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ABSTRACT

An accurate method has been developed for predicting effects

of streamline curvature and coordinate system rotation on tur-
bulent boundary layers. A new two-equation model of turbulence
has been developed which serves as the basis of the study. In
developing -the new model, physical reasoning is combined with
singular perturbation methods tordeVélop a rational, physically-
based set of equations which are, on the one hand, as accurate
as mixing-length theory for equilibrium boundary layers and,

on the other hand, suitable for computing effects of curvature
and rotation. The equations are solved numerically for several
boundary layer flows over plane and curved surfaces. For incom-
pressible boundary layers, results of the computations are gen-
erally within 10% of corresponding experimental data. Somewhat
larger discrepancies are noted for compressible applications,
although the overall level of accuracy is obscured by uncertain-
ties in the experimental data. Results of the study lend further
confidence to the notion that curved streamline effects can be
accurately predicted with second-order closure of the turbulent-

flow equations of motion.
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NOTATION

DEFINITION
Constant in the law of the wall
Skin friction
Parameters in turbulence model equations
Specific turbulent mixing energy
Nondimensional mixing energy
Nondimensional streamfunction (Eq.129)
Roughness height
Reference length
Mach number
Static pressure

Production term in dissipation-rate
equation

Radius of curvature

Reynolds number based on plate length,
momentum thickness, displacement thickness

Turbulent Reynolds number
Surface-roughness function
Stanton number

Static temperature

Vélocity component in x direction

Boundary-layer-edge velocity, freestream
velocity

Velocity component in y direction
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NOTATION (continued)

DEFINITION
Nondimensional dissipation rate
Coordinate lying along a solid body
Coordinate normal to a solid body
Parameters in turbulence model equations
Values of a,a¥ for fully turbulent flows

Similarity parameter in defect-layer
solution

Parameters in turbulence model equations

‘Similarity parameter in defect-layer

solution

Boundary-layer thickness, displacement
thickness

Kinematic eddy viscosity

Dissipation function

Similarity variable for the defect layer
Momentum thickness

Karman constant

Parameter in turbulence model equations
Moleqular viscosity

Kinematic viscosity

Similarity variable for the defect layer
Fluid mass density

Parameters in turbulence model equations

Similarity parameter in defect-layer
solution :
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NOTATION (con¢luded.)

DEFINITION

Angle from centerline for cylindrical
body

Parameter in turbulence model equations:
Streamfunction

Constant in initial profiles

Turbulent dissipation rate

Similarity parameter in defect-layer
solution

Specific turbulent dissipation rate;
angular velocity of a rotating coordinate
system

Turbulent mixing length

Boundary-layer edge

Body surface
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1. INTRODUCTION

In a prior study, Wilcox and Chambers1 found that the magnitude
of streamline curvature effects on turbulent boundary layers

can be predicted reasonably well with second order closure of

the turbulent flow equations of motion. The study showed that
streamline curvature and coordinate-system rotation effects can
be understood on a fairly fundamental basis only by considering
the interactions of the various components of the Reynolds stress
tensor and the mean flow. Hence, most of the effort focused upon
developing a ‘turbulence model based on the Reynolds stress equa-
tion (RSE). The most important result of the Wilcox-Chambers
study is the straightforward physical interpretation of stream-
line-curvature effects inferred from the analysis. As a brief
review, the RSE model predicts that for boundary-layer flows the
following things are true:

1. In equilibrium the Reynolds shear stress is
proportional to the normal Reynolds stress perpen-

dicular to the plane of shear, <v'?>,

2, <v'2> is strongly affected by streamline curvature

and system rotation.

3. The large changes in <v'?> occur mainly because of
RSE transformation properties and pressure-strain

correlation terms.

While other researchers have suggested that <y'?> plays a key
role in curved-surface boundary layers, no one previously demon-
strated that curvature effects can be accurately predicted by

accounting for changes in <v'2%> caused by curvature.



As a corollary result of the study, understanding of curvature/
rotation effects gained from analyzing the RSE model 1led to
improvement of the  -simpler Saffman2ﬁtweeqquaﬁiontbubhaienee —
model. Because of its inherent simpliciﬁy (relative to the RSE
model), the two-equation model appears to have the best potential

for serving as an engineering design tool.

While these developments are most encouraging, results of numer-
ical applications of the RSE model and the Saffman two-equation
model leave something to be desired. For example, Figure 1 com-
pareg§ computed and measured' Qélocity.profiies for two equil-
ibrium boundary layers with adverse pressure gradi#ents. . Both

the RSE and Saffman models yield inflected profiles in the
defect-layer portion of the boundary layer. Since for equill-
ibrium boundary layers the RSE model reduces almost identically
to the Saffman model, it is unsurprising that both models yield
the same curious inflections. With the models performing so
poorly for equilibrium boundary layers, it is difficult to gen-
erate much confidence in model predictions for such complicated
effects as those of curvature and rotation. In the present
study, application of the RSE model to flow over a segmented
spinning body (see Appendix) further demonstrates the RSE model's

deficiencies in the defect layer.

The objective of the present study has been to identify and
eliminate the source of inaccuracy in the Saffman model. Since
the Saffman model serves as the foundation upon which the RSE
model is built, elimination of deficiencies in the Saffman model
should lead to improvement of the RSE model. The study consists
of two segments. The first segment (Section 2) focuses primar-
ily upon two-equation-model defect-layer structure and equil-
ibrium (plane-surface) boundary-layer applications; a new baseline
two-equation model is developed. Then, in Section 3, with suit-
able curvature-rotation modifications the baseline model equations
are solved numerically for several boundary-layer flows over curved

surfaces. Section 4 discusses study results.
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2. DEVELOPING A BASELINE MODEL

‘This section traces the evolution of a new two-equation model

of turbulence. First, Saffman-model-predicted defect-layer

stnucture for a flat-plate boundary layer (FPBL) is analyzed —te
using singular-perturbation techniques. Next, a new model is
postulated and 1s shown to yield defect-layer properties which

are in much closer agreement with measurements than those of

the Saffman model. The high Reynolds-number form of the

Saffman model, the new model, and two other popular two-equation
models are then compared by computing several boundary layers.
Finally, with appropriate viscous modificationsj the new model

is applied to equilibrium boundary-layer flows.

2.1 PERTURBATION ANALYSIS OF THE DEFECT LAYER

As discussed in the Introduction, the problems in Saffman and
RSE model solutions apparently originate in the defect layer.
In order to determine the nature of the models' deficiencies,

a singular-perturbation analysis of Saffmanfmodel—pyedicted

+defect-layer structure has been conducted for a zero pres- o

sure gradient FPBL. As a first step in the analysis, the e
Saffman equations are suitably scaled and simplified for

the defect layer. Then numerical solutidné are prééeﬂ%éﬁAiﬁ

which the boundary-layer edge conditions are parametrically

varied. Finally, it is found that the Saffman model predicts

a too-large peak value of the turbulent length scale, %.

2.1.1 Formal Expansion Procedure

The Saffman model equations of motion fof incompressible two-

dimensional boundary layers are

T Viscous modifications are changes required to add molecular
viscosity to the momentum and model equations, where appropriate,
to permit integrating the equations through the viscous sublayer.
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%%-+ %% =0 o (1)

Bl - v He %) @
.u%% + vg% = [a*l—g—;—l - p¥ w]e + %[(\)+o*%)g—;-] (3)
u%%z-ﬁ v %%2 = [a |§—§'| - B@]wz + %[(V+§%""§;§2] (#)

where u and v are velocity components in the streamwise, x, and
surface-normal, ¥y, directions, respectively; Ue is the boundary—
layer-edge velocity; v is kinematic viscosity and the eddy
viscosity is the ratio of turbulent mixing energy, e, and
turbulent dissipation rate, w. The six empirical parameters

5

a, o¥, B, B¥, o, o* are given by

c = oc¥ = 0.50
B =0.15, 8% = 0.09
a* = 0.30 (5)

a = B/a¥ - lUok? = 0.1638 for «k = 0.41
where k is Karman's constant.

