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SUMMARY

An iterative numerical method has been developed for the
calculation of steady, three-dimensional, viscous, compressible flow
fields in centrifugal compressor impellers. The computer code, which
embodies the method, solves the steady three-dimensional, compressible
Navier-Stokes equations in rotating, curvilinear coordinates. The
solution takes place on blade-to-blade surfaces of revolution which

move from the hub to the shroud during each iteration.

Numerical calculations were made for two centrifugal impl-
lers, one with radial blades and the other with backswept blades. The
radial impeller operated in a laminar Reynolds number regime. The

backswept impeller problem was used to check out the turbulence model

incorporated in the code. A large vortex was calculated on the suction

blade surface of the radial impeller in the region of the discharge;

such a vortex is qualitatively in agreement with observations. The
backswept rotor calculation did not indicate an impeller separation.

No conclusions can be drawn with regard to the effectiveness of backsweep
in reducing or eliminating flow separation, because the radial impeller
was calculated for laminar flow at a very low Reynolds number (5000),
whereas the backswept impeller problem was calculated for turbulent flow

conditions with the turbulernce model operational. Contour plots are

presented to show the calculated static pressure in the blade-to-blade

channel. Relative velocity vector plots on various blade-to-blade surfaces

show significant differences with inviscid potential flow solutions in
common industry usage for centrifugal compressor design. It is concluded
the viscous Navier-Stokes solution for flow fields in centrifugal compres-

sors represents a significant advancenent in the ability to analyze thcse

complex types of turbomachinery.
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1.0 INTRODUCTION

The principal objective of this research effort is to develop
a computer program to calculate the three-dimensional, viscous,
compressible flow field in blading passcyges of turbomachinery. At present
the computer program is being applied to the rotating impeller of centrifugal
cCOompressors.

This submittal is a report on the work which has been completed

in Phase I of a two phase program of research and development. Three
main tasks have been completed in Phase I. They are as follows:

1. An impeller computer code was developed and debugged.

2. A radial centrifugal impeller problem was solved.

3. A backswept centrifugal impeller problem was solved.

Phase II of this research effort is comprised of two additional principal
tasks.

4. To speed-up the computer code of Phase I by a factor
between 3 and 5.

S To revise the computer code of Phase I, which calculates
the flow field on blade-to-blade surfaces, to calculate
the flow field on cross-sectional surfaces.

The importance of the cross-sectional calculation is discussed in Section

4.0.



2.0 SYMBOLS

Cp Heat Capacity at Constant Pressure

Cy Heat Capacity at Constant Volume
Specific Internal Energy
Thermodynamic Heat Function or Enthalpy

Metrics of Transformation

hy

hy Metrics of Transformation

h, Metrics of Transformation

i Unit Vector of Curvilinear Coordinate x

i3 Unit Vector of Rotating Cartesian Coordinate of x;

i, Unit Vector of Rotating Cartesian Coordinate of xj

i, Unit Vector of Rotating Cartesian Coordinate of xj

Unit Vector of Curvilinear Coordinate y

Index Specifying Streamlike-lines on blade-to-blade Surface
Index Specifying Potential-like-lines on Blade-to-blade surface

Unit Vector of Curvilinexr Coordinate z

N R oo o

/2]

Von Xarman's Constant

Momen tum
Mass
Time Index for Finite Difference equation

Pressure

s 'w 85 5 X

(o}

Maxium Radius of the Impeller (at the exit)

n

Radial Cooxrdinate which together with x3form a Cylindrical
Coordinate System

Sx Grid Velocity Component along x Direction
Grid Velocity Component along y Direction

j Total Laminar Stress Tensor

t Time

u Particle Velocity Component along x Direc*ion

u Particle Velocity Vector

Uoo Speed of March along z Direction

\" Particle Velocity Component along y Direction

W Particle Velocity component along z Direction

'
W =W-U,, Velocity along z on a Galilean Frame which moves with a
Constant Speed Ugo along z with respect to the laborcatory frame

X Curvilinear Coordinate along Azimuthal Direcction
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Coordinate Axes of Rotating Cartesian Coordinate which Rotate
about Axial Axis X3 with Speed w

Coordinate Axes of Rotating Cartesian Coordinate which Rotate
about Axial Axis X3 vith Speed w

Axial Coordinate

Curvilinear Coordirate along Streamwise Direction (from inlet
to discharge)

Curvilinear Coordinate or. Marching Direction (from hw to shroud)

Symbols in Greek Letters

Heat Capacity Ratio Cp/’Cv

Boundary Layer Thickness

Incompressible Displacement Thickness
Eddy Viscosity

Molecular Viscosity Coefficient
Kinematic Viscosity Coefficient
Rotation Velocity of Impeller

Total Stress Tensor

Reynold Stress Tensor

Pressure Blade Surface Meridional Angle
Local Flow Angle Between Pressure Blade Surface and Meridional plane
Density

Shearing Stress at Wall

Viscosity Coefficient for the Deviatoril Strain = —%%/1

Azimuthal Coordinate Angle, together with r ana X5 form

cylndrical coordinate system



3.0 BACKGROUND

In recent years, considerable effort has been spent in solving
the time-dependent, compressible, Navier-Stokes equations for systems with
plane two-dimensional and/or axial symmetry 1¢2:3,5,6,7. A gingle
numerical method was used to solve these two-dimensional and/or axisym-
metric problems. The numerical method*is an explicit time marching scheme
in two spatial dimensions. Details of the method are presented in References y
4 and 7.

In 1969, under sponsorship of NASA Ames Research Center, a research
effort was initiated to apply the above time-dependent, two-dimensional
method to solve steady flow problems in three spatial dimensions. The basic
idea was based on the Equivalence Principle 8, which states that for
slender bodies at hypersonic speeds the three-dimensional steady equations
of motion for inviscid flow reduce identically to unsteady equations in two
dimensions.

This principle was extended in an ad hoc manner to a viscous
flow through a model which permits viscous cross flow together with inviscid
axial flow. Figurel shows an ogive-cylinder body at angle-of-attack
with respect to the freestream flow direction; leeward vortices are also
indicated in the figure. The axial coordinate z was made proportional to

a time-like-variable, t, according to the relation
zZ = th (l)

where Uy is the freestream speed. The two-dimensional Navier-Stokes
equations were solved in cross-sectional planes normal to the system's
axis. The cross section planes were moved at frecstream speed from the
leading edge to the trailing base of the body. The time-dependcnt flow
field at earch cross-sectional plane corresponded to the steady flow at the
z coordinate given by Eguation (1). Since the leeward vortices o Figure 1

have axes which are almost parallel to the z axis, the cross-sectional

* The numerical method was originally developed by Trulio.
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Spiral Vortex Shects

FIGURE 1: Flow ficld about an axisymmetric body at angle of attack;
calculation takes place in (x,y) cross-sectional jlance

the z-direction denotes the system's axis.
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plancs of calculation contair these vortices. Although all axial eff=cts
were neglected, this numerical procedure did calculate leeward vortices
and produced other flow field results which were generally in accord with
experiment 9.

Subsequent to the above research effort, a new study was
launched, under NASA Ames Research Center sponsorship, whereby axial effects
were incorporated in the nunerical procedure and a numerical solution to the
full Navier-Strokes equations were generated by iteration. A one-dimensional,
time-dependent radial computer code was used to solve for the steady, viscous,
compressible, supersonic flow fieid about a cone-cylinder-flare bLodyv at zero
angle of attack. 1In three iterations the cal._ulated boundary layer and shock
wave structure converged. After five iterations a recirculation region
formed at the cylinder-flare junction. Although the computed recirculation
region was much smaller than measured, ccmparisions of calculatca shock
structure and bcundary layer results with experimental data and boundary
layer theory predictions were satisfactory*.

The above axisymmetric computer ~ode was then revised to solve
for two-dimensional time~independent flow fields. Trulio and Yeung solved
for the supersonic viscous, compressible flow fieid in a ramp-compression
corner**, As in the case of the con»-cylinder-flare junction, the iterative
method did not accurately prediét the recirculation region formed at the shock-
wage-boundary layer interaction.

The iteration procedure employed for the axisymetric and two-
dimensional flows, described above, was completely reformulated to account
for boundary layer separation and the subsequent evolution of a recirculation
regim. The re-formulated iteration prcocedure was then appliea to the impeller
of a centrifugal compressor in this research effort. Formulaticn of the

iteration procedure for the impeller problem is discussed in the next section.

