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ABSTRACT

Three kinds of astrogeodetic geoid maps for Japan are presented: one referred

to the global (18,18) geoid of the 1973 Smithsonian Standard Earth (III) (SE III), one

referred to the best-fitting ellipsoid of SE III, and one referred to the reference
ellipsoid of the Tokyo datum. Interpolations of the deflection of the vertical are

carried out by a least-squares estimation method. The geoid-height differences
obtained are compared with solutions of satellite-derived station positions. Good
agreement is found in a comparison with doppler-tracking stations.
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ASTROGEODETIC GEOID OF JAPAN

Yasuhiro Ganekot

1. INTRODUCTION

There are several ways of obtaining the geoid undulation. One is through a
satellite-derived geoid, which is limited to long-wavelength components owing to the
inherent inaccuracies of satellite tracking. Another is the gravimetric geoid, com-
puted by applying Stokes formula to surface-gravity data. This method, however,
requires gravity values covering the whole surface of the earth, and such dense
coverage is currently difficult to obtain.

When a detailed and relative geoid is to be determined in a restricted area and
when there are sufficient data in that area, the astrogeodetic geoid is practical to
obtain, in that it does not need worldwide data. Even though observations of the
deflection of the vertical are time-consuming, the astrogeodetic geoid is valuable
because interpolation is possible if suitable amounts of vertical-deflection observa-
tions exist.

This work was supported in part by Grant NGR 09-015-002 from the National
Aeronautics and Space Administration.

tVisiting Scientist, Smithsonian Astrophysical Observatory, October 1974 through
October 1975. Currently in the Hydrographic Department, Maritime Safety Agency,
Tokyo.
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2. ASTROGEODETIC GEOID

The difference in geoid height between astrogeodetic stations is computed from
Helmert's formula

i+1

Ni+1-Ni=- I QcosA+71sinA)ds	 (1)
.	 i

where Ni is the geoid height of the ith station; t and 77 are the vertical-deflection
components in the meridian and prime vertical, respectively; and A is the azimuth
of the direction of the ith station to the (i + 1)th station.

The current method of interpolating the deflection of the vertical needs dense
gravity measurements around the astrogeodetic stations. Another possibility of
interpolation, when the vertical-deflection stations are sufficiently dense, uses least-
squares estimation (Heiskanen and Moritz, 1967). Least-squares methods also
provide an estimate of accuracy. The number of vertical-deflection observations
that have been made in Japan since 1886 is more than 450. This distribution is suffi-
ciently dense for most areas in Japan.

To find the accuracy of an estimate of the deflection, let the vector V be

V =(D

Assuming that the vertical deflection at point p, V p, can be estimated by the linear
combination of observed values, V i, we can write

Vp = E api Vi ,	 (2)

i
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where api are scalar coefficients. This means we can neglect the correlation between
and n. The difference between the correct value at p and the estimated one is the

error of estimation:

E  = V  - p = V  -rapi Vii
By squaring, we get

T

Ep = (VP	
pi Vi p -Eapi vi

(t'+rip) - 2 L/ api QPti + IP,7i) +,E apiapj Qitj + 17i?lj)	 (3)

From equation (3), the root-mean-square error of the estimation, mp, is given by

m2 = CPp + CPP 2	 a . (C p' + Cpl +	 a a	 Cij + Clj 	 (4)P	 tt	 ^^	 Pi 	 rl	 Pi Pi	 4t	 yin)
i	 ij

where CAB and C, B are covariance functions of the vertical-deflection components
and 17 , respectively. These covariance functions depend on distance and direction.

