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ABSTRACT

An accurate method has been developed for predicting effects

of streamline curvature and coordinate system rotation on tur-

bulent boundary layers. A new two-equation model of turbulence

has been developed which serves as the basis of the study. In

developing -the new model, physical reasoning is combined with

singular perturbation methods to develop a rational, physically-

based set of equations which are, on the one hand, as accurate

as mixing-length theory for equilibrium boundary layers and,

on the other hand, suitable for computing effects of curvature

and rotation. The equations are solved numerically for several

boundary layer flows over plane and curved surfaces. For incom-

pressible boundary layers, results of the computations are gen-

erally within 10$ of corresponding experimental data. Somewhat

larger discrepancies are noted for compressible applications,

although the overall level of accuracy is obscured by uncertain-

ties in the experimental data. Results of the study lend further

confidence to the notion that curved streamline effects can be

accurately predicted with second-order closure of the turbulent-

flow equations of motion.
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NOTATION

SYMBOL DEFINITION

B Constant in the law of the wall

c~ Skin friction

CD,C ,c ,c ,c jC-jCp Parameters in turbulence model equations

e Specific turbulent mixing energy

E Nondimensional mixing energy

p Nondimensional streamfunction (Eq .12̂ ))

k Roughness height

L Reference length

M Mach number

p Static pressure

P Production term in dissipation-rate
w equation

R Radius of curvature

Re ,Refl,Rejvj{ Reynolds number based on plate length,
x y ° momentum thickness, displacement thickness

Re~ Turbulent Reynolds number

S Surface-roughness function

S Stanton number
\s

T Static temperature

u Velocity component in x direction

U sHm Boundary-layer-edge velocity, freestream
e S velocity

v Velocity component in y direction



NOTATION (continued)

SYMBOL DEFINITION

W Nondimensional dissipation rate

x Coordinate lying along a solid body

y Coordinate normal to a solid body

a,a* Parameters in turbulence model equations

a^ja* Values of a,a* for fully turbulent flows

aT Similarity parameter in defect-layer
solution

B3B* Parameters in turbulence model equations

3m Similarity parameter in defect-layer
solution

6,6* Boundary-layer thickness, displacement
thickness

e Kinematic eddy viscosity

e. Dissipation function

r\ Similarity variable for the defect layer

0 Momentum thickness

K Karman constant

A Parameter in turbulence model equations

y Molecular viscosity

v Kinematic viscosity

£ Similarity variable for the defect layer

p Fluid mass density

o*a*,a ,o ,o Parameters in turbulence model equations
G Z £

am Similarity parameter in defect-layer
solution
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NOTATION (concluded.)

SYMBOL

toT

DEFINITION

Angle from centerline for cylindrical
body

Parameter in turbulence model equations

Streamfunction

Constant in initial profiles

Turbulent dissipation rate

Similarity parameter in defect-layer
solution

Specific turbulent dissipation rate;
angular velocity of a rotating coordinate
system

Turbulent mixing length

Subscripts

e

w

Boundary-layer edge

Body surface
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1. INTRODUCTION

In a prior study, Wilcox and Chambers found that the magnitude

of streamline curvature effects on turbulent boundary layers

can be predicted reasonably well with second order closure of

the turbulent flow equations of motion. The study showed that

streamline curvature and coordinate-system rotation effects can

be understood on a fairly fundamental basis only by considering

the interactions of the various components of the Reynolds stress

tensor and the mean flow. Hence, most of the effort focused upon

developing a -turbulence model based on the Reynolds stress equa-

tion (RSE). The most important result of the Wilcox-Chambers

study is the straightforward physical interpretation of stream-

line-curvature effects inferred from the analysis. As a brief

review, the RSE model predicts that for boundary-layer flows the

following things are true:

1. In equilibrium the Reynolds shear stress is

proportional to the normal Reynolds stress perpen-

dicular to the plane of shear, <v'2>.

2. <v'2> is strongly affected by streamline curvature

and system rotation.

3. The large changes in <v'2> occur mainly because of

RSE transformation properties and pressure-strain

correlation terms.

While other researchers have suggested that <v'2> plays a key

role in curved-surface boundary layers, no one previously demon-

strated that curvature effects can be accurately predicted by

accounting for changes in <v'2> caused by curvature.



As a corollary result of the study, understanding of curvature/

rotation effects gained from analyzing the RSE model led to
2

improvement of the simpler Saffman Htw_9eeiq.maM->ontfeui'bb.ul>e.nee

model. Because of its inherent simplicity (relative to the RSE

model), the two-equation model appears to have the best potential

for serving as an engineering design tool.

While these developments are most encouraging, results of numer-

ical applications of the RSE model and the Saffman two-equation

model leave something to be desired. For example, Figure 1 com-
g ty ,̂ .,f • . '

pares computed and measured'' *J velocity profiles for two equil-

ibrium boundary layers with adverse pressure gradients. . Both

the RSE and Saffman models yield inflected profiles in the

defect-layer portion of the boundary layer. Since for equil-

ibrium boundary layers the RSE model reduces almost identically

to the Saffman model, it is unsurprising that both models yield

the same curious inflections. With the models performing so

poorly for equilibrium boundary layers, it is difficult to gen-

erate much confidence in model predictions for such complicated

effects as those of curvature and rotation. In the present

study, application of the RSE model to flow over a segmented

spinning body (see Appendix) further demonstrates the RSE model's

deficiencies in the defect layer.

The objective of the present study has been to identify and

eliminate the source of inaccuracy in the Saffman model. Since

the Saffman model serves as the foundation upon which the RSE

model is built, elimination of deficiencies in the Saffman model

should lead to improvement of the RSE model. The study consists

of two segments. The first segment (Section 2) focuses primar-

ily upon two-equation-model defect-layer structure and equil-

ibrium (plane-surface) boundary-layer applications; a new baseline

two-equation model is developed. Then, in Section 3, with suit-

able curvature-rotation modifications the baseline model equations

are solved numerically for several boundary-layer flows over curved

surfaces. Section 4 discusses study results.
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2. DEVELOPING A BASELINE MODEL

This section traces the evolution of a new two-equation model

of turbulence. First, Saffman-model-predicted defect-layer

structure for a flat-plate boundary layer (FPBL) is analyzed

using singular-perturbation•techniques. Next, a new model is

postulated and is shown to yield defect-layer properties which

are in much closer agreement with measurements than those of

the Saffman model. The high Reynolds-number form of the

Saffman model, the new model, and two other popular two-equation

models are then compared by computing several boundary layers.

Finally, with appropriate viscous modifications, the new model

is applied to equilibrium boundary-layer flows.

2.1 PERTURBATION ANALYSIS OF THE DEFECT LAYER

As discussed in the Introduction, the problems in Saffman and

RSE model solutions apparently originate in the defect layer.

