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ABSTRACT

:_method of determining the stability of linear systems with

many constant time delays is developed. This ,-echnfque, an extension

o_ the _-decomposftion method, is used to examine not only the

stabilf_l but also the relative stability of retarded systems with

many delays and of a class of neutral equations with one delay.

Anal_'tical equations are derived for partitioning the delay

space of a retarded system with two time delays. The stability of

the system in each of the regions defined by the partitioning curves

in the parameter plane is determined using the extended T-decomposition

method. In addition, relative stability boundaries are defined using

the extended v-decomposltion method in association with parameter

i '
plane techniques.

Several applications of the extended T-decomposition method are

presented and compared with stability results obtained from other

analyses. In all cases the results obtained using the method outlined

herein c.inclde with and extends those of previous investigations.

The extended T-decomposition method applied to systems with time

delays requires less computational effort and yields more complete

stability a_alyses than previous techniques.
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SYMBOLS

¢

A, A_ N X N matrices of real constants
I

a,b,c,d

aj,bj,c1,dI real constants

all'el2' a21' a22

_ bll,b12,b21,b22

b wing span in equation (4.25), ft

CKnj,bKn_,dKnj real constants (see equations (l.4)and (1.5))

C change in yawing moment coefficient with rudder
n6 deflection, per radianr

constants defined by equations (4.251, (_.261, and
e2'el'e0 (4.271, respectlvely

G(s) modified characteristic quasi-polynomial in
equation (1.23)

g(zl function of z in equation (1.25)

lIK(S) function of s in equation (1.31

h(z) function of z in equation (1.25)

I N X N identity matrix

I moment of inertia about principal axis, slug-it 2
z

i imaginary unlt, _

JK(S) function of s in equation (1.3)

J,_,n integers

K refers to eK i

i Kj integer associated with 8j i

L(s),L(s 8j) characte:is tic quas i-polynomla i ;If
• o

,f

• . f
n
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Lo(s), ",.(s, O) resulting polynomial when delays are made zero in L(s) I
F

• M number of 8] delays in system
?.

N dimension of system

N(7) number of roots of W(z) with positive real part_ ,

N(SK, _) number of roots of L(s) with _ > _ at 8K for

fixed 8j, J _ K

P(s),Q(s),R(s) polynomials in s with real constant coefficients

Q dynamic pressure in equation (4.25), Ib/ft2

p integer

real number defined in equation (3.23)

q, r angles defined in figure 2

S wing area, ft2

s complex variable, _ * i_ _

S . ,;m an upper bound on magnitude of s which satisfies ;
L(s) = O, where s = ff + i_

s* root of L(S)

T number of time delays 7_ in system :_
f:

t time, sec

t nondimens lonal time "

u, v r_al and imaginary parts, respectively, of

,;
i

Vj Integer associated with ej :,

W(z),Wl(Z),W2(z) functior_ of z defined in eqmltions (1.26), (1.27), _"i _
_, and (1,28) :!

WK, WK(_, w) testing function defined in equation (1.24)

x(t) scalar function of time

Xl_) scalar function of nondimensional time
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x(t) N X I vector function of time

YI' Y2 defined by equations (2.13) and (2.14), respectively

z complex variable

-i_e i
argument of Q(iw) e in figure 2

i _I' _2 real numbers in theorem 5

8 argument of P(iw) in figure 2

8p used to denote values of eK at intersection points
-i_82

V argument of R(iw) e in figure 2

Vp used to denote values of eK at intersection points ,.

small positive number

8r rudder deflection, radians

e small positive number; also denotes "is an element of"

damping parameter

gain in equation (4.1)

8j constant real delays

eK particular delay being varied

_j fixed value of ej

ej final desired value of e_J or maximum value of /
ej to be considered

X radius of circular contour containing all N roots

of L0(s ) , !

_ _I' _2 slopes ef lines in figure 5 b

real gain constant _ _

p radius of small circular contour around any root of
_. LCs)

real part of complex varY.able s

%
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! $ specified value of real part of complex variabl s !

_K real part of large vodulus roots of L(s) (see i
equation (1.41))

_,TI,T2,T_ constant real time delays
.
T particular value of T at an intersection point

of root locus curve with imaginary axis

identification of an intersection point in theorem 4

_K'_K J sets defined in equation (1.8)

_(t) yaw angle, radians

w imaginary part of complex variable s

w an upper bound on w in L(s) = 0, where s = _ + lw
, m

wn natural frequency or constant parameter

w particular value of w at an intersection point of
'_ a roct-locus curve with the imaginary axis

Mathematical notat ions:

I I absolute value or magnitude

%3 < <I' closed interval _i _ ffiWm

(0, Wm] semiclosed interval 0 < _ --<wm

arg argument

¢ is an element of

dec determinant

x(J)(t) Jth derivative of x(t) with respect to t

(s : B) set of all s having property B '!

A small incremental value

_j union of sets

0+ arbitr, _ _ly small positive values

Dots over a symbol denote derivatives with respect o time.

4
w m i
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iNz--RODUCTION

Time delays in the mathematical description of a physical system

occur whenever the system is affected not only by conditions at the

present time, but also by conditions which have occurred in the past.

In general, every physical system contains a certain amount of time !

delay in its operation or functioning. If the transmission time of an

actior, cannot be neglected, then the mathematical description of the

system must irclude this time delay. This leads to so-called

differential-dlfference equations (reference I).

Early forms of dlfferential-difference equations appeared in 1750

in the works of Euler (reference 2) and in 1759 in the works of

Lagrange (reference 3). By 1894, it was recognized that delayed

actions were one of" the primary causes of the hunting of governed

engines (reference 2). Systems with a time delay subsequently

appeared in var_.ous research areas, such as: automatic control, theory

of epidemics, combustion of rocket engines, and simulation of pilot

tracking task._. (See references 1 to 14, _o_ example.)

