NASA CR-134972 R76AEG268

EXPERIMENTAL CLEAN COMBUSTOR PROGRAM

Alternate Fuels Addendum Phase II Final Report

by

C.C. Gleason D.W. Bahr

GENERAL ELECTRIC COMPANY

(NASA-CR-134972)EXPERIMENTAL CLEANN76-22398COMEUSTOR FEOGRAM, ALTESNATE FUELS ADDENDUM,
PHASE 2 Final Report (General Floctric Co.)Unclas67 p HC \$4.50CSCL 21DUnclas63/2825302

Prepared For

National Aeronautics and Space Administration

NASA Lewis Research Center NAS3-18551

1. Report No.		2. Government Accessio	n No.	3	. Recipiont's Catalog	No.
ALTER	NATE FUI	COMBUSTOR PE LES ADDENDUM AL REPORT			Heport Date January Performing Organiz	
7. Author(s) C., C., C	ILEASON a	nd D, W, BAHR), Performing Organiza R76AEG26), Work Unit No.	
9. Performing Organization Name a	nd Address			"	I, WORK UNIT NO.	
GENER	AL ELECT	TRIC COMPANY OHIO 45215			i, Contract or Grant NAS3-18 3. Type of Report an	551
12. Sponsoring Agency Name and /	Address				CONTRACTO	DR REPORT
NATIONAL AERONA WAS		D SPACE ADMI D. C. 20546	NISTRATION	14	4. Sponsoring Agency	Code
16. Abstract	was conduct	ed to investigat	e the characte	ristic	s of current	
A study and advanced simulating br derived fuels No. 2 Diesel, "zylene botto shale oil cro engine size o bustor, a Rad Performance of takeoff condi relight chars Carboning and evaluated in were generall emissions lev hydrogen con weight. CO, point of the	low-emission coader ranges. Five fuct two differ ombustor ty ind which was combustor ty ind pollutan tions were acteristics a flashback a 12° sect by quite mo vels and pe- tent of the RC and smol fuel which	ted to investigat ons combustors while so of combustors while rent blends of Je aphthalene charge as refined to Jet ypes were evaluate Staged Combustor, at emissions char evaluated in a f were evaluated i characteristics or combustor rig, derate, but well ak liner metal to fuel which range ke emissions leve ranged from 529	en operated wi properties of d; conventiona t A and commer stock", and a A specificati ed; the standa and a Double cateristics at full annular co n a 60° sector at simulated t For the five defined. CO, emperatures inc ed from 12.2 to the standa	th spe petrol l JP-5 cial a fuel cons, ird pro Annula idle ombusto co combusto co co	cial test fuels eum or coal- , conventional romatic mixture derived from Three CF6-50 duction com- r Combustor. and simulated or rig. Altitud stor rig. conditions we to conditions we to smoke with decreasin percent by th final boilin	is – ie ts 18
A study and advanced simulating br derived fuels No. 2 Diesel, "zylene botto shale oil cro- engine size o bustor, a Rad Performance a takeoff condi relight chars Carboning and evaluated in were generall emissions lew hydrogen con weight. Co.	low-emissic coader range Five fuc two differ oms" and "na ide which we combustor ty lial/Axial S and pollutan tions were acteristics I flashback a 12° sect y quite mov- vels and pe- tent of the HC and smol fuel which quite small	ons combustors wh es of conjustion als were evaluated rent blends of Je aphthalene charge as refined to Jet ypes were evaluat Staged Combustor, at emissions char evaluated in a f were evaluated i characteristics or combustor rig, derate, but well sk liner metal to fuel which rango ke emissions levo ranged from 529	en operated wi properties of d; conventiona t A and commer stock", and a A specificati ed; the standa and a Double cateristics at full annular co n a 60° sector at simulated t For the five defined. CO, emperatures inc ed from 12.2 to the standa	th spe petrol I JP-5 cial a fuel ons, ard pro Annula idle mbusto combusto c	cial test fuels eum or coal- , conventional romatic mixture derived from Three CF6-50 duction com- r Combustor. and simulated or rig. Altitud stor rig. conditions we to conditions we to smoke with decreasin percent by th final boilin	is – ie ts 18
A study and advanced simulating br derived fuels No. 2 Diesel, "zylene botto shale oil cru engine size o bustor, a Rad Performance a takeoff condi relight chars Carboning and evaluated in were generall emissions lev hydrogen cont weight. CO, point of the istics were o	low-emissic coader range Five fuc two differ oms" and "na de which wa combustor ty lial/Axial 3 and pollutan tions were acteristics a flashback a 12° sect by quite mov- cels and pe- tent of the HC and smol fuel which quite small	ons combustors where evaluates rent blends of Je aphthalene charge as refined to Jet ypes were evaluat Staged Combustor, at emissions char evaluated in a f were evaluated is characteristics or combustor rig, derate, but well ak liner metal to fuel which rango ke emissions leve ranged from 529	en operated wi properties of d; conventiona t A and commer stock", and a A specificati ed; the standa and a Double acteristics at ull annular co a simulated t For the five defined. CO, amperatures ind d from 12.2 to als also increa to 607° K. Ef	th spe petrol JP-5 cial a fuel ons, ard pro Annula idle mbusto co	cial test fuels eum or coal- , conventional romatic mixture derived from Three CF6-50 duction com- r Combustor. and simulated or rig. Altitud stor rig. conditions we to conditions we to smoke with decreasin percent by th final boilin	is - ie re ts 1g ter-
A study and advanced simulating br derived fuels No. 2 Diesel, "zylene botto shale oil cro- engine size of bustor, a Rad Performance a takeoff condi- relight chars Carboning and evaluated in were generall emissions lev hydrogen con- weight. CO, point of the istics were of 17. Key Words (Suggested by Aut Combustion, Emisse Combustor, Special	low-emissic coader range Five fuc two differ and "na ide which wa combustor ty hal/Axial 3 and pollutan tions were acteristics if lashback a 12° sect by quite mony vels and pe- tent of the HC and smol fuel which quite small	ons combustors where evaluates rent blends of Je aphthalene charge as refined to Jet ypes were evaluat Staged Combustor, at emissions char evaluated in a f were evaluated is characteristics or combustor rig, derate, but well ak liner metal to fuel which rango ke emissions leve ranged from 529	en operated wi properties of d; conventiona t A and commer stock", and a A specificati ed; the standa and a Double acteristics at ull annular co. a 60° sector at simulated t For the five defined. CO, emperatures inc als also increa to 607° K. Ef	th spe petrol JP-5 cial a fuel ons, ard pro Annula idle mbusto co	cial test fuels eum or coal- , conventional romatic mixturd derived from Three CF6-50 duction com- or Combustor. and simulated or rig. Altitud istor rig. Conditions wen itested, effect by and smoke with decreasin percent by th final boilin on other charac	is - ie re ts 1g ter-

·•••

17

. ...

:

. ••

...

1

•-

....

. -

:

* For sale by the National Technical Information Service, Springfield, Virginia 22151

.

TABLE OF CONTENTS

Section		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	TEST FUELS	4
4.0	PROGRAM PLAN	6
5.0	APPARATUS AND PROCEDURES	8
	5.1 Test Facilities5.2 Test Combustors5.3 Test Conditions and Procedures	8 8 17
6.0	RESULTS AND DISCUSSION	27
	 6.1 CO and HC Emissions 6.2 NO_x Emissions 6.3 Smoke Emissions 6.4 Combustor Performance 6.5 Altitude Relight 6.6 Carboning and Flashback 	27 45 45 46 46 46
7.0	SUMMARY OF RESULTS	47
8.0	CONCLUDING REMARKS	48
	APPENDIX A - Detailed Test Results	49
	APPENDIX B - Nomenclature	60
	APPENDIX C - References	61

PRICIPLE PACE IN

,

,

.

٠.

iii

1 I

ł

LIST OF ILLUSTRATIONS

Figure		Page
1.	Full-Annular CF6-50 Combustor Test Rig, Axial Cross Section View.	9
2.	CF6-50 Combustor Exit Rake Traverse Assembly.	10
з.	Gas Sample Location and Manifolding Diagrams.	11
4	General Electric Emissions Measurement System.	12
5.	CF6-50 60° Sector Combustor Test Rig.	13
6.	12° Sector Carboning Test Combustor.	14
7.	12° Sector Flashback Test Combustor.	16
8.	Standard Production CF6-50 Combustor Assembly.	18
9.	Radial/Axial Staged Combustor Assembly.	19
10.	Radial/Axial Staged Combustor Configuration Details.	20
11.	Double Annular Combustor Assembly.	21
12.	Double Annular Combustor Configuration Details.	22
13.	Combustor Metal Temperature Instrumentation Locations.	25
14.	Effect of Fuel Type on Standard CF6-50 Combustor Emissions at Idle Conditions.	29
15.	Effect of Fuel Type on Standard CFG-50 Combustor Performance at Simulated Takeoff Conditions.	30
16.	Effect of Fuel Type on Radial/Axial Staged Combustor Emissions at Idle Conditions, Configuration R7.	31
17.	Effect of Fuel Type on Radial/Axial Staged Combustor Performance at Simulated Takeoff Conditions, Configuration R7.	32
18.	Effect of Fuel Type on Double Annular Combustor Emissions at Idle Conditions, Configuration D7.	33

τ.

iv

Ì

LIST OF ILLUSTRATIONS (Concluded)

.

.

.

.

.

. ...

. -

•

.

•

.

._____

•

•

.

r

.

. . .--

.

•

f.,

.

•

.

Figure		Page
19.	Effect of Fuel Type on Double Annular Combustor Performance at Simulated Takeoff Conditions, Configuration D7.	34
20.	Effect of Fuel Type on Double Annular Combustor Emissions at Idle Conditions, Configuration D12A.	35
21.	Effect of Fuel Type on Double Annular Combustor Performance at Simulated_Takeoff Conditions, Configuration D13.	36
22,	Correlation of Effect of Fuel Properties on CO Emissions Levels at Idle Conditions.	38
23.	Correlation of Effect of Fuel Properties on HC Emissions Levels at Idle Conditions.	39
24.	Correlation of Effect of Fuel Properties on NO _X Emissions Levels at Simulated Takcoff Conditions.	40
25.	Effect of Fuel Bound Nitrogen on NO _x Emissions Levels.	41
26.	Effect of Fuel Properties on Smoke Emissions Levels.	42
27.	Effect of Fuel Type on Combustion Efficiency at Simulated Takeoff Conditions.	43
28.	Effect of Fuel Properties on Peak Metal Temperatures at Simulated Takeoff Conditions.	44
A1.	CF6-50 Engine Windmilling Combustion Conditions.	58

LIST OF TABLES

Table		Page
1.	Test Fuel Properties.	5
11.	Fuel Test Matrix.	7
111.	Test Conditions.	23
IV.	Summary of Key Results.	28
۷.	Emissions and Performance Correlation Parameters.	37
Λ-Ι.	Emissions and Performance Test Results, Standard Production CF6-50 Combustor.	50
A-II.	Emissions and Performance Test Results, Radial/Axial Staged Combustor, Configuration R7.	51
Λ-ΙΙΙ.	Emissions and Performance Test Results, Double Annular Combustor, Configuration D7.	52
A-IV.	Emissions and Performance Test Results, Double Annular Combustor, Configuration D12/13.	53
ΛΥ.	Altitude Relight Test Results, Standard Production CF6-50 Combustor.	54
A-VI.	Altitude Relight Test Results, Radial/Axial Staged Combustor, Configuration R7.	55
Λ-VII.	Altitude Relight Test Results, Double Annular Combustor, Configuration D7.	56
A-VIII.	Altitude Relight Test Results, Double Annular Combustor, Configuration D12.	57
A-IX.	12° Sector Test Results.	59

vi

£

SECTION 1.0

SUMMARY

The Alternate Fuels Addendum to the Phase II Experimental Clean Combustor Program was conducted to investigate the performance, durability, and pollutant emissions characteristics of current and advanced low-emissions combustors when operated with special test fuels that simulate broader ranges of combustion properties of petroleum or coal derived fuels. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - "xylene bottoms" and "naphthalene charge stock", and a fuel derived from shale oil crude which was refined to Jet A specifications. The evaluations were conducted concurrent with the Phase II Program in CF6-50 engine size combustor test rigs. The standard production CF6-50 combustor, a Radial/Axial Stages Combustor, and two Double Annular Combustor Configurations were evaluated for pollutant emissions, performance, altitude relight, and carboning/flashback characteristics.

Fuel effects were generally quite moderate but well defined and in the directions anticipated. Decreased hydrogen content (increased aromatic content) caused increases in CO, HC, NO_x, smoke emissions levels and peak liner metal temperatures. Increased final boiling point (reduced volatility) caused further increases in CO, HC and smoke emissions levels. The shale Jet A fuel had properties very similar to that of the JP-5 fuel except that it had a high nitrogen content which increased the NO_x emissions levels.

SECTION 2.0

INTRODUCTION

In order to cope with diminishing domestic petroleum resources and to avoid excessive dependence on foreign supplies, it is essential and inevitable that substitute fuels be developed, based on petroleum, shale oil, coal, or other domestically available resources. Aviation turbine fuels represent a significant fraction of total petroleum consumption and it is likely that in the future such fuels will be produced increasingly from nonpetroleum sources. The future availability of aviation turbine fuels could be increased if fuel specifications, such as aromatic content and final boiling point, were relaxed. However, this might result in penalties to engine performance, exhaust emissions characteristics and durability, thus, requiring changes in component designs or materials.

While large-scale production of aviation turbine fuels from shale or coal may be as much as 10 years away, the magnitude of the modifications required to aircraft turbine engine components and materials might be such that a similar time is required to implement the technology into commercial aircraft. Therefore, in 1974, NASA initiated a series of programs to define problems and evolve solutions to permit the use of synthetic fuels as they become available and to guide the industry in establishing practical fuels specifications. One of these programs was an addendum to the NASA/General Electric-Phase II Experimental Clean Combustor Program, which is the subject of this report.

The overall purpose of the multiphase Experimental Clean Combustor Program is to develop and demonstrate technology for the design of advanced combustors with significantly lower pollutant exhaust emissions levels than those of current technology combustors, for use in advanced CTOL commercial aircraft engines. The NASA/General Electric program is specifically directed towards providing advanced combustors for use in the General Electric CF6-50 engine. The Phase I Program was specifically directed towards screening and evaluating a large number and variety of combustor design approaches for obtaining low CO, HC, NO_x and smoke emissions levels. Descriptions and results of these investigations are presented in Reference 1. The Phase I1 Program was specifically directed towards further developing the two most promising combustor design approaches from the Phase I Program to define and provide a combustor design for engine demonstration testing in the Phase II1 Program. Descriptions and results of these investigations are presented in Reference 2.

The Alternate Fuels Addendum to the Phase II Program was specifically designed to investigate the performance, durability, and exhaust emissions characteristics of advanced low-emissions combustors when operated with special test fuels that simulate the broadened range of combustion properties of

 $\mathbf{2}$

synthetic or petroleum fuels with relaxed specifications. The special test fuels were selected to investigate the possible effect of relaxing the current let A fuel specification to permit:

- a) an increase in the final boiling point, and/or;
- b) an increase in the aromatic concentration (reduction_in_hydrogen_ concentration).

The effort was conducted concurrent with the basic Phase II Program and included both performance and exhaust emissions tests of the current production CF6-50 combustor and two low-emissions combustor design approaches (Double Annular Combustor and Radial/Axial Staged Combustor).

SECTION 3.0

TEST FUELS

Five test fuels were utilized in these evaluations:

- <u>MIL-T-5624 Grade JP-5 Fuel</u> (which meets the ASTM Jet A fuel specification) was used in these and all other Phase II Program evaluations.
- 2. <u>ASTM Grade No. 2-D Diesel Fuel</u> was used in these evaluations to investigate the effects of increased final boiling point and increased aromatic content.
- 3. <u>Special Blend A Fuel</u> (a blend of conventional Jet A fuel and mixed xylene compounds) was used to investigate the effect of increased aromatic content. "Xylene bottoms" is a commercial, polycyclic aromatic obtained from the Ashland Oil Company.
- 4. <u>Special Blend B Fuel</u> (a blend of conventional Jet A fuel and "naphthalene charge stock") was used to investigate the effect of increased aromatic content. Naphthalene charge stock is a commercial high boiling point aromatic mixture obtained from the Ashland Oil Company.
- 5. <u>Shale Jet A Fuel</u>. A fuel actually derived from shale oil crude and refined to Jet A fuel specifications was obtained for limited evaluations from the pilot project described in Reference 3.