*Walitt, L., "Computation of Steady Axisymmetric Flow Using a One-Dimensional
Time Dependent Method, "Applied Theory Report ATR-74-16-1, Auqust 1974, to be
published as a NASA Contractor Report.

**Truilo, J.G., and Yeung, H.W., "Iterative Solution of the Equations for
Steady Viscous Compressible Flow Based on Similitude," Aerospace kescarch
Laboratory, Report No. ARL74-0138, 1974.



4.0 FORMULATION OF IMPELLER PROBLEM

A set of finite difference analogs of the full three-dimensional,
compressible, Navier-Stokes equations has been developed and programmed.

In addition to three-dimensionality and compressibility, the following
effects are included:

l. Centrifugal Force

2. Coriolis Force

3. Transition and Turbulence

4. Arbitrary Impeller Geometry

5. Impeller Tip Clearance
A solution to these finite difference equations is obtained in the following
manner. For the radial impeller, an inviscid flow field was generated by
the method of Reference 10. For the backswept impeller, an inviscid flow
field was gerierated by the method of Reference 39. Stuarting from the known
inviscid solution, the viscous effects are calculated through iteration.
Certain terms of the finite difference equations (FDE) are evaluated from
the inviscid solution and other terms are evaluated directly. Terms evaluated
from the inviscid solution are designated "elliptic source terms", while
those evaluated directly are designated, "parabolic terms".

The distribution of the elliptic source terms and parabolic terms
in the FDE depends on the mode of marching. At present two modes of marxching
are contemplated.

1. The FDE are solved on blade-to-blade surfaces which move

from the hub to the shroud.
2. The FDE are solved on cross-sectional surfaces which move
from the inducer to discharge.
Each method of marching results in its own set of elliptic source terms and
parabolic terms.

For illustrative purposes we start with a schematic of a typical
impeller for a centrifugal compressor shown in Figure 2., In the blade-to-
blade mode of marching, the computation takes place on a blade-to-bLlade
surface, which extends from inducer to the dischargc, and moves {rom the
hub to the shroud during an iteration. The darkened surfacc of Figure 2 is

the hub blade~to-blade surface. The blade-to-blade method of marching is
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FIGURE 2:
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illustrated in the blade passage schematic shown in figure 3. The x, y, and
z coordinates of Figure 3 represent a left handed orthogonal, curvilinear
coordinate system. The z - direction is proportioral to the time-like-
variable, t, with the calculation taking place in the (x,y) blade-to-blade
surfaces. The (x,y) blade-to-blade surfaces move from the hub to the

shroud of the impel!le.. This mode of marching accounts for two very important
fluicd mechanical effects that occur in impellers.

1. Upstream influence effects =~
The flow is subsonic relative to the moving blides; hence, downstream conditionc
influence upstream conditions. Sincec each blade-to-blade s .rface extends from
inducer to discharge, the downstream flow car. influence the upstream flow as
the blade-to-blade surfacc moves from the huo to shroud.

2. Blade boundary layer separation -

Separations, which occur on the blade surfices, produce vortices whose axes
are normal to the blade-to-blade surfaces. Thus, the vortices themselves
are contained in the blade-to-blade surfcce and are easily calculable.

The cross-sectional mode of marching is analogous to the body-at-
angle-of-attack problem discussed in Section 3.0. We march down the channel,
from the inducer to discharge, in cross-sectional surfaces normal to the hub
surface. A schematic of the blade passage with the croscs--sectional surfaces
indicated is presented in Figure 4. The z-coordinate, which varies
with time, is now normal to the (x,y) cross-cectional surface of Figure 4.
The (x,y) crocs sectional surfaces move from the induccr to the discharge
of the impeller. This mode of marching accounts for three additional fluid
mechanical effects that occur in impellers.

4. Channel corner vortices
At the junctions of the blades and the hub, vortices usually form whose axcs
are genera.ly normal to the cross-sectional surfaces; nence, the corncr
vortices would be contained in these surfaces and are casily calculable.

5. Shroud cffects -

Relative to the blades, the shroud imposes a moving boundary condition. The
effects of this moving boundary condition may induce separation in the
neighborhood cf the shroud. This separation is calculable in cross=-scctional

surfaces since each surface contains the shroud vortices,

-‘J—
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Flow Mid-channel
\ Surface x
Constant
Orthogonal
Channel

Surface Y

Blade \ Constan'b\

Blade-to-blade
Surface z
Constant

FIGURE 3 Revised orthogounal surfaces itn the channel of a cent
impeller which define tie enrvilinear Ydinate
surface of calculation 1s the blade-to-Lilade surf
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FIGURE 4. Orthogonal surfaces in the channel of a centrifuqg.. impeller

which define the curvilincar coordinates x, y, and Z.surface
of calculation is the orthogonal surface z constant.
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6. Blade tip clearance effects -

Since the shroud and blade tip are contained in each cross-sectional plane,
spillage in the tip clearance region is calculable in this mode of marching

To properly solve for an impeller flow field, an iteration procedure
with both modes of marching is required. The procaedure is as follows.
Starting from an inviscid solution as the "zeroth" iterate, we determine
the first viscous iterate by marching in blade-to-blade surfaces which move
from the hub to the shroud. Based on the first iterate we determine a second
viscous iterate by marching in cross-sectional planes which move from the
inducer to the discharge. In this way the six principal impeller fluid-
mechanical effects, described abm'e, can be accounted for. The second
iterate will be a complete solution to the three-dimensional, compressible,
Navier-Stokes equations for flow in a centrifugal impeller.

The blade-to-blade mode of marching has been developed in Phase I
of this research effort. The blade-to-blade results generated are the

subject of this report.

-12-



5.0 DERIVATION OF THE INTEGRAL CONTINUITY EQUATION

In this section the integral continuity equation solved on the
(x,y) blade-to-blade surface is derived. This derivation is presented
to illustrate the actual elliptic source terms and the parabolic terms
of the equations of motion. The equations of motion in rotating, orthogonal,
curvilinear, Eulerian coordinates x, y, and z are presented in Appendix A.
The steady three-dimensional equations of Appendix A, in
Eulerian coordinates x, y, z, are transformed to (x,y,t) space according
to the following relations:

10 -

z = U t, ab—z= y W=Ug + W (2)

A

8
o
d

where t is a time-like-variable, U 1is the velocity of the blade-to-blade
surface, w is the velocity component in the z-direction, and w' is the
velocity in the z-direction. Equations (2) represent a mathematically conven-
ient transformation and lead to a compact set of integral relations; however,
they are somewhat non-physical in that the variable t may no longer be time-
like, having the units z/U .

The conseravation of mass for steady motion relative to the rotating

curvilinear coordinates (x,y,2) is (Appendix A) as follows:
> h 3 3 7o _
é_.z_épwk y) * o gpuhyhz) + = Qouh,_h,) 0 (3)

where is the density, u the x-velocity component, v the y-velocity component,
and (hx'hy'ht) are the transformation metrics.

According to Equations (2) the continuity equation becomes:
d > WY = — 9 (pu'h )
S (Phay) + g (punghe) & g (pVReR) = - g ge (P ),

The left-hand-side of Equation (4) closely resembles the continuity equation
for unsteady flow in the (x,y) plane. The transformation metrics hx' hy' kz
on the left-hand-side account for the fact that the flow is not planar but

|"l3-



occurs on a curved surface. The term on the right-hand-side of Equation (4)
represents a source term which accounts for the variation of axial velocity
w from the constant reference velocity. This term must be considered known
in the iteration process and is evaluated from the previous iterate in
each successive iteration.

Equation (4) is formulated in the rotating, Eulerian coordinates
x,y,t, however, the calculational process takes place on the (x,y) blade-
to-blade surface (Figure 3) which distorts with time t according to the shape
of the blade surfaces. Hence, we are really interested in the continuity

equation in a generalized coordinate system F,'7, 7T , where

t=7
x=f(F.7,0) (5)
y=9 (F.7.7)

The transformed continuity relation in f ,'7, 4 space, which is derived in

Appendix B, is present2d below.

