
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19760014844 2020-03-22T15:15:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42883695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA TECHNICAL	 NASA TM X-71908
MEMORANDUM

9
i`	(NASA-TM-%-71908) SOFTWARE HANDLERS FOR	 N76-21932X	 PROCESS INTERFACES (NASA) 15 p HC $3.50

CSCL 09B
Unclas	 -

H	 G3/61 21602
d
z

SOFTWARE HANDLERS FOR PROCESS INTERFACES

by Robert W. Bercaw
Lewis Research Center
Cleveland, Ohio 44125

TECHNICAL PAPER to be presented at
Symposium on Automatic Computation and Control
sponsored by the Institute of Electrical and Electronics
Engineers and Association for Computing Machinery
Milwaukee, Wisconsin, April 22-24, 1976

^f

i

3

SOFTWARE HANDLERS FOR PROCESS INTERFACES

Robert W. Bercaw
Lewis Research Center

ABSTRACT

Process interfaces have been developed in an effort to reduce the time,
effort, and money required to install computer systems. Probably the chief

F

	

	
obstacle to the achievement of these goals lies in the problem of developing
software handlers having the same degree of generality and modularity as the
hardware. The problem of combining the advantages of modular instrumenta-
tion with those of modern multitask operating systems has not been completely
solved, but there are a number of promising developments. This paper at-
tempts to illustrate the essential principles involved.0No

W	 INTRODUCTION

Numerous modular interfacing systems have been developed to eliminate
the custom interfacing problems in process I/O. These include both propri-
etary systems and non-proprietary systems such as the H- P ASCII bus (IEEE
488), the CAMAC Dataway (IEEE 583) and the CAMAC Serial Highway. In this
paper, I would like to review the problems and some of the solutions involved
in developing software handlers for such process interfaces. The discussion
will be mostly in terms of the CAMAC standard, but most of the principles
should be applicable to other systems.

The input-output structures of most modern software operating systems
have been engineered primarily to provide efficient and flexible support of
the standard computer peripherals such as disks, tapes, printers, etc. These
devices are usually quite complex and carry price tags which are comparable
to the other major components of the system. They are used intensely and
their performance factors usually are significant in determining the overall
performance of the total system. Consequently, it is standard practice to

p	 write a piece of highly specialized software, called a handler, for each periph-
04 eral installed in a system. The operating system is written in such a way that

2

these handlers can easily be added in a modular fashion.
Laboratory and process I/O devices usually are fairly simple, at least

in regard to their interaction with the data system, and they normally have
moderate use factors. It would therefore appear that the customary pro-
gramming methods would be quite adequate to serve all of their needs. The
problem lies in the large number of devices that may be required and in the
extreme variability that occurs from job to job in both the number and types
of devices that are required. The usual, handler per device, solution which
works so well when there is only a small number of infrequently changed de-
vices, becomes unwieldly and forces the writing of custom assembly language
I/O software for individual applications. The problem is compounded by the
presence of multiple hardware vendors and the "no man's land" status of the
software support. In a sense, the problems which exist in the software are the
same as the problems which prompted the development of process interfaces.

Because of the wide variety of applications for which process interfaces
are used, it is impossible to precisely state the software requirements.
Nevertheless, the following design goals are probably applicable to most sit-
uations:

1. The software should impose a minimal reduction in the generality of
the process interface.

2. It shoule provide time responses and data transfer rates comparable
to the speed of the hardware.

3. It should be compatible with multitask or other queued 1/0 operating
systems.

4. It should require a minimum of programmer training and effort to
use the handler in a particular application.

5. It should be accessible from Fortran,
6. It should possess minimal machine and interface dependence,

In addition, handlers for remote interfaces must be able to recover from
transmission errors and allocate the use of the communications facilities
amongst competing tasks.

t
04

3

SOFTWARE MODULARITY

The efforts of standards groups such as the Purdue Workshop have done
much to clarify the nature of process I/O. There are basically two methods
of organizing I/O through a process interface; by device or by address. The

ISA-S61. 1 standard FORTRAN calls are device oriented in that each call re-
fers to functional I/O such as analog input, contact sensing, momentary con-
tact closure, etc. An example is the subroutine which drives an analog digit-
izer in a random sequence:

CALL AIRD(LN, PAT, DATA, STATUS)

where: LN is the number of channels to be digitized, PAT is an array con-
taining the physical address table, DATA is an array in which the data is
placed, and STATUS is a word indicating the status of the transfer. The sub-
program AIRD is expected to locate the digitizing module within the process in-
terface and to issue the sequence of commands necessary to execute the call.

