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A STUDY OF TURBULENT FLOW BETWEEN
PARATLTEL PIATES BY A STATISTICAL METHOD

by

R. Srinivasan, D. P. Giddens, L. H. Bangert and J. C. Wu
School of Aerospace Engineering
Georgia Institute of Technology

INTRODUCTION

Similarities between the statistical behavior of molecules in a gas and
the velocity fluctuations of fluid elements in a turbulent flow suggest the
possibility of describing both phenomena in terms of a velocity distribution
function from which mean properties may be computed by taking appropriate
moments. The literature abounds with efforts to exploit this analogy between

the two areasof the field of statistical mechanics. From another point of view,

there are potential simplifications in modeling turbulence behavior at the
level of the velocity distribution function (or, the probability density),
rafher than modeling individual correlations. OFf particular interest are two
recent studies which have attempted to develop theoretical treatments for
practical applicationl’g. Imndgrenl begins with the incompressible Navier-
Stokes equations in a form which assumes either an infinite fluid region or a
congtant pressure boundary condition. A hierarchy of equations for multipoint
distribution functions is developed which strongly resembles the Bogoliubov-
Born—Green-Kirkwood—Yvon3 (BRGKY) equations. In a subsequent work Inmdgren
attempts to close the gystem at the one~point level by employing a relaxation
model identical in form to the Bhatnager-Gross-Krook (BGK) model of kinetic
theory. This model equation is not, within itself, sufficient to define a
turbulent flow. An additional equation is required to relate the turbulence
digsipation rate to other flow properties. This, in effect, implies that an
ad hoc assumption must be made regarding the relaxation rate in the model.
TIundgren applies his equations to several idealized problems in which no solid
boundaries are present.

Chung2’6

governing equation for the distribution function. His analysis was developed

has teken a very different. approach but arrived at a similar

from ideas of generalized Brownian motion and resulted in a modified



Fokker-Planck equation. The analysis has been extended to account for chemical
species and reactions7. Chung likewise finds it necessary to make ad hoc
assumptions on mixing length if his equations are to be self-contained. The
resulting model is applied to the problem of plane Couette flow of an incom-
pressible, single-~species gas by employing moment methods familiar in kinetic
theory . In these methods specific functional forms are assumed for the dis-
tribution function and unknown coefficients are found in the solution.

The present work describes the solution of Lundgren's model equation
for plane Couette flow. This provides an important extension of his previous
studies in that the flow field is bounded by solid surfaces and in that it
represents a flow for which experimental data are available. The solution

9,10 ¢

is accomplished by an extension of the discrete ordinate method
developed for problems in rarefied gasdynamics. This differs from the moment
method selected by Chung in that no a priori assumption is enforced upon the
form of the distribution function. Results obtained in the present study are
compared with Chung's work and with available experimental data.

Perhaps an interesting analogy between the application of the discrete
ordinate method and the moment method is that of the improvement provided in
turbulent boundary layer calculations by the use of numerical solution to the
partial differential equations themselves as opposed to the classical integral
method used earlier. A finer detail of flow structure is afforded by the

direct numerical solution.



GOVERNING EQUATIONS

General Equation for the Distribution Function

The starting point for the present analysis is the lowest order equation
for the turbulent distribution function (Egs. (1) and (2), Ref. 4)

._iagi_J,;;.a__.f_Jr(-l §§+v%.%ﬁ>.a_£ (1)
t dr P or dr Or v

where (v, v, t) dv is the probability that the velocity at point r in
physical space is in the range ;r. to x_r’ + d; in velocity space. Pressure,
density and kinematic viscosity are symbolized by f), p and VvV , respectively.
The relaxation time is denoted by T, which is related to the characteristic
turbulence diffusion time. F is a Gaussian (equilibrium) distribution given

by

-3/2
)

F = <21TU2 exp [- v - 5)2/2U2] (2)

The time average flow velocity is ﬁ' and 3U2 is the mean square of the

velocity fluctuations. These are defined as appropriate moments of f. That is,

3
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where the integrations are taken over the entire velocity space ( = ® to + @

for each component).



Tundgren assumes that the relaxation time is approximately L/U » where L
is the integral scale of turbulence, and models this by the equation

K(e + 2 DU°/Dt)
% = 2 20/ (3)

U2

Here, € is the turbulence dissipation rate, D/Dt is the usual substantial
derivative, and K is taken to be a constant whose value is approximately 5.
If the turbulence velocity Z = ; - E is introduced as an independent
variable, the analysis is made somewhat simpler. Meking this change of
variable and simplifying the physical coordinates to the case of one dimension

in anticipation of the application to Couette flow, one obtains

o\ Tty w2 e (1)
y oy vy dy day -
1 , € of of df
=—(F-f)+—(3f+c 5. te s te a—>
T 3U2 X Cy v cy Z cZ

Here, y 1is taken to be normal to the mean flow and Cyps cy, c, are the

turbulence velocity components.

