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ABSTRACT

We have computed the path-integrated gain of parallel pro-

pagating whistlers driven unstable by an anisotropic distri-

’

bution of relativistic electrons in the stable trapping region

.of Jupiter's inner magnetOSphere The requurement that a ga|n

B e U ..\.--- e

of 3 e-foldings of power balance the power lost by imperfect reflec:

tion along the flux tube sets a stably trapped fiux of elec-

trons J* = 4 x 101°L 4cm 2sec 1

which is close to the non-relativistic
result. Comparison with measurements shows that observed fluxes

are near the stably-trapped limit, which suggests that whistler

wave intensities may be high enough to cause significant dif-

fusion of electrons accounting for the observed reduction of

phase space densities. A crude estimate of the wave intensity

necessary to diffuse electrons on a radial diffusion time scale

yields a magnetic field fluctuation inteénsity of
-1

as a lower llmlt

I_ = 1.5 (Q ) La 2watts m 2Hz

-
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Decreases in observed phase space densities of energetic
electrons in Jupiter's inner magnetosphere have led to the sug-

gestion that pitch ang]e scatterlng of the part:cles by wave

mlcroturbulence is an actlve loss mechanlsm (Fillius et al.,

1875; McIliwain and Fillius, 1975; Baker and Van Allen, 1976). 1
A likely suspect is the electron whistler wave or R mode, the

theory of which when applied to earth's environment has been

successful in explaining electron precipitation losses in the

stable trapping region of the inner ﬁagnetosphere (Kennel and

Petschek 1966 Lyons et al., 1972)

Radio observations at decumeter wavelengths of the synchro;
tron emissions from Jupiter's radiation belts indicated long
before Pioneer 10 that the electron distribution was highly
anisotfopic and tﬁét-mo;t 6f the-energe;ic electrons were con-
fined to the magnetic equator by a pancaked pitch angle dis-
tribution (Roberts and Komesaroff, 1965; Thorne, 1965). Pioneers
10 and 11 confirmed this expectation and also verified the theory
that the immediate source of the radiation belt electrons was
inward radial diffusion which, conserving the first and secbnd
particle adiabatic invariants, would flatten the pitch angle
distribution. Since induced emission of whistlers is a con-
sequence of anisotropic distribution, the hypothesis that whistler
turbulence is responsible for observed losses is an attractive
one both because of the ample growth rates possible and the

theoretical simplicity of the instability.

hat s M it of -djmﬂ" -~ VYO R - - .




The. first hint thét non-synchrotron assocliated losses were
present at Jupiter was given by Stansberry and White (1974)
before Pioneer 10, They set up a radial diffusion model for
electrons to compute the strip-scan brightness and flux den-
sity spectrum of synchrctron emissions and found that an ad
hoc loss process was needed at low L vaiues for a reasonable
fit with radio observations, Coroniti (1974), in deriving a
comprehensive theoretical model of radiation belt electron fluxes,
employed the stably-~trapped limit concept for whistlers using

the best pre-Pioneer 10 values for relevant parameters. The

data from Pioneers 10 and 11 have narrowed the range of param-
eter space (in particular, the cold plasma density and aniso-

tropy) available for theoretical models and the observed losses

e b ‘4‘ "

invite a reexamination of the relativistic electron-whistler

o
[}

interaction,
.The purﬁose bf this ééper_ié td“deﬁail same 6f the con—.
sequences of relativistic electrons in stablf-trapped equilibrium
with parallel-propagating whistler waves. Approximate scaling
laws for the stably-trapped electron flux and equilibrium wave
intensity are derived. For simplicity of analysis and clarity
of content, the major restrictions to our model are the following:
1) we treat the waves as generated locally énd'travelling strict'y
parallel to the ambient dipole magnetic field; 2) all reso-
nant electrons are ultrarelativistic in that the total energy
is proportional to particle momentum, E = pc.
In Section II the equatorial growth rate for whistlers
- (N+2)

is derived for a distribution modeled as f(p) =p sin™g.
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The logarithmic gain for maximally-amplified waves is computed