Equations 1-5 must be solved subject to boundary conditions at
the boundary-layer edge (y>~) and at the surface (y+0). In ﬁhe
defect layer, we anticipate that the eddy viscosity is propor-.
tional to Ueé* where &% is displécement thickness, wherefore

vV \Y 1

- = (6)
e/w U 6% Resx :




where Re, denotes Reynolds number based on §*. Since Regyx >> 1
for turbulent boundary layers, molecular viscosity will be neg-
ligible in the defect layer. Consequently, defect-layer solu-
tions must be subjected to boundary conditions as y+0 which are
valid at the outer edge of the viscous sublayer3 namely, the law. ;
of the wall. As shown by Saffman and Wilcox,” this means ' T

u , T
oy Ky
ug
e+a—* as y > 0 | (7
w o
o¥ky

Equations 7 are valid on the sublayer scale as_uTy/v%w.
Formally we are matching the outer (defect-layer) solution

to the inner (sublayer) solution.

Finally, at the boundary-layer edge we impose the values of

u, e and w, viz:

u =_Ue

= o 8
e e, as y - , (8)
W= W

Following Bush and Fendellf?(wgtintgggugeyphgcf@éigwi@gt@onv

dimengienainauantitiess nondimensional quantities:
RE

e .
© (9)

N, e S ey
iy gy By
(o3
*
£
N
(]

=
Ll




where L is a }ength typical of the distance from the plate
leading edge. Note that the eddy viscosity becomes

€ - ¥ 2
w Ue(S W (10)

and that the quantity UeG*/uT is the Clauser thickness. It is
convenient to work with the streamfunction, ¢, defined by

au
l = .8..‘2 . _Y__ = - _a.lk ._1_ ___._.e_
U, "3y T [ax * U_ dx w] (11)

Finally, we introduce the scaled streamfunction, F, given by

5% Y | (12)

B o=

d|c
A

e

In terms of the transformatioh defined in Equations 9-12, the

equations of motion become (neglecting molecular viscosity):

Momentum

§%7L )30 LW an? 52)3m2 ~ B0 agen
du 2
—]—'— _e - E o=
+ g E [ an ]~ Go (13)

Mixing Energy
u2/Uu?
/U) [ E___E_]+(F+8F dE  JF 3E
S*¥/L W3 3n

n
 dur(e)| 2
O\ TE

3
Qo
A9

du
e oF _
g (6*/L>w —-ﬁ—e— —_— 'a—n‘} -E = 0 (lu)




Dissipation Rate
zu%/U2> - A
/e gawfj 9F\ 3W? - 3F aw?
<‘_‘a*/L an["wean + (i + 52 )5 an 3E

1 1 e 1 d&#%) oF
- B(W)W— 2<K-f - 3 ?)T} W2 =0 (15)

‘where the quantity m is defined by

F e, ¥
==>1 , E»>— , W~ as n > o (16)
oan Ué Ue :

2 u_/U - u?/u? - u2/u? ‘
gn}: > TKn . s E Td* S ., W~ 'dT*Kne as n >0 (17)

To solve these equations, we assume that the velocity deviates
only slightly from the freestream velocity which is expressed
by weiting a perturbation expansion in powers of uT/Ue<< 1 as

follows:

u, W\ ,
F = n—uU——Fl+oU— (18)

e e

Similarly, the scaling for E and W follows from Equationjl? S0

that we write

1 Up us\ o |
Ve e
W A= JL.ui'w + 0 El.s' (ZO);MM;M
a¥ gZ Yo \T, T



Then introducing
uy -E aFl/Sn B : (21)

and assuming ui/U;*-ﬁ*/L, the momentum equation becomes, to

leading order

3 {Eo M, mer/L } _ [3 Te | 1 daés] 5% /L
. 1 S*/L

on | W, on " uz/uz U, 9 T 8F dt luzuz ™1
S * ou :
uz/Ué 0g

Equation 22 will have self-similar solutions (i.e.; indepéndent,
of &) provided the following four quantities are independent
of &: ‘

Gp = jz//ULz 'Sl‘f g% - 'u_jg% N 52_‘ g_f( : (23)
T € T £ \
s#sn 1 Ve _ sx o e g% gy ]
Bp = "3 2 T ac _"_?Ue dx T dx ‘ (24)
uTVUe e u w
_ 1 &*/L 1 6% 2 §*
o, = 53—t—"— == — = = — (25)
T U 2gul/ul 2 X cp Xep
2
b = E S¥/L ;L_ffl =31 EQ 8* duy = 6% I (26)
T ~ 2 ui/Ué u_ dg 2 u% u, dx cpu, dx

where Cp is skin friction, T is shear stress at the wall, and

p is pressure. Substituting Equations 23-26 into Equation 22

yields



5 |Bo Y P o -auy
anjw, B * (@p-2Bp-2ep)mu | o+ (380 - agJuy Froop2e57 @)

Similarly, the EO equation simplifies to the following:

EO oE :
I ls% _© _O - - ;
o & + (aT 2BT 2wT)rﬁEo

+ {u*

aul . ' BEO
Rl Wy = (g = 2Bp+ 200) 0 B = Op 28 55 (28)

~

d

while the equation for wO'becomes:

A E_" 'a.wg : . ,
| W, Bt (g 2Bp = 2up) 0l

du, 8 , , - aw2
an |~ a¥ W, t (QTT-6wT) Wo = op 28 RE ,(29)

o

As shown by Bush andFendell,6 v : -

L4

wp = 0(1) as Regy » =

while the momentum integral equation shows that if self-similar

solutions ‘exist, a, and BT are related as follows:

T
O = 1] +’3BT

. Hence, assuming that O and BT are constant, the defect-layer
equations are: '

10



Momentum
E du du
dj_o 1 1 4 = ‘

Mixing Energy

4 E, dE_ dEQ. du,
- |lg¥ 2“1} + + —_— ¥l ——} - =0
an |° " (1+8p)n & to an WIlE, = 0. (31)
Dissipation Rate
E_dw2 dw? lau,
d 0O o 0 4 1 B 2 :
— R + [R— —_—| - = =
dn[wwo dn] (1+85)n an I ¥ Wyt 2(1+28n) WQ 0 (32)
which must be solved subject to
o¥e - W O _
e : 20.% e .
u; > 0., EO - 2 s WO T U as nn > ® (33)
“r f e
au - .
1, 11 .4 . 3 Al
5n " TR EE »11 5, MW, > o a8 n > 0 (34)

2.1.2 Numerical Solution of the Defect—Layér Equations

Equations 30-34 were solved using an implicit, second-order
accurate, time-marching, finite-difference code. Only the zero-
pressure-gradient case (BT=O) was considered. To achieve con-
verged solutions, we found it necessary to impose the boundary-
layer-edge conditions at a sharp turbulent—nonturbulent inter-
face.+ This is unsurprising as Saffmaﬂaihas shown that the model
equations predict the existence of such interfaces when e and w
approach zero in the freestream. The intefface structure remains

uhaltered when e and w have finite values in the freestream. That

1~TBe. sharpness manifests itself as a discontinuity in du/3y and
. 0w/ 3y . )

11



is, as a generalization of the analysis by Saffman, upon approach-
ing a turbulent-nonturbulent interface (y=8) from the turbulent
side, the solution behavior is

e e, v (6 -y) |
W= W, v (6 -y) as y > ¢

u-U, v (6 -y)
pfovided c=c¥%=1/2.

