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Incompressible turbulent flows are investigated in the frame-

work of ideal magnetohydrodynamics. All the field quantities vary

with only two spatial dimensions. Equilibrium canonical distributions

are determined in a phase space whose coordinates are the real and

imaginary parts of the Fourier coefficients for the field variables.

In the geometry considered, the magnetic field and fluid velocity have

variable x and y components, and all field quantities are independent

of z. Three constants of the motion are found (one of them new) which

survive the truncation in Fourier space and permit the construction

of canonical distributions with three independent temperatures.

Spectral densities are calculated. One of the more novel physical

effects is the appearance of macroscopic structures involving long-

wavelength, self-generated, magnetic fields ("magnetic islands") for

a wide r:znge of initial parameters. Current filaments show a tendency

toward consolidation in much the same way that vorticity filaments

do in the guiding-center plasma case. In the presence of finite

dissipation, energy cascades to higher wave numbers can be accompanied

by vector potential cascades to lower wave numbers, in much the same

way that in the fluid dynamic (Navier-Stokes) case, energy cascades

to lower wave numbers accompany enstrophy cascades to higher wave

numbers. It is suggested that the techniques may be relevant to

theories of the magnetic dynamo problem and to the generation of

megagauss magnetic fields when pellets are irradiated by lasers.
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1. INTRODUCTION

We have recently been involved in a number of investigations

in the statistical theory of turbulence for two-dimensional flows

in electrostatic guiding-center plasmas and/or inviscid Navier-Stokes

fluids. Any tractable mathematical description of a turbulent con-

tinuum requires a discretization, and this has been carried out in

one of two ways: either in terms of long rod-like "particles"

(Onsager 1949; Taylor and McNamara 1971; Montgomery 1972; Joyce and

Montgomery 1973; Montgomery and Joyce 1974; Seyler 1974; Montgomery

1975a, b; Lundgren and Pointin 1975; Pointin and Lundgren 1975), or

in terms of truncated Fourier series representations of continuum

fluid equations ( Kraichnan 1967, 1975; Seyler, Salu, Montgomery, and

Knorr 1975; Montgomery 1975a, b; Montgomery and Salu 1975)•

The two discretizations lead to dynamical systems which differ

in their predictions at the smallest spatial scales, but the most

interesting physical phenomena have occurred at large spatial scales

and have been common to both representations: for a wide range of

initial conditions, the flows have shown a remarkable capacity to

organize themselves into a few large, persistent vortices, comparable

in cross-sectional area to the dimensions of the system. In the

plasma interpretation, phase space considerations dictate that for

the higher-energy states of the system, the more probable configurations



consist of large regions of non -zero net charge density, around which

the plasma E X B drifts azimuthally in a direction normal to the dc mag-

netic field. These configurations have repeatedly appeared in numeri-

cal simulations ( see the above references) and have also been studied

from the point of view of time -independent self-consistent Vlasov

equilibria ( Book, McDonald, and Fisher 1975; McDonald 1974).

The techniques by means of which these phenomena have been

investigated are of considerable generality, and the limits of their

applicability have not been reached. Here we report some theoretical	 ^-

investigations into a situation in which the plasma flow is still

two-dimensional, but with a high enough ratio of mechanical energy

to magnetic energy that the magnetic field has to be self-consistently

determined: colloquially, the "low beta" limit is no longer appro-

priate. ( Heretofore, the plasma has been assumed to E x Bdriftti	 ^

across a given, static magnetic field, normal to the plane of varia-

tion of the field quantities.) Same important beginnings on the

problem have been made by Frisch, Paruquet, Leorat, and Mature (1975)

who considered the three-dimensional magnetohydrodynamic case, with

conclusions significantly different from the ones we report here for

two dimensions. A two-dimensional calculation with spatial variation

across an external do magnetic field is due to Schumann (1975)•

We proceed by means of the equations of ideal magnet ohydrodyna-

mics, and consider incompressible flows in the following geometry.