A more fundamental approach, based on the standardized interface struc-
ture, is taken by the CAMAC Software Working Group in defining their Fortran
callable subroutine:

CALL CCSA(F, ADDR, DATA, STATUS)

transfers a single word between the integer variable DATA and whatever de-
vice is located at the interface address ADDR using the standard CAMAC func-
tion code specified by 'F'. A number of other subroutines are defined incor-
porating operational concepts such as block transfer, but the generation of any
detailed device-dependent procedures is left to the applications programmer.

These approaches are not as different as it would first appear because the
device oriented subroutines can be expanded in terms of the address oriented
ones. For example:

f
04

r

I
4

4

SUBROUTINE AIRD(LN, PAT, DATA, STATUS)
COMMON/ADDR/
INTEGER PAT(LN), DATA(LN), STATUS, ADDR
STATUS = 2
MSTAT = 0
D01 I = 1, LN
CALL CCSA(16, ADDR, PAT(I), LSTAT)
MSTAT = MSTAT + LSTAT
CALL CCSA(O, ADDR, DATA(I), LSTAT)

1 MSTAT = MSTAT + LSTAT
STATUS = 1
IF (MSTAT, NE, O) STATUS = 3 + MSTAT
RETURN
END

Similarly, it can be shown that all of the more complex calls can be reduced to
a few fundamental calls such as CCSA. In principle, they are the only calls
which have to be implemented by the handler and hence the handler can be made
quite simple.

This is an example of a hierachical approach in which application programs
talk to device-oriented routines, which in turn talk to the interface through
address-oriented routines. It is very attractive because it mirrors the hard-
ware hierarchy and provides the same modularity. Note in the example that
the code specific to the ADC is in a computer independent language, Fortran._
D. Zobrist (Ref. 1) illustrated the one-to-one correlation between hardwa^e
and software modules by the sandwich structure shown in Fig. 1 and pointed
out that the software for each level can be written independently of the imple-
mentations of the other levels. Designers of computers, interface controllers,
and modules can each write their own software without concern for the design
details of the other components of the total system,

Problems occur, however, when one attempts to build a high performance
I/O system within a multitasking environment. Most modern operating systems
provide a multi-user multiprogramming environment in which the programmer

	

f
	 can develop a program element or task with little concern for the operation of

	

O	 the other tasks. One of the ways in which the operating system protects its

}
t
i
i

5

integrity against programming errors is by executing all I/O itself. The user
is prohibited from accessing the I/O structure and must post requests with
the operating system for any I/O services. It generally queues up requests
for a device and validates their correctness (e, g. it may require that any user

`supplied addresses lie within the users own space) before- executing them. Be-
cause these processes typically take on the order of a milisecond to perform,
the number of I/O requests which can be processed is limited to about 1000 per
second and the response time of the system to an external event is drastically
longer than the hardware response time. In the exinnple of the multiplexed
ADC, two I/O requests are processed for every word digitized and one second of
CPU time is required to digitize 500 analog signals.

It is-clear that the efficiency of the operation can only be significantly im-
proved by eliminating the bulk of the I/O queuing and validating and that this
is only possible by effecting block or multiword I/O from a single directive.
But this means that the details of the transaction must be carried out by the
handler and hence it must contain device-specific structures. The matching
of hardware and software levels essential to software modularity is destroyed.
The task of restoring modularity calls for a new approach and possibly a num-
ber of solutions for various performance ranges.

