13 \times 10^{20} -4.3 = 0.0 = 2 = 2 = 458.27 = 458.27 = 0.$ $He_2^+ + \vec{e^-} + He^{-3/2} + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | He2 <sup>+</sup> + e <sup>-</sup> + e <sup>-</sup> + e <sup>-</sup>                 | 1.54 × 10 <sup>21</sup>                        | -4.3                  | 0.0                 | U                | 7                                  | 98.04                              | 98.04                  |                   | •  |
| $He_2^{+} + e^{-} He^{(3S)} + He = 2.26 \times 10^{14} = 0.0 = 0.0 = 0.0 = 1 = -3/2 R_0 Te = -3/2 R_0 Te = 0. = 0.$ $He_2^{+} + e^{-} He^{(1S)} + He = 7.5 \times 10^{13} = 0.0 = 0.0 = 1 = -3/2 R_0 Te = -3/2 R_0 Te = 0. = 0.$ $He_2^{+} + e^{-} -2He^{+} + e^{-} = 8.0 \times 10^{14} = -0.25 = 640. = 2 = 413.48 = 413.48 = 0. = 0.$ $He_2^{-} + He^{-} + e^{-} = 1.87 \times 10^{15} = 0.167 = 0. = 9 = 2 = 260.35 = 260.35 = 260.35 = 0. = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | He2 <sup>+</sup> + e <sup>-</sup> + e <sup>-</sup> + He + e <sup>-</sup>            | 5.13 × 10 <sup>20</sup>                        | -4.3                  | 0.0                 | Đ                | ~                                  | 458.27                             | 458.27                 | <b>.</b>          | ò  |
| $He_{2}^{+} + e^{-} \rightarrow He^{1S} + He^{1S} + He^{1S} + He^{2S} \times 10^{13} = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | He2 <sup>+</sup> + e→He(3s) + He                                                    | 2.26 × 10 <sup>14</sup>                        | 0.0                   | 0.0                 | Ð                | -1                                 | -3/2 R <sub>0</sub> Te             | -3/2 R <sub>0</sub> Te |                   | •  |
| $He_{2} + e^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | He2 <sup>+</sup> + e -> He ( <sup>1</sup> S) + He                                   | 7.5 × 10 <sup>13</sup>                         | 0.0                   | 0.0                 | ¢                | -1                                 | -3/2 R <sub>0</sub> Te             | -3/2 R <sub>0</sub> Te | .0                | •  |
| He2 + He2 -> 3He + He <sup>+</sup> + e 1.87 x 10 <sup>15</sup> 0.167 0. g 2 260.35 260.35 0. 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | He2 + e2He + e                                                                      | 8.0 × 10 <sup>14</sup>                         | -0.25                 | 640.                | ¢                | 6                                  | 413.48                             | 413.48                 | .0                | •  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | He2 + He2 - 3He + He <sup>+</sup> + e                                               | 1.87 × 10 <sup>15</sup>                        | 0.167                 | •                   | Ð                | 2                                  | 260.35                             | 260,35                 | 0.                | ۰. |

Units are  $cm^3/mole-sec$  for two-body reactions and  $cm^6/mole^2$ -sec for three body reactions. ŋ

,д υ

indicates reaction rate calculated using the electron temporature. g indicates reaction rate calculated using the gas temperature.
indicates reverse reaction calculated from detailed balance using the gas temperature
indicates reverse reaction calculated from detailed balance using the electron temperature
indicates no reverse reaction or reverse reaction neglected.

TABLE XXI

."

•

÷

Ţ

. ; ;

,

•

:

1

1 1

THERMOCHEMICAL DATA FOR ARGON SPECIES

| The second s | the second s | and the second se |                                                                                               |                                                                                                   |                                                                                         | ش م <sub>ار</sub> مرد می واند بر <del>ایک مسط</del> عات ک                   |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Reference                                                                                                      |                                                                                                                | Moore <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Moore <sup>6</sup>                                                                            | Moore <sup>6</sup>                                                                                | Moore <sup>6</sup>                                                                      | Teng and<br>Conway <sup>13</sup>                                            |
| Ğе<br>(Ă)                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                                                                                   |                                                                                         | 2.2                                                                         |
| Be<br>(cm <sup>-1</sup> )                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                                                                                   |                                                                                         | 0.174                                                                       |
| ωe<br>(cm <sup>-1</sup> )                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                                                                                   |                                                                                         | 80                                                                          |
| Statistical<br>Weight                                                                                          | 2                                                                                                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                                             | v                                                                                                 | v                                                                                       | 2                                                                           |
| Ground-State<br>Energy* (ev)                                                                                   | 0.0                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.55                                                                                         | 11.62                                                                                             | 15.755                                                                                  | 14.615                                                                      |
| Species Identification                                                                                         | Electron                                                                                                       | Ground-state argon<br>atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metastable argon atom<br>(4s <sup>3</sup> P <sub>2</sub> and 4s <sup>3</sup> P <sub>0</sub> ) | Resonant state argon<br>atom (4s <sup>3</sup> P <sub>1</sub> and 4s <sup>1</sup> P <sub>1</sub> ) | Ground-state argon<br>atomic ion<br>(3p <sup>5 2P</sup> 3/2 and 3p <sup>5 2P</sup> 1/2) | Ground-state argon mol-<br>ecular ion $(X \stackrel{2}{\sim} \sum_{u}^{+})$ |
| Symbol                                                                                                         | υ                                                                                                              | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ar* (m)                                                                                       | Ar*(r)                                                                                            | Ar <sup>+</sup>                                                                         | Ar2 <sup>+</sup>                                                            |
| .ov                                                                                                            | Ч                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                             | 4                                                                                                 | Ŋ                                                                                       | 9                                                                           |

\*For molecular species, the tabulated ground-state energy is taken to be the energy of the lowest vibrational level, v = 0.

ł

1

¥

•

-185-

TABLE XXII

ORIGINAL PAGE IS OF POOR QUALITY

ţ

• 7

â

------

# REACTION RATE PARAMETERS FOR ARGON

|                 |                                                                                            | $Forwa$ $k_f = A(T_i/$                                                   | rd Reacti<br>104 og 9 e                                                | on Rate<br>xp(-E/R <sub>0</sub> | r <sub>j</sub> ) | Reverse                           | Ener      | <b>JY Transfer T</b> | erms (kcal/mole)              |                                        |
|-----------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|------------------|-----------------------------------|-----------|----------------------|-------------------------------|----------------------------------------|
| Reaction<br>No. | Reaction                                                                                   | Aa                                                                       | 4                                                                      | ECR<br>(Crt)                    | ą.               | Reaction<br>Ratec, k <sub>r</sub> | د<br>د    | ٤r                   | ģ                             | år                                     |
| r4              | Ar <sup>+</sup> + e + c = Ar <sup>+</sup> (m) + e                                          | 3.6 × 10 <sup>21</sup>                                                   | -4.3                                                                   | 0.0                             | Ø                | 5                                 | 96 97     | 96.97                | .0                            | 0.                                     |
| N               | Art+ e + e == Ar*(r) + e                                                                   | 3.6 × 10 <sup>21</sup>                                                   | -4.3                                                                   | 0.0                             | U                | N                                 | 95.36     | 95.36                | ò                             | ••                                     |
| m               | Ar <sup>+</sup> + e <sup>-</sup> → Ar*(m)                                                  | 8.2 × 10 <sup>10</sup>                                                   | -0.81                                                                  | 0.0                             | Ø                | 0                                 | -0.7 RoTe | 1                    | 96.57 + 0.7 RoTe              | ł                                      |
| 4               | Ar++ e> Ar*(r)                                                                             | 8.2 × 10 <sup>10</sup>                                                   | -0.81                                                                  | 0.0                             | Ð                | 0                                 | -0.7 R0Te | ł                    | 95.36 + 0.7 R <sub>0</sub> Te | l                                      |
| ະກ              | Ar <sup>+</sup> + e <sup>-</sup> == Ar                                                     | 6.0 × 10 <sup>10</sup>                                                   | -0.5                                                                   | 0.0                             | ed               | 0                                 | -RoTe     | -P.OTe               | 363.33 + RoTe                 | 363.33 + R <sub>0</sub> T <sub>e</sub> |
| ę               | Ar*(m) + e <sup>-</sup> - Ar + e <sup>-</sup>                                              | 5.0 × 10 <sup>14</sup>                                                   | 0.5                                                                    | 0°0                             | Ø                | 6                                 | 266.35    | 266.35               | •                             | •0                                     |
| 2               | Ar*(r) + e <sup>-</sup> = Ar + e <sup>-</sup>                                              | 7.2 × 10 <sup>13</sup>                                                   | 0.5                                                                    | 0.0                             | Ű                | 8                                 | 267.97    | 267.97               | •                             | ••                                     |
| ω               | Ar*(r) + e == Ar*(m) + e                                                                   | 1.0 × 10 <sup>17</sup>                                                   | -0.5                                                                   | 0.0                             | Ø                | 6                                 | 1.60      | 1.60                 | •0                            | ••                                     |
| 6               | Ar*(r)> Ar                                                                                 | k <sub>f</sub> = 8.0 x 10                                                | 4/ /R =                                                                | 6°-1                            |                  | 0                                 | .0        | ļ                    | 267.97                        | ł                                      |
| 10              | Ar*(m) + Ar == Ar + Ar                                                                     | 3.5 x 10 <sup>9</sup>                                                    | 0.5                                                                    | 0.0                             | g                | ы                                 | •0        | •0                   | 0                             | ••                                     |
| 11              | Ar*(m) + 2Ar> 3Ar                                                                          | $8.7 \times 10^{14}$                                                     | -0.56                                                                  | 0.0                             | ט                | 0                                 | .0        | ••                   | 226.0                         | •0                                     |
| 12              | Ar*(r) + Ar == 2Ar                                                                         | 3.5 x 10 <sup>9</sup>                                                    | 0.5                                                                    | 0.0                             | δ                | н                                 | ••        | •0                   | •0                            | ••                                     |
| E               | Ar*(r) + 2Ar> 3Ar                                                                          | 8.7 × 10 <sup>14</sup>                                                   | -0.56                                                                  | 0.0                             | Ե                | 0                                 | •         | •0                   | 226.0                         | •0                                     |
| 14              | Ar <sup>+</sup> +2Ar == Ar <sub>2</sub> <sup>+</sup> + Ar                                  | 5.2 x 10 <sup>15</sup>                                                   | 0.75                                                                   | 0.0                             | b                | н                                 | •         | ••                   | ••                            | .0                                     |
| 15              | $Ar_2^+ + e^- \rightleftharpoons Ar^+(m) + Ar$                                             |                                                                          | 16 4                                                                   |                                 | ſ                | 7                                 | 70.68     | 70.68                | ò                             | •0                                     |
| 16              | $\operatorname{Ar}_{2}^{+} + e^{\overline{\tau}} \operatorname{Ar}(r) + \operatorname{Ar}$ | $\begin{cases} x_{f} = 2.8 \times 10 \\ \times 1 = \exp(-6) \end{cases}$ | (T <sub>e</sub> /10 <sup>-</sup><br>30 <sup>0</sup> K/T <sub>c</sub> ] | a•o- (Xo                        |                  | N                                 | 69.07     | 69.07                | °                             | .0                                     |
| 17              | Ar2 <sup>+</sup> + 2e <sup>-</sup> = 2Ar + e <sup>-</sup>                                  | 2.0 × 10 <sup>21</sup>                                                   | -4.3                                                                   | 0.0                             | ø                | 3                                 | 337.0     | 337.0                | •0                            | 0.                                     |
|                 |                                                                                            |                                                                          |                                                                        |                                 |                  |                                   |           |                      |                               |                                        |

Units are  $cm^3/mole^{-sec}$  for two-body reactions and  $cm^6/mole^2-sec$  for three body reactions.

rs

g indicates reaction rate calculated using the gas temperature. e indicates reaction rate calculated using the electron temporature. д

υ

indicates reverse reaction calculated from detailed balance using the gas temperature.
 indicates reverse reaction calculated from detailed balance using the electron temperature.
 indicates no reverse reaction or reverse reaction neglocted.

The forward rate constant for reaction 5 is reduced by a factor of 1/t whenever t = 3.4×10<sup>-17</sup> n<sub>Ar</sub> R is greater than 1, R is the nozzle radius in on and not the ground state Ar number density in cm<sup>-3</sup>. J

. . . . . . .

.

:

;

۲ ب

-----

.

-

-186-

where the sum extends over all heavy particles j present in the gas,

$$\epsilon_{j,elas} \equiv (2W_e/W_j) \frac{3}{2} R_0 (T - T_e)$$
 (26)

represents the mean energy gained by the electrons in  $N_0$  elastic collisions with particles of the jth species and

$$N_{ej,elas} \equiv n_e \nu_{ej} \equiv N_0 k_{ej,elas} (\rho \gamma_e) (\rho \gamma_j)$$
 (27)

represents the number of elastic collisions occurring between electrons and particles of the jth species per unit volume per unit time. Here

$$n_{j} = N_{0} \rho \gamma_{j}$$
<sup>(28)</sup>

is the number of particles of the jth species per unit volume,  $\nu_{ej} \equiv n_{j}k_{ej,elas}/N_{0}$  is the momentum transfer collision frequency for elastic collisions between electrons and particles of the jth species, and the reaction rate  $k_{ej,elas}$  is given by

$$k_{ej,elas} N_0 \equiv \frac{4}{3} \sqrt{\frac{8 R_0 T_e}{\pi W_e}} \overline{Q}_{ej}^{(1,1)}$$
 (29)

where

ł

$$\overline{Q}_{ej}^{(1,1)} \equiv \frac{1}{2(kT_e)^3} \int_0^\infty w^2 e^{-w/kT_e} \sigma_{ej}^m(w) dw \quad (30)$$

is the Maxwell-averaged momentum transfer cross section for elastic collisions between electrons and particles of species j at the temperature  $T_e$  and  $\sigma m(w)$  is the actual momentum transfer cross section as a function of electron energy w.

The integral in equation (30) has been evaluated approximately for electron-ion collisions in reference 51 to obtain

$$\overline{Q}_{ej}^{(1,1)} = \frac{\pi}{4} \frac{e^4}{(kT_e)^2} \ln\left[\frac{(kT_e)^3}{\pi_{n_e}e^6}\right]$$
(31)  
$$= \frac{2 \cdot 193 \times 10^{-6}}{T_e^2} \ln\left(\frac{6 \cdot 821 \times 10^7 T_e^3}{n_e}\right) \text{ cm}^2 \text{ for ions}$$

in the limit when the logarithm in (31) is much greater than 1, where  $T_e$  is in  $^{O}K$  and  $n_e$  in cm<sup>-3</sup>. This approximation should be adequate for most cases of interest in the present study.

To obtain the cross section  $\overline{Q}_{ai}^{(1,1)}$  for ground-state helium atoms, we have evaluated the integral in (30) numerically using literature data on the electron-helium momentum transfer cross section  $\sigma_{e-He}^{m}(w)$  as a function of electron energy. Below an electron energy of 5 ev, we have used the recent experimental measurements of Crompton, Elford, and Robertson (ref. 52), who give values of the electron-helium momentum transfer cross section He in the energy range from 0.008 ev to 6 ev with an esti-۳ m mated "experimental error of about 2 percent. Since accurate experimental data on the momentum transfer cross section are not presently available for electron energies above 6 ev, we have obtained the cross sections in this range by integrating the theoretical differential scattering cross sections of LaBahn and Callaway (ref. 53) over the scattering angle. On the basis of comparisons with experimental data at both low and high  $(\geq 100 \text{ ev})$  energies, LaBahn and Callaway estimate that their cross sections should Le accurate to within about 5% in this energy range.

Figure 60 shows the electron-helium momentum transfer cross sections obtained from the data of Crompton, Elford, and Robertson (ref. 52) and from LaBahn and Callaway (ref. 53) as a function of electron energy. The results of these two studies are in good agreement for electron energies near the upper limit of Crompton's measurements at 5 ev. For the present calculations, we have adopted the cross section values of Crompton, Elford, and Robertson below 5 ev and those of LaBahn and Callaway above 5 ev, as shown by the solid curve in figure 60. Using this adopted cross section, the integral in equation (30) was evaluated numerically to obtain the Maxwell-averaged electron-helium cross section  $\overline{Q}_{C-He}^{(1,1)}$  shown in figure 61 as a function of electron temperature. Since numerical errors in the integration process should be negligible, the accuracy of the averaged cross section shown in figure 61 is

-188-



1

1

ţ

••••

. . . . . .

. . . .



ţ

2

:

٢



ł

determined by the accuracy of the original cross section data used in the computations, and should be within the 2 percent experimental error of Crompton's measurements over most of the temperature range from 200 to 50,000°K shown in the figure.

Sufficient data to determine accurate elastic collision cross sections for other neutral helium species (i.e., molecules or excited atoms) do not appear to be available at present, and in our calculations we have simply taken the elastic cross sections for such species equal to the cross section for ground-state helium atoms shown in figure 61. Although not accurate in detail, this approximation should have a negligible effect on the final results of the calculations, since, for excited species, the energy transfer due to inelastic processes should almost always be much greater than the elastic losses. Thus whenever the concentration of excited species in the gas becomes large enough to significantly affect the average collision cross section for the gas in equations (25) to (30), the elastic energy loss term (25) will itself become negligible compared to inelastic loss processes in determining the overall energy balance for the electron gas.

In addition to the energy transferred to the heavy particles, elastic collisions also result in some energy loss from the electrons due to free-free radiative processes (bremstrahlung). In the present model these losses are included as part of the general collisional-radiative mechanism discussed below, so that a separate radiative loss term to account for them is not required in our treatment of elastic collisions. For the usual experimental situation in which the electron thermal energy is small compared to the recombination energy, free-free radiative loss from the gas (ref. 54).

<u>Collisional-radiative recombination</u>.- It now appears to be well established that the recombination of atomic ions in a helium plasma occurs primarily by the collisional-radiative process suggested by Bates, Kingston, and McWhirter (ref. 55), in which electrons recombine first into highly excited atomic states and are then stabilized by collisional and radiative transitions to lower states. Detailed calculations of the electronic recombination rates for this mechanism were carried out by Bates, Kingston, and McWhirter under the assumption that atomic excitation accounts for a negligible fraction of the total gas energy, and using approximate theoretical values for the required collisional excitation and de-excitation cross sections between excited atoms and electrons.



-191-

This calculation was later extended by Bates and Khare (ref. 56) to account for the stabilization of excited atoms by collisions with ground state neutral atoms, and by Bates, Bell, and Kingston (ref. 57) to obtain a more accurate determination of the population of atoms in metastable excited states. More recently, the original calculations of Bates, Kingston, and McWhirter have been repeated by Johnson and Hinnov (ref. 58) over a limited range of gas conditions using excitation cross sections adjusted to fit their experimental spectroscopic data on the population of excited state atoms in helium. The results of these calculations have been found to be in reasonably satisfactory agreement with available experimental data on the recombination of electrons in helium (refs. 58-60), within the accuracy of the rather large uncertainties presently existing both in the experimental data and in the cross sections assumed in the theoretical calculations. Although these uncertainties have as yet precluded a detailed quantitative test of the accuracy of the theoretical predictions, the basic correctness of the collisional-radiative model appears to be well substantiated by the general agreement between theory and experiment which has been obtained.

Although the collisional-radiative model of Bates, Kingston and McWhirter appears to be the most accurate theory presently available for treating the recombination of atomic ions in helium, there are several disadvantages to the direct use of this model in the NATA code. First, of course, the model requires rather lengthy numerical calculations to determine the electron recombination rate for any given set of gas conditions, so that direct use of this model in a nonequilibrium flow program such as the NATA code, in which reaction rates must be determined at many points, would lead to excessively long execution times for the code. Further, the collisional radiative model requires input data on a large number of excited state excitation and de-excitation cross sections which appear to be known less accurately at present (ref. 58) than are the overall electronic recombination rates (ref. 59). Thus, to obtain accurate results for the recombination rate from the model, it would probably be necessary to carry out a parametric study similar to that of Johnson and Hinnov (ref. 59) in which the excited state cross sections were adjusted to obtain the best fit between the theoretical predictions and available experimental data, and these adjusted cross sections were then used in the theoretical model to predict the electronic recombination rate as a function of gas conditions. Such a study would go beyond the scope of the present effort; and furthermore, since sufficient data are

-192-

DRIGINAL PAGE IS

not presently available to uniquely determine the large number of adjustable cross sections in the model, the final accuracy which could be obtained in the recombination rates by this approach is somewhat uncertain. For the present study we have, therefore, adopted a simpler and less ambitious approach in which the electronic recombination rates calculated by Bates, Kingston, and McWhirter are curvefitted as a function of electron temperature and number density by a simple analytic formula and the parameters in this curvefit are then adjusted to give recombination rates in agreement with experiment. Following Bowen and Park (ref. 19), we have taken this curvefit to be of the form

$$k_{f} = a_{1}T_{e}^{-\alpha_{1}}n_{e} + a_{2}T_{e}^{-\alpha_{2}}$$

where the  $a_i$  and  $\alpha_i$  are adjustable constants. This form has the correct theoretical dependence on electron density in the limits of high and low electron densities and, with the proper choice of constants, can be made to fit the calculations of Bates, Kingston, and McWhirter (ref. 55) at intermediate electron densities within about a factor of three over the entire range of conditions covered in their calculations (i.e., for electron temperatures from 250 to 64000°K and electron number densities from 10<sup>8</sup> to 10<sup>18</sup>/cm<sup>3</sup>). Although a more accurate approximation could no doubt be obtained, we feel that the accuracy of equation (32) is probably consistent with the accuracy of the other approximations made in the model, and should be adequate to give a good prediction of the overall heat balance and flow parameters for the arc tunnel. Details of the electron number .nd excited state distributions in the flow may be less accurately given, however.\*

(32)

The recombination of electrons in helium plasmas has been extensively studied experimentally (ref. 60). The status of these experimental studies has been summarized recently by Collins, et.al. (ref. 60). Initially, many of the experiments appeared to give discordant results, apparently because of uncertainties as to the exact ion involved in the recombination process

\*Note, however, that because of the steep dependence of the recombination coefficient on electron number density and temperature, the error in these parameters at any point in the flow resulting from the curvefit (32) will be much less than the error in the curvefit itself (ref. 61). and in the electron temperature. However, in the more recent experiments, in which care has been taken to identify the experimental parameters more exactly, a more consistent picture of the recombination process has begun to emerge, although some points still remain unclear. For the present study, we have adopted the recombination coefficient for electrons and atomic helium ions at high electron densities which has been recommended by Collins, et. al. (ref. 60) on the basis of a fit to their own experimental data and earlier data in which the ions involved appeared to be clearly identified (ref. 59). This yields for the high density portion of the curvefit (32),

$$k_{f1} = 7.1 \times 10^{-20} (T_e/300^{\circ}K)^{-4.3} n_e \text{ cm}^3/\text{sec}$$
 (33)

for the recombination of electrons and atomic He<sup>+</sup> ions.

In the low electron density region, electronic recombination rates are controlled by the direct radiative recombination of electrons and positive ions, as discussed in detail, for example, by Bates & Dalgarno (ref. 62). A fit to the theoretical calculations of Burgess and Seaton (ref. 63) gives the recombination rates for He<sup>+</sup> ions in this region as follows:

$$k_{f} = 6.3 \times 10^{-14} (T_{e}/10^{4} \circ K)^{-0.85} cm^{3}/sec$$
 (34a)

for recombination into excited singlet states of the He atom,

$$k_f = 2.10 \times 10^{-13} (T_e/10^4 \text{ oK})^{-0.81} \text{ cm}^3/\text{sec}$$
 (34b)

for recombination into excited triplet states of the He atom, and

$$k_f = 1.59 \times 10^{-13} (T_e/10^4 \text{ oK})^{-0.47} \text{ cm}^3/\text{sec}$$
 (34c)

for direct radiative recombination into the ground state He atom.

To determine the remaining parameters required for the recombination of electrons and  $He^+$  ions in our reaction rate model (equations (320) and (321) in Vol. I), it is necessary to specify the species formed in the recombination reaction and the fraction of the recombination energy going into the electron gas and into radiation. Although recombination occurs initially into highly excited atomic states, Bates et. al (ref. 55) have shown that the net change in population of these states is negligible under conditions for which the collisional-radiative model is applicable, so that the state of the plasma can be described completely over times of interest for macroscopic flow problems by giving simply the net rates of recombination into the ground state helium atom and the two metastable excited states He (ls2s  ${}^{3}S$ ) and He (ls2s  ${}^{1}S$ ). Further, it has been pointed out by Bates, Bell, and Kingston (ref. 57) that, under optically thick conditions, practically all recombining electrons in a helium plasma will pass through one of the metastable excited states before reaching the ground state, so that it is not necessary to consider recombination directly into the ground state. This follows because the cross sections for collisional de-excitation directly into the ground-state are much smaller than those for de-excitation into one of the metastable states when the electron energy is of the order of a few electron volts or less, while direct radiative transitions to the ground state are not effective in de-exciting the gas when the plasma is optically thick, since the emitted radiation is re-absorbed by ground state atoms to produce new excitation before it can lerve the plasma.

For helium plasmas at temperatures of the order of a few ev or less, the mean free path for the line radiation emitted by radiative transitions to the ground state is of the order of  $10^{14}/n_0$  cm at the line center\*, where  $n_0$  is the number of ground state atoms per cm<sup>3</sup>. Thus, for the conditions of interest in the NATA code, essentially all of this radiation will be re-absorbed before it can escape from the plasma. Accordingly, the gas will be optically thick to this radiation and direct radiative transitions from excited atoms to the ground state may be neglected to a good approximation in the code.

The situation is less clear for the continuum radiation which results from direct radiative recombination of free electrons into the ground state according to the process indicated in equation (34c). For this radiation the mean free path is about 1.6 x  $10^{17}/n_0$ cm\*\*, so that, for example for helium at 20,000°K and atmospheric pressure the mean free path would be about 0.5 cm. This is somewhat smaller than typical nozzle dimensions, so that under these

\*This estimate assumes Doppler broadening of the line profiles; this should be valid under the conditions of interest except for very high excited states.

\*\*Calculated from (34c), using detailed balance.

conditions one might expect that the larger part of the continuum radiation (34c) would be re-absorbed and re-ionize the gas, but a significant fraction, especially near the edges of the nozzle, would escape. As the gas expanded down the nozzle, the ratio of the radiative mean free path to the nozzle dimensions would increase, so that eventually a point would be reached at which most of the continuum radiation (34c) escaped. For higher initial pressures or lower initial temperatures, on the other hand, the mean free path of the radiation would be decreased, so that under some conditions it might be a good approximation to treat the flow as optically thick to the continuum radiation (34c) over the major portion of its expansion.

Although the helium kinetic model developed in this appendix does not contain any provisions for treating radiative re-absorption in the gas explicitly, one can allow approximately for this effect by adjusting the radiative recombination rate for the process (34c) so as to match the net radiative recombination expected in the flow as well as possible. For this purpose it is probably most important to match the net recombination rate in the high temperature region near the nozzle entrance, since the importance of radiative recombination is expected to decrease as the flow expands (see equations (33) and (34)), and to become negligible far downstream. In many cases it should be an adequate approximation to assume that the flow is optically thick to the recombination radiation (34c) in the nozzle entrance region, so that direct radiative recombination to the ground state according to the process (34c) may be neglected in the calculations; however, if this approximation is not adequate for a particular case a better estimate may be made on the basis of eq. (34c) and the particular nozzle geometry.

The reaction rate parameters given in Table XX for the recom-Lination of electrons and atomic He<sup>+</sup> ions are derived from equations (32) through (34) on the assumption that the gas is optically thick to all radiation arising from transitions to the He atom ground state, so that essentially all recombinations will produce a metastable helium atom in either the  $2s^{1}S$  or  $2s^{3}S$  state. Since direct information as to the relative numbers of electrons recombining into each of the two metastable states does not appear to be available at present for the higher electron densities, we have assumed that the two states will be populated in proportion to their statistical weights (ref. 59), i.e., 3/4 of the recombinations (33) will lead to atoms in the <sup>3</sup>S metastable state and 1/4 to atoms in the S state. For the lower electron densities, the number of electrons recombining into either of the two

ORIGINAL PAGE IS OF POOR QUALITY

-196-

: ((m): metastable states is, of course, given directly by (34a) and (34b). For non-optically-thick conditions, a term based on equation (34c) may also be included in the model, as discussed above, to account for radiative recombinations directly into the ground state.

In addition to the rates for collisional-radiative recombination discussed above, Bates, Kingston, and McWhirter (ref. 55) have also calculated rates for the reverse process of "collisionalradiative ionization" from their model. At the higher electron densities, their results show that the collisional-radiative ionization rate is given to a good approximation by applying detailed balance arguments based on the electron temperature to the calculated overall collisional-radiative recombination rate, as indicated in Table XX; however, at the lower electron densities the ionization rates calculated from the collisional-radiative model may fall significantly below the values predicted from these simple detailed balance arguments. We have not attempted to fit the calculated ionization rate data in the present model, however, since for an ionized gas flow expanding through a nozzle, ionization will generally be negligible compared to recombination in the region where the detailed balance estimates of the ionization rate become inadequate. This would not be true, however, for cases such as the ionization of a gas behind a shock wave in which additional ionization is being produced in an initially cold gas, so that the reaction parameters given in Table XX would need to be revised to treat such cases.

According to the collisional-radiative model, all of the recombination energy of an electron-ion pair is transferred either into kinetic energy of the electrons or into radiation. For the lower electron densities, collisional processes are unimportant so that the entire recombination energy of the atom, together with the initial kinetic energy of the electron, will be emitted as radiation, as indicated ror reactions 3 to 5 in Table XX. For higher electron densities there is a close coupling between collisional and radiative de-excitation processes so that the exact fraction of the recombination energy which will be emitted as radiation can only be determined from a complete solution of the collisional-radiative equations as formulated by Bates, Kingston, and McWiirter. However, as a rough approximation, experimental data indicate that the total radiant emission from a helium plasma at high electron densities does not differ from the predictions of the low density formula by more than about a factor of two over the range of conditions for which radiant emission makes a significant contribution to the overall energy balance of the system.

In the present model we have, therefore, used the low electron density formula to calculate the adiation due to recombination under all conditions and have assumed that the rest of the recombination energy goes into the kinetic energy of the electron gas, as indicated for reactions 1 and 2 in Table XX.

In addition to reactions 1 and 2 of Table XX in which the collisional processes contributing to recombination are assumed to be with an electron as the third body, Bates and Khare (ref. 56) have also predicted recombination rates for processes stabilized by collisions with a ground-state helium atom. We have not included such processes in the present model, however, since their existence does not appear to be verified by the experimental data (ref. 60).

<u>De-excitation of metastable atoms</u>.- Bates and Kingston (ref. 61) have pointed out the importance of the metastable atom population in determining the overall electronic recombination rate in a decaying helium plasma. This effect arises because, as we have seen above, the net collisional-radiative recombination rate is a strong function of electron temperature (see equation 33) and the metastables serve as an energy source for the electrons, raising the electron temperature and thus impeding the recombination process. A proper treatment of the processes determining the metastable population in the flow is thus important if one wishes to obtain an accurate prediction of electronic recombination rates in an expanding gas.

The processes which may lead to the destruction of metastable atoms in a decaying helium plasma have been surveyed by Bates, Bell, and Kingston (ref. 57). For the present one-dimensional flow model we shall neglect the loss of metastables from the flow due to diffusion and de-excitation at the walls. This should be a good approximation in the region outside the boundary layer, where the one-dimensional model is expected to be applicable. Further, the de-excitation of metastables by direct radiative transitions to the ground-state (two photon emission) is completely negligible in helium for gas densities of interest in laboratory applications (ref. 57). Thus, the rate at which metastable atoms are removed from the flow will be determined entirely by collisional processes in the present model.

Approximate rate constants for several of the processes leading to the destruction of metastable atoms in a helium plasma have been given by Bates, Bell, and Kingston (ref. 57) in their study of metastable atom populations in a decaying plasma. For the conditions of interest in the present study, it appears that the most important metastable destruction process will ordinarily be the de-excitation of metastable atoms by collisions with slow electrons, the excitation energy being transferred to the kinetic energy of the electron. Bates, Bell, and Kingston have calculated the reaction rate for the de-excitation of a  $He(^{3}S)$  metastable atom by this process in the electron temperature range from 250 to 4000°K, using a cross section obtained by detailed balance from the measured He(3S) excitation cross section of Schulz and Fox (ref. 64) and averaging over a Maxwellian distribution of electron energies. The parameters given for this reaction in Table XX (reaction no. 6) were obtained from a curvefit to their calculations. Figure 62 compares this curvefit for the reaction rate with the original calculations of Bates, Bell, and Kingston (ref. 57).

Bates, Bell, and Kingston do not give the rate for deexcitation of  $He(^{1}S)$  metastable atoms to the ground-state; however, since the excitation cross section for the  $He(^{1}S)$  metastable state is about 1/3 that for the  $He(^{3}S)$  state (refs. 65, 66), it appears, taking account of the differing multiplicities of the two states, that the calculated rates given by Bates et. al., (ref. 57) for  $He(^{3}S)$  de-excitation should also be approximately applicable to  $He(^{1}S)$ , as we have assumed for reaction 7 in Table XX.

In addition to de-excitation to the ground state, electron collisions with metastables can also produce transitions between the He(ls) and He( $^{3}$ s) metastable states according to the reaction scheme

 $He(^{1}s) + e^{-} \rightleftharpoons He(^{3}s) + e^{-} + 0.796 ev$  (35)

Phelps (ref. 67) has measured a reaction rate for this process of  $3.5 \times 10^{-7}$  cm<sup>3</sup>/sec at 300°K, corresponding to a reaction cross section of  $3 \times 10^{-14}$  cm<sup>2</sup>. To estimate the temperature dependence of the reaction rate, we make use of the work of Johnson and Hinnov (ref. 58), who have estimated a reaction cross section of about  $10^{-15}$  cm<sup>2</sup> for the process (35) at electron temperatures of the order of  $10,000^{\circ}$ K, based on their spectroscopic studies of the population distribution of the helium excited states. Thus



......

· · ·

. . .

7

. . . . . . . .

:

. . . .

-200-

the reaction cross section is approximately proportional to  $1/T_{e}$  and the reaction rate to  $T_{e}^{-\frac{1}{2}}$ , as shown in Table XX.