In order to determine the nature of the models' deficiencies,

a singular-perturbation analysis of Saffman-model-predicted

defect-layer structure has been conducted for a zero pres-

sure gradient FPBL. As a first step in the analysis, the

Saffman equations are suitably scaled and simplified for

the defect layer. Then numerical solutions are presented in

which the boundary-layer edge conditions are parametrically

varied. Finally, it is found that the Saffman model predicts

a too-large peak value of the turbulent length scale, £.

2.1.1 Formal Expansion Procedure

The Saffman model equations of motion for incompressible two-

dimensional boundary layers are

Viscous modifications are changes required to add molecular
viscosity to the momentum and model equations, where appropriate,
to permit integrating the equations through the viscous sublayer.



lu + 3v
3x 9y (1)

dUe , 3 (2)

3e . 3e _

u

where u and v are velocity components in the streamwise, x, and

surface-normal, y, directions, respectively; U is the boundary-
"

layer-edge velocity; v is kinematic viscosity and the eddy

viscosity is the ratio of turbulent mixing energy, e, and

turbulent dissipation rate, co. The six empirical parameters

a, a*, B, 3*, a, a* are given by

a

a = a* = 0..50

3 = 0.15 , 3* = :&.'Q$

a* =0.30

= 3/a*-4a<2 = 0.1638 for K = 0..41

(5)

where ic is Karman's constant.

Equations 1-5 must be solved subject to boundary conditions at

the boundary-layer edge (ŷ °°) and at the surface (y->-0). In the

defect layer, we anticipate that the eddy viscosity is propor-

tional to U <5* where 6* is displacement thickness, wherefore

v v
e/w U 6*e Re (6)



where Reg# denotes Reynolds number based on 6*. Since Regx » 1

for turbulent boundary layers, molecular viscosity will be neg-
ligible in the defect layer. Consequently, defect-layer solu-

tions must be subjected to boundary conditions as y+0 which are

valid at the outer edge of the viscous sublayer, namely, the law
.fe -

of the wall. As shown by Saffman and Wilcox, this means

9u u

a*

u

as y -> 0

Equations 7 are valid on the sublayer scale as uTy/v->-°°.

Formally we are matching the outer (defect-layer) solution

to the inner (sublayer) solution.

Finally, at the boundary-layer edge we impose the values of

u, e and w, viz:

(7)

u = U.

e = e as y (8)

Following Bush and Fendellf?(wetintg©ducey|hecf0il@wing^non^

K nondirnensional Quantities:

E
E
W
W
r

e/u/U
= e/U.

(9)

"e :;



where L is a length typical of the distance from the plate

leading edge. Note that the eddy viscosity becomes

- = U 6*
w e W (10)

and that the quantity Ue6*/uT is the Clauser thickness. It is

convenient to work with the streamfunction, ty, defined by

U 97
v
U 3x dx (ID

Finally, we introduce the scaled streamfunction, F, given by

p = ' -J/ '^T

e
(12)

In terms of the transformation defined in Equations 9-12, the

equations of motion become (neglecting molecular viscosity):

Momentum

•F 3F

+ ̂ --^=-1-1^) --=00Ue .
(13)

Mixing Energy

u2/U2'
T e
6*/L

3 T , E 3F 3F 3E

6*/L
32F
3n2

dU

-tr^rf^ - E-° (1*>



Dissipation Rate

«*/L

where the quantity m is defined by

„ dU , , ~s du
m = _2 §_ + JL d6*_ _l
m - U d€ 6* d? U d

Also, the boundary conditions (Equations 7 and 8) transform to

|f - 1 , E-if ' , W-'^e as n + .;
• e e

~ u /U ,u2/U2 ,u2/.U2

To solve these equations, we assume that the velocity deviates

only slightly from the freestream velocity which is expressed

by wM'ting a perturbation expansion in powers of u /U « 1 as
T "

follows:

UT /u\?
P = n -UtJlF + of^j (18)

e \ e /

Similarly, the scaling for E and W follows from Equation 17 so

that we write

u2 u \3

u2 /u \3

W = - -r W ^Ol (20)a o

8



Then introducing

ul

and assuming u^/U ~ 6*/L, the momentum equation becomes, to

leading order

'11 i
_1_ dSJtl 6*/L
6* d? Ju2/U2 1/

Equation 22 will have self-similar solutions (i.e., independent

of £) provided the following four quantities are independent

of' 5 :

« ' IT 9f Jf-

6 . • j p. 9P O' Ji1"W / L I j. QO _ e do _ 2 do
6* d£ u2 dx •< • - dx

*T' "e T f

e - 6VL 1 dUe . 6% _dUe _ 6* dp ' (24)
T ' uU* Ue ̂  e dx Tw dx

_
2 ru

2 /U2 2 x cf ~ xcfr e I I

1 6VL 1 dUt li^
T - 2U2/TJ2 u d? 2 U2 UT dx cfu dx

T e T T l z L

where cf is skin friction, T is shear stress at the wall, and

p is pressure. Substituting Equations 23-26 into Equation 22

yields



3u ,.3u.
+ [3BT-aT]u1 -1 = 00^-25--^- ( 2 7 )

Similarly, the EQ equation simplifies to the following:

3E

an - a*WQ - (aT- 2? (28)

while the equation for W/becomes

3
3rf

E . raw

+ < a
3u_ 3.W2o (29)

As shown by Bush and .Pendell,6

as

while the momentum integral equation shows that if self-similar

solutions exist, aT and 3m are related as follows:

3BT

Hence, assuming that aT ahd 3m are constant, the defect-layer

equations are:

10



Momentum

du
= 0 (30)

Mixing Energy

du.

dn - wo E — ri— uo (3D

Dissipation Rate

d¥2
a

dn
= 0 (32)

which must be solved subject to

a*e

»i * ° • • Eo - -jr
2a*

U as nn (33)

3un

oo as (34)

2.1.2 Numerical Solution of the Defect-Layer Equations

Equations 30-34 were solved using an implicit, second-order

accurate, time-marching, finite-difference code. Only the zero-

pressure-gradient case (6=0) was considered. To achieve con-

verged solutions, we found it necessary to impose the boundary-

layer-edge conditions at a sharp turbulent-nonturbulent inter-

face. ̂ This is unsurprising as Saffman ' has shown that the model

equations predict the existence of such interfaces when e and u

approach zero in the freestream. The interface structure remains
unaltered when e and oo have finite values in the freestream. That

tThe sharpness manifests itself as a discontinuity in 3u/9y and
3 to/9y.

11



is, as a generalization of the analysis by Saffman, upon approach-

ing a turbulent-nonturbulent interface (y=6) from the turbulent

side, the solution behavior is

e - ee * (6-y)2

w - coe ^ (6 - y) as y -*• 6

u - Ue ^ (6-y) ,

provided a = a* = 1/2.