The principles of writing such generalized handlers are now emerging
and can best be illustrated through some examples. Figure 2 summarizes
the relevant I/O structure of a number of multitasking operating systems.
The user's program issues a directive (or places a call) to execute an operation
described by a specified Directive Parameter Block (DPB). The operation may
be a READ, a WRITE, or some other operation, such as ATTACK in which
the task gains exclusive use of a device. The operating system's queuing fa-
cility places the directive in a priority ordered gueue associated with the de-
vice's handler. The handler processes the directives sequentially. It firsts
validates a directive, checking the DPB for correctness, and then dispatches
it to a logical processor for execution, Finally, the directive node is removed
from the queue and either the calling program and/or the operating system is
notified of the I/O completion. The logical processors which actually execute

	

t
	 the directives may be coded within the handler or they may be system sub-

	

04
	 routines which are called by it.

6

Because each directive is processed to completion before starting the
next one, a directive could spend considerable time in the queue if it is pre-
ceded by others having long execution times, These waits are unnecessary
and undesirable if the directives are for different physical devices and so
most systems provide for multi-unit handlers which can support concurrent
I/O to the different units, The I/O queuing facility maintains a separate
queue for each physical unit and the logical processors are written in reen-
trant or reusable code with separate work areas set aside for each unit,

SOME HANDLERS

The first example is a handier for the CAMAC Serial Highway which was
written to run under DEC's RSX-11D by Robert Setter at NASA (Ref. 2), It
has subsequently been adapted to run under RSX-1 l M by the group at Inland
Steel and the principles are being used at NASA for a handler to support a
microcomputer-based remote acquisition unit, The handler has worked well
and has proven to be quite reliable. It achieves better than an order of mag-
nitude increase in throughput over simple handlers which use an I/O directive
for each transfer.

The design is based on the conclusions of both the Purdue and CAMAC
software groups that there is actually a relatively small number of useful I/O
patterns in process control or other data acquisition. These can be built into
the handler in the form of additional logical processors, each of which is
coded to optimally execute one of the standard calls. Examples include the ISA
random analog input call AIRD, the CAMAC single command execution CCSA,
the Fortran WRITE to an alpha-numeric display or TTY, and the selective in-
itiation of task execution by a contact closure. Each of these devices is as-
signed a block of several physical-address unit numbers so that concurrent
I/O may be carried on with all of the modules which are installed on the system.
In processing a request, the handler uses the unit number to look up the addres,
of the correct logical processor in the Device Dispatch Table and to obtain
device-dependent parameters such as its crate and station numbers and its buf-
fer size.

04

f

In designing the handler, considerable effort was expended to make it
modular in order to make it easy to add other devices as required, There is
a rather clear separation between the portions that are relevant to the process
I/O structure and those that are required for the integrity of the operating
system, Although complete machine independence is not practical, the use
of conditional assembly, separate parameter definition files and a computer
independent I/O language such as IML would reduce the customizing of the
handler to a cookbook process. The approach does have the disadvantage that
the applications programmer must be able to modify and install a handler
task (or perform the equivalent SYSGEN) and must be conversant with the par-
ticular computer's assembly language. An advantage is that it is possible to
tailor the code to the peculiarities of the available hardware which all too fre-
quently does not have the uniformity required for full software standardization.

An important step in providing a machine and application independent
process interface handler has been made by the Real Time Systems Group at
Lawrence Berkely Laboratory (Ref. 3). They have also placed device dependent
code into the handler, but they have given the user the ability to create and de-
stroy this code at run time. They have postulated that most or all I/O requests
can be reduced to a series of primitive operations in areas such as buffer con-
trol, I/O status notification, and several data transfer patterns. The buffer
control primitives include the setup of input and output buffers, and the chain-
ing together of multiple buffers. The notification primitives conditionally re-
turn to the user or operating system the status of the various buffers, the num-
ber of CAMAC commands executed, the reasons for transaction termination,
and other information concerning the status of the request. The data transfer
primitives include (1) applying a list of random CAMAC commands, (2) ap-
plying a single function repeatedly to a sequence of addresses, and (3) applying
a i Lngle function repeatedly to a single address. There are also primitives to
provide conditional branching and hence permit the creation of sophisticated
I/O programs.

