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Some Results on Contractive Mappings

as related to Pattern Recognition

Abstract

Several of the presently used techniques in pattern recognition can be
reformulated as the problem of determining fixed points of a function of the form:
f(x) = A(xX)» x. If X, is a fixed point of f and 1if f 1is contractive at Xg
then, for any y belonging to a sufficiently small neighborhood of Xy the orbit
of y will converge to Xy In this paper we develop several general results

regarding contractive mappings and, in particular, we study functions of the form:

f(x) = A(x)e x.

1. Introduction

Definition (1.1). Tet (X, || ||) be a normed linear space and let f : X+ X

be a function. We say f is a contractive mapping of X provided there exists

a real number o, 0 s a < 1, such that [If(x) - £ Il sallx - yll for all

x,}'EX.

Definition (1.2). Let S be a set and let T : S+ S be a function. We say

that 8g € S 1is a fixed point of T provided T(so) =84

If (X, Il ||) 41s a normed linear space and 1f f 1is a contractive mapping

of X having Xg € X as a fixed point, then X5 is the unique fixed point of



f. For, if X1sX, € X are fixed points of f, then
llxl-lel = | 1f(x)) - £(x,) 11 s allx; - xl1 .
Thus, 1if X, $ X,, Wwe have that 1 < a < 1, a contradiction.

If we impose the added condition that (X, |l ||) 1s complete (that is, a
Banach space), then any contractive mapping of X has a fixed point. Precisely

stated, we have the following well-known theorem.

Theorem (1.3). Let (X, |l |1) be a Banach space and let f : X+ X be a
contractive mapping of X. Then, for any z ¢ X, the sequence '{fn(z)}:;l

converges to a fixed point Xy € X. Moreover, X, is the unique fixed point

of f.

In many cases it may be that f 1s not contractive on the whole space X

but rather only at certain points of X. We formalize the concept.

Definition (1.4). Let (X, Il 11) be a normed linear space and let f : X+ X
be a function. We say that f 1s contractive at X, € X 1if and only if there
exist real numbers ¢ and a, ¢ > 0, 0 £ a < 1, such that

[E¢x) ~ xoll sallx - xoll for all x e S_(x;) = {xex| Ilx- xoll < ¢}. We

say that f 4is locally contractive on X provided there exists at least one

point X € X such that f 1s contractive at Xy

Observe that 1f f 1s contractive at xo, then

Ilf(xo) - xoll < allxo - xoll = 0, and hence Xo is a fixed point of f. The

following proposition is of prime importance in [2].



Proposition (1.5). Let (X, || ||) be a normed linear space and let

£f : X+ X be a function. If £ 1is contractive at X, € X, with corresponding
real numbers ¢ and a, then, for any y ¢ Se(xo), £7(y) € Se(xo) for each
positive integer n, and the sequence {fn(y)}:;l converges to x.

Proof. Let y ¢ S_(x;). Then HEQ) - xoll <ally - xgll <aec <e;

hence £(y) ¢ Se(xo). Let k 21 and suppose that fk(y) € Se(xo) and

k
HEG) - xyl1 < oIly = %gl1. Then

HE () - x 11 = HEEE ) - x| s all£G) - x5l1 s aac®lly - 5l

-a““lny—xou <ol e <ce.

Therefore, fk+1(y) € Se(xo) and, since ak +0, as k> + o, it follows
that |lfk(y) - xoll + 0, as k ++ «. Thus, the sequence {fn(y)}:;1
converges to X..

0

2. Conditions for functions to be locally contractive

Throughout this section (X, || ||) will be a finite dimensional real
normed linear space and f : X+ X will be a function. Observe that if X

is n-dimensional, then £ can be represented as:

X fl(x1 seees xn)
b3 ; = ’
x fn(x1 seees xn)

where each fi(xl secey xn) is a reai-valued function defined on X. We call



fi(x1 yooos xn) the i-th coordinate function of f. We say that f ¢ c'

in a region D (an open connected subset of X) provided each of the coordinate
functions of £ possess continuous first partial derivatives in D.

The Frechet derivative of f at the point p = (p1 ye ey pn) e X 1s

defined to be the matrix of real numbers

afl(il-_ t IR pn) afl(Pl } A ] Pn)
axl et ax.n
df(p) = , [11.
3fn(p1 yesss pn) afn(pl yeoes pn)

\\ axl axn

Observe that df(p) determines a linear transformation df(p) : X+ X
defined by (df(p))(x) = df(p) »x, where ¢ denotes matrix multiplication.
When df(p) 1is looked at in this manner (that is, as a linear transformation

of X into itself), we call df(p) or df(p) * x the differential of f

at the point p. Despite its ambiguity, this distinction in terminology should
cause no difficulty in the sequel.