Several computations were done to determine solution sensitivity
to €gs Wgo o, and o*¥, PFigure 2 shows velocity profiles for a
set of computations in which solution sensitivity to e, was
examined. In the computations, the following experimental
boundary_condition_was implemented in an attempt to eliminate

solution dependence upon Wy ?

”ﬂ-=.0.at y =28 (35)

y

where

©
1

As shown in the figure, the model predicts only a very weak
“wake" component. The computed velocity profile deviates sig-
nificantly from Coles' composite "wall<wake" profile. Values
of a*ee/ui less than 0101 (corresponding to a turbulence inten-
sity of about 0.3%) have little effect on the solution. Larger
values of a*ee/ui cause the solution to deviate from Coles' |
profile even more than the ee+0 solutions. Since Coles' pro-
file provides a fairly accurate representation of experimental
data, the model apparently is quite inaccurate in the defect
layer. . ' '

12
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No combination of o, o¥, €q> and w, was found which would give
more accurate defect-layer velocity profiles. The source of

the difficulty can be seen by inspection of the computed length-
scale, &, profile. In terms of @, the eddy viscosity, €e=e/uw,

can be written as
e = et/?y | (37)

As shown by Ng and Spalding% (who use Equation 37), &//a¥
should be nearly equal to the standard mixing length provided
e is close to the turbuléent energy, as it is for the Saffman-
model solution. Figure 3 compares the computed-length-scale
profile with the mixing-length profile deduced by Klebanoff.8
The peak value of the mixing length is between 0.096 and 0.106.
By contrast, the peak value of /v o¥ predicted by the Saffman
model is about 0.178.

Further.numerical'éxperiméhtation Shéﬁéamfﬁaf the‘péak Value
of 2/6 can be suppressed somewhat by using extremely large
values of we; This is generally accompanied by severe numer-
ical difficulties and by little improvement in the velocity
profiles. A second means for reducing the peak value of 2/¢
is to reduce the value of o; the reduction is slight, however.
The value of o¥ has virtually no effect on (2/6)maX although

the value of 8 depends strongly upon c¥.

Hence, the Saffman model inherently predicts too large of a
value of (2/6)maX in the defect layer. Consequently, since e
is computed with reasonable accuracy, the eddy viscosity 1is
overestimated as can be seen by noting that the Saffman model

typically predicts

€ .
FeE v 0.035 a (38).
. .

14
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~a value more than double. that assumed (0.0168) in the mixing-
length/eddy-viscosity formulatioh. The 1arge peak values of

2/6 and e/UeS* predicted by the Saffman model cause the curious
inflected velocity profiles we have so often obtained with the
model (see Figure 1). Consistent with the defect-layer analysié
presehted abdve, accurate skin friction, shape factor, etc., can
only be obtained by using unreasonably 1argekva1ues of w'at the
boundary-layer edge with an attendant distortion of the velocity

profiles.

2.2 A NEW TWO-EQUATION TURBULENCE MODEL

After obtaining numerical solutions to the defect layer equations
and7discovering the exaggerated peak value of &/6, the next logi-
cal step was to find the specific cause of the 1naccuracy In

order to do this, we examined the Jones—Launder9 and Ng-Spalding
turbulence models, both of which predict more-realistic peak Values'
of 2/6. As shown by Wilcox and Cha’mbers,1 these two models can be

written in terms of the Saffman Variables (e,w) as follows:
- o - , , ,
Jones-Launder

7

dw? _ du _ 3 '_é_[ ‘ QQZ] L
3t - (3 ) w Bw® + omsay -

3y e ay e
w? 3 de
+2(°"°*)??'T§['§§] (39).
Ng-Spalding
: 2
dw? 3u - B3 jL[ Qﬂf]
3t = cw(ay) w Bw” + 3y g€ 3y
31\ 2\° |
- Gf X 3 X e 3
6m(ay wd + 2Cw<y> 0. | ” (40).



L de 92

If we (&) assume that c ay<<'§g,

to (o-o¥*) in the Jones-Launder model, and (&) denote the produc-

(P) ignore the term proportional

tion term by Pw, we can write the following single equation which
approximates the three (including Saffman's) models:

dw?  _ _ a3 _3_[ m»i]_‘ IR '
at Py = Bu’ t 5uloe Sy Xc<3y>“’ (H1)

where

s Saffman model

, Jones-Launder model

CW[(‘ 6 |
6._2.3-23, ST Ng-Spalding model (42)

Equations 41 and 42 show that the Jones-Launder and Ng-Spalding

i
1}

- models have an additional dissipation term proportional to
w?(9%/3y)2. This term has the effect of augmenting w? diséipa—
tlon near a surface where 34%/3y is largest; by contrast, in the
defect-layer where 3%/3y is smallest, the net dissipation of w?
will be smaller than near the surface. The effect of this term
is hence consistent with the notion that the most intense dis-
sipation occurs in the smallest eddies which appear nearest a

- 801id boundary. In the defect layer only large eddies are
Present wherefore dissipation will be smaller than near the
§urface.

Because the Jones-Launder and Ng-Spalding models predict more-
realistic peak values of &/6, the possibility exists that the
Saffman-model might be improved if such a term is added to the
w? equation. A value for X can be chosen by noting that, in
the wall layer ' '

N
<%

) = a¥x® A (43)

17



Hence with c =702, k=0.41, a¥=0.3, o=1, we obtain

6 - 23”_ (Q/Y)s
O (38/9y)?2

It thus appears that X should lie between about 2.0 and 2.5.

=6 -2

c a¥?g
W

g

(44)

With such a modification,tWe pastmiateothe fioklowingenewrbaseline
medekpforsintempressibielboundary layers, "

BadéeTiné Medéhan Model

U 9
u 5% v 5§ {a»lay! B‘ w}e + 8y’[<v.+0

2 2 : g
qdw” , 8w =_{u|%§|-.[B+-Xc(82/3y)2]w§uﬂ +

Q
*
1l

o = B/a*

Figure U4 presents the computed £/8 profile for x=2.

= 1/2

g* = 0.09
0.3

- (4-x)ox?

The peak

(45)

y] (46)

(47)

value of &/8 is much closer to the Kgebanoff mixing-length data
than that obtained with the Saffman model.

profiles are presented in Figure 5.

Computed velocity
As shown,

excellent agree-

ment between the numerical profiles and Coles' wall-wake profile

is obtained. Additionally, the mixing energy is in somewhat
closer agreement with the measured RMS vertical velocity fluc-
tuation data of Klebanofflo (see Figure 6).

only slight changes in computed profiles.

