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INTRODUCTION

Photovoltaic effects which seem specifically connected with ferroelectricity have only a brief
history. Weak steady photocurrents in flux-grown single crystals were observed by Chynoweth (ref.
1) in the middle 1950s. These were seen in connection with studies of pyroelectricity and
polarization of surface layers in single crystals. A similar effect, observed by Brody and Michael p
Vrabel in 1968 (ref. 2), originated in pyroelectric surface regions of disordered ferroelectric ceramic ':

barium titanate. The photo-emf s were clearly related to a remanent polarization within these layers
exhibiting the same temperature dependence as this polarization. The emf s were considerably less
than IV.

A high-voltage effect was observed by Brody in polarized barium titanate ceramic in 1971 (ref.
3), and soon afterward in other polarized ferroelectric ceramics (ref. 4). The high emf was
proportional to the sample length. Such a phenomenon is usually called a high voltage — bulk .,
photovoltaic effect. High-voltage effects have been previously observed in ZnS single crystals by fc
Merz (ref. 5). A length dependent photo-emf also appears in evaporated polycrystalline films of
semiconductors in which the evaporation source was at an angle to the substrate. These are fairly
well known from the work of Pensak (ref. 6) and others.

The photovoltaic effect in ferroelectric ceramics is characterized by a high photo-emf parallel
to remanent polarization and proportional to its magnitude. The emf is proportional to sample
length in the direction of polarization, and generally to the number of grains per unit length. A r

rectangular slab with electrodes on opposing edges, such as that shown in figure 1, uniformly and t

steadily illuminated on its unobscured face, appears as a source comprised of an intensity-saturable
emf in series with a photoresistance. For saturation intensities there appears a steady short-circuit
current depending linearly on intensity. The current also depends strongly on the wavelength
peaking sharply for light with energy in the vicinity of the band-gap energy. Typically in these
materials, this is the near ultraviolet or violet. The emf is also, but less strongly, dependent on
wavelength.

We have measured the short-circuit current and photo-emf for various ceramics including £
barium titanate, lead metaniobate, and lead titanate - lead zirconate solid solutions, these latter
with niobium, strontium and lanthanum additives. Results include emfs of 1500 V/cm in
centimeter-size samples of small-grain-size Pb(Zr 55,Ti 35)03 with 7 percent lead substituted for by
lanthanum — a hot pressed ceramic known as PLZT 7/65/35. In the ceramic Pb(Zr 53/11 47)03 plus
1 wt% rrt^Oj the saturation photo-emf is about 500 V/cm and the short-circuit current, for the
wavelength producing the peak current, is about 1 MA/cm/W/cm . This last material is the best
material that we have measured thus far in terms of energy conversion. A short-circuited sample
converts 0.06 percent of incident light to electrical energy. |J
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From the view point for energy conversion, such a number is discouraging. However, up to the
present we have done no material research and have used materials that are commercially produced
for their piezoelectric or electro-optical properties. There are undoubtedly ways to increase
efficiency. In this light it should be remembered that the efficiency of the first photocells using
cuprous oxide did not exceed 0.1 percent (ref. 7).

The experimental results will be described in greater detail, and completing this, a mechanism
for the effect will be proposed.

PHENOMENA

The steady voltage produced is proportional to the length, C, between the electrodes in an F
arrangement such as that shown in figure 1. Dividing the sample in two equal segments along a line
perpendicular to the direction of remanent polarization and placing new electrodes on the cut edges
results in new samples producing photo-emf s which are one-half the original photo-emf.