The physical and chemical properties of these fuels are sumarized in Table 1. The properties most influential on combustion characteristics are:

- 1. Hydrogen content which ranges from 12.2 to 13.7 percent by weight and varies inversely with aromatic content.
- 2. Final boiling point which ranges from 529 to 607° K.
- 3. Nitrogen content, which ranges from nearly zero for conventional aviation fuels to 813 ppm by weight for the shale Jet A fuel. Generally, a large fraction of fuel bound nitrogen is converted to NO_X in a combustion process. If fully converted, 813 ppm of fuel bound nitrogen would produce a NO_X emission index of 2.67 g/kg fuel.

-1

Properties.
Fuel
Test
г.
Table

Fuel Type	JP5 (Jet A)	No.2 Diesel	Blend A (Xylene Bottoms)	Blend B Naphthalene ₎ Charge Stock	Shale Jet A
Specific Gravity © 289° K	0. 8080	0.8520	0.8307	0. 8498	0. 8057
Viscosity #: 311°K, centistokes	1.56	2.60	1.04	1.41	۵ ۲
Flash Point, K	330	345	315	314	5
Smoke Point, millimeters	25.5	14.7	14.5	13.0	۱۴ د ۱ د ۱
Freeze Point,"K	226		218	257	,
Pour Point, [®] K	•	246	·	•	1
Distillation					
Initial Boiling Point, K	193 1	463	430	-17	
10% °K	0.1 1	492	437	10¢	0 0 *1
20°	476	505	441	6] [-†	11 - 11
30°.	479	517	1	517	1.80
105 2015	\$ 5 1	534	۰. بر	-18t	수1 0- 가
	06 :	1 i i	T	807	508
	51+	580	505	511	1
End Point "K	533	60 <u>7</u>	÷2÷	536	11 10 10
N 924 5 1	24.0	3.5	70.0	क दा	и. М г‡
". Residue	0. 6	6 ° 0	0.7	0.0	0.1
² Loss	0.0	т. О	0. 6	t"0	1-0
Net Heating Value, cal/g	10, 349	10, 144	10,139	10,117	10 T C T
Aromatics, vol "	6°++	34.0	38.4	35. 0	13
Oletins, vol 7.	1.5	j. 9	2.0	1. 5	ь c
Nanthalenes, vol "e	<3.0	17.8	0.7	o.[5	< 3- 0
Hydrogen, wt	15.71	12. 68	12.28	12.24	3 E 3 E 1
Sulfur, wi	0.07	0.46	0.06	t: 0 * 0	40 * 0
Virence, wiebo	•	88	•†	45	64 14 25

 $\mathbf{5}$

ŧ

SECTION 4.0

PROGRAM PLAN

In the fuels evaluations, three types of combustion tests were conducted:

- Detailed exhaust emissions and performance evaluations fo fullannular combustor configurations.
- 2. Altitude relight evaluations of 60° sector combustor configurations.
- 3. Carboning and flashback evaluations of 12° sector configurations.

Four compustor configurations were evaluated:

1. Standard production CF6-50 combustor.

:;

eedi 111

- 2. Radial/Axial Staged Combustor Configuration R7.
- 3. Double Annular Combustor Configuration D7.
- 4. Double Annular Combustor Configuration D12/13.

A listing of combustor tests, configurations, and fuels used is contained in Table 11.

This series of tests was conducted with the same apparatus and procedures utilized in the basic Phase II Program and are briefly described in the following sections. Detailed descriptions are presented in Reference 1 and 2.

	Type of T	Type of Test Conducted (Rig Used)	Used)
Combustor Configuration	Exhaust Emissions and Performance (Full Annular Rig)	Altitude Relight (60° Sector Rig)	Carboning and Flashback (12° Sector Rig)
Standard Production CF6-50 Combustor	JP-5 (Jet A) No. 2 Diesel Biend A Blend B Shale Jet A	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	Not Tested
Radial/Axial Staged Combustor Configuration R7	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	JP-5 (Jet A) Blend B
Double Annular Combustor Configuration D7	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	JP-5 (Jet A) Blend B
Double Annular Combustor Configurations D12A/13	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	JP-5 (Jet A) No. 2 Diesel Blend A Blend B	JP-5 (Jet A) Blend B

Table II. Fuel Test Matrix.

•

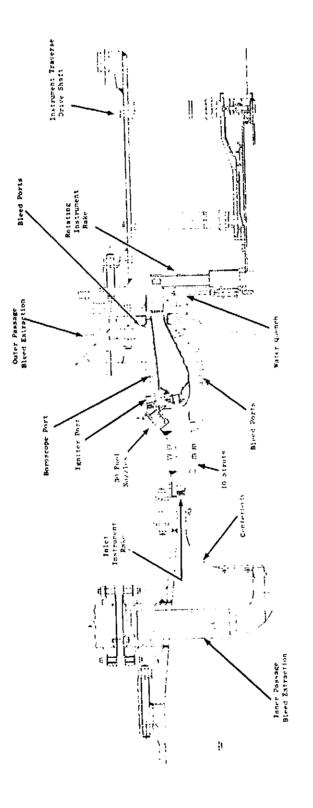
_` .<u>.</u>.

SECTION 5.0

APPARATUS AND PROCEDURES

5.1 TEST FACILITIES

The exhaust emissions and performance tests were conducted in a full annular combustor test rig which exactly duplicates the aerodynamic flowpath and envelope dimensions of the CF6-50 engine. The rig was installed in a test cell equipped with an indirect-fired air heater and exhaust ducting systems for high pressure operation. Engine idle operating conditions were exactly duplicated, but for CF6-50 engine takeoff simulation, combustor inlet pressures were limited to about 10 atm. Included as part of this rig was an exit plane rotating rake assembly for obtaining outlet temperatures and pressures and for extracting gas samples. A cross-sectional drawing of the rig with a standard CF6-50 combustor installed is shown in Figure 1. A photograph of the exit rake traverse assembly is shown in Figure 2. The gas sampling rake locations and manifolding are shown in Figure 3. Fifteen of the probe elements were manifolded together for gaseous analyses. Ten probes were manifolded together for smoke analyses. Gas samples were obtained with the on-line system shown in Figure 4 and smoke samples were obtained with a standard filter paper method. Further details of the pollutant emissions measurement systems are presented in Reference 1.


The altitude relight tests were conducted in a 60° sector combustor test rig which also exactly duplicates the aerodynamic flowpath and envelope dimensions of the CF6-50 engine. This rig was installed in a test cell equipped with exhaust ducting systems and capabilities for simulating high altitude engine windmilling conditions. All of these tests were conducted with ambient inlet air and fuel temperature. A cross-sectional diagram and photograph of this rig is shown in Figure 5.

The carboning and flashback tests were conducted in 12° sector rigs installed in a test cell equipped with an indirect-fired air heater and exhaust ducting systems for high pressure operation. Engine takeoff conditions were simulated with combustor inlet pressures up to 18 atmospheres. Carboning tests evaluating the sectors of either the pilot or main stages of the Double Annular Combustor on the pilot stage of the Radial/Axial Staged Combustor were conducted with the on-cup sector rig shown in Figure 6. Flashback tests for the Radial/Axial Staged Combustor were conducted with a 12° sector rig shown in Figure 7.

5.2 TEST COMBUSTORS

The first series of tests were conducted with a standard production CF6-50 combustor (Model G16, S/N 000395) for which extensive emissions and performance with JP-5 fuel had been determined in a previous program. A

В

÷

4. ÷...

. . .

.....

----- ---

...

-

.

٤,

1

į

9

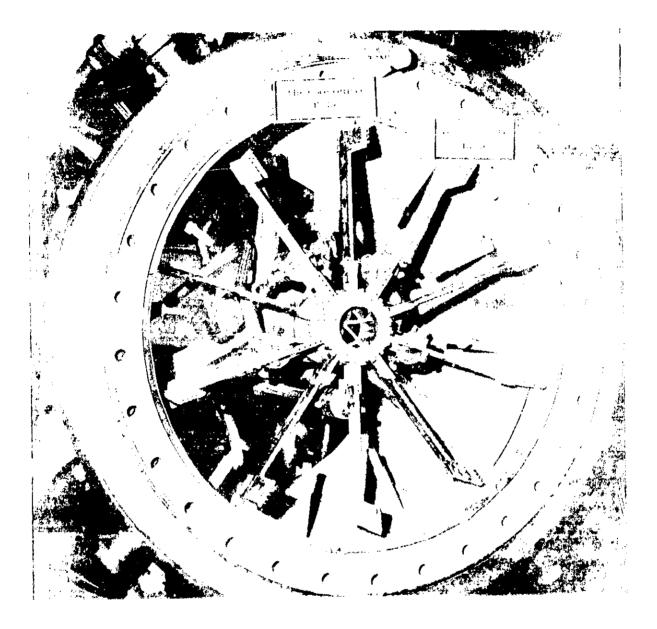


Figure 2. CFG-50 Combustor Exit Rake Traverse Assembly:

10

1

.

.

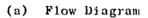
To Emissions Analysis Equipment To Derpoint Meter Gas Sample Line Manifolding Diagram. To Smoke Meter Off, On To Vent or Back Purge ֆ Ċ ò φ σ ፝፞፞፞፞፞ လု Ç φ Vent Only To Pressure Scanners ï **A**2 Ş 5 E Inlet Airline 5 2 4 4 2 3 5 2 4 4 3 F 82 22 ã (q ١ ۲ ۲ Gas Sample Rake Locations, Combustor Exit Plane, Aft Looking Forward. 1 کم تار de Pe 6 es of 5 2 Ü • •• ້ອີ -ð--ð ð O P_{t 3,9} or Smoke (Select) 🔀 Gax Sample & Sample Line Pressure 🗍 Gas Sample Only a a 52 57 8 о Б (a)

- `

٦

٤.

1


To Vent ^{Off}, Back Purge

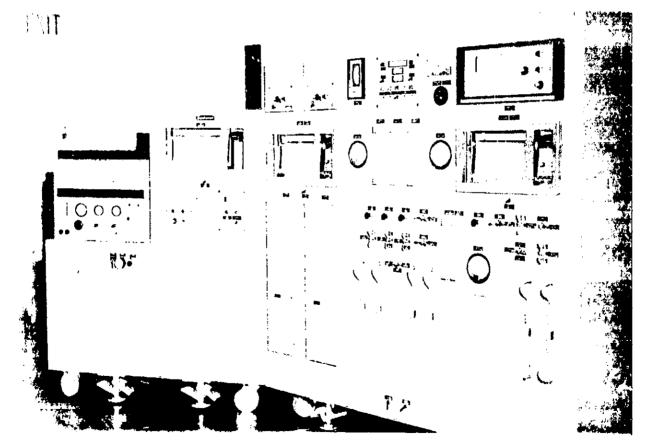

Rake-Inmeraton

Figure 3. Gas Sample Location and Manifolding Diagrams.

.

(b) Instrument Console

Figure 4. General Electric Emissions Measurement System.

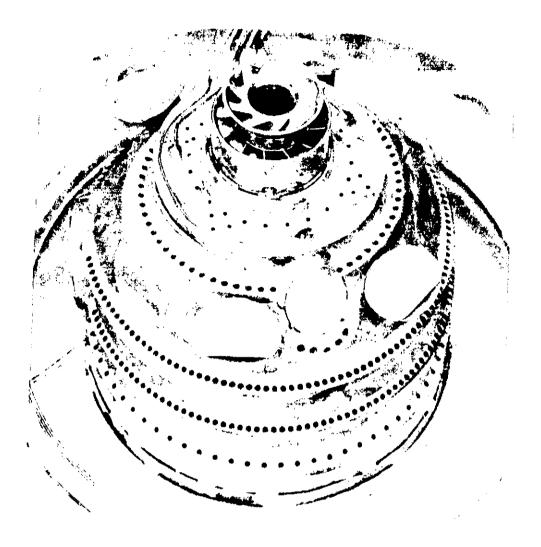
12

- ---

÷.,

.....

.


2

:

.

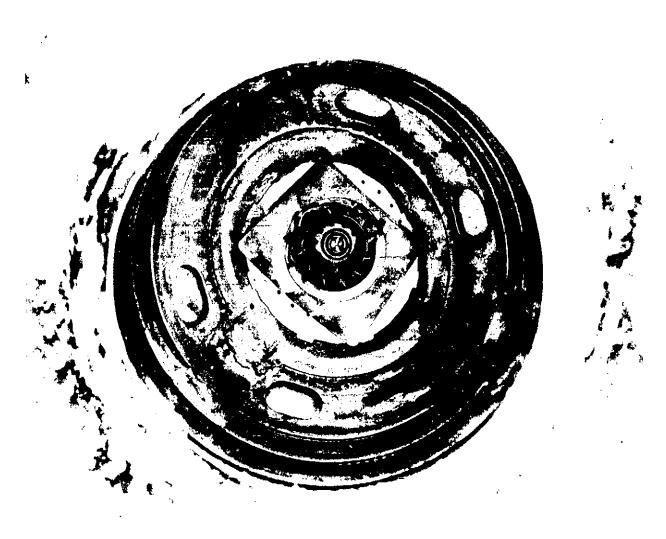

ι.

Figure 5. CF6-50 60° Sector Combustor Test Rig.

(a) Forward Looking Aft

Figure 6, 12° Sector Carboning Test Combustor.

* I

.

.

(b) Aft Looking Forward

Figure 6. 12° Sector Carboning Test Combustor (Concluded).