Using the expression

G =CAB + CAB
AB t t	 rm

we can write

mp = G
PP - 2
	

api Gpi +
'E 

aPiapj Gij	 (5)

	

i	 ij

=

4



am2
am = 0pi

or

rKuaPiGij= Gpi ,	 i= 1 1 2,...,K ,	 (6)

J=1

where K is the number of observations used for the estimation. Expression (6) is a
system of linear equations with K unla,owns, apj . By use of matrix notation, equa-
tion (6) can be written as

U _CLp = P ,
(7)

ap =G-1Gp

where

apl	 Gpl	 G11 G 12	 G 1

apt	 Gp2	 G21 G22

ap = 	, 	 Gp=	 ,	 G=

apK	 GPK	
GK 1	

GKK

The standard error of least-squares estimation is given by

mp = Gpp - (Gp G -1 Gp)	 (8)

5
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3. COVARIANCE FUNCTION GAB

The observed deflection of the vertical includes both the systematic datum shift
and the deflection included in the global geoid. To obtain the detailed local geoid by
meam of a covariance function, these two components should be eliminated.

For the datum shift, we introduce the translation values Ax, Ay, and oz of the
geodetic datum, determined by satellite tracking. According to the 1973 Smithsonian

Standard Earth (III) (SE III) (Gaposchkin, 1973, 15 '4), these values for the Tokyo
datum arc

Ax = -136 m

4,=+521m
	

(9)

i1z = +681 m

By adding these values to the station coordinates on the Tokyo datum and neglecting
the geoid height and possible datum rotation, the new three-dimensional geocentric

coordinates become

x'=(N+h)cos^cosX+Ax
yl= (N+h)cososinX+Ay

z' _[(ha) 
2 

N + h sin o + 4z

where 0 and a are on the Tokyo datum and h is the mean-sea-level height; N is given
by

N=	
a
2

(a2 cos2 0 + b2 sin 2 0) 1 2

b=all-f) ,

a= 6377397.2 m

f = 1/299.1528

pRCIDIINQ PAGE &AM	 7
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in which a and f are the parameters of the reference ellipsoid of the Tokyo datum.
The coordinates x', y', and z' can be converted to the geocentric q', V, h' system
throug `.he inverse transformation of

X 1 = (N' + h') cogs ^' cos a' ,

Y '= (N'+ h') cos ^' sin A'

Z? = [(ha)
2
 N' + h'] sin,J

b' = a' (1 - f')
a,2

N' =
(a12 coo 2^' + b'2 sin2 ^,) 1 2

for which the ellipsoid parameters

a'= 6378140 m
fl = 1/298.256

are those of the best-fitting ellipsoid of the SE III solution. We can calculate the com-
ponents of the deflection caused by datum shifts from the differences between the datum
coordinates (0, X) and the geocentric ones (40 1, X'):

C
At	 0-01
Aiq )=[

 coo (0 (k - X')	 (10)

The components included in the global geoid are given by using the satellite-
derived geopotential of the earth. These are

1 aT

rr
	 - Rg0 4

1	 aT	 ,	 (11)
Rg0 cos 4

8



where Ts is the satellite-derived anmnalous geopotential, R is the mean radius of
the earth, and g0 is the .near value of gravity over the earth. From the SE III geo-
potential coefficients Cmn, Snm up through degree and order 18, plus the following
earth ' s cocistants,

a= 637 8140 m ,

f = 1/298.256 ,

GM = 3.986013 X 1020 cm  sec-2

w= 7.292115085X 10 -5 sec-1

the anomalous geopotential, frown a spherical approximation, is given by

18	 n

Ts - (!GVM) 	 (bCrun cos mX + Arun sin mA) PM
 (sin ^) ,

n=2 m=0

06C^=Cmn-00rim

SSmn = rim - SOmn = SW

Following the expressions of Caputo (1967), the normal geopotential coefficients

C OQ, 3°m are

Snm = 0

Cmmm = 0 ,	 when m * 0 or ii is odd

C0 = :.,L 
1 +	 81 K2	 1

21,0 21+1	 3(21+3)G.4(2-fl

_ -
	

£3 b3 w2 (1+ £2)
s2 	 2((3 + £2) tan-1 £ - 3£J

b= a(l-f) ,

1 = 112,...,

9



and

2£ 
= a—b2b

The residuals

	