Reduced Distribution Functions

A reduction in computer storage requirements is afforded by defining re-

duced distribution functions according to the following scheme:

{=]

&y, c) =I Jf(y, Cpr Cyo C,) dey de, (5a)
3, o) = | o 2 o e ) dey ac, (50)

-00



h(y, cy) = I I (ci + ci) f(y, Cys Cyo cz> de, de (5¢)

Also, let

(=]
J.v (y, Vy) = I I (cx * ux) f<y’ Cx> cy’ cz) dcx dcz (58)

The reduced equilibrium distribution functions, G, J, H and Jv are defined
as shown above with f = F. Equation (4) may now be transformed into a system
of equations which, although similar in form to the equation for £ , are much

easier to treat numerically., These become

o7 (-0 5l 3E) 8

°8j _ 1 deux 1dp du

=t ) OB e )
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These distribution functions should satisfy the constraints

[gac, =1 (7a)

and ®
[sac, =5 -0 (75)

The first of these states that the probability of finding a fluld element

somewhere in r , v space is unity, while the second requires that the mean of

the longitudinal fluctuating wvelocity component should be zero.

Moments of Interest

Once the equations are solved for the distribution functions, moments

of interest may then be calculated. For example, one obtains

w_ = J_'mj ac (8a)
30 = jih ac, + Imc 25 de, (8b)
ceCy = o-fmcy 3 dc_y (8e)
0;5 = Emci g c'icy (8a)

o, = % iocyh ac, +% chfr g de, (8e)



These are the mean veloeity, turbulence kinetic energy, Reynolds stress,
mean square of y-velocity component fluctuation, and kinetic energy flux,

respectively.

Final Reduced Equations

Tt is convenient to define the following nondimensional varisbles:

" c . v ~ U
[} =.-E ; v:l ; U = ;
¥ U A Uy
U, u, T jo) ~
e X o.oa o X0 TE 2y =X . =3 .
u oy T i cxcy pxy u2 s f=u o
%
é‘ug ;l”ll"‘ﬁ‘J'S"J Q“%x
W H - > - > - H - >
Uy v v v ui
- 3 . -
e_ed‘/u* E y_y/d
u, d -
* ~
.Re =—-—-—; =—d——d—'B
* v k 2 4dx
pu,

where 2d is the distance between the plates, pqu is the turbulence shear 1

12
stress, Vv 1is the kinematic viscosity, p dis the density, and wu, = [(pxy)w/p]

is the usual friction velocity.
Using these quantities and dropping the superscript " = " , for

simplicity, the set of governing equations becomes
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It is this set of equations which is to be solved by the discrete ordinate method,

subject to the boundary conditions to be discussed subsequently.



Examination of this system of equations reveals that it is not yet
completely self-contained. The dissipation rate € is not given as a moment
of the distribution function. Therefore, a separate equation for € is
required to close the set. Among the possibilities for such an equation for
the present problem are the use of an algebraic relationship resulting from

setting turbulence production equal to dissipation

€ =—— or € =0.7968 U3/ (9e)

or by use of a differential equation to model € , such as the one derived by

Jones and Launderll based upon a semi-empirical approach. TFor Couette flow it is

2
%g%*%(%)(%)*% clg(%)e (9¢)

Here, o, , c; and c, are constants and V; = Re, (cxcy>/(du/dy) .
FEach of these equations for € has been employed in the present study, and

results will be discussed in a subsequent chapter.



BOUNDARY CONDITIONS

One of the difficult aspects of this research is specification of the
appropriate boundary conditions. This difficulty arises as a consequence of two
factors. First, since the mean velocity is a moment of the distribution function,

“information from continuum flow only gives the no-slip condition that

Because many functions for f could be specified which satisfy this integral
constraint, there is a lack of uniqueness in prescribing f£. If £ dis prescribed
as a Dirac delta function which also implies zero instantaneous velocity at the
wall, it is difficult to incorporate numerically.

Second, the relaxation time, T , is difficult to model in the viscous sub-
layer because of the unknown variation of € and U. Furthermore, in the
derivation of the turbulence model equation, the effects due to the presence of
the wall were not modeled separately. As a consequence, the validity of the
model equation is suspected very near the wall even if a successful relaxation
model is obtained. Thus, there is a hesitation in applying the analysis in this
zone.,

With these considerations in mind there are clearly two fundamental

questions to be addressed in the research.

(i) where should the boundary condition on the distribution
function be applied, and
(ii) what functional form should it take?

Thus, the present study can actually be divided into two segments: first,
to develop the capability of obtaining convergent, stable numerical solutions to
the model equation; and second, to examine the validity of various boundary

12’13. This division of

conditions in light of comparison with experimental data
the problem virtually parallels the situation arising in calculations of rarefied
flows from the Boltzmann equation. In this field the study of gas-surface

interactions~~ which are used for boundary conditions in solution of the govern-

ing equation ~- has become almost a separate field of study within itself. Such

10




could well be the case with the statistical approach to turbulent flows.

Matching to Law of Wall
The course taken in the present work was to confine the application of

the turbulent model equatlon to regions outside the viscous sublayer. Values
of ¥y = y‘u._x_/v from 50 to 100 were selected as the boundary points for the
governing equation, and the usual functional forms for law of the wall were
assumed to reia.te the boundary point to wall conditions. This necessitates
that certain matching of the numerical solution to law of wall variation at

the boundary point be performed. The specific conditions applied are dependent
upon the form selected Ffor the distribution function at the boundary and will
be discussed in more detail in the section on NUMERICAL APPROACH.