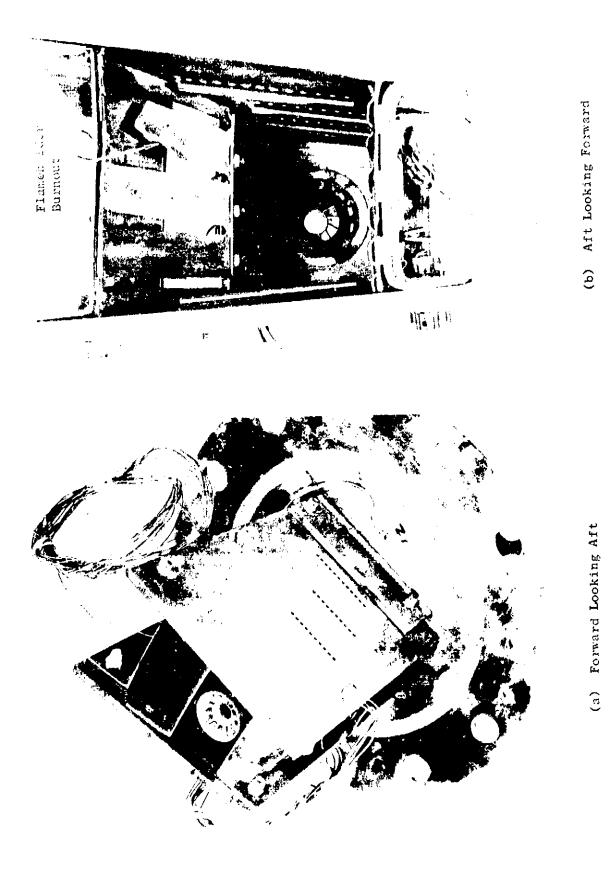
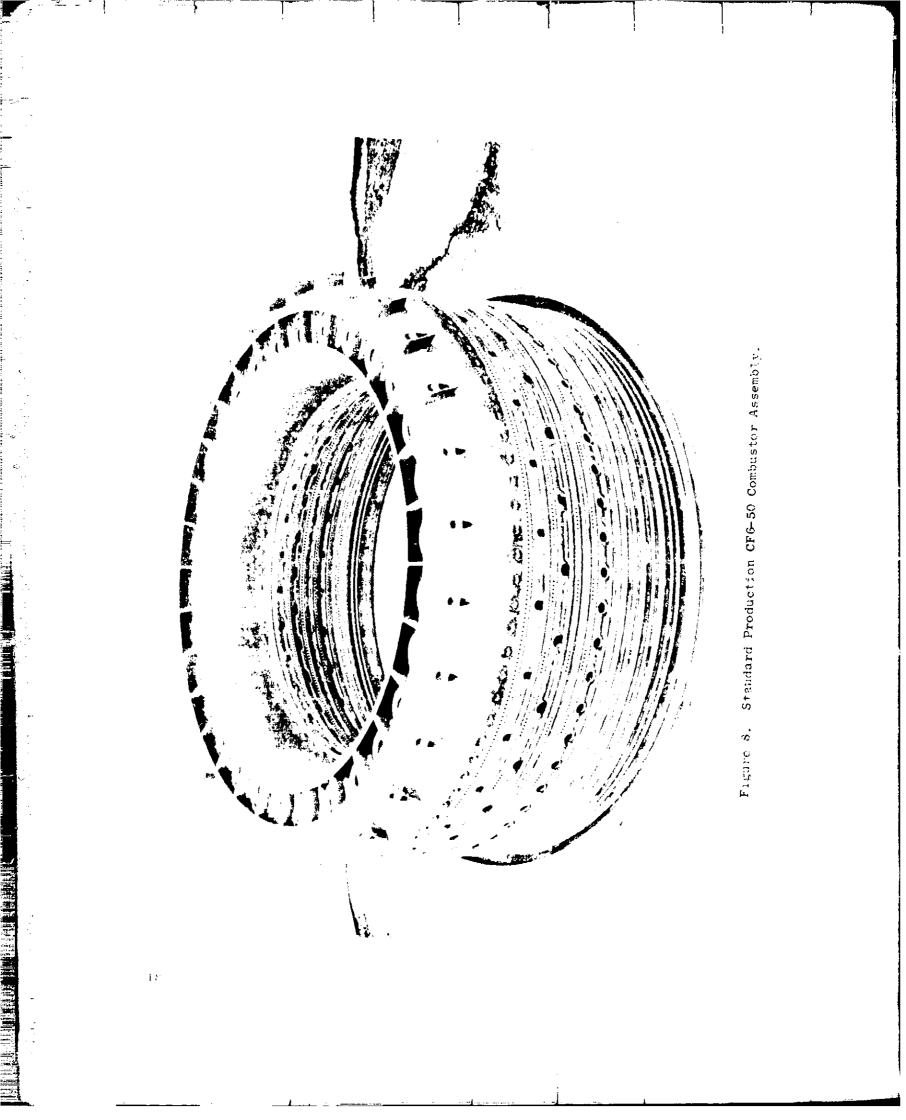
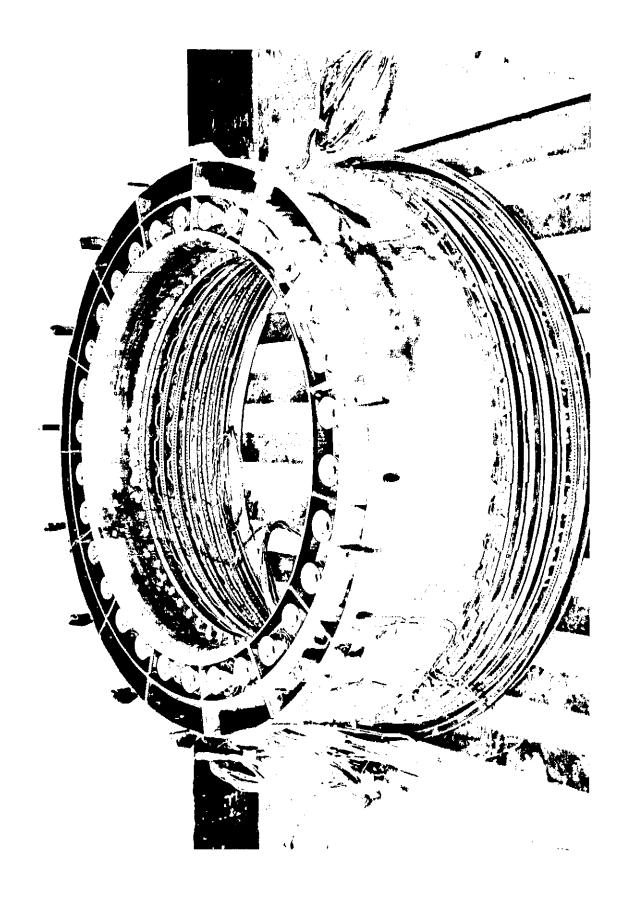


Figure 7. 12° Sector Flashback Test Combustor.

photograph of the combustor assembly is shown in Figure 8. This combustor was designed for excellent performance and low smoke emissions characteristics, but not for low gaseous pollutant emissions characteristics. The combustor has 30 air swirlers and fuel nozzles. The odd numbered swirlers are equipped with dual-orifice fuel nozzles which are always fueled. The even numbered swirlers (except No. 14 which is midway between ignitors) are equipped with single-orifice fuel nozzles which are only fueled above idle power level and are matched so that all fuel nozzles flow the same at takeoff power level. Swirler No. 14 is always fueled with a special dual-orifice fuel nozzle. In the test rigs, the fuel nozzles were connected to two independently metered and controlled fuel supply systems, so that the engine characteristics could be duplicated. Further details of the standard production CF6-50 combustor are presented in Reference 1.


The second series of tests were conducted with the final Phase II Program modifications to the Radial/Axial Staged Combustor which was designated Configuration R7. A photograph of the combustor assembly is shown in Figure 9. Configuration details are shown in Figure 10. The low emissions Radial/Axial Staged Combustor design approach features a pilot stage sized specifically for idle power operation with all of the fuel supplied to it, thereby reducing CO and HC emissions levels. At the higher engine power operating conditions, the second or main stage is also fueled. This latter stage, which handles a high percentage of the airflow, is displaced both axially and radially from the pilot stage. The main stage fuel is premixed, to some degree, with its airflow. The fuel-air mixtures are lean and relatively uniform resulting in reduced NO_x emissions levels. The burning of these lean mixtures is stabilized by the pilot stage of the combustor.


The third and fourth series of tests were conducted with the Double Annular Combustor which were designated Configurations D7, D12A, and D13. A photograph of the combustor assembly is shown in Figure 11. Configuration details are shown in Figure 12. The low emissions Double Annular Combuster design concept also features the use of a pilot stage designed specifically for idle power operation with all of the fuel supplied to it. A high percentage of the combustion airflow is supplied to the main stage. However, in this design approach, the main stage is more conventional in that it is self piloting and utilizes direct fuel injection. Configuration D7 represents an interim modification to this combustor in the Phase II Program; afterwhich the Double Annular Combustor design approach was selected for Phase II1 Program engine demonstration. Configuration D12A closely simulates the engine combustor design including the use of prototype fuel injectors and air swirlers in the pilot stage. Configuration D13 combined D12A pilot stage features with a main stage dilution air scheme modified to provide a further reduction in high power NO_X emissions levels.

5.3 TEST CONDITIONS AND PROCEDURES

The test conditions employed in each type of test are shown in Table 111.

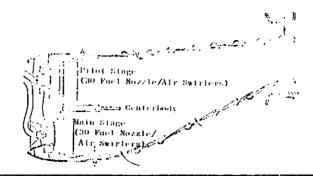
Full annular rig tests were designed to measure the effects of fuel type on pollutant emissions, combustion efficiency, pressure loss, outlet

Section A-A 60 Main-Stage Fuel Injectors M. C. Martin Flameholder Array : *1-*-. N Pilot Stage (130 Fuel Nozzles/Air Swirlers) and the second 1

Rig	Full Annular	60° Sector	12° Sector*
Airflow Distribution, % W_c			
Pilot Stage Swirlers			
Fuel Nozzle Shroud	0.1	0.1	0.9
Primary Swirler	4.1	4.1	3.3
Secondary Swirler	11.5	11.5	8.2
TOTAL	15.7	15,7	12,4
Main Stage Flameholders			
TOTAL	47.2	47.2	48,5
Dilution			
Pilot Stage	5.5	0	4,3
Inner Liner	0	5.5	0
TOTAL	5.5	5.5	4,3
Cooling			
Pilot Stage	11.4	11,4	6.6
Flamcholders	1.7	1.7	l.1
Outer Liner	7.2	7.2	-
Inner Liner	9.6	9.6	9.8
Scal Leakage	1.7	1.7	1.3
TOTAL	31.6	31.6	18,8
Premixing Length, cm	6.4	_	(1 , 4
Number of Flameholders	120	20	4

* Not including Side Wall Cooling

Figure 10, Radial/Axial Staged Combustor Configuration Details.


Figure 11. Double Annular Combustor Assembly,

,

1 ...

21

i

1

	Ri _l ;		Full Annyla	r	6 <u>S</u> ec	0° tor	12 Sec	
	Configuration	<u>D7</u>	<u>D12A</u>	<u>b13</u>	<u>D7</u>	<u>012</u>	<u>1)7</u>	<u>D12</u>
	Outer Swirl Cups							
	Fuel Nozzle Shroud Primary Swirler Secondary Swirler	0,1 3,6 8,8	0.9 5.2 7.4	0,1 5,1 7,3	0,9 3,6 8,9	0.9 5.2 7.4	0.9 4.4 8.2	0.9 5.2 7.4
	Total	12.5	13.4	12.5	13.3	13.4	13,5	13.4
	Inner Swirl Cups							
ۍ بر	Fuel Nozzle Shroud Primary Swirler Secondary Swirler	0,1 3,6 29,8	0,1 3,5 29,5	0,1 3.5 29.3	0.1 3.6 29.8	0,1 3,5 29,5		
5	Total	33,5	33,1	32,9	33,5	33,1		
23 -	Dilution							
Flow Distribution,	Outer Liner, Panel 1 Outer Liner,	4.7	o	o	0	0		
istr	Panel 2 Inner Dome	0 4.9	4.7 0	4.G 0	0 4,9	4.7		
low D	Inner Liner, Panel 1 Inner Liner,	10,9	10,8	17.0	10,9	10,8		
Ažr F	Panel 2 Inner Liner,	0	0	U	O	a		
	Panel 4	0	4,9	U	4.0	4,9		
	Total	20,5	20,4	21.6	21.8	20.4	 	
	Cooling							i
	Outer Liner Outer Dome	8.1 4.5	$\frac{8.0}{4.5}$	8.0 4.4	8,1 4,5	8.0 4.5		~~
	Centerbody	4.0	3,9	3.9	4.0	3.9		
	Inner Dome	4.1	4.1	4.1	4.1	4.1		
	Inner Liner	11.3	11.2	11.1	11.3	11.2		
	Seal Leakage	1,5	1,5	1,5	1.5	1,5		
	Total	33,5	33.2	33.0	33.4	33,2		
Features	Fuel Nozzle Type Development Prototype	x	x	x	x	x	x	x
ц ЦС Ц	Swirler Type							
Stage	Development Prototype	x	x	x	x	x	x	x
P1.ot	Crossfire Slot No	x			x	x		
ьн 	Yes		×	x				

Figure 12, Double Annular Combustor Configuration Details,

22

÷

•••

— İ

Table III. Test Conditions.

·-· ·

~

-

-

.

-

.

.

.

ł

1

l

I

1

I

I

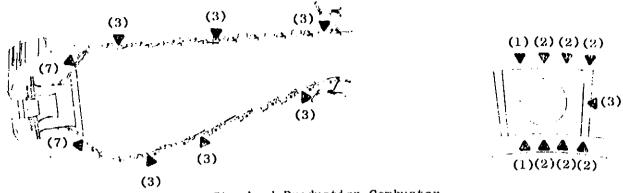
ļ

	-		Combustor Operating Conditions	tting Conditions		
Test Type	Simulated Engline Operating Condition	Inlet Total Pressure P ₃ , atm	Inlet Total Temperature T ₅ , K	Reference Velocity V _r , m/s	Fuel-Air Ratio f	Contrarté an Contrarté an Contrarté an
Emissions/Periormance Full Annuiar Rig)	Idie (engine P3 + 4.92 atm)	 5. -;	े. ग †	۳ ۲		True Engine (Variation in (Variation in f
	Takeoff Impa e.v.L : _: G antynal	2 6	178	3.5.5		True Engine 4 Variation in f Variation in f Variation in f
Alitude Relight Alitude Relight a.c. Sector Rive	Altunde Windmilling		hbtent	65 33 ~	Lean . Blaw out to	
Carboning/Flashback 	Tairoff	to 18.4	178	4 9 8 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Consistent with CFo-50 engine winomilling map.	ine wisconilling map.		1			

Ciasisten with (F6-50 enkine wisimilling map. 2010 F1 -2 rate nomically 24) de/hr iongine minimum filw schodulot.

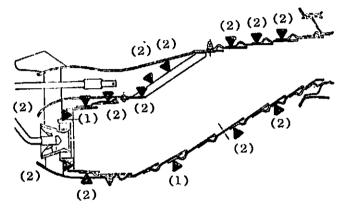
;

23


temperature distribution, and combustor metal temperatures. The combustors were instrumented with up to 35 metal thermocouples located as shown in Figure 13. These tests were conducted at simulated engine idle and takeoif conditions with variations in fuel-air ratio. A total of eight data points were obtained with each test fuel. The test fuels were stored in tanks adjacent to the test cell and connected so that fuel type could be changed during the tests without shutting down the combustor. The test sequence was as follows:

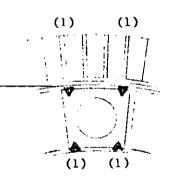
- 1. Lightoff the combustor with JP-5 fuel and set idle conditions.
- 2. Run the four JP-5 fuel idle test points.
- 3. Holding idle inlet conditions, change fuel type and run four fuel-air ratio test points.
- 4. Repeat step 3 for each of the special test fuels.
- 5. Change to JP-5 fuel and set takeoff conditions.
- 6. Run the four JP-5 fuel takeoff test points.
- 7. Holding takeoff inlet conditions, change fuel type and run four fuel-air ratio points.
- 8. Repeat step 7 for each of the special test fuels.
- 9. Change back to JP-5 fuel, run some check points at takcoff and idle, then shut down.

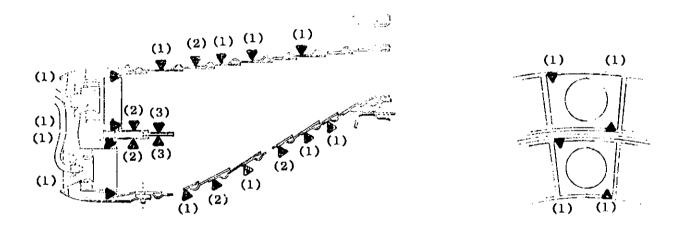
This sequence was selected to minimize the quantities of special test fucls required and also to provide back-to-back evaluations of fuel effects. In each fuel change, sufficient time was allowed to completely purge the previous fuel from the control and metering systems.


Altitude relight tests consisted of determining combustor ignition and blowout limits over a range of operating conditions selected from the CF6-50 engine altitude windmilling map with air and fuel flow rates scaled down for the 60° sector rig. Ignition attempts were usually made at a simulated engine minimum fuel flow rate of 249 kg/hr. When the ignition attempts were successful, pressure blowout and lean blowout limits were determined. The procedure was then repeated at progressively more severe conditions until the relight limits were mapped. Fuel type was then changed and the procedure repeated.

Carboning tests in the 12° sector rig were conducted after each configuration had undergone a standard test cycle and posttest inspection as part of the Phase II Program. The configurations were reinstalled, operated at simulated takeoff conditions for one hour with JP-5 fuel and an additional hour with the Blend B fuel, during which smoke emissions data were obtained.

ł.




£ ...

L

1

Radial/Axial Staged Combustor

Double Annular Combustor

Figure 13. Combustor Metal Temperature Instrumentation Locations,

Flashback tests of the Radial/Axial Staged Combustor in the 12° sector rig were designed to determine where and if upstream burning in the main stage premixing passage occurs. The sector was instrumented to measure pressure loss, flameholder metal temperatures and gas temperatures in the premixing passage. Progressively more severe operating conditions were set until either the facility limits were reached or upstream burning occurred. Flashback testing was conducted with both JP-5 and Blend B fuel.