It may be noted that the reaction rate for process (35) is two to three orders of magnitude greater than the rate for deexcitation of metastable atoms to the ground-state by electron collisions, so that us the electron density in the gas decays one may expect the relative populations of the He(<sup>1</sup>S) and He(<sup>3</sup>S) metastable states to remain in approximate thermodynamic equilibrium with each other at the electron temperature over a considerable range of conditions.

When the density of metastable atoms in helium becomes comparable to the electron density, a significant number of metastable atoms may also be removed from the gas by the Penning ionization process

 $He(^{3}S \text{ or } ^{1}S) + He(^{3}S \text{ or } ^{1}S) \longrightarrow He + He^{+} + e^{-}, \quad (36)$ 

in which two metastable atoms collide and the excitation energy of one of them is transferred to ionize the other. This process has also been considered by Bates, Bell, and Kingston (ref. 57) who have shown that the reaction rate is given approximately by

$$k_f = 6.7 \times 10^{-10} T^{1/6} cm^3/sec$$
 (37)

when both metastable atoms are in the  ${}^3$ S state, where T is the heavy-particle temperature in<sup>O</sup>K. Their analysis ma\_ also be applied to collisions in which one or both of the metastable atoms is in the  ${}^1$ S state by using the appropriate van der Waals force constant for the interaction (ref. 68) and noting that the spin conservation factor in the analysis of Bates, et. al. (ref. 57) is 1 instead of 4/9 when either of the colliding atoms is in the  ${}^1$ S state. This procedure yields the reaction rate constants given for the three Penning ionization processes (36) in Table XX (reactions 9, 10, and 11).

For fractional ionizations less than about 0.01 percent, collisions with ground-state neutral atoms may also make a significant contribution to the de-excitation of metastable atoms in helium. In the case of the  $He(^{1}S)$ , collisionally induced radiative transitions to the ground-state according to the

-201-

ORIGINALI PAGE IS OF POOR QUALITY

### reaction

 $He(1S) + He \longrightarrow He + He + h\nu$ (38)

appear to be the primary de-excitation mechanism at low electron densities, where He denotes a helium atom in the ground electronic state. The reaction rate for the process (38) has been studied both experimentally and theoretically (ref. 69) and all determinations appear to be in reasonably satisfactory agreement (i.e., within a factor of about 3 or 4). For the present model, we have used an approximate curvefit to the theoretically calculated temperature dependence (ref. 69) with the value normalized at  $300^{\circ}$ K to the reaction rate  $k_{\rm f} = 6 \times 10^{-15} \, {\rm cm}^3/{\rm sec}$  measured by Phelps (ref. 67).

In the case of the He(<sup>3</sup>S) metastable atom, collisionally induced radiative transitions to the ground state of the type (38) are forbidden by spin conservation, and the metastable atom is removed from the gas at low electron densities primarily by conversion into the metastable molecular state  $\text{He}_2(a^3\Sigma_u^+)$ according to the three body reaction (ref. 67)

He + He + He ( $^{3}S$ )  $\longrightarrow$  He + He<sub>2</sub> ( $a^{3}\Sigma_{\mu}^{+}$ ) (39)

with the reaction energy presumably going primarily into translational and vibrational energy of the heavy particles. The reaction rate for this process measured by Phelps at 300°K is  $k = 2.5 \times 10^{-34} \text{ cm}^{6}/\text{sec}$ , so that the process should be negligible except at quite high gas densities. The temperature dependence of the reaction rate is unknown; however, it appears unlikely that the rate would vary greatly with temperature over the range of conditions for which the process (39) might be important, and we have arbitrarily assumed a  $\sqrt{T}$  dependence in Table XX.

<u>Molecular species</u>.- For pressures greater than about 1 mm Hg and low temperatures, it has been observed that atomic He<sup>+</sup> ions are rapidly converted into molecular ions. Although a number of different molecular ions have been observed (ref. 69) only the ground-state diatomic ion  $\text{He}_2^+$  will be considered in the present note, since it is the ion which is formed initially by He<sup>+</sup> attachment and appears to be the only molecular ion which

-202-

ORIGINAL PAGE IS OF POOR QUALITY could be present in significant concentrations under the relatively high temperature conditions existing in an expanding plasma jet. The thermochemical properties of the He<sub>2</sub><sup>+</sup> ion now appear to be fairly well established, and are given in Table XIX. The He<sub>2</sub><sup>+</sup> dissociation energy had been rather uncertain until quite recently, but the latest experimental and theoretical results (ref. 9) now appear to strongly support a value of 2.50 ev for the electronic dissociation energy  $D_e$  of the ground-state He<sub>2</sub><sup>+</sup> Since the energy differences between the various electronic ion. states of He<sub>2</sub> and He<sub>2</sub><sup>+</sup> are accurately known from spectroscopic data (refs. 9, 12) the use of the above value for the  $He_2^+$  dissociation energy, together with the available spectroscopic data (refs. 12, 70) serves to completely determine the thermochemical properties of the He<sub>2</sub> molecule and the He<sub>2</sub><sup>+</sup> molecular ion. The values of the lowest stable states of He<sub>2</sub> and He<sub>2</sub><sup>+</sup> are summarized in Table XIX.

The principal process leading to the formation of He<sub>2</sub><sup>+</sup> molecular ions at pressures above about 1 torr appears to be the three-body attachment reaction

He + He + He<sup>+</sup>  $\rightleftharpoons$  He<sub>2</sub><sup>+</sup> + He (40)

Several independent measurements (refs. 71-73) of the reaction rate for this process have yielded values for the rate constant which agree within about a factor of two at room temperature. The temperature dependence of the rate constant is somewhat unclear, with Beatty and Patterson (ref. 71) reporting a rate constant which is approximately independent of temperature, while Niles and Robertson (ref. 72) report a  $T^{-1}$  dependence over the temperature range from 77°K to 449°K; however, this difference is  $p\epsilon$  haps not too significant in view of the rather limited temp cate a range for which molecular ions may be expected to be important in the gas. For the present model, we have adopted the reaction rate of Beatty and Patterson (ref. 71) for the process (40), i.e.,

 $x = 1.08 \times 10^{-3} \text{ cm}^{6}/\text{sec}$ 

independent of gas temperature.

The production of molecular ions by the associative ionization (Hornbeck-Molnar) process

 $\text{He}^* + \text{He} \rightleftharpoons \text{He}_2^+ + \text{e}^-$  (41)

has also been observed for excited He\* atoms in 3p electronic states or above (ref. 74), but this reaction does not appear to be a significant source of molecular ions under the conditions existing in an expanding gas flow, and accordingly has not been included in the present model.

The primary mechanism for the recombination of He<sub>2</sub><sup>+</sup> molecular ions again appears to be the collisional-radiative process of Bates, Kingston, and McWhirter (ref. 55) in which electrons are initially captured into highly excited molecular states and are then subsequently stabilized by collisional and radiative transitions to lower states. In spite of repeated experimental studies, the dissociative recombination process

 $\text{He}_2^+ + e^- \rightleftharpoons \text{He} + \text{He}^*$ 

(42)

has never been definitely observed in helium, and the reaction rate for the process appears to be almost certainly much less than  $10^{-8}$  cm<sup>3</sup>/sec (ref. 75).\*

The best data presently available for the  $He_2^+$  recombination rate appears to be that of Berlande, et. al. (ref. 77) who find a rate constant of the form

$$k_f = 5 \times 10^{-10} + 2 \times 10^{-20} n_e + 2 \times 10^{-27} n_{He} \text{ cm}^3/\text{sec}$$
(43)

for  $\text{He}_2^+$  recombination at an electron temperature of  $300^{\circ}$ K. Measurements at higher electron temperatures (ref. 78) indicate a temperature dependence at high electron densities similar to that found for atomic He<sup>+</sup> ions (equation 33), so that it is consistent with the available data to treat the recombination of He<sub>2</sub><sup>+</sup> ions at the higher electron densities as a collisional-radiative process with the rate constant

 $k_{\rm f} \simeq 2 \times 10^{-20} (T_{\rm e}/300^{\circ} {\rm K})^{-4.3} n_{\rm e} {\rm cm}^3/{\rm sec}$ , (44)

<sup>\*</sup>This interpretation of the data has been recently questioned by Johnson and Gerardo (ref. 76), however.
or about one fourth the rate constant found for atomic He<sup>+</sup> ions under similar conditions (equation 33).

Since information on the final products of the recombination process (44) is not available, it again appears reasonable to assume that the singlet and triplet molecular states are populated according to their statistical weights. The triplet states then presumably cascade down by collisional and radiative transitions to the metastable  $\text{He}_2(a^3\Sigma_u)$ state at 17.937 ev above the He atom ground-state (see Table XIX), while the singlet states cascade down to the lowest singlet state of the He, molecule, namely the unstable  $He_2(X \ ^1\Sigma_q^+)$  ground-state, which then immediately dissociates into two ground-state He atoms. Since all electronic states of the He2 molecule have approximately the same equilibrium internuclear separation re (ref. 12), it seems reasonable to assume that the  $\text{He}_2(X \stackrel{1}{\Sigma}_g^+)$  ground-state is formed with an internuclear separation equal to the separation  $r_e = 1.08$  A of the He2+ ground-state, corresponding to a potential energy of about 2.31 ev (ref. 79). This potential energy is then converted into kinetic energy of the dissociating helium atoms, while the remainder of the recombination energy, equal to 22.190 - 2.31 = 19.88 ev per molecule, is converted into electronic kinetic energy and radiation by the collisional-radiative process. As with the atomic recombination process, we have not attempted to distinguish between the energy going into electronic kinetic energy and into radiation in the present note, but have simply assigned all of the excess recombination energy to the electrons in Table XX (reactions 15 and 16). Although we expect this to be a reasonable approximation for cases in which the He2<sup>+</sup> recombination energy is important, this has not been definitely verified.

Since the first term in equation (43) appears to be much too large for a simple radiative recombination process, it has been tentatively ascribed (ref. 75) to the dissociative recombination process (42), where He\* may represent either a metastable <sup>3</sup>S or <sup>1</sup>S helium atom. In Table XX we have again assumed that the singlet and triplet states are populated in accordance with their statistical weights, and have taken the rate constant to be independent of temperature, although there is some theoretical evidence to indicate that it may actually be an increasing function of gas temperature (ref. 80). Although the rate constant for the process (42) is very poorly known, it represents a minor correction to the calculated net reaction rate (43) under most conditions of interest, and should thus not contribute appreciably to the overall uncertainty in the calculated gas conditions.

ORIGINAL PAGE IS OF POOR QUALITY -205-

The final term in the observed  $\text{He}_2^+$  recombination rate (43), which is proportional to the gas density, presumably represents the effect of stabilization by collisions with ground-state He atoms which was studied by Bates and Khare (ref. 56). Since this term becomes important only when the fraction of ionization is of the order of  $10^{-7}$  or less, we have not included it in the reaction rate model given in Table XX.

To complete the present reaction rate model for helium, approximate rates for the destruction of the metastable He<sub>2</sub> molecule are included as the final two reactions in Table XX. Since the experimental studies of Collins (ref. 81) and Phelps (refs. 67, 82) indicate that the processes

 $\operatorname{He}_{2}(^{3}\Sigma) + e \rightleftharpoons 2\operatorname{He} + e$  (45)

and

 $\operatorname{He}_{2}(^{3}\Sigma) + \operatorname{He}_{2}(^{3}\Sigma) \Longrightarrow ^{3}\operatorname{He} + \operatorname{He}^{+} + e^{-}$  (46)

for the destruction of metastable  $\text{He}_2(^3\Sigma)$  molecules have the same rates at room temperature, within the experimental error, as do the corresponding processes for the  $\text{He}(^3S)$  metastable atom, we have, for lack of any better information, simply used the reaction rates given previously for the  $\text{He}(^3S)$  reactions (reactions 6 and 9 in Table XX) for the processes (45) and (46) as well. The destruction of metastable molecules by collisions with ground-state atoms appears to be negligible and is hence not included in the present model; Phelps' data (ref. 67) indicate a reaction rate for this process at least two orders of magnitude smaller than for the corresponding process (39) for metastable  $\text{He}(^3S)$  atoms.

<u>Concluding remarks</u> - Since we have introduced a number of simplifying approximations in constructing the reaction rate model for helium presented in Tables XIX and XX, and since, moreover, several of the important reaction rates for helium are still rather uncertain, especially at the higher temperatures, it would now be desirable to verify the model by comparing its predictions with experimental data over as wide a range of conditions as possible, and, if necessary, adjust the rate constants to obtain satisfactory agreement with experiment. This has not been possible within the scope of the present study, however; and accordingly the reaction rates given in Table XX should be regarded as provisional until such time as a more complete verification of the model can be obtained.

## A.2 Argon Model

The nonequilibrium argon model used in NATA is basically similar to the helium model described above, but with the parameters adjusted and a few minor modifications made to account for the difference in physical properties between helium and argon. Thus, much of the discussion given above for helium is also applicable to argon, and only the differences between the two gases need be noted here.

Although argon has been used extensively as a test gas in laboratory studies for various aerodynamic and arc tunnel applications, the reaction mechanisms in recombining argon have apparently not been studied in as much detail as they have for helium, and in consequence, as will be indicated in more detail in the discussion below, several of the important parameters in the argon recombination model appear to be significantly uncertain at the present time. Accordingly, the errors in the nonequilibrium model calculations for argon may be expected to be larger than for helium.

The species and parameter values for the nonequilibrium argon model used in NATA are given in Tables XXI and XXII.

<u>Elastic collisions</u>.- The electron energy loss due to elastic collisions in argon is again calculated from equations (25) to (30) with appropriate values of the momentum transfer cross sections for argon being used in equation (30). As in the case of helium, the approximate Coulomb cross section (31) is used in equation (30) for all electron-ion collisions.

Data on the momentum transfer cross section between electrons and ground-state argon atoms have been given by Frost and Phelps (ref. 83) and by Golden (ref. 84). For the present model, we have numerically integrated the data of Frost and Phelps over electron energy as indicated in equation (30) to obtain the Maxwell-averaged electron-argon atom cross section  $\overline{Q}_{c-Ar}^{(1)}$  shown in figure 63 as a function of temperature. Use of the data of Golden in this computation would have given a noticeably lower cross section in the neighborhood of the Ramsauer minimum at  $T = 1300^{\circ}$ K; however, since the total cross section in this region is so small for either calculation, the effect of such a change on the overall electron energy balance for the gas would be negligible.



ź

2

.

As in the case of helium, we have used the calculated electron-ground state argon atom cross section shown in figure 63 for all elastic collisions between electrons and neutral argon species. As an indication of the error involved, figure 64 shows the Maxwell-averaged cross section for collisions between electrons and metastable argon atoms which we have estimated from the available cross section data (refs. 85 and 86). One sees that the estimated metastable cross section is about two to three orders of magnitude greater than the ground state cross section over the temperature range of interest. Thus, the approximation employed in the code of using the ground-state cross sections for all neutral species should give an adequate representation of the elastic energy losses as long as the concentration of metastable species in the gas remains  $\leq$  0.1 percent. As noted previously i our discussion of the helium model, the elastic energy losses themselves become negligible at higher metastable concentrations, so that the error in the calculated elastic energy losses at high metastable concentrations ( $\geq 1$  percent) should not significantly affect the overall accuracy of the model predictions in this region.

<u>Collisional-radiative recombinations</u>.- Data on electronic recombination rates in argon have been reviewed recently by Biberman, et. al. (ref. 87). Although the experimental uncertainty is larger than for helium, the available data for argon again appear to be generally consistent with the collisionalradiative recombination mechanism suggested by Bates, Kingston, and McWhirter (ref. 55). Accordingly, we have followed the approximate model of collisional-radiative recombination discussed above for helium in the present treatment of argon recombination also.

As with helium, we have attempted to représent the observed recombination rate data for argon by a curvefit of the form (32). For the higher electron densities, the observed recombination rates for argon (refs. 88, 89) are found to agree with the helium data within the experimental scatter, so that the high density portion of the reaction rate curvefit for helium (equation 33) may also be used for argon.

At low electron densities, radiative recombination becomes dominant and recombination rates may be determined from available data on the argon continuum radiation. From these data (refs. 90-92) one finds that the total rate for radiative recombination into FIGURE 64 - MAXWELL AVERAGED MOMENTUM TRANSFER CROSS SECTION FOR COLLISIONS BETWEEN ELECTRONS AND METASTABLE 4s(3P2) ARGON ATOMS

z<sub>o</sub>v

Ĺ



;

ELECTRON TEMPERATURE; Te (<sup>O</sup>K)

the excited states of the argon atom agrees with the corresponding rate for helium within the experimental scatter, so that the net reaction rate for recombination into an excited argon atom at low electron densities becomes

$$k_f = 2.73 \times 10^{-13} (T_o/10^4 \, ^{\circ}K)^{-0.81} \, \text{cm}^3/\text{sec}$$
 (47)

For radiative recombination directly into the argon ground state the data of Samson (ref. 93) give the recombination rate

$$k_f = 1.00 \times 10^{-13} (T_0/10^4 \text{ oK})^{-0.5} \text{ cm}^3/\text{sec}$$
 (48)

which is somewhat lower than the corresponding rate (34c) for helium.

The data cited above indicate that the rates for electronic recombination into excited atomic states are comparable in helium and argon at both high and low electron densities. At intermediate electron densities, however, the data of Chen (ref. 94). give a recombination rate in argon which is several times higher than the corresponding helium rate and than the collisionalradiative predictions, and about an order of magnitude higher than the rate predicted from the simple curvefit (32) on the basis of the high and low electron density data.\* The reason for this discrepancy is not clear. Chen suggests that the observed differences between helium and argon in his work may be due to differences in the electronic excitation and de-excitation cross sections for excited states in the two gases; however, this  $\epsilon$  lanation does not appear to be consistent with the close agreement between helium and argon recombination rates at high electron densities which has been observed in other studies (refs. 88,89). In view of this apparent inconsistency and the lack of other experimental data to support the difference between helium and argon recombination rates found by Chen, the present model uses a recombination rate based only on the high and low electron density data given by equations (33), (47) and (48), and ignores the data of Chen at intermediate densities. These data should be borne in mind, however, as a possible indication of significant uncertainty in the predicted recombination rates for argon.

Because of the closed electronic p-shell in the heavier rare gas atoms, the relationship among the low-lying excited states

<sup>\*</sup>Remember that the curvefit (32) gives recombination rates several times smaller than the correct collisional-radiative model at intermediate electron densities.

differs from that found in helium with the result that the decay of excited states during collisional-radiative recombination in argon follows a somewhat different pathway than that described previously for helium. Table XXIII shows the four lowest lying excited states of the argon atom, together with the three commonest designations by which they are referred to in the literature. All higher excited states of the atom can decay rapidly into one of these four low-lying excited states, so that only the populations of these four states need be followed in the collisional-radiative model. Of the four states, the  ${}^{3}P_{2}$  and  ${}^{3}P_{0}$  are metastable while the  ${}^{3}P_{1}$  and  ${}^{1}P_{1}$  can decay to the ground state by emission of resonance radiation. The decay is slow, however, because of the trapping of resonance radiation in the gas, and the two resonance states  ${}^{3}P_{1}$  and  ${}^{1}P_{1}$  thus behave somewhat like true metastable states under many conditions of interest.

Within the accuracy of the present model it seemed unnecesary to distinguish between all four of the low-lying excited states in Table XXIII, and accordingly we have grouped the two metastable states  ${}^{3}P_{2}$  and  ${}^{3}P_{0}$  into a single metastable state Ar\* (m) and the two resonant states,  ${}^{3}P_{1}$  and  ${}^{1}P_{1}$ , into a single resonant state Ar\* (r), as indicated in Table  $\overline{XX1}$ . Assuming that these states are populated in proportion to their statistical weights by the recombination reactions (33) and (47) then leads to the reaction rates for electronic recombination into excited states given for reactions 1 through 4 in Table XXII. As in the case of helium, we find that an adequate fit to the total visible and infrared emission from the gas under all conditions (refs. 90-92) can be obtained by assuming that all of the recombination energy goes into the electron gas for the three-body recombinations 1 and 2 while all of the energy\* goes into radiation for the two-body recombinations 3 and 4.

For radiative recombination directly into the argon atom ground state, reabsorption of the emitted recombination radiation by the gas can be effective in reducing the net recombination rate even at moderately low gas densities. An estimate of this reduction can be made by dividing the low density recombination rate

\*It may be noted that in computing the electron thermal energy for the reactions in Table XXII, we have taken account of the fact that the reaction rate depends on electron energy, so that the mean energy of the electrons participating in the reaction is not the same as the mean thermal energy 3/2 k T<sub>e</sub> of all the electrons in the gas. Under most conditions of interest, however, this difference will not be significant for the final results of the calculation.

-212-

TABLE XXIII

| LS<br>Designation              | Paschen<br>Designation | jl-Coupling<br>Designation | Energy<br>(ev) | Statistical<br>Weight<br>q |
|--------------------------------|------------------------|----------------------------|----------------|----------------------------|
| 4s <sup>3</sup> P <sub>2</sub> | 1s5                    | 4s[3/2] <sup>0</sup>       | 11.545         | 5                          |
| 4s <sup>3</sup> P1             | ls4                    | 4s[3/2] <sub>1</sub> °     | 11.620         | 3                          |
| 4s <sup>3</sup> P <sub>0</sub> | ls <sub>3</sub>        | $4s'[1/2]_0^{\circ}$       | 11.720         | 1                          |
| 4s P <sub>l</sub>              | ls <sub>2</sub>        | 4s'[1/2]0<br>1             | 11.825         | 3                          |

LOW-LYING EXCITED STATES OF THE ARGON ATOM

(48) by the optical depth of the gas for the recombination radiation

 $\gamma = 3.4 \times 10^{-17} n_{\rm Ar} R_{\rm r}$  (49)

where  $\tau$  is the optical depth,  $n_{Ar}$  is the number density of ground state argon atoms in the gas in cm<sup>-3</sup>, R is the channel radius in cm, and 3.4 x  $10^{-17}$  cm<sup>2</sup> is the absorption cross section of ground state argon atoms for the recombination radiation, as measured by Samson (ref. 93). As indicated in Table XXII (reaction 5), this reduction must be applied to the rate constant (48) whenever the optical depth (49) of the gas becomes greater than one.

<u>Decay of excited atoms</u>. - The de-excitation of low-lying atomic states in a decaying argon plasma appears to be due primarily to collisions with electrons and ground-state atoms, and, in the case of the resonant states, the emission of radiation. For ionization fractions greater than about  $10^{-4}$  to  $10^{-5}$ , electron collisions and resonance radiation will be the most important de-excitation mechanisms, while atomic collisions become important at lower fractions of ionization.

De-excitation rates for electron collisions with excited argon atoms can be obtained from experimental data on the inverse process of excitation of ground-state argon atoms by electron

-213-

impact. Rates for the latter process have been obtained both from studies of the ionization rate behind argon shocks (refs. 95-97) and from electron beam measurements of the excitation cross sections versus electron energy (refs. 98-102).

In all of the shock tube studies, it has been found that the rate determining step in the ionization process behind the shock front is the initial excitation of the ground state argon atom to a low-lying excited state, so that the excitation cross section can be determined directly from the measured ionization rates. Experimentally, the ionization is observed to proceed in two stages; first an initial induction phase in which the excitation is produced primarily by collisions with ground state atoms. followed by a second, much more rapid stage, in which the electron density has become sufficiently high for electronic collisions to contribute significantly to the observed excitation rates. Analysis of the ionization rate data for the second stage indicates that the measured rates are consistent with a linear dependence of the electronic excitation cross section on excess electron energy above the excitation threshold ( $\sim 11.5 \text{ ev}$ ), with a slope which varies in the different experiments (refs. 95-97) over a range from about 5 x  $10^{-18}$  to 7 x  $10^{-18}$  cm<sup>2</sup>/ev. Since the experiments are not sensitive enough to determine exactly which state is being excited, this measured excitation cross section should probably be regarded as a sum over the four lowlying states of the argon atom indicated in Table XXIII.

Total cross sections for excitation of the two argon metastable states  ${}^{3}P_{2}$  and  ${}^{3}P_{0}$  by electronic collisions have been measured in electron beam studies over the energy range from threshold to  $\sim 200$  ev (refs. 98-101). The data are in general agreement with the linear cross section dependence on electron energy assumed in the analysis of the shock tube data; however, considerable detailed structure in the cross section energy dependence is evident near threshold (refs. 98,99) so that the cross section slope deduced from the shock tube experiments would be expected to vary somewhat with electron temperature. U.ing Pichanick and Simpson's relative cross section measurements near threshold (ref. 98) normalized to the absolute cross section values given by Borst (ref. 100), we find a mean cross section slope varying between about 4 x  $10^{-18}$  cm<sup>2</sup>/ev and 8 x  $10^{-18}$ cm<sup>2</sup>/ev for the range of temperatures below about 40,000 °K, with the value being ~8 x  $10^{-18}$  cm<sup>2</sup>/ev for T  $\leq 1000^{\circ}$ K. In the range of temperatures T  $\leq$  5000°K, it appears that a linear cross section dependence with the slope

$$\frac{dQ}{dw} \simeq 7 \times 10^{-18} \text{ cm}^2/\text{ev}$$
 (50)

found by Petschek and Byron (ref. 95) should give a very satisfactory fit to the available electron beam data.

The cross section for excitation of the resonant  ${}^{3}P_{1}$  and  ${}^{1}P_{1}$  argon states has been measured by McConkey and Donaldson (ref. 102) in an electron beam aparatus over the energy range from threshold to about 2000 ev. In the threshold region, their results indicate a linear dependence of the total excitation cross section on electron energy with a slope

 $\frac{dQ}{dw} \sim 1 \times 10^{-18} \text{ cm}^2/\text{ev}.$  (51)

Thus, the total excitation cross section for the argon resonant states is considerably smaller than for the metastable states at thermal energies, and the total excitation cross section for all low-lying states derived from the electron beam measurements is in excellent agreement with the shock tube results.

The reaction rates for de-excitation of the low-lying metastable and resonant excited states of atomic argon by electron collisions which are used in the present argon kinetic model are derived from the corresponding excitation cross sections (50) and (51) by detailed balance. These rates are listed as reactions 6 and 7 in Table XXII.

In addition to causing de-excitation of the low-lying excited states, electronic collisions can also result in transition between the metastable and resonant excited states according to the scheme

$$\Lambda r^{*}(r) + e^{-} \rightleftharpoons \Lambda r^{*}(m) + e^{-} + 0.07 \text{ ev}$$
 (52)

Although we have been unable to find any direct data, the rate for the process (52) is expected to be large (ref. 103), in analogy to the corresponding processes in helium (ref. 67) and neon (ref. 104). An approximate upper bound for the possible reaction rate is provided by the total cross section measurements of Celotta, et. al. (ref. 85) for the inverse process of electron-metastable  $Ar(^{3}P_{2})$  collisions.

For the present model we have taken the reaction rate for the process (52) equal to the corresponding rate estimated for neon at 300°K by Phelps (ref. 104), and have assumed a  $T_e^{-\frac{1}{2}}$  temperature dependence, as in the helium model, to obtain the rate constant

 $k_{f} = 10^{-6} \left(\frac{T_{e}}{300^{\circ}K}\right)^{-\frac{1}{2}} cm^{3}/sec$  (53)

for the process (52). This rate lies about an order of magnitude below the upper bound provided by the total (elastic plus inelastic) cross section measurements of Celotta, et. al.

It should be noted that the process (52) may play an important role in the decay of metastable argon atoms at low electron densities, since it can cause transitions from the relatively long-lived metastable excited states to the much shorter lived resonant states. Thus, the uncertainty in the rate constant (53) could result in significant errors in the model predictions of metastable decay rates for an argon plasma under some conditions.

In helium, all of the excited atomic states which are capable of direct radiative transitions to the ground state can also decay rapidly into one of the two metastable excited states, so that most of the excited atoms pass through one of the metastable states during the de-excitation process and only a small fraction are de-excited by direct radiative transitions to the ground state. Thus, the latter process could be neglected to a good approximation in the formulation of the helium kinetic model discussed in the preceding section. For argon, on the other hand, the low-lying  ${}^{3}P_{1}$  and  ${}^{1}P_{1}$  resonant excited states cannot decay radiatively to any lower <u>excited</u> state, so that direct radiative transitions to the ground state become the dominant decay mechanism for these states in many situations, and hence must be included in the kinetic model.

Since the mean free path of resonance radiation in a gas is typically very much shorter than usual laboratory apparatus dimensions, most of the photons emitted by the radiative decay of excited atoms to the ground state are reabsorbed by other atoms in the gas to excite them to the resonant state, and the net rate of decay of the resonant state population density in the gas is much slower than would be predicted solely on the basis of the spontaneous emission coefficient for the state. A model to predict the net rate of decay of the population density under these conditions as a function of apparatus geometry and the absorption coefficient of the resonance line has been developed by Holstein (refs. 105,106) and has been verified experimentally for a number of gases (refs. 104-108), including both argon (ref. 107) and neon (ref. 104).

Under the usual laboratory conditions, it is generally a good approximation to assume that the shape of the resonant radiation lines is determined by pressure broadening according to the dipole-dipole model of Fursov and Vlasov (see refs. 109, 110). With this assumption, the net decay rate for the transition to the ground state predicted by Holstein's model becomes independent of gas pressure and, for a cylindrical gas volume, reduces to the simple form

$$k_{\rm p} = 0.205 \ A_{\rm m} \left(\frac{\lambda_0}{R}\right)^{\frac{1}{2}}$$
 (54)

where  $A_m$  is the probability for spontaneous emission of a resonant photon from the excited state per unit time,  $\lambda$  is the wave-length at the center of the resonant line, and R is the cylinder radius. When the appropriate constants for the argon resonant states (ref. 111) are inserted into equation (54), one finds the reaction rates

$$k_{f} = \frac{8.0 \times 10^{4}}{\sqrt{R}} \text{ sec}^{-1}$$
 (55a)

for the radiative decay of the Ar  $({}^{3}P_{1})$  state, and

$$k_{f} = \frac{3.4 \times 10^{4}}{\sqrt{R}} \text{ sec}^{-1}$$
 (55b)

for the Ar  $({}^{L}P_{1})$  state, where R is the cylinder radius in centimeters. Equation (55a) has been verified experimentally by Ellis and Twiddy (ref. 107). Since we expect the  ${}^{3}P_{1}$  state to be more highly populated than the  ${}^{L}P_{1}$  state under most conditions

of interest, equation (55a) has been used for the radiative decay rate of the Ar resonant state in the present kinetic model (reaction 9 of Table XXII).

The reaction rates (55) should be valid in argon for nozzle radii  $R \ge 0.1$  cm and ground state argon atom number densities  $n_{Ar} \ge 10^{16}$  cm<sup>-3</sup>. For lower number densities than this, pressure-broadening becomes small compared to the natural line width of the resonance lines, and the effective rate constant begins to increase with decreasing number density. Eventually, at very low number densities, reabsorption of the resonance radiation of course becomes negligible, and the effective rate constant approaches the spontaneous emission coefficient  $k_f=A_m$ . Comparing this limit with equation (54), one sees that the net radiative decay rate for the resonant argon excited states is reduced by about three to four orders of magnitude by the trapping of resonance radiation under typical laboratory conditions.

For low fractional ionizations, the de-excitation of excited atoms by collisions with neutral atoms can become significant. Experimental data on the reaction rates are available both for the direct de-excitation process (refs. 107,112,113) and for the inverse excitation process (refs. 95-97, 114-117).

Several studies of the decay of excited state population densities in low temperature argon gas (refs. 107,112,113) have indicated that both two- and three-body de-excitation processes are significant, and have given reasonably consistent values (within about a factor of two) for the de-excitation rates. The most detailed study was that of Ellis and Twiddy (ref. 107), who gave two- and three-body reaction rates at 300°K of

$$k_2 = (1 \pm 0.3) \times 10^{-15} \text{ cm}^3/\text{sec}$$
  
 $k_3 = (1.7 \pm 0.2) \times 10^{-32} \text{ cm}^6/\text{sec}$ 
(56)

for de-excitation of the Ar  $({}^{3}P_{2})$  metastable state at 11.55 ev and

$$k_2 = (5.7 \pm 0.7) \times 10^{-15} \text{ cm}^3/\text{sec}$$
  
 $k_3 = (1.14 \pm 0.15) \times 10^{-32} \text{ cm}^6/\text{sec}$ 
(57)

for de-excitation of the Ar  $({}^{3}P_{0})$  metastable cate at 11.72 ev. Futch and Grant (ref. 113) measured the Ar  $({}^{3}P_{2})$  de-excitation rates at 77°K and 300°K and their data yield a temperature dependence over this range of  $k_2 \sim T^{2/3}$  for the 2-body de-excitation process (56a) and  $k_3 \sim T^{-0.56}$  for the three-body process (56b).

In their work, Ellis and Twiddy attribute the two-body deexcitation rate (56a) to a two-step process in which the metastable Ar  $({}^{3}P_{2})$  atom is first excited to the resonant Ar  $({}^{3}P_{1})$ state by collision with a ground state argon atom, and then decays radiatively to the ground state. No evidence is given to support this assignment, however, and it appears to be inconsistent with the temperature dependence observed for the two-body de-excitation process at 77°K by Futch and Grant, which suggests that the direct de-excitation process

$$Ar + Ar ({}^{3}P_{2}) \rightarrow 2 Ar + 11.55 ev$$
 (58)

is responsible for the observed two-body de-excitation rate.

Further evidence for the reaction (58) is provided by several shock tube studies in which excitation cross sections for collisions between ground state argon atoms were derived from the initial ionization rates behind an argon shock (refs. 95-97, In all cases, it was found that the experimentally 114-117). observed ionization rates for the initial ionization stage directly behind the shock front could be accounted for by an atomatom excitation cross section which was (approximately) a linear function of the excess atom energy above the excitation threshold. The slope of the derived cross section energy dependence varied somewhat between the different experiments; however, all results were consistent within about an order of magnitude, with the reported values of the cross section varying from about  $2.5 \times 10^{-20} \text{ cm}^2/\text{ev}$  to  $2.5 \times 10^{-19} \text{ cm}^2/\text{ev}$ . Using these data to derive a cross section for the inverse de-excitation reaction (58) by detailed balance, one obtains a two-body de-excitation rate,  $k_2$ , which is proportional to  $\sqrt{T}$  and has the value  $k_2 \sim 10^{-15}$ to  $10^{-14}$  cm<sup>3</sup>/sec at 300°K, in good agreement with the measured low temperature de-excitation rates. Thus, the assignment of the observed two-body de-excitation rate (56) to the reaction (58) is verified and an approximate  $\sqrt{T}$  dependence of the de-excitation rate over the temperature range from  $T = 77^{\circ}K$  to  $\sim 10,000^{\circ}K$  is substantiated.