- by an approximation to the path-integrated growth rate along

a flux tube and the stably-trapped limit is defined as that
which will produce 3 e-foldings of power. A similar model for
the distribution was used by Liemohn (1967) to compute whistler
amplification by relativistic electrons at earth. Schulz and
Vampola (1975) considered an artificial radiation belt produced
by the beta decay of nuclear-fission debris and computed the
relativistic stably-trapped limit for 'a distribution with an
angular distribution similar to ours but with an exponential
energy dependence. Our procedure and results are consistent
with the above authors. The stably-trapped limit of relativistic
electron fluxes is found to compare closely with non-relativistic
Kennel-Petchek theory. Comparison‘with measurements shows that
observed fluxes lie near the limit, which lends support to the
idea that whistlers are active. 1In Section III we briefly treat
the aspects of quasilinear diffusion of relativistic electrons
and estimate a level of wave intensity that will support dif-

fusion (losses) on a time scale comparable to radial diffusion.




Il RELATIVISTIC ELECTRON-WHISTLER INTERACTION

a. Equatorial Growth Rate

If we restrict our attention to whistlers propagating paral-

-

lel to the local magnetic field Bo = Bo‘;' the dispersion relation

for R modes with k.:. = 0 is (Lerche, 1969)

2 2
k~”c
K(k, m)=0=- +1+ dp
w .[ wy - kpz/m-l-n
bf; Tk o df, . giq ()
*{dpy mwy i-bp z dp,

The 2 represents @ sum over particle species (species labels

on all quantities are implicit), vy = [1 +p2/nzc2]%, m is the
B

particle rest mass, and Q =m—é’-. "If the particle distribution

function fo(;')') is composed of a cold plasma background and a

small relatigisgic component f, then defining t = p/mc and
P.
X =cos § = —7 O equation (1) can be written in spherical
o
coordinates, assuming azimuthal symmetry in p-space, as

2
2.2 w 2 2
k=c P T hne
=14 - ) Tmoke
w (Qci+“’><n "")

.j°t2d§j‘ L‘ xB)ax e (Affke )} (g
o

-1 x_(wx +n>mt H\W' t/J

kct

where

~N
£
b= |
e
o
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for the electrons, I|f the wave number has a small imaginary

~part, k = k -+ik , We can approxlmate ki ER;7FF and integrating

“around the indented pole of the Integrand for the electron con-

tribution yields

mk“c to

3,2 e
LY "2 " 2 <
kifur = 2] de 21X )[hE e 3X{5 - 7)) (3

The integration is taken along the resonance contour x = ~%et

and t, represents the minimum momentum (magnitude) satisfying
-Q
-1.“’_"_9._q_

kcto

hzs been dropped [kr-.k] and

The subscript on the real part of the wavenumber

2
kzc2 2 Wy

- = 1
2 § ' (Qci + ‘”)‘{.ch

= (4)

The resonance curve in momentum space is a hyperbola, plotted

in Fig. 1, satisfying the relation

2 2
, = t =2
t +—=n0 UERE S 0 PR (5)
z V72 2 ( 2 27 2
n“-t nfe1 (n%-1)° afen
= 1 ch
with i = = = The minimum momentum is given by
w
nQ - Jr'?2+n2-l
to- y) (6)
-1
2