The execution primitives are organized into the desired logical processor
by a request structure which consists of a header, a work area, and a string
of functional blocks. The header identifies the structure and its owner, while

I	 the work area provides space for the primitives to communicate with each
04

8

other and to hold information while the logical processor is inactive. Each of
the functional blocks invokes one of the primitives and supplies it with the
constants which control its operation. The above implementation of a logical
processor is commonly referred to as "threaded code" and is similar in struc-
ture to Fortran object time systems of the same name.

I/O requests are implemented in two phases; an initialization phase in
which the buffers, commands and other parameters are validated and the ex-
ecution structure is built; and an execution phase(s) in which the actual transfer
of data occurs. The real-time structure (or driver), shown in Fig. 3, con-
sists of the above logical processors plus an initiation module which links each
of them to the desired initiating condition, either an interrupt service routine
(e, g. a LAM service) or a direct initiation from the I/O directive.

The initialization phase occurs some time before execution and consists of
two logical parts invoked by two directives which may or may not be combined.
The first creates the request structure while the second activates it by con-
necting it to an initiation condition. The CREATE directive passes a user-
written parameter list to the handler, which first validates all of the vital
parameters for possible fatal errors, and then uses them to build the functional
blocks contained in the request structure. These are time consuming oper-
ations and have been placed in the pre-execution phase to streamline the real
time transfer of data. Once the request structure has been created, it can be
activated an arbitrary number of times by successive REQUEST I/O directives.

I believe that the most important aspect of the LBL handler is that it holds
the key to several important developments in the area of machine independence
and software portability. The functional blocks contain only process-specific
parameters, not instruction set specific ones, and therefore it should be pos-
sible to develop a high-level I/O language and compiler to generate them.
There seems to be no reason to exclude writing the compiler in Fortran or
other machine independent language. It would thus be possible to actually
achieve the goals postulated by the Zobrist Sandwich in which the software has
a one-to-one relation to the hardware. The second implication of the principles
of the LBL handler is that at least the driver portions (and perhaps some of

f
	 the other parts) of the handler can be moved into an intelligent I/O processor,

al
	 thereby removing a large amount of the machine-dependent programming and

standardizing the computer interface. It is impossible, however to eliminate

A

all machine dependence because the requirements of the host's operating
system must always be satisfied.

As a illustration of this idea, Fig. 4 shows the flow chart of a simple
data-channel processor (Ref. 4). It has only a program counter (which points
to a list of CAMAC commands), a word count register, and a current address
register. A program consists of a random list of commands which condition-
ally transfers data to or from the memory location specified by the word count
register. The processor uses the usual alogorithm of incrementing the word
count an-+ current address registers each time a word is transferred. The
processor halts when it encounters an EXIT bit microcoded into one of the
commands, The host computer is interrupted for buffer servicing whenever
a word count overflows. The processor is also designed to make branches
and conditional skips depending on the Q-response from the transfer and there-
by execute DO loops. More sophisticated processors, such as the Rice-Los
Alimos (Ref. 5) processor can be programmed to perform all of the real-time
driver operations.

SUMMARY

The full benefits of adopting standardized process interfaces are only re-
alized when the software is also modularized and integrated into modern multi-
task operating systems. This has been impossible in the past because of the
large number of conflicting requirements arising out of various applications
and design philosophies, but the software standards groups have now estab-
lished the types of transactions that need to be supported. These have proven
to be fairly simple and, partly because of the use of standardized hardware,
easy to imp2zment. The necessary logical processors can be placed in the
handler either when it is written or at run time through I/O directives. Alter-
nately, they can be built into a high-performance I/O processor. The problem
will be optimally solved, however only when the software requirements have
been incorporated uniformly into the hardware.

t
04

10

REFERENCES

1. D. W. Zobrist, et al,, 'Software Standards and CAMAC .. , . A Realtime
Demonstration, " Instru. Tech., vol. 22, pp. 33- 3$, 197 5.