There is no externally imposed component of the magnetic field, but
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there may be a large internally-generated one. The magnetic field B

and the fluid velocity v have only x and y components. All quantities

are independent of the z-coordinate. The electric current vector

and the vorticity vector Lo, where w = V x v and ,^ = cV x V IM .. have

only z-components. Some numerical simulations for this geometry have

been carried out by Tappert (1971). At any stage in the development, we

may add a uniform do magnetic field in the z-direction without changing

any of the manipulations. We omit it from the development to keep the

equations as simple as possible.

The omission of dissipative effects (finite conductivity or

viscosity, for example) will be expected to alter the quantitative

conclusions significantly, just as it does in the Navier-Stokes theory.

It is common knowledge that omission of viscosity, however small,

alters the inertial range spectral behavior with k for the Navier-

Stokes equation. (Compare, for example, the results of Seyler et al.

(1975) or Basdevant and Sadourny (1975) with those of Herring, Orszag,

Kraichnan, and Fox (1.974).) But qualitative conclusions, independent

of the presence of small dissipation at high wave numbers, are easier

to draw in the non-dissipative limit, based as they are on the exis-

tence of constants of the motion which decay slowly in the presence of

a finite dissipation. The purpose of this article is not quantitative

comparison wiL1, da*.a, which would in any case be premature, but the

isolation of some qualitatively new gross physical effects which have

not to our knowledge been previously calculated.

In section 2, the Lundquist equations for the present geometry

are written down in an appropriate set of dimensionless variables.
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Each field quantity is represented by a Fourier series involving a

large but finite number of terms. The Fourier coefficients are then

the basic time-dependent dynamical variables of the theory. Questions

of the convergence of the Fourier series results to solutions of the

original Umdquist equations are non-trivial, but they are as intract-

able here as they have been in fluid turbulence theory and are left

open, as they must be at present.

We work without reference to normal modes, eigenfrequencies,

waves, perturbation theory, or any of the paraphernalia which have so

unfortunately limited many plasma turbulence calculations to minor

corrections to linear theory. There is no attempt to follow the

evolution of the dynamics from an initial to a final state. Rather,

the procedures followed are basically those of Kraichnan (1967)

(see also: Seyler et al. (1975)), in which classical equilibrium
ensembles are built around constants of the motion identified from

the Fourier transformed equations of motion. Constants of the motion

which exist for the original equations but not for their truncated

Fourier representations are regarded as insufficiently rugged to

enter into the statistical formulation of the problem. Identification

of constants of the motion is at first glance more an art than a

science, and whether one has found them all is always slightly uncer-

tain. Nevertheless, symmetry considerations, combined with an accumu-

lation of practical experience, lead to confidence that the possi-

bilities have been exhausted after awhile. The striking confirmation,
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by Sayler et al. (1975), of the Kraichnan theory's predictions lend

considerable credibility to the conjecture that only two such constants

(energy and enstrophy) exist for the truncated Navier-Stokes system.

Until mathematical investigations of a considerably higher order of

rigor than those that have been carried out so far are performed,

this is probably the best we can do. Similar reservations apply to

the work of Frisch et al. (1975).

Once the constants of the motion represented in terms of the

Fourier coefficients are identified, the statistical formulation of

the problem is presented in a phase space whose coordinates are the

real and imaginary parts of the Fourier coefficients. Canonical en-

sembles are constructed in this phase space by classical arguments

(e.g., ter Haar 1967) in which the probability of a state is maxi-

mized subject to the constraints that the constants of the motion

retain their initial values. The method of Lagrange multipliers is

utilized, with the Lagrange multipliers pl,9ying the role of inverse

temperatures, one for each independent constant of the motion. The

derivation of the ensemble by this conventional. Boltzmann-Gibbs

combinatorial method differs in no important particular from the

primitive derivation of the Gibbs distribution offered in any first

course in statistical. mechanics. From the canonical ensemble so

derived, expectation values of any functions of the amplitudes of the

turbulent field can be computed by straightforward integration (e.g.,

the spectral densities). In section 5 some of these are computed,
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and their variation with initial values of the constants of the

motion is discussed.

