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N ro o We have proposed a novel combination of an active Cerenkov

z N detector and passive range detectors for the high resolution measure-

ment of isotopic composition in the neighborhood of iron in the

N galactic cosmic rays. l 	Here we describe. tests both of a large area
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C" (4300 un 2
) Cerenkov counter, and of passive range detectors, built
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he -^.4 for an experiment based on this principle, 	 the University of California

w z aI RIS experiment. 2	 Tests with heavy ions	 (2.1 GeV/amu C 12 , 289 MeV/amu
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Ar40, and 594 MeV/amu Ne 20 ) at the Lawrence Berkeley Bevalac have
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0.5%.	 We believe this measured uniformity of res ponse as a function
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w of position, energy and angle to be the best report_d to date. 	 The
mwa

w w w ^ counter, a 1.27 cm slab of Pilot 425, produces 35.3 Z2 sin 	 a^ photo- P:
a
i

a

w a »A electrons/cm of Cerenkov signal from theg	 primary	 ion	 (i.e.,	 scintillation
w 0

^

U
1 ^e

1 U
by the primary Dr by delta rays, and Cerenkov emission by delta rays

9

In
M 3

E>
C

a 3

z i o are exclu	 ) where Z is the projectile charge number, and Bc the Cerenkov
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angle.	 In addition,	 using 594 MeV/amu Ne 20 , we tested the capability of
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passive Texan track recorders to measure range in the presence of the

nuclear interaction background which results from stopping particles

through 0.9 interaction lengths of matter. We find that nuclear inter-

actions produce an effective range straggling distribution only -.75%

wider than that expected from range straggling alone. The combination

of these tested techniques make possible high mass resolution in the

neighborhood of iron. We discuss the implications of these measure-

ments on the expected mass resolution of the IRIS experiment.
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Introduction

A Cerenkov detector operated just above threshold provides an

accurate means of measuring the velocity of a particle of known charge.

At first suggested by us, 2 when used in conjunction with highly accurate

passive range detectors, a Cerenkov counter will measure the velocity

to sufficient_ accuracy to enable the resolution of isotopes differing

in mass by as little as 1 amu at iron. The University of California

Iron Isotope Experiment, IRIS, described in ref. 1, utilizes a range

measurement obtained from a stack of Lexan polycarbonate track recorders.

As we will show later in this paper, the accuracy of the range measure-

ment is nearly limited by range straggling (-0.13% for iron nuclei with

energies in the vicinity of the Wcite Cerenkov threshold). Hence,

the mass resolution one can obtain is limited solely by the resolution

of the Cerenkov detector, not by background induced by nuclear inter-

actions, or by intrinsic errors in the measurement of dE/dx, total

energy, or rigidity.

Balloon-borne experiments such as ours require large geometrical

factors to compensate for relatively short collection times (-50 hours,

compared to years for satellites). Thus, to achieve true isotopic

resolution one must make the largest Cerenkov counter possible con-

sistent with high resolution and reasonable weight.

In order to obtain a large geometrical factor one generally

sacrifices light collection efficiency and spatial uniformity of

response„ each of which is critical for resolution. Light collection

i	
efficiency for both scintillation and Cerenkov counters can be maxi-

mized by using total internal reflection ( light "piping") to conduct
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photons to the photocathode collecting surface of photomultiplier

tubes. The spatial uniformity of response in this configuration is

often inadequate, however, and a detailed map of the response must be

made. Unfortunately, the directional nature of Cerenkov emission

leads to the complication of energy- and angle-dependent light collec-

tion efficiencies, thereby requiring a five parameter map of response

as a function of position, angle, and energy.

By using a diffusing light integration box, which randomizes the

Cerenkov photon gas prior to collection, one can solve the problem of

spatial non-uniformity, but usually at the expense of light collection

efficiency. Highly reflectant diffuse coatings 3 can minimize this

problem. With such a light box, one can eliminate the difficulties

caused by the directionality of Cerenkov light, since roughing up the

surface of the ;adiator effectively eliminates total internal reflection.