18
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Figure 4. Comparison of computed length-scale
profiles with mixing-length profiles
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It is possible to obtain skin friction from the perturbation
solution. Matching demands that as n+0, the defect-layer solu-
tion must equal the limiting form of the sublayer solution as
.uTy/v+w. Now, inspection of‘the Velocity profites in Figures 2
and 5.shows that

1 .
u-*Ue-url:—E-logn+ A] as n >0 (48)

where A is a constant which cén only be determined as part of
the solution (note that Bush and Fendell mistakenly demand that
A=0). 1In terms of the sublayer variables, Equation 48 can be
rewritten as |
u 1 Uy {Pﬁ;llo Re -A} as + 0 (]
E_)—K— 4 Og Regx n : .§L¥9)

log —— a Tk

Finally, from the sublayer solution,

uy S uuyy
u 1 T T
ET— >~ Zlog—— +B as —|— > (50)

where B=5.5 is the standard constant in the law of the wall.
Matching yields the following condition:

U
55 T B4 A+ clogReg, | (51)

Ur

wherefore the relation between skin friction, cf==2ui/U; and

Reg 4 becomes
L= L log Re 2 4 A4B log Re + (A*B)* (52)
Cp ox?2 (log §%) & & o ¥ 2

Figure 7 compares skin friction for x=0 and x=2 with the Hopkins-
. Inouye correlation,11 in which we have assumed the shape factor

to be 1.30 wherefore
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CL = 3.221 (log Regye)®+# 9.215 log Regy + 3.373;
f ’ X
Hopkins-Inouye (53)

As shown in the figure, .the Saffman-model Cp is generally about
10% higher than the Hopkins-Inouye value. This is consistent
with previously computed values of cp- The Baséltdemmddalwwith
X=2 predicts values of Cep much closer to the Hopkins-Inouye
values. It hence appears that the proposed revision holds
promise for significantly improving Saffman-model accuracy.

2.3 .TWO—EQUATION MODEL COMPARISON

To further test the Baseline mddel, a series of boundary-layer
computations were performed. Since the objective of this study
was to establish the most solid foundation possible for future
research with the RSE model, we left the possibility open that

a formulation other than the Baseline or Saffman models might
be more accurate. Hence, a comparisbn of the'Baseliné, Saffman,
Jones—Launder, and Ng-Spalding fturbulence models was conducted.
There 1s no need to consider additional models as all current

two-equation models are variants of these four.

This comparison provides an objective basis for determining
which of these models is most acéurate'overall. While previous
comparisons of twoéeQuation formulations have been made,l2’13
no one has made more than a cursory examination. Until now, no
one has presented parallel numerical solutions for the various

models. In this study, the models were tested under exactly the

same conditions using the same numerics, boundary conditions,

and starting profiles. Hence from the results of these compu-

tations, it is possible to determine precisely how well the
models perform relative to each other and which model should
serve és thé basis for further ahalysis of streamline curvature/
system rotation effects on turbulent boundary layers. Table 1
lists the flows considered and the data sources used.
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Table 1. Flows Computed in Two-Equation-
Model Comparisons

FLOW DATA SOURCES

e Flat Plate Boundary Layer Hopkins—Inouyell skin friction
correlation; Klebanoffil fiat
plate data; Wieghardtl¥ flat

plate data.
e Bradshaw Adverse Pressure Bradshaw3 da’ca;-ColeS'll‘l ver- | 7
-Gradient sion of Bradshaw data.
e Aridersen Adverse Pressure Andersen% data. -
Gradient
o Lﬁdwieg-Tillmanh Favorable ‘Ludwie —Tillmannlu data;
. Pressure Gradient Coles' version of Ludwieg-

Tillmann Qata.

e So-Mellor Constant Pressure So—Mellor15 data; Meroney16

Flow over convex wall correlation.

Before proceeding to results of the computations, Subsections 2.3.1 o
through 2.3.3 present (a) the equations which constitute the vari- e
ous models, (b) boundary conditions used in the computations, and

(¢) initial profiles.

2.3.1 The Model Equations

The inviscid-incompressible forms (i.e., negligible Mach number
and molecular viscosity) of the model equations were solved. The
inviscid (i.e., high Reynolds number) forms were chosen because
of the nonuniversality in the way viscous effects are included

in the various turbulence.models. In this way we help eliminate
any préferential treatment of a given model. For all models,

the conservation of mass and momentum equations are identical,

viz,
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Mass Conservation

ou OV _
BX+W_O (54)
Momentum Conservation
du , Lou _ ldp . 9 [ Bu] ‘
LY+ y22 = =X ¢ 2
ugy * Vay T 3y 3y (55)

The two model equations for each formulation are as follows.

Saffman Model

Turbulent Mixing Energy

de = _ g* _3_[*'3_6_
uss + ay [ | fM_B ]e + 5y g €3y (56)
Dissipation Rate

dw? _3_w=[ Caulw? + 2 [gede’

ug + Vay | | Bw ] + By'EEBy ] (57)

The values of the constants are

.09 «a B/a¥-lok? =.1638 °
.50 a¥= .30

.15 R¥
og=.50 g*

while the ratio of e and w is the kinematic eddy viscosity, €,
i.e.,

£ = e/w : (58)

The Baseline model differs from the Saffman model only by the
addition of one term to the dissipation rate equation as
explained in the previous section.
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Baseline Model

Turbulent Mixing Energy -

| ug—)e( + v>-3—;— = _[a*]'g—;l - B*w]e + ’—a-—_[o*sa—e] (59)

Dissipation Rate

dw? | dw? _ du 2, 0 [ _dw? 3L 3

Note that x has been set equal to 2. All constants are the same
as in the Saffman model except for o which is now given by the.

following'expression:

o = B/d*-—2ck2

The kinematic eddy viscosity is given by Equation 58.

As noted earlier, similar to the Saffman and Baseline models, the
Jones-Launder model uses turbulent mixing energy for one "turbu-
lence density"; the second tﬁrbulencé,density is the dissipation

function, €3°

Jones-Launder

Turbulent'Mixing Energy

e, de o (ou) __ L a e dey *
Usx T Vay ‘-E(ay> €d*"&y(o 8y> ~ (61)

'Dissipation Function

de e £ __.2 5 og
—d y oa o da (e &d,, 8 (e °Fa  (62)
dx oy & “\By c2ee ﬁy\ce_ﬁy ,
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where

c,=1.55, c,=2, 0_=1.0, o_=1.3
and the kinematic eddy viscosity takes on the following form:

e = .09 ez/ed o | (63)

Finally, the Ng-Spalding model uses turbulent mixing energy and
turbulent length scale.

Ng-Spalding

Turhulent Mixing Energy

se , ,de _ fdu) _ e¥ 3 /e 3e
Yax * Vay _ '€<ay> °p & ¥ oy (0 y) (64)

Length Scale ' - : .

- 2

3 kR - du _ 2\ N\, 3 [e 3

uax(ez)ﬂ-vay(e&) Cp2€<ay> Gﬁn+cw_y)>e * 3y oZay(el) (65)
where

ep=.09, ¢ =.98, c_=.059, c =702, o =1.0, o0,=1.0

and

e = ell2yg _ ' - (66)

All four models use a turbulent mixing energy equation. Com-~
monly, e is assumed to be the turbulent kinetic energy.

However, Wilcox and Chambers have shownl that more appropfiately'
e should be interpreted as 9/l<y 12> Where v' is the fluctuating
component of the velocity component normal to the surface. The
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above fact is essential when determining such things as
starting profiles. )

The second turbulence parameter differs for the Saffman and
Baseline (w), Ng-Spalding (%), and Jones-Launder (ed) models.
The eddy viscosity, €, is used in the same manner in each model
as an integral part of approximating the Reynolds shear stress.
Hence the various expressions for ¢ can be equated and rela-
tions between w, €45 and % can be derived. It is necessary to
have such relations in order to impose the same boundary layer
edge boundary conditions and initial profiles for each of the
models. In terms of e and %, the dissipation rate and dissipa-

tion function are
wzg;F“e;{Z}jZ;/% ‘ (67)
and

€43 09 %¢¥2/2 | | (68)
In addition to comparing the four models, results of the compu-
tations yieid two important conclusions about all the models.
One, accurate starting profiles can be obtained by knowing only
the mean velocity profile and the Reynolds shear stress profile
at the starting location. Two, the models are not sensitive to
either initial e and £ profiles or to the boundary layer edge
boundary conditions on e and % as long as reasonable values

are used.