An arrangement such as that shown in figure 1 can be described roughly by an equivalent
circuit shown in figure 2. This circuit has a saturation photo-emf in series with the photoresistance
of the illuminated sample. The sample capacitance C is across the electrodes. Figure 3 is the
current-voltage characteristic of a typical illuminated ferroelectric slab. It has the form expected ff
from the equivalent circuit in figure 2, except for the slight tendency to saturation in the lower-left
quadrant. The photo-emf saturates as a function of intensity at relatively low levels of illumination.
The short-circuit photocurrent is, however, linear with light intensity. Typical results showing the
intensity dependence are shown in figure 4. The implication of these results and of the equivalent
circuit in figure 2 is that the photoresistance is inversely proportional to intensity.

Photo-emf s and short-circuit currents for a number of ferroelectric materials are shown in
table 1. The photo-emf is also a function of grain size. Results showing this are given in table 2. r

*„
The wavelength dependences of the photo-emf and photocurrent for Pb(Zr 53^47)63 + 1

wt% Nb20$ shown in figure 5, are typical of these materials. The current (ordinate) is that
produced by illumination contained in a small band, of about ±10 nm, about the wavelength
indicated on the abscissa. A mercury source and notch-type dichroic filters were used. The total
intensity within each band was only roughly constant. Therefore, the current that has been plotted
has been normalized to constant intensity - assuming that the relation between current and
intensity is linear.

The photo-emf is less strongly dependent on wavelength. Results for a particular material,
using notch-type dichroic filters are shown also in figure 5. These values are saturation values,
independent of intensity.

Similar results for the same material using dichroic, short wavelength cutoff filters are shown
in figure 6. Here it is seen that high emf s continue to be produced at wavelengths shorter and also
considerably longer than the 373-nm wavelength at which the short circuit current peaks. ,_
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In the arrangement shown in figure 1 the direction of polarization, and consequently the
direction of the photo-em f, is perpendicular to the direction of incidence of the light, which is also
the direction in which the light is strongly absorbed. The light only enters into a region near the
surface of the material. The rapidity of the absorption depends strongly on the wavelength of the
light, the light becoming fully absorbed in a region closer and closer to the surface as the wavelength
of the light approaches the band-gap wavelength. For shorter wavelengths, the light no longer enters
the material, and light-induced emf vanishes.

Polishing the surfaces of these materials increases the transparency by decreasing the amount
of diffuse reflection. Then, as expected, the magnitudes of the photocurrent and the photovoltaic
conversion efficiency increase.

An emf will also be produced by the arrangement shown in figure 7, in which the front surface
electrode is transparent. The emf now appears across the thickness of the material in the direction
of the remanent polarization. The currents, however, are limited by the high dark-resistance of the
unilluminated region of the sample.

MECHANISM

We now propose that the photo-emf results from the action of internal fields within individual
ceramic grains on non-equilibrium carriers generated by illumination. These carriers move to screen [!

the internal field. This is a change in charge distribution upon illumination, which changes the
voltage across a grain from an initial value of zero to the photovoltages that are observed.

The photo-emfs appear across individual ceramic grains. What is observed as a
length-dependent high photovoltage is the series sum of the photo-emf s appearing across grains,
each of which is characterized by a saturation remanent polarization. The situation is shown
schematically in figure 8. Individual grains are small, typically of the order of 10 pi in diameter. To
produce a high photovoltage-per-unit-length in the ceramic, the voltage across an individual grain
need not be large. For example, the results in table 2 for Pb( gsZr, 35^)63 (7% La) can be
explained by individual grain photovoltage of only about 0.5 V per grain. The implication of the
experimental results (table 2 and figure 5) is that for the range of grain sizes investigated, the
photo-emf across a grain is more or less independent of the size of the grain.