Several computations were done to determine solution sensitivity

to e , a) , a, and a*. Figure 2. shows velocity profiles for a
C "

set of computations in which solution sensitivity to e was

examined. In the computations, the following experimental

boundary condition was implemented in an attempt to eliminate

solution dependence upon co :

|y = 0 at y = 6 (35)

where

= e1/2/to - (36)

As shown in the figure, the model predicts only a very weak

"wake" component. The computed velocity profile deviates sig-

nificantly from Coles' composite "wall-wake" profile. Values

of a*e_/u2 less than 0101 (corresponding to a turbulence inten-
" T

sity of about 0.3$) have little effect on the solution. Larger

values of a*e /u2 cause the solution to deviate from Coles'e T •
profile even more than the e -»-0 solutions. Since Coles' pro-

\2

file provides a fairly accurate representation of experimental

data, the model apparently is quite inaccurate in the defect

layer.

12 .
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No combination of a, a*, e , and oj was found which would give
" "

more accurate defect-layer velocity profiles. The source of

the difficulty can be seen by inspection of the computed length-

scale, &, profile. In terms of $, the eddy viscosity, e = e/o>,

can be written as

e = e1/2£ (37)

•% . - ,
As shown by Ng and Spalding (who use Equation 37), A// a*

should be nearly equal 'to the standard mixing length provided

e is close to the turbulent energy, as it is for the Saffman-

model solution. Figure 2 compares the computed length-scale

profile with the mixing-length profile deduced by Klebanoff.

The peak value of the mixing length is between 0.095 and 0.106.

By contrast, the peak value. of V/a*1 predicted by the Saffman

model is about 0.176-'

Further numerical experimentation showed that the peak value

of H/5 can be suppressed somewhat by using extremely large

values of w ." This is generally accompanied by severe numer-

ical difficulties and by little improvement in the velocity

profiles. A second means for reducing the peak value of H/&

is to reduce the value of a; the reduction is slight, however

The value of a* has virtually no effect on (£/6) although
ITlctX

the value of 6 depends strongly upon a*.

Hence, the Saffman model inherently predicts too large of a

value of (&/6) in the defect layer. Consequently, since e
IHclX

is computed with reasonable accuracy, the eddy viscosity is

overestimated as can be seen by noting that the Saffman model

typically predicts

0-035 (38).

14
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SAPFMAN MODEL: a*e /u* = .01e T

• KLEBANOFP DATA

X \
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\

Figure 3. Comparison of computed length-scale
profile with mixing-length profile
deduced from measurements.



a value more than double.that assumed (0.0168) in the mixing-

length/eddy-viscosity formulation. The large peak values of

H/6 and e/U 6* predicted by the Saffman model cause the curious
"

inflected velocity profiles we have so often obtained with the

model (see Figure 1). Consistent with the defect-layer analysis

presented above, accurate skin friction, shape factor, etc., can

only be obtained by using unreasonably large values of co at the

boundary-layer edge with an attendant distortion of the velocity

profiles.

2.2 A NEW TWO-EQUATION TURBULENCE MODEL

After obtaining numerical solutions to the defect layer equations

and discovering the exaggerated peak value of £/6, the next logi-

cal step was to find the specific cause of the inaccuracy. In
9 7order to do this, we examined the Jones-Launder^ and Ng-Spalding1

turbulence models, both of which predict more-realistic peak values

of £/<$. As shown by Wilcox and Chambers, these two models can be

written in terms of the Saffman variables (e,to) as follows:
( -
Jone s-Launder

Ng-Spalding

dco2

dt = c

16



i 9e 95,If we (&) assume that — ̂ 77« f— » (ll) ignore the term proportional

to (0-a*) in the Jones-Launder model, and (§) denote the produc-

tion term by P , we can write the following single equation which

approximates the three (including Saff man's) models:

where

0

X =

, Saffman model

2 , Jones-Launder model

6-2-rf£*^TT > Ng-Spalding model (42)
c f

Equations 4l and 42 show that the Jones-Launder and Ng-Spalding

models have an additional dissipation term proportional to

o)*(3fc/3y.)2. This term has the effect of augmenting u)2 dissipa-

tion near a surface where 3&/3y is largest; by contrast, in the

defect-layer where 9&/3y is smallest, the net dissipation of u2

will be smaller than near the surface. The effect of this term

is hence consistent with the notion that the most intense dis-

sipation occurs in the smallest eddies which appear nearest a

solid boundary. In the defect layer only large eddies are

present wherefore dissipation will be smaller than near the

surface.

Because the Jones-Launder and Ng-Spalding models predict more-

realistic peak values of £/6, the possibility exists that the

Saffman-model might be improved if such a term is added to the

w2 equation. A value for x can be chosen by noting that, in

the wall layer

2

(I)-y/ . (43)

17



Hence with c =702, K=0.4l, a* = 0.3, a=l, we obtainw

6
6

It thus appears that x should lie between about 2.0 and 2.5.

With such a modification ,tfte SaffMiatmoftbe fieftl&w&pgeBewf baseline
layers,

Baseline1. Hodman Model

If-

(16)

a = a* = 1/2

3 = 0.15 , 6* = 0.09

a* = 0.3

a = 3/a* - (4 - x) cr K2

(47 )

Figure 4 presents the computed V6 profile for x=2- The peak

value of £/6 is much closer to the Klfcebanoff mixing-length data

than that obtained with the Saffman model. Computed velocity

profiles are presented in Figure 5. As shown, excellent agree-

ment between the numerical profiles and Coles' wall-wake profile

is obtained. Additionally, the mixing energy is in somewhat

closer agreement with the measured RMS vertical velocity fluc-

tuation data of Klebanoff (see Figure 6). Using x=2-5 causes

only slight changes in computed profiles.

18
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KLEBANOFF DATA

Figure 4. Comparison of computed length-scale
profiles with mixing-length profiles
deduced from measurements.
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y/6//

i.o r

KLEBANOFP; e = W ' 2

BffiSEBEBEMHQBEL

SAPFMAN MODEL

.2 .6 .8 1.0

Figure fi. Comparison of computed turbulent
mixing energy profiles with Klebanoff's
RMS vertical velocity fluctuation data.
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It is possible to obtain skin friction from the perturbation .

solution. Matching demands that as n^O, the defect-layer solu-

tion must equal the limiting form of the sublayer solution as

u y/v->°°. Now, inspection of the velocity profiles in Figures 2

and 5,shows that

u * Ue ~ UT L~ K" los n + A J as n •*• 0 (i|8)

where A. is a constant which can only be determined as part of

the solution (note that Bush and Pendell mistakenly demand that

A=0). In terms of the sublayer variables. Equation 48 can be

rewritten as

- A as

u K ° v

Finally, from the sublayer solution,

-, u y uuyy
— ^-log-^-+B as -!- -» « (50)
U K & V V

where B=5.5 is the standard constant in the law of the wall.