The differentlal-difference equations considered in the present _ ,

analys is are linear and time- invar iant ; that _, the coefficients and time ._
• :%

delays ar_ constants. There are three basic types of different ial-difference il_l

equations; namely: advanced, retarded, and neutral (references I and

15). The advanced systems are always unstable (reference 16); whereas

the retarded and ueutral equations may be either stable or unstable.

The stability analysis, however, is complicated by the fact that the

REPRODUCIBILITY OF TH_
ORI(HNAL PAGE ISPO(._',_ i

_..°
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associated &harauteri_tic equation has an infinite number ot roots.

The most effective method at the present time for examining the

stability of a retarded system with one time delay appears to be the

T-decomposltlon method (reference 17). The research of this thesis

is to extend tl.e T-de,_omposition method to examine the stability, i

and also the relative stability (reference ]8) of retarded systems

with many time delays and also to a special class of scalar neutral

equations with one delay.

1976016248-013
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CHAPTERI

EXTENDED T-DECOMPOSITiON STAB2LITY METHOD

The Mikhailov criteria (reference 19), which is similar to the
I

Nyqulst criteria (reference 20) is used to e_am!ne the atabillty of

linear dynamical systems described by linear ordinary dJfferentlal

equations with constant coefficients. A.A. Sokolov (refere_e.e 21)

showed the possibility of extending the Mikhailov criteria to linear

systems with a transport time delay. Later, as mentioned by Popov

(reference 19), Miasn!kov worked out in detail the appllcatlon of the

extended Mikhallov criteria; and following Miasnlkov, Popov considers

some individual cases. Krall (reference 22) also develops some

useful theorems related to the criteria.

It was subsequently recognized by Kashlwagl and Fl_gge-Lotz

(reference 23) and Lee and Hsu (reference 24) that the extended

Mikhailov criteria, as discussed by Popov, had limited validity.

However, by extending the work of Krall and modlfping the earlier work

of Sekolov and Miasnlkcv, Lee and Hsu (reference 24) were able to

rigorously refine the criteria and proceeded to call it the

T-decomposltlon method of stability analysis for retarded dynamic

systems.

The T-decomposltlon method, a powerful and convenient tool, has

been applied previously to retarded systems with only one constant
t

time delay (references 14 and 17). The extenszon of this method to ':
%

; examine the stability and relative stability of systems with many _

i

p- . _ t , -
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constant delays is presented in this chapter.

A. Retarded Systems

A linear homogeneous differential-difference eqBation of the

retarded type -ith constant coefficients and delays can be

expressed as

" • T .+

x(t) = A_(t) + E A_ x(t - 7_) (I.I)
L=I •

where x(t) is an N X 1 _ector, A aud A_ are N X N constant

matrlces, and T_ _ 0 are constant time delays. For brevity,

equation (I.i) is referred to as a retarded equation, or retarded

system. Mathematical treatments of retarded systems can be found in

references I, 9, 15, and 25. The nature of the solution of equation (i.I)

as well as the solution itself is of great importance in many physical

applications.

1.. Stable systems

The characteristic quasi-polynomial associated with equation (i.i) _"

is

L(s) = det t - A - r+ ."_ e (1.2) i '

It is known (references 1, 15, and 26) that the soiution of

_quation (1.1) is

(i) unstable if any root of L(s) has a positive real part, or if L

any purely imaginary root of L(s) is a multiple root; iJ_

(21 stable (bounded) if all purely imaginary roots are simple

(not multiple), and the remaining roots have negative real parts; and +

R_O_UCIBILITY OF T_tl_; :-
I' ORlt;_,_AL PAGE IS POOR ,

.+'
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t

(3) asymptotically stable (exponentially) if all roots of L(s)

have negative real parts.

The difficulty is that there are an infinite number of roots of L(s).

For one delay, the m-decompositlon method provides a _cnvenient l

means of determining the number of roots with positive real parts.

This method is extended in this chapter to accomplish this

objective when there are many delays.

2. Expansion of characteristic quasi-polync_nial

@he determinant in equation _1.2) can be expanded and written in

the form

-eK s
L(s) = HK(S ) - JK(S)e (1.3)

where

N N-I M -8j s
HK(S)= r.a sn sn+ Z j=EI bKn j e (1.4)

n=0 n n=0 J_K

and

= N-I N-I M n -ej s
JK(S) n_-Z0CKnJ sn + n=E0 j_l dKnJ s e (1.5)

J_K

for each K = I, 2.... , M. All mL in the expansion of the

determinant are absorbed in 8K, K = i, 2, .... M. A subscript K

appears in equations (1.4) and (1.5) to denote that the specific form

of these equations changes with the choice of eK in equation (1.3),

although HK(S) and JK(S) do not depend explicitly on eK itself.

(See appendix A for examples of equation (1.3).)

1976016248-016
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Equation (1.3) will be used to examine the change in the relative

stability of a system with variations in particular values of 8K,

while the remaining delays are held fixed.

The following three basic theorems can be used to justify

subsequent statements about the roots of L(s).

Theorem i: The roots of the quasl-polyncmlal L(s) are

continuous functions of 8j, j = i, 2.... , M.

Theorem 2: Let L0(s ) be the Nth-order polynomial obtained by

setting all the delays in the quasi-polynomlal L(s) equal to zero.

Then, for sufficiently small values of the delays _j, L(s) has N

roots which are arbitrarily close to the N roots of L0(s). In

addition, an}"other roots of L(s) have arbitrarily large modull for

ej sufficiently small.

Theorem 3: The arbitrarily large modulus roots of the quasi-

polynomial L(s) of a retarded system have negative real parts.

Theorems i, 2, and 3 are proved in appendix B.

It follows readily by taking the complex conjugate of

equation (1.3) that all characteristic roots occur in complex

conjugate pairs. Hence, hereafter, only those roots in the upper

half of the s-plane are of interest; that is, s = _ + i_ with

w_O.