Of particular interest to us has been the question of the

degree to which a highly conducting turbulent fluid in which there

is an initially small amount of magnetic field energy can convert a

significant fraction of its turbulent mechanical energy into magnetic

field energy—i.e... the degree to which the plasma can "magnetize"

itself. In a number of situations (e.g., in the appearance of mega-

gamsr magnetic fields in the irradiation of pellets by lasers, or in

dynamo theories of the earth's magnetic field), spontaneous large

macroscopic magnetic fields are known to appear in magnetohydrodynamic

fluids. While our theory has not advanced to the point where a serious

quantitative confrontation with data can be undertaken for either

of these phenomena, we do show in principle how such large internally-

generated B fields can develop, a result believed to be among the

first of its kind insofar as it is rigorously derived, albeit within

a highly simplified framework.

A second phenomenon which can be extracted is the consolidation

of electric current filaments, much in parallel to the consolidation

of vortices in the guiding-center plasma in two dimensions.

These and other results are commented upon further in section

4.



2. BASIC EQUATIONS AND CONSTANTS OF THE MOTION

The Lundquist equations of ideal incompressible magnetohydro-

dynamics are:

aBat°vx(vxB)

^N
4av +v • 9v = —xB-VP
at	 c

© v = 0N

9x B= 4T	,	 (1)

where 4 = (0, 0, j z ) is the electric current density, B = (%, By, 0)
is the magnetic field, v = ( vx , vy, 0) is the fluid velocity, p is

the pressure, p is the (constant) mass density, and c is the speed

of light. The vorticity Lu = (0, 0, wz ) is given by

V =v xv .

We assume throughout that alaz = 0, and that periodic boundary condi-

tions apply in x and y. In the given geometry, a uniform, constant,
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magnetic field in the z-direction can be added without altering the

equations of motion. It simplifies the expressions to omit it, so

we do. It can be re-inserted at any step of the development.

We measure velocities in units of a constant velocity Uo,

which may be taken to characterize the mean initial, speed of the

turbulent field. We measure lengths in units of ©, which may be

taken as a characteristic macroscopic length of the turbulent field.

Wo measure times in units of LO/%- We measure magnetic fields in

units of $o = F4 TTp0U2, where po is the mass density. We measure

cu •rent densities in units of 3o = eBo/4nLo. In these units, Eqs.
(1) reduce to

aB

at = 4 X (V X B)	 ,	 ( 4a)

av
at

+v•vV = (QX B) XB- c2 vp ,	 { "b)

v - v = 0	 ,	 ("c)

M

Here, c8 po1poU2 is the ratio of the characteristic mechanical

pressure po to po U. As usual, taping the divergence of Eq. ('1b)
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and using Sq. (2c) enables us to solve a Poisson equation for p,

so that p is in effect a known functional of B and v.

All quantities are expanded as Fourier series in a large

square box, assuming periodic boundary editions:

B - E B(k, t) ex7i (ik • x)
kti

V 1: v(k, t) exp ( ik • X)
kti

wz - , w(k, t) exp ( ik X)

k

jz = T J(k, t) exp (ik • x)	 ,	 ( 3)
k

where k has only x and y components;

A X e
B(k) -	 2 

z 
J(k)

ik X e
v(k) = ~k2 

Z 
w(k)	 ,	 {4}

and ez is a unit vector in the z-direction,
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The dynamical equations can be written entirely in terms of

the scalars w(k, t) and J(k, t), the Fourier tran-o formed vortici.ty

current density and electrical current density. M straightforward

substitution of Eqs. {3} and (4) into ( 2) yields

auAk, t)

at 	 - `Ml(r,p) 6(X)+r-k)[w(r)w(p) -J(r)J(,p)) 	 (5)

and

ai(k, t)