_bE g/ohthdA + SP(EL‘is)'NC _U%;o g/DWIR""adC=-I%;J/ow'k"h’AA (6)
c C A

where

9 =uhhi + vhh, 0

15 = 6"‘1th£ =+ Syk'hil (8)

, and dA = dxdy, A corrzesponds to the area in the (x,y) plane contained within
. o .
the region bounded by the closed curve C, N is the unit normal to the curve C

in the (x,y) plane, Bx is the coordinate velocity in direction X ( i‘= if )

(o
and E& is the coordinate velocity in direction y (557 = gz:). Equations (€)
to (8) represent the conservation of mass theorem in terms of area integrals

in the (x,y) plane and line integrals evaluated on a curve c in the (x,y)

-14-




plane. The curvilinear effects are accounted for by the metrics hx'hy'

hz and their derivatives. The term on the right-hand-side of Equation
(6) is an elliptic source term and the second and third terms on the

left-hand-side of Equation (8) are parabolic terms.

-15-



6.0 TRANSITION AND TURBUJ ENCE

In this section various models of transition and turbulence are
investigated and the proper ones are selected for incorporation into impeller
computer code. Subsection 6.1 deals with the turbulent models, Subsection
6.2 concerns the mixing length theory, and separation is discussed in

Subsection 6.3, and Subsection 6.4 considers transition.

6.1 Turbulent Models

With the advance of high-speed computers, turbulent flow prcblems
have become amenable to numerical studies in the past decade. The develop-
ment of turbulent models has contributed substantially to these studies.
Though their progress is still in a preliminary stage, there is no shortage
in the supply of models. The difficulty, from a user's point of view, is to
select an appropriate model for his particular problem. All models of
turbulence are supposed to be general and few cross comparisons between
models are available. However, at the present time there is no definitive
verdict as to the best turbulence model to employ. Thus a good rule in
selection seems to be "the simpler the better".

The adoption of models for turbulence naturally rules out the
relatively more fundamental approach via statistical theory, which might be
academically pleasing but unrealistic in engineering applications. In
general, turbulence modelling is divided into two classes: those described
by one algebric relation, such as the mixing length hypothesis, and thcse
described by one or more differential equations governing some quantity
like turbulence energy, turbulence vorticity or shearing stress. There
are nunerous examples in the latter class, generally referred to as the
transport model, for example the classical Kolmogorov model (1942)11 and
recently the Saffman model (1970)12 In adopting such a model, one must
solve, in addition to the consexrvation laws, several differential cquations
from which turbulence stresses are determined. Limited success can be
claimed in application of the transport models; they all seem to do quitc
well in simple problems like turbulent boundary layers with small pressure

gradients.

-16=



Let us present herein the Saffman transport model for illustration.

The medei contains two variables: the energy density e and a pseudo-vorticity

{2 + which are assumed to satisfy the following non-linear diffusion equations.

3 (Pe)+ %J(fﬁ;):[o("’(lej S;){‘ —/a‘jon]/ﬁe
Sl e el W

+5x_‘.[<,u°ﬂ,§>g— ]

where: t = time,

= Cartesian coordinates (j = 1,2,3)

= mean density

= mean velocity components in the j-th direction
molecular viscosity coefficient

= mean rate of strain tensor

wm
R Y
n

* * * e i
The numbers &, &K ,/G ,//3 , 9, 9 , ¢ are assumed by the model
to be universal constants.

*
o = O =l/2

x* = 0.3
/3* = 062
53¢ L=,
3 A %2
X = X (/6* - 40 -;?—ﬁ

;

and Ksthe Karman constant.

2.5, based on experimental data,

=)=



Equations (9) and (10) are integrated with an appropriate set of boundary
conditions (which are not trivial) to yield e and {! . The eddy viscosity

£ is related to e and 7. by

= 11
{Q (11)

Saffman's model is but one of the many available schemes governed
by two equations; some oi the others are Chou (1945)13, Harlow-Nakayama
(1968) 14 Jones-Launder (1972)}3 Ng-Spalding (1972)}6 etc. They all have a
set of empirical constants, some even parametric functions. The complexity
of the mathematical system and the uncertainty in those constants are
inherent with all the models. Moreover, a set of non-linear diffusion
equations generally introduces a new time scale in the computation, which
is often substantially smaller than the convective or diffusive time scale
for laminar type computation. The two-point boundary value problem also
poses a tedious numerical task. However, the advantage in this kind of
turbulence modelling is also clear; they all attempt to depict the physics
of turbulence transport, generation, dissipation and diffusion. 1In addition,
some models (such as Saffman's) show the correct analytical behaviour near
the wall (as demanded by the law of wall). The predictive capabilities
for incompressible boundary layer flows by those models are thoroughly
established. Turbulent flows in more than two spatial dimensions, including
separation, compressibility, rotational effects, and containing boundary
layers interaction with shock waves have not been subject to examination
by those models*. 1In short, the turbulence models, as promising as they
are, have yet to be thoroughly tested by problems more complex than plane
boundary layer flows.

In view of the three dimensionality of the compressor problem,

the desired economy in computation, and the added degree of complication 1in

*wilcox17

, applying Saffman's model, has shown good results in the study of
turbulent boundary layer separation and reattachment at moderate (2.90)

Mach number.
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the nonlinear equations, we must seek an alternative to the formulation by

turbulence model equations. The alternative should be able to render a
reasonably good description of the turbulent boundary layer development

without a disproportional amount of computation time.

6.2 Mixing Length Theory

The mixing length theory herein is the one originated by Prandtl
and subsequently modified by Van Driestlg, Cebeci20 and other researchers
to include the effect of compressibility. The formulation, in comparison
with turbulence models, is quite simple. The Reynolds stress tensor**

T .. is expressed by the eddy viscosity E .

ij
T" = E, ’ag"‘ i+ ék = é—rk 6.‘ — VZ_"e 6
where /3 e = - -‘2~ fr‘.j.

The eddy viscosity ~ is then estimated by the mixing length theory which

subdivides the shear layer into an inner and an outer region. Near the

wall, we have

2 22|93l
L= Gy lRE

j O

oY
|

/3 (13)

where: Kl = 0.4

normal direction from the solid wall

velocity component parallel to the wall

o el <
]

1 - exp (3

26V
/'[.,1- di) Y
\/j.: * dy fJ

>
Il

**Total stress tensor <, . is given by 9 .. = T.. .., With T,. being
ij ij ij i ij
the mean laminar stress tensor.
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YV = kinematic viscosity coefficient

—

(w

d?/ax

= shearing stress at the wall

pressure gradient in the direction parallel to the wall.

In the outer region, the so-called Clauser defect law is used.

E'o = k?_ am::.y S‘,-Ds

(14)

where k2 = 0.0168

u = maximum value of u in the direction normal to the wall
3: incompressible displacement thickness

ot

*
The upper limit 6 in the é& integral has to be defined to suit the compressor

£

problem. It can be taken either as the mid-point of the channel defined by
the blade-to-blade surface or the location where umax occurs+. The eddy
viscosity £ is then evaluated by

&: if & &¢

£ = (15)
E if FO <.£L

) —

A typical variation of é is sketched in Figure 5. When the flow
field extends to infinity in the y-direction, Eo is often multiplied by
the Klebanoff intermittency factor?l 5’,

-1

¥ =[ '\ + 55 (jé—)‘] (16)

~

which effectively makes fo decay away from the wall as it should by physical

reasoning. The introduction of z’is not necessary in the compressor problem.
The mixing length theory has enjoyed a large number of followcrs

and many successes in applications. Cebeci and Smit}?2 have applied 1t

successfully to incompressible and compressible boundary layers, with

and without separation23, with mass and heat transfer20, as well as low

Reynolds number turbulent flows24,25, Figure 6 shows a comparison of

results obtained by the mixing length theor§2(2 with measurements for a wasted

*
+The definition of ¢ does not affect the value of & for a monatomic

velocity profile.
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body of revolution. The calculated skin friction cocfficient Cf and
momentum thickness 6 seem to agrce with experiment quite well. Most
recently, Cebeci* successfully applied the mixing length theory to the
study of internal flows in area-changing channels. However, the failure
of the mixing length theory in the interaction problem of a strong shock
with a hypersonic (free stream Mach nu .er = 8.5) turbulent boundary layer
has also been reported by Baldwin and MacCormackz? Tt yields an incorrect
pressure rise estimation on skin friction and heat transfer. However,
the Saffman predictions were also found to be inaccurate in the same problem
by the same authors. One may conclude that the mixing length th-ory, which
is applicable to the attached boundary layer, is perhaps inadeguate ior
the prediction of separated and reattached flows of the type examined Ly
Baldwin and MacCormack. Again, the same conclusion is drawn for the
transport model, Saffman's in this case. Fortunately, shock-boundary-
layer interactions of this magnitude do not occur in the compressor
problem. The track record of mixing length theory seems to certify its
usefulness.
In almost any discussion concerning the mixing length theory
(or equivalently, the concept of eddy viscosity), the criticism that eddy
viscosity should not be a local property inevitably arises. It is indeed
true that turbul. :e is a macroscopic phenomenon marked by eddies of
finite size, and possesses a relaxation time similar to that rf a visco-
elastic solid. However, evidence has been gathered over the years to support
the concept of a local eddy viscosity coefficient. It is believed thut
the mean-velocity gradient anu the turbulent shearing stress generally go
up and down together, in particular, they go to zero together. The concept
of eddy viscosity leads to accurate predictions of velocity profiles cver
a vast range of parametric inputs.
In summary, the advantages of the mixing length theory are thut27
l. It is simple, requiring no additional diffcrential cquation
to solve. This is crucial in the compressor calculation, since the existing
routine is complex cnough because of the geometry of the compressor.