Matching yields the following condition:

Ue 1^ = B + A + i.logRe6, (51)

e , ^ 2

-L

becomes

wherefore the relation between skin friction, c^ = 2u2/.Û  and
-L L \2

dog Re,)^ + *iS log Re,» + (52)T ,, ,»

Inouye correlation, in which we have assumed the shape factor

Figure 7 compares skin friction for x=0 an^ X=2 with the Hopkins-
1"Inouye correlation, "

to be 1.30 wherefore

22
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^- = 3.221 (log Re6*)
2-H-9.215 log Re&K + 3-373;

Hopkins-Inouye (53)

As shown in the figure, .the Saffman-model cf is generally about

10% higher than the Hopkins-Inouye value. This is consistent

with previously computed values of c^. The B'asil£demffiddelwwith

X=2 predicts values of cf much closer to the Hopkins-Inouye

values. It hence appears that the proposed revision holds

promise for significantly improving Saffman-model accuracy.

2.3 TWO-EQUATION MODEL COMPARISON

To further test the Baseline model, a series of boundary-layer

computations were performed. Since the objective of this study

was to establish the most solid foundation possible for future

research with the RSE model., we left the possibility open that

a formulation other than the Baseline or Saffman models might

be more accurate. Hence, a comparison of the Baseline, Saffman,

Jones-Launder, and Ng-Spalding turbulence models was conducted.

There is no need to consider additional models as all current

two-equation models are variants of these four.

This comparison provides an objective basis for determining

which of these models is most accurate overall. While previous
12 13

comparisons of two-equation formulations have been made, 3

no one has made more than a cursory examination. Until now, no

one has presented parallel numerical solutions for the various

models. In this study, the models were tested under exactly the

same conditions using the same numerics, boundary conditions,

and starting profiles. Hence from the results of these compu-

tations, it is possible to determine precisely how well the

models perform relative to each other and which model should

serve as the basis for further analysis of streamline curvature/

system rotation effects on turbulent boundary layers. Table 1

lists the flows considered and the data sources used.



Table 1. Plows Computed in Two-Equation-
Model Comparisons

PLOW DATA SOURCES

• Plat Plate Boundary Layer

• Bradshaw Adverse Pressure
• Gradient

• Andersen Adverse Pressure
Gradient

• Ludwieg-Tillmann Favorable
Pressure Gradient

So-Mellor Constant Pressure
Flow over convex wall

Hopkins-Inouye skin friction
correlation; Klebanoff^0 flat
plate data; Wieghardt14 flat
plate data. .

Bradshaw data; Coles' ver-
sion of Bradshaw data.

i|.
Andersen ' data.

Ludwieg-Tillmann data;
Coles''1^ version of Ludwieg-
Tillmann data.

So-Mellor data; Meroney
correlation.

Before proceeding to results of the computations. Subsections 2.3-1

through 2.3.3 present (a) the equations which constitute the vari-

ous models, (b) boundary conditions used in the computations, and

(c) initial profiles.

2.3.1 The Model Equations

The inviscid-incompressible forms (i.e., negligible Mach number

and molecular viscosity) of the model equations were solved. The

inviscid (i.e., high Reynolds number) forms were chosen because

of. the nonuniversality in the way viscous effects are included

in the various turbulence, models . In this way we help eliminate

any preferential treatment of a given model. For all models,

the conservation of mass and momentum equations are identical,

viz,



Mass Conservation

Momentum Conservation

(55)

The two model equations for each formulation are as follows.

Saffman Model

Turbulent Mixing Energy

o0 o G _ [ a f i | o U . i n 4£ I i ^ I 46 I f a £. \

Dissipation Rate

2 " • " " • n >2 + l:\^~ I (57)

The values of the constants are

3=.15 3*=.09 a = 3/a*-4aK2 = .1638 ;

a = .50 a* = .50 a* = .30

while the ratio of e and w is the kinematic eddy viscosity, e,

i.e.,

e = e/oj • (58)

The Baseline model differs from the Saffman model only by the

addition of one term to the dissipation rate equation as

explained in the previous section.
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Baseline Model

Turbulent Mixing Energy

Dissipation Rate

2

3£ 3

Note that x nas been set equal to 2. All constants are the same

as in the Saffman model except for a vrtiich is now given by the.

following expression:

a = 3/a* - 20K2

The kinematic eddy viscosity is given by Equation 58. '

As noted earlier, similar to the Saffman and Baseline models, the

Jones-Launder model uses turbulent mixing energy for one "turbu-

lence density"; the second turbulence density is the dissipation

function, e,.

Jones-Launder
\
Turbulent Mixing Energy '

/ \23e , 3e /3u \ , 3 / e 3e

Dissipation Function

„ 9 ~ o^ c- % c- «~ '» ^^O E , o t. -,
~ r\

(fd im Sd, . 3 /£ 9§d
- ' ^* -— —
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where

c1=1.55, c2 = 2, ae=1.0,

and.the kinematic eddy viscosity takes on the following form:

e E .09 e2/ed . (63)

*_•

Finally, the Ng-Spalding model uses turbulent mixing energy and

turbulent length scale.

Ng-Spalding

Turbulent Mixing Energy

.2

U8x V3y ~ \ 9y / °D & " 3 y \ f f « ' 9 y ~ j\ / \ Q " /

Length Scale

2 / 6^
Q / _ \ U / n \ ' « I U U. if . f A/ \i. \ ^/O i O I £ 0 / «\ / /" r~ \11 _ / f-± H \ _i. -TT [ /^ n i **^ i-> v c* I - i ^ i ^* j- /•» I — i1- i Q ' J- i — ^___ i o y i i f^ >~\ i

where

n = flQ p = QR p = ORQ P = 70 P r r = l O r r = 1 0O-pv • U ̂ 7 ̂  O • I xU j L - » w < - ? j 7 j ^*TT I ^ ^' 3 £s J- • V 3 *J J _ « wu p i l l w e z

and

e = e1/2 Jl ' (66)

All four models use a turbulent mixing energy equation. Com-

monly, e is assumed to be the turbulent kinetic energy.

However, Wilcox and Chambers have shown that more appropriately

e should be interpreted as 9/^<v'2> where v' is the fluctuating

component of the velocity component normal to the surface. The
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above fact is essential when determining such things as

starting profiles.

The second turbulence parameter differs for the Saffman and

Baseline (to), Ng-Spalding (£)j and Jones-Launder (ed) models.

The eddy viscosity, e, is used in the same manner in each model

as an integral part of approximating the Reynolds shear stress.

Hence the various expressions for e can be equated and rela-

tions between co, e,, and & can be derived. It is necessary to

have such relations in order to impose the same boundary layer

edge boundary conditions and initial profiles for each of the

models. In terms of e and £, the dissipation rate and dissipa-

tion function are

and

e e= FOfc.WVA (68)

In addition to comparing the four models, results of the compu-

tations yield two important conclusions about all the models.

One, accurate starting profiles can be obtained by knowing only

the mean velocity profile and the Reynolds shear stress profile

at the starting location. Two, the models are not sensitive to

either initial e and £ profiles or to the boundary layer edge

boundary conditions on e and & as long as reasonable values

are used.

2.3.2 Boundary Conditions

Since the inviscid forms of the four models are considered, it

is not possible to integrate through the viscous sublayer.