ORIGIN OF INTERNAL FIELDS

L
Ferroelectric ceramics are characterized by a large remanent polarization that would be

expected to produce a large emf even in the dark. Such an emf is not observed even across highly
insulating materials. This absence of an emf must be the result of space charge within the volume or
on the surface of the individual ceramic grains. The space charge produces a potential across a grain
cancelling the potential produced by the net polarization. It seems obvious that as long as there are,
within a grain, charges that are free to move, any potential produced by an internal polarization will
eventually vanish. ' ~
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In our argument this dark zero-potential state produced by the presence of space charge is
assumed to be the initial state of a ceramic grain. The absence of a net potential in the dark does
not however necessarily mean the absence of internal fields. Internal fields can be expected to exist
as a consequence of an extended but not uniform spatial distribution of the charges which bring the
net potentials across grains to zero. These spatial distributions cannot be arbitrarily assigned but are
subjected to constraints of a basic physical nature. \:

Were there no space charge producing a field negating the bound polarization charge, there
would be a potential across a grain. The electric field within this grain would, however, be well
above the dielectric breakdown strength of a real dielectric. For example, in a single-domain
ferroelectric crystal of barium titanate, the spontaneous polarization is Ps = 26 x 10~2C/m, and the
relative dielectric constant ef in the direction of polarization is 137. The maximum field in the
materials would not exist for long but be reduced to some value below the dielectric strength of the
material. The strong field would break down the material and a charge flow would produce a space p
charge distribution, resulting in a new lower value for the internal fields within the bulk of such a
crystal. The fields within the space charge layers themselves do not produce an additional
breakdown within the layers. The mean free path of the charges involved have now become larger
than the layer thickness itself, resulting in the elimination of the breakdown phenomena, an
avalanche process.

We assume that such a space-charge distribution exists within each grain. The space charge
serves to reduce the potential across each grain to zero. Such charges are assumed to have limited v
mobility and the materials behave as insulators for ordinary-strength applied fields. *

The space charge must occupy a finite volume. If these charges are localized near the surface of
the crystal, then an internal field E^ exists within the bulk of the material, and additional fields ES

exist in the space charge regions near the surface.

Reasons for hypothesizing that these space-charge regions are near the surface of real crystals
with the charge distributed within a surface layer of small thickness S. are the following. (First, the T

surface regions ferroelectric crystals are characterized by regions whose dielectric, ferroelectric, and ^_
thermodynamic properties differ markedly from that of the bulk and these differences are best
explained by the existence of strong fields in this region that would be produced by the space
charge. There is a considerable body of information in the literature supporting the existence and
delineating the properties of these layers (see, for example, ref. 8). Second, the interplay of space
charge and the very nonlinear dielectric constant of ferroelectrics would be expected to localize
space charge in a low dielectric-constant layer near the surface. In ferroelectrics unusually high,
low-field relative dielectric constants (of the order of 1000) can be expected to be reduced in value
with increasing field strength. Thus, charge in a region reduces the region's dielectric constant of K
that region, and increasing its field strength. This feedback mechanism can be shown to localize
charge within a layer (ref. 9).

A schematic description of a hypothetical grain, with space charge regions of thickness s, and a
bulk region of thickness £, is shown in figure 9. The grain has within the bulk region a dielectric
constant e^, and uniform remanent polarization PQ. Within the surface layers the dielectric constant,
es, is considerably less than that of the bulk. There are also remanent polarizations in the surface
regions Ps(x). These will generally be parallel to the bulk polarization at one end and anti-parallel at
the other end. It is the space charge that produces the high fields which reduce the highly nonlinear
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dielectric constant of the bulk to the lesser value ES in the surface layers, and also produce a
remanent polarization by ordering domains within the surface. The fields within the grain can be
easily calculated using the two-dimensional model shown in figure 10.