*Private communication.



2. It allows a realistic prediction to be made of the velocity
and the shear-stresses, and the general behaviour of boundary layer flows.

3. Much experience in the use of mixing length theory has bLeen
accummulated and is available in the literature.

Besides the comment on "local" property, the arguments agai.st
mixing length theory are as follows:

1. There is no successful evidence in predicting recirculating
flows. However, the same comment applies to existing transport models.

2. It implies that the effective viscosity vanishes where the
velocity gradient is zero, E‘ ~ lba,/éyl . Transport models, on the
other hand, do not provide a definitive relation between € ana l aa/byi ’
they provide a set of differential equations whose solution presumbaly
defines dJhat missing relation.

3. The mixing length theory takes no account of the convection
or diffusion of turbulence.

The development of turbulence models i1s still in a preliminary
stage; much modification to existing models jg expected in the years ahead.
In the absence of a clear-cut all purpose model, the one which has been
experimented with the most, has shown the most success, and which 1s
simplest to use should receive first attention in our compressor studies.
Hence, we selected the mixing length theory as our tool in turbulence

studies.

6.3 Separation

In general, there are two types of boundary lcyerx separations:
laminar and turbulent. Separations in compressors or diffusers may occur
either way depending on the inlet conditions. In computaticonal fluid
dynamics, various criteria have been examined to iderntify the spearation

point.
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Separation on a plane or axisymmetric flow is defined by the
point where the wall shear vanishes, namely, TQ= 0. In laminar flow,
one can monitor the variation of the wall shear to locate scparation. 1In

addition. there are other simple criterion such as that based on the

momentum integral methnd of Thwaite529, and that of gtratforal’ -ough
which laminar scparation is d-:fined. For example, laminar separat?. . . is
predicted when CP& (% dL*?ax ) reaches a value of 0.102, where

Cp is the local pressure coefficient and x the streamwise distance from
the leading edge. We shall simply monitor the wall shear and the pressure
distribution to pinpoint the laminar separation point.

The prediction of turbulent separation is a much more difficult
task. The current prediction methods can be divided into two groups. These
methods are either of differential type (meaning that partial differential
equations are solved) or of integral type (meaning that momentum integral
or energy integral equations are solvcd)+. The simplest integral method
involves the monitoring of the shape factor H, H = éa‘/ei ( 6;. is the
incompressible displacement thickness, ei the incompressible i1momentum
thickness). When H reaches a certain value (H = 2.8 is used by McNallyBl,
and the range between 1.8 and 2.4 is frequently cited), then separation of
the turbulent flow is assumed to occur. Again, we shall just monitor the
wall shear and extrapolate it to zero for the location of the separation
point. In past ccmputations, the peak of the wall pressure and the vanishing
of the wall shear locate separation jointly.

In short, we shall introduce no additional critecriou for the
determination of laminar or turbulent separation other than its natural
definition through the vanishing of wall shear. Since we solve the full
Navier-Stokes cquations numerically, we do not have to change governing

equations after separation takes place,

+The 1968 AFOSR-1FP-Standard Conference on "Computation of Turbulent Boundary

. N s . )
Layers" provides a critical evaluation of those methods 28,
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7.0 RADIAL IMPELLER PROBLEM

To fully describe the debug problem selected, which was designated
as "Problem 1.0", nine items are discussed. They are (1) input conditions,
(2) geometry in cylindrical coordinates, (3) curvilinear coordinate
system, (4) boundary conditions, (5) meshes, (6) inviscid solution, (7)
medium viscosity, (8) constant speed, Uy , at which the blade-to-blade
surfaces of calculation move from the hub-to-the-shroud, and finally, the

results (9) of the numerical computation for problem 1.0.

7.1 Input Conditions

The radial impeller which served as the debug problem was selected
by Dr. T. Katsansis of NASA Lewis Research Center. Input flow properties
for the problem are as follows:

laboratory inlet total temperature = 536 ©R

laboratory inlet total pressure = 86l psfa

rotational speed = 4031.70 rad/sec (38,600 rpm)

specific heat ratio = 1.667

gas constant = 38.73 ft/Oy

The above specific heat ratio and gas constant are for Argon.

7.2 Geometgx

The radial impeller geometry is presented in the cylindrical
coordinates r, 8, and x3. These coordinates are defined in Figure 7 in
terms of Cartesian cooru‘nates X3, X2, and X3. The sense of the angular
rotation is also indicaiced. Ic is seen from Figure 7 that a left-handed
coordinate system is being employed. Figure 8 presants traces of the hub
and shroud lines in a half-plane through the axis of the impeller, i.e., a
meridional plane. The hub and shroud radial coordinates are presented as
functions of axial distance. Solid lines indicate the accual geometry of
tne machine, while dashed lines indicate formula approximations. The hub
is approximated by an ellipse with its major axis on the radial axis, and
the shroud is approximated by a super-ellipse having its major axis in the
axial direction. The elliptic and super-elliptic formulas are also shown
in Figure 8, The dashked hub and shroud lines «:xtend above the discharge,
so that the region of calculation contains the discharge. The hub elliptic

formula approximation produces an inlet area about 9% greacer than tl..
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FIGURE 7: Cartesian and cylindrical coordinates for impeller
debug problem.
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actual inlet area. Although approximate, the hub formula simplified
development of the IFFC computer code. The angular coordinutes of the
pressure and suction blade surfaces are shown in Figure 9 as functions of
axial distance x3. The solid lines indicate the traces of the blades on
the hub, while the dashed lines indicate shroud blade traces.

7.3 Curvilinear Coordinate System

An axisymmetric orthcgonal, curvilinear coordinate system was
used to solve debug Problem 1.0. Consider the curvilinear coordinates
x,y, and z. The surfaces x = constant were selected as half-planes through
the axis of rotation of the machine, i.e., meridional planes. The surfaces
y = constant and z = constant were obtained by rotating two orthogonal curves
in the meridional plane about the axis of rotation of the machine. Since
the hub was approximated as an ellipse, elliptic coordinates were used to
establish the y and z surfaces. A family of confocal ellipses defined the
z surfaces and a family of hyperbolas, orthogonal to the ellipses, defined
the y-surfaces. Consider the interior ellipse shown in Figure 8. This
ellipse is labelled with the constant value z =-1.196. The value of z
is determined from the following formula:

tanh z =-

a (2)
where B and A are the lengths of the minor and major axis, respectively,
of the interior ellipse. The negative sign permits z to increase as the
blade-to-blade surface moves from the hub to the shroud. The orthogonal
hyperbola to this ellipse is labelled with the constant value y. The value
y is defined as the angle the asymptote of the hyperbola makes with the
radial axis.

The transformation equations from cylindrical r, &, x3 space to

curvilinear x,y, z space are shown belows

2 Ro= C Cosh Z Cos y

- (3)
X3 =C sinh Z sin y

where Ry is the maxium radius of the impeller and C is the focus of the

elliptic and hyperbolic coordinates. Formulas for the metrics of trans-
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formation Equations (3),i.e., hx,hy,hz are derived in Table I as well as

their derivatives. Application of Equation (3) to the geometry of Figures

8 and 9 results in the transformed geometry in the x,y,z space. The trans-
formed geometry is shown in Figures 10 and 11l. Figure 10 presents the huk and
shroud lines in the y,z, plane. The hub is a horizontal straight line, since it
is an ellipse. The shroud is still a curve, since it is a super-ellipse

with a reversal of major and minor axis with respect to the hub ellipse.