at	
= EM2(r,p)d(r + r- k)(J(r)w(X)) -w(r)J(X)) I

&(p +r-  k) = 1 when its argument is zero and is zero otherwise, and

MI( r , )	 Ml ( ,p, r)	 f ez' ( r x p)^I 1^
	

,	 (t)
p	 r

,,

M2(r,) = -M,,(,p, r)	 1 ^	 k^z - ( r x p) 	 (8)
^r^pd

The sums in Eqs. (5) and (6) are over all non-zero wave vectors 1) and

Z. Dropping Eq. (6) and the J-teams in Eq. (5) reduces the system

to the inviscid Navier -Stakes equation in the same geometry (Seyler et

al. 1975). Only wave numbers permitted by the periodic boundary condi-

tions are, of course, allowed.
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phase space whose coordinates are defined by the real and imaginary

parts of the %( k, t) and the J(k, t). Hence a Liouville equation

obtains in this phase space; we may seek equilibrium e-nsembles in

this phase space in the conventional fashion, providing that we are

able to find the isolating integrals (which define hypersurfaces in

the phase space) or "constants of the motion". In particu ;3r. we

are interested in the constants which survive the truncation which

_ represents Eqs. (3), (5), and (6) in terms of a large but finite

of terms.

Many constants of the motion exist for Eqs.	 ( 2 ) which do not

survive the restriction, in Eqs. (5) and (6), of values of	 jk(, (pj,

and dry to a large but finite maximum. In particular, the line

integral.	 B x d.t, along any curve whose -nd points are 1 and
1

and which moves with the fluid velocity, is time-independent according

to Eqs. ( 11) but not according to Eqs. (5) and (6), if any finite kmax

is allowed to restrict the values of 1k1, jpl, and 1rI.

We have found tt'.ree constants of the motion for Eqs. (,") which

do survive the restriction that (k1, IpI, 13CI are required to lie in

an annulus between k
min 

and 
max 

(k 
Minis 

Just ='n divided by the box

gize). We believe that they are the only ones, but cannot ri;orously

prove it. They are the energy ,

( It,)
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the "cross helicity " P (Woltjer 1958, and Frisch et al. 1975),

P- 2J B - ydxd '	 (9b)

and a new integral, the mean square vector potential,

A = 2 
j g2 dxdy 	 (9c)

where B = b X q, and q is the vector potential in the gauge for

which Q q = 0. The integrals in (9) run over the basic box.

The Fourier series representations of g, P, and A are

2 
1: 1w(k)1 2 + I^(k)12

g 	 2
k	 k	

,

(-
W	

3 (-k)
P = 2 1:	 2	 s

k	 kti

1	 1j(k)12
A =

2 
--4

k k
(10)

(The time arguments are conveniently emitted.) The sums in Eqs. (10)
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are over all the k values allowed by the periodic boundary conditions

between min	
^and a large but finite k, which may be chosen arbi-

trarily. It is an easy manipulation to show that the expressions

given in Eqs. (10) are conserved by Eqs. (5) and (6).

The canonical distribution, to be inferred by entirely con-

ventional arguments, is then

D = ^ exp (-x E - OP - yA)	 ,	 (11)

where D is the probability distribution in the many-dimensional phase

space whose coordinates are the real and imaginary parts of

w(k) = wZ,( k) + iwi(k)

and

J(k) = Jr(k) + ii i
 (k)

I is a normalizing constant to be determined by the normalization

dX D = 1

where	 dX is an integral over all the independent wr , wi, 
Jr' ji'

i
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[Since w(k) = w*( k), J(k) _ j*( -k), independent wr, wi, 3r
, Ji are

associated with only half the k-vectors.] a, ¢, y play the roles

of inverse temperatures, and are constrained by the requirements

that Eq. (11) be normalizeable-- .i.e., that for large jj(k)l 2 and

Jw(k) 1 2, the argument of the exponential is a monotonically decreasing

quantity. This implies right array that

a>0 .	 (13)

Both y and 0 may be negative, but not a.

Another class of constants of the motion which do not survive

the truncation of the Fourier series are integrals of the form

In S n dxdy, where n is some integer and the integral is over the
basic box. The constancy of In can be proved by using the governing

equation for the vector potential,

(at *V-  P)Q=0

However, only for n = 2 does In remain constant in the face of the

truncation.