The resonance curve crosses the t, axis at the point t, = /0" -1
and asymptotes to the angle ¢ = sin'l %. The passage to the
non-relativistic regime requires n>> 1, t<< 1 and the resonance

curve flattens to approximately a straight line, Equation (6)
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- n-—& —-R- - -‘-;ﬂ..;g
then gives the familiar result ty = &R~ where s " n

for w<<1 and Ep = %mV% (Kennel and Petchek, 1966). Relativistic
particles can interact with whistlers either by Doppler-shifting
| the wave frequency up to the local eclectron gyrofrequency or
by lowering their gyrofrequency sufficiently by a mass increase,
thus the resonance curve departs from a straight line. Induced
emission or absorption of the whistler depends on the local
derivatives of the distribution function along the resonance
curve, The growth or damping of a mode depends on the net energy
contribution to a wave from the partécles.f For a distribution
such as f<:sinMe, a given frequency may be unstable by equation
(3) but for those particles with p, =0, %3 e-n/Z. 0 and con-
sequently those particles are energized by the growing mode,

| For application to.energetic electfons in Jupiter's magneto-

sphere it is convenient to use the ultrarelativistic approxi-

mation where t>>1, In that case the resonance curve can be

approximated by xs-:;[l -Q/t) valid so long as to ™7 ?_n>> 1,

If the relativistic eiectron distribution obeys a power law

in momenta (energy) we can model the distribution at the mag-
- M

netic equator as f(t) = B%ﬁ%ﬁ? where M and N are the pitch angle_‘

and spectral indices of the distribution and B is a normali-

zation., A convenient normalization is in terms of the omni-

directional integral flux. For relativistic particles where

Yy = ‘}1 +t2"t we have

- N-1 M+3
f(t) = (N-1)y J(>v) 2 r( ) sine (7)
“Tnc I (:4;2) a7
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such that J(>y) = J:dyfuwdntch(:). Since the growth rate depends
on the distribution above to by (3), if we consider frequencies
such that t  lles in the domain where (7) is valid, we do not

have to specify the behavior of the distribution at low energies.
When (7) is inserted into the growth rate and the change of.

variable x = %{l-ﬁYt] is made we have the following expres-

'sion for the logarithmic gain scaled to a Jovian radius at the

magnetic equator:

,
n“eR 1 »
TRy J(oy)

kiRy =5Try T () PO M W) (8)

wiiere

1 r(%52) - N- 1
FIN, M, u) = (N-t)—,—.;—z-m-i-@ Cax(ue
°r

2 ) -

M
- xAFun e 2)(1-xF) e (1 - wx)] (9)

and u = % is the normalized phase velocity of the wave. The

growth rate in the relativistic approximation is dependent more
fundamentally on the refractive index (actually phase veloc-
ity) rather than frequency.

If the quantity tgp = O/n is considered as an effective ; .
ne
J
resonant momentum, we can interpret equation (8) such that
Bozl.’

is the electromagnetic coupling of the wave to the distribution,

— a%— is the number "density" of particles with momenta
n

t2tp, and F(N, M, u) is the kinematical resonance integral

over the curvature of the distribution, Figure 2 is a plot
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of F(N, M, u) for N = 3 and M= 0, 2, 4, 6, 8, Negative values
. of kR, correspond to growth, At low frequencies, w=0, the
growth rate goes to zero falling off 1ike t& N. At higher fre-
quencies where u~0,5, the growth rate turns over and goes to
zero since at a high enough phase velocity as much energy is

taken from the wave as is given, the resonance curve in Fug.

— et m -

1 becoming lncreasingly concave,

If the cold plasma density is kﬁown the growth rate can
be computed as a function of frequency through the transforma-
tion % = n(w). A basic role of the cold plasma density is to
determine a range of possible values for the refractive Index:
nyay (v = 0) zn(w) 2“M!N(“’p or -;ch), Ny N Occurring at the lesser
of Wy or %ﬂce‘ This range specifies a phase velocity window

which restricts the values of u in Fig, 2, For Jupiter, Frank

et al, (1976) have reported cold proton densities, which have
been used to plot Fig. 3. The cross-hatched region reprzsents
the accessable values of phase velocity at each L = R/RJ on
the magnetic equator. By comparison with Fig. 2, using repre-
sentative values of M = 4 and N = 3 for the pitch angle and
spectral indices, there exists a range of unstable frequencies
for 1sL<12,