^R 	 i;- ts - ot

	

^R	 17 - 77$ - 077
	 (12)

express the local variation of the geoid. These residuals were calculated for Japan,

by using the SE III geopotential for equation (11), at every station where vertical-

deflection observations were carried out from 1947 to 1973; there were 284 such

	

sites. The	 and the mean squares of the residuals are

( 4R ) = - 0."23 ,	 (t2 	 (7."58)2

(?'R) = + 1:'64 , 	 (^)	 2

The next step is to evaluate the covariance function G AB by using the vertical-

deflection residuals. When the anomaly correlation distance is small compared to the

radius of the earth and when the anomaly is statistically homogeneous, the following

relation exists between the gravity-anomaly correlation and the vertical-deflection

correlation (Shaw, Paul, and lienricson, 1969; Jordan, 1972):

Cs + C= 
2 

Cgg
g	

,
1

0
	 (13)

Bull--tin of the Geographical Survey Institute, Japan, vol. II, parts 2 and 3, 1951;
vol. III, parts 2 to 4, 1953; vol. N, parts 3 and 4, 1955; vol. V, part 4, 1958; vol. XVIII,
part 1, 1972; and unpublished.new data.

10
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where C 
9 

is the covariance function of the local gravity anomaly. If the gravity

anomaly is -! ,;otropic, then, from equation (13), GAB is a function of distance only.
By averaging C tt + C 

7 
in the azimuth, the covariance function G for Japan is well

represented by an analytical expression of the form (see Figure 1)

G(r) = ate-r/D
	

(14)

509-053

Figure 1. Covariance function C + C1777 = G.

where I = 55 km and or 2 = (11:'1) 2 . From equations (13) and (14), the covariance
function of the local gravity anomaly in Japan is obtained:

C99 (r)= cc g a-r/D

(15)
or  = (53 mgal)2

11



where a2 is the mean-square value of the local gravity anomaly. The above analytical
expression for Cgg (r) gives the following covariance functions (Shaw et al., 1969):

C = a2 [C99 
(r)

— - cos 2A fc(r)
v
g

C= vd ^) + cos 2A fc(r)
7171	 Q

g

C t^ = 
C71t

 _ - vd sin ZA fc(r)

where A is the azimuth measured clockwise from North,

fc(r)= r -
 Cl

+r +r le-r

21 2or = 2g2 ag
0

and r is measured by the unit D. The values obtained from vertical-deflection data
and the analytical model are shown in Figures 2a4 b, and c.

The absolute value of the computed normalized covariance of ^ and q barely
exceeds 0. 1. Therefore, it is considered suitable to neglect the correlation between
t and 71.

(16)

12
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Figure 2. Covariance functions: a) Cat/o • t. b) C 7777AF^. Solid lines are from the
theoretical model.
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Figure 2c. Correlation between t and 77.
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4. GEOID HEIGHT

Using Helmert's formula, [equations (1)] and the least-squares estimation method
[equations (2) and (7)] to interpolate the deflection of the vertical, wo can calculate
the relative local geoid referred to the SE III global geoid. The integration in equa-

tion (1) is replaced by the summation

N	 N
FF +

Ni+1 - N	
k+1i = -	 ^2	 S	 (17)

k

N
where S is chosen to be 10 km (see Figure 3), Ek is obtained from

cos A + ^Rk sin AEk = t^ 	 ,

and the estimated deflection of the vertical is obtained from equation (2).

NORTH

ith STATION

Figure 3. Geoid-height integration steps.

The observed stations covered a square 2° X 2° area around the estimated point.
The number of stations in each area varied between 20 and 40. Adding the old data
(Torso, 1949) brings to 450 the total number of vertical-deflection stations used to
calculate the local geoid for Japan, excluding the old data from the Hokkaido area.