Hence, it is necessary to assume that the sublayer has zero

thickness and then match to the law of the wall. A singular
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perturbation solution of the model equations, valid as y-MD,

yields the proper boundary conditions. Such a perturbation

solution (valid for boundary layers with and without pressure

gradient) for all four models is listed below.

e = u /a*

i = /a*"" <y

(69)

The quantity u is the friction velocity, K is Karman's con-

stant, a* is the constant in the Saffman formulation and B is

the constant in the law of the wall. In all calculations, the

constant B was held fixed at 5-5.

The boundary conditions in Equation 69 must be applied close to

the surface, viz, at least closer than a y+ (defined as u y/v)

of 20 and preferably at a y+ of about 10. Applying the condi-

tions closer than y+ of 10 made little difference while apply-

ing them above 20 significantly affected the solutions. On

first inspection, it may seem inaccurate to apply the boundary

conditions so close to the surface that the law of the wall does

not actually hold (i.e., y+<,30).. However, Equations 69 are

thgorigorDususoamtiontifco theilnMscmdemomentumaequationyas, y

approaches 0. That is, by assuming that the sublayer has neg-

ligible thickness, Equations 69 are the singular perturbation

solutions for the various models and are the appropriate

boundary conditions in the limit as y approaches 0.

The perturbation analysis of the defect layer described in Sub-

sections 2.1 and 2.2 indicates the appropriate boundary-layer-

edge value of the turbulent mixing energy. The analysis shows
rt

that a value of e corresponding to ot*e/u = .01 is the largest

value consistent with the equations that yields accurate defect
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layer velocity profiles; using smaller values of e-make little

difference. Since the larger value is somewhat eastier to handle

numerically, all computations were performed with a*e/u2 = .01.

Because the model equations predict existence of a sharp turbu-

lent-nonturpulent interface at the boundary-layer edge, imposing

8£/3y=0 (Equation 35) proves to be very difficult. Hence, con-

sistent with mixing-length approximations, a value of £//x* 6 = .09

at the boundary layer edge was imposed. Varying the edge value

of i//â 5 over the range of .06 to .12 made little difference

in the numerical solutions. Hence, an important conclusion is

that the models are not inordinately sensitive to the edge values

of e and H.

2.3-3 Initial Profiles

Prior to this study, determining reliable initial profiles for

the turbulence quantities;:: was always an area of uncertainty.

As will now be demonstrated, this uncertainty has been eliminated.

Starting profiles for all models are most conveniently formulated

in terms of the length scale, £; Equations 6? and 68 are then

used to determine w and e,. Noting that e is interpreted as

9/4<v'2>, starting profiles can be easily obtained if <v'2>,

<-u'v'>, and u data are available at the starting location.

That is, e can be determined directly from the <v'2> data while

£ can be found from the following equation

(70)

Howdver, such complete information is not always available.

Nevertheless, good profiles can still be determined with only

<wutvJ>aanduuddafeaaattIbhesstartmngl3!oeatiion. TIEMsiis 'done using

the following procedure.
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First, it is assumed that an arbitrary e starting profile can
be written as

6 = ¥

where ¥ is a constant to be determined and e,-,™-.,. is the high
• Jf roLi

Reynolds-number PPBL e profile. Prom empirical observation,
this is a good approximation for equilibrium boundary layers

The PPBL 9/4<v'2> profile can be approximated by

Next it is noted that as y-MD, e^-KU y. Since e also equals

e1/2&, any augmentation in the e profile must be reflected in

the £ profile as well. Therefore, e can be rewritten as

p = W ps . U/ -1 0£ * 6FPBL • ' PPBL

so that we must approximate the £ profile as

(73)

where App^r is the high Reynolds number FPBL length scale which
empirically has been found to have the following character:

y y 1 .096/K

y > .096/K

Therefore it is only necessary to determine the value of ¥ for

each particular flow. It is known that across a PPBL, <-u'v!>/

9/4<v'2>«0.3. This implies that the <-u'v'> and <v'2> profiles

are similar. It is possible that this is nearly the case for

Note that Equation 71 fails to satisfy the boundary condition
e-*-u2/a* as y+0. Experience has shown that the computations correct
this error in a reasonably short distance.

j-~
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other flows. If this is indeed true, then it is a straight-

forward operation to find V. If the <-u'v'> and <v|2> profiles

are similar, then the ratio of the maximum value to the wall

value is the same for each profile. This ratio has the value ¥2

(see Figure 8).

This procedure was studied in great detail for the three cases

for which extensive data are available, viz, Andersen's adverse

pressure gradient flow, Bradshaw's adverse pressure gradient

flow, and FPBL flow. For example, in the Andersen case, only

<-u'v'> data are available at the initial location, x=2 ft- (.61 m)

However, <-u'v'>/9/iKvl 2> « 0.. 26 almost uniformly for y/<5 < 3/4 at

x=6 ft (1.8.3 m) • Hence, the profiles were assumed nearly similar

at the starting location, x=2 ft (.61 m). The ratio of the maxi-

mum value of <-u'v'> to the surface shear stress at x=2 ft (.61 m)

is 1.5- The e and £ profiles were then generated using f2 = 1.5-

As a check on this procedure, we noted that Andersen also lists

mixing-length profiles at x=2 ft (.61 m). The inferred values of

£ are compared with the mixing-length data in Figure 9; agreement

is excellent.

Sufficient data are available to directly obtain e and £ profiles

for the Bradshaw adverse pressure gradient flow. Using ¥=1 gives

a length scale profile close to the Bradshaw data with the excep-

tion of the measured decrease in £ near the boundary layer edge

as shown in Figure 10. The Bradshaw case was run both with the

actual £ profile and with the profile constructed with Y=-l;

results differed only slightly. Figure 11 compares the initial e

profile constructed with f=l with experimental data; the figure

shows that the cos2 fit is quite accurate.

The £ profile used in the FPBL computations is shown in Figure 12.

This profile does not quite coincide with the one constructed with

¥=1. The difference occurs because the FPBL flow was initiated
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9/4 <v!2>max-

Figure 8. Use of similar <-u'v'> and e profiles
to determine f.
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Figure 9- Comparison of inferred and measured Initial
mixing length profiles for the Andersen adverse
pressure gradient flow; x=2 ft (.61 m).
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Figure 10. Initial length scale profile for the Bradshaw
adverse-pressure-gradient flow; x=2 fteC.61 ra)
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Figure 11. Initial turbulent mixing energy profile
for the Bradshaw adverse-pressure-gradient
flow; x=2 ft-e(. .61 m) .
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Figure 12. Initial length scale profiles used for
FPBL flow.
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at a very low Reynolds number; hence the peak length scale had

to be enhanced to be consistent with empirical observations for

low Reynolds number flows. The FPBL cases were also computed

with a profile using ¥=1; a transient was present in the early

part of the computation but quickly settled out. The standard
' E.PBL e profile defined in Equation 72 was used in both runs. . —?