In the non-relativistic regime one can determine the mar-
ginally stable frequency and the corresponding resonant par-
ticle energy above which whistlers are unstable, For relativistic
particles, since the resonance curve is hyperbolic, the mar-
ginal stability point is model-dependent and a function of M

and N, We can estimate EM g as follows, Choosingy = 3 and




Ui
U'Rl(ii,x‘:‘,‘:. N

ey oy

M = 4, the marginally stable refractive n -2,

3

M.S. ' oryyn

nate with unstable whistlers, |If N ™ 0(1), ty = ty,s, "

Ne

Taking w<<1 gives tM.s. "M.§. - l) and

2
("M.S. - 1) ~enm

essentially the non-relativistic result,

I
3
0
~N
£ e

b) Path Inteqrated Growth

'The actual ldgarlthmié ééﬁer gafh of a ducted whistler

S
requires the path-integrated quantity G --Zj 2kl(s)ds along
s

>1,

M.S. Is non-relativistic and all relativistic electrons resq-

Ov. s

].
nM.s. +

(10)

a fiux tube, With certain approximations the‘integr:tion can

be done analytically and the result is good at least to the

accuracy that fluxes are measured, We treat the cold plasma

density as constant along the flux tube and require equal con-

tributions to the gain from above and below the magnetic equator.

As the wave convects along the tube from one hemisphere to t
other, the phase velocity changes as demonstrated in Fig. 2

by either of the arrows A or B depending on the phase velcc-
ity (frequency) at the initial point. Liemohn (1967) found

that waves which were locally damped at the magnetic equator
could have a net positive gain because of greater gruwth con
tributions at higher latitudes. This situation is demonstra
by the arrow A for the curve M = 4. However, the stably-tra

flux is determined by the waves with maximal gain, which cas

he

ted

pped

e
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is represented by the arrow B; the situation marries the maxi-

. mum of F(M, N, u) with the maximum flﬂx of resonant particles
at the equator. But from inspection of Fig. 2, if we choose

N =3 and M = 4 the excursion due to F(M, N, u) is small pro-
vided we consider phase velocities such that u(w) £ .35. We
thus approximate F(M, N, u) as constant in this frequency range
and having the constant value F(N = 3, M= 4, u = 0) = -5/16
(dotted lines) along the flux tube. The path integration then
simply involves the scaling of the other factors in 2gvation (8)

along the flux tube. The coupling scales like (BO/B) off the

equator. For a sinMB distribution the flux scales like (}30/8)‘\1/2
(Roeiercr, 1970}, If n = 0(1), tR = Q/n scales like (B/Bo).
The growth rate along the tube is then approximately
Bo M+22N Bo 5
ki(s) = (?T) ki(EQ) =(TT) ki(EQ) (11)

s
Then if G = - 4/0’“‘”‘): ;(8)ds and using the harmonic approximation

2,2 . . . 2 _2.2.2
8/80- l+s /so for a dipole magnetic field where s, = gL Ry
we have

y -~ (M+2N)
W 2 f max 2 2
G - - 4k, (EQ LRy 2/ ™ ¥ay (1 + y?) (12)

When Ymax = 1 we are at the limit of the barmonic approximation,
but since the integrand has decreased significantly, we extend
the upper limit to infinity and for N = 3, M = 4 the integra-

tion yields G = -4kiRJL(0.2). Thus

i
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2

m eR 2
G(N =13, M= 4)= % = Iy, 4 J(ZY){: :] (13)
o 'n

We note that in scaling't = (B ) we required n = 0(l). If the
opposite extreme prevailed, n>> 1, then tRﬂn(——)3/2 and

'ki(s)z bﬁqski(EQ), with the integration prov;glng G = -4kiRJL(O.18),
a Slight difference. All quantities in equation (13) refer

to the equator and (13) is valid for frequencies such that

u(w) £ 0.35.