2.3.2 Boundary Conditions

Since the inviscid forms of the four models are considered, it
is not possible to integrate through the viscous sublayer.
Hence, it is necessary to assume that the sublayer has zero
thickness and then match to the law of the wall. A singular
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perturbation solution of the model equations, valid as y-0,
yields the propér'bdundary-conditions.‘ Such a perturbation
solution (valid for boundary 1ayérs with and without pressure
~gradient) for all four models is listed below.

u_y
us 1 T
a;- = |<ln 5 +B c
e = uZ/a¥ (69
9 = ‘/a* Ky‘

The quantity u, is the friction velocity, k is Karman's con-
stant, o¥* is the constant in the Saffman formulation and B_is'
the constant in the law of the wall. 1In all calculations, the
constant B was held fixed at 5.5.

The boundary conditions in Equation 69 must be applied close to
the surface, viz, at least closer than a yt (defined as uTy/v)
of 20 and preferably at a y+ of about 10. Applying the condi-
tions closer than y+ of 10 made little difference while apply-
ing them above 20 significantly affected the solutions. On
first inspection, it may seem inaccuraﬁe to apply the boundary
conditions so close to the surface that the iaw of the wall does
not actually hold (i.e., y+ﬂs30), However, Equations 69 are
theuvrigoroususodutiontto theiinvdscidemomentumaéquationvas, y
approaches 0. That is, by assuming that the sublayer has neg-
ligible thickness, Equations 69 are the singular perturbation
solutions for the various models and are the appropriate
boundary conditions in the 1limit as y approaches 0.

The perturbation analysis of the defect layer described in Sub-
sections 2.1 and 2.2 indicates the appropriate boundary-layer-
edge value of the turbulent mixing energy. The analysis shows
that a value of e corfesponding to d*e/u§= .01 is the largest

- value consistent with the equations that yields accurate defect
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layer velocity profiles; using smaller values of e-make little
difference. Since the larger value is somewhat eastier to handle

numerically, all computations were performed with a*e/uié .01.

Because the model equations predict existence of a sharp turbu-
lent-nonturbulent interface at the boundary-layer edge, imposing
92/3y = 0 (Equation 35) proves to bé very difficult. Hence,-con— .
sistent with mixing-length approximations, a value of 2//5?6 = .09

at the boundary layer edge was impbsed. Varying the edge value

of &//QPG over the'range'of .06 to .12 made little difference

in the numerical solutions. Hence, an important conclusion is

that the models are not inordinately sensitive to the edge values

of e and %.

2.3.3 Initial Profiles

Prior to this study, determining reliable fnitial profiles for
the turbulence quantitiészwas always an area of uncertainty.
As will now be demonstrated, this uncertainty has been eliminated.

Starting profiles for all models are most conveniently formulated
in terms of the length scale, %; Equations 6% and 68 are then
used to determine w and €q° Noting that e is interpreted as
9/U4<v'2>, starting profiles can be easily obtained if <v'?>,
<=u'v'>, and u data are available at the starting location.

That is, e can be determined directly from the <v'2> data while

2 can be found from the following equation

= 1/2 3_u= ity
g g 3y <=u'v'> (70}
Howéver, such complete information is not always available.
Neverthéless,_good profiles can still be determined with only
<gu¥v!>zanduuddatazatithesstartingldocation. TThisiis 'done using

the following procedure.
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First, it is assumed that an arbitrary e starting profile can
be written as

(71)

2
e = Yo ey,

wheré Y is a constant to be determined and ©FPRL is the high-
Reynolds—-number FPBL e profile.+ From empirical observation,
this is a good approximation for equilibrium boundary layers.
The FPBL 9/U<v'2> profile can be approximated by

= _;re_ cos? (g%) (72)

Next it is noted that as y=0, e*>KU_ Y. Since € also equéls
eY29 . any augmentation in the e profile must be reflected in
the £ profile as well. Therefore, € can be rewritten as

12 Y1y

€ = Y Cpppp, ° FPBL

so that we must approximate the 2 profile as

‘ ] .
8= ¥ fppor (73)
FPBL is the high Réynolds'number FPBL'length scale which

empirically has been found to have the following character:

where &

2 (74)

k/o¥' y y < .098/k
FPBL

.09v/a¥s -y > .0968/«

Therefore it is only necessary to determine the value of ¥ for
éach particular flow. It is known that across a FPBL, <=u'v'>/
9/4<v'?>=~0.3. This implies that the <-u'v'> and <v'2?> profiles

are similar. It is possible that this is nearly the case for

T Note that Equation 71 fails to satisfy the boundary condition
e+u?/a* as y~0. Experience has shown that the computations correct
this error in a reasonably short distance.
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other flows. If this 1s indeed true, then it is a straight-
forward operation to find ¥. If the <-u'v'> and <v'2> profiles
are similar, then the ratio of the maximum value to the wall
value is the same for each profile. This ratio has the value Y32
- (see Figure 8).

This procedure was studied in great detail for the three cases
for which extensive data are available, viz, Andersen's adverse
pressure gradient flow, Bradshaw's adverse pressure gradient

flow, and FPBL flow. For example, in the Andersen case, only

< -u'v'> data are available at the initial location; x=2 f£+(.61 m).
However, <—u'v'>/@/4<v'2>$¥OJ26 almost uniformly for y/& < 3/4 at
x=6 ft (1.83 m). Hence,Athe profiles were ‘assumed nearly similar
at the stafting location, x=2 ft (.61 m). The ratio of the maxi-
mum value of <-u'v'> to the sufface shea? stress at x=2 ft (.61 m)
is 1.5. - The e and & profiles were then generated using ¥2=1.5.
As é check on this procedure, we noted that Andersen also lists
mixing—length profiles at x=2 ft (.61 m). The'inferred values of
2 are compared with ﬁhe mixing-length data in Figure 9; agreement

is excellent.

Sufficient. data are available to directly obtain e and % profiles
for the Bradshaw adverse pressure gradient flow. Using ¥=1 gives
a length scale profile close to the Bradshaw data with the excep-
tion of the measured decrease in & hear the boundary layer edge
as shown in Figure 10. The Bradshaw case was run both with the
actual 2 profile and with the profile coristructed with ¥=1;
results differed only slightly. Figure 11 compares the initial e
profile constriucted with ¥=1 with experimental data; the figure
shows that the cos? fit is quite accurate.

The % profile used in the FPBL computations is shown in Figure 12.

This profile does not quite coincide with the one constructed with -
¥=1. The difference occurs because the FPBL flow was initiated
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to determine VY.
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INFERRED PROFILE; ¥2=1.5

o] ANDERSEN DATA - MIXING LENGTH

y/8

Figure 9. Comparison of inferred and measured initial
: mixing length profiles for the Andersen adverse
pressure gradient flow; x=2 ft (.61 m).
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Figure 10. Initial length scale proflile for the Bradshaw
adverse-pressure-gradient flow; x=2 ft<(.61 m).
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s

at a very low Reyndlds number; hence the peak length scale had

to be enhanced to be consistent with empirical obserVations for

low Reynolds number flows. The FPBL bases were also computed

with a profile using W=1; a transient was preéent in -the early

part of the computation but quickly settled out. The standard

FPBL e profile defiﬂed in Equation 72 was used in both runs. - . —+~

In summary, by using both the inferred and actual 2 profiles,
we have shown that the computations are not overly sensitive
to the starting profiles aé long as a reaSonéble peak length
scale is ‘used. Hence, the starting profiles defined by Equa—
tions 71-74 are suitable for equilibrium boundary layers.
Simple FPBL profiles (¥=1) were used for both the Ludwieg-

‘Tillmann and So-Mellor flows.