Zero Gradient Distribution Function

The momentum equation for Couette flow with zero pressure gradient in the
continuum theory for turbulence reduces to a statement that total stress is
constant between the plates. If attention is confined to the region well out-
side the viscous sublayer, then the viscous stress contributlon is negligible
and therefore Reynolds stress is constant. Agsuming that the apparent viscosity
coefficient is linear in y +then gives the familiar logarithmic result for the
mean veloeity profile. Further, the kinetic energy of turbulence, U2 , 1s
known to be approximately constant in such a logarithmic regionlg. In terms of

the moments described earlier, these conditions give

[==)

‘”‘J‘ <02 + c2 + cg) f de_de de = 3U2 = constant
x v A X Oy Z

-

(==
”‘j cX cy £ clcx dcy dcz = cxcy = constant
-0

Therefore, under the agssumption of a linear variation in Vo for the
Couette flow problem, it should be possible to construct a boundary condition
for the distribution function which causes the governing statistical equation

to yield a logarithmic solution between the plates. A necessary condition for

11



this is to forbid f +to have a gradient at the boundary point and to require
it to match the law of the wall there.

The governing equation itself may be used to develop an appropriate form
for f by setting 3f/dy =0 in Eq. (4). If one then assumes du/dy = 1l/uy,

U=1Up, €= dufdy , amd 1/T =K €/U2 , the equation becomes

3 3
B B
- — = - + —
3¢ e SK(F, - £) + 36, * o 5 (10)

X X

of of

vo B, . OB

y 8¢ z dc

Y Z

where the pressure gradient and viscous stress have been taken as zero. The
subscript B is used to indicate that the distribution function obtained from
solving this equation is to be employed as a boundary condition for solution
to Eq. (&) for the region between the plates.

Again, it is found to be easier to work with the reduced distribution

functions. The equations for these which correspond to Eq. (10) are

31<;(GB-gB)+gB+cy ;fi = 0 (11a)
’ ¥
a3
SK(T - ) ¥ oy goo = 38y e, U (110)
¥
3K - Bp) - By e 26 e F (11c)

12



Solutions to these equations are independent of y and are to be applied as
boundary condition functions in solving Egs. (6). It should be noted that
dj vjay # 0 since the mean velocity is not constant, but logarithmic. However,

jv can be related to g and J by

[>] [=-] o
e T - | o {1
iy J‘ J (cx u) fde de, J I c, fde _de, +u f de, de,
-t0 -0 -
or
s =i
y=dtuse (12)

Hence, at the boundary

JvB=JB+uBgB

where uy is determined by the logarithmic relation

Uy Uy

s T bn(—-\7->+]3u*

with »# and B as constants. A value for y, = *y/v of 100 is used to
insure that viscous stresses are, in fact, negligible at the boundary point.

The solution to the set of equations (11) must be obtained numerically.
Since the distribution functions and all their veloelby gradients must approach
zZero as | cy| — o , this is used as a boundary condition in velocibty space.

The integration proceeds from a large value of c,v toward zero and from a small
negative value ey (with large sbsolute value) toward zero. A first order
finite difference scheme is utilized for the integration. The result of the
integration is a set of numerical values for fB which is then employed as

a boundary condition in the solution of the model equation for y, > 100.



Chapman~Enskog Distribution Function

There are two shortcomings in the use of the 3f/dy = 0 boundary condi-

tion. One is that the value of u, must be specified a priori. This is

*
equivalent to establishing the wall shear stress, which 1s a gquantity which
hopefully would emerge from the solutilon rather than be required as an input

in order to obtain a solution. The second is that experimental data for mean
velocity may not follow the logarithmic variation throughout the entire region
between solution boundaries. This point will be discussed later in the

RESUITS section.

Therefore, it was desirable to seek a boundary condition for the distribu-
tion function which would circumvent these difficulties. Upon first inspection
it would seem possible to impose a Gaussian distribution for fB in a manner
analogous to the use of Maxwellian re~emission of molecules from a surface in
the kinetic theory of gases. However, since a Gaussian distribution function
gives zero Reynolds stress, this is inappropriate for application within a
turbulent zone. (There may be merit in attempting to apply the statistical
model equation within the viscous sublayer, where Reynolds stresses are small
and then imposing the Gaussian distribution in a limiting Dirac delta function
form at some point in this region. However, this possibility was not examined
under the present effort).

An organized manner of obtaining a proper boundary condition is the
Chapman-Enskog procedurelh. Employing this method one can obtain approximate
solutions to Eq. (1) using a series expansion. The zeroth order solution gives
an equilibrium Gaussian distribution, which, as mentioned previously, results
in zero Reynolds stress. The first order solution is commonly termed the
Chapman~Enskog distribution, and allows for a Reynolds stress to occur.

The first order Chapman-~Enskog expansion for a one dimensional flow gives

f<1>=F{l_:_g[(§£_§);%g+i§x%]} (13)

where

1h
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v - (;U'e" o[- LT

is the Gaussian distribution. The corresponding nondimensional forms for the

reduced distribution functions are

1 2
g(l)=G-R—‘T—U§'%Cy[U'§<H+CyG>—5G] (1ka)
Cx
W __ e ™
= - Re* 2% G (1)
2
v VAS
h(1)=H-R TU3 e, %[\EEH+8UEG>-5H] (1ke)
Cx
NEDRCINNNC (1)

These forms may then be applied as boundary conditions for the governing
equation. Details of the application will be discussed in the chapter on
NUMERICAL APPROACH.

Two~Stream Nature of Boundary Conditions

Even though a functional form is established for the boundary distribution
function, fB s, the correclt implementation of this form is not straightforward.
If one examines the physics of the problem, it is clear that both plates contri-
bute to the establishment of the flow; and, therefore, boundary conditions
should be applied at a y, value near each plate, giving two boundary condi-

tions. (The _symmetry condition at the centerline may be invoked to reduce

15



the problem to a half-space in ¥y, but this still necessitates specifying two
boundary conditions on f). Yet, if one examines the one-dimensional governing
equation (Eg.(1l)), it is observed that only a first-order derivative in ¥
appears when viscous terms are neglected. It would thus appear that imposition
of two boundary conditions would result in overspecifying the problem.