3. Relative stability

A system can be stable and yet be unsatisfactory because it is too

lightly damped. This leads to the concept of relative stabilLty

_l:;.l_'i'_,,[}CIBH,ITYOP 'l'lJ_'
OI'_i_',;:_&LPAGE ISPOGR

{
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: (references 18 and 27), which is, in a sense, a measure of the degree

of stability. Relative stability is examined herein by computing the

" number of roots on and to the right of a specified line parallel to

the imaginary axis in the s-plane. This line is identified by
i

s = _ + iw, where _ is a fixed real number. Stability is a special

case of relative stability, for if there are no roots s = _ + iw of

!

- L(s) with _ _ _ = 0, then the retarded system is stable.

The procedure for finding the relative stability of a retarded

system for a set of constant delays, say 8j, is to: (I) find the

relative stability of the system for a particular set of delays, say

_j, and; (21 examine the relative stability change as the delays 8j

are varied from _j to %j. If _j = 0 (j = I, 2, ..., M), the

initial relative stability is obtained by solving for the roots of

L(s) in equation (1.3) with zero delays, that is, solving for the

roots of the equation

L0(sl --HK(S) - JK(S) = 0 (1.6)

The number _f roots s = _ + iw of equation (1.6) with _ _ 0 and

_ _ _3 determined. In order for this number of roots to cPange

a'"the delays are varied in a continuous manner to a final set of

delays ej, a root-locus curve must intersect the (_, w) line in the

s-plane. The intersection points, which occur as a delay 8K is

varied, are roots of equation (1.31. Hence, at an intersection point

of he (_, w) line and a root-locus curve

-OK s
L(s) = HK(S ) - JK(S)e = 0 (1.7) :

197GOIG248-018
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il 8
I This relation is called the characteristic equation of the retarded

.;_ systc _.
• l

_.i 4. Intersection points

#

The intersection points, which occur on the line (_, w) as 81
E

varies with the remaining delays fixed, are co_t_,ined in the following

mutually exclusive (or disjoint) sets:

/ %=<s: _=0)

['_IK= <s: HK(S ) = JK(S) : 0, S _ O)

_ _2K = <s: Re(s) _ 0, Im(s) = 0)- fiiK (1.8)
7

%K=(s:Re(s):o,_m(s)_0) _

%K:(s:Re(s)_0 Ira(s)+0) _

where Re(s) and Im(s) denote the real and imaginary parts of s,

respectively. The intersection points are now discussed relative to

these sets.

If s = 0 is a root of L(s), then it belongs to the set _.

These roots are easily obtained by solving equation (1.6).

In order to consider the intersection points scOlK , it is useful

to note that L(s) ffi0 in equation (1.3) implies

HK(S) = JK(S) = 0 (1.9)

or
'i

HK(S) _ O, JK(S) _ 0 (I.I0) !

i
I

}

1976016248-019
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for finite values of eK and _. If s satisfies equation (1.9), then

: se_iX and is actually invariant with changes in OK . It is not

necessary to explicitly calculate these roots for the stability

;. =
method to be presented later.

The intersection points SeeK are now determined. First, with

i s = _ (or ua= 0), equation (1.7) can be solved for _K as

_ ! In K(_) (1.11)

In particular, for interlection points SeeK , equation (i.II) becomes

_ .i %: = - - in _ (1.12)C LJK(_)

Notice that the real numbers HK(_) and JK(_) in equation (I.12) must

be of the same algebraic sign in order for real eK to exist. Further-

more, for non-negative delays (eK __0) and a stable system (_ < 0)

HK(_)
> 1 (1.13)

JK(6)

Finally, for Se_K_4K_ equation (1.7) evaluated at the

intersection points is equivalent to the following two iquatio_

I II I 'HK(_, W) : JK(_, W) e (1.14) ! _

= - -: rg - 2p_ (1.15)

8K w LJK(_,=)

• (p : O, +-I, "1:2, ...)

" REPRODUCIBILITYOFT_IE
ORIGINALPAGE IS PO0_
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_ where _<(_, _) = _(_ + lw), JK(_, m) = JK(_ + iw). and

['IK(C_'®)]
- _ < at9 q--" < _ (1.16)

LJK(_, m)
i

Equations (1.14) and (1.15) yield the only combination values of m

and @K which result in an intersection point se_K of a

root-locus curve with the llne (_, w) for 8j fixed, j _ K.i

Substituting equation (1.153 into equation (1.14) results in an

equation for m in the form

rg - 2p_ (I.17_

L
In general, equation (1.17) cannot be solved explicitly for w > O, so

that a graphical or iteration process is required to locate the roots.

For this purpose, a useful upper bound m on w is derived inm

appendix C. Also, an upper bound on the integer p in equation (1.15)

is obtained ae

I mm _K
IPl -_2 + 2----_- (1.18)

where S.(___K and w __%

For _ = 0 (scf_K), equations (I.14) and (1.15) become

IHK(0, m) I = IJK(0, m) I (1.19)

OK " - _ rg IJK(0, - 2p (1.20)

J

1976016248-021
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( i Equation (1.19) is independent of the delay eK; and for each

solution of equation (1.19), the corresponding delays in

equation (1.20) are shifted by the _actor 2p_qW

An alternate form of equation (1.19) is
I

which, for only one delay eK, is a polynomial equation in w of ;%

degree N2. The real solutions of equation (1.19) and (1.21) are

the sm, e.