The three-body de-excitation process in equations (56) and (57) is attributed to the two-step reaction process

$$Ar + Ar + Ar^* \longrightarrow Ar_2^* + Ar$$

$$Ar_2^* \longrightarrow Ar + Ar + h\nu$$
(59)

in which the excited argon atom combines with a ground state atom to form an excited  $Ar_2^*$  molecule, which then immediately radiates to form an unstable ground-state  $Ar_2$  molecule which dissociates into two ground state atoms. The radiation emitted during the process (59) is observed to reak at a wavelength of about 1265 Å (ref. 118), corresponding to a mean energy of ~9.8 ev for the emitted photon, with the remaining ~1.8 ev of the excitation energy of course going into kinetic energy of the three argon atoms participating in the reaction.

For the present kinetic model, the two- and three-body deexcitation rates for the metastable Ar\* (m) atom given in reactions 10 and 11 of Table XXII have been set equal to the Ar  $({}^{3}P_{2})$ de-excitation rates from equation (56), since we expect that most of the metastable atoms will be in the  ${}^{3}P_{2}$  state under the conditions encountered in an expanding argon plasma jet, because of this state's higher statistical weight and lower excitation energy. As noted above, the T<sup>2</sup> temperature dependence of the two-body deexcitation process appears to be well established, while we have provisionally assumed the  $T^{-0.56}$  temperature dependence observed by Futch and Grant at low temperatures for the three-body process. Since collisional de-excitation rates have not been observed for the resonant excited states  ${}^{3}P_{1}$  and  ${}^{1}P_{1}$ , we have also used the <sup>3</sup>P<sub>2</sub> de-excitation rates for the resonant excited states in reactions 12 and 13 of Table XXII. This approximation should have a negligible effect on the computed population densities for the model under the conditions of interest in an expanding plasma jet, since the radiative decay rate (55) for the resonant excited states is much greater than the collisional de-excitation rate (56), except at very high gas densities.

<u>Molecular species</u>.- The only molecular species included in the argon kinetic model is the ground-state molecular ion  $\text{Ar}_2^+$ . In contrast to helium, there appear to be no metastable molecular states in argon (ref. 121) so that any excited molecular states formed will decay very rapidly to the ground state, in times of the order of 0.1  $\mu$ sec or less (ref. 118) and need not be considered in the kinetic model. The Ar<sub>2</sub> ground state molecule itself is very weakly bound (dissociation energy  $D_0 \sim 0.01$  ev (ref. 123)), and thus should be rapidly dissociated into ground-state atoms under the conditions existing in an expanding argon plasma jet.

The thermochemical properties of the argon molecular ion Ar2<sup>+</sup> are still very uncertain at the present time; the values used in the present model have been taken from the recent equilibrium drift tube measurements of Teng and Conway (ref. 13) and are shown in Table XXI. The  $Ar_2^+$  dissociation energy  $D_0 \simeq 1.14$ ev found by Teng and Conway is in reasonable agreement with previous experimental (refs. 119, 120) and theoretical (ref. 121) estimates obtained by less direct means. The vibrational frequency  $\omega_{\rm e} \sim 80 \ {\rm cm}^{-1}$  derived by Teng and Conway from the thermochemical data, however, is about a factor of five lower than the value estimated by O'Malley (ref. 122) on the basis of an interpretation of observed dissociative recombination rates in argon. We have accepted the value of Teng and Conway in the present work since it appears to be more directly determined from the experimental data; however, the uncertainty could be large.

As in the case of helium, the production of molecular ions in a decaying argon plasma at pressures near 1 torr or higher appears to be due primarily to the three-body conversion process

$$Ar^{+} + 2Ar \rightleftharpoons Ar_{2}^{+} + Ar \tag{60}$$

A number of measurements of the reaction rate for the process (60) at room temperature have given results in reasonably satisfactory agreement (refs. 124,125), with the more precise determinations yielding a value

$$k_f \simeq (2 \pm 1) \times 10^{-31} \text{ cm}^6/\text{sec}$$
 (61)

for the reaction rate at  $300^{\circ}$ K. The Lemperature dependence of the reaction rate (61) has apparently not been accurately determined; however, available theoretical and experimental results (refs. 124,126,127) indicate that the rate should probably decrease somewhat with increasing temperature. As a reasonable compromise among the various estimates, we have assumed a  $T^{-3/4}$  temperature dependence for the rate constant (61) in the present analysis, as predicted by the simple Thomson theory (ref. 124).

-221-

The drift tube measurements of Liu and Conway (ref. 124) indicate that the rate constant (61) applies only to reactions of the ground-state  $Ar^+$   $({}^{2}P_{3/2})$  ion, and that the excited  ${}^{2}P_{1/2}$  fine-structure component of the  $Ar^+$  ion (at 0.18 ev above the ground-state) does not participate in the reaction (60) under the essentially electron-free conditions of their experiment. For the experiments carried out in decaying plasmas ( $n_{
m e} \sim 10^{11}$ cm<sup>-3</sup>) (refs. 125, 128), however, the rate of conversion between the two  $Ar^{T}$  fine-structure states was apparently sufficiently rapid that no distinction between the 'two states was observed in the data, and the reaction rate (61) applies to the total atomic Ar<sup>+</sup> population density in the plasma. Since the latter experiments appear to be closer to the conditions to be expected in an argon plasma jet, we have grouped the two Ar<sup>+</sup> fine-structure states together into a single species for the present kinetic model (see Table XXI) and have used the experimental reaction rate (61) for the combined species in obtaining the reaction rate data given for reaction 14 in Table XXII.

The associative ionization process

$$Ar + Ar^* \rightleftharpoons Ar_2^+ + e^- \tag{62}$$

is known to be rapid in argon for excited  $hr^*$  atoms having excitation energies above a threshold of ~ 14.7 ev, with the rate constant being  $k_f \sim 10^{-9}$  cm<sup>3</sup>/sec near room temperature (refs. 119,129). Under conditions of collisional-radiative recombination, however, the population of excited Ar\* atoms above the 14.7 ev threshold is very small compared to the ion population, so that the associative ionization reaction (62) should not contribute appreciably to the molecular ion production rate in an expanding argon plasma at the relatively high pressures ( $p \ge 10^{-3}$ atm) of interest here. Thus, a detailed treatment of associative ioni tion has not been included in the present kinetic model.

In contrast to the situation in helium, the mccombination of molecular ions in argon under most conditions occurs primarily through the dissociative recombination reaction (ref. 75)

 $Ar_{2}^{+} + e = Ar + Ar^{*}, \qquad (63)$ 

and this process appears to be sufficiently rapid to make an important contribution to the overall recombination rates in an argon plasma even at the higher temperatures, where the molecular ion  $Ar_2^+$  represents a relatively minor constituent of the plasma. Dissociative recombination rates for argon have been measured in a number of independent experiments, both at room temperature and at elevated temperatures (refs. 75, 122, 127 130). The low temperature measurements (ref. 75) give a value  $k_f \sim 7 \times 10^{-7}$ cm<sup>3</sup>/sec for the reaction rate of the dissociative recombination process (63) at room temperature. The measurements at elevated temperature indicate that the reaction rate for dissociative recombination depends on both the electron temperature T<sub>e</sub> and the gas tempera une T. A good fit to the data of Mehr and Biondi (ref. 130) and Cunningham and Hobson (ref. 122) has been given by O'Malley (ref. 122) in the form

 $k_f = 9.6 \times 10^{-7} (T_e/300^{\circ}K)^{-0.67} (1 - e^{-630^{\circ}K/T}) cm^{3}/sec$ (64)

O'Malley's fit (64) does not appear to be consistent with the high temperature data of Chen (ref. 127); however, the validity of the latter data has been questioned (ref. 75).

In his original derivation of equation (64), O'Malley interpreted the observed gas temperature dependence of the dissociative recombination coefficient in terms of a model in which only the lowest vibrational state of the Ar2+ molecule participates significantly in the dissociative recombination pro-(63) and, on the basis of this model, derived a value of  $\omega_{c} \sim 630^{\circ} \text{K} \simeq 440 \text{ cm}^{-1}$  for the  $\text{Ar}_{2}^{+}$  vibrational frequency. This interpretation of the data appears to be inconsistent with the value of the vibrational frequency  $\omega_c \sim 80 \text{ cm}^{-1}$  recently derived by Teng and Conway (ref. 13) from thermodynamic data; however, other interpretations of the observed temperature dependence (64) which do not lead to this inccnsistency appear to be possible. Thus, for the purposes of the present analysis, it is unnecessary to inquire into the validity of O'Malley's model in detail and we may regard equation (64) simply as a curvefit to the available experimental data on the dissociative recombination rate in argon.

The exact state of the excited Ar\* atoms produced in the dissociative recombination reaction (63) is not known at present; however, it appears likely (ref. 75) to be one or more of the many excited atomic states lying in the range between about 14 ev and the molecular ion ground-state at 14.61 ev (see ref. 6). The excited atom produced in the original reaction (63) will then cascade down rapidly by the collisional-radiative process to one of

{

the four low-lying excited atomic states listed in Table XXIII, with the excess excitation energy being lost either by radiation or trapsfer to the electron gas. In setting up the reaction scheme given in Table XXII (reactions 15 and 16) we have assumed rather arbitrily that electronic collisions will be the dominant de-excitation mechanism under the conditions existing in an argon plasma jet, so that the entire excess excitation energy is transferred to the electron gas. Lacking any detailed knowledge of the final state of the reaction products, we have simply assumed in reactions 15 and 16 that the resonant and metastable excited states will be populated in accordance with their statistical weights. Further, the rate of the inverse associative ionization process is calculated from detailed balance based on the electron temperature. This is consistent with the assumption that de-excitation of excited atoms occurs primarily by electronic collisions, since under this assumption the population of the excited Ar\* atoms which can initiate the associative ionization process will be controlled primarily by the electron temperature; however, the approximation is evidently very crude and serves only to give an indication of the conditions under which associative ionization is likely to be impor-To obtain a more quantitative prediction of associative tant. ionization rates, it would be necessary to couple the associative ionization-dissociative recombination mcdel, as suggested by Biberman, et al. (ref. 87), in order to obtain a prediction of the population densities in the various excited atomic states. Such a detailed model could perhaps explain some of the apparent anomalies which hav been observed in the measured argon recombination rates (refs. 94,127) but would be far beyond the scope of the present study.

Because of the very large dissociative recombination rate for  $\operatorname{Ar_2}^+$  molecular ions, the three-body collisional-radiative recombination process has apparently never been observed experimentally for  $\operatorname{Ar_2}^+$  ions. Nevertheless, this process would be expected to be the predominant recombination mechanism for  $\operatorname{Ar_2}^+$ ions at sufficiently high electron densities and has been included as the final reaction process in Table XXII, using the corresponding  $\operatorname{He_2}^+$  reaction rate from equation (44). Although the final state of the reaction products is not known, we have assumed in Table XXII that the recombining electron will cascade down through successive Rydberg states of the molecule to reach the unstable  $\operatorname{Ar_2}$  ground state, which will then dissociate into two ground state argon atoms. As in the case of helium,

-224-

it should be a good approximation, at the high electron densities for which the three-body recombination process is important, to assign all of the recombination energy to the electron gas. 1. W. W.

#### APPENDIX B

#### DIAGNOSTIC MESSAGES

This appendix lists all of the diagnostic messages produced by NATA when error conditions are detected. For each message the following information is given:

- (1) The name of the subroutine in which the message is produced.
- (2) A brief description of any dumps or additional messages which follow the given message.
- (3) A description of the error condition indicated.
- (4) A summary of the subsequent action taken by the code.

The messages are listed in alphanumeric order for the entire code. Lower case letters appearing within the messages indicate numerical values.

Most of these diagnostics occur only very rarely. Many of them have never been observed at all with the present version of NATA, and are included in the program only to allow for unusual input errors or for programming errors which might occur during future modifications.

The Fortran variables appearing in the various dumps are to be defined in the NATA Programmer's Manual, Volume III of this final report.

BACKSTEPPING OF PERTURBATION SOLUTION TERMINATED AFTER n STEPS. DIAGNOSTIC DATA FOLLOW.

Produced in subroutine NØNEQ.

Followed by a dump with the namelist name NEQDMP, followed in turn by "ERROR EXIT NO. 5 FROM NØNEQ."

This message is produced in the nonequilibrium solution by the perturbation method when  $|\delta \chi|$  is greater than 1.2 C<sub> $\chi$ </sub> and the temperature has been increased n times without finding

a flow point at which the right-hand inequality in equation (381) of Volume I (ref. 1) is satisfied.

The DUMP subroutine is called to produce a dump of common data and terminate the case.

BETA MATRIX OF INSUFFICIENT RANK

Produced in subroutine NØNEQ.

Followed by "ERROR EXIT NO. 1 FROM NONEQ."

Indicates that the rank of the  $\beta_{ij}$  matrix is less than the number of dependent species (n-c); see Section 7.3.4 of Volume I (ref. 1). The diagnostic is encountered only when a new gas model is being used. It normally indicates that too few linearly independent chemical reactions are included in the gas model, but can also occur when an error has been made in the stoichiometric coefficients  $\nu_{ij}$ ,  $\nu'_{ij}$  for a reaction.

The DUMP subroutine is called to produce a dump of common data and terminate the case.

BOUNDARY LAYER ITERATION NOT CONVERGED

Produced in subroutine DERIVS.

Followed by a dump with the namelist name DRVDMP.

Indicates that the self-consistent solution for the displacement thickness  $\delta^*$  and the derivatives of the flow variables (Sect. 7.6 of Volume I) has not converged after three iterations.

The nonconverged  $\delta^*$  value from the final iteration is used and the solution proceeds.

CONVERGENCE FAILURE IN AGSØLN AE = a DEL =  $d_1 d_2 X = x$ 

Produced in subroutine AGSØLN.

Followed by a dump with the namelist name AGDMP.

-227~

Indicates failure of the iterative solution of equation (135) in Volume I. In the message, AE denotes the input value of the effective area ratio  $A_e$ , the two values following DEL are the displacement thicknesses at the current flow point, and X is the estimate of the axial coordinate from the final iteration, expressed in centimeters.

The DUMP subroutine is called to produce a dump of common data and terminate the case.

#### CONVERGENCE FAILURE IN RESTMP

Produced in subroutine RESTMP.

1)

Indicates failure of the iterative solution for the conditions in the upstream reservoir, based upon either the pressure and mass flow (for ISW2B = 0) or the enthalpy and mass flow (for ISW2B < 0). Such failures can be caused by errors in the input data for FLØW and PRESAI or HSTAG.

The DUMP routine is called to dump common data and terminate the case.

## DLOGR IS POSITIVE

Produced in subroutine NØNEQ.

Indicates that a positive value of  $d \ln \rho/dx$  has been encountered in the nonequilibrium solution.

The subsequent action depends upon the value of the ratio (AFNX-DATEST)/DATEST, where AFNX is the effective area ratio and DATEST is a control parameter which is preset to 1.01. If this ratio is greater than or equal to 0.05, the message "ERROR EXIT NO. 3 FROM NONEQ" is written and the DUMP routine is called to terminate the case. If the ratio is less than 0.05, the positive  $d \ln \rho/dx$  value is taken to indicate that the nonequilibrium solution is on the subsonic branch of the downstream solution. An attempt is made to recover the desired supersonic branch of the solution by the inverse method at the previous switch point; see Section 7.4 of Volume I.

-228-

#### DUMP ROUTINE CALLED BY name

Produced by subroutine DUMP.

Indicates the name of the subroutine from which DUMP was called. Besides printing this message, subroutine DUMP sets a logical indicator ERR to the value .TRUE.. Tests on ERR in higher level routines then causes immediate return of control to the main program. After calling subroutine DUMPEX to print dumps (DMP1, DMP2, DMP3, DMP4) containing most of the variables in common, the main program terminates the case. Input data are then read for the next case, if any.

# ERROR EXIT NO. 1 FROM NONEQ

Produced by subroutine NONEQ, following the message "BETA MATRIX OF INSUFFICIENT RANK" (see above).

# ERROR EXIT NO. 2 FROM NONEQ

Produced by subroutine NØNEQ.

Indicates step failure (flunking of a validity check) in a lower level routine (DERIVS or CØMM), either in the perturbation solution or upon restart at the switch point after detection of a positive d  $\ln \rho/dx$  value in the downstream solution.

The DUMP routine is called to dump common data and terminate the case.

#### ERROR EXIT NO. 3 FROM NONEQ

Produced by subroutine NONEQ.

Indicates that a positive d ln //dx value has been encountered in the nonequilibrium solution beyond the switch point from the inverse method to direct integration. (See message "DLOGR IS POSITIVE," above.) The present error exit message is printed if (AFNX - DATEST)/DATEST is greater than or equal to 0.05.

The DUMP routine is called to dump common data and terminate the case.

# ERROR EXIT NO. 4 FROM NONEQ

### Produced by subroutine NØNEQ.

This message is printed if the  $d \ln \rho/dx > 0$  condition is encountered when the solution has already been restarted at the switch point four times, in attempts to find the supersonic downstream solution.

The DUMP routine is called to dump common data and terminate the case.

ERROR EXIT NO. 5 FROM NONEQ

Produced by subroutine NØNEQ.

This message is printed following the "BACKSTEPPING OF PERTURBATION SOLUTION" message, discussed above.

The DUMP routine is called to dump common data and terminate the case.

ERROR EXIT NO. 6 FROM NONEQ

Produced by subroutine NØNEQ.

Indicates step failure (flunking of a validity check) in subroutine DERIVS or CØMM at the beginning of the first step of the numerical integration.

The DUMP routine is called to dump common data and terminate the case.

ERROR EXIT NO. 7 FROM NONEQ

Produced in subroutine NØNEQ.

Indicates that a temperature greater than the reservoir temperature has been computed at a point in the nonequilibrium numerical integration.

The DUMP routine is called to dump common data and terminate the case.

-230-

#### ERROR EXIT NO. 8 FROM NONEQ

Produced in subroutine NØNEQ.

Indicates step failure in DERIVS or CØMM on restart of step after a step size reduction.

The DUMP routine is called to dump common data and terminate the case.

### ERROR EXIT NO. 9 FROM NONEQ

Produced in subroutine NØNEQ.

Indicates that the square of the concentration of an independent species is zero in the element conservation calculation for the nonequilibrium solution.

The DUMP routine is called to dump common data and terminate the case.

### ERROR EXIT NO. 10 FROM NONEQ

Produced in subroutine NØNEQ.

( )

(

Indicates that the step size in the nonequilibrium integration has become vanishingly small. This message is printed if  $\Delta x$  falls below 10<sup>-10</sup> cm, or if the step size has been reduced more than 30 successive times without completion of a valid step.\*

\*Note - if this diagnostic occurs upstream of the throat (x < 0), and if the terminal dump shows that  $d \ln A_e/dx = DLØGA$  is positive,  $A_e = AFNX \approx 1$ , and dT/DX = DT is near zero or positive, a likely cause of the failure is insufficiently rapid convergence of the nozzle profile curvefit upstream of the throat. In such cases, a successful solution can be obtained using a modified profile curvefit with a somewhat larger convergence angle in the region just upstream of the throat. The NØZFIT program (Appendix D) can be used to prepare profile curvefits. The DUMP routine is called to dump common data and terminate the case.

> ERROR IN INPUT DATA FOR NOZZLE GEOMETRY X = x ARATI $\phi = a$  DERIVA = d

Produced in subroutine GEØMAR.

Indicates that, at the axial coordinate X, the subroutine calculated either a geometric area ratio  $A_g = ARATI \emptyset$  less than 1 or a derivative d  $A_g/dx = DERIVA$  for which X · DERIVA < C.

The DUMP routine is called to dump common data and terminate the case.

EXCEEDED 50 ITERATIONS IN SHOCK

Produced in subroutine SHØCK.

Indicates that the .terative solution of the cubic equation for a classical oblique shock has not converged after 50 iterations.

An error indicator in the argument list is set to inform the calling routine (WEDGE) of the failure. Wedge calculations are omitted for the angle for which the failure occurred and for all larger angles. The failure occurs because the assumed angle of attack is too high to allow an attached shock.

FINDX CALLED WITH AN AREA RATIO LESS THAN UNITY, A = a

Produced in subroutine FINDX.

المراجع والمراجع

Indicates that FINDX was called to determine the axial coordinate corresponding to a geometric area ratio A less than unity. Since the geometric area ratio cannot be less than unity, there is no solution. The error indicated by this diagnostic originates in the calling routine or in higher-level routines.

The DUMP routine is called to dump common data and terminate the case.

-232-

# +++++ FIX REQUIRED IN AGSØIN

Produced in subroutine AGSØLN.

Subroutine AGSØLN solves for the geometric area ratio  $A_g$ and axial coordinate x corresponding to a specified value of the effective area ratio  $A_e$ . In channel flow problems, this requires an iterative solution of equation (135) in Volume I (ref. 1). The above message is printed if, during this iterative solution, an x value is obtained whose sign is inconsistent with that of the argument UPDØWN (which specifies whether an upstream or downstream solution is desired).

When this condition is first encountered, the programming assumes that it is a result of an unusually large separation between the throat and the sonic point (caused by rapid change of the boundary layer displacement thicknesses in the throat region). On this assumption, an attempt is made to fix the problem by resetting the assumed displacement thicknesses to their values at the throat. If the problem recurs, the message "CONVERGENCE FAILURE IN AGSØLN" (above) is printed and the case is terminated in the usual way.

#### GJ(i)\*\* 2 UNDERFLOWED

Produced in subroutine NØNEQ.

Followed by message "ERROR EXIT NO. 9 FROM NØNEQ" (above).

INDEXING OR STORAGE FAILURE IN MATINV

Produced in subroutine MATINV.

Indicates that the dimension statements in arrays LPIJ and BTA are inconsistent; can occur only if someone tinkers with the programming.

The DUMP routine is called to dump common data and terminate the case.

IN NEWRAP, CAPX (k) = 0

Produced in subroutine NEWRAP.

Indicates that the mole fraction of the kth species was found to be zero.

The equilibrium solution is continued.

IN NEWRAP, P = 0

Produced in subroutine NEWRAP.

()

1. 201

••••

Indicates that a zero value of pressure was obtained during the iteration to determine the conditions at a point in the equilibrium solution.

The solution is continued.

INVALID INPUT DATA... NPRFLS = n

Produced in subroutine READ.

Indicates that NPRFLS was specified in the input as a value other than 1 or 2.

The job is terminated.

ITERATION TO FIND STAGNATION CONDITIONS DID NOT CONVERGE

Produced in subroutine MØDEL.

Followed by a dump with the namelist name MØDDMP.

Indicates that the iterative solution for the conditions behind the normal shock, or the solution for the stagnation conditions, did not converge within the maximum number of allowed iterations.

Conditions at the model point where the convergence failure occurred are not calculated. The solution continues.

ITERATION TO OBTAIN FREE STREAM SOLUTION AT MODEL POINT DID NOT CONVERGE X = x XMØDEL = y CM

Produced in subroutine FRØZEQ.

Followed by dump with the namelist name FRDMP2.

Indicates that the iteration to determine the free-stream conditions at a model point in the frozen or equilibrium solution has not satisfied the convergence test after the maximum allowable number of steps.

The conditions from the final iteration are used in the model condition calculations and printed out.

# MATINV, MATRIX SINGULAR

Produced in subroutine MATIM".

Indicates that the square submatrix of  $\alpha_{ij}$  defining the elemental composition of the independent species is singular. This diagnostic occurs only when a user-specified gas model is being used and indicates an error in the inputs defining the independent species. It can occur if the ISC = c species listed first are not independent, where c denotes the number of chemical elements present in the gas model.

The DUMP routine is called to dump common data and terminate the case.

MATRIX OF COEFFICIENTS IS SINGULAR

Produced in subroutine DSMSØL.

This subroutine is used throughout the program to solve systems of linear equations. The diagnostic indicates that the matrix of coefficients for such a system is singular. The preceding output, and the data in the terminal dump, should indicate the kind of calculation in which the failure occurred, i.e., reservoir conditions, frozen or equilibrium solution, nonequilibrium perturbation calculation or numerical integration.

The DUMP routine is called to dump common data and terminate the case.

> MODEL PARAMETER ROUTINE CALLED FOR A MACH NUMBER LESS THAN 1.5

Produced in subroutine MØDEL.

Indicates that MØDEL was called at a point where the freestream Mach number was less than 1.5. The method used for the normal shock solution in MØDEL does not work reliably for M < 1.5.

The model condition calculations are skipped. The solution continues.

> MORE THAN 50 ITERATIONS IN FINDX, A = aUPDØWN = u IENTRY = i MBL = m

Produced in subroutine FINDX.

Followed by a dump with the namelist name DMP.

Indicates a convergence failure in subroutine FINDX, which solves for the axial coordinate x at which the geometric area ratio has the value A. According as the argument UPDØWN has the value - 1. or +1., the upstream or downstream solution is sought. IENTRY indicates whether the subroutine was entered at its beginning or through the entry point FINDXC, which is called to determine the x at which the MBLth profile has a half-width of A.

The DUMP routine is called to dump common data and terminate the case.

NEGATIVE CONCENTRATION ENCOUNTERED IN COMM

Produced in subroutine CØMM.

Indicates the CØMM found a species concentration to be negative during the nonequilibrium solution.

A step-failure indicator is set, and control is returned to the calling routine (DERIVS). Upon return to subroutine NØNEQ, the integration step size is reduced. The solution continues.

NEGATIVE OR ZERO VALUES OF : MØDP1 NOT ALLOWED. DATA IGNORED.

Produced in subroutine READ.

Indicates that the input value of XMØDP1 (the location of the first model point in a sequence) is negative.

XMØDPl is reset to  $10^{20}$  and the calculations continue.

## NEGATIVE RHO IN GEOM

Produced by subroutine GEOM.

Indicates that a negative density value has been encountered during the iteration to determine the density corresponding to the geometric area ratio at the current flow point during the nonequilibrium solution by the inverse method.

The DUMP routine is called to dump common data and terminate the case.

NO THERMAL PROPERTY DATA DEFINED FOR SPECIES NUMBER i IN . HE CURRENT GAS MODEL (NO. m IN THE M CTER LIST OF SPECIES)

Produced in subroutine READ.

Indicates that ETAJ(i) = 0 and IGJ(i) = 0 for the ith species in the gas model, because of an input error in user specification of a nonstandard species.

The job is terminated.

SU2 LESS THAN 7 IN COMM

Produced in subroutine CØMM.

Indicates that CØMM computed a total enthalpy larger than the reservoir enthalpy.

A step failure indicator is set and control is returned to the calling routine (DERIVS). After the return to NØNEQ, the step size is reduced and the calculation is continued.

TEMPERATURE GREATER THAN RESERVOIR VALUE

Produced in subroutine NØNEQ.

Followed by the message "ERROR EXIT NO. 7 FROM NONEQ" (see above).

TOO MANY ITERATIONS IN WESPILN ZETA = z CAPGAM = c

Produced in subroutine WESØIN.

Followed by a dump with the namelist name WEDMP.

Indicates that the Newton-Raphson solution of equation (482b) in Volume I (ref. 1) for  $\lambda$  as a function of  $\zeta$  has not converged after 20 iterations.

The final, unconverged value of  $\lambda$  is accepted and used. The solution continues.

#### TOO MANY NEWTON-RAPHSON ITERATIONS

Produced in subroutine EQCALC or in subroutine NEWRAP.

Indicates that the Newton-Raphon solution for the equilibrium mole fractions (Volume I, Sections 6.1 and 6.2) failed to converge. If the failure occurs in EQCALC during the reservoir calculations (EQCALC called by the entry INTA of subroutine INGAS), it is probably caused by an error in the input specifications of the reservoir condition (input variables ISW2B, PRESAI, CTAPI, FLØW, HSTAG).

The DUMP routine is called to dump common data and terminate the case.

TRANSPORT PROPERTIES OF DESIRED MIXTURE CANNOT BE CALCULATED FROM AVAILABLE DATA. REVISE CROSS SECTION INPUT DATA.

Produced in subroutine XSECT.

Followed by a dump with the namelist name XSDMP.

Indicates that cross section data have not been specified for the like-like interactions of a neutral atom or molecule.

The DUMP routine is not called, but the case is terminated.

#### X DECREASED IN FROZEQ

Produced in subroutine FRØZEQ.

Indicates that the axial coordinate x decreased during a step of the frozen or equilibrium solution. Since x is calculated from the effective area ratio in these types of solution, a decrease in x could result from improper specification of the nozzle profile (for example, a discontinuity in the profile at the point where two profile sections are joined). If the solution includes the boundary layer, rapid growth of the displacement thickness can cause the effective area ratio to decrease. A decrease in the effective area ratio downstream of the throat would lead to a decrease in x. This error condition is usually encountered only in the high Mach number region far downstream of the throat. The most common cause is instability of the coupled inviscid flow and boundary layer.

The subsequent action depends upon the circumstances. If the boundary layer is being neglected, or if the effective area ratio is less than ½ of the geometric area ratio, a dump with the namelist name FRDMP is written and the current equilibrium or frozen flow solution is terminated. The solution of the current case continues, however. If the boundary layer is included and the effective area ratio is greater than ½ of the geometric area ratio, the program assumes that the failure is a result of instability, and attempts to generate a valid solution by cutting the stability parameter w in equation (218) of Volume I in half, and restarting the solution in the upstream reservoir. However, if the same error occurs after three successive restarts, the dump FRDMP is written and the current (equilibrium or frozen) solution is terminated.

ZERO OR NEGATIVE STEP IN BLAYER, X = x XP = y

Produced in subroutine BLAYER.

Followed by a dump with the namelist name DMP.

Indicates that the axial coordinate X at the current call to subroutine BLAYER is less than or equal to the value XP at the last previous call.

The RETURN is executed and the solution proceeds.

## APPENDIX C

## ILLUSTRATIVE TEST PROBLEMS

This appendix presents the inputs and selected portions of the output for five test problems, chosen to illustrate various features of the NATA code. Two additional test problems (nos. 1 and 1A) have already been discussed in Sections 2 and 3.

The images of the input cards for the test problems are shown in figure 65. There are four groups of data cards, each group comprising the data for a NATA run. The third run includes two cases (4A and 4B). These runs were executed on an IBM 360/75.

Test problem no. 2 illustrates NATA flow calculations for a rectangular channel. In a channel case, the problem summary includes geometric data for two profiles (figure 66). Figure 67 shows the output of reservoir conditions for this case. Figure 68 illustrates the output of the flow solution. In channel flow problems including the boundary layer, NATA prints two complete sets of boundary layer data at each flow point. The first set appears in the fourth and fifth lines of output for the flow point, the second set in the sixth and seventh lines. Each set begins with the lateral dimension ("WIDTH" or "HEIGHT") of one of the channel walls. The boundary layer data in each set pertain to the wall whose lateral dimension is included in the set. For example, at the last flow point shown in figure 68, the lateral dimensions of the channel are 2 by 18 inches. The first set of boundary layer data (including THETA = 0.100 and STANTN = 1.697D-3) refers to the boundary layer on the walls which are 18 inches wide. The second set (including THETA = 0.340and STANTN = 4.777D-4) refers to the layer on the walls which are 2 inches wide. The flow points at X = 16.000, 17.000, and 18.000 in figure 68 are special points requested by the TSDIAM inputs in figure 65.

Tes. problem no. 3 illustrates a flow solution based on the larger of the two standard planetary atmosphere models. In this case, the reservoir conditions were specified by direct input of the reservoir pressure and temperature. Figures 69 through 73 show the problem summary for this case. Figure 74 shows the reservoir conditions, and figures 75 to 78 the first

-240-
FIGURE 65 - INPUT DATA FOR TEST PROBLEMS NO. 2, 3, 4A, 4B, AND 5 TEST PROBLEM NO. 2 - FROZEN AIR FLOW IN A CHANNEL +INPUT ISW2A=0, ISW3A=0, CXMAXI=57, PRESAI=.762, FLOW=.1, ICHAN=1, TSDIAM=15, 16, 17, 18, 19, 20 +END

TEST PROBLEM NO. 3 - PLANETARY ATMOSPHERE MODEL +INPUT ISW1A=0, ISW3A=0, CXMAXI=50, ISW2B=1, PRESAI=1, CTAPI=10000, NDZZLE=2, IGAS=5 +END

TEST PROBLEM NO. 4A - WEGENER EXPERIMENT C - NONSTANDARD GAS AND GEOMETRY **+INPUT** ISW2B=1, NOTRAN=T, CXMAXI=5.906, TPRNTI=.001, READG=T, PRESAI=2, CTAPI=400, NOZZLE=0, DIAM=.5472, JDIM=0, NSECTS=2.2, ISHAPE=1.2.2.1. ARAMI=7.606602E-2. -. 5773502. 0. 4.695442. 0. 4.0005. 4.695442. 0. 4.0005, .6941124, 2.038825E-2, 0, ATPI=-2.000249, 0, .08154619. XZEROI=-10, IGAS=0, NC5=2, JC5=5,30, QPJ=.995025, .004975, ISCI=2, ISSI=3. ISRI=1. ICI=0. IE=5.6. IS=5.30.29. IR=76. ISATOM=29. ISMOL=30. ISW4A=1, +END **+FINPUT** SP29=0+2+5+6+0+1+2+0+ 4+003+ -3+75E-4+ 2+45E-6+ 2+0+ 5+945+ 8586+ 4+0+ 1.23\*0. SP30=0.2.5.6.0.2.4.0.3.553.011625.-4.55E-6.2\*0.10.028.4473. 4\*0. 1. 23\*0. RP76=3.E14. 3\*0. 2.2.5.29.0.5.30.0.1.2.0.1.1.0.0.10\*0. +END TEST PROBLEM 4B - WEGENER EXPERIMENT F -- STACKING OF CASES **+INPUT** PRESAI=2.16. CTAPI=402. QPJ=.97561. .02439. ISW4A=0. READG=F +END

TEST PROBLEM ND. 5 - ELECTRONIC NONEQUILIBRIUM MODEL FOR ARGON +INPUT ISWIA=0. ISW3A=0. ISW3B=0. CXMAXI=40. ISW6B=-1. ISW2B=1. PRFSAI=1. CTAPI=10000. NOZZLE=1. IGAS=3. XMODP1=20. NMODPT=3. TPRNTI=.001. ISW5B=-1000000

> ORIGINAL PAGE IS OF POOR QUALITY

-241-

1 IN THIS JOB CA SE 0

RUN NO.