Experience in solving the Boltzmann equation in rarefied gas dynamics
gives insight to resolving this paradox. In the molecular approach to rarefied
flows one can only specify the wvelocity distribution function of molecules
leaving a surface. The distribution function for those striking the surface is
determined as a consequence of the solution. Thus, the boundary conditions
possess a "two-stream" nature. The interaction of the incoming and outgoing
stream is controlled through the collision or relaxation term in the model
equation and through integral constraints such as the requirement that the
incoming mass flux equal that for the outgoing streanm.

If this concept is transposed to the present problem of turbulent Couette
flow, one requires that at the bowmdary point near the lower plate the distri-
bution function is specified only for positive values of c:y while for the
corresponding point near the upper plate it is specified only for negative
values of cy' This is illustrated in Figure 1. Insofar as the function f
is concerned, this is equivalent to imposing a single constraint for all cy
domain values while it allows the effects of each plate to be introduced into the
problem, This is mathematically consistent with the first order nature of the
y=derivative in the governing equation. Further, it seems plausible that such
a two-stream approach is justified on a physical basis, since the turbulence
motions leaving and approaching the wall region will be affected differently
by the presence of the wall.

As with the case in rarefied gasdynamics, integral constraints must be

imposed. The most obvious one 1s that

(o]

j‘[ fde de de =1
x 'y =z

-0

since this must hold from the definition of f. Additional constraints will be

discussed in the chapter on NUMERICAL APPROACH.

16



NUMERICAL APPROACH

Discrete Ordinate Method
The discrete ordinate method is a numerical technique of replacing a

continuous independent varisble in a system of integro-partial differential
equations by a set of discrete values and then treating these as parameters in
the remaining solution. Although not restricted to integro~differential
equations, the method has proven quite useful in attacking this type oflgroblem.

Two examples of this application in physics are radiative heat transfer™ and

rarefied gas dy'na.micsg-lo. The latter field is closely related to the present
study of turbulence since a fundamental equation in rarefied gas dymamics is

the Boltzmann equation for the velocity distribution function of molecules.

If the BGK model is substituted for the collision integral of that equation,

the one-dimensional form (which would correspond to a Couette flow geometry, for

example) becomes

c —=-%(F-f)

in the absence of external forces. This equation possesses a form similar to
Eg. (4). However, the latter equation is more complex to treat since it
inecludes terms involving Bf/a_c: . Thus, one of the Iimportant extensions of the
discrete ordinate method as applied to the pregent problem has been the treat-
ment of derivatives in velocity space. Interestingly enough, the presence of
external force terms in the Boltzmann equation would introduce derivatives

of this type so that knowledge gained in the present numerical solution for
turbulence can be transferred back to rarefied gasdynamics.

Since the moments redquired to compute flow properties of interest are
obtained as integrals over velocity space (cf. Egs. (8)), it is the velocity
variable which is chosen to be discretized. The set of points selected is
denoted by {cc} s and a continuous function, say, g(y,cy) is replaced by a
set of functions gc(y), o =1,2, «ve 5 S. The same procedure is applied to
each of the dependent variables. The integrations over cy to form moments may
then be accomplished by numerical quadrature employing appropriate weighting
functions,

17



@ S
.f plc,) g(ys o) de = ), #ey) g, W, (15)

o=1

where ¢ is a function of cy , and W& are the weights in the quadrature.

The details of the resulting equations are shown in Appendix A.

Finite Difference Methods

Since derivatives with respect to both y and cy are first order, the
first approach taken in forming finite difference equations from the differential
equations was to use simple forward or backward differences, depending upon the
direction of integration. However, this first order scheme resulted in some
numerical error in the region near the wall. This is illustrated in Figure 2

for the solution obtained for Reynolds stress with the 3f/dy = 0 boundary

condition. It is expected that cxcy should remain constant in the turbulent
zone between the plates. As seen in this figure the deviation from a constant
value is approximately one per cent. Although in most cases this is quite
adequate in terms of accuracy, it was the non-constancy of the Reynolds Stress =~
as opposed to the absolube error - that was of some concern. The results for
the Chapman~Enskog boundary condition show a similar, but exaggerated, behavior
in that E;E; variled approximately fifteen percent across the turbulent zone of
the channel. Some of this variation is likely due to the model assumed for the
boundary condition; however, it was deemed important to reduce numerical errors
so that effects of physical modeling and numerical modeling could be more
clearly delineated.

Therefore, the possibility of employing a more accurate finite difference
form was investigated. If a function (¥, qy) is expanded in a Taylor series

about a point (yi, cc), one may write

2 3
e (2 1 (s 21 (¥ 5
fi—l,o' fi,O’ (ay>i,c Ay + ) <ay2>i’g (AY) - 3 ay3>i - (AY) + ...
D
and
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df L (3%f o 8 (33 3
£ =f, =2|(= (by) +=(—=) ()" ~z(—=) (@y)° +. ..
(ay i, 2 (ayz)i’c 6 (By3>i,c

for a constant spacing Ay. Eliminating the second derivative terms, there
results

3
_ of 2 (o f 3
l*fi.l,c - fi-z,c =30 "2 (ay)i O(AY) T3 (By?’)l G(AY) e
> 2

Solving for the first derivative gives

+
2 - Yio T Mo Tieps [ (2]

oy/

¥ 1,0 2fy

Thus, this backward difference scheme has a truncation error of order (Ay)2 as
compared to that of order (Ay) for the simple forward difference. A similar

form for a second order forward difference scheme can be developed, yielding

gg) _ ”fi+1,c Lo T 3fi,o + 0 [ (Ay)2]
oy i,o 20y

In the implicit finite difference scheme employed, the distribution
function and its derivative with respect to y are to be evaluated at the same
grid point. Consequently, the finite difference formulae shown above are more
appropriate than the usual central difference scheme.