5. Effect on relative stability of changes in the delays

A zero root se_ of L(s) is invariant with respect to changes in

any of the delays; and, an intersection point se_iK is invarlant

with respect to changes in 8K" It is now of interest to find out how

the relative stability changes across the intersection points SeeK

and
Let SeeK be an intersection point. Then, equation (I.Ii) gives

the relationship between @K and _ on the root-locus curve. In this f

equation, _K is a single-valued function of _ (eK can, of course,

assume the same value for different values of _). Thus, _ must

either increase or decrease as OK increases beyond the value given

by equation (1.12) for the intersection poi__. The variation of

(in relation to _) with eK may be determined by calculating deK

from equatlon (I.ii) and evaluating this derivative at _ - _, or by

calculating values of _K on either side of _ = _. The retarded _ ;

system becomes relatively more stable in the direction of decreasing _. !

i

|
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: i The change in the relative stability at the zntersection'pofnts

. ', S " _ + £_¢ %KU% K is now discussed. For this purpose, ",

equation (1.3) is written as

L(S) , - RK(S)e e + HK(----s-_ e (1.22)

The roots of equation (1.22) for HK(S) @ 0 are the same as the roots

; of the modified quasl-polynomial

". eK(S-_)
G(s) = WK(s)_e (1.23)

where

JK (s) -8K

WK(S)= HK(S------_ e (1.24)

Now, let

8K=7

S = Z +_

-eK _ -eK
JK(S)e = JK(Z + _)e = - h(z) (1.25)

_(s)= 5<(z+ _)= g(z) "

G(s)= O(z+ _)= W(z)

Then, equation (1.23) can be rewritten using the notation of Lee and '_

HSu (reference 24) in the form ,;;

W(z) = W2(z ) - Wl(Z ) (1.26)

where

Wl(Z)=erz (1.27)

• , ._

1976016248-023
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and

W2(z)= - g(z) (1.28)

The following theorem is attributed to Lee and Hsu (reference 24)

where N(T) denotes the number of roots of W(z) with positive real

parts.

Tbeorem 4: Let z = i_* *, where _ > 0, Lea purely imaginary

root of W(z) with corresponding delay _ _ 0. Let _ be an

intersection point of the t_sting function W2(iw ) with the unit

circle Wl(iw ).

(I) N(T) increases by I as T increases across T if the

testing path enters the unit circle at _ as w increases across

w for w > 0;

(2) N(_) decreases by i as _ increases across T if the

testing path leaves the unit circle as _ increases across w for

w > 0; and

(3) N(_) remains the same as T increases across T if the

testing function remains on the same side of the unit circle as w
>

increases across w for w > 0.

Lee and Hsu use an equation similar in form to equation (1.26)

in proving the results of theorem 4 to examine the stability ($ = 0)
i

of a retarded dynamical system with one constant time delay T. The

development of theorem 4 is sufficiently general, however, such that

the only restriction required on the W2(z) function in equation (1.28)

is that it be analytic (or regular) at the intersection points being ]
i

considered. This is certainly true for the intersection points

j'J ,-
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_ s_%_O_ JK(s),K' for which HK(S) ¢ 0, ¢ 0 and _ ¢ 0 Therefore ;

the following theorem is deduced i.iAppemdlx B using equations (1.24),
:r

: (1.25), (1.28) and theorem 4. In the theorem, N(SK, _) denotes the

number of roots of L(s) with c;> _ at OK for fixed 0j, J _ K.

Theorem 5: Let s = _ + i_ C%K_J_K with _ > 0 be an

' intersection point with corresponding delay 8K; or, equivalently,

let _v and %K be simultaneous solutions of equations (1.14) and

(1.15). Let _I < w and _2 > w be real numbers for which

WK(_ , ffl) and WK(_, if2)are defined; and such that there are no

other intersection points with i=mginary parts which lle on the

f-

Int,_rvalsL_I'_]and[_, _2]".ow,for _ ana*itrarilysmall
positive number

(i) N(8 K + C, _) : N(8K, _) + i

(2) N(OK + ¢, ¢})= N(_ K, or) - I

{,

(3) N(8K + e, $) : N(8K, _)

if both WK(_, @i)I and IWK(_, _2)lare greater than I, or both

less than I. _

Geometrically, an intersection point between the root-locus curve

and the s = _ llne occurs whenever the testing function WK(_, w)

intersects the unit circle. These intersection points are illustrated

R_-PEODUCIBII,IT_OF THE
OR_,,,.tNA'[PAGE IS POtIR
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Figure i.- l]lustration of intersection points with respect to

testing Function W K and unit circle.

\

J
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¢ _-_..figure !. !te-r.m!, 2, .,,_--_3 of _LL,,=u_=,,,5 _uLt_mpond, _

respectively, to the function WK(_ , _) entering, leaving, and being :_

,._ tangent to the unit circle. ':"

A significant feature of theorem 5 is that it is not necessary
I •

to be concerned with finding the first nonzero derive_ive of the i

real part of root-locus curves with respect to %K as is needed in

- the method of reference 28, for example; or whether the intersection

points are simple.

Theorem 5 is used to determine the change in the relative

: stability of the system. Each delay is var_ed, one at a time, in

some continuous manner, so that ultimately all delays att;a£n their

final desired values. As each delay is v_ried, it becomes AK

in theorem 5.

6. Relative stability for sequential variation of delays

The method for examining the change in the relative stability of

a system with a particular delay _K while the remaining delays are .<

fixed is now developed. ,_,

The characteristic quasi-polynomial below is obtained after

varying the delays al ..... OK-1 to their final desired values,

allowing _K to vary, and fixing the values of the remaining delays

OK+I, .... OM.

L(S;81 ..... @K I' _'K'_K+I .... _M )

= HK(S ; 81, . .. , _K_ 1,'OK+ 1 .... ,_M) JK(s ; _1 ..... _K. l ,_K+I,..._M)e -c_Ks

(t.2,_
r

a
)

d
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_I.....K-I

_K+I ..... are fixed delays.

For se _K' the change in tP.erelative stability with @K is

determined by using equation (I.II). For the remaining intersection
i

points (s¢ %KL_Lq4K) a digital computer can be used to increment

m_(0, _ in the following equations, for different values of p and

a specified value of _.