Generalizing this procedure for arbitrary values of M and

N and approximating F(N, M, u) =F(N, M, u = 0) we have

N1 M+2N-1, 2 N-1
c:/zuu-nr(z T 1O TR ey, 3.4 201) [Yi] (14)
9 I‘(M"' ZN) F(M+I£I:-3) B, c T/n

We note that over the parameter range M = 2, 4, N =2, 3, 4
'G is a relatively weak function of the indices, viz.

G(N = 2, M =4) = (1.27) G(N = 4, M = 2) at the extreme. This

is due to the compensating effects of, say, larger growth rate

(M increases) with smaller effective path length from equation
(11). Therefore, over this parameter range we will take equation

(13) as valid generally.

- pr
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c. Stably-Trapped Limit

Application of equation (13) to the concept of the stably-
trapped limit (Kennel and Petchek, 1966) requires a knowledge

of the power reflection coefficient, R, for the whistlers in

the flux tube. If we treat the problem as strictly one-dimensional

and define the volume emissivity n for parallel-propagating whistlers,

bsS

!
J*SMAX dsn(s) expEZJ‘ MAde k (s’ )]

' ~SMAX
T = (15)
(omax) 1 - Re®

the equation of radiative transfer >l =-2k.(s)1 +n(s) yields

for the intensity

It is clear that as ReG-l, sufficiently high wave intensities
will result that can relax thé distribution on a time scale
comparable to that of the particle source. No in_situ wave
measurements have- been conducted at Jupiter, but if we assume
that as in the Kennel-Petchek theory 5% of the wave energy is
reflected, a gain of G = ln(1/R) =3 is SUfflClent to main-
tain the stably trapped equilibrium. Equation (13) then gives

a stably-trapped flux limit of

10, -4 electrons
* P e S VD

The non-relativistic Kennel-Petschek result scaled to Jupiter

is

Jia(>ER) = 7x 10'0L7 " \BER S8 gsx 1000t (17)
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which does not differ greatly from the relativistic reshlt.

This fact is borne out by inspection of (8). The relativistic

aspect is manifest only in the resonance integral F(N, M, u)

and if the distribution is not too different topologically in
the non-relativistic regime, F(N, M, u) should not vary a great
deal. This can be further motivated by assuming a power law
distribution in non-relativistic energy, |f we take the dis-
tribution with -%mv2 =T as f(V) = B%ﬁ%;%-where M and N are the

pitch angle and spectral indices, a non-relativistic analysis

yields the result equivalent to equation (8) for w<<1 of

" pl eR, Q/T \N 1J(>T)

kiRy =5 S Fu-g(Ns M) (18)
where
1.2 1/Ben\?
TR'E“‘VR"“‘(?)
and
) Fu o(N, M, ) = -M(N-1)-& ( )[1 2y
n/2
) de sia™lg cos?MTe (19)

o

If w<< 1 and we neglect the second term in (13), ‘then for N = 3
1 . -
and M = 4, FN-—R = -7 compared to F =~ -1—56— taken previously.
Equation (16) describes a limit which should not be exceeded

statistically by a flux of electrons at any energy, If the
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flux J{>v) is known and obeys a power law, the distribution
should depart from the power law and harden considerably at
energies below the transition momentum given by

1

=y |2 ) (20)

t
R
J*(>tR)

since further extrapolation of the distribution by a power law
to lower momenta would produce excessive amplification of thg
whistlers.

In Fig. 4 we have plotted J*(>tR) for comparison with observa-
tion. For L< 12 measured electron spectra have spectral indices
from 3 - 3.5 at high energies and pitch angle indices from 2 -4
(Van Allen et al., 1974; Baker and Van Allen, 1976). We have
taken the representative values of N = 3 and M = 4 throughout.
The circles are equatorial electron fluxes of 5 Mev electrons
from an empirical formula given by McIlwain and Fillius (1975);
the diaﬁonds are 5 Mev fluxes reported by Baker and Van Allen
(1976) with error bars (D.N. Baker, private communication).