2.3.4 Computations

As noted éariier;rn;%h135Subsectién;hbhéaSaﬁﬁm@niaBaseline,'Ng¥~w*%
Spalding, and Jones-Launder turbulence models were applied to

the following five flows: (1) FPBL flow; (2) Bradshaw adverse
pressure‘gradienﬁ flow; (3) Andersen adverse pressure gradient
flow; (4) Ludwieg-Tillmann favorable pressure gradient flow;

(5) So-Mellor constantvpressure flow over a convex wall. The

results of these computations are shown in Figures 13-20.

All of the models are accurate for FPBL flow. Computed proper-
ties for the Baseline, ﬁg—Spalding, and Jones-Launder models
agree closely with measurements, while Saffman-model predictions
generally differ from corresponding data by about 10%. The
Baseline model yields a velocity profile iﬁ linear coordinates

which agrees most closely with experimental data (see Figure 13).
The Baseiine'and Ng-Spalding models yield the closest agreement

bétweeh computed and measured properties for both adverse pres-
sure gradient flows, whereas Jones-Launder-model and Saffman-model
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Figure 13. Comparison of computed and measured flow proﬁerties
for flat-plate boundary-layer flow; - " Baseline,
—.—3Saffman, —-- - Jones-Launder and Ng-Spalding.
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Figufe T4. Comparison of computed and measured flow properties
for the Bradshaw adverse-pressure-gradient flow;
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—-—Jones-Launder. ‘
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Figure 16. Comparison of computed and measured flow properties
for the Ludwieg-Tillmann favorable-pressure-
gradient flow; ——— Baseline,.——-—3Saffman,
———-— Ng-Spalding, - —— Jones-Launder.
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‘ predictions differ from the data Substantially.f

Most particu-
larly, note the excellent agreement between experimental and
computed velocity profiles in 1linear coordinates fof the
Baseline model (see Figures 14 and 15). The Ng-Spalding-model
velocity profiles in linear coordinates do not agree nearly as
well with the data. However, with the exception of the veloc—
ity profile in linear coordinates, the Ng-Spalding model yields

closest overall agreement to the Andersen data.

For the Ludwieg-Tillmann favorableApressurevgradient flow, the -
Baseline,>Jones—Launder and Ng-Spalding models yield'predic—
tions very close to the experimental data (Figure 16). The
Saffman model does not do quite as well; the velocity profile

in linear coordinates serves as a reminder of the Saffman model's
deficiency in the defect layer.

Figures 17 and 18 compare computed»e'and 2 profiles with experi--
mental data for 9/L<v'%> and mixing length, respectively.
Consistent with the defect-~layer analysis of Subsections 2.1

and 2.2, in all three cases shown the Baseline model has length
scale profilés much closer to the measuréd mixing-length pro-
files than does the Saffman model. All models do a_goodvjqb;ofm
reproducing the 9/4 <v'2> data indicating that the efficacy of

a two-equation model is controlled by the accuracy with which
the turbulent length scale can be computed.

Of these four flows, the models do poorest on the Andersen flow.
However, the Andersen flow has a relatively low Reynolds number
and, without suitable viscous corrections, the models are realis-
tically only applicable at high Reynolds numbers. This is best
exemplified in Figure 15. The Baseline and Ng-Spalding models

T The Saffman-model solutions generated by Wilcox and Chamber's1

(see Figure 1) were done with a value for 2¢//a¥'§ of less than
.02; although accurate skin friction and shape factor were
obtained, the inflected profiles shown in Figure 1 attended the
vVéry small value of L. '
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stray from skin friction data early in the computation. How-
ever, agreement is much‘better by the end of the computation,
where the boundary layer is finally approaching a well-developed
turbulent state. ‘

As a final part of the comparisons, the models: ability to pre-
dict effects of streamline curvature was testea. Computed skin
friction for So-Mellor's constant pressure flow over a convex
wall (Figure 19) shows that two-equation models in their orig-
inal form fail for flows with streamline curvature. However,
~as shown by Wilcox and Chambers,1 better agreement between theory
and experiment can be obtained by adding a curvature correction
term to the turbulent-mixing-energy equation. Using this curva-
ture term, the So-Mellor flow was recomputed with the Baseline
model, As shown in Figures 19 and 20, close agreement between
calculated and measured skin friction and velocity profiles is
then obtained. Thécéorrectionntermiwill be-discussed in.detail
in Sectioan when other flows with streamline curvature are

considered.

2.3.5  Summary

Forrthe flows without streamline curvature, the Baseline and
the Ng-Spalding models yield results in much closer agreement
with the data than do the Jones-Launder and Saffman models.
Furthermore,vthe Baseline model's velocity profiles in linear
coordinates are in very close accord with the data and consis-
tently closer than any of the other models'. Hence, the '
Baseline model appears to be the most accurate of the various
two—equétion'models. Computation of the curved-wall case shows
that none of the models in their original form accurately pre-
dicts effects of streamline curvature. However, by adding a
streamline curvature correction term, accurate predictions can
be obtained with the Baseline model for flow over a convex
wall. This curvature correction will be shown to work well for
a number of flows with curved streamlines in Section 3.
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2.4 VISCOUS COMPUTATIONS

The utility of the Baseline model would be severely limited 1if

it were applicable only where the law of the wall holds close

to a boundary. It would be inapplicable for transitional and
separating flows for example and, more generally, it would per-
form poorly for boundary layers with arclength Reynolds numbers
less than é million. Hence, encouraged by the success of the
Baseline model in the matching computations, viscous calcula-
tions were performed. The objective of performing viscous com-
putations is to test the model's ability to predict low Reynolds
;humbef effeété. The four flowsrwith no strééﬁiiﬁé curvaﬁdré”cbﬁ?-
. sidered in the preéeding Subsection were recomputed. In addition, -«
a viscous solution of a flat platé boundary layer with uniform
blowing was obtained. Table 2 lists the'Sbécifié flows con-

sidered and the corresponding data sources.

Table 2. Incompressible Viscous Calculations
_FLOW DATA .SQURCES =
e Flat plate boundary layer \
® Bradshaw adverse pressure
gradient \ Same as in matching
e Andersen adverse pressure : ‘calculations {(Table 1).
gradient

e Ludwieg-Tillmann favorable‘/
pressure gradient

e Andersen flat plate with Andersen)’r data.
uniform blowing

In order to proceed with viscous computations, viscous modifica—
tions to the model equations had to be included. Wilcox and

Traci17
a turbulént}boundary layer. They found that in addition to adding

used perturbation techniques to study the sublayer of

molecular aiﬁﬁusiom to the momentum and model equations, the fol-
lowing straightforward modifications to a and a¥ are needed to

obtain accurate viscous computations:
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e

a¥ . % 2Re;
oF = 1- (1-2) e™He T
2= 1o (1-a) eTROT/2

.Where

A=1/11 , o¥=3/10 , o, =8/a%-20c2=.3319

and ReT is the turbulent Reynolds number defined by

(75)

(76)

Boundary-layer-edge boundary conditions and initial profiles were

‘the same as those used in the preceding subsection; for the Blow-
ing case, FPBL initial profiles were used. At the surface, the

" no-slip boundary condition was imposed while e and w were given

by
e =0
2.
b= St
'OL* v

3

77

The quantity S is a function bf surface roughness and blowing

¥elocity and, as shown by Traci,18

S™! = 5 714 g -}

- Where
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and

, 36 2 8 1/2
Sg = »<kuT/v> -ﬁ;(ga;7;> (80)

In Equations 79 and 80, Vi is_blowing velocity and k -is roughness
height. The nonblowing computations were performed with very
small values of k to simulate a perfectly smooth wall; we have
found empirically that the smooth wall limit in which S»w is

very closely approximated with finite values of S in excess of
about 300. ’

.Bigures 21 through 27 show the results of the viscous computa-
tions for the boundary layers with no-mass injection. The vis-
cous solutions for the FPBL, Bradshaw adverse pressure gradient,
Andersen adverse pressure gradient, and Ludwieg-Tillmann flows
are very similaf to the inviscid solutions (Figures 13-18). For
the blowing case, skin friction corresponds well with data, com-
puted shape‘factor is within 10% of data, and velocity profiles
are within 15% of the data (Figure 25).