Observe that the condition that f 1is contractive at X, is equivalent to
the condition: there exist real numbers & and a, 6 >0, 0 sa <1, such
that llf(xo + AX) - f(xo)ll = ||f(x0 + Ax) - xoll < allax]| whenever |lAx|| < 6.

The following theorem is well-known. (See, for example, [1; Theorem 17, p.264].)

Theorem (2.1). Let f ¢ C' in the region D ¢ X, let p ¢ D, and let df(p)

be the Frechét derivative of f at the point p. Then



£(p + ap) = £(p) + df(p) - 4p + R(2p) ,

1im ||R5A221[ -
where Ap*0 TTapl] 0.

Theorem (2.2). Let f e C' in the region D c X and let X, € D. Then £

is contractive at X if and only if X, is a fixed point of f and there
|1 af(xy) Ax| |

axi|

exist real numbers & and B, &6 >0, 0 <8 <1, such that < B

whenever ||Ax]|] < 6.

Proof. (¢— ). Suppose that f(xo) = x. and that such a 8§ and B exist. By

0
Theorenm (2.1),

I df(xo) e 8x|| = llf(XO + 4x) - f(xo) - R[] = ||f(x0 + Ax) - f(xo)ll - [IR(ax) |},

Thus, for ||ax|| < §,

11 df (xn) o Ax] | [ 1£(x. + Ax) -~ £
1>82 9 > s ) (xo)” _ 1R 1] o
I Tax[ ITax 1 Taxil— * °F

t . -
gy LRGoIl , O * 80 = £G)

[1ax]| ]| TTax11 .

Choose € >0 so that B+ e =a <1l. Si lim RAO ] _
€ nee  iax|| + 0 " |laxl] 0,

R
there exists Y > 0 such that i%}{ﬁ%%ll < ¢ whenever ||Ax]] <y . Thus,

for T = min{8,y} , it follows that if ||ax|] < T , then

llf(x0 + Ax) - f(xo)ll S B+ e)llax|l = allax]]

and hence f 1is contractive at xo.



»a

(— ). Suppose f 1is contractive at Xy Then %o is a fixed point

of f and there exist real numbers Y >0 and a, 0 s a <1, such that

Ilf(x0 + AX) - xoll = Ilf(xo + Ax) - f(xo)ll < allax|| whenever |lax|| <.

By Theorem (2.1),

I df (xy) * bx|| = llf(xO + Ax) - f(xo) - R@x) | s [1£(xy + Ax) - f(xo)ll + [IRx)|].”

LIR(AX) |1

1 1ax] ] = (0, there exists

1lin
Choose € > 0 so that o + € B <1. Since 18] !+0

T > 0 such thir ‘?Aifll| < ¢ whenever ||Ax]] < T. Thus, for &§ = min{y,t},

it follows that

1 afGe) e Il 11£Gey + ) = £GI jjea) 1]

< Qa4+ = <1.
2] ITax(] ITaxl | e=Bf<1

Definition (2.3). Let fe C' in the region Dc X, let xje¢ D, and suppose

that df(xo) exists. We define the norm of the linear operator df(xo) to be:

l1df(xg) 11 = sup{| |df (x)) «xI] | 11xll =1, x e X}

Theorem (2.4). Under the hypothesis of Theorem (2.2), || df(xo) 1] <1 4if and

only if there exist real numbers § > 0 and 8,0 < 8 <1, such that

l‘df(xo) d AX"
[1ax||

S B whenever |lax|| < 6.

Proof. Suppose IIdf(xo) || <1. Then 1> R8 = Ildf(xo) =

o AX_ I = ||df(x0) « 0xl| for all Ax.

- i (x,.) > 11
8sup “ 0 L xll Ildf(xo) ‘IAXl! ’lell

x| =1




llafCxg) » axl|
Conversely, suppose that TTaxl < B <1 whenever ||ax]|]| < 6.
Let xeX, |Ix]l =1, and choose Yy <& . Then |lyxll =vylix|]l =y <6,

so that
P - xx = -]'— l 1) =
Ildf(xo) x| | lldf(xo) . YII Y lldf(xo) e vx|| s ¥ Bellyxl| =8 .