.

SECTION 6.0

RESULTS AND DISCUSSION

Detailed results for each test are tabulated in Appendix A. Key results are summarized in Table IV.

Effects of fuel type on exhaust emissions and combustor peak metal temperature levels for each combustor configuration are illustrated in Figures 14 through 21. The effects of fuel hydrogen content (W_H) and final boiling point (T_B) were assessed by curve-fitting these results with a fuel property correction factor of the form:

$$K_{F} = \left[\left(\frac{W_{H,i}}{W_{H,JP-5}} \right)^{a} \left(\frac{T_{B,i}}{T_{B,JP-5}} \right)^{b} \right]$$

Results of this analysis are summarized in Table V and illustrated in Figures 22 through 28.

6.1 CO AND HC EMISSIONS

CO and HC emissions levels at idle operating conditions were highly configuration and fuel-air ratio dependent as illustrated in Figures 14, 16, 18, and 20. The standard production combustor produced the highest emissions levels and the Double Annular Combustor produced the lowest emissions levels. The trends with fuel type were, however, the same for all four configurations. The emissions levels were highest with No. 2 Diesel fuel, intermediate with the blends, and lowest with normal JP-5 fuel. The shale Jet A fuel was hardly discernable from normal JP-5 fuel with respect to HC emissions levels, but the CO emissions levels were slightly higher. These results indicate that idle CO and HC emissions levels are influenced by both fuel hydrogen content ($W_{\rm H}$) and fuel volitility as indicated by final boiling point (Tg). As indicated in Figure 22, the CO emissions levels correlate quite well when corrected by the factor:

$$\kappa_{\rm CO} = \left[\left(\frac{W_{\rm H,i}}{W_{\rm H,JP-5}} \right)^{0.7} \left(\frac{T_{\rm B,i}}{T_{\rm B,JP-5}} \right)^{-1.0} \right]$$

As indicated in Figure 23, the HC emissions levels correlate quite well when corrected by the factor:

$$\kappa_{\rm HC} = \left[\left(\frac{W_{\rm H,1}}{W_{\rm H,JP-5}} \right)^{1.8} \left(\frac{T_{\rm B,1}}{T_{\rm B,JP-5}} \right)^{-1.0} \right]$$

Table IV. Summary of Key Test Results.

Į

 1

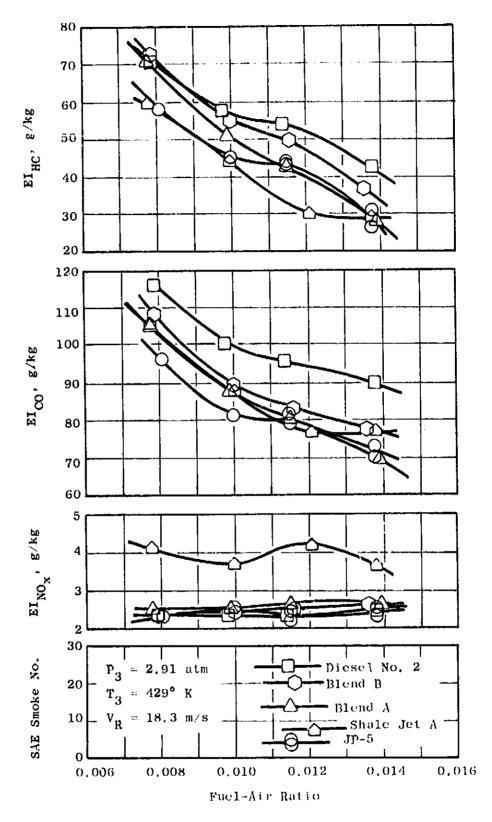
....

.....

. . . .

....

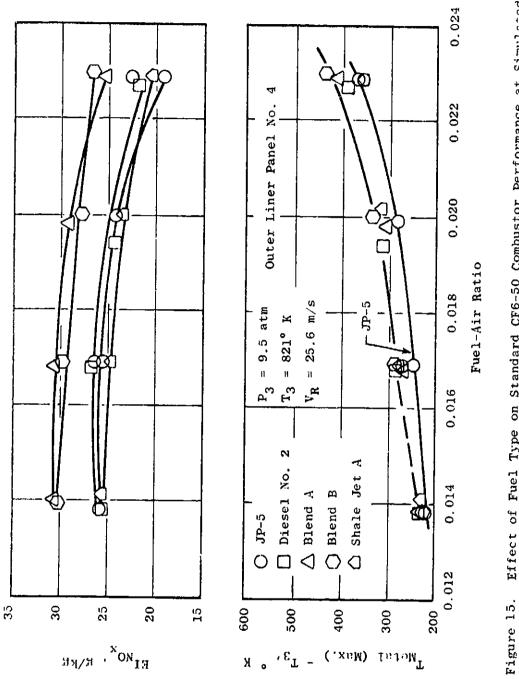
.....

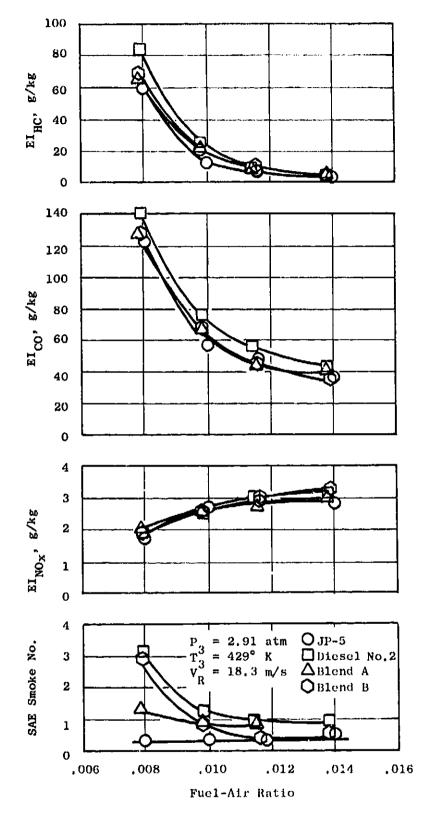

ł

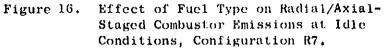
Ţ

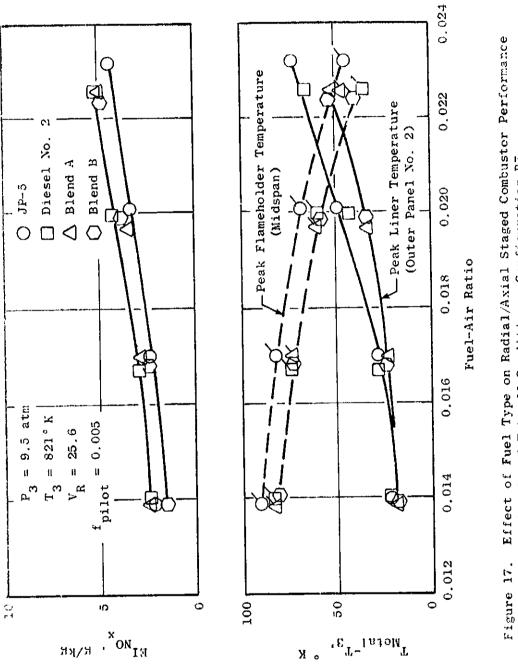
ļ

LUINAL PAGE IS WE POOR QUALITY


			N'ar Ga				Vani Star Prates 17			1						
										North North	14					
	to a former of the															
		•	;-	:			:				:					-
•		<i>.</i>	÷	÷			·		:							•
:.	·	•		:					÷.		÷.					:
		:	·	;			•		Ŀ.							:
	H		:				÷		1	.,						÷
	The second s				 :	:									•	
	A REAL OF THE AND A PARTY OF A															
•1 · · ·		•	:		:							;	:	:		
			÷										:		•	
		•	•							ŗ,		:	•		:	•
	1 · · · · · · · · · · · · · · · · · · ·									۰.			•		'	
	A second of the	•	•		•				•							·
					• •											I
	1															
				•	-				•							
	•								·					÷		
								•								
•	· · · · · · · · · · · · · · · · · · ·		• • •	•	:					•	i I	1	1	: i 1	ĺ	
							÷	:			-,					
	۰. :	-					•	÷			÷	÷				
					•		•	••••			. ,			:	•	•
																į


<u>.</u>


Figure 14. Effect of Fuel Type on Standard CF6-50 Combustor Emissions at Idle Conditions.


 $\mathbf{29}$

T

Effect of Fuel Type on Standard CF6-50 Combustor Performance at Simulated Takeoff Conditions.

at Simulated Takeoff Conditions, Configuration R7.

. .

-......

· · -

32

:

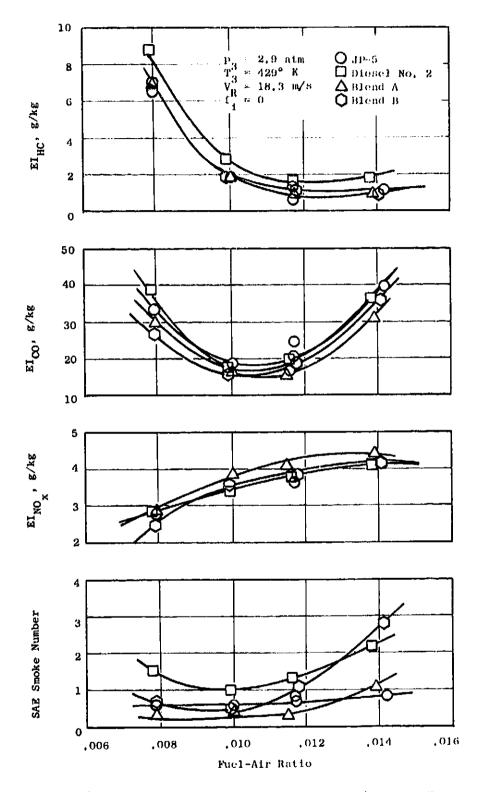
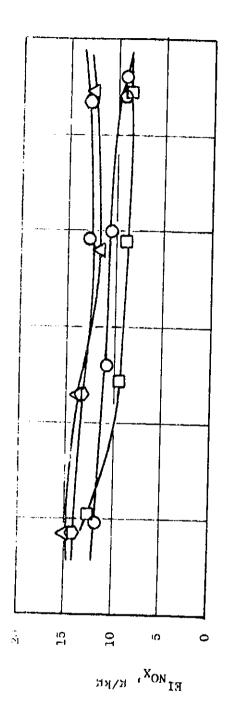
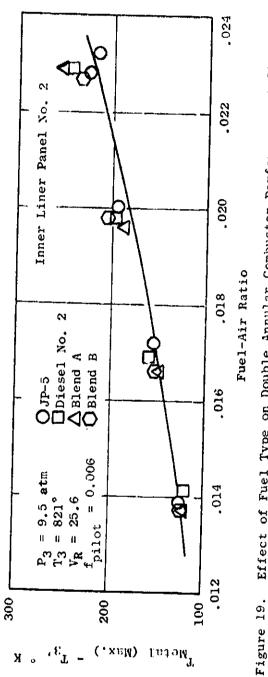
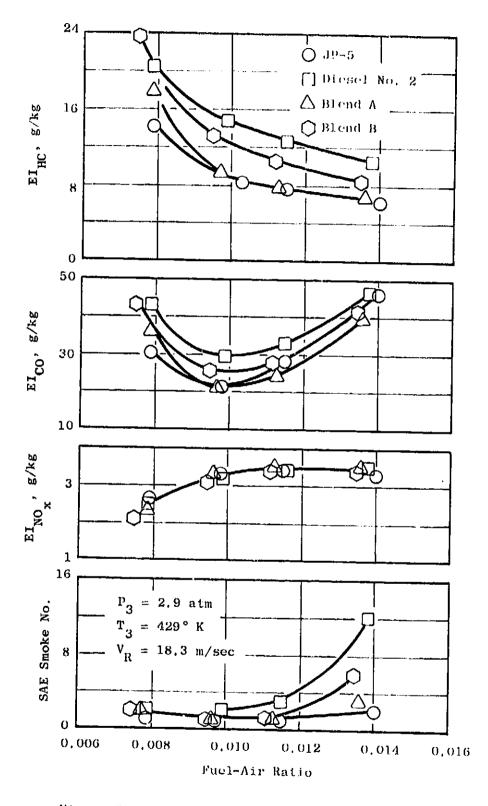
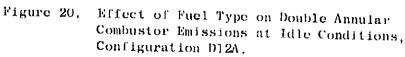
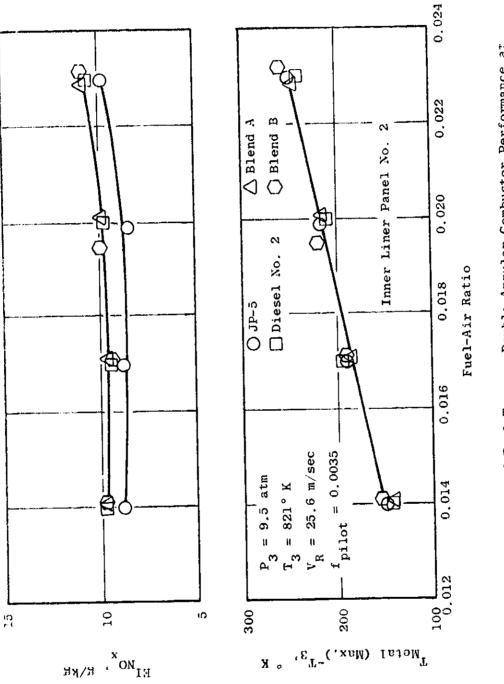




Figure 18. Effect of Fuel Type on Double Annular Combustor Emissions at Idle Conditions, Configuration D7.




ł


34

:.....

i,

[

}

1

Effect of Fuel Type on Double Annular Combustor Performance at Simulated Takeoff Conditions, Configuration D13. Figure 21.

36

1

• •

Table V. Emissions and Performance Ccrrelation Parameters.

:. ~

÷

.

...