The interior ellipse of Figure 8, corresponding to z = -1.196 radians, is
shown as a dashed horizontal straight line. Figure 11 shows the pressure

and suction blade surfaces in the (x,y) plane. The solid lines indicate

the blade traces on the hub, while the dashed lines indicate the blade

traces on the shroud. 1In curvilinear space the calculation will take

place in (x,y) planes which move from the hub to the shroud as the

parameter z increases.

7.4 Boundary Conditions

Boundary conditions for the impeller problem in the (x,y ) planes
of calculation are indicated in Figure 12. A£ the upstream boundary
of the region of calculation uniform inlet conditions are specified.
Along the pressure and suction blade surfaces no slip flow is enforced.
At the lateral boundaries upstream of the inducer and downstream of the
discharge periodic boundary conditions are enforced. Finally, the back
pressure is specified at the downstream boundary of the region of calcu-
lation.

To expedite development of the IFFC computer code, the upstream
boundary was placed at the inducer in the solution of debug Problem 1.0.
Inviscid conditions, discussed in Section 7.6, were prescribed along the
upstream boundary. However, it is emphasized that boundary conditicnz cZ
Figure 12 will be employed in the solution of all problems subsequent to

the debug problem.
.5 Meshes

From Figure 1l it is seen that the (x,y) blade-to-blade surface
distorts as z increases from its value at the hub of z =-1.22524 radians
to z= -1.14 radians near the shroud. Since the blade shape in the (x,y)
plane distorts with z, the finite difference mesh must distort as well.
Thus, a subroutine was developed to automatically distort the finite

difference mesh in accordance with the blade geometry. Two meshes,
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corresponding to z = - 1.22524 radians and 2z =-1.14 radians are shown in

Figures 13 and 14, respectively. Each mesh is formed by the intersection
of 20 streamline-like-lines and 39 potential-like-lines, i.e., 780 points,
The streamline-like lines are spaced closer in the vicinity of the blades

than in the center of the blade passage.

7.6 Inviscid Solution

In order to solve the equations of motion shown in Appendix A,
the inviscid solution is required. The inviscid flow field serves two
purposes. First, the inviscid field at the hub provides initial conditions
for the viscous calculation: for debug Problem 1.0 the hub boundary layer
was neglected. Second, as discussed in Section 4.0 the inviscid flow
field is the zeroth iterate in the interation procedure.

The inviscid flow field for debug Problem 1.0 was solved for by
Vanco (Ref. 36) using the meridional velocity gradient method of Katsanis
(Ref. 10). The velocity vactor and pressure fields were calculated on the mean
mean hub-to-shroud stream surface of the impeller channel. These proper-
ties were specified along five streamlines, as well as the suction and pressure
blade velocities associated with each r, X3 point along the streamlines.

At a given mesh point in the flow field the velocity vector,
specific internal energy, pressure, and density were determined in the
following manner. First the velocity vector was found by linear inter-
polation in the inviscid field of Vanco. The rothalpy, H = E +W2/2-r2w?2/2
which is invarient along inviscid streamlines, was then used to compute the

specific internal energy in terms of the velocity and radius at the given

2 2,2
-

where Ej is the inlet stagnation specific internal energy in the laboratory

point, i.e.,

frame, W is the magnitude of the relative velocity vector, r is the local
radius,W is the angular velocity and‘Xis the specific heat ratic.

Pressure was calculated from the given mean stream surface pressurc by
assuming insetropic flow along each blade-to-blade circular arc associated
with r and x3. The density was then determined from the equation of state.

/o O

(f-1) E

=34~
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The flow field above the discharge was computed from relations

governing flow in a vaneless diffis2r. The mass, angular momentum in a
laboratory frame, and rothalpy were conserved. The viscous mixing above
the discharge was partially accounied for through an entropy gain; the
density at the downstream boundary was reduced to 95% of it's isentropic
value.

The inviscid relative velocity field at the hub, z = - 1,22524
radians, is shown in Fig.l15. These vectors have magnitudes proportional
to the particle velocities in the (x,y) plane; their tails emanate from
the mesh points of Figure 13. The # symbols indicate the pressure and
suction blade surfaces. A valae of T/2 was added to the angular x values
of Figure 13 to produce positive ordinate values. The locations of the
pressure and suction blade surfaces are reversed between Figures 13 and 15
because the abscissa of Figure 15 is located on the top of the page, while
the abscissa of Figure 13 is located on the bottom of the page. It is
seen from Figure 15 that the velocity profile is linear between the
pressure and suction blades. Furthermore, Mach number calculations in
the vicinity of the inducer indicate transonic flow. For example, at the
upstream boundary of the region of calculation, i.e., the inducer, the

suction blade Mach number is .95.

7.7 Medium Viscosity

The meshes of Fiyures 13 and 14 have zone widths in the neighbor-
hood of the suction and pressure blades which are too coarse to define
a thin boundary layer. For example consider the inviscid field at the hub
shown in Figure 15. At the inducer the.sucticn blade Reynolds number per
foot for Argon is 2.09 x 10®. The hub ellipse is .26 feet in arc length,
80 based on this dimension the exit Reynolds number for Argon is about
545,000. This Reynolds numbep would probably produce a turbulent boundary layecr
thinner than the width of the first layer of zones adjacent to the suction
blade surface. Therefore, to resolve the boundary layer with the meshes
of Figures 13 and 14, a Reynolds number reduction is required.

Flat plate analysis indicated that for an inducer suction blade

Reynolds number of 20,000 per foot, the laminar boundary layer at discharge

T
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is contained in about five zones of the mesh. Based on the arc length
of .26 feet of the hub ellipse, the discharge Reynolds number is then
5000.

Therefore, in order to get meaningful results with the meshes
of Figures 13 and 14 it was necessary to invent a fictious medium having
the compressibility properties of Argon and the viscous properties
appropriate to a Reynolds number of 5000. Thus, the flow field of
debug problem 1.0 is quite far from actual impeller flows and can only be

considered in a qualitative sense.

7.8 Specification of Uyp ; Speed at which Blade to Blade Surfaces

of Calculation Move from Hub-to-Shroud

To run debug Problem 1.0, the speed Ug at which the (x,y)
blade-to-blade planes move from the hub to the shroud must be specified.
The final steady solution will be independent of Ue ; however, intermediate
solutions will depend on the magnitude of Uy . The speed Ugy must be
small enough to permit viscous diffusion effects at the blade surfaces to
build up boundary layers which subsequently separate. The time it takes
a particle at the inducer to travel to the discharge is the characteristic
time, t , for boundary layer build-up (Reference 3).

The speed U, was determined in terms of the characteristic
time &£ in the following manner. cConsider flow along the suction blade at
the hub. The average velocity is about 583 fps and the hub arc length is
.26 feet. Therefore, the characteristic time is .444 ms. Since the
time it takes the boundary layer to develop is t, let us assume that another
characteristic time is necessary to permit the boundary layer to separate.
Hence, approximately 2t characteristic times are required for the (x,y)
blade-to-blade plane to go from the hub to the shroud. If 1.9 character-

istic time pazsses in the time period that the (x,y) blade-to-blade surface

moves from the hub to the shroud, then the appropriate speed is Uy,=
21.8 fps.




7.9 Radial Impeller Numerical Results

Problem 1.0 was run 750 cycles*, or long enough in time
for the z parameter to increase from z = -1.22524 radians at the hub to
z = -1.194 radians; the (x,y) blade-to-blade plane moved approximately-37%
of the total increment in z between the hub and the shroud at discharge.
This partial solution of Problem 1.0 required 23 minutes on the CDC 7600
computer.

Shortly after the calculation commenced, it was found that there
was a mass imbalance in the initial conditions. The elliptic formula
approximation to the hub geometry (see Section 7.2) increased the inducer
flow area by 9% from the actual flow area. Vanco's inviscid solution was
not corrected for this geometry change. Therefore, a mass imbalance was
produced in the initial conditicns of Figure 15; more mass flux entered the
system than exited from the system.