In summary, by using both the inferred and actual £ profiles,

we have shown that the computations are not overly sensitive

to the starting profiles as long as a reasonable peak length

scale is used. Hence, the starting profiles defined by Equa-
tions 71-7^ are suitable for equilibrium boundary layers.

Simple PPBL profiles (¥=1) were used for both the Ludwieg-

Tillmann and So-Mellor flows.

2.3.4 Computations

As noted earlierpi-Bcthis.gSubsectionv.hthgaSafifiman^c.Baseline, Ng- ••—-"-

Spalding, and Jones-Launder turbulence models were applied to

the following five flows: (1) FPBL flow; (2). Bradshaw adverse

pressure gradient flow; (3) Andersen adverse pressure gradient

flow; (4) Ludwieg-Tillmann favorable pressure gradient flow;

(5) So-Mellor constant pressure flow over a convex wall. The

results of these computations are shown in Figures 13-20.

All of the models are accurate for FPBL flow. Computed proper-

ties for the Baseline, Mg-Spalding, and Jones-Launder models

agree closely with measurements, while Saffman-model predictions

generally differ from corresponding data by about 10%. The

Baseline model yields a velocity profile in linear coordinates

which agrees most closely with experimental data (see Figure 13).

The Baseline and Ng-Spalding models yield the closest agreement

between computed and measured properties for both adverse pres-

sure gradient flows, whereas Jones-Launder-model and Saffman-model
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predictions differ from the data substantially. Most particu-

larly, note the excellent agreement between experimental and

computed velocity profiles in linear coordinates for the

Baseline model (see Figures 14 and 15)- The Ng-Spalding-model

velocity profiles in linear coordinates do not agree nearly as

well with the data. However, with the exception of the veloc-

ity profile in linear coordinates, the Ng-Spalding model yields

closest overall agreement to the Andersen data.

For the Ludwieg-Tillmann favorable pressure gradient flow, the

Baseline, Jones-Launder and Ng-Spalding models yield predic-

tions very close to the experimental data (Figure 16). The

Saffman model does not do quite as well; the velocity profile

in linear coordinates serves as a reminder of the Saffman model'.s

deficiency in the defect layer.

Figures 17 and 18 compare computed e and & profiles with experi-'

mental data for 9/4<v'2> and mixing length, respectively.

Consistent with the defect-layer analysis of Subsections 2.1

and 2.2, in all three cases shown the Baseline model has length

scale profiles much closer to the measured mixing-length pro-

files than does the Saffman model. All models do a good job of

reproducing the 9/4<v'2> data indicating that the efficacy of

a two-equation model is controlled by the accuracy with which

the turbulent length scale can be computed.

Of these four flows, the models do poorest on the Andersen flow.

However, the Andersen flow has a relatively low Reynolds number

and,'without suitable viscous corrections, the models are realis-

tically only applicable at high Reynolds numbers. This is best

exemplified in Figure 15- The Baseline and Ng-Spalding models

The Saffman-model solutions generated by Wilcox and Chambers
(see Figure l) were done with a value for £e//a*'<S of less than
.02; although accurate skin friction and shape factor were
obtained, the inflected profiles shown in Figure 1 attended the
very small value of He.
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stray from skin friction data early in the computation. How-

ever, agreement is much better by the end of the computation,

where the boundary layer is finally approaching a well-developed

turbulent state.

As a final part of the comparisons, the models' ability to pre-
,.i

diet effects of streamline curvature was tested. Computed skin

friction for So-Mellor's constant pressure flow over a convex

wall (Figure 19) shows that two-equation models in their orig-

inal form fail for flows with streamline curvature. However,

as shown by. Wilcox and Chambers, better agreement between theory

and experiment can be obtained by adding a curvature correction

term to the turbulent-mixJng-energy equation. Using this curva-

ture term, the So-Mellor flow was recomputed with the Baseline

model. As shown in Figures 19 and 20, close agreement between

calculated and measured skin friction and velocity profiles is
f f, •

then obtained. ThA&correetionntermnwill "be^discussed'^in-detail

in Section 3 when other flows with streamline curvature are

considered.

2.3-5 Summary

F&urthe flows without streamline curvature, the Baseline and

the Ng-Spalding models yield results in much closer agreement

with the data than do the Jones-Launder and Saffman models.

Furthermore, the Baseline model's velocity profiles in linear

coordinates are in very close accord with the data and consis-

tently closer than any of the other models'. Hence, the

Baseline model appears to be the most accurate of the various

two-equation models. Computation of the curved-wall case shows

that none of the models in their original form accurately pre-

dicts effects of streamline curvature. However, by adding a

streamline curvature correction term, accurate predictions can

be obtained with the Baseline model for flow over a convex

wall. This curvature correction will be shown to work well for

a number of flows with curved streamlines in Section 3-



2.4 VISCOUS COMPUTATIONS

The utility of the Baseline model would be severely limited if

it were applicable only where the law of the wall holds close

to a boundary. It would be inapplicable for transitional and

separating flows for example and, more generally, it would per-

form poorly for boundary layers with arclength Reynolds numbers

less than a million. Hence, encouraged by the success of the

Baseline model in the matching computations, viscous calcula-

tions were performed. The objective of performing viscous com-

putations is to test the model's ability to predict low Reynolds

number effects. The four flows with no streamline curvature con-

sidered in the preceding Subsection were recomputed. In addition,

a viscous solution of a flat plate boundary layer with uniform

blowing was obtained. Table 2 lists the specific flows con-

sidered and the corresponding data sources.

Table 2. Incompressible Viscous Calculations

PLOW DATALSQURC-ESIS

Plat plate boundary layer \

Bradshaw adverse pressure
gradient

Andersen adverse pressure
gradient

Ludwieg-Tillmann favorable ,
pressure gradient '

Andersen flat plate with
uniform blowing

Same as in matching
calculations'(-Table 1)

Andersen data.

In order to proceed with viscous computations, viscous modifica-

tions to the model equations had to be included. Wilcox and
17Traci used perturbation techniques to study the sublayer of

a turbulent boundary layer. They found that in addition to adding

molecular diffusiop to the momentum and model equations, the fol-

lowing straightforward modifications to a and a* are needed to

obtain accurate viscous computations:
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qt_
a!

-SL = i_(i_A)e-
ReT/2_a

a

(75)

.where

X- 1/11 , a* = 3/10 , a = B/a* - 2(>K2 = .3319

and Rem is the turbulent Reynolds number defined by

ReT = ™ (76)

Boundary-layer-edge boundary conditions and initial profiles were

the same as those used in the preceding subsection; for the Flow-

ing case, FPBL initial profiles were used. At the surface, the

no-slip boundary condition was imposed while e and u> were given

by

e = 0

(77)
0) =

a* v

The quantity S is a function of surface roughness and blowing
-i O

velocity and, as shown by Traci,

B + S '1 (78)

where

SB ' 6 !Tv;/iTt
(79)
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and

In Equations 79 and 80, v is blowing velocity and k is roughness

height. The nonblowing computations were performed with very

small values of k to simulate a perfectly smooth wall; we have

found empirically that the smooth wall limit in which S->°° is

very closely approximated with finite values of S in excess of

about 300.