The remanent polarizations within the various regions are assumed to be uniform within these
regions. This is done to simplify the calculations. Again, only for simplicity, the polarizations in the ,.
surface layers and the bulk are assumed equal in magnitude (that is, PS(X) = Po). The space-charge
densities ±nQe are also assumed uniform and equal in magnitude. The polarizations are equivalent to
four bound-surface charge densities,

°l = Po> °2 = -2Po °3 = ° °4 = Po

From Gauss's law, the electric fields are

Ei = r-(po + noex>> (i)es

E2 = -L (-PQ + n0es) , (2)
eb

E3 = -L [-P0 + n0e(L-x)] (3)
es

We have assumed that the voltage across the crystal vanishes

K+2s

E(a) da = 0 (4)f

The variables no and s, from this and the three preceding equations, must be related by the
expression

po

1 e £es x

(5,

and the bulk field must be

E —E2 ~ -7T
(6)
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ORIGIN OF THE PHOTO-EMF

To obtain a photo-emf of the correct sign it is now assumed that illumination has the effect of
producing charges that screen only the internal field, E^, causing it to.vanish. The negative voltage
vanishes and a positive potential appears across the sample. The light makes the sample look more
positive. This is exactly what happens using the conventions of figure 10, as the result of a p
thermally produced decrease in polarization of the bulk. The pyroelectric voltage is in the same
direction as the photovoltage. This is what is actually observed.

Thus, light-generated free electrons, produced only within the bulk, set up a counter-field that
tends to cancel the bulk field, £2, producing a voltage drop across the bulk that is less than would
occur in a completely insulating medium; this is what is meant by the term screening. At
sufficiently high intensities the counter-field approaches the bulk-field. Assuming the shielding
occurs only in the bulk, the total voltage across the grain is now the sum of the voltage across the —
surface layers, which are equal but opposite in sign to that initially across the bulk. T

Surface layers in barium titanate ceramic grains have been estimated at 10~" cm (ref. 8). The
remanent polarization typical of the ceramic material is about 8 x 10~^ C/m , the relative dielectric
constant of the poled ceramic is about 1300. We will estimate that the high-field dielectric constant
is roughly one half the bulk dielectric constant. From equation (6) the bulk-field, for a typical 10~^
cm grain is,

E2 = -0.35 V £

The saturation photo-emf would thus be 350 V/cm, or at least of that order of magnitude.

The potential across the surface layer is

S rs

/ EI dx + / £2 dx = (nQes) s
o o f

The saturation photo-emf and the polarization are therefore related linearly in the model, as is
experimentally observed.

It should be noted that, as the temperature increases, not only is PQ decreasing, but the
dielectric constant, es, is undoubtedly increasing. The saturation photo-emf might therefore be
expected to decrease with temperature more rapidly than the remanent polarization. Such a
behavior has been observed in BaTiOj + 5wt% CaTiOj ceramic (ref. 4). F

CONCLUDING REMARKS

Summarized, our suggestion is that the emfs (and currents) arise from the presence of
photoconductor-insulator sandwiches in the presence of space-charge-produced internal fields. The
experimental results are in general agreement with the theory. Nevertheless, the model remains so *'
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over-simplified that the possibility of the agreement being fortuitous is a reasonable one. Quite
different explanations for high photo-emf s in ferroelectrics have been propounded by Johnson (ref.
10) and others in connection with studies of light-induced refractive index changes in
lithium-niobate single crystals.

The experimental results are significant, however, when taken alone. They suggest a general „
phenomenon in ferroelectric ceramics, significant in magnitude and with unique characteristics. We .
not only have a consistent producer of high-voltage photoelectricity but a photo-battery, the
polarity and magnitude of which can be switched by application of an electrical signal. It is also a
phenomenon involving cheap polycrystalline materials. Certainly it warrants further investigation,
especially from a materials point of view.

Acknowledgements — I would like to thank Frank Crowne and Harold Watkins of the Harry
Diamond Laboratories who contributed in essential ways to this paper.
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TABLE 1. - PHOTOVOLTAIC OUTPUTS AT WAVELENGTHS
PRODUCING MAXIMUM SHORT CIRCUIT CURRENTS

Material

BaTiO3 + 5wt% CaTiO3

PLZT 7/65/35, polished

PLZT 8/65/35, polished

Pb(Zr 53Ti 47) + lwt% Nb2O5,

unpoh'shed

Pb(Zr 53Ti 47) + lwt% Nb2O5,

polished

Illumination
wavelength, nm

403

382

382

• 373

373

Photo-emf,
V/cm

360

1500

750

420

510

Photocurrent,
AiA/cm/W/cm2

0.020

0.030

0.015

0.63

1.0
I?

TABLE 2. PHOTO-emf FOR DIFFERENT GRAIN SIZE
(The material is PLZT 8/65/35.)