Figure 1 shows the arrangement of the counter. The radiator is

a 1.27 t 0.01 cm thick slab of 4300 cm  a:-ea, consisting of Pilot 425,4

a polymethylmethacrylate doped with a wave-shifter (which flouresces

under Cerenkov light thereby extending the usable wavelength range of

the Cerenkov emission) and with quenching materials (which minimize

the scintillation of the wave-shifter). The radiator sits in a well

at the bottom of the box and is packed in on its sides with pure BaSO4

powder. Sixteen RCA 4525 photomultiplier tubes face upwards into the

box so that Cerenkov light must make at least two diffuse reflections

before arriving at any tube. The fractional surface area of the interior

of the box covered by photocathode faceplate is 4.36%. The surfaces

of the box are coated with a highly reflectant BaSO 4 paint 3 approximately
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250 M thick. Two layers of Millipore paper s form the reflecting

surface under the radiator. The uniform thickness of Millipore paper

(as opposed to Ba504 painted surfaces) is necessary if particle range

{ Mr	

is to be measured accurately, a requirement in our experiment.

In order to eliminate the directionality of the Cerankov light

(which is only partially alleviated by the isotropizing wave-shifter),

the surfaces of the radiator were sandblasted with 200 grit liquid

honing compound. We found that this material produced a surface

satisfying our requirements, which were: 1) the size of surface

irregularities should be greater than the wavelength of light (-0.5 Pin);

2) the size of irregularities should be less than 30 Um (to avoid

errors in range measurement); 3) the surface should be uniformly rough;

and 4) the amount of embedded material should be small.

A scanning electron micrograph of the surface appears in Fig. 2.

As can be seen, the scale size is about 20 um. A scanning X-ray

spectrometer revealed the major component of the embedded material to

be silicon present at an extremely low level.

Light Box Performance

The absolute reflectivity of the Ba504 paint was determined by

observing the light from a Pilot F scintillator irradiated by an Am 241

alpha particle source. The flourescence spectrum of the scintillator

closely matches that of the Pilot 425 radiator and hence provides

information relevant to Cerenkov emission. By placing Millipore disks

in front of the faceplates of differing numbers of phototubes we were

able to obtain 16 data points measuring response as a function of

-5-

j

y
x

-lb



k

fraction of box surface area covered by phototube faceplates. The

results fit the well-known diffusion box efficiency equation very well:

f
Ft

= 1-0-1`00-a) (1)

where F is the fractional area covered by phototubes, t is the trans-

mittance of the tube window averaged over solid angle, a is the

average absorptivity of the box, and f is the light collection

efficiency.

In our case, the best fit parameters are: a = 0.033 ± 0.002,

t = 0.69 ± 0.04 and f = 0.476 ± 0.001. This result for t is consistent

with the quoted value for the index of refraction of the tube window:

1.523. in Fig. 3 we plot the fitted function and the data points. By

taking into account the reflectivity of the Millipore paper (95%), a

BaSO4 paint selectivity of 97% is obtained. This is considerably lower

than that of pure BaSO 4 powder (99.9%).

Cerenkov Cnunter Tests with Atmospheric Muons

Vertical muon spectra were obtained both before and after sand-

blasting the radiator. A FWHM of 59% was obtained with the smooth

surface, and 53%, with the rough surface. Taking into account the =i•.

standard deviation in sec a due to the angle of incidence distribution

of the muons in our test arrangement, and including multidynode count-

ing statistics, we arrive at before and after photoelectron counts of

20 and 25, respectively. These results were confirmed by other methods

for determining the number of photoelectrons per muon:

1) Counting "misses" on a single tube and using Poisson statistics.6

-6-
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2)	 Using other light sources (an a-source with a scintillator,

and a pulsed, green, light-emitting diode) to calibrate the

pulse height analyzer in units of photoelectrons.

Cerenkov Counter Tests with Heavy Ions

Spatial uniformity tests were performed with beams at both

relativistic energies (C 12 at 2.1 GeV/amu) and at subthreshold energies

(Ar 40 at 289 MeV/amu).	 Below threshold only scintillation and Cerenkov

light due to secondary electrons contributes to the signal. 	 In both

cases the fluctuations in response were no larger than the thickness

variations in the radiator. 	 For these tests, smooth radiators were

used.

The response of a sandblasted radiator was examined as a function

of angle and energy with a Ne 20 beam a^ 575 MeV/amu. No deviation from

a sec e response was detected for angles from 0° to 45°. For an angle

of 0°, energy dependence was investigated by degrading the beam with

lead absorbers.	 A detailed analysis of this response is given in

ref. 7.	 Here it is sufficient to point out that the response is well

explained as arising from a combination of three effects:

1) Scintillation at a level of 2.7% relative to Cerenkov light

at 13 = 1.

2) Cerenkov light from secondary electrons.

3) Cerenkov light from the Ne 20 ions.

Results from the analysis of ref. 7 indicate that the number of

primary Cerenkov photoelectrons per unit length produced by a particle:

with Z charge units is:

a

i1
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35.3 ZZ (l — 

B Z 1.518)2) cm 
l (2)

1

d.'