NATA IT

SE OUTPUT

4 . M. 4

~

, , <u>, ,</u> , ,

FIGURE 66 - FIRST PAGE OF PRORUEM FUMMARY FOR TEST PROBLEM NO.

(i) a definition of a start of the start of the part of the part of the start of the start

and the second of the second o

AP-421 47. 4

TAN PARAMETERS

TEST PROBLEM NO. 2 - FROZEN AIR FLOW IN A CHANNEL

0.7620 ATM. TOTAL MASS FLOW = 0.10000 LB/SEC RESERVOIR PRESSURE= TI2 CHANNEL (STANDARD CHANNEL NO. 1) FOR DCA , 2.0000 BY 1.0000 INCH THRDAT

PROFILE NO. 1

6 SECTIONS IN FIT. A UPSTREAM OF THROAT INLET AT -7.620 CM THROAT RADIUS= 2.540 CM

PROFILE NO. 2

4 SECTIONS IN FIT. 2 UPSTREAM OF THROAT

INLET AT -7.620 CM

THROAT RADIUS= 1.270 CM

-242-

| 7 ARA4(2.))  | -4.95990-01   | 0.0           | 0.0           | 1.76330-01    |
|--------------|---------------|---------------|---------------|---------------|
| PARAM(1.J)   | -5.01550-01   | 1.65100 01    | 1.65130 01    | 1.03490 00    |
| ( [ ] ) ATPI | -6.77170 00   | 0.0           | 2.64640 00    |               |
| SHAPE        | STRAIGHT LINE | CIRCLE BOTTOM | CIRCLE BOTTOM | STRAIGHT LINE |
| [SHAPE(J)    | -             | N             | ~             | -             |
| 7            | -             | N             | rð            | •             |

PARAM( 3. J) 0.0

STANDARD GAS NO. 2 (AIR-2 )

|              | DRIGIN                           | AL PA         | AGE<br>ALF        | IS<br>FY        |                                         |                     |              |                |               |                   |                |               |              |
|--------------|----------------------------------|---------------|-------------------|-----------------|-----------------------------------------|---------------------|--------------|----------------|---------------|-------------------|----------------|---------------|--------------|
| . •          |                                  |               |                   |                 |                                         | MTREX               |              |                |               |                   |                |               |              |
|              | DRMULA                           |               |                   |                 |                                         | THERD SODY          | 0101000      |                |               |                   | 00 101 10      |               |              |
|              | CHEMICAL F<br>(N )2<br>(O )2 .   |               | VE CONTS          |                 | 5                                       | CHE TEST            | 000000100    | 0 • 1 000 0 00 | 0 • 1 0000 00 | 0 + 1 0 0 0 0 0 0 | 0.100000       | 0* 1 000 000  | 0.100000.    |
|              | MCL。 WT。<br>28.0140<br>32.0000   |               | ELEMENT MOLECULAR | 5. 4859700-     | 1 • • • • • • • • • • • • • • • • • • • | ACT LVAT ION ENERGY | 1.1798000 05 | 1,1798000 05   | 1-1798000 05  | 1.179800D 05      | 2+2504000 05   | 2.2504000 05  | 2.2504000 05 |
| COLD SPECIES | MOLE FRAC.<br>0.78823<br>0.21177 |               | ATCH FRACTION     | 0.0             | 1+5764500 00<br>4+2354000-01            | POVER DEPENDENCE    | -1.000000 00 | -1.000000 00   | -1.0000000 00 | -1+ 000000 00     | -5+ 0000000-01 | -1.5000000 00 | -5.000000-01 |
|              |                                  | 1984          |                   |                 |                                         | TE MP.              |              |                |               |                   |                |               |              |
|              |                                  | 10 GAS# 28.   | element           | <b>1</b><br>ม : | Z 0                                     | FACTOR AI           | 06999D 14    | 999970 15      | 000000 15     | 00000 14          | 00000 15       | 00000 16      | 00000 15     |
|              | NAME<br>N2<br>02                 | HT OF CQ      |                   |                 |                                         | ONST ANT            | 3•30         | 9.99           | 3+20          | 7.20              | 1.90           | 4.10          | 4.70         |
|              | • 11 N<br>02<br>2                | AP VEIG       |                   |                 |                                         | Ū                   |              |                |               |                   |                |               |              |
| • .          |                                  | MEAN MOLECUL! |                   |                 |                                         | REACT TON NO.       |              | ~              | ň             | 4                 | ъ,             | 9             | ~            |

. . .

'n

)

)

FIGURE 67 - RESERVOIR COND/ N OUTPUT FOR TEST PROBLEM NO. 2

RESERVOIR CONDITIONS -

2

1.21 AND 1.2 1 241 21 24

· · · · · · · · ·

| ANNEL T12 2.000 BY 1.000 IN<br>ESSURE 2.0.00 BY 1.000 IN<br>ESSURE 2.0.762 ATM<br>THALPY 2.655 DEG K<br>TRAPY 2.655 BTU/LG-DEG<br>NSITY 2.65 BTU/LG-DEG<br>NSITY 2.65 BTU/LG-DEG<br>NSITY 2.655 BTU/LG-DEG<br>NSITY 2.655 BTU/LG-DEG<br>NDTEO FLOW 2.0.00230 LB/SC<br>MPUTEO FLOW 2.1.361<br>MMA 2.2.554 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S FLOW RATE   | 0-100 | 5      | SEC        |       |        | ,   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------|------------|-------|--------|-----|-------|
| SSURE = 0.762 ATM<br>FERATURE = 5685. DEG K<br>HALPY = 5765. DEG K<br>FROPY = 5765. BTU/LB-DEG<br>CITY = 0.00230 LB/CU FT<br>JCITY = 0.00230 LB/CU FT<br>CITY = 0.000 LB/SEC<br>ADVE = 1.361<br>ADVE = 1.361<br>CULAR WE IGHT = 22.554 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INNEL T12     | 2.000 | 24     | 000-1      | I VUI | THRDAT | FOR | 4 L Q |
| FFERATURE = 5685. DEG K<br>HALPY = 5765. DEG K<br>FROPY = 5765. BTU/LB-DEG<br>CITY = 2.67 BTU/LB-DEG<br>G. FT/SEC<br>DCITY = 0.00230 LB/SC<br>FT-3<br>S5 FLUX = 0.100 LB/SEC<br>MM = 1.361 GM/MOLE<br>ECULAR WEIGHT = 22.54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSURE         | 0.762 | ATI    |            |       |        |     |       |
| HALPY = 5765. 510/LG - 610/LG - 6100/LB/SEC - 6100/L | +PERATURE     | 5685. | 50     | ¥          |       |        |     |       |
| TRDPY = 2.67 BTU/LG-DEG<br>4517Y = 2.67 BTU/LG-DEG<br>1517Y = 0.00230 LB/CU #T<br>55 FLUX = 0.0 LB/SEC<br>100 LB/SEC<br>11361 = 1.361<br>MA = 1.361<br>ECULAR WE IGHT = 22.54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HALPY         | 5765. | 61     | 0110       |       | -      |     |       |
| If it is it i                        | ROPY          | 2.87  | 91     | 0-970      | EG R  |        |     |       |
| DCITY == 0° F1/SEC<br>S FLUX == 0°0 L8/S0 FT=9<br>PUTED FLOW == 0°100 L8/SEC<br>MA == 1×361<br>ECULAR WEIGHT == 22°54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IS 17 Y       | 0.002 | SO LB  | No F       | •     |        |     |       |
| :5 FLUX == 0.0 L8/S0 FT=9<br>Puted Flow == 0.100 L8/S5C<br>MA == 1.361<br>Ecular Weight == 22.54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00177         | •     | 1<br>A | SEC        |       |        |     |       |
| PUTEO FLOW = 0.100 LB/55C<br>Ma = 1.361<br>Ecular Weight = 22.54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S FLUX        | 0.0   | Ę,     | / SQ F1    | 1-550 |        |     |       |
| MA = 1.361<br>Ecular Weight = 22.54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PUTED PLOW :  | 0-100 | Ľ9     | <b>SEC</b> | •     |        |     |       |
| ECULAR WEIGHT = 22.54 GM/MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W A           | 1,361 |        |            |       |        |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECULAR WEIGHT | 22.54 | N U    | /MOLE      |       | -      |     |       |
| CTRON DENSITY = 1.410 14 ELECTRONS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTRON DENSITY | 1.410 |        | ECTRON     | 12/20 | •      |     |       |

## SPECIES MOLE FRACTIONS

|   | 1.4350-04 | 5. 526D-C1 | 3. 5280-04 | 1.1690-01 | 3. 2390-01 | 9.0770-03 | 1 • 435D- C4 |
|---|-----------|------------|------------|-----------|------------|-----------|--------------|
| • | ÷<br>W    | Ž          | 02         | z         | 0          | Ş         | NOC          |

20. SECONDS SINCE LAST PRINTED TIME 

RESFRVOIR TRANSPORT PROPERTIES

| S LBM/FT-SEC | •              | 1 MHD/CM |             |
|--------------|----------------|----------|-------------|
| 9 - 80D- Ci  | 0 *6596(       | 6+620-0  | 1.013       |
|              |                |          |             |
| /15005174    | PRANDTL NUMBER | E I GM A | EVIS NUMBER |

and a set of a set of the set of

n - ∦ - u

1 2 - 3 U - 1 - 5 - 5 - 5

÷

Э

Э

-243-

| C              | )                                                            |              | 80-096C ·S    |
|----------------|--------------------------------------------------------------|--------------|---------------|
|                | 267112 =<br>1944 =<br>261112 =                               | ****         |               |
| 0.2            | 143.<br>1.7530 00<br>471.                                    |              | 4.2090-03     |
| BLEM N         |                                                              |              |               |
| TEST PROI      | reth<br>On<br>Reth                                           | ****         | <b>Q.</b> 1   |
| PART TUR       | 17 (840-03<br>0+296<br>5+0710-04                             |              | 260.          |
| NOI LUIOS-MOIL | 514N1X = 514N1X = 1<br>11614 = 1<br>514N1X = 1<br>514N1X = 1 | +++k03 EN+++ | ri<br>II<br>I |
| FIGURE 68 - 1  | 0. 6585<br>0. 1 30<br>0. 6585                                | *******      | 1337.         |
|                | # # #<br>22<br>L. I 11                                       | *            |               |
|                | PARE<br>DELS                                                 | ***          | *             |
| ſ              | 2+50<br>2+000<br>5245+                                       | ****         | 41.034        |
| ۲.,            |                                                              | *            |               |
|                | ан<br>Н Н<br>Ф. Т<br>Ф. Т<br>Ф. Т<br>Ф. Т<br>Ф. Т            |              | ×             |

3

......

And the set of the set

|   | 41.054 | •       | H | 1337.     | "<br>1    | 3260.     | ٥.    |   | \$*2000-00 | æ            | B07-0865 *S |
|---|--------|---------|---|-----------|-----------|-----------|-------|---|------------|--------------|-------------|
|   | 15+303 | >       |   | 11196.    | ¥<br>Z    | 1001      | v     |   | 2,87       | <b>GAMMA</b> | 1.415       |
|   | 12.135 | RE PF   | Ņ | 1.5560 04 | -         | 22.54     | , MU. |   | 3+20+0-05  | SIGMA        | 8. 8550~01  |
|   | 15+303 | DELSTR  |   | 59100     | THETA =   | 10000     | ¥0    | # | 6.0350 00  | TAUN         | 3.5440-01   |
| H | 5244.  | PRREF   | Ħ | 0.6585    | E NTNTN E | 1.7720-03 | RETH  | 9 | 143.       | RETHTR       | 499.        |
| W | 2.000  | DEL STR |   | 0•136     | THETA =   | 0.301     | 5     |   | 1.7110 00  | TAUN         | 1,3640-01   |
|   | 5244.  | PAREF   | 4 | 0. 6585   | STANTN =  | 5.0210-04 | RETH  | * | 473.       | RE TH TR     | 499.        |

| •         | 040.74 |          |           |          | 3250.     | ۵     | H | A.0130-03 | a           | 5.2200-0 |
|-----------|--------|----------|-----------|----------|-----------|-------|---|-----------|-------------|----------|
| APAT #    | 16.000 | • • >    | 11216.    | . 2      | 4 . 120   | . 19  |   | 2.67      | GAMMA       | 1.416    |
| ARATEF =  | 12+524 | RE PF #  | 1.5480 04 | a AM     | 22.54     | NC    |   | 3+1730-05 | 4 X 1 1 1 1 | 8+7930-0 |
| WIDTH -   | 16.000 | DELSTR = | 0-174     | THETA =  | 6000      | 0W    |   | 5.791D 00 | TAUN        | 3+3970+0 |
| H<br>H    | 5242.  | PRREF =  | 0.6585    | STANTN = | 1.7550-03 | RE TH |   | 144.      | RETH 18     | 503.     |
| HE IGHT = | 2.000  | DELSTR = | 0.157     | THETA =  | 0.311     | Mo    |   | 1.6390 00 | TAUW        | 0-0001 1 |
| н<br>н    | 5242.  | PRREF #  | 0.6585    | STANTN # | 4.9650-04 | RETH  |   | 479.      | RETH TR     | 503.     |
|           |        |          |           |          |           |       |   |           |             |          |

| #<br>×    |        | 45.894 | -      | H | 1294.     | Ĩ        | 10<br>11 | 237.      | ٩     |   | 3.7680-03  | ~        | 4.9920-0  |
|-----------|--------|--------|--------|---|-----------|----------|----------|-----------|-------|---|------------|----------|-----------|
| ARAT =    | -      | 17+000 | >      |   | 11248.    | Ŧ        |          | 4.168     | •0    | * | 2.87       | GAMMA =  | 1.417     |
| ARATEF =  | -      | 13.061 | REPF   |   | 1.7930 04 | II AN    |          | 22+54     | Ŗ     |   | 30-0751-02 | SIGNA    | 8.6640-0  |
| # HTOTH # | -      | 17.000 | DELSTR | Ħ | 0+187     | THETA 2  | R        | 0.097     | MO    |   | 5.4420 00  | TAUK -   | 3.1.550-0 |
| "<br>Ŧ    |        | 239.   | PRREF  |   | 0.6556    | " NLNVIS |          | 1+7190-03 | RETH  |   | 145.       | RETHTR   | 50¢.      |
| HEIGHT =  | -      | 2.000  | DELSTR |   | 0+157     | THETA =  |          | 0+326     | ¥0    |   | 1.5360 00  | TAUN -   | 1-2090-0  |
| ۳<br>۲    | ۳<br>۲ | 239.   | PRREF  |   | 0.6586    | A NINAIN |          | 4.8530-04 | RE TH |   | 487.       | RE TH TR | 509.      |

8.6620-01 3.1820-01 4.9890-05 1.417 509. TAUW RETHTR TAUW RETHTR GAMMA ANG 18 3#1320-05 5#4360 00 3+7640-03 2.87 145. 0.0 22.54 0.097 1.7190-03 0.326 4.169 3237. STANTN = Theta = Н М М Н П 1 1 1.7920 04 0.6586 0.187 0.158 1294. 11248. DELSTR = PRREF = DELSTR = 79.3A ⊢ > 17.016 13.070 17.016 5239. 2239. 2239. 45+940 ARATEF WIDTH ARAT Ŧ

T

1 • 2 060 = 0 1 5 0 9 • 1.534D 00 467. 4.051D-04 STANTN 0+6586 PRREF HE IGHT HR

E FOOR QUALITY 4.7910+05 1.415 8.5430-01 3.0220-01 1.1400-01 514. 1404 RE THTR 7404 RF THTR GAMMA SIGMA 3+5540-03 2+87 3.0960-05 5.1660 00 1.4540 00 405. 145. RE TH 04 RFTH 3 ş **a**. m 22+54 0+100 1+6970-03 0+340 4.7777-04 4.213 3225. THETA STANTN STANTN THETA ł IΞ 1.7460 04 0. 200 0. 6586 0. 218 7. 7. 7. 7. 1272. 11274. DEL STH \* DELST9 = PRRFF 00055 76 PF \* > 48.731 18.000 13.579 18.000 5237 2.000 5237 HE IGHT X Arat q

-244

FIGURE 69 - PROBLEM SUMMARY-OR TEST PROBLEM NO. 3 (First Page) DE OUTPUT NATA II

ĥ

**BOL SIHT NI I** CASE 0 PUN NO.

-

TEST PRORLEM NO. 3 - PLANETARY ATMOSPHERE MODEL

× 1.0000 ATM. RESERVUIR TEMPERATURE= 19000.09 DEG RESERVOIR PRESSURE=

1.500 INCH THRDAT DIAM FOR DCA 3 AXISYMMETRIC NOZ7LE NO. STANJARD

6 SECTIONS IN FIT. 4 UPSTREAM OF THROAT -9.144 CM INLET AT THRDAT RADIUS= 1.905 CM

|          |         |                |               |               | -            |            |         |
|----------|---------|----------------|---------------|---------------|--------------|------------|---------|
| <b>-</b> | DAKES!  | 2              | 3d VHS        | ATP1(J)       | PARAM(1. J)  | PARAW(2.J) | DAPANCE |
|          |         | -              | STRAIGHT LINE | - 9. 4315D 00 | -2.27300 01  |            |         |
| ~        |         | N              | CIRCLE BUTTOM | - 8.3046D 00  |              |            |         |
| m        |         | -              | STRAIGHT LINE | -6-64700-03   |              |            |         |
| 4        |         | N              | CIRCLE BUTTOM | 0.0           |              |            |         |
| ŝ        |         | N              | CIRCLE BOTTOM | 3.28700-02    | 2-03200 00   |            |         |
| ¢        |         | -              | STRAIGHT LINE |               | 1 - 90050 00 | 2.67950-01 |         |
|          |         |                |               |               |              |            | •       |
| NDARD    | GAS NO. | <del>د</del> ۲ | ( CUNAR )     |               |              |            |         |
|          |         |                |               |               |              |            |         |

STAP

|                            | COLD SPECIES  |               |                  |
|----------------------------|---------------|---------------|------------------|
| D. NAME INDEX              | MOLE FRAC.    | MOL. WT.      | CHEMICAL FORMULA |
| 1 CU2 13                   | 0 • 75000     | 44.0110       | (C)1 (D)2        |
| 2 AR 4                     | 0.20000       | 39.9480       | (AR) 1           |
| 3 N2 5                     | 0 • 0 5 0 0 0 | 28.0140       | (1)2             |
| [[GHT DF COLD GAS= 42.3985 |               |               |                  |
|                            | ,             |               |                  |
| CLEMENT                    | ATOM FRACTION | ELEMENT MOLEC | CULAR WEIGHTS    |

7.5000000-01 9.9999990-02 1.500000 00 2+0000000-01 0.0 u u u z o K

1.4007000 01 1.6000000 01 3.9948000 01

5.4859700-04 1.2011000 01

| JE RGY                 | 20 05        | 00 05         | 05005        | 20 05        | 00 05                   | 00           | 000          | 000           | 00           | 0            | 00        |              |                |                 |              |                         |
|------------------------|--------------|---------------|--------------|--------------|-------------------------|--------------|--------------|---------------|--------------|--------------|-----------|--------------|----------------|-----------------|--------------|-------------------------|
| ACIIVATION EN          | 1.17980      | 1 1 7 9 8 0 0 | 1.17980      | 1.179800     | 2.250400                | 2.250400     | 2.250400     | 1+500500      | 1.500500     | 3.915000     | 7.551000  | 0.0          | 0•0            | 0.0             | 0.0          | 0.00                    |
| TEMP. POWER DEPENDENCE | -1.000000 00 | -1.000000 00  | -1.000000 CO | -1.000000 00 | -5 • C C C O O O D -0 1 | -1.500000 00 | -5.000000-01 | -1-5000000 00 | -1.500000 00 | 1.0000000 00 | 0*0       | -1.500000 00 | -4 -5 C000D 00 | -4 -5 00 000 30 | -1.500000 00 | 5 • 0 0 0 0 0 0 0 - 0 1 |
| 14                     | 14           | 15            | 15           | 14           | 13                      | 16           | 15           | 14            | 14           | 13           | 13        | 15           | 22             | 22              | 15           | 13                      |
| CONSTANT FACTOR        | 3.5999990    | 8+994970      | 3+2000000    | 7.2066605    | 1.9000000               | A.10000L     | 4 - 760000   | 24899953      | 7.7999995    | 3+199990     | 7.0000000 | 0665669*9    | 2.200000       | 2+2000000       | 7.9995990    | 7.8000000               |
| REACTION NO.           | 1            | 2             | m            | •            | ¢۵                      | ¢            | ~            | r             | ¢            | 10           | 11        | 12           | 13             | 14              | 15           | 10                      |
| _                      |              |               |              |              |                         |              |              |               |              | ن<br>م       | ł         |              | • }            | •               |              | <u>,</u>                |

0•1000000 •1000000 •1000000 •1000000 0 • 1 000000

1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年,1999年

おしい いまちょう システィアオイ・スト・ト かいろう ふちゃ たいちょうじょう したみたい・ションス ちっく ひかっ たい シス・スト 🎝 チャン・ション・フ

i ç

· · · · · · · ·

D.

00000001 °C 00000001 °C

70000 00000

CHI TEST

THIRD BOOV MATRIX

0110010111100000000

000000001100111100000

011010111110000000

0.1 000 000

-245-

00000001110111100000000 011111111110000000 0 • 1 000 000 0 • 1 000 000 0 • 1 000 000 0 • 1 000 000 0 • 1 000 000 0 • 1 000 000 0 • 1 000 000 0 • 1 000000 • • 1 000000 • • 1 000000 0•1000000 0•1000000 0•1000000 C • 1 000000 0 • 1 000000 0+1000000 0.100000 0000001.0 0.100000 0000001.0 (Second Page) DRIGINAU PAGE OF POOR QUALITY m M 4 00000 5 ő 0 0000 4 1 4 4 4 500 NO. 1.0960000 4.4490000 3.2270000 1.570000D 9.2220000 r. 470000D 00091161 5.967000D 5.1670000 5+5640000 2.550000 1.2560300 1.305000 1.3810000 00000000000 2.3970000 \*\* 606000D 5.705000D 6.336000D 5.416000D PROBLEM c..0 0:0 0.0 0.0 0:0 0.0 0.0 0.0 0.0 0.0 9 ••• FOR TEST ÅR PROBLEM SUMMARY 0 0 0 o 0 o o C 00 5.000000-01 -1.500000 00 000 00 00 80 000 1.000000 00 -4.5CC000D 00 5 + 0 0 0 0 0 0 - 0 1 -1.0000000 5.000000-01 9.0000000-01 5 + 0 000000 -01 5.000000D-01 5 • 0 00 0 C C D - 0 1 5+000000-0 5.0000000-01 0-00000009 5-000000-0 5 . 0 0 C 0 0 0 D - 0 5.000000-0 č 0-000000000 5.0000000-0 5.000000-0 5-0000000-0 -2+500000 • 5 00 0 0 0 0 -2.500000 -2+500000 -2.000000 -1.000000 -2.000000 -1 .5 0000D 0 0.0 o 0 NO o NO 1 FIGURE 70 0 ALPHA MATRIX υ 0 C C 0 -0 C 0 Ľ 0000 o 0 0 ю o 7 ĩ 7 7 7 777 2 16 2 2 4 (N) (N) 15 51 4 4 14 7.800C00F 2.0000000 .5000000 2.2000000 .500000 .070000 .0900090 5.4699980 (1666629\*4 00000000 09999940 .5000000 0666666 1.4000000 1666662.4 (1000008+1 3066666666 3.7999960 4.4800000 0859990.8 2+329990 2.72 39990 2.8595490 4.5900000 2.550000 6.C30C00D 5.6597990 . 5000000 2.2000000 0000085.0 0000056.5 1.5000000 THERMAL FIT INDICATOR

SPECIES

construction construction

5 0 N 0

3 ° °

ي د د د

30°°

026

N2C 0.

. 00 o

•••

••• z

> å õ

ō

o 9

\* m

::

••• ŝ

00

20 0 0 0

å å ٩

30 Ł

- 0

Ż

NU PRIME MATRIX

REACT NO.

0

n

z

........... E FOR SUMM ••••••••••••• ••••••••••••••••• 0 ROBLEM NN000--00 00000-00000 IGURE 000 - - - N000 - 0 N N O O O O O O U O O O O U O O XIGTAM UN Q 40× N × 0 0 1 0 REACT

-247-

- . . . 🌒

| (       | •        | j<br>; | •••      | ••• | •        | •   | ••• | •••    | • • • | • •      |              |     |     | 0.0 | 0.         | •0  | •• | •0     | ••     | 0. 1. | 0•<br>0 | ••     | ••     | 0.         | 0. 1.  | •0     | • 0<br>• 0 | • 0<br>• 0 |            | ••••       | 0.  | 0.0. | ••    |   | CTRONIC LEVEL | -       | -       | -       |        |        | 1          | n ¥ | <b>,</b> K | • •     | ~       | ŝ            | •       | 01 ·    | <b>~ :</b>       |       | •        | ŝ       | • (      | N 19            |
|---------|----------|--------|----------|-----|----------|-----|-----|--------|-------|----------|--------------|-----|-----|-----|------------|-----|----|--------|--------|-------|---------|--------|--------|------------|--------|--------|------------|------------|------------|------------|-----|------|-------|---|---------------|---------|---------|---------|--------|--------|------------|-----|------------|---------|---------|--------------|---------|---------|------------------|-------|----------|---------|----------|-----------------|
|         | •0       | •      | •        | •   | •        |     |     | •      | •     | •        | • •          |     | •   | •   | •          | •   | •• | •      | •      | •     | 1.      | :      | •      | •          | •      | •      | •          | •          |            | •          | •0  | •    | •     |   | ELE           |         | •       |         |        |        |            |     |            |         |         |              |         |         |                  |       |          |         |          |                 |
|         | •0       | ••     | •        | •   | •        | • • |     | •0     | •     | • •      | • •          |     | •   | •   | •          | •   | •0 | •      | ••     | •     | •       | •0     | •      | •          | •      | •      | •          | • •        |            | •••        | •0  | •0   | •     |   | N             |         |         |         |        |        |            |     |            |         |         |              |         |         | ·                | •     |          |         |          |                 |
| de)     | •        | ••     | •        | •   | •        | • • | ••• | •      | •     | •        |              |     | • • | •   | •          | ••  | •• | •      | •      | •     | •       | •      | •      | •          | •      | •      | •          | •          |            |            | •0  | •    | •••   |   | ORMATI        |         |         |         |        |        |            |     | 20 000     | 000 040 | 000 04  | 40 000       | 000 03  |         |                  |       | 000 02   | 50 000  | 50 000   | 50 000<br>000   |
| th Pa   |          | ••     | •        | •   | •        | ••• | ••• | 1.     | •     | •        | •••          |     | ••• | •   | ••         | ••  | å  | •      | •      | •     | •       | •      | •      | •          | •      | •      | •          | •          |            | •••        | ••  | ••   | •••   |   | F.            | •••     | 0       | ••      |        |        | •          | ) ( | 1252       | . 6990  | . 1450  | • 6770       | • 9717  |         | - 3656<br>- 3656 | 7204  | . 5768   |         | . 2331   |                 |
| (Four   | • • •    | 1.     | •        | ••• | •        | • • | ••• | •0     | •     | •        | • •          |     |     | •   | •          | •0  | •  | •      | ••     | •     | ••      | •      | •      | ••         | •      | •      | •          | •          |            | •••        | • • | •    | • •   |   | THALPY        | U       | Ģ       | 0       |        |        |            | 9 6 | , -        |         | -       | v            | -       |         |                  |       |          | ~       | 10 1     | <b>, ,</b>      |
| NO. 3   | •        | •      | •        | •   | •        | • • | • • | ٠      | •     | •        | • •          |     |     |     | •          |     | •  | •      | •      | •     | •       | •      | •      | •          | •      | •      | •          |            |            |            | •   |      | •     |   | 2<br>U        |         |         |         |        |        |            |     |            |         |         |              |         |         |                  |       |          |         |          |                 |
| NALEN   | · ·      | •      | •        | ••• | •        | •   | • • | •••    | •     | •        | •            |     |     | •   | •••        | ••• | •  | ن<br>• | •••    | •     | •       | •      | •      | •          | •      | •      | •          | • •        | • •        | •••        | •   |      | •••   |   | L TEMP.       |         |         | D 03    | 02     | 005    | 6 I<br>0 I |     | )<br>)     |         | 50 0    | 0 0 3        | 10 G    | •       | 50               |       | 0 03     | E0 0    |          | £0 C            |
| Id LSI  |          | •      | •        | •   | •        | • • |     | •      | •     | •        |              |     |     |     | •          |     | •  | •      | •      | •     | •       | -      | -      | •          | •      | •      | •          | •          |            | •••        |     | •    |       |   | T I ONAL      |         |         | 77000   | 000000 | 000000 | 80000      |     |            |         | 00066   | 83000        | 390.001 |         | 73000            |       | 24000    | 28000   |          | <b>\$ 2000</b>  |
| OP TE   | <u>,</u> | 0      | Õ        | ō ( | Ō        | ōc  | ōō  | Ŭ      | Ū     | Ō¢       | 5 o          | đ   | ōŏ  | c   | ō          | ŏ   | ō  | ō      | ŏ      | ŏ     | õ       | Ŭ      | ō      | ō          | Ō      | Ō      | Ŭ          | ō ¢        | 50         | 5 -        | Ö   | ŏ    | -     |   | /IBRA         | 0 • 0   | 0.0     | 1.9     | 9.6    | 9.6    | ři<br>ni   |     |            | 0.0     | 2 . 6   | 0 <b>*</b> n | 2.9     | 0       | т с<br>•<br>•    |       |          | 2.6     | •••      | 5 <b>0</b>      |
| ARY F   | 0        | •      | •        | ••  | •        |     |     | •      | •     | • •      |              | •   | ••• | •   | •<br>0     | •   | 1. | •      | •      |       | -       | •      |        | •          | •      | •      |            |            |            | 0          | -   | •    | •••   |   | IAR.          |         |         |         |        |        |            |     |            |         |         |              |         |         |                  |       |          |         |          |                 |
| SUMM    | •        | •      | •        | ••• | •        | • • | • • | 1.     | •     | •        | • •          |     | • • | •   | •          | •   | •  | •      | :      | •     | •       | •      | •      | •          | •      | •      | •          | • •        |            |            | •0  | •    | •     |   | Û             |         |         |         |        |        |            |     |            |         |         |              |         |         |                  |       |          |         |          |                 |
| PROBLEM | •        | •      | •<br>•   | •   | •        | • • | •   | • •    | •     | •        |              |     | •   | •   | •          |     | •  | •      | 1.     | •     | •       | •      | •      | 1.         | •      | •      | •          | •          |            | •••        | •   | •    | •     | • | STANT         | 01 00   | 00 00   | 00 00   |        |        |            |     |            | 10-00   | 00-01   | 0-01         | 00-01   | 60-02   |                  | 10-00 | 0-01     | 00-05   | 4 D- 02  | 10-00           |
| 72 - 1  | •        | •      | <b>.</b> | •   | •        | • • |     | •      | •     | • c      |              |     |     | •   | •          | •   | 1. | •      | •      | •     | •       | •      | •<br>0 | •          | ່ວ່    | ໍ່     | •          | • •        |            | ::         | •   | •    | •     |   | AL CON        | . 49276 | • 8663C | . 89580 |        |        |            |     | 00440      | 00856   | 6.4550C | • 16900      | . 22600 | • 36999 | 00148.100        | 00850 | 1. 76300 | 1.17050 | 99995 •0 |                 |
| FIGURE  | •0       | •0     | •<br>ວ   | •   | •<br>•   | • • |     | •      | •     | • •      | • •          |     | • • | •   | •0         | •0  | •  | •      | •      | •     | •       | •      | •      | •          | •      | •      | •          | ¢          |            | 0          | •   | •0   | ••    |   | CHEMIC        | 7       |         | -       |        |        |            |     | • •        | i er    | 8.      | <b>F</b> 7   |         |         | F: T             | U 47  | •        | 1       | •••      | • N             |
|         | •0       | •      | •        | ••• | •<br>• • | • • |     | •      | •     | •<br>• • | • •          |     | •   | •   | •0         | •0  | •  | •      | •      | •     | :       | •<br>5 | •      | •          | •      | •<br>• | •          | •          |            |            | •0  |      | • • • |   |               |         |         |         |        |        |            |     |            |         |         |              |         |         |                  |       |          |         |          |                 |
|         | •0       | •0     | •        | .o. | •        | • • | ••• | ••     | •     | • c      | • •          |     | • • | •   | •0         | •   | •  | •      | 1.     | •     | •       | •      | •      | •          | •      | •<br>• | •          | •          | • •        |            | •   | •0   | ••    |   | CULE          | 0000    | 000     | 000     |        |        |            |     |            | 00      | 00      | 00 0         | 00      | 000     |                  | 200   | 000      | 000     | 60       | 50              |
| •       | • 0      | •0     | •        | ••• | •<br>•   | • • |     | •      | •     | •        |              |     |     | •0  | <b>0</b> • | •   | •• | •      | •      | •     | •       | •      | •      | •          | •      | •      | •          | • •        |            | • •        | • 0 | •0   | •     |   | MCLEO         | 000000  | 1000000 | 0000000 |        |        |            |     |            | 000000  | 0000000 | 100000       | 000000  | 0000000 |                  |       | 0000000  | 1000000 | 000000   | 000000          |
|         | 2•       | 2•     | •        | 5   | •        | • • |     | •<br>0 | •     | •        | • •          |     | • • | •   | •          | •0  | •0 | •••    |        | •     | •       | •<br>• | •      | •0         | •      | • v    | •          | • •        | ,          | • •<br>• • | •0  | •0   | • •   |   | DMS PER       | 1.0     | 1.0     | 0 • D   |        |        | •          |     |            | 1.0     | 2•0     | 2.5          | 2.0     |         |                  | •     | 2 • C    | 2+0     | -<br>1   | - 0<br>- N      |
|         | (        |        |          |     |          |     |     |        |       |          |              |     |     |     |            |     |    |        |        |       |         |        |        |            |        |        |            |            |            |            |     |      |       |   | ATC           |         |         |         |        |        |            |     |            |         |         |              |         |         | -                |       |          |         |          |                 |
|         | 13       | 14     | 15       | 0   |          | D 0 | 202 | 21     | 22    | n<br>N   | 1 10<br>V 11 | 2.0 | 27  | 5   | 53         | 30  | 1E | 32     | E<br>E | 4 E   | 35      | 36     | 4 8    | <b>3</b> 8 | Ω<br>Π | 4      | 41         | 4 4        | 0 ≪<br>1 ≪ | 1 10       | 46  | 47   | 48    |   | SPECIES       | ۲<br>لد | 44      | 202     |        |        |            |     | Ż          | 0       | ÖZ      | 00           | Z,      | U       | 302              | źö    | N26      | 026     | 33       | 3 300<br>7 7 00 |

,

1. . . . . . . . . . . . . .