Since x was an arbitrary vector of X of norm 1, it follows that

[1df(x ) || < B < 1.
0
Combining Theorems (2.2) and (2.4), we have the following result.

Result (2.5). Let f e¢ C' in the region D c X and X5 € D. f 1is contractive

at x, if and only if x

o is a fixed point of f and Ildf(xo) Il <1.

0

Theorem (2.6). Under the hypothesis of Result (2.5),

|1df(x) o Ax] ] |
T??xll*o lIQXlI exists if and only if
1in I1E(xy + 8x) = £(xp) 1]
| lax! 1+0 TTExTT exists. Moreover, 1f efther Linit extes

(and hence the other), they are equal.

Proof. By Theorem (2.1)

[I1dfCx)) o axll = 1£0xg + 8x) - £(xy) 1]

= [1£Gxy + 8%) = £(xg) = RAN ] = 1£0xy + 8x) = £Cxp) 1]
< Ilf(xO + Ax) - f(xo) - R(&x) - [f(x0 + Ax) - f(xo)]ll

= |IR(ax) | ],



lim R(ax -
where 11ax]1+0 “TTax1] 0. Thus, given ¢ > 0, there exists & > 0 such
that
lldf(xo) o Ax] | A Ilf(x0 + Ax) - f(xo)ll < R(Ax <
[1ax] | | 1ax] | | 1ax]| '

whenever ||Axl| < 6 . Thus, if one limit exists, then the other exists and

the two limits ave equal.

Lemma (2.7). et (X, || ||) be a finite dimensional normed linear space
1im | |Ax]|]
: X + i .

and let A : X+ X be a linear operator. 1If Ixl140 TIxl1 exists, then
Um | |Ax|] _ - -
!lel"o 'lel I'All, where |'All SUP{HAXIl l X € X, l|x|| 1}'
Proof. Since the unit ball = {x ¢ X | |Ix|| = 1} 1s a compact subspace of
X and A 1is continuousr, there exists x, € X such that ||x,||=1 and

Hax 11 o
I!Axlll = ||Al|. Therefore, T Il = |]A||. Choose o =3 for each

llA(anxl)ll anllelll
positive integer n. Then = = |]All for &ll n,

Ha x. || a |lx 11
nl n 1
REXCE Y
. lim | |Ax]|
and hence |’a x || 0 _T'ra_x_ﬁ__' lIAI'- Thus; 1f “xH"O l'xll exists,
lim [ lAxl] _

then ixifso “TixiT = AT

Observe that under the hypothesis of Result (2.5), df(xo) exists and is
a linear function of X {into itself. Thus, by Result (2.5), Theorem (2.6), and

Lemma (2.7), we have the following corollary.



Corollary .8). Let f e C' in the reglon Dc X and let xy eD. If

[ldf(x.) « ax]]|
11
!I:xll*o |ng|! = L <o (equivalently, if
[1€(x, + Ax) = £(x.) ]!
1lim 0 0
| |1ax] |+0 TTaxT] = L <w), then f 1s contractive at %X,

if and only if x

0 is a fixed point of f and L < 1.

While it does not seem unreasonable to expect that both limits of Theorem
(2.6) exist, the following theorem shows that the existence of the limits imposes

strong conditions on the linear mapping df(xo).

Theorem (2.9). Let (X, (,)) ©be a finite dimensional inner product space with
induced norn ||x!] = /(x,x) and let A : X+ X be a linear operator. Then

A = U for some non-negative real number @ znd orthogonal matrix U 4if and only

1im lle![
Nxl|+0 Tl exists.

if
Proof. Observe that a linear operator B defined on X 1is orthogonal if and
only if (Bx,Bx) = (x,x) , or cquivalently, if and only 1f |[Bx|| = ||x|| for

all x ¢ X. Note that the theorem is obviously true if A =0. If A¢ 0 and

lim | 1Ax] | lim JlAx|l
1 Vixits0 Tixl]  existe: then, by Lemma (2.7), )40 Tix = All and
heref 1im ”(”i‘”A)XH 1 1 \ 41
therefore, | 1x]1+0 el + Let B = TTAT] A and let y € X.
Choose o, = %- for each positive integer and consider the sequence of points

1im IlB(any)ll

i , = 10
.Ianyil-o Hunyll

o
(any}nsl. Since Hdny“ +0 as n=++ o, then
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1By || 1B y) 1|
—_— B n ot ||B
But g _yT] Fly[r for each n and hence g yyjag TlayTT "~ “IIyIl*

Therefore, ||Byl|l = |iyll, so that B 1is orthogonal, and thus, A = ||A]||B has
the required form.
Conversely, suppose that A = QU for some positive real number & and

orthogonal matrix U. Then ||Uxl| = |Ix|]| for all x ¢ X, and hence

1im Ax _lim _LLal_,x_LL- lim .L‘l].x_LL. . - - = =
Lxl 1+0 TTxT = Tixl o0 TIxl T = @ Vixl 10 TTxi] = @+ 2 =@ =110l = Tauil = [1All.