#

s = _ + iw (1.30) _-

HK(S) = HK(S;el ..... _K-I'K+I ....!M ) (1.31) ,

JK (s) : JK (s;@I'''''_K-I'eX+I''''_M) (1.32)

HE(S)
--= u + iv (1.33)
JK(S)

@K = " -- tan - 2p (1.34) ,:

K

F : HKI - ]'KI e (1.35)

JK -_K _

WE = HKK e (1.36)

An intersection point occurs whenever F = 0 or IWK = I. In

general, there will be an algebraic sign change in F in the vicinity i-

of the intersection point. _t F = 0, the delay eK is calculated.

Then, N(BK + ¢) in theorem 5 is determined by comparing values of "_

WK on both sides of the intersection point. This procedure is

repeated for all values of p for which _K --<eK' where @K is the

desired value of the Y'-hdelay. Finally, the values of eK at all %

m:i,_ODUCIBI_I_/0_' TB_
i (_t_(;iXALPAGE IBPO_
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the intersections are or@ered by incr=_sing magnitudes to obtain the

change in the relative stability as _K increases to _K" This

procedure is then applied for all values of K to determine the

relative stability of the system as each of the delays is varied
l

from zero to its final value.

I_ during an iteration on w, either HK(S) or JK(S) equals zero,

then this indicates ode of the following possibilities. First, this value

of s is not an intersection point since equation (1.9) is not satisfied; or

second, s is an intersection point belonging to the set _IK and will remain

invariant with changes in _ Thus, except for a computational

inconvenience, this value of s is of no particular consequence.

This being the case, the computation is continued with the next

iteration on w.

B. Scalar Neutral Systems With One Delay

The extended r-decomposition stability method may be applied to

a special class of scalar neutral equations with one constant time

delay of the form" (reference i).

j j x + b. (t - _ = 0 (1.37)J

(aN _ O, bN _ 0) _

The characteristic quasi-polynomlal associ_:ted with equation (1.37)

can be expressed as

-_K s
L(s) = HK(S ) - JK(S)e (1.38)



I
-i_- I

where @K = T, i

N sj (1.39)Hx(s) ---j__Lo aj
and

N sj
JK(S) =- E b. (1.40)

_=0 ]

Equation (1.37) is asymptotically stable if and only if all the

.. roots of L(s) have negative real parts (references 1 and 26).

The basic problem in applying the extended T-decomposition method

to a neutral equation is that theorem 3 no longer can be applied.

However, the real parts of the large modulus roots of equation (1.38)

p

; approach (reference 15)

aN
1 in (i 41)

The extended T-decompositlon is used in conjunction with

equation (1.41) to examine the stability or relative stability of the

solution of equation (1.37). An upper bound on the rinite roots

s = c + im which satisfy L(s_ = 0 is determined in appendix C.

For stability calculations (_ = 0), the intersection points of the

root locus curves with the imaginary axis can be computed using

equation (1.21).

As long as _K < 5, the extended .r-decomposition method is

applied in the usual manner.

)

0t "k. "'>
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" CH_TER ii

PARAHETER- PIANE METHODS

Parameter-plane methods deal with the plane of two system "i
I

parameters in which lines separating the regions of stability or io

_ relative stability are plotted. These regions then give immediate
l

: information concerning the acceptable combination values of the

parameters. Early use of this basic idea can be found in the works

of Vishnegradskil (reference 19), Sokolov (reference 21), and
9"

Neimark (reference 22). Subsequent investigators include, for

example: Mitrovic_ and _iljak (reference 18), Eisenberg _reference 27),
t

and Krall (reference 22).

A. Stability Boundaries in Two-Delay Space for Retarded Systems

It appears that practical applications of systems with time delays

have been limited thus far to one and two delays; for example, see

references 5, 6, 8, ii, 12, and 14. If there is only one delay in the

system, then the T-decomposition method conveniently yields the _

intervals of the dela/ for which the system is stable and unstable. If

/
there are two delays, then the extended T-decomposition method can be

used to construct stability boundaries in the plane of the two delays;
J

however, this process involves the repeated application of

the extended T-decomposltion method to obtain enough points to define

the stability boundaries, and also involves the solution of transcendental

equations for points other than those lying along either delay axis. i,

J.
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The purpose of this section is to develop explicit analytical

;- equations for partitioning the delay space for retarded systems with

two constant delays into different regions, each of which is either

stable or unstable. Afterwards. the extcnded T-decomposltion method

is used to identify the stable and unstable reglun&.

I. Class of retarded systems

Stability boundaries are examined for the class of retarded systems

which has a characteristic quasi-polynomlal of the form:

-_! s -82 s
L(s) = P(s) + Q(s) e + R(s) e (2.1)

where

N . sjr(_ = r a (% ,_ o) (2.2)
• j=0 ]

N-I

Q(s) = 5_ b] sj (2.3)
j=0

N-I

R(s) = 5" cj sj (2.4)]=0

The stability condition (stable or unstable) of a retarded system

_ith characteristic quasl-polynomlal equation (2.1) is the same as that

for the same system with zero delays (O1 = 82 = 0), if the values of J

@I and 82 in equation (2.1) are sufficiently small (theorem 2).

As the delays are varied in some continuous manner from essentially

zerc, the roots of the quasl-polynomial equation (2.1) move continuously

and generate an infinite number of continuous root-locus curves in the

\
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complex root plane; that is, In th_ _e-plane, s = ff+ I_ satisfies

L(s) ffi0. Clearly, it is impossible to plot all the root-locus

curves of equation (2.1) for a given continuous variation of the

delays. It is possible, however, to determine the number of roots
l

with positive real parts as the delays are varied by examining the

behavior of the root-locus curves on the imaginary axis.

2. Partitioning delay space into d_fferent regions

Root-locus curves are generated by the roots of equation (2.1)

as the delays are varied. If a root-locus curve comes into contact with,

or crosses, the imaginary axis at m (intersection point), then by

definition, s = i_ sat_,fles

-iw81 -i_82
L(iw) = P(iw) + Q(iw)e + R(iw) e = 0 (2.5)

Since the root-locus curves are sy_mnetrlcal about the real axis, only

w > 0 values are considered.