(By primary Cerenkov photoelectrons we mean to exclude the contribu-

tions due to Cerenkov emission by delta-rays, and due to scintillation.)

The effective index of refraction is 1.518. As pointed out in ref. 7

this value may be predicted from the known optical properties of

Pilot 425•

We have been able to fit the data with the Cerenkov law (including

a small scintillation component) without invoking any other energy

dependent effects. We conclude that the light collection efficiency

is independent of energy.

In Fig. 4 we plot the observed response as a function of energy,

along with theoretically determined Cerenkov (including delta-ray

effects) and scintillation contributions.

We could not determine either by measurement or by theory the

fraction of light which escapes the radiator. This parameter is quite

dependent on the internal conversion efficiency (by flourescence) of

short wavelength light to light at wavelengths near 425 nm. As a

result we cannot quote a value for this important parameter, although

a naive calculation in whict, it is assumed that every photon created

between 260 um and 425 µm is converted to 425 nm gives a value for

fractional escape of -40%. This is undoubtedly lower than the actual

value.

In summary, we have constructed and tested a large area Cerenkov

intensity counter with desirable properties for large geometrical

factor cosmic-ray experiments:

_ 8_	 RI;PRODUCIBILYPY OF THE
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1) No dependence of light collection efficiency on particle

energy;

2) No dependence of light collection efficiency on particle

incidence angle;

3) Fluctuations in the mean signal as a 4unction of the point

at which the particle traverses the detector limited by the

thickness variations of the radiator itself, and, in fact,

less than 1% peak-to-peak;

4) Acceptable light collection efficiency (primary Cerenkov

signal = 35.3 Z 2 sin  B  photoelectrons/cm);

5) Well understood response as a function of energy, both below

and above threshold.

The construction technique and design principles we have used

are simple and may easily be duplicated.

Range Detection in the Presence of
Nuclear Interactions

As we have pointed out, 1 the negligible intrinsic straggling in

range of heavy ions 8 ' 9 makas range an ideal parameter for mass measure-

ment with high resolution. The higher inertia of a more massive ion

increases its range relative to the range of a less massive ion of the

same charge in direct proportion to the ratio of the masses. Thus, an

Fe 56 will have a range greater than that of an Te ss nucleus with the

same initial energy per nucleon in the ratio 56/55 = 1.0182. The

distribution of ranges is nearly Gaussian, with a standard deviation

of about 0.13% for iron nuclei at -400 MeV/nucleon. 8 ' 9 Thus,

neighboring isotopes of iron are separated by 14 standard deviations
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In ran.qel• Our IRIS experiment, 2 the first to capitalize on this fact,

flew once in the fall of 1974 without returning useable scientific

data due to an electronic malfunction. An updated version, IRIS-11,

Is scheduled for flight during 1976.

The measurement of range reluires that a heavy ion be brought to

rest. Unfortunately, this cannot be accomplished without a substantial

risk of destroying the ion by fragmentation in a nuclear interaction.

Thus, a successful experiment based on direct measurement of range

must be able to discriminate effectively against those evants in which

a nuclear interaction occurs. We have proposed the use of passive

range detectors because of the high immunity to nuclear interactions

which can be achieved with passive techniques. Using a stack of 5 mil sheets

of Lexan, for example, means that the charge of a particle being brought

to rest can be verified within 5 mils of the end of range point. We

have selected Lexan over nuclear emulsions for several reasons: (1)

Dimensional Stabiiity. During etching, a Lexan sheet does not shrink

or distort.. As a result, accurate range measurement is not compromised

by shrinkage, as can occur with nuclear emulsions; (2) High "Charge

Contrast." If we define charge contrast to be the power of Z to

which the detector reFaonse is proportional, a saturated scintillator

has a contrast of about 1.5, a Cerenkov counter a contrast of 2, while

Lexan detectors have a contrast of between 3.5 and 5. This very high

contrast implies a high degree of immunity to charge-changing nuclear

Interactions, since the change in signal between Z = 25 and Z = 26

is about a 15% effect. In addition, the etch processing can be

adjusted to completely eliminate registration of lower charged species,

-10-
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so that particles which lose more than, say, a few charges, will not

record at all; (3) High Homogeneity. Unlike nuclear emulsion, which

is a highly heterogeneous mixture and which absorbes water readily,

Lexan polycarbonate is composed solely of the polycarbonate ester of

4,4'-diphenyl - 2,2-propane (bisphenol-A), and absorbs negligible

quantities of water; and (4) Cost. Lexan is very inexpensive, costing

several hundred times less than nuclear emulsion. This trarxlates to

the difference between several hundred dollars and many tens of

thousands of dollars for a single large area passive range detector.