المرابع فبقد أمارة الافتانية والاستعارية بالإستانية

111 × 111

No. 1 1 1.

Ĵ

-248-

0 0

 $(\mathbf{i})$ 

| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 0<br>• 0<br>• 0<br>• 2<br>• 2<br>• 3<br>5<br>4<br>0<br>5<br>• 4<br>5<br>5<br>0<br>5 |              |              |                  |                 |               |            |              |          |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|--------------|------------------|-----------------|---------------|------------|--------------|----------|-------------|
| 0 • 0<br>0 | • 0<br>• 0<br>• 0<br>• 2 • 2 6 3 9 0 0<br>• 0<br>• 5 • 4 9 5 2 0 0                    |              |              |                  |                 |               |            |              |          |             |
| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •0 1.435400<br>•C 2.263900<br>•0 5.495201                                             |              |              |                  |                 |               |            |              |          |             |
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0 1.435400<br>•C 2.263900<br>•0 5.496200                                             |              |              |                  |                 |               |            |              |          |             |
| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •C 2.263900<br>•D 5.496201                                                            | 0 05         | 6.0 1.1      | 7046000 C5 1     | .0 1.715000D 0  | 5 2.0         | 1.9611000  | 50           |          |             |
| 0.0<br>0.0<br>2.4982000 CS 3.<br>2.4982000 CS 3.<br>1.7334000 CS 3.<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 CS 3.<br>1.478300 CS 3.<br>1.478000 CS 3.<br>1.4780000 CS 3.<br>1.4780000 CS 3.<br>1.478000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0 5.49620C                                                                           | 40 0         | 1.0 3.1      | 7726000 04 3     | 1.0 1.032000D 0 | 5 G+D         | 1.4239000  | 00           |          |             |
| 0.0<br>2.4982600 CS 3.<br>0.0<br>1.7334600 CS 2.<br>0.0<br>0.0<br>1.782300 CS 6.<br>1.782300 CS 4.<br>1.782300 CS 4.<br>1.7823000 CS 4.<br>1.7823000 CS 4.<br>1.7823000 CS 4.<br>1.7823000 CS 4.<br>1.7823000 CS 4.<br>1.7823000 CS 4.<br>1.78230000 CS 4.<br>1.7823000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | 0 0 4        | 6.0 8.2      | 2456000 04 12    | 0 0002585.5 C+1 | 5 18.0        | 2+5014000  | 05           |          |             |
| 2.4982600 C5<br>0.0<br>1.7334600 C5<br>2.0<br>0.0<br>0.0<br>1.748300 C5<br>1.748300 C5<br>1.74800 C5<br>1.748000 C5<br>1.748000 C5<br>1.748000 C5<br>1.748000 C5<br>1.748000 C5<br>1.748000 C5<br>1.7480000 C5<br>1.7480000 C5<br>1.748000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • · · • 53000                                                                         | 0 0 2 0 2    | 1.0 6.4      | 1800000 02 5     | 1.0 4.5367000 0 | 4 1.0         | 9.663 6000 | 8 40         | •0 2.13  | 0006        |
| 0.0<br>1.7334000 CS 2.<br>0.0<br>0.0<br>1.748300 CS 4.<br>1.748300 CS 4.<br>1.7483000 CS 4.<br>1.7483000 CS 4.<br>1.7483000 CS 4.<br>1.7483000 CS 4.<br>1.7483000 CS 4.<br>1.7483000 CS 4.<br>1.74830000 CS 4.<br>1.74830000 CS 4.<br>1.7483000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                          |                                                                                       |              |              |                  |                 |               |            |              |          |             |
| 1. 7334C0D C5<br>0.0<br>0.0<br>1. 742300D C5<br>1. 742300D C5<br>1. 742300D C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +0 J.460C0C                                                                           | D 02         | 2.0 1.2      | 2570000 05 4     | 0 000211.01     | 5 2.3         | 1.4910000  | 05 2         | •0 1•517 | 7000        |
| 0.0<br>0.0<br>1.7423000 C5 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |              |              |                  |                 |               |            |              |          |             |
| 0.0<br>1.7423000 C5 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 1.392000                                                                           | D 05         | 3+0 1+5      | 598300D 05 6     | 1.0 1.781200D 0 | 5 2.0         | 1.8605500  | 05           |          |             |
| 1.7423000 C5 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •3 2.606500                                                                           | 0 0          | 2.0 7.3      | 375900D 04 4     | +0 1.542630D 0  | 5 2.2         | 1.6857000  | • 05         | •0 1.70  | 4000        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •0 1.ES2200                                                                           | 2 05         |              |                  |                 |               |            |              |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0 2.914600                                                                           | 40 0         | 1.0 6.1      | 189400D 04 5     | 0 9-6452000 D   | 0-0 +         | 1.7258000  | 10 x 0       | -0 1-77  | 1300        |
| 1.4324000 05 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 2.001000                                                                            | 0 0 0 0      | 19.0 2.1     | 144000D 05 401   | -0 2-430000 0   |               |            | )            |          | )<br>)<br>) |
| 3-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0 1.06000                                                                            | 000          | 3-0 1-6      | 5000000 05 2     |                 | . 16          |            |              |          |             |
| 3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0 1-406206                                                                           | 200          | 5.0 3.1      | 7500000 02 5     | -0 4-3789000 D  | 4 I.D         | 9.3456000  | 5 <b>6</b> 0 | 14341    | 6000        |
| 2.637400D C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | <b>)</b><br> |              |                  |                 | •             |            | •            |          |             |
| 101 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6 7.667000                                                                           | 0 04         | 6.0 1.1      | 157000 05        |                 |               |            |              |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •C 2.58900                                                                            | 400          | 2.0 7.2      | 2797000 04 2     | • 0 1.847600D 0 | ŝ             |            |              |          |             |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •C 5.580C00                                                                           | D 02         | 8.0 9.1      | 1206000 04 4     | •0 1.097600D 0  | 5 4.0         | 1.388600   | 00           |          |             |
| C.0 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0 1.83000                                                                            | 0 02 1       | 2.0 1.2      | 230400D 05 10    | -0 2-142400D 0  | 5             |            |              |          |             |
| ·2 C*0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0 4•094C0C                                                                           | D C3         |              |                  |                 |               |            |              |          |             |
| 0•0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •0 5.927800                                                                           | 40 O         | 2.C 1.       | 3116600 05       |                 |               |            |              |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |              |              |                  |                 |               |            |              |          |             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                     | U            |              | ٥                | łu              |               | K HEA1     | OF FOR       | MATION   |             |
| 3.451483D CO 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,088331D-94                                                                           | -4.251       | 4280-08      | 2-7392950-1      | 2 -5.4683190-1  | 7 3.5         | 712680 07  | 0.0          |          |             |
| 3.2494730 00 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • 963449D-04                                                                          | -6.701       | 7485-08      | 4 • 44 33390-1   | 2 -1.0032810-1  | 6 5.9         | 150220 00  | 0.0          |          |             |
| 3.7562150 00 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +C839610-04                                                                           | -2.639       | 15480-08     | 1-6903320-1      | 2 -3.6115220-1  | 7 3.6         | 111670 00  | 2.1460       | 000 04   |             |
| 3.3946790 00 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •2282390-04                                                                           | -3.943       | 164 C7 -08   | 2.1751900-1      | 2 -4.296600-1   | 7 4.2         | 040000 00  | 6-6770       | 000 O4   |             |
| 3.2554490 C0 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 3377289-04                                                                          | 006*0-       | 14600-08     | 1-2611259-1      | 2 -2.3789000-1  | 7 5+5         | 334000 00  | 1.9717       | 00D 02   |             |
| 3+3973850 00 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • 749384D-04                                                                          | -6.052       | 90-0120:     | 4+6375060-1      | 2 -1-1077040-1  | 6 <b>A</b> .2 | 00562D 00  | 2.3666       | 20 00    |             |
| 3.23 A0600 60 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .472570D-04                                                                           | -3.958       | 180-00-08    | 1-5296300-1      | 2 -2.1145000-1  | 7 4.9         | 515990 00  | 3.5768       | 20 00    |             |
| 3.4921290 C0 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>3787290-04</li></ul>                                                          | -5.208       | 141 CD - 0 B | 4 • 16 20 70 D-1 | 2 -9.7275000-1  | 7 4.5         | 67500D 00  | 2.8800       | 50 000   |             |
| 3+4941090 00 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •1008300-04                                                                           | -1.117       | 1400-08      | 5.6582000-1      | 3 1+3605000-1   | 7 4.2         | 967 00D 00 | 3.8995       | 000 05   |             |

SPECIFIC HEAT OF CULD GAS= 0.1887 BTU/LB-DEG R AT

########ELAPSED TIME= 0.04 MINUTES SINCE START OF RUN+

300.00 DEG K

3. SECONDS SINCE LAST PRINTED TIME

ORIGINAL PAGE IS OF POOR QUALITY

÷

ţ

-249-

0

Ņ

Ł

3

FIGURE 74 - RESERVOIR CONDITION OUTPUT FOR TEST PROBLEM NO. 3

1

とうないないようない、 いいいでん あいい うちょう ぼう はっかい ひょう しょう かい インチャー アン・マール ワー・・・・・ マーマー・マーマー・マーマー・マーマー・マーマー・マー

. . . . . . . . . .

1. 13 H L 4

. . . . . . . . . . .

1145,1447 1E 1 -

14 C. 4.

and the grant of the state of t

(

- SERVOIR CONDITIONS -

1

| NO721 5 - DCA    |    | 1-500     | INCH THOMAT DIAMETED |
|------------------|----|-----------|----------------------|
|                  |    |           |                      |
| PRESSURE         | H  | 1 • 000   | ATM                  |
| TEYPEPATURE      | Ħ  | 1 20 50 - | DEG K                |
| ENTHAL PY        | li | 19965.    | <b>HTU/LB</b>        |
| ENTROPY          | Ħ  | 3.59      | PTU/LB-DEG R         |
| DENSITY          | Ħ  | 0.00121   | LU/CU FT             |
| VELOCITY         | Ħ  | •<br>5    | FT/SFC               |
| MASS FLUX        | Ħ  | 6°0       | LU/SO FT-SEC         |
| COMPUTED FLUW    | Ħ  | 0.0       | LB/SEC               |
| CANNA            | H  | 1.550     |                      |
| MOLECULAR WEIGHT | Ħ  | 15+67     | GM/MOLE              |
| ELECTRON DENSITY | Ħ  | 3.450 16  | FLECTRUNS/CC         |

## SPECIFS MOLE FRACTIONS

| 4.7360-02 | 7.4210-62 | 9.5220-09 | 6.9800-06 | 1.2040-05 | 3.6900-02 | 5.5500-01 | 1.2570-05 | 1.6970-03 | 2.0150-05 | 2.340D-C1 | 6.9780-06 | 4-040-04 | 4.7940-03 | 5.6740-08 | 7.1400-57 | 4.1050-52 | 6+6950-04 | 4.5970-05 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| -<br>-    | AR        | C02       | N2        | 02        | z         | 0         | NO        | 00        | S         | U         | 3UN       | NC       | 30        | N26       | 026       | 30        | ARE       | 300 .     |

-250-

2. SECONDS SINCE LAST PRINTED TIME ########ELAPSED TIME= 0.07 MINUTES SINCE START DF RUN.

# RESEAVOIN TRANSPORT PROPERTIES

|   | LBM/FT-SEC |           | NHO/CM   |        |
|---|------------|-----------|----------|--------|
|   | 1+000-04   | 0.42362   | 3.130 01 | C. 498 |
|   | H          | H         | H        | 内      |
|   | SITY       | TL NUMBER |          | NUMBER |
| • | V I SCU    | CNAR4     | S I GMA  | LEWIS  |

. . . . . .

ż

م ، م م من من م م م م م م م م م م م م

?

· ·2 · · ·2 · · · · · ·

ł

「「「」」をなって、「「」」をなったので、「」のないともので、「」のころである

FIGURE 75 - OUTPUT OF NONEQUILIBRIUM FLOW-SOLUTION FOR TEST PROBLEM NO. 2 (First Page)

المالية المحمولين الم

Service of

.....

JM SOLUTION NOVEGUIL DCH4AX= 1.3330-02 DCHMAX= 1.8510-02 DCHMAX= 2.2640-02 DCHWIN= 6.1250-06 DCHMIN= 9.3560-06 CCHMIN= 1.3220-05

ທູ່ທູ່

HX AXI HX AXI NA XH I NA XH

| ,          | 4  | -3. 484   | +        | H           | <b>5</b> 468.    | "<br>I         | 19776.        | ٩         | Ħ  | 9.1850-01  | α       | ü | 1-1280-03  |
|------------|----|-----------|----------|-------------|------------------|----------------|---------------|-----------|----|------------|---------|---|------------|
| MA1 (      | Ħ  | 1.964     | >        | 11          | 3677.            | II<br>E        | 0.372         | S         | Ņ  | 3.59       | GAMMA   | H | 1.551      |
| 15ATE 2    | 41 | 1.715     | REPF     | Ħ           | 2.17CD C4        | 11<br>78<br>12 | 15.92         | Đ         | Ħ  | 1.5990-04  | SIGMA   |   | 3.0420 01  |
| IRAT       | 81 | 1.715     | DFLSTF   | n           | -0.019           | THETA =        | 0.024         | MO        | H  | 9.7.6D 02  | TAUN    | Ħ | 4.3560 00  |
| 46         | ų  | 19916.    | pupEF    | H           | 0.5455           | STANTN =       | 1.4190-02     | RETH      | ų  | • 64       | RE THTR | N | 217.       |
|            |    |           |          |             | SPECIES          | S MOLE FRAC    | CTIONS IN THE | FREE STRE | AM | • .        |         | • |            |
| 1          |    | 3.0360 16 | AR       | #t          | 7.4520-02        | C02 #          | 1.0460-05     | N2        | H  | 7. 4940-06 | 02      | Ħ | 1.2090-05  |
| -,         | 11 | 3.7060-02 | 0        | 4           | 5.570D-01        | #<br>DV        | 1+2850-05     | 20        | H  | 1.8620-03  | ZU      |   | 2. C980-05 |
| , .        | Ħ  | 2.4670-01 | 30N      | 11          | 6.9880-06        | #<br>3N        | 4.0.00-04     | 30        | 4  | 4.3420-03  | NZE     | N | 5.4240-08  |
| 226        | M  | 6.512D-C7 | С.5<br>С | 11          | 3. 9050-02       | AP6 =          | 5.871D-04     | 202       | Ħ  | 4.5790-05  |         |   |            |
| ENT MHOC   | •  | .5230-56  | DCHWAX   | =           | 1 • 0 0 3D - 0 2 | I MAX=         |               |           |    |            |         |   |            |
| HNIWF.DO   | 4  | .7610-06  | DC HMA X | 2<br>5<br>5 | 5+ 69 70 - 63    | 1 MA X=        | .0            |           |    |            |         |   |            |
| ENI Mir De | 8  | •0410-0e  | DCHMAX   | =           | 1 • C 4 30 - 0 2 | 1 MA X=        | •             |           |    |            |         |   |            |
|            |    |           |          |             |                  |                |               |           |    |            |         |   |            |

\*\*\*\*\*\*\*\*

| нни кили<br>- бб б б б б б б б б б б б б б б б б б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AM # 1160-                                                                                                      | M H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| เ∵ю • ท⊣ • • ย<br>⊶ เว๊ • ซึ • • •<br>н II II II II II II II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | н 1.7950-04<br>5.65.02<br>6.35.002<br>8.35.002<br>8.35.006<br>8.35.006<br>8.35.006<br>8.35.006<br>8.35.006<br>8.35.006<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005<br>8.35.005 |
| 999 M = 599<br>999 M = 599<br>900 M = 599<br>9000 M = 599<br>9000 M = 599<br>9000 M = 599<br>9000 M = 599<br>900 M = 599<br>9 | ми 2001-<br>1160-<br>4.6630-<br>4.6630-                                                                         | ми 2000-<br>ми 20                                                                                                                                                                                                                                                                              |
| RETH STREAM STREAM COC HILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RETH STREAM<br>STREAM<br>CO E E<br>OC E E<br>COC E                                                              | жетн<br>stræ<br>n stræ<br>n stræ<br>n st<br>stræ<br>n st<br>st<br>st<br>st<br>st<br>st<br>st<br>st<br>st<br>st<br>st<br>st<br>st<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LE FRACTIONS IN THE FREE ST<br>2 = 1.1930-08 N2<br>1.3470-05 C0<br>= 3.9450-05 C0<br>: = 5.1330-04 C06<br>: = 5.1330-04 C06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LE FRACTIONS IN THE FREE ST<br>= 1.1930-08 N2<br>= 1.3470-05 C0<br>= 3.9450-05 C0<br>= 5.1330-04 C06<br>IMAXE 5 | FRACTIONS IN THE FREE ST<br>= 1.1936-08 N2<br>= 1.3470-35 C0<br>= 3.9455-64 05<br>= 5.1730-04 C05<br>X= 5<br>X= 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 02 = 1.1930-08 N2<br>1 = 1.3470-05 C0<br>. = 3.9450-05 C0<br>. = 5.1730-04 C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 = 1.4930-08 N2<br>= 1.3470-05 C0<br>= 3.9450-05 C0<br>= 3.9450-04 05<br>5.1230-04 C0<br>IMAXE 5               | 1.1935-08         N2           1.1935-08         N2           1.3470-05         CO           1.3.9455-04         D5           1.5.1730-04         CO           XE<5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 = 1.3470-05 CO<br>- = 3.9450-04 OE<br>- 5.1330-04 COE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E 1.3470-05 CO<br>E 3.9450-04 05<br>5 E 5.1730-04 COC<br>IMAXE 5                                                | = 1.3470-05 CO<br>= 3.945C-C4 O6<br>= 5.1330-04 CO6<br>X≡ 5<br>X≡ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . в 3.9450-04 05 ч<br>15 в 5.1230-04 006 в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Е 3.9455-64 П5 ч<br>5 н 5.1330-04 СОС н<br>IMAXE 5                                                              | П 3.9450-С4 05 ч<br>Н 5.1730-04 СОС П<br>ХН 5<br>ХН 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16 = 2•1330-04 COC =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 = 541330-04 COC =<br>IMAX= 5                                                                                  | = 5.1230-04 COC =<br>X≡ 5<br>X≡ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IMAX= 5                                                                                                         | X= 55<br>X= 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

-251-

1.2260-05 2.3580-05 4.9470-08 2.8650 01 3.8940 00 231. 9-82 70-04 1.552 H RETHTR S I GMA GAMMA TAUN 0 7 0 7 0 7 0 N 7 0 ¢ 9.0410-06 2.3430-03 3.5290-03 1.5870-04 4.9630 02 7.7470-01 A. 5500-05 3.59 126. H H ŧ H H ŧ 4 8 TREAM 0 3 0 0 0 0 0 0 0 Ñ STANTN = 4.7950-03 R Mole Fractions in the Free 1.3270-09 1.3830-05 4.461C-04 3.5150-04 16.01 C.046 0.650 19404. 5 =X Vn I 5 =X Vn I 5 =X Vn I n H Ħ H H 8 Ņ ħ THETA C 0 2 ARE 0 Z IXX ŝ SPECIES 7.51 :0-02 3.2830 04 -0.237 0.5493 7-9230-56 T. 49.30-02 5+ 60 6D-C1 SCHMAXE 4.446C-C2 DCHVAX= 6+1620+72 CCHVIX= 4+5160-62 5300. •92.95 H H Ð n ł, 6 0 H Ħ RCPF DELSTP PPREF с 2015 N 0 Н မ ပ ⊢ > 2.3270 16 3.7360-32 2.4660-31 5+6530-07 -0+0+0-00-06454 #414100 UCHV.N= 6+3530+05 1,912. 004714- 0-427100 9 11 Ħ η ţ) ti Ð 11 n AFATEF Afat X DIAV 320 1 w 7 0 1 υ

ť : .

?

1 \*

ا الم الم الم الم الم

• • • •

.

.

. . . . .

ŧ

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

J

ŧ

J

64 STEPSeesessessessessessessessessesses [NEOs] 1 • 2430-05 2 • 4620-05 4 • 3740-06 1.553 2.5060 01 4.6010 00 1 • 2370-05 2 • 4 • 60-05 4 • 5 • 40-08 2.4060-05 4.7170-08 **5**8 ... 000 6.24 BD-04 7.6200-04 1. 2330-05 8.6970-04 +0-0211-6 1.553 2.7150 5.2730 1 • 5 5 3 2 • 6 5 3 0 6 • 1 + 60 . ..... 237. 244. 240. 2 SOLUTION FOR TEST PROBLEM NO. 3 (Second Page) RETHTR RETHTR RE THTR GAMMA GAMMA S I GMA GAMMA S (GMA R Gamma SIGNA TAUN TAUK TAUN n N Z N Z U Č 2. 6490-03 2. 6490-03 4. 5220-05 2.6820-03 2.8970-03 4.5310-05 1.5740-04 4.6730 02 7.1060-01 9.5130-05 2.5270-03 3.1510-03 4.5400-05 6-2320-01 4.616D 02 1-0390-05 1.5820-04 1.5090-04 5. 8290-01 4.7480 02 6- 6570-01 9.9260-06 3.59 9.5.5 66" E 152. 148. 141. REF STREAM STREAM STREAM RETH OW Reth RETH 80 30 30 2 0 0 0 0 300 NOZU ž ş × L S Z ş c in ۵ ŝ ... FREE 1 - 3970-05 2 - 2340-04 1.4040-05 2.5720-04 Ŀ. C . 748 4. 2680-03 1 00-1 1 1-6 1 1.5300-08 I CNS IN THE -1.6390-08 4.0770-03 3.9576-03 1-4400-05 1.3400-05 3.4380-04 3.0580-04 3.1140-04 3. 652 0-04 MOLE FRACTIONS IN THE 646.0 0.049 0.822 0.048 0.887 0.754 16.13 16.09 16.00 18815. 1 8952 . 1 9087. 19221 -FIGURE 76 - OUTPUT OF NONEQUILIBRIUM FIC MOLE FRACT MULE FRACT I MAXE STANTN STANTN GTANTN THE TA THETA THE TA ARG 005 NC ARC 002 C 0 2 ARC o s z z MM D N o z ЖW သ z IΣ SPECIES SPECIES 7.5570-02 SPECIE \*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\* \*\*\*\*\*\*\* 7. 05:0-06 3. 2830-02 7.0930-06 2.9840-02 3.1360-02 7.5760-02 7-5340-62 4 6. 92 BC-06 3.744D CA 5. 64 9D-01 5 5-6240-01 5.6370-01 0.5328 0.5541 C+5511 3.6630 3. 5390 -0-013 -0-042 .1800-01 7536. 6631. 9270. 7122. 9163. 6104. 9372. 9473. \*\*\*\*\*\*\*\* PCHMAX\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* DFL STR PRREF DELSTR Prref DELSTR \*\*\*\*\* PRHEF REPE REPF REPF 3 2 2 2 2 0 900 V 200 202 č ₹ a ₹ ĩ 30 0 o o ⊢ > 1- 3 \*\*\*\*\*\*\*\*\*\* 2+5250-01 3.7610-02 2.5660-01 1+03 3+7710-02 2.0279 16 3.7519-92 1.3210 16 5.2150-07 .2390-04 4.9940-07 \*\*\*\*\*\* 2.4860-01 1.503 1.013 1.013 1.013 -0.215 1.522 1.032 1.030 -C+443 1+544 1+564 1+064 -0-014 -0-074 1.63' 19724. 1976: . \*\*\*\*\* APATEF AKATES ARATEF NIMUG \*\*\*\* ARAT WY10 ARAT **ARAT** MAIO MAIC 320 1 2 U 0 αI ا ت ۱ س ĩ ĩ z υ

-252-

1.554 2.5910 01 7.7190 00 247. 1 • 24 60-05 2 • 46 00-05 4 • 1 9 70-08 RETHTR S [GMA TAUN 2 Z Z Z Z Z Z Z Z Z 4.6470 02 153. 1.0550-05 2.9430-03 2.4090-03 4.5130-05 1.5630-04 STREN STREN CO RETH 300 3 8 R R R 2. 3230-04 2. 7080-04 -7050-08 1.3870-05 3.9420-03 ONS IN THE 0.048 16.16 MOLE FRACTI STANTN THE TA NE Arc C 02 X X g ŝ SPECI 5+6620-01 7.5950-02 2-9240-02 3. 79 6D 94 0.5354 E40+3-6 DELSTH REPF AP 0 105 205 1.4550 16 2.7810-02 2.5450-01 1.501 19650. X D I AM ARATEF ARAT 026 026 ЧЧ -Z

•

+++UDVEOU! -! EF! I UM++++++

.

\*\*\*\*\*\*

\*\*\*\*

| n <sup>n</sup> s , u s <sub>e</sub> n a | s sa ann Allman A Santar a suoraidheadhaighea               | · · · · · ·            | τ.                                           |                          | 19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | а<br>Э<br>Э    | · .        |                            | ener in the second s | n <mark>Anno 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19</mark> 77, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19977, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, |                |
|-----------------------------------------|-------------------------------------------------------------|------------------------|----------------------------------------------|--------------------------|---------------------------------------------------------------------------------|----------------|------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                         | ĺ                                                           | FIGURE 77 -            | - OUTPUT OF NON                              | EQUILIBR                 | 105-MOTA WAI                                                                    | UTION FC       | )R. TEST   | PROBLE                     | M NO. 3 (Phi                                                                                                    | rd Page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (              |
| ۳<br>۲                                  | 0.663                                                       |                        | 9050°                                        | I                        | 9<br>1<br>1                                                                     |                | ٩.         | 8                          | 5.4560-01                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4° ¢           |
| DIAM =                                  | 1.500                                                       | •                      | <b>BCO3</b> .                                | Ŧ                        |                                                                                 | 01             | •          |                            | G • 59                                                                                                          | GAMMA .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| ARATEF =                                | 1-001                                                       | REPF =                 | 3.8210 04                                    | 32                       | = 10°1                                                                          |                | Ç i        |                            | 1,5550-01                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5260 01      |
| A 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 | . 1.000                                                     | DELSIN H               |                                              | A1 3H1                   |                                                                                 |                |            |                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                         | ••1011                                                      |                        | 0.0000<br>SPEC 11                            | RIANIC ST                | RACTIONS IN                                                                     |                | E STREAD   | •                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • 10 2         |
| ម<br>៖<br>ឃ                             | 1.309D 16                                                   | A P                    | 7.6110-02                                    | C 02                     | = 1.071                                                                         | 70-08          | 22         |                            | 1.0750-05                                                                                                       | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2410-05      |
| 11<br>: Z                               | 3.7900-02                                                   |                        | 5.6740-01                                    | CZ                       | = 1.36t                                                                         | 50-09          | 0          |                            | 2.9770-03                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3960-05      |
| #<br>U                                  | 2.5640-01                                                   | # 30N                  | 7. JanD-96                                   | 2N<br>NG                 | e 2.12(                                                                         | 60-04          | 26         |                            | 2.1940-03                                                                                                       | N2C E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9610-08      |
| = 320                                   | 3.9710-07                                                   | #<br>00                | 2 • 6890 - 02                                | ARE                      | 8 2.4J                                                                          | 90-04          | 300        |                            | 4 • 460 D=0 5                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                         |                                                             |                        |                                              |                          |                                                                                 |                |            |                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| ******                                  | *****                                                       | ****                   |                                              | 3NON * * * * *           | COULLIBRIUM#                                                                    | *****          | *****      | ****                       | 3 STEPS++                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1++++++++ 1NEC |
|                                         |                                                             |                        |                                              |                          |                                                                                 |                |            |                            |                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| #<br>*                                  | C • C 1 3                                                   | #<br>• :               | 8942                                         | r                        | = 18556.                                                                        |                | Q. (       |                            | 5.1120-01                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0520-04      |
| DIAM #                                  | 1.503                                                       | 4 4<br>010<br>0        | 839%.<br>3. 23 A. A. A.                      | 1<br>1<br>1              |                                                                                 | 0 0<br>0       | ב<br>ב     |                            | 3+39<br>1-5450-04                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 0297        |
| ARAT                                    | 1.004                                                       | DELSTP #               | -0.544                                       | THETA                    |                                                                                 | 5 L            |            | 1 🕫                        | 4.9770 02                                                                                                       | TAUN #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0380 01      |
| H<br>G<br>I                             | 19578.                                                      | PRREF #                | 0.55582                                      | STANTA                   | )62 · 4 · 500(                                                                  | 60-03          | RETH       |                            | 54.                                                                                                             | RETHTR .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 254.           |
|                                         |                                                             |                        | SPECI                                        | ES MOLE F                | RACTIONS IN                                                                     | THE FRE        | E CTREA    | <del>.</del>               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| H - F                                   | 1.1690 16                                                   | AR #                   | 7.6270-02                                    | C 02                     | = 1.72!                                                                         | 90-08          | ∩<br>Z     |                            | 1.0820-05                                                                                                       | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2300-05      |
| ۳<br>۲                                  | 3.7990-02                                                   | •                      | 5.68.60-01                                   | 0 Z                      | = 1•331                                                                         | 60-08          | 0          | #                          | 3.0040-03                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,3200-05      |
| ש<br>ט                                  | 2.554D-31                                                   | NCC<br>NCC             | 7.0610-06                                    | 20                       | = 1+92-                                                                         | 40-04          | 200        |                            | 1. 7840-03                                                                                                      | # 22N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.8010-08      |
| <b>1</b> 25 <b>a</b>                    | 3+6870-07                                                   | #<br>30                | 2.4 2.0 - 3.2                                | AHE                      |                                                                                 | 80-04          |            | H                          | CD-0954 4                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                         | 8 X 2 TACHHT //<br>8 12 12 12 12 12 12 12 12 12 12 12 12 12 | 6.6270-12<br>1.0120 CC | AMACHE 1 • 1 151<br>528 2• 3301<br>444444444 | D 00<br>-01<br>*****NONE | AFNX= 1.012<br>RSA= 1.001<br>(001                                               |                | 0ELBL =-1  | 2.6930.<br>5.7970.<br>**** | -01<br>-02<br><b>4 STEPSee</b>                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| #<br>>                                  | AC J.C                                                      | H<br>                  | -<br>0022                                    | I                        | = 14406.                                                                        |                | ۵          | ŧ                          | 4. 7360-01                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6370-04      |
|                                         |                                                             |                        |                                              | : 3                      |                                                                                 |                | . •        | . 1                        |                                                                                                                 | CANNA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| ADATE =                                 | 1.015                                                       | 8 575                  | 3.8150 04                                    | 3                        |                                                                                 |                | N N        | 1 16                       | 1-5370-04                                                                                                       | a VIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3710 01      |
| ARAT =                                  | 1.016                                                       | DELSTH =               |                                              | THETA                    |                                                                                 | 5              | 30         |                            | 4.660D 02                                                                                                       | TAUN =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0430 01      |
| HR H                                    | 19539.                                                      | PRRFF =                | 0.5584                                       | STANTA                   | 4 8 A 17                                                                        | 20-03          | KETH       |                            | 153.                                                                                                            | RETHTR .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 255.           |
|                                         |                                                             |                        | SPECIE                                       | ES MOLE F                | FRACTIONS IN                                                                    | THE FRE        | F STREAM   | 7                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 4<br>1<br>1<br>1                        | 1.C14D 16                                                   | AC<br>AC               | 7.6440-62                                    | C U 2                    | = 1.77                                                                          | 50-08          | NZ         | Ħ                          | 1.0940-05                                                                                                       | <b>8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2440-05      |
| R<br>Z                                  | 3+8100-92                                                   |                        | 2*7010-01                                    | C d                      |                                                                                 | 40-08          |            | 1                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50-0227°2      |
| י וי<br>ט                               | 2.6030-01                                                   |                        | 7.1470-06                                    | 32                       |                                                                                 | 40-04<br>40-04 | 300        | <b>m</b> 1                 |                                                                                                                 | 1 4 A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 026 . =                                 | 3.4C2U-37<br>POSITIVE                                       | ו<br>ג<br>נ            | 20-0995 *2                                   | 5 X X                    |                                                                                 | 40-0f          | 202        | ir                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| THC20BT 10                              | BCOM - PRUGHAM                                              | INTERPUPT (            | P) - UNDERFLOI                               | 4 OLD F                  | SA IS FFES                                                                      | 50280030       | 8150 . 1   | 7EG 15 TI                  | ER CONTAINED                                                                                                    | 7814893506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6580000        |
|                                         |                                                             |                        |                                              |                          |                                                                                 |                |            |                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -              |
| TRACEUACK                               | HOUTINE CALI                                                | LED FROM ISN           | KEG. 14                                      | REG. 15                  | REG. 0                                                                          | REG.           | -          |                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                         | BLAYER                                                      | 0128                   | 62CUAF92                                     | 00 09 BE CB              | 000000000000000000000000000000000000000                                         | COCEAD         | Ų<br>Ŷ     |                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                         |                                                             |                        |                                              |                          |                                                                                 |                |            |                            | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •              |
|                                         | · CALL                                                      | 3:27                   | 620A4136                                     | DOCBACFS                 | 00000001                                                                        | DOOA3E         | εc         |                            | ~                                                                                                               | DR<br>OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         | PRTA                                                        | 0222                   | 420409C                                      | 001.A3E78                | 00000000                                                                        | 00000          | <b>c o</b> |                            |                                                                                                                 | IGI<br>PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                         | NUVEO                                                       | 1623                   | *2013FA                                      | CC09F688                 | 00000000                                                                        | 000000         | 00         |                            |                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| ,<br>,                                  | MAIN .                                                      |                        | 90016100.                                    | 01080738                 | FD003008                                                                        | 000E A 7       | 60 L       |                            | . <b>A</b> t                                                                                                    | C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| ENTRY PUL                               | NT= C1CE0738                                                |                        |                                              | <b>.</b>                 |                                                                                 | -              |            |                            |                                                                                                                 | AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                                         |                                                             |                        |                                              |                          |                                                                                 |                |            |                            | 11                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 314 NH15                                | PEACE - TORIT                                               |                        |                                              |                          |                                                                                 |                |            |                            | Ł                                                                                                               | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •              |

~253-

- ----

i

• .....