Equation (2.5) can be considered as two equations (real and

imaginary parts) in two unknowns. The two unknowns which are chosen

vary with the different methods which have been used to examine the

stability of systems with delays. For example, in reference 23, 82 = 0

and the two unknowns are w and Ol; in Neimark's method (reference 22),

the delays are held fixed, and the two coefficients are chosen as the

unknowns with w as a coordinating parameter; in reference I0; the

unknowns are a delay and a coefficient or gain. In the present case,

the two unknowns are 81 and 82 with w as a coordinating parameter.

19?6016248-033
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A vector representation of the complex quantities appearing in

equation (2.1) Is shown in figure 2. The two distinct solutlon sets

to equation (2.1) are shown graphically in figure 3. From the geometric

; properties of a triangle, it follows that a solution to equation (2.5) i

: exists if and only if the following three relationships simultaneously

_ ho Id:

IR(i,o)]+Iq(i®)l-lP(io,)] (2.8)

_ These relations express the fact that the sum of the lengths of any two )

sides of a triangle must be greater than or equal, to the length of the

remaining side. An equality sign in either of equations (2.6), (2.7)

i :
i or (2.8) corresponds to colllnear vectors.

[ It follows by using figure 2 that the angles r and q in !

figure 3(a) are given by

'- (2.9)

:, r = _ - arg P(i_) + arg Q(iw) - we 1
and

q=_-_4_ .,
3

(2. to)

q = _ - arg P(t_) + arg R(tw) - _O2

:" _ _ow, solving equation (2.9) for 01 and equation (2.10) for 02 gives

_ O1 _ arg P (ira) + arg Q(iw) - (2.11) .

3
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R{io))e-i°Jg2 /

R(iu)

Figure 2.- Complex quantities andangles. Angles are measured positive
in the counterclockwise direction.

\

]
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!' Imaginary
•- axis "

qli_)e-iCel ,,
I

; PIlw)- -"
,- e-i_2, Rliw)

l Real
;- - axis

': (a) r <._.

Imaginary
axis

i

O(iule-i_e1

.k_02 ..
: Rliw)e ._

P(kol .

Real
* axis

(b) rlw.

Figure 3.- Graphical representation o£ two disttJ_C¢ Iolutton sets ,.

for equation (2.5). ;_

i
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; _ and

02-1Cn - arg P(ito) + arg R(iw) - q] (2.12)

The angles r and q are obtained from figure 3(a) by applying the

law of cosines as

, tp(i_>[2+iq<iw)l2 -IR_i_)l2
,- cos r -- 2 [P(iw)llQ(iw)l ---Yl (2.13)

and

cos (-q) _(iw) t2 +[R(iw)12 _IQ(iw)l 2
= 2IP(fco)l[R(10;)[ -=Y2 (2.14)

-I

1 Choosing 0 S cos yj _-<_ and using the geometry in figure 3(a) gives

E- 11 -1 (2.15)
81 = _ - arg P(iw) + arg Q(im) - cos Yl + 2_KI

and

• 1
iI_ -I82 = _ - arg P(iw) + arg R(i_) + cos Y2 + 2r_K2 (2.16)

where K1 and K2 are integers.

Using the geometry in figure 3(b) gives

I -i
81 = _ - arg P(im) + arg Q(ia))+ cos Yl + 2WVl (2.17)

and

02 = _ - arg P(iw) + arg R(i0j) - cos Y2 + 2_V2

where VI and V2 are integers. A solution to equation (2.1) exists

if and only if O1 and 82 satisfy the pair of equations (2.15) and

(2.16) or the pair of equations (2.17) and (2.18).

_rr_,"_ODUCIBILITYOF
_,U_t_Al,PAGB ISPOOR
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i touches the imaginary axis can be determined by plotting e I and e2

against w. Alternately, 82 can be plotted directly against 81

for corresponding values of w. This latter type of figure is actually

a partitioning of the delay space into regions of stability (stable or

unstable). It should be noted that Neinmrk's D-partltion methods

.+ (reference 22) can be used to construct regions of stability in the

.+

plane of two real parameters (gains or coefficients) which occur

! linearly in the characteristic quasi-polynomial for fixed delays.

i Other methods, developed within the last decade, are discussed briefly
F

+ in reference 29.

+ The stability region for the smallest values of delays may b_ all
+

_ that is required to show that the delays are not large enough to make

the system un, table or to indicate how much the delays can be increased

before the system becomes unstable.

3. Special values of w

There are certain values of w which are useful in evaluating the

• equations for 81 and 82.

Upper bound on w.- An upper bound on w can be computed by using

equation (2.5). The dominant power on w occurs, Dy definition, in

P(lw); hence, let w = ,_ be the largest positive real root of the

!, equa tion

,Io .oi+li+Ioo.°.0

;" _ +I

1976016248-038



J:

• i

I -28-

:: I Then, it follows that w _ w in equation (2.5) and in the
i m

, pertinent pair of equatiorm for eI and 82.

Border values of w.- Partitioning curves are defined only for

those values of w which satisfy equations (2.6) to (2.8). These

meaningful values of w are determined by using border values of w.

' _ A border value of _ is defined as a non-negative real value of w

which satisfies _ny of the equality relations in equations (2.6) to

(2.8), which are:

I,c_.) ıIQ(_,.)I=1_(".,)1 (__0>
].. I_'_:,.o:,1-,-IR(,o)I..l_io)l _,._,,:,
.j

These equality relationships also follow by setting cos r = T1 or

cos (-q)= Tl inequations (2.13)or (2.14), respectively.

The finite number of border values separa_es the w space into

different intervals. To determine if a partitioning curve is defined

for values of _ in an interval, cos r or cos (-q) may be

evaluated at some v, ,ue of w within the interval. If the magnitude

of cos r or cos (-q) determined from equations (2.13) and (2.14),

respectively, is less than or equal to unity, then the partitioning

: curves exist for all values of w in that interval.