	Peak Metal Temperature	5-41 H
	1.0 1.0	1.000 1.100 1.154 1.112 1.112 1.112 1.123
Correlation Parameters	NO _* Emissions (1) (W _{H1} 10.6)	000.1 000.1 01.129 01.1 021.1 021.1
Correl	$\frac{HC}{\left(\frac{W_{HL}}{W_{1}}\right)^{-1-\frac{\theta}{2}}\left(\frac{T_{BL}}{T_{D-\frac{\theta}{2}}}\right)}$	000 310 229 274
	$\sum_{\substack{i=1,\dots,N\\Will JP-j}}^{CO} \sum_{i=1}^{CO} \frac{1}{(T_B,JP-j)}$	1,000 1,203 1,072 1,087 1,061
	Final Boiline Paint, K TB	513.7 607.2 519.4 519.4 515.1
	Rydragen Weight Fras tion Wyf	94415 147710 149710 149710
	F tel	JR-∮ No. J Dirsel Blend A Blend B Shale Jot A

11) Thermal NO , Only

L

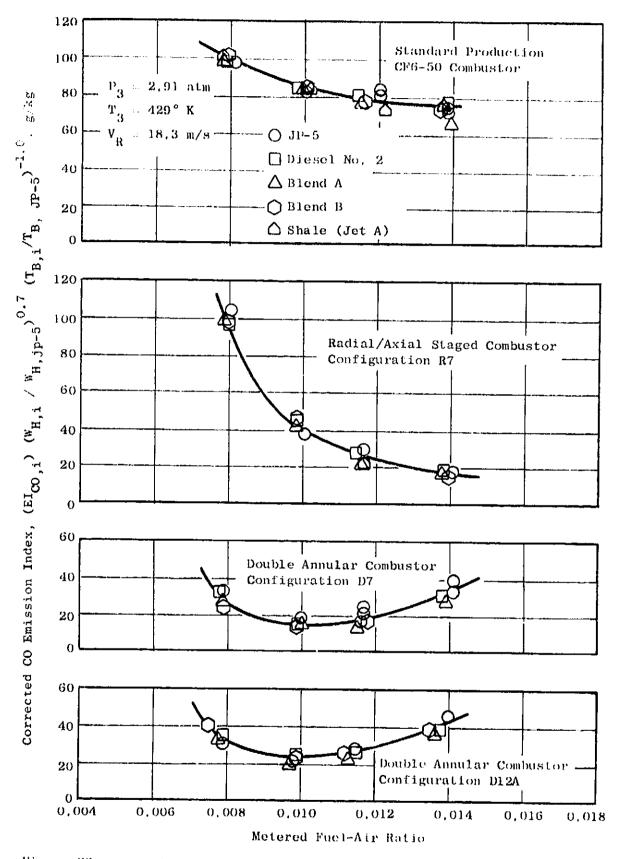
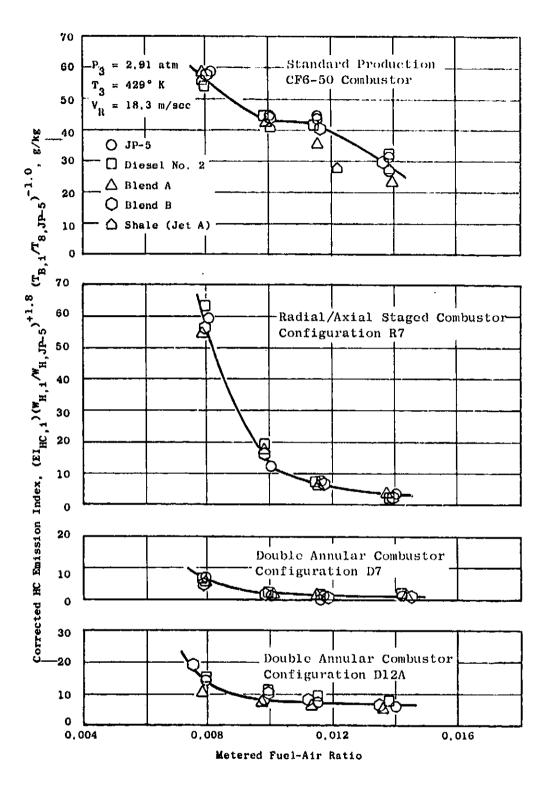



Figure 22. Correlation of Effects of Fuel Properties on CO Emmissions Levels at Idle Conditions.

••

. •

{

Figure 23. Correlation of Effects of Fuel Properties on HC Emissions Levels at Idle Conditions.

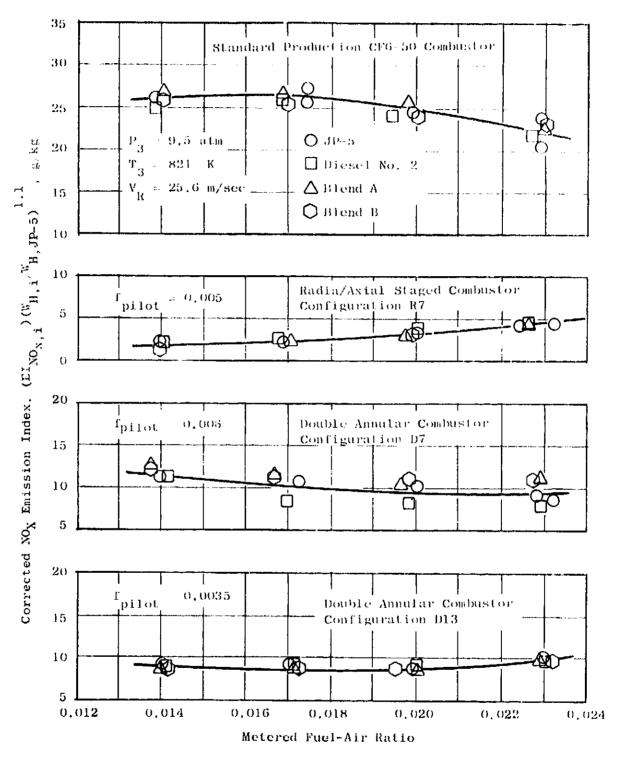


Figure 24. Correlation of Effects of Fuel Properties on NO_X Emissions Levels at Simulated Takeoff Conditions.

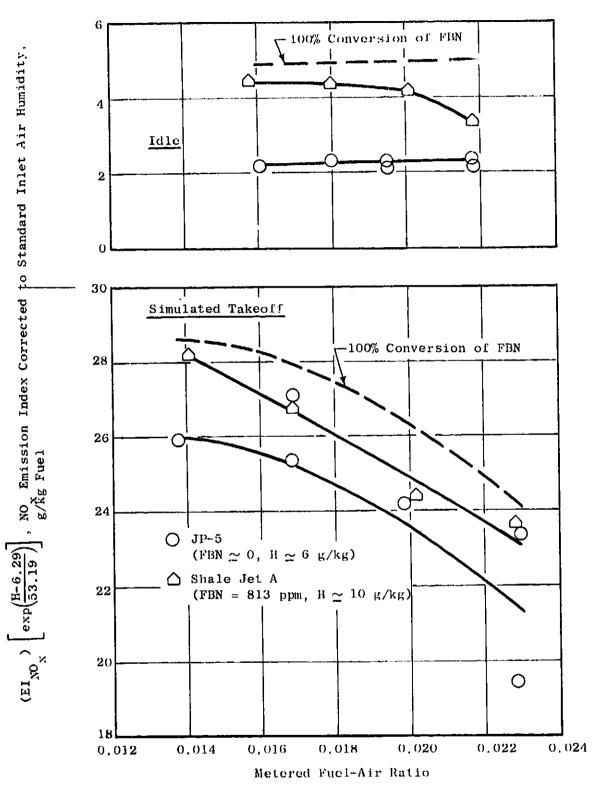


Figure 25. Effect of Fuel Bound Nitrogen (FBN) on NO_X Emissions Levels, Standard Production CF6-50 Combustor.

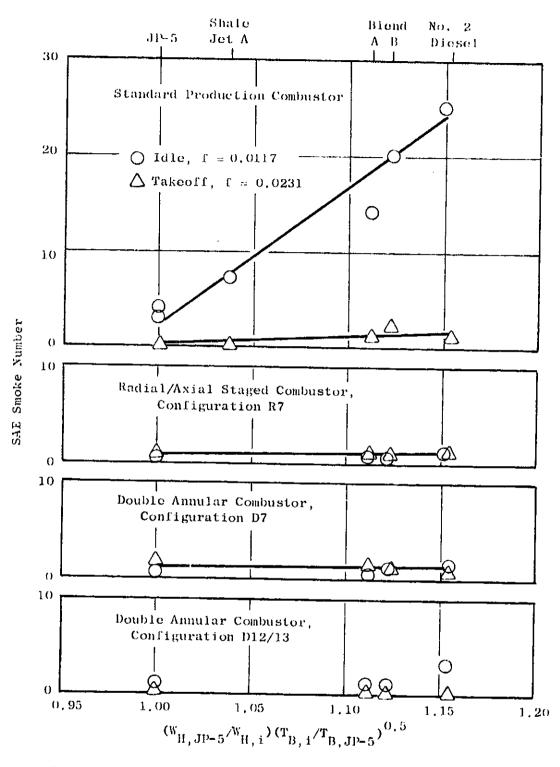


Figure 26. Effect of Fuel Properties on Smoke Emissions Levels.

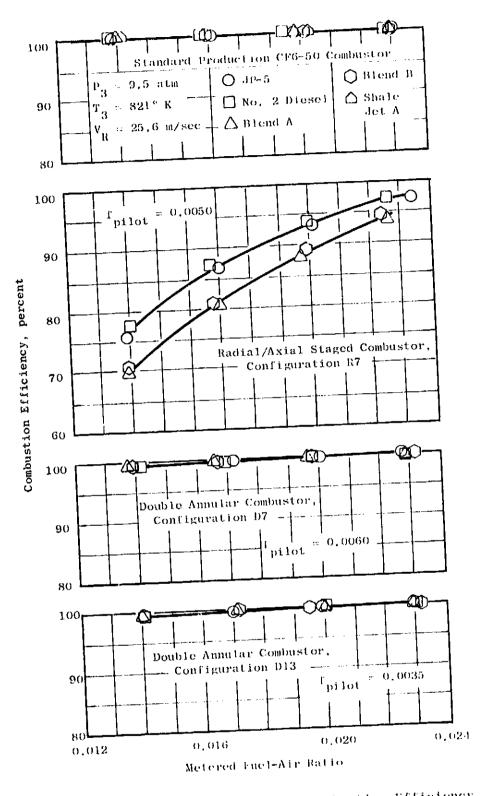


Figure 27. Effect of Fuel Type on Combustion Efficiency at Simulated Takeoff Conditions.

ı

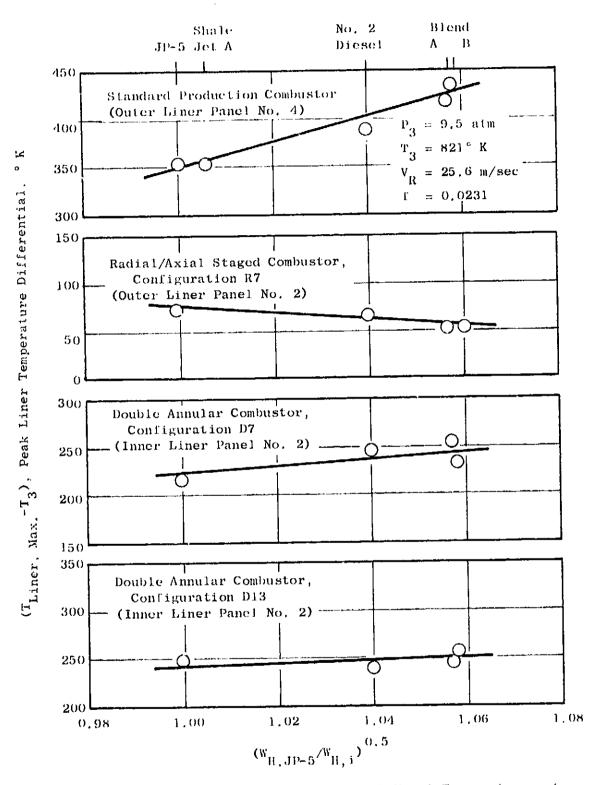


Figure 28. Effect of Fuel Properties on Peak Metal Temperatures at Simulated Takeoff Conditions.

HC emissions levels were thus more dependent upon fuel hydrogen content than were CO emissions levels, but the effect of final boiling point was about the same for both HC and CO emissions levels.

6.2 NOx EMISSIONS

 NO_X emissions levels were also highly configuration dependent. As illustrated in Figures 15, 17, and 19, the NO_X emissions levels at simulated takeoff conditions were highest with the standard production combustor and lowest with the Radial/Axial Staged Combustor, but with reduced combustion efficiency levels. The trends with fuel type were, however, the same for all four configurations. The NO_X emissions levels were highest with the aromatic blends and lowest with normal JP-5 fuel. As indicated in Figure 24, the NO_X emissions levels correlate quite well when corrected by the factor:

$$K_{NO_{X}} = \left(\frac{W_{H,i}}{W_{H,JP-5}}\right)^{1}$$

Final boiling point had no discernable effect on NO_X emissions levels, but fuel-bound nitrogen content did produce a measurable effect.

1

The NO_x emissions levels with normal JP-5 fuel and the shale Jet A fuel are compared in Figure 25. The inlet air humidity varied considerably during these tests (4 to 14 gH₂O/kg air), so the emissions levels have been corrected to standard humidity (6.29 g/kg). The shale Jet A fuel NO_x emissions levels are significantly higher than those with JP-5 fuel. This is attributed to partial conversion of the fuel-bound nitrogen to NO_x Conversion efficiencies from about 20 to 80 percent are indicated which are in general agreement with References 4 and 5.

6.3 SHOKE EMISSIONS

Smoke emission levels were generally very low with all four test configurations. As shown in Figure 26, the highest levels were produced by the standard production combustor at idle operating conditions with No. 2 Diesel fuel. Results indicate approximately the relationship:

SN
$$\alpha \left[\left(\frac{W_{\rm H}, \rm JP-5}{W_{\rm H}, \rm i} \right) \left(\frac{T_{\rm B}, \rm i}{T_{\rm B}, \rm JP-5} \right)^{-0.5} \right]$$

In all of the other tests, smoke levels were virtually zero with any fuel. Older combustor designs utilized in References 4 and 5 had higher smoke levels and stronger effects of fuel hydrogen content were observed. Thus, advanced low smoke combustors appear to be relatively more tolerant to fuel properties.

6.4 COMBUSTOR PERFORMANCE

Generally, the effects of fuel type on combustor performance were very small. No discernable effect on pressure loss or exit temperature distributions were observed.

Combustion efficiency levels at simulated takeoff conditions are shown in Figure 27. All levels were virtually 100 percent except with the Radial/ Axial Staged Combustor. Combustion efficiency levels for the Radial/Axial Staged Combustor were somewhat lower with the aromatic blends than with JP-5 or No. 2 Diesel fuels.

Combustor peak metal temperature levels and locations were dependent upon both configuration and test condition. As illustrated in Figure 28, the highest levels at simulated takeoff condition were found on the fourth panel of the outer liner of the standard production combustor. The results indicate approximately the relationship

 $\begin{pmatrix} T_{\text{Liner,max}} - T_3 \end{pmatrix} \propto \begin{pmatrix} W_{\text{H,JP-5}} \\ W_{\text{H,1}} \end{pmatrix}^{0.5}$

which is a much weaker effect than reported in References 4 and 5. For the low emissions configurations, the temperature levels were lower and virtually independent of fuel type. Thus, low smoke and low gaseous emissions combustor designs appear to be relatively insensitive to fuel hydrogen content.

6.5 ALTITUDE RELIGHT

Altitude relight limits were approximately the same for all four test configurations and all four test fuels. However, these tests were conducted with ambient temperature air and fuel. Because of the higher flashpoint and viscosity of No. 2 Diesel fuel, greater differences could be expected with cold fuel and air.

6.6 CARBONING AND FLASHBACK

No discernable carbon buildup on either the fuel nozzle or primary air swirler venturi was observed in either of the tests conducted with JP-5 and Blend B fuels. This result was expected, since the configurations had been proviously developed in Phase II Program tests using a heavy distillate fuel. With less developed configurations, some differences between JP-5 and Blend B fuels might be expected.

In the flahsback test of the Radial/Axial Staged Combustor, a flameholder burnout, occurred while operating with the Blend B fuel at simulated takeoff conditions. The resulting burnout can be seen in Figure 7. The Blend B fuel had a low flashpoint compared to normal JP-5 fuel (314 vs 330° K) which may have caused flashback and subsequent burnout. Thus, a potential problem with premix systems is indicated, particularly with a fuel having a low flashpoint.

SECTION 7.0

SUMMARY OF RESULTS

This series of tests provides a preliminary assessment of the possible impacts of using hydrocarbon fuels with physical and chemical properties significantly different from those of normal aviation kerosene on aircraft turbine engine combustor performance and exhaust emissions characteristics. Tests were conducted with the standard production CF6-50 combustor and two CF6-50 size low-emissions design approach combustors which evolved in the NASA/GE Experimental Clean Combustor Program. For the five fuels tested, the important fuel properties were found to be hydrogen content, which ranged from 12.2 to 13.7 percent by weight; final boiling point, which ranged from 529 to 607° K, and fuel nitrogen content, which ranged from

Fuel effects were generally quite moderate, but well defined and in the directions anticipated, with respect to pollutant emissions characteristics (CO, HC, NO_X, and smoke) and peak liner temperatures. Decreased hydrogen content caused an increase in CO, HC, NO_X, and smoke emissions levels and in peak liner temperature. Increased final boiling point caused an increase in CO, HC and smoke emissions levels, but had no discernible effect on NO_X emissions levels or peak metal temperatures. Limited testing indicated fuel bound nitrogen conversion efficiencies from about 20 to 80 percent depending upon operating conditions.