--- -

-254-

`)

· .

 $\mathbf{O}$ 

Э

12.0

talling a prime

. .

.

four pages of the nonequilibrium flow solution. In this case, the switch from the inverse method to direct integration was unsuccessful on the first try, as indicated by the diagnostic "DLOGR IS POSITIVE" in figure 77. After an underflow message produced by the IBM operating system, NATA printed the conditions at the flow point where  $d \ln \rho/dx$  was positive (top of figure 78) and restarted the solution at the previous switch point. After the restart, the switchover from the inverse method to direct integration occurred sufficiently far downstream of the throat to give the desired supersonic branch of the downstream solution, as shown in figure 78.

Test problems no. 4A and 4B simulate two of Wegener's experiments on NO<sub>2</sub> recombination. The NATA solutions of these cases are shown in figures 29 and 30 of Volume I (ref. 1). These problems illustrate the use of nonstandard nozzle geometry, gas species, and reactions. In the input (figure 65), the geometric data describe Wegener's wind tunnel (shown in figure 28 of Volume I). Species number 29 is NO<sub>2</sub> and number 30 is The recombination reaction  $2NO_2 + N_2 \rightleftharpoons N_2O_4 + N_2$  is de- $N_2O_4$ . fined as reaction number 76. Figures 79 and 80 show the problem summary for case 4A. Note that the standard properties are used for N<sub>2</sub>. The thermal properties of NO<sub>2</sub> and N<sub>2</sub>O<sub>4</sub> are defined by means of thermo fits; no physical model data are given for these species because NATA is not programmed to treat nonlinear triatomic molecules such as NO<sub>2</sub> or polyatomic species such as  $N_2O_A$ . All transport property calculations were suppressed in this run by input of NØTRAN = T. Figure 81 shows the calculated reservoir conditions, and figure 82 the first page of the equilibrium solution.

Test problem no. 5 illustrates the use of NATA with a stadard electronic nonequilibrium model (argon, IGAS = 3), together with some of the output controls. Figures 83 to 85 show the problem summary. Note that the electronically excited species AR\*M and AR\*R have the same alpha matrix (elemental composition) as the ground state species AR, but have different enthalpies of formation and appear in different reactions. The electron thermal nonequilibrium parameters are tabulated in figure 85. Figure 86 shows the reservoir conditions. The boundary layer was neglected in the solution. Figures 87 and 88 show two pages of the output from the nonequilibrium solution. As shown in figure 87, the code begins the solution by taking three steps using the FIGURE 79 - PROBLEM SUMMARY P. TEST PROBLEM NO. 4A (F'rst Page)

NATA III wade output

TEST PROBLEM NO. 4A - VEGENER EXPERIMENT C - NONSTANDARD GAS AND GEONETRY 1 IN THIS JOB CA SE

400.00 DEG K 2.0000 ATM. RESFRVOIR TEMPERATURE= RESERVOIR PRESSURE=

o

RUN NO.

NONSTANDARD TWD-DIMENSIONAL NOZZLE. 0.547 INCH THRDAT GAP FOR TEST

4 SECTIONS IN FIT. 2 UPSTREAM OF THROAT INLET AT -25.400 CM 0.695 CM THRDAT RADIUS=

| PARAM(J.J)        | 0.0           | 4.00050 00    | 4.00050 00    | 0•0           |  |
|-------------------|---------------|---------------|---------------|---------------|--|
| P AR AM < 2 • J ) | -5.77350-01   | 0.0           | 0.0           | 2.03880-02    |  |
| PARAM(1.J)        | 7.60650-02    | 4.6954D 00    | 4.6954D 00    | 6.94110-01    |  |
| ATPI(J)           | -2.00020 00   | 0.0           | 8 - 15460-02  |               |  |
| SHAPE             | STRAIGHT LINE | CIRCLE BOTTOM | CIRCLE BOTTOM | STRAIGHT LINE |  |
| ISHAPE(J)         | -             | ~             | N             | -             |  |
| 7                 | -             | N             | ņ             | •             |  |

MIXTURE NONSTANDARD COLD SPECIES

CHEMICAL FDRMULA (N)2 (N)2 (D)4

MOL• WT• 28.0140 92.0140

WEAN MCLECULAR WEIGHT OF COLD GAS= 28,3324

-256-

ELEMENT MOLECULAR WEIGHTS ATCH FRACTION ELEMENT z o

55

1. 400700D

ACTIVATION ENERGY TEMP. POWE & DEPENDENCE CONSTANT FACTOR AI REACTION NO.

THIRD 300Y MATRIX

0\*1 000000 CHI TEST

0.0

•••

3+0000000 14

SPECIES THERMAL FIT INDICATOR ALPHA MATRIX

| Z | ŝ  | N    | -    |
|---|----|------|------|
|   | -  |      |      |
|   | NZ | 5P30 | SP29 |

O 0 • •

> NU PRIME MATRIX REACT NO.

\$23 0• SP30 1. ŝ

c i

ž

**.** ``ı

5050 205 NU MATRIX REACT NO.

5 P 30 Ň

....

n

OF POOR QUALITY

RIGINAL PAGE

ē . 8

:

\*\* 2 2 2 4 San In

۲ ۲۰۰۰

\* \* \* \* \* \*

1.20 - 1.1

ę.

· · · ·

;

• é E. 3 \* · 10.0-4-8.1.

|                         | ELECTRONIC LEVELS  | ŵ             |                        |                      | FORMATION |
|-------------------------|--------------------|---------------|------------------------|----------------------|-----------|
| d Page)                 | OF FORMATION       | 0             |                        | 2.0 1.9811000 05     | K HEAT OF |
| BLEM NO. 4A (Second     | temp. Enthalpy     | 03            |                        | 0 1•715000D 0S       | تة<br>ا   |
| MARY FIT TEST PRO       | CHAR. VIBRATIONAL  | 3 - 3520 000  |                        | 1.704800D 05 1.      | ٥         |
| FIGURE 80 - PROBLEM SUI | CHEMICAL CONSTANT  | -4.1059990-01 | IC FNERGY LEVEL)       | 3.0 1.435400D 05 6.0 | U<br>B    |
| (                       | ATOMS PER MOLECULE | 2.000000 00   | (DÉGENÉRACY, ELECTRONI | 1.0 0.0              | ۲         |
| - 1400 -                | SPECIFS            | NZ            | SPEC IES               | N 2                  | SPEC IES  |

4.4730000 03 5.5860000 03 0:0 3.0712680 00 1.0028000 01 5.9450000 00 -5.4683190-17 0.0 0.0 2.7392950-12 0.0 0.0 -4.2514280-08 -4.5500000-06 2.4500000-06 3.0883310-04 1.1625000-02 -3.750000-04 3+4514830 00 3+5530000 00 4+0030000 00 N2 SP30 SP29

LEWIS NUMBER CALCULATIONS BASED ON BINARY DIFFUSION COEFFICIENT FOR SP29 - 5930

BOUNDARY LAYER EFFECTS NEGLECTED

TRANSPORT PROPERTY CALCULATIONS SUPPRESSED

5. SECONDS SINCE LAST PRINTED TIME 

SPECIFIC HEAT OF COLD GAS= 0,2476 BTU/LB-DEG R AT 300.00 DEG K

. . . . ....

. . . . . .

.

.....

\*r 5 - 1

والمعالية المراجع والمراجع

.....

~

r¢.

-

. ç

\*\*\*\* \* \* \* \* \* \* \* \*

Server 1 2

FIGURE 81 - RESERVOIR CONDINT OUTPUT FOR TEST PROBLEM NO. 4A

)

and the second s

\* 11 F \* 11 \*

- W Younger Billion

NO.

ĺ

- RESERVOIR CONDITIONS -

| ZZLE - TEST<br>SSSURE EST<br>APENATURE =<br>Irapy<br>Ssity<br>Colity =<br>Ss FLUX =<br>Ss FLUX =<br>FLOM =<br>Ecular We IGHT = | 0.547<br>2.000<br>1.830<br>1.656<br>0.10724<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | INCH THROAT OLAMETER<br>ATM<br>BTU<br>BTU/LB-DEG R<br>La/CU FT<br>La/CU FT<br>La/SEC<br>LB/SEC<br>GM/MOLE<br>GM/MOLE |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| CTRON DENSITY =                                                                                                                | 0.0                                                                                                              | ELEC TRONS/CC                                                                                                        |

SPECIES MOLE FRACTIONS

| 9+ 9C1D-01 | 3. F88D-06 | 9. 8930-C3 |
|------------|------------|------------|
| N2         | SP 30      | SP 29      |

0. SECONDS SINCE LAST PRINTED TIME 0.09 MINUTES SINCE START OF RUN. ########ELAPSED TIME#

### DERGINAL PAGE IS OF POOR QUALITY

)\_

Ĵ

(`

¥

|                                         | P = 2.0000 00 R = 1.0720-01<br>5 = 1.66 00 G = 1.0720-01<br>MU = 0.0 51GMA = 0.0<br>Ree Stream            | P = 1.0300 00 R = 1.0460-01<br>5 = 1.666 CAMMA = 1.396<br>MU = 0.0 516MA = 0.0 | P = 1.0190-0<br>S = 1.0190-0<br>MU = 0.0<br>REE STREAM<br>P = 1.7960 00 R = 0.0<br>MU = 0.0<br>REE STREAM<br>P = 1.7960 00 R = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P = 1.7320 00 R = 9.6730-0<br>5 = 1.566 GANHA = 1.396<br>MU = 0.0 \$10MA = 0.0                                                                                                                                                                                 | P = 1.06690 00 R = 9.4200-01<br>S = 1.66 00 R = 9.4200-01<br>MU = 0.0 SIGMA = 0.0 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 183.<br>00.183.<br>1028.19<br>1028.19<br>1028.10<br>9.8930-03<br>108104********************************** | 162.<br>0.226<br>28.19<br>4CTIONS IN THE F<br>9.8920-03<br>18RLUM **********   | 180.<br>0.321<br>0.321<br>0.321<br>28.19<br>4CT 10NS 1N THE F<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99<br>10.99 | 176.<br>0.459<br>28.19<br>ACT [ONS [N THE F<br>ACT [ONS [N THE F<br>9.8670-03                                                                                                                                                                                  | 175.<br>0.516<br>28.19                                                            |
| ***EQUIL                                | Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т                                                                     | I I I I I I I I I I I I I I I I I I I                                          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                          | IXŽ                                                                               |
| ******                                  | 400.<br>0.0<br>0.0<br>3.8880-06<br>3.8880-06                                                              | 396.<br>299.<br>0.0<br>5PFC1E1<br>4.4540-06                                    | 392.<br>423.<br>0.0 specie:<br>5.1190-06<br>5.129.<br>0.0 specie:<br>5.9030-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 384.<br>599.<br>0.0 SPECIE<br>6.8300-06                                                                                                                                                                                                                        | • • • •<br>• • • •<br>• • • •<br>• • •                                            |
| *                                       | *** *                                                                                                     | *<br>*<br>* * *<br>* *                                                         | *** * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                                                                                                                                                                                            | * * *                                                                             |
| ***                                     | ⊢> x + + + + + + + + + + + + + + + + + +                                                                  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                               | 7 < 4<br>8 < 4                                                                    |
| CCLUTION                                | 9 9 9 1 0 - 0 1                                                                                           | -1.200<br>1.445<br>2.641<br>9.9010-01                                          | -0.856<br>1.048<br>1.916<br>9.910-01<br>-0.703<br>0.879<br>1.605<br>9.9010-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.596<br>0.781<br>1.427<br>9.9010-01                                                                                                                                                                                                                          | -0-511<br>-0-717<br>11-011                                                        |
| ج بر<br>ج<br>بر<br>الم<br>الم<br>الم    |                                                                                                           | н н н н н<br>- ц. н н н н<br>- ц. н н<br>- ц. н н                              | ина и ини и<br>циа и ини и<br>ци и ини и<br>ци и и и и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 4 8 8 4<br>4 4 8 4<br>6 4 4<br>7 4<br>7 4<br>7 4<br>7 4<br>7 4<br>7 4<br>7 4<br>7 4<br>7 4 |                                                                                   |

. . . . .

. .

- - -

----

العرة المستويين السمار ال

FIGURE 83 - PROBLEM SUMMARY ( TEST PROBLEM NO. 5 (First Page)

٦ • • •

:

NATA III' CODE DUTPUT

1 IN THIS JOB CA SF , Ö RUN NG.

(

TEST PROBLEM ND. 5 - ELECTRONIC NONEQUILIBRIUM MODEL FOR ARCON

RESERVCIR PRESSURE= 1.4000 ATM, RESERVCIR TEMPERATURE= 1.0000.00 DEG K

STANDAED AXISYMMETRIC ND22LE ND. 1. 0.750 INCH THRDAT DIAM FOR DCA

8 SECTIONS IN FIT. 6 UPSTREAM OF THROAT INLET AT -5.540 CM THROAT RADIUS= 0.952 CM

| PARAM(3.J) | 0.0           | 1.27000-01    | 0.0           | 10-00211-2  | 0.0           | 1.27000 00    | 1.27000 00    | 0.0           |
|------------|---------------|---------------|---------------|-------------|---------------|---------------|---------------|---------------|
| PARAM(2.1) | -2.74750 00   | -5.44910 00   | -5,24080-02   | -1.53980 00 | -1.73210 00   | 0.0           | 0.0           | 2.67950-01    |
| PARAW(1.J) | -1.2970D 01   | 2.36450 00    | 1.9517D 00    | 1.71450 00  | -3+17500-01   | 2.22250 00    | 2.22550 00    | 9-07700-01    |
| ATPI (J)   | -5+5685D 00   | -5.4558D 00   | -1.52320 00   | -I+2648D 00 | -1.09990 00   | 0.0           | 3.28700-01    |               |
| SHAPE      | STRAIGHT LINE | CIRCLE BOTTOM | STRAIGHT LINE | CJRCLE TOP  | STRAIGHT LINE | CIRCLE RCTTOM | CIRCLE BOTTOM | STRAIGHT LINF |
| ISHAPE(J)  | -             | N             |               | n           | -             | 2             | •             | 1             |
| 7          |               | N             | m             | 4           | ŝ             | ÷             | ~             | ¢             |

3 (ARGCN ) STANCARD GAS NO.

|                 |         |             |               | COLC SPECIE | о<br>Ш   |                  |
|-----------------|---------|-------------|---------------|-------------|----------|------------------|
|                 | •0v     | N AME       | INDEX         | MOLE FRAC.  | MOL. WT. | CHEMICAL FORMULA |
|                 | -       | AR          | đ             | 1 • 0000 0  | 39.9480  | ( ARI 1          |
| WEAN WOLFOLD AD | vet cht | 3 U U U U U | 145- 30, 0480 |             | •        | ¥                |

|                 |                         | THIRD BODY MATRIX      |                |               |               |                 |                 |               |               |              |                 |               |               |                     | •               |                   |                |                 |               |
|-----------------|-------------------------|------------------------|----------------|---------------|---------------|-----------------|-----------------|---------------|---------------|--------------|-----------------|---------------|---------------|---------------------|-----------------|-------------------|----------------|-----------------|---------------|
| AR WEIGHTS      | +0-00<br>10 00          | CHI TEST               | 0 • 1 000 000  | 0.100000      | 0 • 1 000 000 | 00 0 000 1 0    | 0• 1 000000     | 0 • 1 000000  | 0.100000      | 0.1000000    | 0.100000        | 0 • 1 000 000 | 0 • 1 00000   | 000000100           | 0 • 1 000 0 00  | 0 • 1 00000       | 0 • 1 000000   | 0.00000         | 0-100000      |
| ELEMENT MOLECUL | 5 • 4859 7<br>3 • 99480 | ACTIVATION ENERGY      | 0.0            | 0.0           | 0.0           | 0*0             | 0.0             | 0.0           | 0.0           | 0.0          | 0.0             | 0*0           | 0.0           | 0.0                 | 0.0             | 0.0               | 1.2520000 03   | 1.2520000 03    | 0-0           |
| ATOM FRACTION   | 0.0<br>1.000000 00      | TEMP. POWER DEPENCENCE | - 4* 58585D CO | -4+295959D 00 | -8.0999590-01 | 13-0656563 - 8- | - 2* 6060600-61 | 5. COCOCOP-CI | 5. COCOCOD-01 | 0•0          | - 5. COCOCOD-01 | 5+ COCOCOD-01 | 2* 2844400+C1 | 5. CJ 03 C 3 P - C1 | - 5, 599990- 01 | - 7+ 5003 000- 01 | -6+ 700000-01  | - 6. 7003C0D-C1 | -4-29595CD CD |
| ELEMENT         | л н<br>Н                | CONSTANT FACTOR AL     | 2+640C000 21   | 3.64CC0CD 21  | P.2195970 10  | 8.219597D 10    | 6+000 600 D 0   | 5.00000014    | El U565561°L  | A.COCCCCJ 04 | c.995406h 16    | 3.50000CD 09  | E.655558D 14  | 3.5000000 09        | P.6995980 14    | 5°1955990 15      | 24866 6061) 16 | 2.8C000CD 16    | 2.0040000 21  |
|                 |                         | REACTION NO.           | -              | 14            | m             | 4               | ŝ               | Ş             | ~             | ¢            | o               | 01            | 11            | 12                  | 13              | 14                | 15             | 16              | 17            |

-260-

....

N. . . . .

31. C

How we have a second

1.4.444.4

2 x x e

من تين ولد ولا

S and a start of the start

|            |       |     |     |           |      |                 |                   |            |      |                                         |                                         |          |         |           |          |                |          |          |          |     |           | •              |       |             |                                       |              |            |                  |                |          |                                         |         |                                         | ELECTRONIC LEVELS       |               | 999 944                       | . <b></b>     | ο.            |                                         |
|------------|-------|-----|-----|-----------|------|-----------------|-------------------|------------|------|-----------------------------------------|-----------------------------------------|----------|---------|-----------|----------|----------------|----------|----------|----------|-----|-----------|----------------|-------|-------------|---------------------------------------|--------------|------------|------------------|----------------|----------|-----------------------------------------|---------|-----------------------------------------|-------------------------|---------------|-------------------------------|---------------|---------------|-----------------------------------------|
|            |       |     |     |           |      |                 |                   |            |      |                                         |                                         |          |         |           |          |                |          |          |          |     |           |                |       |             |                                       |              |            |                  |                |          |                                         |         |                                         | ENTHALPY OF FORMATION   |               | 0.0<br>2.6635000 05           | 2+6797000 05  | 3.6333000 05  | 20 LUUVULE K                            |
|            |       |     |     |           |      |                 |                   |            |      |                                         |                                         |          | 0       | r:<br>F:  | GI<br>PO | NA<br>OB       |          | P.<br>QU | AG       |     | 18        |                |       |             |                                       |              |            |                  |                |          |                                         |         |                                         | CHAR+ VIBRATIONAL TEMP. | 0.00          |                               |               | 0 • 0         | 1 KJICZJ 73                             |
| VIN MAININ | E- AR | - 0 |     | <br><br>1 | -1 2 |                 | R ARE AR25        | • 0 •      | •••• | •••                                     |                                         | •••      | • • • • | • • • • • | •••      | • • •          |          | •        | • • •    | •   |           | R ARE ARZE     |       |             | · · · · · · · · · · · · · · · · · · · | •••          |            | • • • • •        | 0.<br>0.<br>0. | • • •    | ••••••••••••••••••••••••••••••••••••••• | • • • • | •••                                     | CHEMICAL CONSTANT       | -1.492760D 01 | 1. 856300D 00<br>. 855300D 00 | 1. 8663C0D 00 | 1. 2663000 00 | 1 KAKGAGA MA                            |
|            | c     | 00  | 0 ( | ت ر       | o    | NU PRIME MATRIX | E- AP AR #M AR #1 | 1. C. I. O |      | ••••••••••••••••••••••••••••••••••••••• | ••••••••••••••••••••••••••••••••••••••• | 1. 1. 0. | • • • • |           | •••      | 0°<br>1°<br>0° |          |          | C• 1• 0• | ••• | NU MATRIX | F- AR AREM ARE | 2. 0. | 1. C. O. O. |                                       | •••          |            | 1. C. C. C.      | C. 2. 1. 0     | 0. 2. 0. | · · · · · · · · · · · · · · · · · · ·   | 1.      | ••••••••••••••••••••••••••••••••••••••• | ITOMS PER MOLECULE      | 1.000000 00   |                               | 1. CCCOCCO 00 | 1.00000       | () (),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| -          |       |     | ×*0 |           | R26  | T NO.           |                   | 7          | () r | ) <b>d</b>                              | <b>ئە</b> ئ                             | cr       | ec (    | 6 C       | 21       | 12             | 51<br>91 | - S      | 51       |     | CT NO.    |                |       | Nm          | 4 V                                   | ) <b>V</b> I | <b>~</b> & | ۍ <mark>و</mark> | 11             | 51       | • •                                     | 91      |                                         | CITS A                  | ء<br>ت        | A I                           |               | ARE           | ••••                                    |

· · · · ·

ť

÷

ŝ

, ,

Z

MARY ST. TARANDA AND YOU

· · · · · · ·

.

: 7

;

ł

The second of the second of the

. . .

FIGURE 85 - PROBLEM SUMMARY TEST PROBLEM NO. 5 (Third Page)

τ ζ

200 2 197

. . .

\* \* \* \* \*

\* \* \* \* \* \* \* \* \* \*

11<sup>11</sup>2 5 - <sup>3</sup>2<sup>1</sup>2

4

Be 17 Be 17

. . . . . . .

こうちょう ちょうゆう ひょうしょう

3**.** } . . . . . .

こう いっていていているのであるのであるのである

\$

SPECIES (CECENERACY, FLECTRONIC ENERGY LEVEL)

г- 2.6 С.С 1.6 0.0 Арем б.0 0.0 Арем б.0 0.6 Аре 6.6 0.6 Аре 2.6 С.6 Аре 2.6 С.6 ELECTRON THEPMAL NONEOUILIBRIUM PARAMETERS

| IPA         | 0          | •          | •          | 0            | v          | 0          | •          | 0           | 0            | 0     | •          | 0     | •          | •   | •           | •          | •          |
|-------------|------------|------------|------------|--------------|------------|------------|------------|-------------|--------------|-------|------------|-------|------------|-----|-------------|------------|------------|
| EPAR(2.1R)  | 0.0        | 0 • 0      | 7.00000-01 | 7.0000 D-C 1 | 1.00000 00 | 0.0        | 0*0        | <b>د</b> •0 | 0.0          | 0 • 0 | 0*0        | 0 • 0 | 0.0        | 0*0 | 0.0         | 0.0        | 0•0        |
| E PAF(1,1R) | 9.657CD 04 | 9.536CD 04 | 9.69700 04 | 9.536CD 04   | 3.63330 05 | 2.66350 05 | 2.67970 05 | 2.67970 05  | 1 + 600CD 03 | 0.0   | 2.260CD 05 | 0.0   | 2.260CD 05 | 0.0 | 7.06800 04  | 6,9070D 04 | 3+37640 05 |
| ITR         | ŝ          | S          | -          | .1           | 1          | S          | 5          | ¢           | ŝ            | m     | Ŷ          | n     | Ŷ          | m   | ir.         | ŝ          | ŝ          |
| K TF        | ~          | ~          | U          | 0            | v          | 2          | N          | U           | (Y           | -     | o          | -     | U          | 1   | <b>(</b> ); | •          | N          |
| KTF         | 2          | ~          | v          | N            | 4          | 2          | <b>∩</b> ; | 5           | 2            |       | 1          | 1     | 1          | -1  | r,          | 'n         | N          |
| 1 R         |            | 2          | m          | 4            | v          | ¢          | 7          | ¢,          | o            | 01    | 11         | 12    | 51         | 14  | 15          | 16         | 17         |

LEWIS NUMBER CALCULATIONS BASED ON BINARY DIFFUSION CDEFFICIENT FOR ARC

( NOT USED )

( AMB IPOL AR)

+ AR

BCUNDARY LAYER EFFECTS NEGLECTED

INPUT DATA FCR MODEL PARAMETER CALCULATIONS

3 WODFL PCINTS IN A GFOMETRIC PROGRESSION FROM X= 2.000 01 TO X= 4.000 01 TNCHES BEYOND THROAT MCDFL TEYPFRATURE= 3CC. DEG K. FLAT PLATE TEMPERATURE= 300, DEG K ROTH FGUILIPRIUM AND FRCZEN SHOCK LAYERS ON MODEL CALCULATED Surface catalytic factor = 1.000c AXIALLY-SYMMETRIC MODEL GEOWETRY

1. SECONDS SINCE LAST PRINTED TIME #1#######ELAPSFD TIME# C+02 MINUTES SINCE START CF FUN+

SPECIFIC HEAT CF CCLD GAS= C.1244 BTU/LB-DEG R AT 3C0.CC DEG

×

÷

•

المتعالية المتعلقية المتعالية والمتعلقية والمتعالية والمت

2 × × × × × × × ×

and the second and

Э

2

2

ł

-262-

FIGURE 86 - RESERVOIR CONDTATION OUTPUT FOR TEST PROBLEM NO. 5

\*\*

• • •

ş

5 J. T. J. S.

× ka

194 4

3

1,1

RESERVOIR CONCITIONS -

. \*\*\*\* :

| 0.750 INCH THROAT DIAN | 1.00C ATM | CC. DEG K  | 22. RTU/LB | 1.39 ETU/LB-DEG R | C.CO258 LB/CU FT | 6. FT/SEC | C.O LE/SO FT-SEC | 0+C LP/SEC   | 1.667 | 35.14 GM/MGLE     | 1.48D 16 FLECTRONS/CC |
|------------------------|-----------|------------|------------|-------------------|------------------|-----------|------------------|--------------|-------|-------------------|-----------------------|
|                        | u         | = 100      | = 26       | n                 | Li I             | *         | 51               | U            | 81    | u                 |                       |
| CZ7LE - DCA            | RESSURE   | EVPEPATURE | NTHAL PV   | NTROPY            | ENSITY =         | FLOCITY * | ASS ILUX         | CAPUTED FLCW | 5 VVV | CLECULAR WEIGHT : | LECTFON CENSITY -     |

SPECIES MOLE FRACTIONS

| 2• C15D-C2 | 9. 556D-C1 | R. ESD-C6 | 8 • C 14D-0K | 2.0180-02 | 1. 574D-C6 |
|------------|------------|-----------|--------------|-----------|------------|
| F          | AF         | A# 44     | 84 X 4       | 345       | AF 25      |

1. SECONDS SINCE LAST PRINTED TIME ########ELAPSED TIME = 0.03 MINUTES SINCE START OF RUN.

RESERVOIR TRANSFORT FROFERTIES

| LBM /F T- SEC |           | MHD/CM   |          |
|---------------|-----------|----------|----------|
| 1 - 560- 64   | C .26932  | 2.500 01 | C.145    |
| ti            | H         | H        | H        |
| SITY          | TL NUMBER |          | NU MBF R |
| VISCC         | PRAND     | SIGMA    | LEN 15   |

and a state of

)

`)

ż

-263-

FOR TEST PROBLEM NO. 5 (First Page) FIGURE 87 - NONEQUILIBRIUM SOLUT

•••

\*

()1. .....

> .UM SOLUTION NONE CU IL

| IMAX= 5   | IMAX= 5   | IMAX= 5   | LWAXE 5    |  |
|-----------|-----------|-----------|------------|--|
|           |           |           | •          |  |
| 2.6740 00 | 1.0710 00 | 2+2340-01 | 3+5290-02  |  |
| DCHMAX    | DCHM AXE  | DCHMAX    | D CHN A X= |  |
| 2.4110-53 | 8.9850-64 | 1.8410-64 | 2°0570-05  |  |
| IN INHOO  | DCHWIN=   | DCHN IN=  | DCHM IN=   |  |

1 STEP StatestatestatestatestatestatestalNE0=0

| ×      | H                                       | -2-            | 174   |         | -     | 4      | 1156 -    | •       | I        | H       | 2616.    |      | ٩          | N  | -0626*6   | 10   | ä        |    | 2+9640-03  |
|--------|-----------------------------------------|----------------|-------|---------|-------|--------|-----------|---------|----------|---------|----------|------|------------|----|-----------|------|----------|----|------------|
| DIAN   | +                                       | •              | 781   |         | >     | 11     | - 570     | •       | I        | H       | 0.10     | 9    | s          | H  | 1.39      |      | GAMMA    |    | 1.666      |
| ARATE  | 11<br>11                                | 5<br>0         | ,636  |         | REPF  |        | ά.        | 642D 0  | MA D     | 11      | 39+15    |      | <b>D</b> W | Ħ  | 1.9540-   | 40   | SIGMA    | н  | 2. 894D 01 |
| TELEC  | Ħ                                       | 5 977 <b>.</b> |       |         | OR AD | "      | •         | 1030 0  | I CFL    | ET =    | -1-361   | 00 0 | SH         | #  | 2.623D    | 50   |          |    |            |
|        |                                         |                |       |         |       |        |           | SPE     | CIES NOL | E FRAC  | TIONS IN | THEF | REE STREA  | X  |           |      |          |    |            |
| H<br>W | H                                       | 1.4            | 1700  | 16      | AR    | 11     | • 6<br>•  | 0-0569  | 1 AR4    | <br>∡   | 8.731    | 90-0 | AR #R      | H  | 8.0460-   | ç    | ARC      |    | 2.0130-02  |
| AR26   | H                                       | 1.9            | 1620- | ŝ       |       |        |           |         |          |         |          |      |            |    |           |      |          |    |            |
|        |                                         |                |       |         |       |        |           |         |          | RE ACT  | ION RATE | DATA |            |    |           |      |          |    |            |
| ld     |                                         |                | -     | 6+30-0  | 22    | N      | 6+30-02   | m       | 5+ 90-05 | 4       | 5.90-05  | ŝ    | 8.10-07    | v  | 1.50-04   | ~    | 2.00-05  | •  | 6.20-07    |
| σ      | 2.80                                    | 1-02 1         | 0     | 5.10-0  | 1 30  |        | 1+50-08   | 12      | 4. 70-06 | 13      | 1-40-08  | 14   | 2.10-04    | 15 | 1.20-04   | 16   | 1.20-04  | 17 | 3+40-06    |
| CHI    |                                         |                | -     | -5.60-0 | 27    | •      | -5+60-07  | n       | 1. 00 00 | 4       | 1.00 00  | ŝ    | 1.00 00    | Ŷ  | 0.0       | ~    | 0.0      | 40 | 1.00 00    |
| o      | 0.0                                     | 1              | 0     | 0* C    | 1     | -      | 1.00 00   | 12      | 0 • 0    | 13      | 1.00 00  | 41   | -5.60-07   | 15 | 0*0       | 16   | 0.0      | 17 | 0*0        |
| PICHI  |                                         |                | -     | -3-60-0 | 96    | ۲<br>N | 30-09-06  | m       | 5.90-01  | 4       | 5+90-05  | ŝ    | 8.10-07    | ٥  | 0.0       | ~    | 0*0      | 6  | 6+20-07    |
| σ      | 0•0                                     |                | 0     | 0•0     | -     |        | 1.50-08   | 12      | 0•0      | 51      | 1.40-08  | 14   | -1.20-10   | 15 | 0.0       | 16   | 0.0      | 17 | 0*0        |
| DLG    |                                         |                | Ľ     |         | 120-0 | S<br>A | 1R 2      | • 5D-04 | AR#M     | -2.10-  | C2 AR*R  | -2.1 | D-02 ARC   | ī  | • 20-02 A | R 26 | -1.80-02 |    |            |
| DCHM1  | • 1 = B A                               | 461D-C         | 4     |         | 100   | MA X=  | : 2.2340- | -01     | •••      | NAX# 5  |          |      |            |    |           |      |          |    |            |
| DCHK   | • <b>4</b> - B Z                        | A320-0         | 9     |         | 001   | HX N W | : 5.333D  | -03     |          | WAX= 5  |          |      |            |    |           |      |          |    |            |
| DCHM T | • = = = = = = = = = = = = = = = = = = = | 86 10-C        | 4     |         | HO C  | =X = M | : 2.234D  | - 01    | 7        | S =X YA |          |      |            |    |           |      |          |    |            |
| DCHMI. | N= 8.                                   | 1740-0         | 5     |         | 500   | =X M   | - 9.8240  | -02     | -        | VAX= 5  | _        |      |            |    |           |      |          |    |            |
|        |                                         |                |       |         |       |        |           |         |          |         |          |      |            |    |           |      |          |    |            |

2 STEP Sustatestatestatestatestatestal NEGRO 

| 1.552       V       5.141       5       1.1500       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155       4.155<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | MA = 1.666 | MA = 2. 8850 01 |           |             | * 2.022D-02    |           |             | 0-05 8 4+90-07 | 0-05 17 2.50 06 | 8 1.00 00 | D-15 17 -3.60-15 | 8 4.90-07 | 0-19 17 -8.80-21 | 0-02         |            |            |            |                       | 50 0 0 1C UNT= 5 |              | SD 00 ICOUNT=10 |                       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------------|-----------|-------------|----------------|-----------|-------------|----------------|-----------------|-----------|------------------|-----------|------------------|--------------|------------|------------|------------|-----------------------|------------------|--------------|-----------------|-----------------------|---|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5770-01 R | -39 GAM    | 9500-04 SIG     | 523D 03   |             | 2350-06 ARC    |           |             | 0-04 7 1.5     | 0-05 16 8.8     | 7 0.0     | 0-15 16 -3+6     | 7 0.0     | 0-19 16 -3.1     | 32 AR26 -3.7 |            |            |            | •                     | 00b E=-4 • 66    |              | 00PE=-5.12      |                       |   |
| -0.6332       T $-9.486$ $+$ $2.0116$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ $-9.414$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |            |                 | R 2.      | AM          | 80<br>80       |           |             | . 6 1.1        | 15 6.6          | 0°C       | 15 -3.61         | 0.0       | 15 -3.1          | £ -2.50-(    |            |            |            |                       | 04942D 00        |              | 049350 00       |                       |   |
| -0.6532       T       = $9948$ +       20114 $1.6552$ V       = $753$ V       = $20141$ $4.2512$ V       = $753$ V       = $20141$ $4.2512$ V       = $1.1820$ V       = $3015$ = $30120$ $1.6570$ 00       = $1.0840$ EEET       = $33140$ $0$ $1.6770$ 06       = $1.0840$ EEET       = $33140$ $0$ $1.6770$ $0.01$ = $9.5550$ $4.40-055$ $4.40-055$ $5555$ $1.1670$ $1.100-02$ $3.1600$ $0.12$ $3.600$ $0.555$ $1.4000$ $0.555$ $1.000-5$ $1.110-01$ $1.100-02$ $3.1600$ $0.12$ $1.000-05$ $1.4000$ $0.555$ $1.000-5$ $1.110-010$ $1.110-010$ $1.1000$ $1.0000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.0000$ $0.0000$ $0.0000$ $0.0000$ $0.0000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٥.        | S          | Š               | 0 HS      | FREE STRE   | 6 AR #R        |           | •           | 7.00-07        | 1+50-04         | 1.00 00   | 1.30-06          | 7.00-07   | 2.00-10          | • 4D-02 AR   |            |            |            |                       | CHA≡ 2+87        |              | CH A= 2+87      |                       |   |
| -0.532       T       =       9948e       4       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2611.     | 0.141      | 39.15           | -1.3140 0 | ICNS IN THE | 8.9370-0       |           | CN RATE DAT | 4.4D-05 5      | 1.0D-C8 14      | 1.00 00 5 | 1.00 00 14       | 4.40-05 5 | 1.00-08 14       | 2 AR#R -4    |            |            |            |                       | 944 .08          |              | 943 • 98        | ĸ                     |   |
| -0.532       T       = 9948         1.552       V       = 753         4.281       REPF       1.1420         1.4730       16       AF       = 1.1420         1.4737       16       AF       = 1.0840       C1         1.4737       16       AF       = 9.55575751       A         1.4737       16       AF       = 9.55575751       A         1.4737       1.11100       = 9.55575751       A       A         1.47700-06       1.11100       = 9.55575751       A       A         1.57700-06       1.11100       0.0112       0.010       0.012       0.010         1.1110-01       1.1110-01       1.1110-01       1.1110-01       0.000       0.000       0.000       0.000         1.000000       1.1110-01       1.1110-01       1.1110-01       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "         | #          | H               | ELET =    | OLE FFACT   | 11 <b>2</b> *2 |           | RE ACT I    | 4 80           | 08 13           | CC 4      | P)<br>           | 65 4      | E I              | -4+ 4D-C     | S =XANI    | INAX= 5    | S =XAMI    | TWAX= 5               | TEP≖ 9           |              | 16F= 9          | ري<br>(۲)             |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •         | 1          | 420 C4 +        | 84D C1 C  | SPECIES N   | 05D-C1 A       |           |             | -04 4 E        | 12 3.50-        | 3 1.00    | 12 0.0           | 3 4.40-   | 12 0.0           | 20-04 AR#W   | <b>C1</b>  | <b>c</b> 1 | 01         | 10                    | ± 4044•15        | 0            | = 9944.lE       |                       |   |
| -0.532 T<br>1.552 V<br>1.552 V<br>1.552 V<br>1.552 V<br>1.552 V<br>1.552 V<br>1.5700-05 A<br>1.477-02 2<br>1.4.77-02 2<br>1.1.30-06 2<br>1.1.00-06 2<br>1.1.00- | = 9948•   | = 753•     | = 1.1           | = 1.0     |             | 5°0            |           |             | 4+ 70-02       | 1+10-08         | 1.30-06   | 1.00 00          | 6.10-08   | 1.10-08          | AR 5.        | K= 2+234D- | K= 1.538D- | K= 1.246D- | <pre>(= 1.1110-</pre> | 0- 05 T          | 0<br>0       | )- CS 1         | I<br>M<br>I<br>M<br>I | ė |
| -0.532<br>1.552<br>1.552<br>1.4730<br>1.4730<br>1.4730<br>1.4730<br>1.407<br>1.407<br>1.10<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۴         | >          | REPF            | 0 V VO    |             | AG             |           |             | 70-02 Z        | 30-08 11        | 30-06 2   | 11               | C-08 2    | 11               | -2+50-02     | C C HW A   | DCHW A     | DCHWA      | DCHW VI               | TAX= 3.455       | 0<br>0       | LAX= 3.424      | 13 -3                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0-532    | 1.552      | 4.281           | 91.24     |             | 1.4737 16      | 1.9700-06 |             | 1 4.7          | 32 10 3.8       | 1 1.3     | 10 0+0           | 1 4.1     | 10 0.0           | ۲<br>۳       | 510-C4     | 9 CD-04    | 37004      | 4 8r-c 5              | CC DEF 1         | TEP FAILURCS | CO DELT         | TEP FALLUPES          |   |

. .......