Figures 21 through 27 show the results of the viscous computa-

tions for the boundary layers with no mass injection. The vis-

cous solutions for the FPBL, Bradshaw adverse pressure gradient,

Andersen adverse pressure gradient, and Ludwieg-Tillmann flows

are very similar to the inviscid solutions (Figures 13-18). For

the blowing cas.e, skin friction corresponds well with data, com-

puted shape factor is within 10% of data, and velocity profiles

are within 15% of the data (Figure 25).

.Results of the FPBL and Andersen adverse pressure gradient flows

best exhibit the model's ability to accurately predict viscous

effects. For FPBL flow, Figure 21 shows close agreement between

the predicted and experimental shape factor for a wide range of

Reynolds numbers. Additionally, the figure exhibits the Baseline

model's ability to handle viscous effects by displaying velocity

profiles in sublayer coordinates for three different Reynolds

numbers. Note that the Andersen adverse pressure gradient calcu-

lation was initiated near the leading edge of the plate, whereas

the matching calculation was begun at a plate length of 2 ft (.61 m)

By including viscosity and integrating from near the leading edge,

the results are in much closer agreement with measurements than

those obtained by matching to the law of the wall. Figure 23

shows velocity profiles in sublayer coordinates for two different

Reynolds numbers.
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Results, using the. Baseline .model, for both the inviscid and

viscous calculations of equilibrium boundary -layers are most

encouraging. The inyiscid results, indicate, that the Baseline

model performs at least as well as any of the other models and

usually better. The viscous computations show that the model

equations can easily and successfully be. integrated through

the viscous sublayer and that they yield solutions that .corre-

spond well with data for flows with adverse, zero, and favor-

able pressure gradients and for flows with blowing. Since the

Baseline model has these capabilities, it can be regarded as a

reliable foundation for analyzing flows with streamline

curvature and coordinate system rotation.
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3, BOUNDARY LAYERS ON CURVED SURFACES

We now turn our attention to effects of streamline curvature

and system notation on turbulent boundary layers. As stated

in Subsection 2..3-^> the Baseline model in its original form

does not accurately predict the effects, of streamline curva-

ture. However with the addition of a straightforward curva-

ture correction term, the Baseline model can successfully be

applied to flows with curved streamlines'. This section gives

a brief overview of the development of the correction term and

tests it for boundary layers with curved streamlines and for

rotating channel flow. Both compressible and incompressible

flows are considered.

3.1 STREAMLINE CURVATURE/SYSTEM-ROTATION MODIFICATIONS

With an understanding of some of the physics of flow over

curved walls and the proper interpretation of the turbulence

quantity, e, a straightforward curvature correction can be

derived. This is explained in detail by Wilcox and Chambers.

Hence only a brief description will be presented here.

Three points are essential to the argument. The first impor-

tant point is that the mixing energy is directly proportional

to <v'2> (the component of the fluctuating velocity normal to

the surface); u is the rate at which <v'2> kinetic energy is

converted to other modes of energy (e.g., mean kinetic energy,

thermal energy, other fluctuation modes). The second key point

is that the equation for e should be regarded as the <v'2>

component of the full Reynolds stress equation^. Tffe.--final'

key observation is that if the tensor transformation properties

of the <v.'2> equation are endowed upon the equation for e,

straightforward curvature (and system rotation) correction

terms can be added which account for altered turbulence structure
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Implementing Point 3 proceeds as follows. In a curved-stream

line coordinate system with local radius of curvature, R, the

equation for the instantaneous vertical velocity, v, has a

Coriolis acceleration term, viz,

diffusion

Hence, multiplying Equation,8£ by v' and time averaging, we

obtain

3<vf 2/2> _, -.„,„. 2/0^ ' u
o t

+ u'V<v'2/2> - <u'v'> = other terms (82)

where, for simplicity, u denotes mean value. Then, defining ——/-

e = 9/4<v'2>.and approximating <-u'v'> = — ̂ , Equation 82- f \ <r i ' * * 'y °y . . ~ •>.
becomes (Cwd.t'h"̂ overheia-d'-..baias---/dropped̂ 'f-dr .-co'nvend'eneê c,- c <? ) -—f-

;' v /

||- + u-Ve = -T^f^ + other terms (83)

The term multiplied by 9/2 is the curvature correction term.

Similarly, for flow in a coordinate frame rotating with angular

velocity ft, we obtain

!• + u-Ve = = 9 « - ^ + other terms (84)
dt — ' U) dy

The e and u equations used for the boundary layer flows with

curved streamlines and for rotating channel flow are hence

assumed to be:

Note that the correction term was incorrectly written by
Wilcox and Chamber's 1- as being proportional to 9-
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Boundary Layers with Curved Streamlines

Turbulent _ Mixlng_Energ^;

-IR 1 f\ I V V~t"O J - — _ \ U - X /

Dissipation Rate

|* - | - (3 + 2a( ) (.86)

Rotating Channel Flow

Turbulent Mixin_g_ Energy

dy w ' dy 9 S2 = 0 (87)

DIs si patipn Rate

dy = 0 (88)

3.2 INCOMPRESSIBLE APPLICATIONS

The Baseline model with the curvature correction term was first

applied to several incompressible flows (Table J).

Table 3- Incompressible Viscous Calculations
for Boundary Layers with Curvature

PLOW DATA SOURCE

• Low Reynolds number turbulent
flow past a cylinder

• Constant pressure flow over a
convex wall

• Separating flow over a 5
convex wall

• Rotating channel flow

Patel19 data.

So-Mellor 5 data; Meroney
correlation.

-So-Mellor15 data.

Johnston data.
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The most difficult test of all the incompressible cases

considered is low Reynolds number turbulent flow past a cylinder.

In addition to having streamline curvature and adverse pressure

gradient, the flow is dominated by viscous phenomena. Results

of the computation are shown in Figures 28-30. All computed

quantitites are in close agreement with the experimental data .
19of Patel. Computed and measured velocity profiles are com-

pared in Figure 28. The largest discrepancies are less than

10% throughout the flow. Even the predicted and measured sep-

aration points are reasonably close; the computed separation

occurs at circumferential angle c|>=1010 while separation was

observed to occur at <j>=110°. As shown in Figures 29 and 30,.

computed shape factor and momentum-thickness Reynolds number

differ from corresponding measured values by no more than 6%,

even as the flow nears separation.

Figures 31-33 exhibit computed and .measured flow properties for

flow over a convex wall with constant pressure and with adverse

pressure gradient. Figure 31 shows that computed and measured

skin friction are within a few percent. In the separating flow,

separation was observed between 5-50 and 5-83 feet (1.68 and

1.78 m) downstream of the leading edge, while the computation

indicates separation will occur a little farther downstream. As

seen from Figure 32, predicted shape factors show somewhat larger

discrepancies from the measured values; the largest discrepancy

is 12$. Finally, Figure 33 shows that computed and measured

velocity profiles differ by no more than 6/5.