1976016248-039
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4. Stable and unstable regions

The delay space is partitioned into different regions which are

._ either stable or unstable. The stabillty character of these regious

now must be identified. Toward this end equation (2.1) is written as

-eK s
L(s) = HK(s) - JK(S) e (2.23)

(K= l, 2)

where

_ Hi(s) = P(s) + R(s) e (2.24)

; Jl(S) = - Q(s) (2.25)t

f _2 (s) = P(s) + Q(s) • (2,26)
!

J2(s) = - R(s) (2.27)

and where O1 and 82 are fixed values of e I and 02 . The extended

_-decomposltion method i_ used to identify the stable and unstable

regions in the delay space. The initial stability is determined by

using equation (1.6), which actually is equation (2.1) equated to zero

with 01 = O2 = 0.

The procedure used to partition the delay space into different

regions and to identify the different regir, ns as stable or unstable

is summarized in the following steps:

(1) The initial stability of the system is computed using

equation (2.1) with 91 = 82 = 0.

(2) The range of acceptable values of te are computed using

equations (2.20) to (2.22).

// ............. \
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|

i (3) Partitioning curves in the delay space are plotted using

eI end _2 equations as fu varies over the predetermined range

of acceptable values.

(4_ If the delays do not cross a partitirning curve as they are
I

varied in combination from zero to their fin_l desired values, _h.n

the retarded systa_maintalns its initial stability. However, if

these delays cannot be varied to their final values without crossing

a partitioning curve, the extended q-decomposition method is applied

using equations (2.23) to (2.27).

The stability on each side of a partitioning curve is determined

by counting the number of zoots with positive real parts as the curves

are crossed. Stability boundaries are those partitioning curves

which divide the delay space into stable or unstable regions.

The procedure presented in this section can be applied to retarded

systems with more than two delays if the rer_inlng dc'sT_ are held

fixed, k particular exam?le of the parameter-plane method in conjunction

with the extended _-decomFosttion method is presented in a subsequent

ch_.,ter.

B. Relative Stability Boundaries in the Gain-Delay Space

1. Retarded system J

Let the characteristic quasi-polynomlal of a retarded system be

expressed as (reference 10)

-OK s
L(s) = P(s) + _ Q(s) e (2.28)

1976016248-041
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where the gain _ and delay BK are the t,_o system parameters of

interest, and where P(s) and Q(s) are defined by equations (2.2)

and (2.3), respectively.

After :ncountering combination values of _ and 8K which

sa;.:is fy

-OK s
P(s) + { Q(s) e = 0 (2.29)

for s = _ + t_, the number of roots with _ > _ may increase or

decrease. Each of these combfr_tion values corresponds to a root-locus

curve intersecting the line (_, w) in the s-plane. Hence, if all

theme combination values can be determined and plotted in the plane

of { and 8K, then regions can be established, throughout Milch

the relative stability of the system remains unchanged.

If Q(s) = 0 in equation (2.29), then the relative stability of

the system is not influenced by the gain { or the delay OK and

ts determined completely by the roots of P(s). If Q(s) _ 0 and

w _ O, then { and _K are obtained fr_ equation (2.29) as

P_.(,._.I "_oK
e (2.3o)

and

. 1 rg - 2p (2.31)OK-'- W q(s)

(p= o,+l,...)

J

t
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where s = _ + iw. Since _ does not appear in equation (2.31),

the partitioning lines generated by using equations (2.30) and (2.31)

will be symmetrical about the { = 0 line.

The complex quantities in equation (2.29) are illustrated

geometrically in figure 4. For a given value of s, the vectors

-OK s
P(s) and Q(s) are fixed. Hultiplication of Q(s) by e

rotates and changes the magnitude (if _ _ O) of Q(s) as 0K

changes The value of eK in equation (2.31) make Q(s) e "OK s•

7

collinear with P(s). Then, _ in equation (2.30) makes the

magnitude of the vectcrs equal. A negative value of { means that
-e K s

Q(s) e _s in the same direction as P(s); whereas, a positive

value of _ means that these vectors are in opposite directions.

If Q(s) _ O, ,, = O, and _ _ O, then

-oK
P(_) + { Q(_) e = 0 (2.32) ,

from_ich another partitioning llne

0K = -- in (2.33) _
gQ

is obtained.

After the plane of _ and 0K is partitioned into different

regions, the extended 7-deco_ositlon method wi_

HK(S) = P(s) (2.34) :

and

)

JK(S) = - g Q(s) (:'.35)
(

C

1 ,
Y
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Imaginary
axis

/ \

/ \
/ \
/ \
/ \

j P(s)_ Q(s) I

\ /

\ / _ Q(s)e-OK. /\ / Real

\ \ _ / _ _ axis_t

\

" "-"--- " " " _Q(s)e-0KS

Figure 4.- Illustration of complex quantities in

quasi-polynomial with gain _ and delay 8K.
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is used to calculate the number of the resultlng partitioned regions

: wlth _ > _.

: It is expedient to note that the relative stability of a region

: which contains a segment of the g-axis (BK = O) may be determined ,

by using the characteristic equation for zero delay, equation (1.6),

: with g equal to any value on this segment.