\* \*\*\* \*\*

۶ • •

•

•

. . . . . . . .

.

\* ...

10.00

ģ :

\* Á

-264-

|            | •          | 1                 |           |         |            | •        |          |              |         | 0                                       | Л<br>Г<br>Г | ek<br>F  | GI<br>YO      | N.<br>() | <b>A</b> j<br>R | U 1<br>QI    | PAG<br>JAL     | e 18<br>Ity          |            |            |                 |              |
|------------|------------|-------------------|-----------|---------|------------|----------|----------|--------------|---------|-----------------------------------------|-------------|----------|---------------|----------|-----------------|--------------|----------------|----------------------|------------|------------|-----------------|--------------|
|            |            | reseesel NEG      | 2•291D-33 | 1.667   | 2- 3540 01 |          |          | 1. 3270-02   |         | 2.40-07                                 | 4.10-07     | 1.00 00  | 9.40-01       | 2.40-07  | 3.90-07         |              | ICOUNT= 0      | ICOUNT= 1            | LCOUNT= 0  | IC OUNT= 0 | ICOUNT= 0       | ICOUNT= 0    |
|            |            |                   |           |         |            |          |          |              |         | 60                                      | 17          | 60       | 17            | 6        | 17              |              |                |                      |            |            |                 |              |
| 10-01-2-2- | 10-0100-1- | • • • • • • • • • | ar        | GANMA # | SIGMA .    |          |          | ARC =        |         | 3.70-06                                 | 1.30-05     | 9.40-01  | -7.70-04      | 3.40-00  | -1.00-08        | -7,60-01     | -7-3520-01     | ·7•614D-01           | -7-3080-01 | .7.5660-31 | .7.2650-3       | 7.5290-01    |
| (n)        |            | EP S #1           | 01        | 1       | 40         | 63       |          | 50           |         | ~                                       | 16          | ~        | 16            | ~        | ŝ, I            | R 2 6        | -= Э dC        |                      | CPE=-      | 0P.E=-     | 0P E =          | 0P E =-      |
|            | 2          | 6 ST              | 6.5100-   | 1.39    | 1.7290-    | 2.6150   |          | 1.5330-      |         | 2.80-05                                 | 1. 30-65    | 9.40-01  | 3.30-04       | 2+60-05  | 4.40-05         | 50-02 AI     | 0              | 00                   | 00         | 00         | 00              | 000          |
| -01<br>-01 | 13360      |                   | н         | H       | H          | #        | _        | H            |         | ø                                       | 15          | Ŷ        | 15            | Ŷ        | 15              | ğ<br>I       | 05 I E         | 30.00                | 2810       | 2620       | 2430            | 2: 30        |
|            |            | *****             | ٩         | s       | ž          | HS       | E STREAM | AR #R        |         | • 50-07                                 | • 8D-05     | 00 00.   | • CD-02       | • 50-07  | • 70-07         | OC ARE       | 2.6618         | 2.8618               | 2.8618     | 2.8618     | 2.8618          | 2.8618       |
|            |            | * * *             |           |         |            | 10       | E FRE    | 05           | 4       | N<br>1 IN                               | 4           | -        | 2             | 2        | m<br>           | 1.80         | CH A=          | CHA=                 | CH A=      | CHA=       | CHA=            | CHA=         |
|            |            | * *               |           | 752     | 18         | 61D-1    | ΞH Z     | 830-(        | č       | 5                                       | -1<br>6     | •        | 0             | ۰<br>د   | 5               | æ            |                |                      |            |            |                 |              |
| 8.<br>. 70 | · · ·      | L IBRI UM         | 2256.     | •0      | 39.        | -7-6     | TIONS I  | 1.6          | TAN NAT | 6.4D-C                                  | 2.30-0      | 1.00 0   | 1.00 0        | 6.4D-0   | 2+30-0          | CC AR*       | 8613+01        | 8611•22              | 8609.43    | 86C7•65    | 8665•85         | 8603•89      |
|            | 11<br>12   | le cui            | #1        | N       | H          | R        | F FAC    | #            | DE ACT  | 4                                       | 13          | 4        | r; 1          | 4        | 7)<br>•••       | • 20         | le p≖          | E Pa                 | tE P≠      | rE P=      | IE F=           | بر<br>ال 1 = |
|            | 7<br>•     | *****             | I         | 2       | * 2        | C CELEI  | IES NOLE | A++A         |         | 6.4D-06                                 | 8• 8D-09    | 1. CD CC | <b>0-05-6</b> | 6.40-06  | 8.4D-05         | AR*N         | 5 <b>• 7</b> 8 | E 8.4                | 88.5       | 1 253      | 3+ 98           | 5.83         |
| NACH.      | 0          | * * *             |           |         | о<br>00    | co<br>co | SPEC     | 4D-0         |         | m                                       | 12          | ŝ        | 12            | m        | 12              | C-03         | 8460           | 8464                 | E462       | 3460       | 8458            | 845¢         |
| + F<br>F   | "<br>      | ****              | 8469.     | 4235.   | 5.61       | 7+30     |          | 9.01         |         | .50-03                                  | ,60-09      | 43-CE    | , 60 CL       | ,50-06   | 60-C5           | 1.2          | 4              | #<br>F               | 5 T=       | 1          | ۲ T =           | ۲<br>۲       |
|            |            | **                | H         | H       | H          | H        |          | H            |         | ฉี                                      | ณ <b>์</b>  | ທັ       | ï             | 4        | Ň               | AR           | 20-01          | 20-0                 | 2D- C1     | 20-01      | 30 <b>- 0</b> 7 | 60- 04       |
| 40.00      |            | * *               | F         | >       | RPF        | CIA 40   |          | Ч            |         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 11 6        | 2        | 11 1          | 2        | 11 6            | 50-02        | 6.24           | 6•24                 | 6+24       | 6•24       | 6.24            | <b>0</b> •86 |
| 0. T A Y = |            | ***               | 1         | ·       | -          | 5        |          | 1 15         | -06     | E.6C-02                                 | 50-02-5     | 1.60-0.  | 9-25-61       | 1.40-01  | 9.20-05         | -6.          | DEL TAX=       | DFLTAX=<br>.UPES -4( | DFLTAX=    | DFLTAX=    | CEL T AX=       | OFL TAX=     |
|            |            | *                 | 0-121     | C = 78( | C• 98(     | •<br>ມີ  |          | +C875        | •6811   | -                                       | 10          | 1        | 10            |          | 10              | ů,           |                | FAIL                 |            |            |                 |              |
|            |            | ***               | ĩ         | "       | Đ          | = 861    |          |              | n       |                                         | 5.90-02     |          | 1.10-03       |          | 6.50-06         |              | 73150-01       | 6691C-01<br>CF STEP  | 69645-01   | 54420-01   | 10-18134        | 41320-01     |
| 0-2-21     | 2 • n      | ***               | ×         | DIAN    | ARATEF     | TELEC    |          | с.<br>1<br>1 | 324     | le                                      | o           | IHU      | ι             | THDIG    | U               | 0 <b>ר</b> ט | 0 •© + ≡X      | X=-3+C<br>CAUSTS     | X=−3•C     | X=-1.•Ú    | 0•2-=3          | K=−3•C       |

4

ng gang and the several of the second seco

ž

### 2•2853-03 1•667 0 0 1.9270-02 2.3490 01 1.00 00 9.40-61 2.40-07 3.90-07 4.10-07 2.40-07 IC OUNT= = INUU 2 I ICOUNT= 0 H H D H 0DP E=-7+483U+31 100PE=-7.1670-01 ODPE=-7+1270-01 1.30-05 3.70-06 -9+ 7D-09 -7.30-04 3.40-06 -2.60-01 9.40-01 R Gamma S IGMA ARE **A**928 16 ~ 16 lé 1-5430-05 1.727D-04 2.6150 03 6.486D-01 9-40-01 3-70-04 1.30-05 2-80-05 2.60-05 5-00-00 1.39 -6.51 02 00 2.8613202D 00 000 2.86181640 2.86181830 15 15 15 ۰ 15 ه H H ii ł, WCLE FRACTIONS IN THE FR'L SYRFAM AM\*W = 1.6694D-05 AR\*R = 1.5D CO ARE 1.60-05 1.00 00 2.50-07 3.70-07 2.50-07 a s P S F CHAI CHA= CHA= DATA -7.5290-01 n 4 n ŝ 41 4 0.755 39.18 REACTION RATE 2.30-05 1.00 00 1.00 00 6.30-06 2.30-09 6.30-06 OC AR#R 2253. TEF= 8601.92 660C • 12 TEF= + 558+33 1.50 H 11 11 14 TE P= 4 13 ₽) ₩ 4 4 Е 1 CELET 8.80-09 1.00 00 5.60-01 6.30-06 6.30-06 8.40-05 122 AR#M SPECIES T= 8454.67 T= 845C.75 R452.71 5.5260 C4 7.2750 f0 9.0140-61 1.25-03 n 2 n 2 n 4 u H 3457. 4252. 5,40-04 1,00 00 4,40-06 2-63-65 P+ 50-03 2.60-09 DFLTAX= 6.4660-04 05\_TAX= ++2420-14 **A** 5 н 0.0 ti II 2 [] ¢. N 11 -6.50-02 REPF ORAD AR 1.60-03 0.50-01 1.40-05 **⊢** > 60-19-5 60-03-5 P=50-03 FAILUNES -40 1.6840 15 1.6790-66 -3.120 0.779 U.979 ı ----с Г 2 2 P 60 4. CP STS CF STFP ~ X=-3.034450-01 X=+3.022210-01 13-3. 127\*E-EX 1.16.93 t.50-06 10-5 6 6 6 0 11 - 11 ARATEF TELF C P ICH I X DIAW AF2E טרט טרט o Нυ ø t đ

7.6110105.00

R W T L

TED= R506.54

T= PAAF . 70

43-024249 =XV . ...

X4-3+015/28-61

•

e.

1 2

ż

STEP Seeess seess seess seess seess [NEOs]

ø

\*\*\*\*\*

-205-

perturbation 'echnique. The numerical integration then begins. Stability requirements force the use of a very small step size.

The input ISW6B = -1 in test problem no. 5 (figure 65) gives the output of reaction rate data (PI, CHI, PICHI, DIG) in each step (see Section 3.5). The input ISW5B = -1000000 gives a one-line message (X, DELTAX, T, etc.) for every completed integration step. The data included in this message are as follows:

X Axial coordinate (cm)

**DELTAX** Integration step size (cm)

T Heavy-particle temperature (<sup>OK</sup>)

TEP Electron temperature (<sup>O</sup>K)

CHA Nondimensional starration enthalpy

QDPE Energy transfer to the electron gas (cal/cm<sup>3</sup>sec)

ICØUNT Number of step-size reductions required to achieve a successful integration step

The messages "CAUSES OF STEP FAILURE" in figures 87 and 88 are also triggered by the negative ISW5B value, and indicate the location and nature of the flurked validity check responsible for each step size reduction. The numerical code used in this message is documented in Section 4.55 of Volume III of this report.

### APPENDIX D

### USER'S MANUAL FOR THE NOZFIT CODE

### **D.1** Introduction

The geometries of nozzles and channels are specified, in NATA, by analytical curvefits to the profiles of the surfaces confining the gas flow. In these curvefits, each profile is represented by means of a sequence of straight line segments and circular arcs. The details of this system of geometric specifications have been documented in Section 4 of Volume I (ref. 1).

In order for the curvefits to be usable in NATA, the various sections must join together continuously, and with continuous slopes, to high accuracy. The NOZFIT program has been developed to facilitate the preparation of such curvefits. The main inputs to NOZFIT are geometric data, most of which can be read directly from nozzle design drawings. The outputs include

- (1) Printout of the parameters in the profile curvefit;
- (2) Punched cards, containing a Fort an DATA statement, which can be incorporated directly into NATA, to add the curvefit to the set of precoded standard profiles;
- (3) Printout of the throat region of the profile in tabular form; and
- (4) A computer-generated plot of the profile in the throat region.

Section D.2 c this appendix defines the inputs to NOZFIT, and Section D.3 discusses the various types of output. Section D.4 presents a sample run of the code with its printed and plotted output and a listing of the punched output.

### D.2 Inputs to NOZFIT

The profile curvefits produced by NOZFIT consist of sections joined end to end with continuity of slope, each section being a straight line, a circular arc concave upward, or a circular arc concave downward. A ray dimensions in NATA limit the total number of sections to 12. In the analysis to determine the profile curvefit parameters, the sections are separated into two groups, those lying upstream of the throat, and those lying downstream. The analysis for each group starts at the throat and determines the sections sequentially, proceeding away from the throat. In each group, the section having a boundary at the throat (x = 0) is always assumed to be a circular arc concave upward with zero slope at the throat. Thus, the profile ordinate is a minimum at the throat. For the profile to be usable in NATA, it is necessary that the ordinate be a monotonically decreasing function of x upstre m of the throat and a monotonically increasing function of x downstream.\*

The input to a NOZFIT case begins with a card containing alphanumeric information describing and identifying the nozzle or channel whose profile is to be fitted. This card is read with an A format. The information is printed at the head of the output and reproduced as a comment card preceding the data cards produced. The first 48 characters are also used as a title for the nozzle profile plot. Finally, the first 4 characters on this header card are incorporated into the punched DATA statement and are used, by NATA, as a facility name (DC., etc.).

The remaining inputs are all read in under the namelist name INPUT, using the usual namelist format (see Section 2.1). They are defined below:

| Variable<br><u>Name</u> | Dimensions | Preset<br>Values | Definition                                                                                                                                                                 |
|-------------------------|------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NSECTS (I)              | 2          | 2*0              | <pre>NSECTS(1) = number of sections<br/>in nozzle profile upstream of<br/>throat.<br/>NSECTS(2) = number of sections<br/>in nozzle profile downstream<br/>of throat.</pre> |

\*More precisely, the area ratio A must have  $dA_g/dx < 0$  for x < 0,  $dA_g/dx > 0$  for x > 0. In a channel, it is not necessary for <u>both</u> of the profiles t — ccrease and increase as described above, so long as the area ratio has the required behavior.

| Variable   |            | Preset | ĸĸĸĔŴĔĸŎġĊŎŦĸĸġĸĸĸĸĸĸĔĸĸŎĸĸĔĸĸŎĬĸġĊĸŎĸĸŎĸŎġĸĸŎĸŎĸŎĸĊĸŎŎĸŎŎŎŎŎŎŎŎŎŎŎŎ                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name       | Dimensions | Values | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ISHAPE (J) | 12         | 12*0   | Index specifying shape of the Jth<br>section (counting from the up-<br>stream inlet)                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |            |        | <ol> <li>Straight section</li> <li>Circular arc convex toward<br/>axis</li> <li>Circular arc concave toward<br/>axis</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                   |
| PAR(I,J)   | 2,12       | 24*0   | <pre>Parameter values for the Jth sec-<br/>tion:<br/>For ISHAPE(J) = 1, PAR(1,J) =<br/>angle of inclination to nozzle<br/>axis in degrees (positi e value)<br/>For ISHAPE(J) = 2 or 3, PAR(1,J)<br/>circle radius in inches<br/>(See ICOND for PAR(2,J))</pre>                                                                                                                                                                                                                                                                    |
| DTH        | 1          | -      | Throat diameter in inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ICØND (J)  | 12         | 12*0   | Index specifying condition de-<br>fining the Jth section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |            |        | <pre>ICØND(J) = 1 Throat condition*<br/>ICØND(J) = 2 Straight section (J)<br/>is tangent to adjacent circular<br/>section nearer the throat.<br/>ICØND(J) = 3 Circular section (J)<br/>is tangent to adjacent straight<br/>section (nearer the throat) at<br/>an axial distance of PAR(2,J)<br/>inches from the throat**<br/>ICØND(J) = 4 Circular section (J)<br/>is used to break a sharp angle<br/>between two straight sections<br/>which intersect at an axial dis-<br/>tance of PAR(2,J) inches from<br/>the throat**</pre> |

\*Note - there are always two throat sections, one upstream and one downstream of the throat.

\*\*Note - PAR(2,J) is negative if it represents a point upstream of the throat.

-269-

| Variable<br>Name | Dimensions | Preset<br>Values | Definition                                                                                                                                                  |
|------------------|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XSTART           | 1          | -                | Upstream limit on 2 for calcula-<br>tion of nozzle profile (negative<br>value, inches). The profile is<br>calculated for a nozzle section<br>6 inches long. |
| XZERØI           | 1 ·        | -                | Inlet position in inches above<br>the throat (negative); for use<br>in NATA boundary layer calcula-<br>tions.                                               |
| NØZZLE           | l          | -                | Nozzle index for use in NATA<br>(integer value between 1 and 20).                                                                                           |
| CARDS            | 1          | .TRUE.           | Set to .FALSE. to suppress card output.                                                                                                                     |
| PLØTS            | 1          | •TRUE •          | Set to .FALSE. to suppress plot<br>output.                                                                                                                  |
| ENDJ/3           | 1          | .TRUE.           | Set to .FALSE. if there is another<br>case in the job following the cur-<br>rent case. Set to .TRUE. in last<br>case.                                       |

### D.3 Outputs of NOZFIT

The outputs of NØZFIT are illustrated by the results for the test problem in the next section. The printed output consists of the following:

- A listing of the values of all the input variables in Namelist format.
- (2) The image of the "header" card containing alphanumeric identifying information.
- (3) A table headed "nozzle profile parameters." This table contains the following five columns:

, and the second se

- Nozzle section index, starting from the upstream end.
- ATP Position coordinate of the downstream boundary of the profile section (cm, positive downstream).

PARAM(1,J) See below.

PARAM(2,J) See below.

PARAM(3,J) See below.

The parameter values are coefficients in the analytical expressions for the profile sections. Let  $P_1 \equiv PARAM(1,J)$  $P_2 \equiv PARAM(2,J)$ , and  $P_3 \cong PARAM(3,J)$ . Then:

For ISHAPE(J) = 1,

J

$$Y = P_1 + P_2 X$$
 (D-1)

For ISHAPE(J) = 2,

$$Y = P_1 - \sqrt{P_3^2 - (X - P_2)^2} \qquad (D-2)$$

For ISHAPE(J) = 3

$$Y = P_1 + \sqrt{P_3^2 - (X - P_2)^2}$$
 (D-3)

where Y is the profile ordinate and X the axial coordinate. The units of  $P_1$ ,  $P_2$  and  $P_3$  are such as to yield Y in centimeters when X is expressed in centimeters. For ISHAPE(J) = 2 or 3, the profile section is a circular arc,  $P_3$  is the circle radius, and the circle center is at X =  $P_2$ , Y =  $P_1$ .

- (4) Printed images of the DATA cards produced.
- (5) A two-column table headed "nozzle profile," giving the x- and y-coordinates (in inches) of points on a section of the profile 6 inches long, beginning at XSTART. These are the same data that are represented in the plot output.

The punched output consists of 12 punched cards for each case. Their format is illustrated by the printed card images in the output for the sample problem. They consist of a comment card followed by an eleven-card DATA statement defining an array ZPn, where n is the profile index (equal to the NOZFIT input NØZZLE). The newly fitted profile can be incorporated into NATA by inserting this DATA statement into the block data routine BLKD1 and recompiling the routine. Note that n must be less than or equal to 20, and must be different from the indices of all the other profiles defined in BLKD1.

ŧ.

All of the entries in ZPn are floaring-point numbers. Some of these values represent integers. To ensure rounding-down to the correct integer values, NØZFIT increases such values by 0.1 in the DATA statement. The entries in ZPn are all defined in Section 4.7.

The plot output consists of one plot per case, showing a section of the mputed profile 6 inches long in the axial direction. The coordinate scales along the x and y axes are the same so that the shape is not distorted. The plot is a little larger than full scale.

### D.4 NOZFIT Tert Problem

The following pages (figures 88-93) present  $\odot$  printed output from a NØZFIT run on the IBM 360/75 at Aveo Systems Division. The values of the input variables for this test problem are listed on the first page of the output. Figure 55 shows the plot produced. FIGURE 89 - OUTPUT OF N/ TITEST PROBLEM (First Page)

|        |            | ٠           | ٠          | ٠              | ~       |             |                    |
|--------|------------|-------------|------------|----------------|---------|-------------|--------------------|
| )      | 2.         | * -3.059995 | • • •      | • •••          | •       | T.XSTART=   |                    |
|        | 8          | 500000      | 999999E-01 |                | s.      | • END JOB • |                    |
|        | •          | . 0.12      | • 0 • 26   | 0.0            | •       | 2.2500000   |                    |
|        | 2+         | • • • •     | • • •      | • • •          | 2.      | 0.DTH=      |                    |
| ,      | 1.         | 10.00000    | 5.000000   | 0.0            | 1C0ND=  | •           | r + PL OT S=T      |
| ł      | 'n         | 0 . PAR-    | - 000002   | •              | -       | •           | 9 • CARDS= 1       |
|        | - 1        | ••          | -2-        | • • •          | ••••    | ••          | H                  |
|        | Ē =        |             | 7500000    | • 000000       |         |             | + NO 22LE          |
|        | 2 . I SHAP | ••          | . 0.8      | • 15           | 0.0     | - ~         | • 1499996          |
|        | 6.         | •0          | • • • •    | 01. 0.0        | • • • • | -1          | • XZERO]= -3       |
| CINPUT | N SECT S=  | •           | 60.00000   | )-3699999995-0 | 0.0     |             | -4.000000<br>6 END |

ORIGINAL PA. 55 OF POOR QUALITY

1

1

Ĩ.

1

ż

1. 1.1. 1.1.1.1.1.1

1.1.1.1.1.1.1.1.1

ł

\*\*\*\*\*

and showing the

,

.

- -

.

and a com

~

## NOZZLE PROFILE PARAMETERS

| PARAM(3,J)<br>0.0             | 3.175000E-01                   | 2.222500F 00                   | 1.524000E-01<br>1.524000E-01 | 0.0                      |
|-------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|
| PARAM (2. J)<br>-1.7632685-01 | -7.973334F 00<br>-1.732050F 00 | -5.521296E 00<br>-9.748853E-02 | 0.0                          | 2.67 <sup>4</sup> 91E-01 |
| PA4AM(1.J)<br>3.554496E 00    | 4.738010E 00<br>-8.437203E 00  | 5.570952E 00<br>2.856915E 00   | 3.009897E 00<br>3.009897F 00 | 2.852120E 00             |
| ATP<br>-7.918200E 00          | -7.698371E 00<br>-7.445036E 00 | -5.714999£ 00<br>-1.328252f-02 | 0.J<br>3.944430E-02          |                          |
| ר <b>ר</b>                    | ~ ~                            | 4 vî                           | <u>م ہ</u>                   | ec)                      |

## DATA CARDS PROUCED

| •       | ø            | 0      | • •    | •     | •       | 0      | • •     | • •    | >                 | •        | •       | •   | 0    | 0       |
|---------|--------------|--------|--------|-------|---------|--------|---------|--------|-------------------|----------|---------|-----|------|---------|
| 2 2 0 N | 220N         | N077   | NO7 7  |       | 2 2 O N | ND Z 7 | N N N N |        | 7702              | 2 2 0 N  | 1 1 1 1 |     | ZZON | 1 2 UN  |
|         |              | . 0.1. |        | •     |         | 17500. | 22500   |        | • • • • • • • • • | •        | •       | •   | •    |         |
|         |              | 0.1    | 0.0    |       |         | 5.0    | 0       |        | ••••              | •••      | 0.0     |     | •••  |         |
|         |              |        | 263.   |       | •       | 334.   | 296.    |        | •                 | 949.     | •       | •   | •    |         |
|         | • •          | . 0.1. | -0.013 |       | 0.0     | -7.973 | -5.521  | 0.0    |                   | 0.267    | 0.0     |     | •••  |         |
|         | Ň            |        | .666   |       | •       | 010+   | 952.    | 107    |                   | 120.     | •       |     | •    |         |
|         | 6.1.         | 1. 2.1 | -5.714 | •     | 0.0     | 4.7380 | 5.570   | 000    |                   | 2.8521   | 0.0     | 0.0 |      |         |
|         | • • • •      | 1. 2.  | 036.   |       | •       | •      | •       | •      |                   | •001     | •       | •   | •    |         |
|         | -8-00        | •1• 1• | -7.446 |       | •••     | •••    | 0•0     | 0.0    |                   | 261.0    | 0.0     | 0-0 |      |         |
| ZLE     | • DG/        | :      | 371.   |       | •       | 327.   | 050.    | 483.   |                   | •        | •       | •   | •    |         |
| CH NOZ  | 6 <b>0</b> 0 | 3.1.1  | -7.638 | 0,0   |         | -0.176 | -1.732  | -0.087 |                   | •••      | •••     | 0.0 |      |         |
| 25-17   | <b>`</b>     |        | 200.   | 444-  |         | 4364   | 203.    | 9:5.   | 100               |          | •       | •   |      | M O I I |
| 0 4 4 0 | A A A        |        | -7.918 | 0.030 |         | 3.654  | 10.4.01 | 2.856  | 1000 2            | N 000 00 | 0.0     | 0.0 |      | Ŧ       |
| ~ 0     | ٩,           | -      | 2      | -     | , ,     | đ      | ŝ       | Ś      | •                 |          | æ       | •   |      |         |

### NOZZLE PROFILE

| YCINCH)  | 2.144E 00  | 2.139F 00  | 2.134E 00  | 2.128E 00  | 2.123E 00  | 2.118E 00  | 2.112E 00  | 2.107E 00  | 2.102E 00  | 2.0965 00  | 2.091E 00  | 2.08AE 00  | 2.091E 00  | 2.0755 00  | 2.070E 00  | 2.C65E 30  | 2.059E 00  | 2.054E 00  | 2.049E 00  | 2.044E 00  | 2.03RE 00  | 2.033F 00  | 2.023F 00  |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| CHUNI JX | -4.007E 00 | -3.970E 00 | -3.940F 00 | -3.910E 00 | -3.880E 00 | -3.850E 00 | -3.820E 90 | -3.790E 00 | -3.760E CO | -3.730E 00 | -3.7028 60 | -3.6705 00 | -3.5400 00 | -3.6105 00 | -3.58AF 00 | -3.550E 00 | -3.520F 00 | -3.490F 00 | -3.4535 00 | -3+430E 00 | -3+400F CO | -3.3735 09 | -3.340E 00 |

۲

;

and the second second

;

•

1.1.20 1.1.20

.......

. . . . . . . .

, 1

١

-274-

FIGURE 91 - OUTPUT OF NØZETT TEST PROBLEM (Third Page)

. . . . .

1 - 1 - 1 - 1 - 1

1,4, 4 to

, , , ...

4 - 4 - 4 - 1 - 1

| 101 00<br>801 00<br>506 00 |
|----------------------------|

ORIGINAL PAGE IS DE POOR QUALITY

1

ì

3

.....

Martinetter 34

ł

•

I

FIGURE 92 - OUTPUT OF NOTATT TEST PROBLEM (FOURTH Page)

-----

| TLUUKE 37 - U | 1.249E 00<br>1 244E 00 | 1.2465 00 | 1.244E 00  | 1.241E 00  | 1.2395 00  | 1-2365 00  |  | 1.231E 00  | 1.228E 00  | 1.275E 00  | 1.223F 00 | 1.2205 00  | 1.218E 00  | 1.215F 00  |  | 1.210E 00  | 1.207E 00  | 1.204E 00  | 1.202E 00  | 1.199E 00  | 1.197E 00  | 1 • 1945 00 | 1.1915 00  | 1. TROF DO | 1 - 100 - 00 |  | 1 • 1 × 1 × 0 0 | 1.:78E 00  | 1.176E 00  | 1.173E 00  | 1 1 7 0 5 0 0 | 1.154F DO  |  | 1.152E 00     | 1.160E 00  | 1.157E 00  | 1.155E 00  | 1.152E 00  | 1.1495 00  |            |  | 1.1415 00 | 1.139E 00  | 1.136E 00  | 1.134E 00  | 1.1315 00  | 1.128E 00  | 1.126F DO | 1,1285 00     |  | 1.1445 00 | 1.152E 00 | 1.1605 00 | 1.148F 00 | 1.176E CO | 1.185E 00 | 1 1935 00 | 1.2015 00 |  | 1.2175 00 | 1.217F 90<br> | 1.2255 CO<br>1.2255 CO | 1.217F 90<br>1.2255 C9<br>1.2335 00 |
|---------------|------------------------|-----------|------------|------------|------------|------------|--|------------|------------|------------|-----------|------------|------------|------------|--|------------|------------|------------|------------|------------|------------|-------------|------------|------------|--------------|--|-----------------|------------|------------|------------|---------------|------------|--|---------------|------------|------------|------------|------------|------------|------------|--|-----------|------------|------------|------------|------------|------------|-----------|---------------|--|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|-----------|---------------|------------------------|-------------------------------------|
|               | . 420E 00              | 1.3905 00 | -1.363E 00 | -1.3305 00 | -1-303F 00 | -1.27CF 00 |  | -1.210E 00 | -1.18CF 00 | -1.150E 00 | 120F 00   | 00 201011- | -1.050E 00 | -1.0305 00 |  | -9.700F-01 | -9.4005-01 | -9.1005-01 | -8.8035-01 | -8.500E-01 | -5.2005-01 | -7.9005-01  | -7-6305-01 | -7-3036-01 |              |  | -0.400E-JI      | -6.1005-01 | -5.8C0E-01 | -5.500E-01 | -5-2035-01    | -4-3005-01 |  | -4 - 300, -01 | -4.0005-01 | -3.7035-01 | -3.4005-01 | -3.1007-01 | -2.8005-01 | -2 500F-01 |  |           | -1-6035-01 | -1.300E-01 | -1.0005-01 | -7.0035-02 | -4.0035-02 | -1-005-02 | 20 - 2000 - C |  | 8.0006-02 | 1.1366-01 | 1.40/5-01 | 1-7005-01 | 2.0005-01 | 2.3035-01 | 2.6005-01 | 2,3005-01 |  |           | 3.5001-01     | 3.5007-01<br>3.2007-01 | 3.5007-01<br>3.3007-01<br>4. 75-01  |

: ; ;

¥
a state of a factor of the , : بقدرت بالإحداد

?