SECTION 8.0

CONCLUDING REMARKS

In advanced low smoke combustors, like the CF6-50 combustor, fuel hydrogen content effects on smoke and liner temperatures appear to be relatively small. Some increases in gaseous emissions levels were noted as hydrogen content and/or final boiling was increased. Overall, however, these results suggest that these advanced turbofan engines can probably accommodate a wider range of fuel properties and, thus, be satisfactorily operated with a broader range of petroleum fuels and fuels derived from shale or coal sources.

The low emissions type combustors tested in this program appear to be even less sensitive to fuel hydrogen content and/or final boiling point. Thus, these combustors appear to offer additional promise for permitting the use of a wide range of alternate fuels in future engines.

Additional testing is recommended to verify these trends as properties of future fuels become better defined and/or as actual fuels become available in sufficient quantities for more extensive testing. In particular, the following types of tests are recommended:

- 1. Actual advanced turbofan engine operation. At high pressure, effects of fuel properties could be greater than indicated in these rig tests.
- Relight tests with cold fuel and air. Effects of fuel properties could be greater than indicated in these ambient temperature _ rig tests.
- 3. Fuel thermal stability related tests. In these short tests with ambient temperature fuels, no fuel nozzle gumming or plugging was indicated, but with hot, aromatic fuels, some problems might develop.

APPENDIX A

DETAILED TEST RESULTS

This appendix contains summaries of the operating conditions, performance and exhaust emissions data for each test conducted in the Fuels Addendum.

The full annular rig performance and emissions test results are summarized in Tables A-I through A-IV. In these data tables, only the measured combuster airflows are shown for the sake of brevity. In conducting the tests, however, the total airflow and turbine cooling bleed airflows were set and measured. Nominally, the combustor airflow was 84 percent of the total inlet airflow. Reference velocity in these tables is based on total inlet airflow, total inlet density, and combuster housing area at the dome exit which is 3729 cm². The $NO_{\rm X}$ emissions indices are presented two ways: as measured at rig conditions and corrected to true engine operating conditions and standard inlet air humidity (6.29 gH₂O/kg air). Average exit gas temperature was calculated from metered fuel-air ratio and gas sample combustion efficiency. Exit gas profile and pattern factors are based on uncorrected thermocouple readings.

The 60° sector rig altitude relight results are summarized in Tables A-V through A-VIII. Simulated flight conditions were interpolated from the engine windmilling map (Figure A-1) using the measured airflow rate and inlet pressure. Successful lightoff is defined as full propagation as indicated by temperature rise from primary zone thermocouples downstream of each fuel nozzle. Blowout was visually determined.

The 12° sector rig results are summarized in Table A-IX.

	: •-						Her P.				1.	Ares	4			, ž						
	1	1		1	х. х .	1 10 M			1			111	r. 11	2		~	: .r	÷				
		7 ; 9 .4	5 3			•	•	:	:			:		:	:			à		:	:	:
172		3.5	ā			:	• • • •		: .	•		: :	: : : :	: :	: :	• ;	3	1	;	:	;	;
	. .	7	÷.		÷	:		-		5			a na		, ,	:			: \`	•	:	:
		¥ 9	2 5		į		•	5	2			•				;	Å			•	•	
ŝ		7	1					-				¢ ·	É : E	11 11 11	×;	·		ï	- -			÷
	•	X H	129	1.6	ŝ								1 : 		; ;	;		÷	ų		ŀ.	f:
- 1	-	£ 11	*11 1	1.1	ä		:	terre e			ţ	. * ;		 		: :					·	ŕ
	;	у Т	Į.	5	244	a 1		117		4	l:	. ?	12				i	;	9 9	њ ;	:	È
	3	9 . 1	3 3	:		•	ł	1	-	:		;	÷ •	*	22 11	4	1 4	įģ			: .	
	- 5	: 2 : 3	5 4		: :	- ·		1		•		÷	2 2 2	2	e T	:		7		•	• •	•
ł	Ē	:				 	:			-	1. [].		•	-		:		1				
	•	ç. P		• •	ŝ	• • •		-	:			; ;			•	; .		ŝ	•.	:	•	
		ta -			i	<u>.</u>	÷. 4,								1 . 			i	÷	:	,	
- 1	- I	3	43	2	2					1.	ï			i .,		: :	· ,	2.			·.	
	-	ī.	5.	•:			,	-			:	;		.,	:	:					,	
			5 3							:	•							Ι.	•		•	(1
				. :	i ;		•	•				;		 	•		-	ž	. 1			
	1		: 1				:			1				, ,		:						
							•	:		•	£	:	4	•	2.	:		5				
	Ť		214 1	-	Ż							ł	ĥ					7	÷			
			Ē	* 55	Ę		 4				ļ		: 	2	7	;		л 4	;	÷	t	
	i i		2			.		5		:	1		•			:	1	i.	i,	1		
	÷.,	¥.	*.v						:		5	7		•		: :	. / 	<u>.</u>	•	:	:	÷
			\$:	 ,	2			i ti	24 s	1	1. Mar. 1	÷		ī	e. 	;				:		
	t		<u>.</u>		3		1.55			-			•	•	••	!				: :	:	
			: :		ř.	-	n 2	ъ	4	1					1	:						
						•	 		-			÷		- .(: :			. /	
									2		77			÷	•	:	-		·			
	.:		·			•				. •			-	 		.,	-	•				
-	-				-2	•		-					1 - -	сі 4		:	1		•		Ŀ,	
						 .	3		1	1				-	•		-					
-	:				4		1		1				;		•				à		4	
			•		Ł	ī	-,	5	÷										÷	•	;	
										-			•						1.	•	4 -	
	-			•				4	ŧ	41		:	-	:	ŀ							
				•		••••	:	•		ŗ	•			•	•			•				
						-				ł	ł											
,	.	1					-			:				с . 								
			-	•		-			;	•												
				•				Ţ	:		· ·			. 7		2					:	
								•		ł									•			
			•	-	4																	
					. . '		÷							•	•							
									•		:			÷								

() () () Standard Drog. Table A-I. Emissions and Performance Test Results,

l

1

ĺ

. . .

5

..

۰. م

.

.

.

.

.....

.

Table A-II. Emissions and Performance Test Results, Radial/Axial Staged Combustor, Configuration R7.

de la

.

· • •

•

Ţ

• :

High Bridger House and an and

:

.

	jř.		P.	¢	÷.	3-2		200 - A		24 - 14 C				¥1			••••••	1			÷	i.	•		•				•		4. 		•
	Part		: 	•		••	•••••	•					:			•	-	·:- · ·	-			•	•		•	:		•	: 	·.			•
	Pricile Partie	:	4	:		: .	•	1	÷	•			:	•••	:	:	•	•	:			:	:	۲ :	:	:		:		•		•	;
		:	<u>:</u>		414	1 N N	ł	ļ	:	•••	24.2	:	ļ	141	.,	1	:.	•••	::	•	ŝ		÷	f	;	•						•	
A LA.	1.1	5	i.	ţ	ž	101	;					ŝ	i	-		ÿ	,			:	:.	à	÷		;		•				:.	2	ţ
		i,		5.17	9.3	3.2.	:::	4		••••			,	3.4.5	4.7	1		· · ·			:	1					·. ·	•				:	
	Sut Such Surler		بر د د			1.1	•	;	:	:::	*.	5	4	4	*	7	-			;	·	-	•		 •.	•	•.	•	•.	•			•
	A K C	:	2.2	e n				×.×	.:		x	;;	;	÷	· .	<u>'</u> ;				:			;		· · ·				 ::			•	
וופיניי	h		7			1		ç.	5	1.1	1. 1. S. M. 1					•		•		5				.:	;	;		·: 		:			 -;
Antering Bertering	× ¥ ¥					2442				. N			4		1. 1.1.	•			1141				1.02		÷	4.			:-	4		•	-
		!	1		21 P.		4 14	R. 1.1	2.2		ž	1	1.11	S.	97 E F		-	4	411	1	ä	1	2.12		_			<u>:</u>		*	2		4
-	Somple Curb At Lon Bill A Lond V.	:	1° 40,	(· · ·	5° 14	21 IS				7 H	N. AN	1	· · · ·	1	4 . 4 .		-						1	::	·: ,		<u>,</u>		:				:
	Sangiju Vevr- A:1				1.1.1	1.1			-	1211-1					1.1.1. A.1.4			1.1.1.1	117.00				1 1 1 1	2	÷)		:			1
Fuel-Arr Hatty & Yoel, & Arr	fetured Pilur (Ocur- Stage All		Ì	office a series	and a sector	1.10.0	4				114	-115 C		-	6. T. T.				1 2.12					-				1	:: •	1	****		1
Fuel-A	Vetered Pales	=	141 Pr -	34 J 14			÷		4	1. an 1		A.II		1							HI (At.)	dran.	:		•			•		-		•	1
	A LINK		;	• 	7	•			`			•	:		:			•		77	. 1122 1	. our .	47.5		-		:	-	•.	•		;	
	R. ferensis Volume		а. А	1.1.2	4		- 11		ł		1	ź	4		ę						1	20.02		:	;		:	- - 		-			•
_	Indef Au Haristic, King Alf	ł	1.4			,. ,	:	:			-		2	2		2			.:	;	į	A	-		;							;	
			149		111		EN1			1	7 2 2 4	÷	ž	Ĩ		•	ż	÷	8 .	i i i	1	145.4	5 N.	::	÷	ie.e		ï	•				Ĩ
	furthantur Asrtium, kg acc	2,53	2.161	11.7	2.1.2	2742	1.7						4	:::			":	•:			1. I.		¥." 14		:	4	:					4	
115	Tempere D Ature, D	- 2	Ë	ġ	10	5	Ξ	2	2	8	51	::	111		111	1.62			*	17	-12			÷			Ż	, t	:;;		44	.72	
	Tresser.	2		26.2	1 .	-	4.17	v.	;	1911	:	9 		6.5	4 11	21.12		5 v 2		1.1	¢	4	11.11						÷				
	1 anted			Ţ	ŗ	-	5	1	6	3	÷.	2	â	1	4	ł	2	ž		ą	111	514	72:	Ņ)	-		.,		•••			: <u>.</u>
	Reading 1	l e	-			1.	i	i	÷	¥		÷	2	:	**:	ž		÷		-17 -A	 .i.		-			:		- ::					

-1

51

ł

	Patters Fiel Factor Trpe	1.17 3 -5	1	5-67 19"1	· - ·	16 57				1.11 Dietes #1			Divers	1 US418	.77 Biend A	N U	K 00-10	31-16		-6	-		10 41	5	101 - 101 - 101								1,442 - 51,4		
	Prudile Pat		- A								4		 Ą	2			4	 ą		-		-	•			•••••	;						 		.:
Max Jour		54	1	11.	Ì!	ī!	- uu -	÷	Ě	::	2	2	22	2			×	5	: :	2	141	ċ	•	11.	1.465	-	i.	4	:		,		 		÷
Average	Temper- attre, K	126	ji Ne	ţ	¹ ž	ž		ş	ÿ	ĩ	;:	Ę	ĩ	ż		4	ž	41 4	1.16	ž	2	-	-	1 1 2 1 1	5	ė.	::	2	į		24	1	2		2
Tota:	Pressure Loss,	49*1	5.04	36.4	41.74	14.1	144,1	-9-1	1.64	4.77	1.76	1.6"		22 M	4.44	4.1	1	14.5	4.70	а, :	4	·. ·	-			3	<u>.</u>	1.16	3	1	3		:	1	4
	Suckr Suckr	8 -0	0.7	4.0	;	4	0.6	2.2	2	•	¢.1	;	.	0.4		1.1	1	4.0	0.7	:-	3	1.7	2	1.5	1	::	•	5	:	1			:	-	2
1.0	Link In-	1	!	1		ł	н. н Н	611	57	1	2,8	1.1	c	4.5	2.4	-	•:	¥.1	2.4	13.7	16.0	18.3		29.1	1:44		184	21.4	<	21.12	2	1.11	102	1	2
Eriston Indices s'ks Parl	<u>8</u> " ¥	1-1			0.6 1.6	-	1.1. 2.8	1-1 2-1	*-		N. 5 1 2 4	1 1 1	1.1						0.5 2.4	1.1		0.1 10.5		1.1.11		416 - 11-1	1 4 1	1.5 2.5	4121 1111			1 1	- 	. 12.8	1.1
ä	8	3-52	20.7	21.4	16.7	14.6	3.1.7	14.2	1	1:-1	44.5	3.1.5	2	16.1	4.9	101	111211	15.4		**:	;;	1.0 18.4		-		7		1.46			1	10.1	:		
Samole	Combustion Bifleiency,	1.64	t *6ú	ņ	9 G.		100 C	1.443	+ +H	B 3	1.44	2.64	5.94	1.1	9440	1.14	4. Avi	1.46	1.44	100.0	1.00.0	9.75	¥****		6' 90	*	1	21 mil		5			Teres.		
	Surple Over-	7020.	4210.	10.00	14	-210	1904-2	1-11-1	1914.	1.1.1.1	Inte.	H111	.0165	artu.	2004	C14801	.0166	1014.	4010	- 920	1.620.	11.20.	7+tn.		-52-	22	1.1	101.	000001	, 11 11 11				1.720	1011
÷ L		3	2310.	2110-	-110-			4. (. .	0110	in fay 1 andar	43-0 .	1	ann.	1	- 00	11	41107		1002	ş	W220	1020-1	12111	-	1.122-1	1	1.1		1.22	1444 C			17.5	10.10 ⁻¹	1924 1 4924
Fuel-Asr Ratsri k Fuel k Asr	Nutered Inner Annutus	-	c	¢	c	÷	¢	:		:	•	•	3		:	-	c	:	:	ē	594 m	41.111		A1494]d.		4		ny tur	1	.41.94	41017	, 414 A	410	
	Outer A	2110.	. 1117	. 1110.	, stine	inte-	201	1 - 1	1	· •••••••	HÇON,		0110.			11111	HITU.	, Investig		4694		1.000	2,4001		- 110101	1. 1. 1. 1. 1.		teel.	1141			1200		-1902.*	14 M
	Reference Velurity, Briece	1.07	34.2	212	27,9	14.1	1.41	11.11		1.1	11.0		14.0	17.6	2.1.1	14	14.0	24.45	÷		2.5.6	C. 62			· · · ·		1			9.5	1		2442		2.11
	Enter Arr Humidity, Kike Arr	1.1.4	ģ		?. 1-	6.5	~		;;		;		2	4		×		1	;			-		7			:	÷			-	4	1	, .	
1.1.1		24.4	a se	574	12	1	ž	***	ŝ	a si	?	1.22	574	141	747	303	540	ï	1 - 1	PPE.	1747	1000	100	4147	N LA	1 7		1 ave		1224	-	2	1	:	
	Gomburgur Ateftim, kg. we	4	N. 17	+: 2	e. 5	1.1	4.1	e. 1.1	4, 11	45			415	· · · · · · · · · · · · · · · · · · ·	1.	N. 51	5.0	7,6			11.12	r R	3.27	177				10		;					
	Traper.		ŝ	Å	¥2,	663	117	n7:*	13	ģ	ģ		818	124	4.24	şa	174	4	923	i i			1. 	,		ž	4	į	1		÷	÷	2	÷	;
	Private.	4	0 7 .4	3	5 5	i.	2.95	ц ц	0 0	2.1.2			o A	3	f 1	10.2	÷	1	5	- 0 -	2.55		3	ļ		;		1		į	j j			4	
-	Putnt Manheli	101	201	1	26	201	ě	121	1	à			8	ŝ	ŝ	-	9	1 2	:1:		516				Ę	÷	ų	1		416		÷	ļ	<u></u>	
<u> </u>	Reading	2	-	1	<u>'ž</u>	1	Ŗ	ŝ	21	Ľ	Ĕ	Ľ	ž	1	3	2	1	ŝ	1	1	11	3	ų			<u>:</u>	2	<u>.</u>	2	:,1	:				

Table A-III. Emissions and Performance Test Results, Double Annular Combustor, Configuration D7.