F
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3. CHARACTERISTICS OF THE DIFFERING

TEMPERATURE REGIMES

E, P, and A are sums of terms, each of which is indexed by a

single wave number; therefore Eq. (11) predicts that in equilibrium

there is no correlation between coefficients corresponding to dif-

ferent k's. D factors into a product of distributions, one for each

k, and the single -k distribution function is

fk[Wr(k), Wi(k), jr(k), ji(k)
N

^kP	 lWr(k) + W2 (k) + j2 (k) + 3i(k)] ,k2

-13 [wr(k) Jr(k) + Wi(k) Ji(k)] f; P

-y li
2
r( k) + J1(k), 

Ik4	
,	 (14)

where I  is a normalizing constant, given by:
ti

Pik =	 a - TU	 2
TT k	 k
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The additional inequality required in order that the distri-

butions be normalizable is that

2
a >_ 2

k	
(15)

for all k. If y < 0, Eq. (15) requires that

2
a >	 2	 ,	 (16a)k^

while if y > 0, Eq. (15) requires that

2
a>^- kZ 	(16b)

max

Expectation values computed with respect to Eq. (14) are:

2	 2	
-1

(3r(k)) = C^i(k))	 k 
( a -	 + - ^	 (17)

k

and
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-1

{w2 k)} = (^2(k)} = 2	 + 02	 +	 - ^--.	 (18 )
k 4k2a

In terms of the velocity field and magnetic field we can determine

the energy spectra; for the magnetic field, we find:

2 -1
+ -L - 

P2 	 (19)
k

and for the velocity field:

0 -1
(IV

(k)^ 2) 
=a

+^ (1B(k)^2) = a+ ^2 (a+ 	 ^

4a	 4a 1	 k`

(20)

Similarly, the expectation value (B(k) • v(-k)) is

2 -1

Q(k) • v( -k) ) = a ^a+	 -L - Pa,= 	 - a ( B(k) ( )	 ( ^1)
k

Summing over k gives the immediate consequence that (B v)

- -(3Ja) (B2).

The conditions that the three expectation values of the

invariants match their initial. values,
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r

	

z1	 1 + 	 +4a2 _ 1	
+kq
	 ,

8 2 k a + ^ -	 - k 1+.Z._ ^2
a k2 	 k2a 4a

	

1	 t-+	 12P= a L.	 2

k

A = E	
1

k k2a+y-W

are to be regarded as three simultaneous algebraic equations which

determine a, P, y in terms of e, P, A. Roughly speaking, P/C, measures

the correlation energy of the magnetic field and velocity field.

y/a is a more subtle parameter, but it will be seen presently that it

measures indirectly the ratio of long wavelength magnetic energy to

to'.-al energy to be expected for the equilibrium coefficients.

A wide range of spectral behavior is possible for the different

ranges of the initial parameters e, P, and A. One regime of impor-

tance is the case P ` 0. This is the case in which the cross correla-

tion (B . v) = 0, either because B is initially uncorrelated with v

or else is perpendicular to it. For this case, t= 0 and the spectral

densities simply reduce to

9_
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{ I B(k) 1 2) = (a + yk72) _1

(I,V(k)1 2) = « 1	 (24)

Bath ( IB(k)I
2
) and (Iv(k)1 2) approach constants ( equipartition

spectra) at large I xI , but { I B(k) 12) can be peaked at I ki = k-,;,,,

the longest wavelengths, for y < 0 and a + ylk22 small. This
min

regime always occurs if, for fixed 8 and A, we allow kmax to become

large enough. This corresponds closely to the "Regime I" sharply-

peaked energy spectra for the Navier-Stokes case ( Kraichnan 1975,

Seyler et al. 1975), in which large macroscopic vortices occur; here,

it is "magnetic islands" which appear. The vector potential spectral

density, (IB(k)I 2fk2), is here dominated by the lowest values of

IkI, while the extra energy is divided approximately equally among

the highest k-values. The magnetic field configuration for this

y < 0 regime is dominated by the largest wavelength contributions,

k = (kmin) 0) and (0, kmid ' and can be graphically described as
it 	 islands" formed in the basic box, with essentially two

regions of current densities of opposite sign dominating the flow

pattern. From Eqs. (24) we can readily show that

L (IB(k)I 2) -	 (IY(k)I2) = -?^	 (`'S)
k	 k
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Since 2Afcx is intrinsically positive, it is apparent that the mag-

netic field energy can have an expectation value which is greater or

less than that of the kinetic energy, depending upon the sign of 7.