The mass imbalance is indicated in pressure distributions along
the blade surfaces. 1In Figure 16 pressure distributions on the pressure
blade surface are shown for three values of the z parameter. The
abscissa of Figure 16 represents the angular coordinate y, while the
ordinate is the ratio of the local to inlet stagnation pressure, i.e.,
p/rb . Curve 1 represents the initial pressure blade distribution at
z = -1.22524 radians; the initial exit pressure ratio is 1.635. Curve 2
represents the distribution 100 cycles after the start of calculation,
i.e., z = -1.2189 radians. There is a pressure peak in the center of the
channel followed by a deep rarefaction in the radial portion of the
iﬁbeller. The deep rarefaction and fixed high exit pressure induced back
flow at the downstream boundary, a condition of impeller surge. To prevent
surge the back pressure was lowered to a ratio of 1.47. At the lower
back pressure level outflow was maintained at tlLe downstream boundary and

the problem was continued.

*A cycle of calculation consists of updating the dependent variables

of motion through one timestep over all the mesh points.

-40-




+g3HsYa SI € Ia¥Nd J0 NOIINOd QIOYIANOONN FTHL 1096T°1T- = 2 IV NOILOAETNLSIA

aIOYIANCO ATTVIINYd FHL SAIONIA € JAUWND 1z6812 1~ = 2 ¥ NOIIVINOTYD HHL JO INVLS FHL YILIY XTLEOHS
NOILNETYISIU DANSSAd IHL SAION3Id T AAYND 1pgsTT 1~ = 2 ¥ NOILNEMNLSIA NSSIL TYILINI FHL SILONIA
T dANND ¢ NOILNTOARA JO SIOVNNS SNOTHVA ONOTY IOVNNS IaAV1d TNSSTId FHL NO SNOIINENLSIA RNSSTL

suetpex ‘4
0o°s 8'v 9'V vy (A 4 o°v 8°¢t 9°t vt Z°¢e
| | 1 i 1 i 1 | 1 1

: 9TxINOIA

0°¢t

YIONINI

09°

= 08°

- 00°T1

_0Z°T

-0F° 1

-09°1

=-08"1

-00°2C

-41-




PR Sy

The pressure wave and trailing rarefaction calculated at cycle
100 started moving towards the inducer and the solution in the radial
portion of the impeller converged. Convergence was demonstrated by
inspection of the flow field over a small change in the z coordinate. For
a given small change ir z the flow field in the radial portion of the impeller
changed slightly, while flow near the inducer changed markedly. Curve
3 of Fiqure 16, which corresponds to cycle 550 or z =-1.196 radians, is
converged in the radial portion of the impeller. The solid line represents
the converged region of the flow and the dashed line represents the un-
converged region.

The upstream moving pressure wave finally impacts the upstream
boundary, reflects from it, and amplifies. The inviscid conditions
prescribed at the upst: eam boundary cause reflection and amplification
of the pressure wave. This same phenomenon was observed in previous
cylinder calculations started from impulsive initial conditions (Ref.2).
Problem 1.0 cou.d not be continued beyond this point without moving the
upstream boundary upstream of the inducer.

The three-dimensional flow field in the radial portion of the
impeller has converged and is very interesting. Results are presented
for the radial portion of the impeller in the remainder of this section.

The sequence of events as the flow develops in the impeller
channel is illustrated in the velocity vector plots of Figures 17 and
18. Figure 17 shows a velocity vector plot at cycle 100 (z = -1.2189
radians) and Figure 18 shows the velocity field at cycle 450 (z = -1.991
radians). In Figure 17 bovndary layers are seen on both the pressure and
suction blade surfaces. A flow instability is beginning to occur at the
downstream end of the suction blade surface. At cycle 450 (z = -1.991
radians) the flow has converged in the radial portion of the impeller.

A thicker pressure blade surface boundary layer than present at cycle 100
is clearly indicated in Figure 18. Furthermore, the suction blade boundary
layer has separated and a large vortex is in evidence cn the suction bla“e
surface near discharge. The vortex takes up almost half the channel

width between blades. The reduced channel flow area causes an acceleration

of the flow about the vortex; large vectors are in evidence just above the

vortex. This large vortex is consistent with the size of vortices previously
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determined about cylinders at low Reynolds number (Referz=nces 1l and 2).

A comparison of viscous and inviscid velocity fields is pre-
sented in Figures 19 and 20 on an (x,y) plane of calculation which has
moved about 33% of the total increment in z at the discharge. In the
viscous flow field of Figure 19, which corresponds to cycle 550
(z = -1.196 radians), the separated region has grown larger and feeds
into the boundary layer on the suction surface. Tbe subsonic nature
of the flow causes the suction blade velocity vectors upstream of the
separation to adjust to the vortex. Figure 20 shows the corresponding
inviscid flow field at z = -1.1960 radians. Due to the absence of viscosity,
the inviscid suction blade flow does not separate.

The velocity field in the radial portion of the impeller at
the final cycle calculated, i.e., cycle 750, is shown in Figure 21. A
well formed vortex is seen in Figure 21 which extends aft of the discharge.
A reversed flow profile is clearly seen in Figure 21. The results of
Figure 21 indicate that the velocity field is highly non-uniform above
the discharge plane.

A comparison of the viscous and inviscid pressure distributions
in the radial portion of the impeller is presented in Figure 22. These
data correspond to z = - 1.196 radians or on an (x,y) blade-to-blade
plane of calculation which has moved 33% of the total z increment between
the hub and shroud at discharge. The pressure surface comparison (Figure
22b) indicates thét the viscous pressures are no more than 8% high than.
the inviscid pressures upstream of the station in the channel where the
back-pressure influences the discharge flow. The lower back-pressure in
the viscous suction blade rurface pressure of Figure 22a drops off at
the separation point to nearly coincide with the inviscid solution. The
rapid drop in pressure in the viscous case is consistent with the in-
crease in the flow velocity just above the vortex (see figure 21).

Although the flow field in the inducer region has not yet
converged, it is clear that the IFFC computer code has duplicated,
at least qualitatively, the flow phenomena that have been observed to occur
in the radial portion of an impeller (Ref. 37). We therefore conclude that

the IFFC computer code works for laminar flows.
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8.0 BACKSWEPT IMPELLER PROBLEM

A proof of principle impeller problem was run to check out the
turbulence model which had been incorxporated in the IFFC code. The impeller
geometry, which was selected by Dr. T. Katsanis of the NASA Lewis Research
Center, was that of an advanced backswept compressor developed by CREARE, Inc.
The basic geometry and design operating conditions of the kackswept impeller

problem were as follows:

Rotatioral speed ; 75000 RPM

Tip diameter 15.95 Cm. (6.28 in)
Design pressure ratio 8:1

Inlet total pressure 2117 1b/ft 2

Inlet total temperature 519 ° R

Impeller tip speed 2055 ft/sec
Discharge Reynolds Number®* 1.43 x 106

The rotor geometry is presented in the cylindrical coordinates
r, 8, x3 in Figures 23 and 24. Figure 23 presents traces of the hub and
shroud lines in a half-plane through the axis of the impeller, i.e., a
meridional plane. The hub and shroud radial coordinates are presented as a
function of axial distance. The hub and shroud lines extend upstream of
the inducer and above the discharge so that the region of calculation
contains them both. The angular coordinates of the pressure and suction
blade surfaces are shown in Figure 24 as functions of axial distance X3.
The solid lines indicate traces of the blades on the hub, while the dashed
lines indicate shroud blade traces. The regions upstream of the inducer
and downstream of the hub are also indicated in Figure 24.

A fine finite difference mesh was incorporated in order to
adequately define the boundary layer. The mesh consisted of 30 J-lines
(streamline-line) and 101 K-lines (potential-like). A grating factor
(g) of 1.C5 was used to space thé J-lines. The hub plane mesh is illustrated
in Figure 25 and the blade-to-blade surface 23% of the distance between
hub and shroud is shown in Figure 26.

The invicid flow solution for the backswept impeller was solved
using the meridional finite difference method of Reference 39. The hub
inviscid flow field, which serves as the zeroth iterate for the viscous
calculation, is shown in Figure 27. It is noted that at the inducer
inlet the relative velocity is roughly the same on both the blade

pressure and suction surfaces. The velocity profile remains relatively

*Reynolds number based on an average inviscid relative velocity along the
hub and distance along the hub.
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constant until approximately half way through the channel, when the suction
blade velocity becomes significantly larger than the pressure surface velocity.
This result is not in agreement with observed flow phenomena for centrifugal
impellers. That is, the low-flow region is observed to occur at the suction
blade surface near the discharge.