PRWEDI NG PAGE BLANK NOW FLVA3	 15



In the Hokkaido area, data before 1947 were not used, because of inconsistencies
between the old and the new. Relative weights were not taken into consideration
because of the uncertain accuracy of the old data, even though the old data might
include large errors. The purpose of this paper, however, is to examine the effi-
ciency of the least-squares estimation method in interpolating vertical deflections.

16
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5. COMPARISON OF INTERPOLATION METHODS

The current method of interpolating vertical deflections is a gravimetric one, in
which dense gravity observations around astrogeodetic stations are required. A test
of gravimetric interpolation was carried out by Ono (1974) in a restricted area in Japan,
and geoid-height (quasi-geoid-height) differences were calculated between astro-
geodetic stations. Interpolations by means of least-squares estimation were also
made along the same route, shown in Figure 4, and the results are presented in
Figure 5. The geoid-height differences were transformed to those referred to the
best-fitting ellipsoid of SE M. The maximum difference in geoid height due to differ-
ent interpolation methods is 44 cm, and at the farthest point, numbered 263, the
difference is 16 em. These results would indicate that the least-squares estimation
method is one of the most effective ways to interpolate vertical deflections. With this
method, we can easily calculate the relative geoid height, without additional data,
over that area of Japan that is densely covered with astrogeodetic stations.

14000/
+	 +	 + 38030'

	

Q 263	 1

268

JAPAN V267

	

+ fi 266	 -4 37° 20'

60
PACIFIC
OCEAN

48

12660 km

	

262 +	 + 36 0 0' N
141° 0' E

Figure 4. Portions of the route of the two interpolation methods, astrogravimetric
and least-squares estimation. The astrogeodetic stations are indicated by
circles and are numbered.
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262	 126	 248	 60	 7.66	 267	 268	 263

	

36°00'N	 ASTROGEODETSC STA?'<>N NUMBER 	 38037 1 N
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Figure 5. Comparison of the two interpolation methods.
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6. GEOID MAPS FOR JAPAN

We examined the closing accuracy over Japan by dividing the country into test
loops, labeled A, B, etc. and shown in Figure 6. The absolute values of the closing
errors are also given in Figure 6. The closing errors are — 1 mat the most and
usually less than 1 m, and the average is 0.71 m.

CLOSING ERRORS	 (m) 4

A	 0.59 H
B	 1.05
C	 0.87
D	 0.60
E	 0.70
F	 0.26
G	 0.97 Iii,
H	 0.30 Fj/
I	 1.04

D

DIFFERENCES BETWEEN ADJUSTED

AND NONADJUSTED VALUES (m)

A
P-Q	 1.02
Q-R	 0.18

200 km

Figure 6. Loops used in the testing of closing accuracy.

To obtain the geoid undulation over Japan, series of loops of geoid profiles were
calculated and adjusted so that the loop closures became zero. The adjustments were
carried out by hand through trial and error until reasonable corrections could be found.
The density of the data and an estimate of the accuracy were taken into consideration

19



in the adjustment procedure. The length of each loop was between 200 and 500 Ian.

Some comparisons between adjusted and directly integrated geoid-height differences
[by use of equation (17)] are given in Table 1, and the locations of comparison points
and the routes of direct integration are shown in Figure 6 by broken lines. The
shaded portions in Figure 6 indicate where large corrections had to be added, in
mountainous and sparse-data regions. More vertical-deflection observations are
needed in these areas to achieve the same accuracy obtained from geoid-height
calculations.

Table 1. Comparison of adjusted and nonadjusted geoid-height differences.

Direct After Direct minus
Beginning point End point of integration net adjustment adjusted
of integration integration (m) (m) (m)

P Q

=	 33°30'N 35000' -1.98 -0.96 -1.02

A = 131°30 1 E 138000'

Q R

0 = 35°00'	 38000'

X = 138°00'	 141°00'	 +3.05	 +2.87	 +0.18

The local geoid for Japan, calculated from the reduced vertical deflections ^R

and r}R and referred to the SE III global geoid reproduced in Figure 7, is shown

in Figure 8. The geoid height at the datum point is taken to be zero. The contour
shapes are quite similar to those of the gravimetric geoid by Hagiwara (1967) (see
Figure 9), although there are large discrepancies in the contour values themselves.
These discrepancies, however, seem reasonable, given the fact that the gravimetric
geoid was calculated from gravity data in a restricted area. liagiwara's gravimetric
geoid may be considered representative of local variations of the geoid, perhaps
including large truncation errors (Hagiwara, 1970).