7 = 0 is a natural boundary in the parameter space of the problem.

For these (B v) - 0 situations, the sign of y is basically deter-

mined by the ratio A/4 going from a minimum at Ajg - k^ to a

maximum at A/ g= 0. 7- 0 when

r C+ k-2

A	 k

kN

and this ratio is, to a good approximation, max On (k/kin); for

this value, (v2) = (B2). For A/ g greater than this value (which ♦ 0

as max 
-+ CO), y < 0 and thus for fixed A and g, we always enter this

regime if max is large enough. This regime is closely analogous

to Kraichnan's Regime I in the Navier-Stokes case. Note that Eq.

(24) predicts that when y < 0, Q! (k)' 2) is greater than	 )

for all k, though only at the longer wavelengths is the difference

significant.

As y becomes more negative, the configuration increasingly

resembles the limiting case of A, g = knin , which keeps all the energy

locked into the two longest wavelength magnetic contributions. Two

macroscopic electric current filaments of opposite senses occupy the
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basic box in which the Fourier analysis is performed and have cross-

sectional areas comparable to it. To the extent that the periodic

boundary conditions could be thought of as simulating a finite physi-

cal system, the external magnetic field to be observed would be that

due to two parallel current carrying wires with currents in opposite

directions: a quadrupole field in two dimensions.

The limiting case of Ale = 0 corresponds to y ♦ *^, a = [total

number of allowed k's]/[total energy]. There is no magnetic field

energy at all, and a flat equipartition spectrum results for the

velocity field.

Between these two limits lies a continuous variation of con-

figurations characterized, as y decreases, by a larger degree of

long-range order, with a more and more sharply peaked deposition of

magnetic field energy at the longest wavelengths. The parallel with

the formation of large vortices in the Navier-Stokes case, as the

ratio of energy to entrophy increases, is striking.

Mffi
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4. DISCUSSION

Qualitatively, the phenomena predicted in the previous section

are similar to a number of real situations in which a magnetic field

of macroscopic dimensions has been observed to appear in a highly

conducting fluid. Among these, one may list the spontaneous genera-

tion of megagauss magnetic fields in laser-irradiated pellets, the

persistence of "magnetic dynamo" fields produced in the earth's core,

and the consolidation of current filaments in numerical simulations

of energetic electron-beam situations (Lee and Lampe 1973). For all

of these situations, the geometry here assumed is an over-simplification,

and detailed comparison with data would be premature, though the

parallels with Lee and Lampe, in particular, are interesting.

Nevertheless, we find the emergence of the development of

these spontaneously generated magnetic field structures from the

mathematics to have occurred in an unstrained and natural fashion.

The phenomena would seem much less convincing to us if they had

emerged as the end product of a time-dependent theory, which would

undoubtedly have required any number of hard-to-justify approximations,

than they are, emerging as they have only from arguments of an essen-

tially thermodynamic character. At this stage, we are in the process

of trying to discover the outlines of new dynamical effects, and the

process of making them precise by including more realistic geometries
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and finite dissipation terms is likely to be as slog as it has been

for Navier-Stokes fluids.

Never, we believe the phenomena are interesting enough to

stand on their own at this point as new predictions which may be out)-

ject to verification by numerical solution of the magnetohydrodynamic

equations. What the theory seems to be pointing toward is a class

of macroscopic non uniform states of nontrivial geometry, which the

plasma regards as somehow natural and most probable. Because of the

thermodynamic nature of their derivation, they almost certainly are

stable. The class of configurations so described may well, include some

which various confinement schemes are and have been in search of by

less systematic means.
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