Corollary (2.10). Let (X, (, )) be a finite dimensional inner product space

with induced norm |[x]| = /{x,x) , let f ¢ C' ir the region D c X, and let

Xg € Do If Viaxil0 TTaxl]

0

exists, then f 1is contractive at X

if and only if X,

number @, 0 < a < 1, and orthogonal matrix U.

is a fixed point of f and df(x

0) = qU for some real

We end this section with an example to show that the condition that

14m | ldf(xo) o 8x] ]
] exists is required in Corollary (2.10).
| 1ax]| |+0 [1ax])
Example (2.11). Let Ez denote real 2-space and let f : Ez - E2 be defined
3x x

by f(xl,xz) = ( -Zl , -%-). Since llf(xl.xz) - (0,0)11] ¢ %Wl(xl.xz) - (0,0) 11

for all (xl,xz) € 22. and since (0,0) is clearly a fixed point of £, then

f 18 contractive at (0,0). However, df(xl,xz) at any point (xl,xz) € Ez

3/4 0 ; 3/4 0
{ o 1/2 ] , and it is easily verified that [ 0 1/2 ] cannot

be written in the form aU, where o is a scalar and U 1is orthogonal.

is equal to



3. A matrix representation of df(x)

Let E" denote real or complex n space and let f

defined by £(x) = A(x)e¢ x, where A 1s a function from

the space of n X n matrices. For any x = :1 € En,
;n
£,G.
f(x) = 5 . Thus, for each i =1 ..., n, fi :
£ (x) f'

projection of f(x) onto its ith coordinate. Let A ¢
Re E® (hence f ¢ C' in R). Then, for any point x ¢

derivative of £ 1is

axl 9x

df(x) = ’ ¢
an(x) afn(x)
ax, N

Let Alx) =

11

: B" + E® be

En into M ’
nxn

write

E" - El is the

C' 1in the region

R, the Frechét



of, (x) .

(1,j)th entry of

n B[alk(x) ] .

by B(x),

the n2 X n matrix

-

n

axj

"

n 3[ank(x)]

* %%

df(x) = B(x) + A(x%).

a[ail(x)]

ox

1

3a, (0]

Bxl

B[azl(x)]

Bxl

ala_, ()]

3%y

ala_ ()]
Bxl

3ay, ()]
k=1

df(x).

n
Therefore, fi(x) = zk!l aik(x). X for each 1 and

¢ x + aij(x)
If we denote the matrix

n 3[alk(x)] )

ax
n

n a[ank(x)]

9x
n

Since A : E" =+ Mﬁxn , 1t follows that dA(x) can be represented by

a[an(i:)]

ox
n

da ,(x)]

9x
n

ola__ ()]

ox
n
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If we let D(x) be the n X n2 matrix

then B(x) = D(x)dA(x) so that df(x) = D(x).e dA(x) + A(x).
Although D(x) and dA(x) are not self maps, it is straightforward

to show that
Il df(x) 1] < [IDx)AAG) ] + [IA(x) 1] < |ID(x)[1e |[dAGX)I] + 1IACX)I] ,

where we take the usual sup norm on the linear functions df(x), D(x), dA(x),
and A(x). (For example, 1IDG0)Il = sup {11DGe ylI | 1yl 5 =1, y € B},
: n
where || IIn and || || 2 denote the Euclidean norms in E® and E“z, respectively.)
n

We next show that |ID(x)|| < |Ix|| for all x e E® For, if y e ENZ,

then
n
/ 1 \ if1 *y
Y, g
g 121 *1Tnu
D(x)e y = D(x) o+l - ’
yZn )
. n
¥,2 pX 2 :

11 *2 i
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and hence,
n-1 n 2
By the Cauchy-Schwarz-Bunyakovskii inequality,
n
i£1 X Vin + 1 < i=1 i i=1 ykn 1 for any k = 0,1,...n-1,

and hence,

2 n-1 n 2
lID(x) o y11 2o {1Z1 *1Vkn + 1
n-l n 2
< L% ) (Ve + 1))
n n-1 n '
2 2
'(1?21 X ) o 121 Yin + 1

(e X i)

2 2
= |Ix|]% |lyll .