20
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at 20
	 25 30	 35 35

130	 140	 150	 160

Figure 7. SE III geoid through degree and order 18, f = 1/298.256 (in meters).

Adding the global geoid (Figure 7) to the local geoid (Figure 8), we have the
geoid referred to the SE III best-fitting ellipsoid; this is reproduced in Figure 10.
The geoid height at the datum point is again taken to be zero. The geoid referred to
the reference ellipsoid of the Tokyo datum can also be obtained through transforma-
tion by using translation values from equation (9) and ellipsoid parameters. This
type of geoid is shown in Figure 11. Fisher (1960) published the same kind of astro-
geodetic geoid for all of Japan except for Hokkaido and the southern part of Kyushu.
The geoid-height differences between hers and Figure 11 are as much as 3 m in some
areas.

50

40

30

20'N
120° E

21



a^

;w
M

7

a

Figure 8. Astrogeodetic geoid for Japan referred to the SE III geoid (in meters).
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Figure 9. Gravimetric geoid for Japan (Hagiwara, 1967). The contour interval is
0.5 m.
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Figure 10. Astrogeodetic geoid for Japan referred to the best-fitting ellipsoid,
a = 6378140 m, f = 1/298.256 (in meters).
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Astrogeodetic geoid for Japan referred to the reference ellipsoid (Bessel
ellipsoid) of the Tokyo datum (in maters).
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7. COMPARISON OF STATION COORDINATES
I

The geoid-height differences referred to the SE III best-fitting ellipsoid,

a= 6378140 m, f = 1/298.256, were compared with solutions derive.' from SE III and

from doppler observations (Anderle, 1974). The results are presented in Table 2.

Locations of the satellite-tracking stations are shown in Figure 12.

Table 2. Comparison with satellite-derived geoid heights.

Geoid-height differences

Astro-Height
Stations	 Distance geodetic	 SE III	 Doppler*	 discrepancy

(geoid height, m)	 (km)	 (m)	 (m)	 (m)	 (m)

Tokyo — Dodaira
(35.2)	 (38.3)	 48	 -3.1	 -3.1	 —	 0.0

(constrained)

Tokyo — Ka.noya
(35.2)	 (22.8)	 933	 -6.0	 -12.4	 —	 6.4

(partly
constrained)

Sasebo — Misawa
(30.3)	 (31.7)	 1334	 -2.3	 —	 -1.4	 0.9

Anderle (1974; private communication, 1975).

The geoid height of Kanoya, which is 22.8 m in the SE III solution, is somewhat

too low, considering the local geoid of Japan. The large discrepancy between the

_	 SE III and the astrogeodetic-geoid solutions seems to arise partly from the adopted

geoid height (-19 m) of Kanoya on the Tokyo datum in SE III, in contrast to the -12 m

determined in the astrogeodetic geoid.

PkiMING PAGE BLANK NOT M MM
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Figure 12. Locations of satellite-tracking stations. The satellite-derived geoid
heights (in meters) are shown below the station names.
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8. CONCLUSIONS

The efficiency of the least-squares estimation method in interpolating deflections

of the vertical has been shown. This method requires only vertical-deflection data.
When these data are dense enough — roughly speaking, more than 30 in a 2 ° X 2°
area — this method is one of the most effective ways of calculating geoid undulation.

The correlation distance of the local anomaly field in Japan is 55 km, and the
root-mean-square value of the deflection of the vertical of the local anomaly field

is 111.11.

Good agreement is found in the comparison of doppler results with the geoid
obtained here.
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