It is difficult to calculate accurately the actual ease with

which the range can be measured in the presence of nuclear interactions.

We have, therefore, performed a worst-cast test: We have measured the

effective width of the range-stragglin3 peak at the end-of-range point

of 594 MeV/amu Ne 20 after passage through 0.5 interaction lengths of

lead plus 0.4 interaction lengths of plastic (more interaction lengths

than an iron nucleus traverses in coming to rest at the bottom of the

IRIS-II range stack) while not performing any measurement of the charge

of the particles brought to rest in the plastic. That is, whereas

it is possible to check the charge of the particle brought to rest by

using the Lexan sheets as a charge detector, in this experiment we

measured only the range of the particles, without attempting any

measurement of particle charge. A neon which had fragmented to fluorine

would, therefore, not be excluded from this analysis.

The results are shown in Fig. 5. The approximate width expected

from range straggling not contaminated by interacting particles is

shown for comparison. Note that the standard deviation of the measured

a
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distribution (extrapolating to iron) is still only one-tenth the

difference in range between Fe ss and Fess

This means that we can expect, with proper etch time selection,

to perform range measurements in the presence of substantial nuclear

interaction background without checking nuclear charge near the end

of range. This is a remarkable result, which implies that our immunity

to nuclear interaction background is much greater tha. we have previously

claimed. 1,2

The high degree of immunity arises from two factors. First, the

very high charge contrast of Lexan detectors totally prevents the

registration of those particles which lose more than a few charges.

These particles are lost from analysis, automatically. Second, the

occurrence of a charge-changing nuclear interaction tends to greatly

alter the range of the remaining particle, making it almost impossible

to confuse a particle (whose initial charge and speed have been deter-

mined independently) which has interacted with a particle which has

not.

In summary, we have confirmed that plastic detectors can perform

highly accurate range measurements in the presence of a substantial

nuclear interaction background.

Expected Isotopic Resolution of IRIS

By extrapolating our neon results to iron, using the harshest

possible scintillation (i.e., assuming that no saturation occurs so

that the scintillation scales like Z 2 ) we can calculate the separation

of Gerenkov signals for Fe ss and Fe 56 ions which have the same range.



The ratio of this separation to the photoelectron counting error gives

the inverse of the error of our mass measured in amu's. That this is

the case requires two assumptions:

1) Cerenkov resolution is determined solely by photoelectron

statistics.

2) The range measurement is much more accurate than the Cerenkov

measurement.

Point 1) is supported by the experimental fact that the observed

width at Z = 10 of the Cerenkov signal is 0.1 that of the observed

width at Z = 1.

Point 2) has been demonstrated in the previous section.

The above analysis leads us to expect the standard deviation in

measured mass to range from 1/3 amu at 355 MeV/nucleon to 1/2 amu

at 455 MeV/nucleon.
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Figure Captions

Figure 1. SchemW c of Cerenkov light integration box. Outside

dimensions of box are 102 cm x 102 cm x 38 cm. The 1.27 cm

thick Pilot 425 radiator fits in the 65 cm x 65 cm well

at the bottom of the box. The top is a I mm sheet of

aluminum and the sides are 3.2 mm aluminum. The walls and

top are coated with Ba504 paint. Two layers of Millipore

paper are placed beneath the radiator, which is supported

by a low porosity aluminum plate of precise thickness.

Figure 2. Scanning electron micrograph of the surface of the Pilot

425 radiator after being sandblasted with 200 grit liquid

honing compound.

Figure 3. Plot of the amount of light collected by the Cerenkov light

integration box as a function of tube fractional area

covered. An Am 241 a-source irradiated a Pilot F scintilla-

for to provide the light source. The curve is the best

fit diffusion bax efficiency function to the data.

Figure 4. Observed response of the Cerenkov radiator as a function

of incident energy. The theoretical pure Cerenkov response
r

and the scintillation component are plotted separately.

Figure 5• Observed number of stopping particles as a function of depth

of Lexan stack. Each sheet in the Lexan stack was 0.005 inch

thick. These events include stcpping fluorine and oxygen

ions as well as the Ne 20 beam particles (at an incident energy

of 594 MeV/amu). The observed FWHM is 15 sheets. For com-

parison, a range straggling curve due to energy loss

l
^a

^^q
.l

(



i	 J ^

fluctuations alone is presented. 8 ' 9 The FWHM of this

curve is 8.68 sheets.
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