Substantially different results were obtained for the viscous
solution to the backswept impeller problem. Relative velocity plots for
the blade-to-blade surface 19% of the distance from the hub to shroud are
shown in Fiqures 28-30. The inducer region, which is shown in Figure 29,
has a slight separation on the blade suction surface near the inlet. At
the discharge the flow velocities near the suction and pressure surfaces
and across the channel are nearly equal, whereas the inviscid calculation
(Figure 27) predicted very low velocities on the pressure surface. There
is no indication of a suction surface separation at the discharge like
that obtained in the radial impeller problem. No conclusion can be drawn
with regard to the effectiveness of backsweep in reducing or eliminating
flow separation because the radial impeller was calculated for a very low
Reynolds number (5000) with laminar flow, whereas the backswept impeller
was calculated at a high Reynolds number (1.43 x 10%) with the turbulence
model operational.

The viscous solution for the surface 72% of the distance between
hub and shroud produced relative velocity profiles shown in Figures 31-33.
The results were similar to the 1°% surface except that the velocity
gradient near the suctior blade surface was not so pronounced. Also,
except at the inlet, the velocity profiles were relatively uniform from
blade-to-blade and continued to be so all the way to the discharge.

The solution for the 98% surface, shown in Figures 34 and 35
produced results which were similar to the 72% surface calculation.
Likewise, the 99.95% surface, which is shown in Figure 36, looks much
like the 98% surface, aithough the 99.95% surface is located in the tip
clearance regicn. There is no blade to influence flow at this surface,
but the relative velocity plot shows that the blade viscous effects are
felt despite this fact. Indeed, the relative velocity (boundary layer)
profile near the hypothetical blade surface is much like one would expect
if a blade were present.

The static pressure contour plot for the 98% blade-to-bklade
surface (z = .22451 radians) is shown in Figure 37. The static pressure
ratio shown is referenced to the inlet stagnation pressure (Po). There
is a region of low static pressure near the inducer inlet (P/Po = .8) on

the suction side of the channel, which indicates a region of accelerated
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flow due to the airfoil. The inducer or axial-flow portion of the channel
decelerates the flow steadily until there is a static pressure ratio of
about 1.4 as flow begins to enter the radial portion of tne rotor. The
rate of static pressure rise thereafter is increased rapidly because of
the rotor centrifugal energy input. Finally, at the discharge an average
channel static pressure ratio of about 4.6:1 is achieved and there is a
relatively uniform profile across the channel. There is no separation
indicated because the static pressure rise continues throughout the radial
portion of the flowpath. This is attributed to the stabilizing influence
of the backswept blading.

Very similar results are illustrated for the 99.95% surface
(Figure 38B), which is located in the tip clearance region at the shroud.
In Figure 39, hub, 19% and 77% surface calculations of suction surface
static pressure ratio (P/Po) as a function of Y (axial coordinate) are
shown. These results also indicate the absence of separated flow because
diffusion continues all the way to the discharge.

Relative velocity ratio contour plots are presented in Figures
40-43 for the blade-to-blade surfaces located 19%, 72%, 92%, and 99.95%
of the distance from the hub to the shroud. The relative velocity ratio
V/V*, is the ratio of flow wvelocity to critical flow velocity according

to the following™: 0.5

2+ (¥-1)M

At the 19% surface (Figure 40) the contour plot indicates roughly sonic
relative velocities at the inducer inlet with diffusion down to a velocity
ratio of .4 - .6 at the impeller discharge. The contuir plot for the 92%
surface, which is shown in Figure 42, suggests that most of the flow at
the inducer tip is at a relative velocity ratio of 1.2 or higher. A
smooth, even diffusion rate is indicated, and a relative velocity ratio
of roughly .6 is obtained at the discharge.

Contour plots of relative total pressure ratio are shown in
Figures 44-46. Relative total pressure ratio is defined as the
stagnation pressure calculated at a given point divided by the ideal

stagnation pressure which would have occured if the process werc isentropic.

*Where M is defined as the ratio of the local relative velocity and the
local sound speed.




The contour plot of the 19% surface, shown in Figure 44, indicates that for
most of the flow the relative total pressure begins to deviate from ideal
conditions at about 40% of the meridicnal distance through the passage. At
the discharge a value of the relative total pressure ratio of roughly .92 -
.96 is calculated for flow in the mid-passage. The regions of low total
pressure are observed to be near the suction and pressure blade surfaces.
Similar results are indicated for the 72% and 92% surfaces shown in Figures
45 and 46. At the 98% surface it is observed that a region of relatively
high (.96 - .98) total pressure ratio occurs at the discharge in the mid
passage region. Again the main flow losses are calculated to occur near
the blade boundaries.

An independent boundary layer computation, using Mager's integral

(40), was performed to verify the numerical

turbulent boundary layer analysis
separation characteristic. The calculated suction blade momentum thickness
#® in the boundary layer for the 19% and 77% surface calculations is shown
in Figures 47 and 48. Since the ratio of () to the initial value C)i.stays
relatively constant downstream of the initial inducer portion of the channel,
there is no separation and no reduction of static pressure rise capability.
Nowhere does the suction blade momuntum thickness go below its initial value;
hence, turbulent boundary layer theory indicates that the suction blade flow
should :.ot separate.

Distributions of the ratio of eddy viscosity to the molecular
viscosity along the suction blade surface are presented in Figure 49,

The boundary layer turbulence is generally increasing along the blade,
especially in the radial flow region prior to discharge.

The viscous calculation of the backswept impeller flow field with
the IFFC blade-to-blade computer program ran 8073 cycles or surifaces from
hub to shroud. The 30 x 101 mesh consisted of 3030 zones and required 9.3
hours of computer time on the CDC 7600 computer to complete the problem.

It is recommended that additional efforts be made to reduce the comput-
ational time requirement to make this solution a practical tool for

utilization by the compressor aerodynamicist.
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SUCTION BLADE SURPACE

PRESSURE BLADE SURFACE

e = .22817; + SYMPOLS INDICATE SUCTICN AND PRESSURE BLADE SURFACES.

PIGURE 431 FELATIVE VELOCITY RATIO CONTOURS ON THE BLADE-TO-BLADE SURPACE 99.95% OF THE DISTANCE BETWEEN THE MUB AND SHROUD)
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9.0 CONCLUDING REMARKS

A viscous blade-to-blade computer code for computing the flow
field in centrifugal impellers has been sucessfully developed. The program
was used to calculate the flow field of both a radial and backswept com-
pressor impeller. Whereas the radial impeller problem indicated a large
separation region on the suction blade surface near the discharge, the
backswept impeller calculation, which included the mixing length turbulence
model, did not separate. No conclusions can be drawn with regard to the
effectiveness of backswept blading in reducing or eliminating flow separation,
because the radial impeller was calculated for laminar flow at very low
Reynolds number (5000), and the backswept impeller was calculated at a high
Reynolds number (1.43 x 106) with the turbulence model iIncluded.

The backswept impeller problem requires 9.3 hours of computer
time on the CDC 7600. It is recommended that an effort be made to improve
calculation efficiency to reduce the costs associated with the blade-to-blade
solution. Also, it is recommended that the IFFC codc be modified to provide
the additional capability of calculating the flow in cross-section com-
putational planes. This modification will enable the program to calculate

shroud viscous effects, tip clearance effects, and corner vortices.
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Appendix A

DEVELOPMENT OF EQUATIONS OF MOTION IN ROTATING
QRTHOGONAL CURVILINEAR COORDINATES

The coordinate system upon which the iteration takes place controls
convergence of the calculational procedure. Since flow is
confined to an impeller blade channel, a gencralized coordinate system,
whose axis follows the channel geometry, will be utilized to converge
the iteration as rapidly as possible. Consider the generalized coordinates
(x,y,z) shown in FigureAl; the surface x = constant is a mid-channel surface,
surface y = constant is a blade-to-blade surface, and the surface z = constant
is an orthogonal channel surface. The transformation of cartesian equations
2t X3 to the generalized curvilinear coordinates x,y,z
is presented in the following paragraphs. The development takes place in

in coordinates, Xl, X

the following three steps:
(1) The metrics and generalized basis vectors are derived.
(2) Coriolis and centrifugal acceleration terms are developed
in generalized coordinates.
(3) The generalized equations of motion are presented.
2 x3 are related to the
orthogonal generalized coordinates x, y, z as follows:

The rotating cartesian coordinates Xl, X

xl = fl (xIYIz) 1
X2 = f2 (x,y,2) (Al)
X, = £, (x,y,2)

The metrics and basis vectors of the transformation can be determined from
Equations (Al). An element of a length, ds, in cartesian coordinates is

expressed in generalized coordinates as follows:

ds” = h dx + r dy + h dz (A2)
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The parameters, hx' hy, and hz are the metrics of the transformation. The

=2
L}

=2
|

unit basis vectors i, j, k of the generalized coordinates are related to the

cartesian basis vectors i., i., and i, as follows:
=1’ =2 =3

i-n, (é’;‘,i.*- BRI+ ls)
"y (dx. - 34» I+ z’% L3> i

k=h (ﬂ’_l + 7’2' i, 2 51_* )
* dx\ XL
The Coriolis and centrifugal accelerations, in the directions, x,y
and z can be determined from a scalar product of their cartesian components

with the basis vectors of Equations (A3). The Coriolis accelerations in

directions i, i, and k, are, respectively

. b
Q(Q_)X(J)-_’ = ahkw Vl’ﬂ(dfﬁ%-j%g? +Wk(¢){dx Xu:(,)} (A4)

g((i)x_{,_{)-l = 7/); [M})( o){o’/ JZ‘]I{) Whe __?JZ jz d.)% } e

7L
u){uhx (d ‘,Z-"é' ;j{ + VA) énj; —J}‘;’;\é) (A6)

where u, v, and w are the components of velocity vector u in the i, j, and
k directions, respectively, w is the angular frequency, and Wis the angular

frequency vector pointing in the x3 direction.
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The centrifugal accelerations in directions i, j, and k, are,

respectively

(WxwxY) (= —w‘hx(Xa%"'x'-%‘_) (A7)

(x@xX)-) "'&()(.iﬂ.-; j?) (A8)
((A?X‘é.)x‘f)-/.@ = —wh (K\§‘+X,JXL) (A9)

where r is the position vector in cartesian rotating coordinates xl, x2, and
X3.

The Coriolis and centrifugal acceleration components of Equations
(Ad) to (A9) are added to the Eulerian set of equations of motion in
generalized orthogonal coordinates {(Ref.38). The final relations are as

follows:

Continuity
dv(eyd)=0 (A10)
where:

hehghe |2

U= Ui+ V)y+weh

dvied) = 3 {i(e“/w"«#gj(evlnh«)“’—(cwhx 5)}

and Q is the density.

X = Momentum
J\‘V.((ug)*' %‘f %\2&4* uo")J hLZ-;!’.ZK &}‘1+w_ d&t]{ZAAeu}[V,\ ;’:;}1 /J)?/):)

+whe (7 M \f fg’;}l )] ?w"h [{J_A,wﬁ n] dnvMD‘w»f_inl,;o::‘r);'g Ef;:ll:( -;::\ jl: (A11)
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where:

y - Momentum

dhy 4 I 4 b ‘dlzz “dhy 4 b, J
le((VU}‘*Z_ h‘:d;"%i y AJ-E}] [h‘ vz *L}:J\. ]*2‘;/(7(‘)/2‘6 (d.jl(l :T;(f -JMA’/)

why (d246 22 02 Y] - ot 74X 09 ) = d. s dhy s Ty hy A —, I A
NG ) ek g g iy P R B

where:

Ezg = ZEJ'{ = CE; é + Iﬁ? A

Z = Momentum
——

dhs pu o u' ohs 4y *sh atv’/* oA g0 I
IR T B o ol ol [ LR

h, (/¥ <4 _ o (/d_-M’Q dl((ﬂ'\f.’w + Tueghy — G Jhr _ 03 /hy
-;Yd(ﬁ'/?jz J’t )J’ /"\ )= 5‘5& ‘:];/ )u°'? behy Fi (1)

wherc:
O = Gal + Tu j+4 G

Internal knergy Equation

] J U V o W /b }')Hp A
GV (CEY) = e[ b T */,,Aa,dg* '}f_{w /,;,ﬁ*;,’fff,t h?/La»f J
L
SRR 2 vl A WY S ALZIR 119

. ux[(‘ﬁ)‘,&!ﬁ) e %l ]+ C;,y[(ﬁf 15/;;' b j}‘b’ij o
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where E is the specific internal energy, 0;1, 5;7, 0;é~ are the
normal stress components, and 'z;,, Z}L, Zéﬁk are the shear stress

components.

-91-



Appendix B
CONTINUITY EQUATION IN GENERALIZED COORDINATES

In this appendix continuity kquation (4), in (x,y,t) space,
is transformed to generalized coordinates ($ ,7 ,L). The transformation
equations between x, y, t space and the generalized coordinatcs (? '7 :Z—)
are prescented, and from these relations the integral equation for mass

conservation is derived.

Equation (4) is written in terms of the Fulerian coordinates
(x,y,t). 1n the caiculation the trace of the boundary of the impellcr
channel in the blade-to-blade surface must distort with time. Therefore,
the continuity equation must be formulated in a generalized coordinate

systen\E, 7, T. The generalized coordinates are defined as follows:

t= T (1)

x=£(E,7,7) (82)

y = 9(? ol T) (R3)

and £(§,'7,0 =¥ ,q(F,7,0 =7, where f a.ﬂ} = U gy e [l ] = i
g[: 0 tno Z "0()7'5-‘;;

Equation (B1l) is differentiated with rerpect to t, x, and vy,

respectively. The result is as follows:
At
43
- S 154
IX (154)
4l .o
d

Differentiation of Equations (B2) and (B3) results in the followina:

3L . fngv -8 fT
ot [£¢8y - By,

SL o z Eq L (
- KY)
x  [fe8y = ggfy)

28 , £
dy [ Qg'ﬂ - g;fn] J
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at _ f,rgg - fﬁg‘r
3 [£48y - g,fy)

EED . '8! P,

- (B6)
x - [feg, - ggf,)
21 £,

3y [fggn - ggfnl

/

Consider the function G($',7 , 7). The derivatives of this function are as follows:

- K14 27 2T .
e - Ceae PO Y G ot

Esffng, - znf;) + G (fp, - £,8) + G (f,8, - g,f,)

(B7)
(£g8y - Bgfy)
' G.g,-Gg
3G 14 21 9T _ __E°1 115
X G;ax+cnax*c'rax (f.g. - g .f.] (B2)
E= £

-G _€qn + Gqf

3G -G jﬂ§.+ (] iiﬂ.+ G 3T . £ 1 U g (B2)

oy £ dy n Yy T dy [fzgn - ggfn]

Equations (B3) - (B6) produced Equations (B7), (E8), and (E9).
Using Equations (B7), (B8), and (B9), the continuity Eguation (4)
is transformed to the generalized coordinates ( ?‘, 7 ’ T.). The trans-

formed relation is as follows:

2 (ChkyT7) 4 [(@hs (4-5), + Rhe(V-$5), ] P-4 [@ethySes, + (ew'heS: e

= - (Z Jdi_((’w'h,hyr") (B10)
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where ( )x and ( )y define differentiation with respect to x and vy,
respectively, and the grid velocity components sx and Sy are defined in

terms of deviatives of the curvilinear coordinates x and Y.

_oIx
x JdT r
(B11)
S = oy
y - "Jdr "%
The symbol J represents the Jacobian of the transformation, i.e.,
4 b
J = I th :y It ; = = -1’ NE (B12)
P s ™ §
-1
where: ax dy = J ~ af a% (B13)

Equation (B10) is multiplied by the area increment d‘:', d7] and the resultant

relation is the final continuity equation as follows:

3 Ghbodh +[p(5-900de — L [pua Adee- = fw'u. b e
atk r/ +fc/‘°ZZs U‘o C/)WZ; - U¢¢Tf {

where dA = dx dy, A corresponds to the area in the x,y plane contained
within the region bounded by the closed curve C, ﬁ_is the unit normal to
the curve C, g is the particle velocity vector in the (x,y) plane as
defined by Equation (7), and s is the coordinate velocity vector in tie
(x,y) plane as defined by kquation (8). In the integration process

use was made of Equation (B1l3) to convert integrals in d$ a] to integrals in
dxdy. Furthermore, Leibniz's rule was used to permute diffcrentiation and

integration and Gauss's theorem was used to convert areca irtcgrals to linc

integrals in the (x,y) plane.
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