In particular, if ||yl| = 1, we have that ||D(x)eyl| < ||x]| and hence

2
HD@G) I = sup {|ID&x)e vl | IIyll =1, y e E®} < |Ixl] .
Summarizing the results thus far developed in this section, we have the

following theorem.



Theorem (3.1). Let 'F : E® > E" be defined by f£(x) = A(x). x, where
A is a function from E" into Mth. Suppose that A < C' in the region

Rc E® (hence f € €' in R). Then, for any point x € R,

df(x) = D(x)e dA(x) + A(x), where D(x) 1is the n X n2 matrix

Moreover,
11 a€@) 1] < 11D e [1dA@) ] + [IA) ] s [Ix|le T]aA(x) 1] + [IA(X)I].

It should be noted that the above norm inequality is not sharp enough
in seeking points at which f is contractive. For, if f is to be contractive
at  x,, then x, is a fixed point of £. But then ||x0|| = llf(xo)ll =
= [AGxg) » x5l 1 < [HAGxg) I1e Flxgll, so that (1f x, #0) HAG I 2 1.
Hence, llxol]- IIdA(xO)|| + ||A(x0)ll 2 1 and the above inequality cannot

be used to show that || df(xo)ll < 1.

Finally, we close the paper with some observations relating to the work
of B. C. Peters and H. F. Walker in [2]. A major result of [2] 1is that
a function ¢s is locally contractive at a consistent maximum-likelihood
estimate %, for sufficiently small values of ¢ > 0. Since ¢€(xo) = Xgs
it suffices to show that IIdQE(xo)ll < 1. It is easily verified that Qe
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can be considered as a function from E® into itself and that ¢¢ can
be written in the fo;ﬁ: @E = (1 ~¢€)I +¢.f, where I is the identity
map oﬁ E® and f : E® + E° is defined by f(x) = A(x)e x, where A is
a function from E® into Man. (That 18, f 1is a function of the type

considered earlier in this section.)

Since d@e(x) = (1 - ¢)I + ¢ df(x) at any point x for which the

differentials exist, then
Hddbe(x)li s (L-¢)+e il af(I]
Thus, 1f || df(x)|] < 1, then

lldQE(x)il cQ-¢€)+ell df@Il s1-@-=-11df@IDe <1,

Therefore, since the set of fixed points of f 1s the set of fixed points

of Qe for any ¢ > 0, it follows that if f is contractive at Yo then

ée is contractive at Yo for any ¢ > 0.
Conversely, observe that df(x) = %—[d¢e(x) + (e -.l)I], -so that

1 le - 1]
Il dE(x)]| < p ||d¢€(x)ll + — - Thus, if IId@e(x)ll = q, then
1
Il df(x)}] < 1 1if < (@ + e -1]) <1, For 0 <e <1, '% @+ ]le-1]) <1
is equivalent to a < 2¢ - 1, and thus, if ||d¢€(X)|| < 2¢ -1, then

Il daf(x)|] < 1. (Note, the assumption & < 2¢ - 1 implies that
a<1l for 0 < e <1,) Thus, if @E is contractive at Yo and if

Ild¢€(yo)l| <2 -1, then f is contractive at y,.

Observe that if € 21 and if I|d¢€(x)ll = o, then



17

Il df(x)| ]| s %-01 4+ € - 1). Thus, since the condition %-GJ +e€-1)<1

is equivalent to the ;ondition a < 1, it follows that if lld¢¢(x)ll <1,
then || df(x)|| < 1. Therefore, for € 2 1; f 18 contractive at Yo

if and only if ®€ is contract;ve at Yo We remark that Peters and Walker

have recently shown that @e is contractive at a consistent maximum-likelihood

estimate g for 0 < € < 2.

We summarize these final comments.

Theorem (3.2). With the notation and hypothesis of the preceding discussion, if
f 1is contractive at Yo then ¢€ is contractive at Yo for all e > 0.

If 0<e<1, !!dbe(yo)ll <2¢-1, and y, 1is a fixed point of ¢€ (hence
¢€ is cortractive at yo), then f is contractive a; Yo° If 1<e¢,

f 1s contractive at Yo if and only if ¢e is contractive at Yo
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