Grain size, n

2-4 ".;

3-5

4-6 :'

greater than 6

Photo-emf,
V

750

510

330

250
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Figure 1.— Schematic of an illuminated sample.

Figure 2.— The equivalent circuit of an illuminated
sample. C is the sample capacitance.

Intensity -

Figure 4.— Intensity dependence of photo-emf and
photocurrent for a typical material.

400 500 400 500
Wavelength, nm

Figure 5.— Spectral behavior of photocurrent and
photo-emf for Pb(Zr.5 3 Ti.4 7 X>3 + lwt%Nb2Os.

.02

i

- 2 - 1 0 1

Volnge (kV)
400 500 600 700 400 600 GOO 700

Short iWMlangth cutoff, nm Short wavetength cutoff.

Figure 3.— Current vs applied voltage for an illumi-
nated sample.

Figure 6.— Spectral dependence of photocurrent and
photo-emf for Pb(Zr.s 3 Ti.4 7 )03 + 1 wt% Nb2 Os.
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Figure 8.

Figure 9.- Structure of a grain.
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Figure 10.- 2-D model of a grain.
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DISCUSSION

Joe She, Colorado State University — Is there a phase transition temperature in these materials?

Philip Brody: Yes, the phase transition in barium titanate is at 120°. You have to operate below the phase transition i
which is at 465°C for the material which has the highest efficiency that I have examined so far. It drops linearly with
the temperature, but the current goes up. With the PZT materials I've gone up to 120°C and the power is not
dropping. That is, the current is going up with temperature while the voltage is going down.

Dick Stirn, J. P. L. — From the last slide, are you interpreting the high voltage as from one grain of material rather
than a series effect?

Philip Brody: Well, the voltage appears across a grain but the high voltage is a series effect. Each grain only has
about one-half volt across it. I've also looked at single crystal barium titanate and seen the order of one volt. . f
However, I've just gotten some recent measurements in lead niobate which are producing about forty volts per •
centimeter in a true bulk effect.

Dick Stim, J. P. L. - You recognize, of course, that the large series resistance of these materials will limit their
usefulness for power conversion; even one tenth of an ohm will be a problem.

Philip Brody: Right, although it has not yet been examined at high laser intensities. Perhaps it will blow up before
high currents are achieved. However, this is a new phenomena and it needs investigation. It seems that it would find
its greatest use in production of high voltages at somewhat reduced powers. |

Ned Rasor, Rasor Associates — I assume that you haven't made any estimates or projections of the energy
conversion efficiency.

Philip Brody: I did the simplest thing you could do. I said what is the photon energy and how many volts is the
electron dropping and it comes to 20 to 30 percent.

Ned Rasor, Rasor Associates — The problem comes, of course, whether you can deliver that at one volt and with a
reasonable current density. My thought is that perhaps this device could operate in a periodic discharge mode. Since J

the capacitance is too great, what you are looking at is merely the sort of leakage, whereas if you charged and *"~
discharged on a periodic basis you could perhaps get around the impedance problem.

Philip Brody: Yes, that's true. We operate in the static or dc mode to separate this effect from pryolytic effects,
however you could go in a charge-discharge mode to achieve large currents. The efficiency would not increase,
however.

Max Garbuny, Westinghouse - Have you tried a Q-switched laser pulse on these materials?

Philip Brody: No, we have been so short of money that even the cost of $2000 to replace a laser tube right now is
holding up the research. In the future we hope to be able to.
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