Results of the FPBL and Andersen adverse pressure gradient flows
best exhibit the model's ability to accurately predict viscous
effects. For FPBL flow, Figure 21 shows close agreement between
the predicted and experimental shape factor for a wide range of
Reynolds numbers. Additionally, the figure exhibits the Baseline
model's ability to handle viscous effects by displaying velocity
profiles in sublayer coordinates for three different Reynolds
numbers. Note that the Andersen adverse pressure gradient calcu-~
lation was initiated near the leading edge of the plate, whereas -
the matching calculation was begun at a plate length of 2 ft (.61 m).
By including viscosity and integrating from near the leading edge,
the results are in much closer agreement with measurements than
those obtained by matching to the law of the wall. Figure 23
shows velocity profiles in sublayer coordinates for two different

Reynolds numbers.
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Results using the Basellne model for both the inviscid and
viscous calculations of equlllbrlum boundary layers are most
encouraging. The inviscid results indicate that the Baseline
model performs at least as well as any of the other models and
usually better. The viscous computations show that the model
equations can easily and successfully be'intégrated through
the viscous sublayér’and that they yield solutions that corre-
spond well with data for flows withfadvefsé; zéro, and favor-
able pressure gradients and for flows with blowing. Since the
Baseline model has thesé'capabilitiés, it can be regarded as a
reftiable foundation for analyzing flows with streamline
curvature and coordinate system rotation.
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3. DBOUNDARY LAYERS ON CURVED SURFACES

We now turn our attention to effects of streamline curvature
and system notation on turbulent boundary layers. As stated
in Subsection 2.3.4, the Baseline model in its original form
does not accurately predict the effects of streamline curva-
ture. However with the addition of a straightforward curva-
ture correction term, the Baseline model can successfully be
applied to flows with curved streamlines. This section gives
a brief overview of thé development of the correction term and
tests it for boundary layers with curved streamlines and for
rotating channel flow. Both compressible and incompressible

flows are considered.

3.1 STREAMLINE CURVATURE/SYSTEM-ROTATION MODIFICATIONS

With an understanding of some of the physics of flow over
curved walls and the proper interpretation of'the turbulence
quantity, e, a straightforward curvature correction can be
derived. This is explained in detail by Wilcox and Chambers.l

Hence only a brief description will be presented here.

Three points are essential to the argument. The first impor-
tant point is that the mixing energy is directly proportional
to <v'?> (the component of the fluctuating velocity normal to
the surface); w is the rate at which <v'2> kinetic energy 1is
converted to other modes of energy (e.g., mean kinetic energy,
thermal energy, other fluctuation modes). The second key point
is that the equation for e should be regarded as the <v'2>
component of the full Reynolds stress equatioqgi THe -final e
key observation is that if the tensor transformation properties
of the <v'?> equation are endowed upon the equation for e,
straightforward curvature (and system rotation) correction

terms can be added which account for altered turbulence structure.
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Implementing Point 3 proceeds as follows. In a curved-stream-
line coordinate system with local radius of curvature, R, the
equation for the instantaneous vertical velocity, v, has a
Coriolis acceleration term, viz,

9V

_— 4 E'VV -

o 9 4 giffusion (81)

y

el

<
Hence, multiplying Equation,8bey v' and time averaging, we

obtain

d<v'2/2>
5t

where, for simplicity, u denotes mean yvalue. Then, defining
e = 9/U<v'2> and approximating <-u'v'> = %g%, Equation 82

o F ) g } . § R e e\
becomes Kw&thhoverhe&dmbamswdfoppegﬁﬁdr E@nvenmene@mﬁw‘8£>

de 4 u-ve = ._Q_E‘e__a_u + other terms (83)

ot

The term multiplied by 9/2 is the curvature correction term.+

Similarly, for flow in a coordinate frame rotating with angular

velocity Q, we obtain

& :
ae __kqno € U
e T uVe =5 990)8y + other terms (84)

The e and w equations used for the boundary layer flows with
curved sStreamlines and for rotating channel flow are hence

assumed to be:

T Note that the correction term was incorrectly written by

Wilcox and Chambersl as being proportional to 9.
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Boundary Layers with Curved Streamlines

Turbulent Mixing Energy

e e _ * - Y _ g 9 $€y9e- _ 9 u e du
Usx + Vay [o Iay R| B¥ule + ay[(v+0 w)ay] 2 R w 3y
Q}ssipatiog_ﬁate

§92 + v§92 = [oc|3E -2 - (B + 20 ( ) YoJw?+ [(v+o—)

X 9 Yy R

4 £33 #|dY) _ ox e du _
dy[(v+o w)dy] + (o | | B¥w)e + 9 Q 5 dy 0

Dissipation Rate

[(v+c ) 3 ] + [o| 9| - (p+20 (& >2> Tu?

3.2 INCOMPRESSIBLE APPLICATIONS

The Baseline model with the curvature correction term was first

applied to several incompressible flows (Table 3).

Table 3. Incompressible Viscous Calculations
for Boundary Layers with Curvature

FLOW DATA SOURCE
19

o Low Reynolds number turbulent| Patel
flow past a cylinder

data.

e Constant pressure flow over a So-Mellor15 data; Meroney16
convex wall correlation.
e Separating flow over a S)-S@%Mellor’l5 data.

convex wall

e Rotating channel flow Johnstonzo'data.
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The most difficult test of all the incompressible cases
considered is low Reynolds number turbulent flow past a cylinder.
In addition to having streamline curvature and adverse pressure
~gradient, the flow is dominated by viscous phenomena. Results
of the computation are shown in Figufes 28-30. A1l computed
quantitites are in close agreement with the experimental data

of Patel.19
pared in Figure 28. The largest discrepancies are less than

Computed and measured velocity profiles are com-

10% throughout the flow. Even the predicted and measured sep-
aration points are reasonably close; the computed separation
occurs at circumferential angle ¢=101° while separation was
observed to occur at ¢=110°. As shown in Figures 29 and 30,

- computed shape factor and momentum~thickness Reynolds number
differ from corresponding measured values by no more than 6%,

even as the flow nears separation.