52

:

on D12/13.		
rformance Test Results, Double Annular Combustor, Configuration D12/13.		SAE Press Ext Notal
ustor,		SAE
Combi	lice .	
s Annular	Emission Indices	g/kg (uel
Double		Sample ombustion
Results,		Sample Combushon
e Test	Fuel-Air Ratio g fuel / g air	Metered
ormanc		
d Perf		
ons ar		
Emissic		injet intet i Tatal
-IV. J		
Table A-IV. Emissions and Per		Inlet Inlet
	1	

ļ

Ľ,

ſ

L

1

				·· - ·		-		g fuel / g air	R air			<u>ئ</u> يا 	mission	Emission Indices			· · · ·					
	Ē	Inter Inter		Total				Metered		Sample	Sample Combustion		R/NK	g/hg (ue)			Press		Net al			
Feadin, ¹ 1	Point Frens Noint Frens N Ain	tui Totai	at computer p Airflow kg/ac				Outer Annulus	Inner Anulus	Overall	Overall	Efficiency	00	:. 	a XON	Engine	Smoke No.	а 1	d H H H	Temp K	Profile Factor	Fattern Factor	Fuel Type
ł	2 2 2 2		1. 37 2. 2 2. 20 2. 2 	<u>855</u>		50-1- 5553	5550 4110 9 0410 9		54.00°, 44.00°, 5110°, 0410°,0	2008-0 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	・ 3 ト う ・ * * * * ・ * * * う う ひ う	+		નન્ય ગ ને તે ને ને મે	22.41 N	r	51:63 4444		7 2 ± 2 7 1 + 1	9 3 1. 9 1 1 1 1 1	8419 2002	и. Бі га
}		• • ••		5 3 4 5 5 5 5 5 6 5 5 5 5 5 7 5			0, 00 0		f	5 10 0 %	X = X 0 1 - X 0 1 - X 0 2 - 2 - 5 5 - 5 - 5 6	4 7 9 1 4 7 9 1	(2	2020	1 G - F 	1918 B B B B B B B B B B B B B B B B B B B	2036 1114 1114	442X 2222	1111년 1111년 -	Diesel +2
			-	7 : S 5			2119 2119 2119 2119 2119 2119 2119 2119			9, 01 - 16 0, 01 - 15 0, 01 - 12 0, 00 - 12	4 28 4 4 8 4 7 8 4 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	n + ? - 2 1 1 1 2	1- 1- 7 2 2 6 3 2	10 11 1 1 10 11 1 1 10 11 1 1	 		+ + + + + + - +	9238	4 9 0 4 9 2 5 5 2 1 1 1 5		1918 1913	Plens A
1				1 4 5 4 4 7 5 5 5 4 7 5 7 7 7 7 7 7 7 7 7			0,0112 0,0012 0,0095	- 8254		0,0109 0,0109 0,0109	45 86 86 86	41.55 27.4 25.7	7 5 - 1 2 0	**	4: 17 - 73 		2 0 2 0 2 0 2 0 7 4 4 4		57.66 9년 16 9년 18 9년 18 18 18 18 18 18 18 18 18 18 18 18 18 1		5448 1223	Plend S
		- 🖁	.	1707 1707			1, 1015 1, 1000 1, 1015 1, 100	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	₩	0, 0274 0, 0274 0, 0201 0, 0164	100.0 100.0 19.8 99.3	1 7 7 8 4 1 7 7 1 1 1 7 7 1	0 5 6 7	2 + 1- 1- 2 x x x			65 - 7 - 7 8 - 7 - 7 7 - 7 7 - 7 7 - 7 7 - 7 7 - 7 7	155° 155° 155°	6677 5667 3501		2.4.8.5 1.2.2.7	ă.
ł		ł.	.		-						6 2 X 2 2	2) + 2 V -1 - 1- 7 -1	ಾಂತ ಕ ಶಿಲೆ ಧಿಸಿ	ण 1: २१ : इ.स. १. १	*1 40 - 0 1 1 1 - 0 1 1 - 0 1 1 - 0 1 1 - 0 1 -		7774 2224		# 1 m # 7 m # 7 m # 7 m #	841.1 11111	242. 1177	Desel -
			•			1 - 4 - 4 - 4 	0,001 1,001 1,001 1,001 1,001 1,001	1 1 4 6 2 2 2 6 2 7 2 6	1			5.4.7	0.0	1. 5 4 1- 3 7 7 5	20 m J 5 2 i - i -		1993년 1997년 - 1997 1997년 - 1997	2004 2004 2004	211 211 211 211		24 + 4 24 + 4 2 + 1	Stens A
1			1	***** 51352 		त के के के ब क द का म त का का म त ना ना	6, 60 55 0, - 54 0, 0.031 0, 0.035	17 10 10 17 10 10 18 10 19		9 10 0 9170 0 8170 0 8170 0	5-5-55 5-5-5-5 5-5-5-5		000+	9 3 4 8 9 3 5 5 5 0	3 * X - 3 I - I - X 	>	C 44 4 4 1 1 1 4 7 7 7 4	1664 1484 1412 1512	17 2 9, 4 4 9, 5 4 6 5 - 7 5 5 5 5		2010-00 11-1-1-00 1-1-1-1-00 1-1-1-1-0	А 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	· • • •	ana an an				• •		1.							1
1445-4 5	10		5		,		54.10	•••		•		1:, .		1.1.	1.
. 1	1 4				••••		• •								1
								• •							L
				•					Į.						I.
		•										i			
							·								Ł
			1.0												
								• •							
·		•			•							:			
			•				•						۰.		Ł
· ·	•				•										Į.
•	1		· ·				• .	•	1						Į.
							•	•.	1						ł
															i.
	•					• •			i i	· · ·		1.			1
					• •		• •					•	۰	1	
•	•	•			·			•.•	1						
					•				1 '			1		1	
	· •						. · ·		1			1		1	
						• •	•••	·	1		•	1		1 .	
I · 1	ļ													.	ł
	Ι,						• '								ł
			1				•		1 :			Í			T
		-			• ·										
	Ċ		1.				• •	· · .							
ļ. '	Ľ		ł		••				1						1
1	1.1			•	•										
			ļ		•	**		۰.							l
	• •	•	.		• ·		. 4	,							
· ·	•		1		• ·	•	• ••		1 .				•		
1				-	•							1.		ł	
									1						
			1			••						1 .			
			1											1.	
									1						i
1												Į		ļ	
	1											1		1	
			· .									1		1	İ
	h			۰.		. •	-								
1	1:					•								1	
				.,					1 !			1 .		1	
	· •		i			. •	•		· ·						Í
			Ι.	•		:		• ,	•		·				ļ
1 .	1.		1		÷				1			1	- 4	1	1
	۱·		1	••	••				1			·		1	
1 .	1	•	1	••	2		••			••••	•	1			
1 .	•		1		•		- 4	•				ł			
	1		1			•			1 1		•	1		· ·	
1 '	1		1 .		•				1 .		••			1	
1	1		1		•							1.		1	
1 .	[.		1 -					•							
	1		·		•	·		-	1 ·						
1.	1:		1 :		•							1			1
1		•		•								1 .			
1	1		1			••									
1	1		1		•		•		1			1	'		
	[1			.•					:	1			1
1	1		1						1.			1	,	1	
1	1		1						1 '		•	1 .	•		
1	1.		1						1						
	1.					÷			1						
												1 ·		.	
1	1		I		•				1.			r		1	

Table A-V. Altitude Relight Test Results, Standard Production CF6-50 Combustor,

1

ļ

PAGE IS R QUALITY

÷

54

. .

:

-. .

.

.• ·-···

1 91 1

.

.... -

, :

· · ·

1

1

|

	114 114	2114 117		r - tekt -	der an		· 201 6 - 20 1	a 1 1-1							
		·	·,	4.	1" y 4194		41-1-	1 (.,		1.77		,		Ι.
I	1.1					· — — ·		 •-	(ŧ			
							••				•		• •		
•		· ·	•				· •								
	••	· ·	-,					• •			-	i .		1	
:	1.7	- 44 - , 44		•	·	• •	.	•.•		1.15	÷	1.11		1 ·	
	1.4			-	4. e			10.1 11.2	1	:	- i	,	•	:	
-	• 1	4							•	•		i i	•	· ·	
14		4.45	.,					14.1			1			Ι.	Ł
м	÷.			•	۰.	•	•		1	••				1	l
	•••	•_• •	7.4		••• ••	• ••	••	· 2]		1				
11 N	• •	• •	~*	7-1		1.1.	•. ••	-1.4	1 :	1.1.1		••			
		н ні 19. ма		150 740	, • •		÷ .	10.0	:	· ••		•			
11		. 14			. ~	1.4	•. •		1 · 1	. • * *	1	.,	••		
17	7.1	1,14				1.11									
	3.4		1.14	. •	V 64			•.*	1			•		1'	
1.	11.1	A. 44		-4	• • •	:		• •				I .		.	
1.	4.8				· · · · ·	۰.		• •	1 [.]			i		:	
•	4. •	~ 1	- 64	147	. •	1.5	:	• •	:	1. 14					
£7	+	2. M		• • •	• •	a. 🗥	-	•1.2		-				· ·	
• •	94.1 204		974	• •	• ••	* 2.	••	· • •		· · ·	1				
14 17					11 a.) 6 a.)		••	· · · •		•	÷		•		
			1.2	•							;	•			Í
•	• •					1	•								
•		1.11	-51	• •				14.1			:				
:	·. •	s **	۰۴.	•	1.74	. •	· 15	1.4						1	
•	• •	- -	•••	•		- 1		• •			:			1	
т. Ц	9.4 	•••			· •		• •	1.1			i		•	1	
		• •						· ·	1					[·	
	• •		14												
12	× •		· 9.					1.4						1	
-i (•	*1		5 6									٠ ا	
•	1.4					1.14			f "		"		· ·	•	
4		1.44			4.1	1.1						-		1	i i
·	0 . s	1.45	·••		1.44	1. 14			1	•			. .	· ·	!
	•. •		+14	•	× *•	1.16		• •		· . •			÷		[
:	1.1 1.4			•••	• •	7. 4 . 11	· .	44 -		· ·	-				
-		2.45	17.5				4 . M	20 S		• •	i		•••		[
•	ı.					10						·			
- 11	2.4	5,61	46.	•:	. *			4,1			-				
-15	• •	1.14		••	•	• 1.		•.						ļ	1
н.	· •		- 1 4	•	• ••		· •		1	• -				[
- 14				••	• •	•	1.14	· •	:	. •• ·	1	• •	• ••	F -	1
							• ••		1 :		•	·	• •	1	
10														1	L
[• •			•-	1.47								· • · · .	1	
	•	A. 8	14		• •	. • :		۰.							L
· 1		1.24	×. *			a		• -			· · ·				
· 1	5.4	14	1.5	94	•.			44 · ·		5.25.5		•.			
	• -		Ne	44	• • •	• . * 1	••	14.1		1.1.14			••	1	
1	• •	2.42		1	• •	- e. 9			i	· •	ł		· · · ·	[
1	•••		15.7 51.6	95. 111	ર લ હ બ	6. Fr	- 41	- 114	1	•	•		- -	E	
	3.1		- 10								÷		•		
	1.0		141	-17							-			;	
· ·	. :		10		с.н. (1.15				1	Ι.			
	1.1	· · ·	- 94	· •	£ 4.					·					
·• [1.5	۰. ب	1 6		x +*	4,-1	1.11	••						ŧ	
12	1.1		-··.	•.•	• •	1.5	•. •	· .	1 :	5 H			-	1	
	4, 4 13.7	• • •	•12 20	-14	• • •		•.••	- a -	I	· · · •		•			
	11.1			••				н 1 г.	i	1.1.16	i	•		1	
	1.8				+4			11.4						1	
12	• •	1.4							1					I	
	4.4		ч.	1.4											

÷

Table A-VI. Altitude Relight Test Results, Radial/ Axial Staged Combustor, Configuration R7.

7

[

ŕ

I. .

ulu I I I Mulla I. Rean Flowed Comman Story and Sard J. Transform Plowsof

1

1

Ľ

1

	· · ·		1	•					1			ļ	1
	•••	н. н. Ну	.				N • •	•	1.		1 .	1	ļ
÷	1		1 '	4	•1	•• •		•	1		1.		
											ł		1
·									1		1	ł	
		••											I
					-						1		
												1	
					۰.				1				
	•												
•											1		1
	. •		l ·				•				1		
					•				· ·	•		[
	• •										i		
			•		•								1
f			ļ								1	·	
•	·		1						1			1	
			·						1		1		ł
		••	1				•		1 '		1	1	1
	•												
1									ł		1	1	ł
	••						•		1			1	
					•				1				
			1						ļ				
			1						· ·				ſ
		·	1								Í		1
													1
					•								
-	•								{		l l	.	Ι
	- •							• •	۱.		l	1	Ι
					••							1	
	1	•							l				
. 1	•••							•	ĺ				
	· •												
												I	1
•						•	• .						
•	1				• •		۰.						
1			1	•	•								
	•••	· 1	+									1	
	•.								· ·	•		1	
												1	
· ·]												1.	
•													L
	•		•					• •				1	
		·										1	
	• •											1	
:					·		•					1	Ĺ
<u> </u>	- +				•					ļ		1	L
		1			•		•					1	1
· [• •	. [· •	Ì				1	L
				•				. [
	•							· .	•	·			
	•												ŀ
		•								I		I .	1

,

ł

!

Table A-VII. Altitude Relight Test Results, Double Annular Combustor, Configuration D7.

56

•

	ън <i>и</i>	s					active be		12.00		n			1	
	50 - 2 - 111- - 20804	1105 -			۰.	.	41° 1°	1.00	A.		rs:	·•.	1		
14	A81. 177		۱ <u>،</u>	·. 			•		14.00 14.17					1.1	
<u>-</u>		-			• -										
.						-		· ·							
:	•		l												
	Γ.							•••			•		1.114		
	14.1				•	· ·· ··		• •	•••	· •		14			
:	•••				•		•	••	•	• • ••		•••	· · · ·	1	
	• •	· •	•	•	1.5	•	•	•	• •	•					
-29					-				4.50		:			:	
	1	• :	l '			-	• •		,					· ·	
	., 				1.11				, 				A		
	ы. С		1		· · •				147 14 14 14			•			
÷	4.1		· ·			•••	. •	•1.1	14		-	•		!	
••	14 1.1	• •		•••		-	• .			1 (11) 1 (11)	:				1
21 N							1 - 4 						6, 6, 46		
						÷				4.04	ł		4.44	1.1	
	1.1	,	1.1	:	÷			1.1					. 14 .		
	1.5.4		۰.		11	. •	•		. • •	1.14	ч.			l ·	
	ļ	×. /*	· · ·					×4 -		- 			· •• •	1.494	
	4.	8. 24 1. 12	1	1		;			· ·	-4	:		4.	- 44	
2.8	4. 1.1			:		•		12.5	1.4	•		· · ·		1.1	
24		4.		•						•		-,-			1
24 25	1.			7	•	:								1	i i
	4. 9. 9.2				,	:						1	•		
			· ·	-		•.	. •		· .			· ·		í	
11					•		• •	5. •	· ·				•		1
	•				•		•	••		-		· ·			1
••	•						• •	•							
4	1	•		4								Ι.	, . 	:	
- 11			1 ·				3		194 - 4 - 54					1	1
					•				1.1	-					L
	•	4.1	1.		•	•	3.		1	•		1	5 T	1	
•			·		1.14	-	•.••		- 11* 	· ••·		1 .	· •		
	·· ·				•		1) 1) 1)	:.						1	
•	-11		1 ·		•			•	:**	1					Ł
1.	-1.	•••			;	•.		1	1 "	••	•	1	الية. والمد ال	l '	
						·			#* <u>`</u>					1 •	Į.
				 		, .	• ••	•	.41	·		1	·.	1 1400	1
	1.	 1. 44 - 14 	•		× 12	- 14		12.5	1 .		ĺ			Hierer A	1
1.4		۰.	45.4	• •		1.11	•	12.7			1	1.12		· ·	
.:		1.44	1.10	• • •		4.44	••	••		1.1.4	. !	1			I.
71	< •	- 14	11	12.4		-	-4	 			:		1.4.1	1.1	
	•	5.44		12.4 11.4	4.4- 	: 11 7.	• •							1 .	
		- 41	1			• •		0.5		1 . 1	i.	1		1	
÷	·	- 4: 9,12		Ar #	P	1.14		11	1	1.11	1	17.		1 ·	L
34		1.5	- 114 - 527 - 727	-14	- 4	1. S	• ••	:,	1 :	٢.,		1.1.1			L
•1	8. C	• •, • •		•••		• •	••	: 1		6404			1 Li •1	1 ·	1
·	***	82 - 1 88 - 1		•	•••	· · :	- 4-	- 4	1 '	• •	:				
24							.,		•		•	1 .	8 - 14. 8. 142 7 - 42		Т
					ه. ما د ما د ما								8.1.4		
	- 11					• • •		•	1			1 *			
	1.5		·, 	••	× • .	4.**			1 :0	• :• 1	~	1			
	1.5	+ 14		•	1.41		e 18	· • •		6.04			1.44	1:	
•2		1.11					-,	-•	· ·	 			•	· ·	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		• 74 • • •			•	• •		• •				, , ,	1 491 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1		
	1	5.44	1	• • •	• ••		••			, 1					
			1 "							×				- I	
		6.41	1				4 **		i	4 2 1					ł
							e	•	1 .	51.54				1	I
				-			• •	•	1 .	•		•		1	
- 14				•	• ••	۰.							- - -		
•	1.4			-	÷ •.			•	. I ·			3		' I '	1
'			1.	•	• • •						•		. '	1	
	1.			:				• •						·	
				-											
								•					•		1
	. I		1 ·		•	•			i			1		1.	