A similar approach can be employed for deriving expressions for
(Bf/acy>_ . However, the spacing of discrete velociby points is necessarily
variablel;c; that efficient use of quadrature can be achieved. Therefore, it is
preferable to obtain a second order finite difference expression from a

Lagrange interpolation formulal6. This results in the following differences:
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(packward) (

(forward)

df ) (e = c5.9)
o = £, (15a)
ch i,o (cp = cc-l)(cc-2 - ¢g) T1,0-2

(e, =c_,)

<} =2

+ fi ,0=1
c

(egoq = o) (egog = )

2cc - cc-l - cq_2

+ i’o'
(cc - 00-2)(00-00-1)

v o [(ne,) ]

(ai> - " " g (15p)

dc /.
v 1,0 (ey = cc+1)<cc = %

(cc - cc+2)

+ £,
(coup = o) (Couy = Coup) "1,041

(e.=c_ )
+ o g+l £

1,042

(eg1pm%) (Caip™ Go41)

v 0 [(ae,)]



As a consequence of the two-stream nature of the distribution functions,
the choice of the difference scheme (either forward or backward) is readily
prescribed. For the "positive" stream (cc > 0), the computations should proceed
from + ® (where boundary conditions with respect to velocity space are known)
to zero and from the lower boundary point (where conditions with respect. to
physical space are known) to the upper boundary. Thus, the forward difference
in velocity space and the backward difference in physical space are employed.
For the "negative” stream (cc < 0) the reverse is true. There, the integration
proceeds from - ® to 0 in c:_y and from upper boundary to lower boundary in Y.
Thus, the backward difference in velocibty space and the forward difference in
physical space are utilized., When these forms are substibtuted for the deriva-
tive terms in Eqs. (9), a set of difference equations for the reduced distri-
bution functions is obtained. These equations are given in detail in

Appendix B.

Tterative Schenme

The resulting equations must be solved by an iteration process since they
contain terms which depend upon the macroscopic properties. Therefore, initial
guesses are made for u, U, and € (an initial profile for Reynolds stress is
not required). The equations for the "positive stream" are then solved from
the boundary point up to the centerline, symmetry conditions are applied, and
the "negative stream" is then computed from cenmterline to boundary point.

This completes one iteration and yields the approximation to the reduced distri-
bution functions. From these, new profiles for the macroscopic quantities are
found and stored for use in the second iteration. If integral constraints are
required at the boundary point, these are imposed before the second iteration is
begun. These will be discussed in the next section.

This iterative process continues until satisfactory convergence is obtained

for the macroscopic properties.

Constraints at Boundary

The form of the distribution at the boundary point dictates the constraints

which must be applied.
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Zero Gradient Boundary Condition. In employing the boundary condition found

from setting Of/dy = 0, it is necessary to specify U and wu, (hence, the
value of the wall shear stress). This is the value of u, ‘that would result
if the mean velocity were logarithmic between the plates. Equations (11) are
then solved, subject to these constraints, to give the boundary conditions on
g, Js h. These conditions are then fixed for all iterations. The values of
u and du/dy at the boundary point are determined from the law of the wall,

utilizing the assumed value of Uy .

Chapman-Enskog Boundary Conditions. As discussed ,the Chapman-Enskog form of

the distribution function may be used as a boundary condition on the positive
stream. With this form it is possible to deduce the value of wall shear from
the solution to the equations, rather than requiring an a priori assumption on

u This is achieved by applying appropriate integral constraints upon the

%
outgoing and incoming streams at the boundary point. If the Chapman-Enskog

forms are written for the reduced distribution functions, there results

LY 6 Re*f]s % c, l: ? (H + °32r @) - 5G] (16a)
v c du
j(l) 3 ‘EeT: __U% = ¢ (16b)
(1) ? gl
T au
h =0 - Re*U3 cy 557[( 5% H+ 8 U Gg) - BHJ (16c)
j‘(rl) _ J(l) + g(l) (164)
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Using these equations as boundary conditions on the oubgoing or positive stream
at the lower boundary point, the first iteration may begin once initial guesses
are posed for the macroscoplc quantities, Then, upon marching back from the
centerline of symmetry, certain quantities must be re-evaluated before the

second iteration can proceed. These are

U
v
Re, U0 W
and
T oa o
Re, dy Xy

v
CyCy e, ay 1.0 (172)
[e=] (o) w
+
de_ = J “de_ + j‘ de = 1.0 1
.[ g dey g dey g deg (170)
-0 o o] o
(== o o
e Ic de_ = J Tde, + J‘ T a 0 (17¢)
e = c = e =
g v g v Cy g Cy_ Cy g v Tc
-0 - Ie)

The first of these states that the Reynolds stress at the boundary point is
equal to the wall shear stress (the viscous stress could be included in this

equation and, in fact, several calculations have been performed over the course
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of the study in which this has been done). The second condition states that the
probability of finding a fluid element with velocity between - and += is
unity, while the third requires that the time average of the fluctuating
vertical velocity component be zero.