The final incompressible application is to rotating channel

flow (Figures 3̂ -36). Figures 3^ and 35 show the contrast

between nonrotating and rotating channel velocity profiles.

Figure 36 presents the ratio of the rotating friction velocity,

UT, to the nonrotating friction velocity UT , for a range of

rotation numbers. The predictions are generally within 10% of

corresponding measurements.
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3.3 COMPRESSIBLE APPLICATIONS

As a final test of the theory, the Baseline model was applied

to two compressible flows (Table 4). Following Wilcox and

Table 4. Compressible Viscous Calculations
with Streamline Curvature

FLOW

• Macl} 2.5 flow with heat
transfer over a convex wall

• Mach 3.5 nearly adiabatic
flow over a concave wall

DATA SOURCE

22
Thomann data.

23Sturek-Danberg J data

21Alber, we introduce the specific turbulent dissipation rate,

ft, so that the boundary layer form of the compressible model

equations with the curvature modification are as follows.

Specific Turbulent Mixing Energy

2ft R3y (89)

Specific Turbulent Dissipation Rate

The quantities p and u denote density and molecular viscosity

(given by Sutherland's law), respectively.

The Baseline model was first applied to the Thomann flow using

a wall boundary condition on ft that simulates a smooth wall

(the case of actual interest). As a generalization of the



incompressible boundary condition (Equation 77), the wall

value of the dissipation rate is given by

-w — ,. (9.1)

where S is the universal function defined in Equations 78-80 .

and u is the molecular viscosity at the wall. Using a value

of S corresponding to a smooth wall (S of the order of 101*)

gave skin friction that was below the Hopkins-Inouye compres-

sible skin friction correlation by about 20%.. Also, for this

value of S, the Stanton number, S , was as much as 18$ too low
T/

^Figure 37). However, it was found that by simulating a rough

wall (S on the order of 10), good skin friction and Stanton

number distributions for the equilibrium portion of the boundary

layer were obtained as shown in Figures 37 and 38.

The necessity of simulating flow over a rough wall is not as

yet understood and is an area for future research. However,

by at least assuring good equilibrium solutions, it was pos-

sible to examine how the model behaves when the boundary layer

is disturbed by curvature and/or pressure gradient.

In the region where curvature begins, consistent with measure-

ments, the model predicts a 10$ reduction in Stanton number

(relative to the plane-wall value). However, the model fails

to predict the observed rapid decrease in S, beyond x=1.25 ft

(.38 m).• The discrepancy may be due to the fact that curva-

ture affects the heat transfer differently from the way it

affects skin friction.

The Sturek-Danberg calculation proceeded as did the Thomann

case. The appropriate large value of S resulted in skin fric-

tion as much as 19% fbo'wer than the Hopkins-Inouye skin friction
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correlation (Figure 39). Hence, as in the Thomann case, the

computation was performed with S=10. As shown in Figure 39,

the predicted cf is very close to the Hopkins-Inouye value, yet

is considerably higher than the measured values in the equil-

ibrium portion of the flow. However, the data are suspect in

this region since even Sturek and Danberg note that their

measuring techniques were only .accurate to within

The predicted overall decrease in surface shear stress is

consistent with the measurements although differences of about

20$ of scale are present. The discrepancies in the curved

region of the flow may also be caused by the inaccuracies in

the measurements so that this case does not provide a definitive

test of the theory.
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4. DISCUSSION

Perhaps the most important conclusion that can be drawn is that

the Baseline model is at a state of ..development where it can

be used for general engineering applications. In particular,

results of the viscous equilibrium-boundary-layer computations

in Section 2 show that the Baseline model is as accurate as

mixing-length theory where mixing-length theory is expected to

apply- Furthermore, because of the model's generality and

more-solid physical foundation, its range of applicability

extends far beyond that of mixing-length theory's. The model's

range of applicability includes flows with curved streamlines

and coordinate system rotation. Using the Baseline model,

excellent quantitative agreement between theory and experiment

has been obtained for effects of curvature and rotation on

incompressible boundary layers. Although more work remains to

be done for compressible boundary layer applications, results

for the two supersonic flows considered in Section 3 are also

encouraging.

Consistent with the project objective, the path is now cleared

for proceeding to analysis of streamline-curvaturev''and system-

rotation effects on turbulent boundary layers. Presumably,

RSE model deficiencies can now be eliminated by changes analo-

gous to those made to the Saffman model which resulted in the

Baseline model. Such changes should be made. Work with the

Baseline model should continue as well. That is, parallel

development of the RSE and Baseline models appears to hold the

most promise for yielding useful, accurate engineering tools

for predicting curvature/rotation effects.
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APPENDIX

As noted in the introduction, numerical solutions with the RSE

model were generated in this study. The model was applied to
"24

Bissonnette and MellorLs if l-owppast :- a .segmented .cylinder . "In

the Bissonnette-Mellor experiments, the forebody is stationary

and the aft body rotates at a constant angular velocity. The

fact that the pressure is not constant in the direction normal

to the surface ( - - ^ 0 ) was taken into account in the computations.ay

The computed mean flow properties and turbulence quantities are

shown in Figures A1-A7; experimental data of Bissonnette and

Mellor are included for comparison. As shown in Figure Al, pre-

dicted streamwise (6-r ) and azimuthal (cf ) skin-frictionJ-x J-z
coefficients are both about 20$ higher than measured. Similarly,
the various computed displacement and momentum thicknesses are
generally 20$ higher than measured (Figures A2 and A3). Fig-

ures A4-A7 present velocity and Reynolds stresses on the swirling

afterbody. The figures show poor agreement between experimental

and computed properties in almost every case. Inspection of the

streamwise velocity profile (Figure A4) shows that the worst

agreement is in the defect layer of the boundary layer. This

is consistent with the results obtained in analyzing Saffman-

model-predicted defect layer structure (see Subsection 2.1).

That is, examination of Figure Ai shows that the computed

streamwise velocity gradient, 9u/9y, is much larger than mea-

sured in the defect layer. Too strong a gradient results in

too much production in the various Reynolds stress equations,

and as a result the Reynolds stresses are overestimated. With

the exception of <-u'w'>, the Reynolds stress components are

overpredicted as can be seen in Figures A6 and A7.
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The large discrepancies between theory and experiment for the

rate of growth of the swirling boundary layer are directly

attributable to the excess production of turbulent energy.

High turbulent energy levels are synonymous with greater tur-

bulent mixing; because of the overpredicted mixing, the swirl-

ing boundary layer grows too quickly and hence the swirling

displacement thickness, 5*, and swirling angular momentum

thickness, 9 , are too large.
X Z

In summary, results of this computation lend further credence

to the claim that the problems plaguing the RSE formulation

have the same origin as the deficiencies of the Saffman model,
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