ŝ

z

ł

ŝ L

と言い。 いいいしつ 

2

ŝ ....

3

٠

FIGURE 93 - OUTPUT OF NØZFIT TEST PROBLEM (Fifth Page)

| - 4 . 700E -     | -01   | 1.249F   | 00 |
|------------------|-------|----------|----|
| - 30 CC -        | -01   | 1 • 257E | 00 |
| 5 <b>.300</b> E- | -01   | 1.265E   | 00 |
| 5.6005           | ۲ د - | 1 •273E  | ŝ  |
| 5.9005-          | د     | 1.281E   | 8  |
| 6.200E-          | -01   | 1.299E   | 8  |
| 6.500E           | -01   | 1.297E   | 00 |
| 6.8005           | -01   | 1.305E   | 8  |
| 7.100E-          | -01   | 1.313E   | 00 |
| 7.400E           | -01   | 1.321E   | 8  |
| 7.7005.          | -01   | 1.329E   | 00 |
| R.070E-          | -01   | 1.337E   | 80 |
| 3005-8           | -01   | 1.3455   | 00 |
| B.500E           | 10-   | 1,353E   | 8  |
| 9006°F           | -01   | 1.361E   | 00 |
| 9.200E-          | -01   | 1.3595   | 00 |
| 9.5008-          | -01   | 1.377E   | 8  |
| 9.800"-          | 10-   | 1.3855   | 00 |
| 1.0105           | 00    | 1.394E   | 8  |
| 1.0435           | 00    | 1.402E   | 00 |
| 1.0705           | 00    | 1.410F   | 00 |
| 1.1005           | 00    | 1.4185   | 00 |
| 1.1305           | 00    | 1.4265   | ĉ  |
| 1.160E           | 00    | .434E    | 00 |
| 1.1007           | 00    | 1.4425   | 00 |
| 1.2205           | 00    | 1.450E   | 00 |
| 1.250E           | 00    | 1.458E   | 00 |
| 1.2805           | 00    | 1.466E   | 00 |
| 1.3105           | 60    | 1.474E   | 8  |
| 1.3405           | 00    | 1.482E   | 8  |
| 1.370E           | 00    | 1.49CE   | ĉ  |
| 1.400E           | 00    | 1.49RE   | 8  |
| 1.4305           | c 0   | 1.506E   | 00 |
| 1.460F           | 00    | 1.514E   | 00 |
| 1,490E           | 00    | 1.522E   | 00 |
| 1.520E           | 00    | 1.530E   | 00 |
| 1.5505           | 00    | 1.5385   | 00 |
| 1.5805           | 00    | 1.5465   | 00 |
| 1.61 DE          | 00    | 1.554E   | 8  |
| 1.6405           | 00    | 1.562F   | 00 |
| 1.570E           | 00    | 1.57.E   | 00 |
| 1 . 700E         | 00    | 1.5785   | 8  |
| 1.7305           | 00    | 1.5365   | 00 |
| 1.7605           | 00    | 1.544E   | 80 |
| 1.7905           | 00    | 1.603E   | 8  |
| 1.9205           | 00    | 1.611E   | 00 |
| 1.850E           | 00    | 1•619E   | 8  |
| 1.880E           | 00    | 1.627E   | 00 |
| 1.510E           | 00    | 1.635E   | ç  |
| 1.940E           | 00    | 1.6435   | 00 |
| 1.9705           | 00    | 1.651E   | 00 |
| 2.000F           | 00    | 1.659E   | 00 |
|                  |       |          |    |

2

ORIGINAJI PAGE IS OF POUR QUALITY

Ĩ

,r :

. . . . . . .

\* \*\*

1

Ì s Y

> ÷ \$

ŝ

1

4 ŝ

5

1.1.4.1 ą

1

うけん

;

1

)

ž

.

## REFERENCES

- 1. Bade, W. L.; and Yos, J. M.: The NATA Code Theory and Analysis, Volume I. NASA CR-2547.
- Anon.: UNIVAC 1108 Multi-Processor System, Fortran V Programmer's Reference Manual. UNIVAC Federal Systems Division, Sperry Rand Corp.
- 3. Anon.: IBM System/360, FORTRAN IV Language. IBM Corp., Programming Publications (New York).
- 4. Lordi, J. A.; Mates, R. E.; and Moselle, J. R.: Computer Program for the Numerical Solution of Nonequilibrium Expansions of Reacting Gas Mixtures. NASA CR-472, 1966.
- 5. JANAF Thermochemical Data, Dow Chemical Co., Midland, Mich.
- Moore, C. E.: Atomic Energy Levels. Nat. Bureau of Standards Circular 467, Vol. I. U. S. Government Printing Office, 1949.
- 7. Hodgman, C. D., ed.: Handbook of Chemistry and Physics. Chemical Rubber Publ. Co. (Cleveland).
- Herzberg, G.: Molecular Spectra and Molecular Structure.
   I. Spectra of Diatomic Molecules. D. Van Nostrand Co. (New York), 1950.
- 9. Ginter, M. L.; and Brown, C. M.: Dissociation Energies of  $x^2 \sum_{i=1}^{4}$  (He<sub>2</sub><sup>+</sup>) and A  $\sum_{i=1}^{4}$  (He<sub>2</sub>). J. Chem. Phys., vol. 56, no. 1, 1 Jan. 1972, pp. 672-674.
- Predvoditelev, A. S., <u>et al.</u>: Tables of Thermodynamic Functions of Air for the Temperature Range 6000-12000°K and Pressure Range 0.001-1000 atm. Infoscarch, Ltd. (London), 1958.
- 11. Herzberg, G.: Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. D. Van Nostrand Co. (New York), 1966, p. 598.

-278-

- Ginter, M. L.; and Ginter, D. S.: Spectrum and Structure of the He<sub>2</sub> Molecule. V. Characterization of the Triplet States Associated with the UAO's 6-17 pt and 7-12 pt. J. Chem. Phys., vol. 48, no. 5, 1 Mar. 1968, pp. 2284-2291.
- 13. Teng, H. H.; and Conway, D. C.: Ion-Molecule Equilibria in Mixtures of N<sub>2</sub> and Ar. J. Chem. Phys., vol. 59, no. 5, 1 Sept. 1973, pp. 2316-2323.
- 14. Kang, S.-W.; Dunn, M. G.; and Jones, W. L.: Theoretical and Measured Electron-Density Distributions for the RAM Vehicle at High Altitudes. AIAA Paper No. 72-689, 1972.
- 15. Dunn, M. G.: Experimental Plasma Studies. NASA CR-1958, 1972.
- 16. McKenzie, R. L.; and Arnold, J. O.: Experimental and Theoretical Investigations of the Chemical Kinetics and Nonequilibrium CN Radiation Behind Shock Waves in CO<sub>2</sub>-N<sub>2</sub> Mixtures. AIAA Paper No. 67-322, 1967.
- Wray, K.L.: Chemical Kinetics of High Temperature Air. Hypersoric Flow Research, F. Riddell, ed., Academic Press, 1962, pp. 181-204.

ţ

- Dunn, M. G.; and Treanor, C. E.: Electron and Ion Chemistry in Flow Fields, J. Defense Research, Section A (Strategic Warfare), Spring 1970, pp. 23-52.
- Bowen, S. W.; and Park, C.: Computer Study or Nonequilibrium Excitation in Recombining Nitrogen Plasma Nozzie Flows. AIAA J., vol. 9, no. 3, Mar. 1971, pp. 493-499.
- 20. Monchick, L.: Collision Integrals for the Exponential Repulsive Potential. Phys. Fluids, vol. 2, no. 6, Nov.-Dec. 1959, pp. 595-700.
- 21. Kihara, T; Taylor M. H.; and Hirschfelder, J. O.: Transport Properties for Gases Assuming Inverse Power ... lecular Potentials. Phys. Fluids, vol. 3, no. 5, Sept.-Oct. 1960, pp. 715-720.
- 22. Yos. J. M.: Transport Properties of Nitrogen, 7 drogen, Oxygen, and Air to 30,000<sup>o</sup>K. Lap. RAD-TM-63-71 Avco Research and Advanced Development Division, Mar. 1963.

- 23. Yos, J. M.: Theoretical and Experimental Studies of High-Temperature Gas Transport Properties. Rep. RAD-TR-65-7, Avco Research and Advanced Development Division, 1965, Section III.
- 24. Massey, H. S. W.; and Burhop, E. H. S.: Electronic and Ionic Impact Phenomena. Clarendon Press (Oxford), 1952.
- 25. Fick, J. L; and Phelps, A. V.: Drift Velocities of Slow Electrons in Helium, Neon, Argon, Hydrogen, and Nitrogen. Phys. Rev., vol. 121, no. 3, 1 Feb. 1961, pp. 798-806.
- 26. Kivel, B.: Elastic Scattering of Low Energy Electrons by Argon. Phys. Rev., vol. 116, no. 4, 15 Nov. 1959, pp. 926-927.
- 27. Kivel, B.: Electron Scattering by Noble Gases in the Limit of Zero Energy. Phys. Rev., vol. 116, no. 6, 15 Dec. 1959, pp. 1484-1485.
- O'Malley, T. F.: Extrapolation of Electron-Rare Gas Atom Cross Sections to Zero Energy. Phys. Rev., vol. 130, no. 3, 1 May 1963, pp. 1020-1029.
- 29. Pack, J. L.; Voshall, R. E.; and Phelps, A. V.: Drift Velocities of Slow Electrons in Krypton, Xenon, Deuterium, Carbon Monoxide, Carbon Dioxide, Water Vapor, Nitrous Oxide, and Ammonia. Phys. Rev., vol. 127, no. 6, 15 Sept. 1962, pp. 2084-2089.
- 30. Cooper, J. W.; and Martin, J. B.: Electron Photodetachment from Ions and Elastic Cross Sections for 0, C, Cl, and F. Phys. Rev., vol. 126, no. 4, 15 May 1962, pp. 1482-1488.
- 31. Amdur, I.; Mason, E. A.; and Jordan, J. E.: Scattering of High Velocity Neutral Particles.X. He-N<sub>2</sub>; A-N<sub>2</sub>. The N<sub>2</sub>-N<sub>2</sub> Interaction. J. Chem. Phys., vol. 27, no. 2, Aug. 1957, pp. 527-531.
- 32. Amdur, I.; and Mason, E. A.: Scattering of High-Velocity Neutral Particles, III. Argon-Argon. J. Chem. Phys., vol. 22, no. 4, Apr. 1954, pp. 670-671.
- 33. Cloney, R. D.; Mason, E. A.; and Vanderslice, J. T.: Binding Energy of Ar<sub>2</sub><sup>+</sup> from Ion Scattering Data. J. Chem. Phys. vol. 36, no. 4, 15 Feb. 1962, pp. 1103-1104.

1.4

- 34. Vanderslice, J. T.; Mason, E. A.; and Lippincott, E. R.: Interactions Between Ground State Nitrogen Atoms and Molecules. The N-N, N-N<sub>2</sub>, and N<sub>2</sub>-N<sub>2</sub> Interactions. J. Chem. Phys., vol. 30, no. 1, Jan. 1959,pp. 129-136.
- 35. Vanderslice, J. T.; Mason, E. A.; and Maisch, W. G.: Interactions Between Oxygen and Nitrogen: O-N, O-N<sub>2</sub>, and O<sub>2</sub>-N<sub>2</sub>. J. Chem. Phys., vol. 31, no. 3, Sept. 1959, pp. 738-746.
- 36. Vanderslice, J. T.; Mason, E. A.; and Maisch, W. G.: Interactions Between Ground State Oxygen Atoms and Molecules: O-O and O<sub>2</sub>-O<sub>2</sub>. J. Chem. Phys., vol. 32, no. 2, Feb. 1960, pp. 515-524.
- 37. Vanderslice, J. T.; Mason, E. A.; Maisch, W. G.; and Lippencott, E. R.: Potential Curves for N<sub>2</sub>, NO, and O<sub>2</sub>. J. Chem. Phys., vol. 33, no. 2, Aug. 1960, pp. 614-615.
- 38. Fallon, R. J.; Vanderslice, J. T.; and Cloney, R. D.: Potential Curves and Rotational Perturbations of CN. J. Chem. Phys., vol. 37, no. 5, 1 Sept. 1962, pp. 1097-1100.
- 39. Tobias, I.; Fallon, R. J.; and Vanderslice, J. T.: Potential Energy Curves for CO. J. Chem. Phys., vol. 33, no. 6, Dec. 1960, pp. 1638-1640.
- 40. Read, S. M.; and Vanderslice, J. T.: Potential Energy Curves for C<sub>2</sub>. J. Chem. Phys., vol. 36, no. 9, 1 May 1962,pp. 2366-2369.
- Clementi, E.: Accurate Partition Functions in the Determination of the C<sub>2</sub> Abundance. Astrophys. J., vol. 133, no. 1, Jan. 1961, pp. 303-308.
- 42. Amdur, I.; and Shuler, L. M.: Diffusion Coefficients of the Systems CO-CO and CO-N2. J. Chem. Phys., vol. 33, no. 1, 1 Jan. 1963, pp. 188-192.
- Walker, R. E.; and Westenberg, A. A.: Molecular Diffusion Studies in Gases at High Temperature. II. Interpretation of Results on the He-N<sub>2</sub> and CO<sub>2</sub>-N<sub>2</sub> Systems. J. Chem. Phys. vol. 29, no. 5, Nov. 1958, pp. 1147-1153.

- Walker, R. E.; and Westenberg, A. A.: Molecular Diffusion Studies in Gases at High Temperature. IV. Results and Interpretation of the CO<sub>2</sub>-O<sub>2</sub>, CH<sub>4</sub>-O<sub>2</sub>, H<sub>2</sub>-O<sub>2</sub>, CO-O<sub>2</sub> and H<sub>2</sub>O-O<sub>2</sub> Systems. J. Chem. Phys., vol. 32, no. 2, Feb. 1960, pp. 436-442.
- 45. Ember, G.; Ferron, J. R.; and Wohl, K.: Self-Diffusion Coefficients of Carbon Dioxide at 1180<sup>o</sup>-1680<sup>o</sup>K. J. Chem. Phys., vol. 37, no. 4, 15 Aug. 1962, pp. 891-897.
- 46. Weissman, S.; and Mason, E. A.: Note on the Viscosity of N<sub>2</sub>-CO<sub>2</sub> Mixtures. Physica, vol. 26, 1960, pp. 531-532.
- 47. Hirschfelder, J. O.; Curtiss, C. F.; and Bird, R. B.: Molecular Theory of Gases and Liquids. John Wiley and Sons, 1954.
- Mason, E. A.; and Rice, W. E.: The Intermolecular Potentials for Some Simple Nonpolar Molecules. J. Chem. Phys., vol. 22, no. 5, May 1954, pp. 843-851.
- Blais, N. C.; and Mann, J. B.: Thermal Conductivity of Helium and Hydrogen at High Temperatures. J. Chem. Phys., vol. 32, no. 5, May 1960, pp. 1459-1465.
- 50. Fallon, R. J.; Mason, E. A.; and Vanderslice, J. T.: Energies of Various Interactions Between Hydrogen and Helium Atoms and Ions. Astrophys. J., vol. 131, no. 1, Jan. 1960, pp. 12-14.
- 51. Appleton, J. P.; and Bray, K. N. C.: The Conservation Equations for a Nonequilibrium Plasma, J. Fluid Mech., vol. 20, no. 4, Dec. 1964, pp. 659-672.
- 52. Crompton, R. W.; Elford, M. T.; and Robertson, A. G.: The Momentum Transfer Cross Section for Electrons in Helium Derived from Drift Velocities at 77°K. Austral. J. Phys., vol. 23, no. 5, Oct. 1970, pp. 667-681.
- 53. LaBahn, R. W.; and Callaway, J.: Differential Cross Sections for the Elastic Scattering of 1- to 95-ev Electrons from Helium. Phys. Rev. A, vol. 2, no. 2, Aug. 1970, pp. 366-369.
- 54. Griem, H. R.: Plasma Spectroscopy. McGraw-Hill Book Co., 1964.

- 55. Bates, D. R.; Kingston, A. E.; and McWhirter, R. W. P.: Recombination Between Electrons and Atomic Ions. I. Optically Thin Plasmas. Proc. Roy. Soc., Series A, vol. 267, no. 1330, 22 May 1962, pp. 297-312.
- 56. Bates, D. R.; and Khare, S. P.: Recombination of Positive Ions and Electrons in a Dense Neutral Gas. Proc. Phys. Soc., vol. 85, part 2, Feb. 1965, pp. 231-243.
- 57. Butes, D. R.; Bell, K. L.; and Kingston, A. E.: Excited Atoms in Decaying Optically Thick Plasmas. Proc. Phys. Soc., vol. 91, part 2, June 1967, pp.288-299.
- 58. Johnson, L. C.; and Hinnov, E.: Rates of Electron Impact Transitions Between Excited States of Helium. Rep. no. MATT-610, Princeton Univ. Plasma Physics Laboratory, July 1969.
- 59. Hinnov, E.; and Herschberg, J. G.: Electron-Ion Recombination in Dense Plasmas. Phys. Rev., vol. 125, no. 3, 1 Feb. 1962, pp. 795-801.
- 60. Collins, C. B.; Hicks, H. S.; Wells, W. E; and Burton, R.: Measurement of the Rate Coefficient for the Recombination of He<sup>+</sup> with Electrons, Phys. Rev. A, vol. 6, no. 4, Oct. 1972, pp. 1545-1558.
- 61. Bates, D. R.; and Kingston, A. E.: Recombination and Energy Balance in a Decaying Plasma. II. He-He<sup>+</sup>-e Plasma. Proc. Roy. Soc., Series A, vol. 279, no. 1376, 12 May 1964, pp.32-38.
- 62. Bates, D. R.; and Dalgarno, A.: Electronic Recombination. Atomic and Molecular Processes, D. R. Bates, ed., Academic Press, 1962, pp. 245-271.
- 63. Burgess, A.; and Seaton, M. J.: A General Formula for the Calculation of Atomic Photo-Ionization Cross Sections. Monthly Not. Roy. Astron. Soc., vol. 120, no. 2, 1960, pp. 121-151.
- 64. Schulz, G. J.; and Fox, R. E.: Excitation of Metastable Levels in Helium Near Threshold. Phys. Rev., vol. 106, no.
  6, 15 June 1957, pp. 1179-1181.

- Moiseiwitsch, B. L.; and Smith, S. J.: Electron Impact Ionization of Atoms. Rev. Mod. Phys., vol. 40, no. 2, Apr. 1968, pp. 238-353.
- 66. Rice, J. K.; Truhlar, D. G.; Cartwright, D. C.; and Trajmar, S.: Effect of Charge Polarization on Inelastic Scattering: Differential and Integral Cross Sections for Excitation of the 2<sup>1</sup>S State of Helium by Electron Impact. Phys. Rev. A, vol. 5, no. 2, Feb. 1972, pp. 762-782.
- Phelps, A. V.: Absorption Studies of Helium Metastable Atoms and Molecules. Phys. Rev., vol. 99, no. 4, 15 Aug. 1955, pp. 1307-1313.
- 68. Dalgarno, A.; and Kingston, A. E.: Van der Waals Forces. Proc. Phys. Soc., vol. 73, part 3, Mar. 1959, pp. 455-464.
- 69. Massey, H.S. W.; Burhop, E. H. S.; and Gilbody, H. B.: Electronic and Ionic Impact Phenomena. Second ed., vol. III, Clarendon Press (Oxford), 1969.
- 70. Ginter, M. L.: Spectrum and Structure of the He<sub>2</sub> Molecule. I. Characterization of the States Associated with the UAO's 3 pσ and 3s. J. Chem. Phys., vol. 42, no. 2, 15 Jan. 1965, pp. 561-568.
- 71. Beaty, E. C.; and Patterson, P. L.: Mobilities and Reaction Rates of Ions in Helium. Phys. Rev., vol. 137, no. 2A, 18 Jan. 1965, pp. A346-A357.
- 72. Niles, F. E.; and Robertson, W. W.: Temperature Dependence of the Rate of Conversion of He<sup>+</sup> into He<sub>2</sub><sup>+</sup>. J. Chem. Phys., vol. 42, no. 9, 1 May 1965, pp. 3277-3280.
- 73. Gerber, R. A.; Sauter, G. F.; and Oskam, H. J.: Studies of Decaying Helium Plasmas. Physica, vol. 32, no. 11/12, Nov.-Dec. 1966, pp. 2173-2191.
- 74. Wellenstein, H. F. and Robertson, W. W.: Collisional Relaxation Processes for the n = 3 States of Helium. II. Associative Ionization. J. Chem. Phys., vol. 66, no. 3, 1 Feb. 1972.
- Bardsley, J. N.; and Biondi, M. A.: Dissociative Recombination. Advances in Atomic and Molecular Physics, D. R. Bates and I. Esterman, eds., vol. 6, Academic Press, 1970, pp. 1-57.

- 76. Johnson, A. W.; and Gerardo, J. B.: Electronic Recombination Coefficient of Molecular Helium Ions. Phys. Rev. Letters, vol. 27, no. 13, 27 Sept. 1971, pp. 835-838.
- 77. Berlande, J.; Cheret, M.; Deloche, R.; Gonfalone, A.; and Manus, C.: Pressure and Density Dependence of the Electron-Ion Recombination Coefficient in Helium. Phys. Rev. A, vol. 1, no. 3, Mar. 1970, pp. 887-896.
- 78. Born, G. K.: Recombination of Electrons and Molecular Helium Ions. Phys. Rev., vol. 169, no. 1, 5 May 1968, pp. 155-164.
- 79. Jordan, J. E.; and Amdur, I.: Scattering of High-Velocity Neutral Particles. XIV. He-He Interactions Below 1.1 A. J. Chem. Phys., vol. 46, no. 1, 1 Jan. 1967, pp. 165-183.
- 80. Mulliken, R. S.: Rare-Gas and Hydrogen Molecule Electronic States, Noncrossing Rule, and Recombination of Electrons with Rare-Gas and Hydrogen Ions. Phys. Rev., vol. 136, no. 4A, 16 Nov. 1964, pp. A962-A965.
- 81. Collins, C. B.: Chemistry of the Low Pressure Helium Afterglow. Ninth International Conf. on Phenomena in Ionized Cases, Bucharest, Romania, Sept. 1-6, 1969, Editura Academiei Rc\_ublicii Socialiste România, p. 51.
- Stevefelt, J.: The Decay of Optically Thick Helium Plasmas Taking Into Account Ionizing Collisions Between Metastable Atoms or Molecules. J. Physics D: Appl. Phys., vol. 4, no. 7, July 1971, pp. 899-906.
- 83. Frost, L. S.; and Phelps, A. V.: Momentum Transfer Cross Sections for Slow Electrons in He, Ar, Kr, and Xe from Transport Coefficients. Phys. Rev., vol. 136, no. 6A, 14 Dec. 1964, pp. A1538-A1545.
- 84. Golden, D. E.: Comparison of Low-Energy Total and Momentum Transfer Scattering Cross Sections for Electrons on Helium and Argon. Phys. Rev., vol. 151, no. 1, 4 Nov. 1966, pp. 48-51.
- 85. Celotta, R.; Brown, H,; Molof, R.; and Bederson, B.: Measurements of the Total Cross Section for the Scattering of Low-Energy Electrons by Metastable Argon. Phys. Rev. A, vol. 3, no. 5, May 1971, pp. 1622-1628.

-285-

- 86. Robinson, E. J.: Electron Scattering by the Metastable Rare Gases. Phys. Rev., vol. 182, no. 1, 5 June 1969, pp. 169-200.
- 87. Biberman, L. M.; Yakubov, I. T.; and Vorobev, V. S.: Kinetics of Collisional-Radiation Recombination and Ionization in Low-Temperature Plasma. Proc. IEEE, vol. 59, no. 4, April 1971, pp. 555-572.
- Funahashi, A.; and Takeda, S.: Three-Body Electron-Ion Recombination in Argon Plasmas. J. Phys. Soc. Japan, vol. 25, no. 1, July 1968, pp. 298-299.
- 89. Gusinow, M. A.; Gerado, J. B.; and Kerdeyen, J. T.: Investigation of Electronic Recombination in Helium and Argon Afterglow Plasmas by Means of Laser Interferometric Measurements. Phys. Rev., vol. 149, no. 1, 9 Sept. 1966, pp. 91-96.
- 90. Lee, J. B.; and Incropera, F. P.: Spectral Distribution of Radiation from the Cascade Arc Plasma. J. Quant. Spectrosc. Radiat. Transfer, vol. 13, no. 12, Dec. 1973, pp. 1539-1552.
- 91. Morris, J. C.; and Yos, J. M.: Radiation Studies of Arc Heated Plasmas. ARL 71-0317, Dec. 1971.
- 92. Dobbins, R. A.: Precursor Photoexcitation and Photoionization of Argon in Shock Tubes. AIAA J., vol. 8, no. 3, Mar. 1970, pp. 407-414.
- 93. Samson, J. A. R.: Experimental Photoionization Cross Sections in Argon from Enreshold to 280 A. J. Opt. Soc. Am., vol. 54, no. 3, Mar 1964, pp. 420-421.
- 94. Chen, C. J.: Collisional-Radiative Electron-Ion Recombination Rate in Rare-Gas Plasmas. J. Chem. Phys., vol. 50, no. 4, 15 Feb. 1969, pp. 1560-1566.
- 95. Petschek, H.; and Byron, S.: Approach to Equilibrium Ionization Behind Strong Shock Waves in Argon. An. Phys., vol. 1, no. 3, June 1957, pp. 270-315.
- 96. Wong, H.; and Bershador, D.: Thermal Equilibration Behind an Ionizing Shock. J. Fluid Mech., vol. 26, part 3, Nov. 1966, pp. 459-480.
- 97. Merila, M.; and Morgan, E. J.: Total Ionization Times in Shock-Heated Noble Gases. J. Chem. Phys., vol. 52, no. 2, 1 Mar. 1970, pp. 2192-2198.

- 98. Pichanick, F. M. J.; and Simpson, J. A.: Resonances in the Total Cross Sections for Metastable Excitation of Noble Gases by Electron Impact. Phys. Rev., vol. 168, no. 1, 5 Apr. 1968, pp. 64-70.
- 99. Olmstead, J.; Newton, A. S.; and Street, K.: Determination of the Excitation Functions for Formation of Metastable States of Some Rare Gases and Diatomic Molecules by Electron Impact. J. Chem. Phys., vol. 42, no. 7, Apr. 1965, pp.2321-2.27.
- 100. Borst, W. L.: Excitation of Metastable Argon and Helium Atoms by Electron Impact. Phys. Rev. A, vol. 9, no. 3, Mar. 1974, pp. 1195-1200.
- 101. Lloyd, C. R.; Weigold, E.; Teubner, P. J. O.; and Hood, S. T.: Excitation Functions for the Formation of Metastable He and Ar by Electron Impact. J. Phys. B, vol. 5, no. 9, Sept. 1972, pp. 1712-1718.
- 102. McConkey, J. W.; and Donaldson, F. G.: Excitation of the Resonance Lines of Ar by Electrons. Can. J. Phys., vol. 51, no. 9, 1 May 1973, pp. 914-921.
- 103. LeCalvé, J.; and Bourène, M.: Pulse Radiolysis Study of Argon-Nitrogen Mixtures. Measurement of the Rate Constant of Metastable Argon De-excitation by Nitrogen. J. Chem. Phys., vol. 58, no. 4, 15 Feb. 1973, pp. 1446-1451.
- 104. Phelps, A. V.: Diffusion, De-excitation, and Three-Body Collision Coefficients for Excited Neon Atoms. Phys. Rev., vol. 114, no. 4, 15 May 1959, pp. 1011-1025.
- 105. Holstein, T.: Imprisonment of Resonance Radiation in Gases. Phys. Rev., vol. 72, no. 12, 15 Dec. 1947, pp. 1212-1233.
- 106. Holstein, T.: Imprisonment of Resonance Radiation in Gases. II. Phys. Rev., vol. 83, no. 6, 15 Sept. 1951, pp. 1159-1168.
- 107. Ellis, E.; and Twiddy, N. D.: Time-Resolved Optical Absorption Measurements of Excited-Atom Concentrations in the Argon Afterglow, J. Phys. B (Atom. Molec. Phys.), vol. 2, no. 12, Dec. 1969, pp. 1366-1377.

- 108. Phelps, A. V.; and McCoubrey, A. O.: Experimental Verification of the "Incoherent Scattering" Theory for the Transport of Resonance Radiation. Phys. Rev., vol. 118, no. 6, 15 June 1960, pp. 1561-1565.
- 109. Breene, R. G., Jr.: Line Width, Handbuch der Physik, S. Flugge, ed., vol. XXVII, Springer-Verlag, 1964, pp. 1-79.
- 110. Copley, G. H.; and Camm, D. M.: Pressure Broadening and Shift of Argon Emission Lines. J. Quant. Spectroscop. Radiat. Transfer, vol. 14, no. 9, Sept. 1974, pp. 899-907.
- 111. Wiese, W. L.; Smith, M. W.; and Miles, B. M: Atomic Transition Probabilities, Vol. II. Sodium Through Calcium. Nat. Bur. Stand. (U.S.), NSRDS-NBS 22, Oct. 1969.
- 112. Phelps, A. V.; and Molnar, J. P.: Lifetimes of Metastable States of Noble Gases. Phys. Rev., vol. 89, no. 6, 15 Mar. 1953, pp. 1202-1208.
- 113. Futch, A. H.; and Grant, F. A.: Mean Life of the <sup>3</sup>P<sub>2</sub> Metastable Argon Level. Phys. Rev., vol. 104, no. 2, 15 Oct. 1956, pp. 356-361.

- 114. Harwell, K. E.; and Jahn, R. G.: Initial Ionization Rates in Shock-Heated Argon, Krypton and Xenon. Phys. Fluids., vol. 7, no. 2, Feb. 1964, pp. 214-222.
- 115. Kelly, A. J.: Atom-Atom Ionization Cross Sections of the Noble Gases - Argon, Krypton, Xenon. J. Chem. Phys., vol. 45, no. 5, 1 Sept. 1966, pp. 1/23-1732.
- 116. McLaren, T. I.; and Hobson, R. M.: Initial Ionization Rates and Collision Cross Sections in Shock-Heated Argon. Phys. Fluids, vol. 11, no. 10, Oct. 1968, pp. 2162-2172.
- 117. Schneider, K. P.; and Gronig, H.: Ionization Measurements Behind Shocks in Argon with Microwaves and a Pulsed Langmuir Probe . Z. Naturforsch., vol. 27A, no. 12, Dec. 1972, pp. 1717-1730.
- 118. Kochler, H. A.; Ferderber, L. J.: Redhead, D. L.; and Ebert, P. J.: Vacuum-Ultraviolet Emission from High-Pressure Xenon and Argon Excited by High-Current Relativistic Electron Beams. Phys. Rev. A, vol. 9, no. 2, Feb. 1974, pp. 768-731.

-288-

119. Huffman, R. E.; and Katayama, D. H.: Photoionization Study of Diatomic-Ion Formation in Argon, Krypton, and Xenon. J. Chem. Phys., vol. 45, no. 1, 1 July 1966, pp. 138-146.

Videographics water

- 120. Kebarle, P.; Haynes, R. M.; and Searles, S. K.: Mass-Spectrometric Study of Ions in Xe, Kr, Ar, Ne at Pressures up to 40 Torr: Termolecular Formation of the Rare-Gas Molecular Ions. Bond Dissociation Energy of Ar<sub>2</sub><sup>+</sup> and Ne<sub>2</sub><sup>+</sup>. J. Chem. Phys., vol. 47, no. 5, 1 Sept. 1967, pp. 1684-1691.
- 121. Mulliken, R. S.: Potential Curves of Diatomic Rare-Gas Molecules and Their Ions, with Particular Reference to Xe<sub>2</sub>. J. Chem. Phys., vol. 52, no. 10, 15 May 1970, pp. 5170-5180.
- 122. O'Malley, T. F.; Cunningham, A. J.; and Hobson, R. M.: Dissociative Recombination at Elevated Temperatures. II. Comparison Between Theory and Experiment in Neon and Argon Afterglows. J. Phys. B, vol. 5 no. 11, Nov. 1972, pp. 2126-2133.
- 123. LeRoy, R. J.: Improved Spectroscopic Dissociation Energy for Ground-State Ar<sub>2</sub>. J. Chem. Phys., vol. 57, no. 1, 1 July 1972, pp. 573-574.
- 124. Liu, W. F.; and Conway, D. C.: Ion-Molecule Reaction Rates in Ar at 295°K. J. Chem. Phys., vol. 60, no. 3, 1 Feb. 1974, pp. 784-792.
- 125. Bhattarcharya, A. K.: Mass Spectrometric Study of Argon Afterglow Plasmas. J. Appl. Phys., vol. 41, no. 5, 15 Mar. 1970, pp. 1707-1710.
- 126. Smith, D.; Dean, A. G.; and Plumb, I. C.: Three-Body Conversion Reactions in Pure Rare Gases. J. Phys. B, vol. 5, no. 11, Nov. 1972, pp. 2134-2142.
- 127. Chen, C. J.: Temperature Dependence of Dissociative Recombination and Molecular-Ion Formation in He, Ne, and Ar Plasmas. Phys. Rev., vol. 177, no. 1, 5 Jan. 1969, pp. 245-254.
- 128. Smith, D.; and Cromey, P. R.: Conversion Rates and Ion Mobilities in Pure Neon and Argon Afterglow Plasmas. J. Phys. B, vol. 1, no. 4, July 1968, pp. 638-649.
- 129. Becker, P. M.; and Lampe, F. W.: Mass-Spectrometric Study of the Bimolecular Formation of Diatomic Argon Ion. J. Chem. Phys., vol. 42, no. 11, 1 June 1965, pp. 3857-3863.

30. Mehr, P. J.; and Biondi, M. A.: Electron-Temperature Dependenc. of Electron-Ion Recombination in Argon. Phys. Rev., vol. 176, no. 1, 5 Dec. 1968, pp. 322-326.

٠.

¢,

W. - 50.

1. I. I.

ORIGINAL PAGE IS OF POOR QUALITY