If the Chapman~Enskog forms of Egs. (16) are substituted into Eqs. (I7b,c),

there results

v — (0.5 = c.)
s o ——— (188)
Re U &y

and
U=-~-,2n e, (18b)
where
o
c:L = g dec
and

[¢]
]

]
c -dc .
2 I yg Y

-0

The latter two integrals are computed numerically at the end of each iteration,
based upon the current iterate for the g- (or incoming stream) distribution.
Thus, parameters in the outgoing stream may be readjusted at each iteration to
conform with the imposed constraints. The value for wu, , and hence wall

shear stress, 1s obtained by requiring that the computed value of u at the
boundary point fit the logarithmic relation for law of the wall,
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It is emphasized that this is the only point, under this Chapman-Enskog scheme
for boundary conditions, at which law of the wall is assumed to hold; and this
is implemented only to avoid using the statistical model for turbulence within
the region where viscous stresses are comparable to or larger than Reynolds

stresses.



RESULTS

A1l calculatbions reported here for the present study were made at a Reynolds

number (Re = uwd/v) of 17,000.

Zero-Gradient Boundary Condition

The motivation for deriving this boundary condition and applying it to the
Couette flow problem was twofold. First, it was important to determine whether,
under appropriate assumptions, the statistical model equation could reproduce a
turbulent flow within which the mean velocity varied logarithmically and the
Reynolds stress remained constant. Since it is known from experiments that such
a region exists near the wall for many turbulent flows, the capability of the
model to recover this result is a logical first test of its validity. Second,
it was expected that such a boundary condition might potentially be applied to
more general situations than the Couette flow due to, as mentioned above, the
existence of a limited logarithmic region for mamy boundary layer flows.

So that the expression for € in the statistical model equation is con-
sistent with the law of the wall in the logarithmic region, the production is

set equal to the dissipation, g:i.vingl7

e = 0.7968 Uy (19)

The zero gradient boundary conditions obtained from the numerical solution
to Egs. (11) and the eguation for € , Eq. (19), were applied to the equations
for Couette flow, Egs. (9). The numerical scheme was that of second order finite
differences derived In the previous section. An initial guess for mean velocity
which corresponded to the law of the wall variation was assumed, and the iterative
process was begun. Constants in the logarithmic mean velocity profile were taken
as # =0,b1 and B = 5.017. After 45 iterations, the mean velocity profile had
converged to and remained within 0.05 percent of the logarithmic profile; and the
dimensionless Reynolds stress was constant to three significant digits at - 0.992
(exact value is ~ 1.0). The numerical procedure has been shown to give a unique
solution for different’ initial guesses for the velocity profile. For example,
in one case the logarithmic profile was used as an Initial guess and in another
a linear profile for mean velocity was employed. The converged results agreed

for both examples.
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Solutions obtained using +the zero gradient boundary condition have clearly
demonstrated that the Iundgren's model equation is a reasonable one and have
given encouragement that accurabe results may be obtained from such a statistical
approach. Further, it is believed that these results have demonstrated the
numerical accuracy of the discrete ordinate and difference schemes presently

employed.

Chapman-~Enskog Boundary Condition

Although it is established that a logarithmic region exists near the wall
for many boundary layer flows, this does not imply that such a region will
extend across the entire field for the Couette flow case. In fact, experimental
data indicate that such may not be the situation12’13. Although Johnson's 18
data for Couette flow can be made to fit the law of the wall if » = 0.4115
and B = 5.6, the fact that these "constants" may not fit other experimental data
indicates a lack of rigor in specifying a unique result. Furthermore, Reichardt'sl3
data for mean velocity do not fit a logarithmic variation very well for any pair
of these constants.,

If the experimental value of Uy quoted by Reichardt is employed and
reasonable values of # and B are assumed, the logarithmic velocity profile
does not pass through zero at the centerline and does not fit the experimental
data well. On the other hand, by selecting a rather large value of B (7.456)
the logarithmic profile can be made to satisfy zero velocity at the centerline, but
this does not follow the experimental data elsewhere.

The Chapman-Enskog form of the distribution function for the outgoing
stream was employed as a boundary condition in a seriles of calculations. The
first results reported here were obtained with the first order difference scheme.
Calculations utilizing the improved second order scheme are currently in pro-
gress and some results will be given. The major difference obtained by using
these two numerical methods is improved accuracy near the boundary with the
second order technique. Numerical solutions have been calculated using both
the algebraic (BEq. (9e)) and differential (Eq. (9f)) equations for the dissipa-
tion € . In all cases reported, the solutions were unigque and convergent.

This was tested by employing different initial profiles, various grid spacings,

and different boundary point locations.
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Figure 3 illustrates the results for mean velocity. The experimental
data of Reichardt are plotted for comparison. The logarithmic profile corre=-
sponding to # =041l and B = 5.0 is also shown. Both of the solutions
using the statistical model equation fall very near to the experimental data.