2, R. Setter, ' IRSX-11D Handler Task for I/O through the CAMAC Serial
Highway, " Unpublished (1975).

3. Douglas Dowden, 'The Design of a General Purpose CAMAC Handler, r
Unpublished (1975).

4. R. Bercaw, T. Fessler, and J. Arnold, "A Programmable Computer
Interface for CAMAC, " NASA TN D-7148, Mar, 1973.

5, J, A. Buchanan and H. V. Jones, "CAMAC Multi-Microprogrammec' I/O
Processor, 11 IEEE Trans, Nuc. Sci., vol. 19, pp. 682-688, 1972.

t

l

APPLICATION

SOFTWARE

COMPUTER INDEPENDENT I
IN FORTRAN	 FORTRAN CALLS

110 BUS
DRIVER

OP. SYS.	 ;r CPU
CPU	

: r DEPENDENT

'— CALL TO 110 DR I VER

SOFTWARE_

HARDWARE

FUNCTIONAL

SOFTWARE

HANDLERS

EXAMPLES:

INPUT INTEGER VALUE

OUTPUT LOGICAL BIT
OUTPUT ASC I 1 CHARACTER

--.t COMPUTER
INDEPENDENT
(FORTRAN)

'	 1

RELATED	 ,J	 '
TO PROCESS{,

RELATED -^, 	 ALL RELATED

. I10 BUS
CONTROLLER

FUNCTIONAL	
EXAMPLES:	 110 INTERFACE

HARDWARE	 STRAIN GAGE	 __

MODULES	 TRIACS	
-_ COMPUTERCRT

INDEPENDENT
COMPUTER INDEPENDENT 	 ICAMACi

PROCESS	
SOLENOIDS, LIMIT SWITCHES,TRANDUCERS
THERMOCOUPLES, SYNCHROS, C.

HARDWARE - SOFTWARE ISOLATION

Figure L - The Zobrist Sandwich.

f	 SING PAGE WAM IM MSM

04

\ `

1 ^

tiN

`00

w	 \\
\
\

SYSTEM

t

	 110 QUEUE UNIT 1
 FACILITY

IVE

DEVICE HANDLEk^

UNIT N

DIRECTIVE

DIS^sT^H

ATTACH	 DETACH l	 SINGLE
UNIT

UNIT
	 TRANSFER

ILO	 DELETE

RUNDOWN	 REQUEST

OIRF"'TIVE
DONE..

DISPLAY	
AIRD

IA-Ni) (

EXIT	 EXIT

INTERRUPT	 INTERRUPT
SERVICE	 SERVICE

Figure 2. - QUEUED Ii0 facility.

I	 F

04

=	 3

s

INTERRUPT
	

DIR

SERVICE '1,
	

REQ

IME^ RRUPT
SERVICE 'N'
	

DRIVER '

INITIATOR

MODULE

REQUEST
STRUCTURES

REQUEST

HEADER EXECUTION
PRIMITIVES

WORK (REENTRANT)
AREA

FUNCTIONAL BLOCKS BUFFER SETUP

RANDOMN
TRANSFER

00

P4
TRANSFER

NOTIFICATION

EQUEST
ONTINUATIO

EXIT

kETURN

FROM	
(DIRECTIVE

INTERRUPT	 DONE

Figure 3. - Nodular 110 execution structure.

I
01

INTERRUPT

SERVICE

LOAD PC tREAD

COMMAND
@ PC

TRANSFER
BRANCH H. 0. DATAT

F
WCiNC+1

EXECUTE CAA+1
COMMAND

TRANSFER
PC•PC+1 L.0. DATA

WC-wC+1
CA•CA+1

COMPLETE
DATAWAY

CYCLE

AHANDLER

 Q SKIP	 F

T

 PC=PC+1

F	 '
WC: WORD COUNT	 EXIT

CA: CORR' -' ADDRESS
PC: PROGr(AM COUNTER	 T

Figure 4. - Data transfer primitive.

e

04

NASA•Lewis

	GeneralDisclaimer.pdf
	0012A02.pdf
	0012A03.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B02.pdf