.

·

Table A-VIII. Altitude Relight Test Results, Double Annular Combustor, Configuration D12.

:

•

.

- .

.

•••••

--

.

•••

,

ĺ

÷

•

57

ł

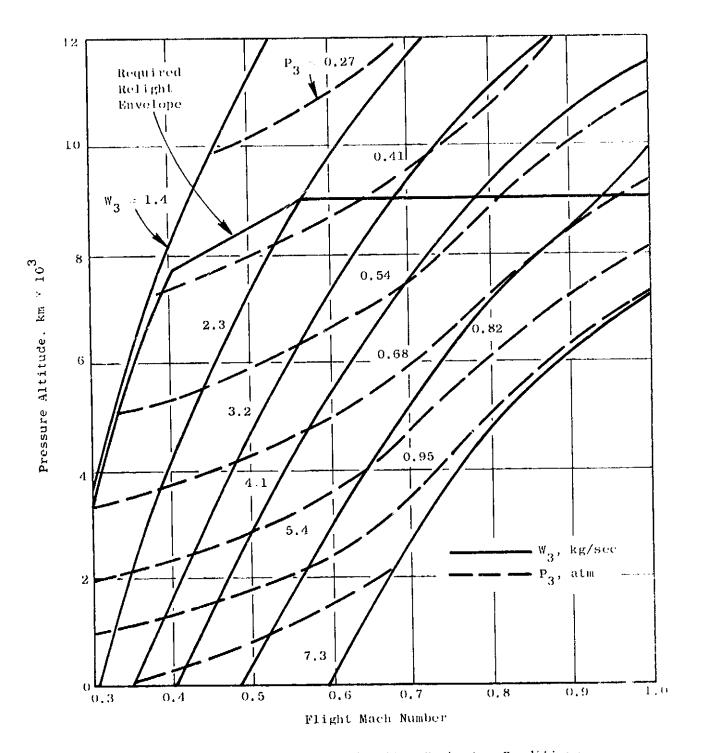


Figure A-1. CF6-50 Engine Windmilling Combustor Conditions.

Table A-IX. 12° Sector Test Results.

1

•-

к. . .

•

-

.

•••

.. ...

. . . .

.

•--•

I.

1

1

t

1

1

	Combistor Configuration	Fuel	ບິ	mbustor Op	Combustor Operating Conditions	itions			Post Test Carb	Post Test Inspection Carbon on
Motion R7 JP-5 13.4 827 25.6 0.0231 1.7 NO Grammary figuration R7 Biend B 13.0 82.3 25.6 0.0231 4.9 NO JP-5 16.1 82.9 25.6 0.0231 5.6 NO NO JP-5 16.1 829 25.6 0.0231 5.6 NO NO Tend B 16.1 791 0.021 9.3 YES YES F(1) JP-5 16.3 784 0.021 8.9 . NO JP-5 18.4 822 25.6 0.021 4.9 . NO JP-5 18.4 820 25.6 0.021 4.8 . NO Intend B 18.4 820 25.6 0.021 4.8 . NO Intend B 18.4 820 25.6 0.021 4.8 . NO Intend B 18.4 820 25.6 0.021		Type	P3 atm	Т ₃ К	√ ₇ т/в	••	SAE Smoke Number	Flashback Indications	Swirler Venturi	Fuel Norale
figuration N7 Bland B 13.0 323 25.6 0.0231 5.6 NO JP-5 16.1 829 25.6 0.0231 5.6 NO JP-5 16.1 829 25.7 0.0231 5.6 NO JP-5 16.1 829 25.7 0.0231 5.6 NO JP-5 16.1 829 25.7 0.0231 5.6 NO JP-5 16.3 784 0.021 9.3 YES YES IIP-5 16.3 784 0.021 8.9 . NO Blend B 16.1 822 25.6 0.0231 8.2 . NG 1.1 6.3 7.91 8.2 . NO Blend B 18.4 8.20 25.6 0.021 8.2 . NO (1) JP-5 11.7 6.3 25.6 0.021 8.2 . NO (1) JP-5 11.8	Radial/Axial Staged	JP-5	13.4	827	25.6	0.0231	1.7	0X		
JP-5 16.1 829 25.6 0.0231 5.6 NO Rlead B 16.5 830 25.' 0.0231 6.3 YES 7 JP-5 16.1 829 25.6 0.0231 6.3 YES 7 JP-5 16.1 784 0.021 9.3 YES 3 JP-5 16.1 784 0.021 8.9 . YES J JP-5 16.1 784 0.021 8.9 . YES JP-5 18.4 822 25.6 0.0231 4.8 . NC T JP-5 11.7 634 21.2 0.014 1.7 . NC T JP-5 11.8 630 23.2 0.014 1.7 . NC T JP-5 11.8 630 23.2 0.014 1.7 . NC M JP-5 16.3 25.3 0.021 0.9 </td <td>Combustor Configuration 87</td> <td>Biend B</td> <td>13.0</td> <td>628</td> <td>25.6</td> <td>0.0231</td> <td>6.1</td> <td>o N</td> <td></td> <td></td>	Combustor Configuration 87	Biend B	13.0	628	25.6	0.0231	6. 1	o N		
Tiend B 16.5 830 25.5 0.0231 6.3 YES 7(1) JP-5 16.3 784 0.021 9.3 • YES 3P-5 16.3 784 0.021 9.3 • NC JP-5 16.3 784 0.021 8.9 • NC JP-5 18.4 822 25.6 0.0231 8.2 • NC JP-5 18.4 820 25.6 0.0231 8.2 • NC JP-5 11.7 634 23.2 0.014 1.7 · NC (1) JP-5 11.8 630 23.2 0.014 1.7 · NC on D12/13 Blend B 1h.3 783 25.3 0.021 0.9 · · NC And JP-5 16.3 783 25.3 0.021 0.7 · NC And Band B 1h.3 783 25.3 0.02		JP-5	16.1	829	25.6	0.0231	5. ė	on		
r (1) JP-5 16.3 784 0.021 9.3 . YES JP-5 16.3 791 0.021 8.9 . . . YES JP-5 18.4 822 25.6 0.0231 4.8 . . . NC JP-5 18.4 822 25.6 0.0231 4.8 . . . NC JP-5 18.4 820 25.6 0.0231 4.8 . . . NC I) JP-5 11.7 634 23.2 0.014 1.7 . . NC JP-5 16.3 783 25.3 0.014 0.7 . . NC JP-5 16.3 783 25.3 0.014 0.7 . . NC JP-5 16.3 783 25.3 0.021 0.9 . . NC JP-5 16.3 783 25.6 0.0231 2.7 . . .<	<i>•</i> ••	Blend B	16.5	830	25. '	0.0231	6.3	YES		
$r_{(1)}$ JP-5 16.3 784 0.021 9.3 - Blend B 16.3 791 0.021 8.9 - - JP-5 18.4 822 25.6 0.0231 4.8 - - JP-5 18.4 820 25.6 0.0231 8.2 - - NC Plend B 18.4 820 25.6 0.014 1.7 - NC (1) JP-5 11.7 634 23.2 0.014 1.7 - NC (1) Blend B 11.8 630 23.2 0.014 0.7 - - NC $n_{D12/13}$ Blend B 1b.3 783 25.3 0.021 2.9 - - NC $n_{D12/13}$ Blend B 1b.3 783 25.6 0.0231 2.7 - - NC $n_{D12/13}$ Blend B 1b.3 783 25.6 0.0231 2.7 - - - NC $n_{D12/13}$ Blend B 1b.3 2.									YES	YES
Blend B 16.3 791 0.021 8.9 . JP-5 18.4 822 25.6 0.0231 4.8 - JP-5 18.4 822 25.6 0.0231 4.8 - NC Blend B 18.4 820 25.6 0.0231 8.2 - NC Blend B 11.7 634 23.2 0.014 1.7 - NC JP-5 11.7 634 23.2 0.014 0.7 - NC JP-5 16.3 783 25.3 0.021 2.8 - - JP-5 16.3 783 25.3 0.021 2.9 - - An D12/13 Blend B 1b.3 783 25.3 0.021 2.9 - - An D12/13 Blend B 1b.3 783 25.3 0.021 2.9 - - An D12/13 Blend B 1b.3 783 25.1 0.021 2.9 - - An D12/13 Blend B 1b.3 75.6 0.021 2.7 - - - An D12/13 Blend B 18.4 817 25.6 0.021 2.7 -	Primary Swirler (1)	JP-5	٤ ، ٤	784		0.021	9.3			
JP-5 18.4 822 25.6 0.0231 4.8 - Blend B 18.4 820 25.6 0.0231 8.2 - NC (1) JP-5 11.7 634 23.2 0.014 1.7 - NC (1) JP-5 11.7 634 23.2 0.014 1.7 - NC (1) Blend B 11.8 630 23.2 0.014 0.7 - - NC (1) Blend B 11.8 630 23.2 0.021 2.8 - - NC (1) Blend B 1b.3 783 25.3 0.021 2.9 - - - - - NC (1) JP-5 16.4 817 25.6 0.021 2.9 -	Configuration o Configuration	Blend B	16.3	161		0.021	8.9			
Blend B 18.4 820 25.6 0.0231 8.2 - NC (1) JP-5 11.7 634 23.2 0.014 1.7 - NC (1) JP-5 11.8 630 23.2 0.014 1.7 - NC JP-5 16.3 783 25.3 0.021 2.8 - - JP-5 16.3 783 25.3 0.021 2.9 - - An Di2/13 Blend B 1b.3 783 25.3 0.021 2.9 - - - NC An Di2/13 Blend B 1b.3 783 25.3 0.021 2.9 -	$A_{\rm ect} = 0.32$	JP-5	18.4	822	25.6	0.0231	4, B	,		
r (1) JP-5 11.7 634 23.2 0.014 1.7 - NC Blend B 11.8 630 23.2 0.014 0.7 - - JP-5 16.3 763 25.3 0.021 2.8 - - JP-5 16.3 783 25.3 0.021 2.8 - - JP-5 16.4 817 25.6 0.021 2.9 - - Blend B 1b.3 783 25.3 0.021 2.9 - - Blend B 1b.3 783 25.6 0.0231 2.7 - - Blend B 18.4 817 25.6 0.0231 2.7 - - Blend B 18.4 817 25.6 0.0231 2.7 - -		Blend B	18.4	820	25.6	0.0231	ر . ب	,		
(1) JP-5 11.7 634 23.2 0.014 1.7 - Blend B 11.8 630 23.2 0.014 0.7 - - JP-5 16.3 783 25.3 0.021 2.8 - - JP-5 16.3 783 25.3 0.021 2.9 - - on D12/13 Blend B 1b.3 783 25.3 0.021 0.9 - - Brend B 1b.3 783 25.3 0.021 0.9 - - - - Blend B 1b.3 783 25.6 0.0231 2.7 -									0X	92 22
Blend B 11.8 630 23.2 0.014 0.7 - JP-5 16.3 783 25.3 0.021 2.8 - JP-5 16.3 783 25.3 0.021 2.8 - JP-5 16.3 783 25.3 0.021 2.9 - JP-5 16.4 917 25.6 0.0231 2.7 - Blend B 18.4 817 25.6 0.0231 2.7 - Blend B 18.4 817 25.6 0.0231 2.1 -	Primary Switler (1)	JP-5	11.7	634	23.2	0.014	1.7			
JP-5 16.3 783 25.3 0.021 2.8 - .on D12/13 Blend B 1b.3 783 25.3 0.021 0.9 - JP-5 18.4 817 25.6 0.0231 2.7 - Blend B 18.4 817 25.6 0.0231 2.1 - NO	Configuration 7 Configuration	Blend B	11.8	630	23.2	0.014	0° 7	,	_	
on D12/13 Blend B 16.3 783 25.3 0.021 0.9 - JP-5 16.4 817 25.6 0.0231 2.7 - Blend B 18.4 517 25.6 0.0231 2.1 - NO	Accel = 0.35	JP-5	16.3	783	25.3	0.021	2.8	1		
JP-5 16.4 817 25.6 0.0231 2.7 Blend B 18.4 817 25.6 0.0231 2.1 - NO	Like Configuration D12/13	Blend B	16.3	783	25.3	0.021	6.9	,		
- I.2 1620 0.0231 2.1		25	16.4	817	25.6	0.0231	۱۰. د:	•		
		Blend B	18.4	817	25.6	0.0231	2.1	•		
									NO NO	02

Masus for Engine Draign Selection of LT/DT = 0.58. AES/AT = 0.36 where AES = Primary Swirler Effective Flow Area $A_{\rm ES}$ = Primary Swirler Effective Flow Area $A_{\rm T}$ = Venturi Throat Area $(\pi/4~DT^2)$ $L_{\rm T}$ = Dratance from Primary Swirler to Venturi Throat DT = Venturi Throat Diameter

i.

APPENDIX B

1

NOPENCLATURE

CO	Carbon Monoxide Emissions			
HC	Hydrocarbons Emissions (Assumed to have same composition as t	est	fuel)	
NO x	Oxides of Nitrogen Emissions (Calculated as NO ₂)			
EI	Emissions Index	g	pollutant/kg	fuel
мp	Flight Mach Number			
^P 3	Combustor Inlet Total Pressure		atm	
тз	Combustor Inlet Total Temperature		• к	
Τ _f	Fuel Temperature		°K	
т _В	Fuel Final Boiling Point		° K	
v _r	Combustor Reference Velocity		m/s	
^W 3	Compressor Discharge Airflow Rate		kg/s	
W _c	Combustor Airflow Rate (W3) - (Turbine cooling airflow rate)		kg/s	
₩f	Fuel Flow Rate		kg/hr	
WH	Fuel Hydrogen Content by Weight		8/8	
f	Fuel-Air Ratio			

60

- I

APPENDEX C

REFERENCES

- 1. Bahr, D.W., and Gleason, C.C., "Experimental Clean Combustor Program, Phase I Final Report", NASACR134737, June 1975.
- Gleason, C.C., Rogers, D.W., and Bahr, D.W., "Experimental Clean Combustor Program, Phase II Final Report", NASACR 134972, 1976.
- Applied Systems Corporation, "The Production and Refining of 10,000 Barrels of Crude Shale Oil into Military Fuels", prepared for Director, Naval Energy and Natural Resources, R&D Office, under Contract N00014-75-C-0055 with the Office of Naval REsearch, June 1975.
- 4. Butze, H.F., and Ehlers, R.C., "Effects of Fuel Properties on Performance of a Single Aircraft Turbojet Combustor", NASA TM X-71789, October 1975.
- 5. Tackett, L.P., Fahrenbruck, F.S., and Blazowski, W.S., "Evaluation of the Combustion Properties of Future Jet Fuels", Paper No. 12, Eastern States Section of the Combustion Institute Fall Technical Meeting, 11/75.