The case for € ~ U3/y is particularly close. Some differences can be observed
between the solution obtained assuming that dissipation equals production and
that found when the differential equation for € is utilized. These differences
are relatively minor. Chung's solutionsl6 are also plotted for comparative
purposes. The ratio of friction velocity to plate velocity quoted by Reichardt

was

[=}

*

- = 0.0425  (Re = 17,000)

B

while the calculated values were

uw

-uf = 0,04487 (Using Eq. (9e) for € ; Re = 17,000)
and

Uy

- 0.0467  (Using Eq. (9f) for € ; Re = 17,000)

W

Chung's calculated values6 were 0.03284 (Re = 36,000) and 0.0405 (Re = 9,810).
Results for Reynolds stress are given in Figure L. The experimental
data.l3’18 are shown for comparison. The calculated results show a variable
Reynolds stress which decreases near the wall boundary. The decrease is not a
consequence of increasing viscous stress but rather is a result of some numerical
error with the first order scheme and of modelling the boundary condition using
the Chapman~Enskog form. Despite this variation, the calculated results are
within * 15 per cent of the experimental values. Experience with the second
order difference scheme shows substantial improvement in the Reynolds stress

profile near the wall. Again, Chung's resu.lts6 are shown for compardison.
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The profiles for kinetic energy are given in Figure 5. There is very
little difference between the results for the two models for € , and both
profiles show a slight decrease in turbulence kinetic energy as the wall
boundary point is approached.

An interesting aspect of the statistical approach to turbulence is that
the digtribution functions may be calculated. This may offer insight into
turbulence mechanisms and aid turbulence modeling. Figure 6 illustrates the
g distribution employed as a boundary condition for both the zero gradient and
Chapman-Enskog cases, while Figure 7 shows a similar graph for j. (It is
emphasized that only the outgoing stream is modeled with these functions). The
Chapman~Enskog distributions are somewhat broader than those for df/3y = O.

This is particularly noticeable for the J distribution function. It should
be pointed out again that a Gaussian distribution would lead to j =0 for all
cy and to a zero value of Reynolds stress. It should also be pointed out

here that the Chapman-Enskog distribution does not satisfy the governing differ-
ential equation at the boundary. Therefore some gradients can be expected with
such an approach.

Figure 8 shows results for g at several ¥y locations across the channel
for the Chapman~Enskog boundary condition case. The two~stream nature of the
distribution function when employing this boundary condition is clearly evident.
Near the wall (y = 0.125) there is a noticeable discontinuity in g at cy = 0.
This discontinuity gradually decreases as ¥y increases. This is a conseguence
of the influence of the relaxation term in the governing equation. Physically,
the fluid elements are interacting to smooth out the distribution function.

Recently obtained results employing the Chapmen-Enskog boundary condition,
the differential equation model for € , and the second order difference scheme
are shown in Figures 9 through 13. Figure 9 illustrates the results for the mean
velocity profile and compares these with Reichardt's experimental data. The
comparison is quite favorable. The Reynolds stress is given in Figure 10. It
can be seen that, although the calculations do not give a flat profile, the sharp
decline in ?}E near the wall experienced with the firgst order scheme is sub~
stantially reduced by employing the second -order difference form. The calculated
value for u*/uW is 0.0bl377 , compared with the value of 0.0425 deduced from
Reichardt's data. The turbulence kinetic energy, shown in Figure 11, is also
reasonably constant across the channel. Figure 12 illustrates the results obtained

29



for € from Equations (9e) and (9f). The two solubions compare quite well.
This indicates that the algebraic expression for € , Eq. (9e), is very good for
Couette flow.

Another interesting feature of the present approach is that it is also
possible to compute the contribution of the y-component of velocity fluctuations
to the turbulence kinetic energy. This contribution, as shown in Figure 13, is
almost constant except for a slight variation near the boundary point. In
regions away from the boundary point, the solution obtained shows that ;3- is
about 89 per cemnt of U2 In this region, as seen from Figure 8, the distribu-
tion function, g , does not vary with Y. For such cases, it can be shown from

Equation (9a) that

ol «<®n]

= (3}{31: 2> ‘

For the value of K used in this region, this ratio is about 0.89. This ratio,
however, is quite different from the isotropic value. Thus, the results obtained

with the Improved difference scheme are quite encouraging.
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CONCLUSIONS

The present study has accomplished the following:

(i) A convergent numerical scheme employing a
combination of the discrete ordinate method and
finite differences has been developed for solving
the one~-dimensional form of Lundgren's model

equation for turbulence.

(ii) Physically realistic boundary conditions for the
distribution function and models for the turbulence

dissipation rate have been examined.

(iii) Iundgren'’s equation has been proven to yield rea-
sonable results for mean velocity, Reynolds stress,
and turbulence kinetic energy for the case of simple
Couette flow.

Thus, it is believed that this research has ylelded important contributions to
the understanding and modelling of turbulent flowsj; and further, that the
knowledge gained provides a basis for additional studies in fundamental aspects
of turbulence.

The comparisons of theory and experiment reported here indicate that the
statistical approach taken by Lundgren provides an accurate description of a
simple case of wall-bounded turbulence -~ Couette flow with no pressure gradient.
However, there are only limited experimental data available for comparison. An
appropriate extension of the present work would be to consider the case of
channel flow, for which more extensive measurements are published. One of the
primary areas of study should be the use of such data to better model the
boundary conditions for the distribution function. Further refinements in the
statistical model itself should be considered if comparisons of theoretical and
experimental results indicate difficulties with the basic BGK-type approach
used by Lundgren. Based on the experience with Couette flow, numerical solu-

tions should be relatively straightforward and inexpensive (in terms of computer
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time) for one~-dimensional problems which include pressure gradient and
chemical reacﬁions.