Figures 31-33 exhibit computed and measured flow properties for
flow over a convex wall with constant pressure and with adverse
pressure gradient. Figure 31 shows that compupgd”andumeasgred_
skin friction are within a few percent. 1In the separating.figw;
Separation was observed between 5.50 and 5.83 feet (1.68 and
1.78 m) downstream of the leading edge, while the computation
indicates separation will occur a little farther downstream. As
seen from Pigure 32, predicted shape factors show somewhat lérger
discrepancies from the measured values; the largest discrepancy
is 12%. Finally, Figure 33 shows that computed and measured
velocity profiles differ by no more than 6%,

The final incompressible application is to rotating channel
flow (Figures 34-36). Figures 34 and 35 show the contrast
between nonrotating and rotating channel velocity profiles.
Figure 36 presents the ratio of the rotating friction velocity,

u to the nonrotating friction velocity uTO, for a range of

T2
rotation numbers. -The predictions are generally within 10% of

corresponding measurements.
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3.3 COMPRESSIBLE APPLICATIONS

As a final test of the theory, the Baseline model was applied
to two compressible flows (Table 4). Following Wilcox and

Table 4. Compressible Viscous Calculations
"with Streamline Curvature

FLOW DATA SOURCE

e Mach 2.5 fiow with heat Thomann22 data.
transfer over a -convex wall :

e Mach 3.5 nearly adiabatic Sturek—Danberg23 data.
flow over a concave wall

2l we introduce the specific turbulent d1351pat10n rate,

- Alber,
2, so that the boundary layer form of the compressible model

equations with the curvature modification are as follows.

Specific Turbulent Mixing Energy

de dex _ e, Jde 9 e udu
+ g ¥|d2_ 2 . p% ___ * A I el
ou 7— 5% t PV 5% Lo | I B¥pQlpe + [(u+o Q) 3y SO Ry (89)

<62 302 du - u Y } 2, 9 ‘ e
Ls6 = fa_2] . + odad 2. =
Plgy +Pvgy {°‘|ay gl - [8 20 (35) " 1pQy 00 +3y[(u Q) ] (90).

The quantities p and p denote density and molecular viscosity
(given by Sutherland's law), respectively.

The Baseline model was first applied to the Thomann flow using

a wall boundary condition on  that simulates'a smooth wall
(the case of actual interest). As a generalization of the
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incompressible boundary condition (Equation 77), the wall
value of the dissipation rate is given by
2
SQT

= = (91)

Q
oF
W o u

where S is the univérsal function defined in Equations 78-80ff
and Mo is the molecular viscosity at the wall. Using a value

of S corresponding to a smooth wall (S of the order of 10%)

gave skin friction that was below thé Hopkins-Inouye compres-
sible skin friction correlation by about 20%. Also, for this
value of S, the Stanton number, St’ was as much as 18% too low
fFigure 37). However, it was found that by simulating a rough
wall (S on the order of 10), good skin friction and Stanton
number distributions forlthe eqﬁilibrium pdrtion of the boundary

layer were obtained as shown in Figures 37 and 38.

The necessity of simulating flow over a rough wall is not as
yet understood and is'an area for future research. .-However,
by at least assuring good equilibrium solutions, it was pos-—
sible to examine how the model behaves when the boundary 1ayef
is disturbed by curvature and/or pressure gradient. |

In the region where curvature begins, consistent With measure-
ments, the model predicts a 10% reduction in Stanton number
(relative to the plane-wall value). However, the model fails
to predict the observed rapid decrease in St beyond x=1.25 ft
(.38 m). The discrepancy may be due to the fact that curva-
ture affects the heat transfer differently from the way it

affects skin friction.
The Sturek-Danberg calculation proceeded as did the Thomann

case. The appropriate large value of S resulted in skin fric-
tion as much as 19% #dower than the Hopkins-Inouye skin friction
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correlation (Figure 39). Hence, as in the Thomann case, the
_computation‘was performed with S=10. As shown in Figure 39,

the predicted c_, is very close,to'the Hopkins—Inouye value, yet

f
. 1s considerably higher than the measured values in the equil-
ibrium portion of the flow. However, the data are suspect in
this region since even Sturek and Danberg note that their

measuring techniques were only accurate to within 15%.

The predicted overall décrease in surface shear stress is
consistent with the measurements although differences of about
20% of scale are present. The discrepancies in the curved
region of the flow may also be caused by the inaccuracies in

the measurements so that fhis case does not provide a definitive

test of the theory.
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. DISCUSSION

Perhaps the most important conclusion that can be drawn is that
the Baseline model is at a state of development where it can

be used for general engineering applicatioﬁs. In particular,-
results of the viscous equilibrium-boundary-layer computations
in Section 2 show that the Baseline model is as accurate as
mixing-length theory where mixing-length theory is expected to
apply. Furthermore, because of thé model's generality and
more-solid physical foundation, its range of applicability
extends far beyond that of mixing-length theory's. The model's.
rahge of applicability includes flows with curved streamlines
and coordinate system rotation. Using the Baseline model,
excellent quantitative agreement between theory and experiment
has been obtained for effects of curvature and rotation on
incompressible boundary«layers. AAlthough more work remains to
be done for compressible boundaryAlayer épplications, results
for the two supersonic flows considered in Section 3 are also

encouraging.

Consistent with the project objective, the path is now cleared
for proceeding to analysis of streamline—curvaturéﬁénd'sysﬁem—
rotation effects on turbulent boundary layers. Presumably,
RSE model deficiencies can now be eliminated by changes analo-
gous to those made to the Saffman model which resulted in the
Baseline model. Such changes should be made. Work with the
Baseline model should continue as well. That is, parallel
development of the RSE and Baseline models appears to hold the
most promise for yielding useful, accurate engineering tools
for predicting curvature/rotation effects.
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APPENDIX

. As noted in the introduction, numerical solutions with the RSE
model were generated inﬁthis study. The model was applied to

2l

Bissonnette and MeilofLS' iflewrpast.-a _segmented .cylinder. “In. s
the Bissonnette-~Mellor expériments, the forebody is stationary
and the aft body rotates at a constant angular velocity. The
fact that the pressure is not constant in the direction normal

to the surface (%§7£0) was taken into account in the computations.

The compvted mean flow properties and turbulence quantitles are
shown in Figures Al-A7; experimental data of Bissonnette and
Mellor are included for comparison. As shown in Figure Al, pre-
~dicted streamwise (Gfx) and azimuthal (cfz)'skin—friction
coefficients are both about 20% higher than measured. Similarly,
the various computed displacement‘énd momentum thicknesses are
generally 20% higher than measured (Figures A2 and A3). Fig-

ures AU-A7 present velocity and.Reynolds stresses on the swirling —-..1..

afterbody. The figures show poor agreement between experimental
and computed properties in almost every case. Inspection of the
Streamwise velocity profile (Figure Al) shows that the worst
agreement is in the defect layer of the boundary 1éyer. This

is consistent with the results obtained in analyzing Saffman-
model-predicted defect layer strgcture (see Subsection 2.1).
That is, examination of Figure A4 shows that the computed
streamwise velocity gradient, 8u/dy, is much larger than mea-
sured in the defect layer. Too strong a gradient results in

too much production in the various Reynolds stress equations,
and as a result the Reynolds strésses are overéstimated. With
the exception of <-u'w'>, the Reynolds stress components are
overpredicted as can}be seen in Figures A6 and AT. A
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The large discrepancies between theory and experiment for the
rate of growth of the swirling boundary layer are directly
attributable to the excess produétion of turbulent energy.
High turbulent energy levels are synonymous with greater tur-
bulent mixing; because of the overpredicted mixing, the swirl?
ing boundary layer grows too quickly and hence the swirling
displacement thickness, 6;,
thickness, exz, are too lérge.

and swirling angular momentum

In summary, results of this computation lend further credence
to the claim that the problems plaguing the RSE formulation
have the same origin as the deficiencies of the Saffman model.
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