The theoretical uncertainty is more sensitive to the basic

‘model we have chosen rather than to M and N values. We have

taken the most efficient situation of parallel-propagation for

which the growth rate is magimum (Kennel and Peéschek, 1966) ;

the finite kl effects should raise J*. A reflection coefficient

of 0.5% rather than 5% raises J* by a factor of 1.8. Another
possibility is that centrifuéal forces at large L confine the

cold plasma to within *1 R, of the equator as suggested by Ioannidis

J

and Brice (1971). The effective path length is then just 2 Ry
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and for N = 3, M = 4 the modification to the limiting flux becomes

O 3cm 2sec™!

- J*~ 8 x10°L which is also plotted in Fig. 4. Within
-the experimental and theoretical uncertainties involved, the
data lie near the stably-trapped limit and suggest that whistlers
may be active and that the transition energy is approximately

5 Mev at low L values.

& 5



{11 DIFFUSION THEORY

a, Homogeneous Quasi-lLinear Theory

If we consider a homogeneous plasma with parallel-propagating
whistlers described by a one-dimensional electric field spectral

density e(w) for waves travelling in just one direction, then

" 2, e
. E r.
<—J->é;—'r_l) = eTOT = ZJ‘ dwe (W);
. ‘o '

the factor of two includes the waves travelling in the oppo-
site sense., The quasilinear diffusion equation for the reso-

nant electrons can be written

?i.(ﬁ.a.__).\) =_..L.-J . (21)
Q.L. »T

where

el ele) | af P PSS 4
m2c2 L gllV - vz|l? -y dt zyt,
w

-+

nt nt,
{(l#—v—z-)tliTlt} (22)

and t,, t_ are unit vectors., 3Since a relativistic particle

z
interacts with two waves going in opposite directions, _the sum-
\Y 0
A\
mation is over the frequencies sattsfyang w 1¥»n(m+/(f = —%9

. lkle
and n\fiD v,

along 8. The combination in the first bracket is proportional

for the R mode travelling in the + direction

s
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mto the Incremental growth rate (see eduation (1)) and has a

- sign, o = +1 (-1), corresponding to the particles givirng (taking)
energy from the wave, The diffusion current is thus proportional
to the spectral density and incremental growth rate and, if
we consider the interaction with just an upward travelling wave,

has the direction given by the angle y_ (see Fig, 5), where
4 nv sin 6

tan *+'T;'c-nv cos 8° For v=c we have
-iIr_n sin 9 ud
by = tan [l-n cos 914'2“*"’) (23)

In general, ¥, is directed such that those particles giving

+
energy increase their pitch angle, 8 «m, and those receiving
energy decrease their pitch angle, 8~0, If n cos 8<<1,
v+°4tan'1[ - tan 0] +%—(l +0), which describes pitch angle dif-
fusion along approximately é:o-energy surfaces, since
t§+ti = constant leads to -a-t-i- = -tan 3, At @ =n/2 4 = tan'ln,
but these particles react equally to downgoing waves and the
net current is in the EL direction, Thus 90° pitch angle par-
ticles should random-walk along the t, axis to higher energies.
The features of the diffusion are sketched qualitatively in
Fig, 5. The locus 'of points where the incremental growth is
zero defines a cone inside of which the diffusion is generally

. directed othards: Wé note thét non-relativistically, if we

use the resonance condition 1-’2‘&! cos § = ;Qa.?i’

vy = tan"[(E- 1)tan 8) +12!(1 +0) (24)
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and for low frequencies, w<<1, pitch angle diffusion results,

b, Radial Diffusion Particle Source

The immediate source of relativistic electrons in the inner
Jovian magnetosphere has been identified as inward radial diffusion
resulting from third adiabatic invariation violation (see, e.g.,