Computation time to achieve a converged solution for the zero-gradient
boundary condition was about 12 minutes on a UNIVAC 1108. For the Chapman-
Enskog boundary condition, total computation time varied from 25 to 50 minutes,
depending on the choice of initial profiles.

Although the numerical techniques would be more complex and time-consuming,
certain simple two-dimensional problems could also be attacked using the model
equation and solution method employed in the present research. Examples of
this are free shear layers and boundary layer flows. However, it is thought
that the real value in employing the statistical approach to turbulent flows
examined here is in furthering basic understanding, as opposed to developing

a practical computational tool.
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APPENDIX A

The governing differential equations, Egs. (9), contain terms which are
defined as moments of the distribution functions. Since these moments are
obtained as integrals over velocity space, as shown in Egs. (8), it is
convenient to discretize the velocity variable. The set of discrete velocity
points selected is denoted by {cc} , and a continuous function, say
g(y, cy), is replaced by a set of functions gG(Y)a c=1,2. .., 8. This
procedure is applied for each of the dependent variables. To evaluate the
required moments, numerical quadratures employing appropriate weighting

functions may be used. These are of the form

® S
[9) ot e a = ) 8lep) gy Wy (a-1)
—© ag=1

where ¢ is a function of cy , and W& are the weights in the gquadrature.

The specific values for the discrete ordinates, Cq > depend upon the
quadrature selected. In the present study an eleven-point closed-type
Newton~Cotes quadrature is employed for integration. This quadrature requires
equally spaced points in the interval of integration. To reduce the computing
time, the interval of Integration is divided into many sub-intervals and
appropriate spacings are chosen in each sub-interval.

After some numerical experimentation, a total of L4O discrete velocity
points were utilized to insure sufficlent accuracy in the integrations.

When discrete ordinates are employed, the governing equation (9a), then

becomes a system of differential equations of the form

o w i (G w5 g e () (a-2)
y o
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where ¢ =1,2, « « « 5, S. TIn this systen, 8y is a function of y only,
and it represents the fumction g(y, cy) evaluated at the discrete velocity
point cy = Cge In ghe numerical procedure used to solve the set of equations
(A-2), the term (3%)0 is replaced by a Ffinite difference approximation as

described in Appendix B. Thus, the governing partial differential equation,
Eq. (9a) is approximated by a set of ordinary differential equations of the
form shown in Eq. (A=2). A similar set of equations is obtained for each of
the reduced distribution functions. These sets are then solved for the various
discretized functions, and the results are used in the numerical quadratures

representing integrations over velocity space (Eq. (A-1)).
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APPENDIX B

The non-dimensionalized governing equations for the reduced distribution

funetions are

dg _ 1 € g
o B0 ey -
3 _1(.. . 1 du
Sy S?F'T(J J)+(Re* a2 k"% a/ 8 (5-2)
€ 93
+ —c
3f ¥ O
2
3h _ 1 1 du du \ .
ey SJ"F(H'@J"?(E é;z"Pk'cyE)J (B-3)
< _n+o 2B
3U2 y‘acy>
and
Yy Sy T T \%v T 9y Rey, dyz-kg (B-k)
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Using the second-order finite difference schemes outlined in the

section NUMERICAL APPROACH, the Equations (B-1l) - (B-4) can be approximated
for each node (i,0) as shown below. The subscript "i" denotes the e point
in the physical space, ¥; » and the subscript "o" represents the discrete
velocity point Cqe

Finite-difference equations for "positive stream", (cc > 0) can be
obtained by using backward differences in physical space and forward differences
in velocity space. The reduced distribution functions for "positive stream"
are denoted by a superscript "+". Thus, Equation (B-1) can be written, for

c0>0, as

€ e.c
i + i‘c ( + o+ + 4+ + +
+ — g, + D. g. + D, g. + D, g. )
. €i,0 gu2 V1%i,0 T2 fiot 7 73 f1,04
where
+ _ (2 S = %o+1 " Ccr+2)
Dl =
C ccr+1)(cc - ccr+2)
(eg = e pn)
+ +
ot = o 42

(ccr+1 - ccy)(c0'+:|_ - c+2)
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and

+ (eg = Coyr)

(egip = Co)(egup = Coug)

c
+ i, o ( c) ( + 1 -+ )

= L — - = -
gi,c { T Ay 2 gi-l,cr 2 gi-z,c (B-5)

€.c

i’g ( + + + o+ )}

+ D +
2 V2 Bion D3 85 g+

1

VE - T I
2 T > 5 Cy D
Ay 3Ui 3Ui

Similar expressions for positive stream can be derived for the other reduced
distribution functions.

Finite~difference equations for "negative stream"”, (co_ < 0) could be
derived by using forward differences in physical and backwarddifferences in
velocity space. Equation (B-1l) can then be written for "negative stream",

ey < 0) indicated by a superscript "-", as
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c

b gt -

€. €
P

304

+

i

where
Dl =
D2 =
and
D- =
3

G, c
Go- (%2
-9 g (69)
€,
!
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80,0 3gi,c> a Gi0 ™ &

i

. _+t——=o=c (D' g, + D) g. +
2 8,0 qu.2 O N 1°1,0-2 " T2 P1,0-1

L

IR

oc~1

(egp = ¢ouy) (Gop = <5

(cc - cc-z)

(B-6)



Similar expressions for negative stream can be derived for the other reduced

distribution functions.

NASA-Langley, 1976 CR-2663
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