Simpson et al,, 1974). As a source term the process can be written

———————

f(X, T 23 |11 p
T >R o =t bL[_Z DpL st (25)
where the derivatives, f%)M J are taken at constant first and

second invariant, M and J. |If we neglect synchrotron losses

and bounce average, (), equation (21), the evolution of the

distributfon under combined radial diffusion and quasilinear
momentum-space diffusion by parallel-propagating whistlers is

described by

pf(X, E) _ bf bf |
bt Y R.D. +(bT)Q.L? (26)

If electric field intensities are small the first term domi-

nates, but if the distribution is sufficiently unstable to whistlers

and in a stably-trapped equilibrium, quasilinear diffusion must
occur on a time scale comparable to that of radial diffusion,
The solution of (26) in the steady state is formidable, but

we can extract a crude approximation of the bounce-averaged

(e(w)) in the stably-trapped regime. The radial diffusion coefficient
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~can be modeled as O = DOL“ where DO--H.'J'wsec'I and a ~4 (Barbosa

—L . Writing

: DoL®*”
(21) in Spherlca; gogrdbnates, we estimate the Q.L. relaxation
R
time as TQ.L -%:%r%r lV P(mzi' The crudeness of the approxi-
L ] L] n e gl

mation is manifest in the neglect of the pitch angle dependence

and Coroniti, 1975). Thus we estimate TR.D. ™

. of TQ.L and also by the neglect of the derivatives in (22)
and (25) which to some degree are compensatory, Equating charac-

teristic times yields

méc?e2 v p L&-2 (27)
Vge )y = Tglu)y ~2=7|Vg - v, |%

1f IVg-vzl'bc and t = = Q/n, then letting 2mv = w we have

tR
for the magnetic field intensity of modes travelling parallel
to the field in one direction

<Ig(v)> = 2'rr<n21E(w) sn1.5x 10 185202 WAZ—TTg- (28)

"m“Hz
<Ig> is a lower limit such that intensities much lower than
(28) will not produce significant decreases in phase space den-
sities evolving under pure radial diffusion.
We can estimate typical fluctuation field strengths from
(28). If the bandwidth pvrvaige, tnen BBIZ0 2, S(v)>

27! 8T \
(a=5) 9

and §B~V .5 myLk = .5 myL";i for @« = 4. Such fields should

be detectable by future spacecraft to Jupiter.
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IV DISCUSSION

The evaluation of the limiting flux assumed whistlers were
generated locally and did not propagate across L-shells, With-
out more detailed knowledge of the cold plasma distribution,
ray path computations would be speculative, However, the fact
that observed fluxes are lower than the limiting flux inside
of L &4, where phase space losses are stil] apparent, suggests

that whistlers may propagate inward,
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FIGURE CAPTIONS

Figure 1, Resonanﬁf curves plotted in normalized momentum gpacc
for R = ﬁ%L - %. The solid line is the resonance with
a whistle?e(ﬁ = 10, n = 1,94) travelling along the
field; the dashed line with a whistler (0 = 4, n = 1,53)
travelling anti-parallel,

Figure 2, Plot of the resonance function F(M, N, u) for M = 0,
2, 4, 6, 8 and N » 3, Growth occurs for negative values
of F(M, N, u) increasing with M. The arrows repre-
sent convective changes of F along the flux tube.

Figure 3. Accessible phase velocities for whistlers using Frank
gt al. (1976) cold plasma observations.

Figure 4. Plot of the limiting flux J*(>tR). The circles are
5 Mev equatorial fluxes of McIlwain and Fillius (1975);
the diamonds are 5 Mev fluxes of Baker and Van Allen
(1976) with error bars. The dotted line is the modi-
fication to J* from centrifugal effects.

Figure 5. Qualitative view of diffusion in normalized momen-
tum space arising from interaction with whistler pro-
pagating parai.el to Eo only, The small arrows give
only the direction of the diffusion, The cone edge
is defined by the integrand of (3) being zero for N = 3
énd M=k,
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