2. Neutral system

: Parameter-plane techniques may be used also for the neutral

system previously considered. The dlfferentlal-dlfference equation (1.37)

may be written as
2 :

J_O J " v = 0 (2.36)

where b. has been replaced by g cj.J

The characteristic equation may be expressed as

-OK s
P(s)+_Q(s) e = 0 (2.37)

where AK = _,

N

P(S) ffiE aI s_ (2.38)j-o
and _N

. QCs)= cjsj

I

The partitioning equations for equation (2.37) are analogous to

those for equation (2.28) and are not repeated here. To examine the

relative stability of the different regions, the characteristic •

I
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quasi-polynomial is written as

L(s) = HK(S) - JK(S) (2.40)

where

HK(S) ffi P(s) (2.41) ,

JK(S) = - _ Q(s) (2.42)

Now, for eK -_ 0+, L(s) has N roots arbitrarily close to the N roots

of equation (1.6); whereas, the remaining roots have modult which are

arbitrarily large ([sl- =). From equation (1.41), the real part of

these large modulus roots is approximately

1_ In (2.43)
CK = - 8K

Hence, for eK -_ 0+ and

_ > I (2.44)

Ck-_-_; ,_ereby, Ck < _" Therefore, for any point (_, _K), arbitrarily

close to the _-axis in the plane of _ and 8K, the number of roots

with _ > _ is given by equation (1.6). In moving from a region

which contains a segment of the _-axis to other subsequent adjoining

regions, which do not, equation (2.43) and the extended T-decomposition

method are used to determine the relative stability change.

! ;

(

L
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_= _ CHAPTER III ;.

! APPLICATIONS FOR RETARDED SYSTEMS

i

i Several applications of the extended _-decomposition stability

analysis technique tor retarded systems will be considered in this

• chapter. Stability of solutions of versions of the equation

: d2
i --- Xl(_')+ 2_;d__Xl(_._ el / ,.-xl _ _ o2) _ 0 (3.1)

" dt 2 d_;

?

; which is a normalized form (reference 28) of. the equation

2
_(t) + 2[ Wn i (t - "l ) -_ rUn x(t - _2 ) = 0 (3.2) ?

• where _ = tun t, _I = wn TI, and _2 = wn _2

will be determined.

• The stability character of tilesolutions in some cases is evaluated
?

using the parameter-plane methods.

A. Second-Order Differential Equation With One Delay _
J

1. Stability f_Jr delay in velocity term

! The asymptotic stability for the retarded system

d2

--- Xl(t) + 2C d__ Xl(_ . AK) + Xl(_ ) = 0 (3.3) /_2 dY

with ._ > 0 and f_K d 0 is now considered.

Tim characteristic quasi-polynomial of equation (3.3) is

"_K s

e(s) - ilK(S) - JK(S)e (3.4)

: REPRODUCIBILITY OF THE _
ORIGINALPAGEI8 POOR
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where J:

2
HK(s)= s + l (3.5) +

#

. + JK(S) =-2_s (3.6) ;_

_. The intersection points of the root-locus curves and the
+

t_gfnary axis are obtatned by using equation (1..21), which for this

example becomes •

(tu2 - 1) 2 - (2Cm)2 = 0 (3.7)
-f j_

,, The only two non-negatlve roots of equation (3.7) are denoted by

=I= -_ +_2 + 1 (3.8) +

m2 ffiC 2 + I (3.9) f

For convenience in the following development, the _K delays

corresponding to _I are represented by

sp---_ rg_2C=li -2p (3.10)
or

1 rt

Bp ffiw-_(4p - I) g (3.11) '

(p = o, +-1,...) +

i,

! The delays corresponding to w2 are denoted by :

I o;+) +i _p = - rg - 2p (3.12) +

1976016248-048
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4
A

or

_ " ®2 2 (3.13) :_
_: (p- o,+-I,...)

• ! The testing function for use in the extended 7-decomposition

method is obtained from equation (1.24) with _ _ 0 in the form

2C®i
' WK(0' ®) = 2 (3.14)-w +1

_ Therefore,

tO - I

! Some relationships used in the application of theorem 5 are

0 < wI < _I + ¢ < w2 < _2 + ¢ (3.16)

I b •WK(0, 0)., 0 < 1 (3.17)
1 + -_.-

IWK(0, W1 + ¢)]_ W1 > 1 (3.18)

1 + e---
_2

WK(0' tu2 + ¢) _ < 1 (3.19)

: I+_

i where ¢ is an arbitrarily small positive number. Then application

! of theorem 5 yields i

i: N(I_p + ¢) ,, N(_p) 1 (3.20) _,]

; i N(Tp + ¢) " N(Tp) + i (3.21)
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Intersection points of the root-locus curves and the imaginary

axis occur when 8K = 8p and w = wI and when 8K = 7p
and

w = w2' With w = wI or _ = w2 understood, these intersection

points are discussed relative to the delays 8p and 7p.

_. The discrete points given by equations (3,11) and (3,13) lie

._. along the dashed straight lines illustrated in figure 5, For

> O, the system is stable when BK = O; that is, N(O) = 0. Since

the system does not have a root with positive real part, it cannot

lose such a root; therefore, the first intersection point for a

positive delay must occur on the dashed llne for 7p, as indicated

by relatlons (3.20) and (3.21). This also follows directly from

equations (3.11) and (3.13) since the smallest positive delay is

: Y0 = "/2_2" Thus, the system remains stable for

0 _-<8K < _ (3.22)

For OK = YO + ¢' the system is unstable with one root with positive

real part. From equations (3.11) and (3.13), _p > 0 and Vp > 0

for p > 0. The next £utersectiun point depends on the location of

the crossing point

^ + 1
P ffi 4_ (3.23)

4

of the two dashed lines in figure 5 with respect to the integer ')
values of p. _

_g.
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} +'-

+: C
!:

o _ /Bp

{

\

r-- Yo .I / _

"+ ] ,-'I. 2,+"e" "
++ _ 9"3"'- _"
+ -- , ;...,..=---V+++t; 2oj2 +:

' o / / +_;-- / '

I/+ '-+ P_1 =

T +2(_I _ g° _,/

= FiBure 5.- Illustratior, of Bp and yp intersection points.
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For p = 1 < _, the second intersection point must occur at

, BI. Thereafter, the system loses the root with positive real part

and becomes stable again. The third intersection point cannot lie

i, on the dashed line for _ , since the system is stable. Thus, the _.

third intersection point must be This means _he system is_1"
o

stable for

BI < 8K < _i (3.24)

7

For %K = V1 + ¢' the system again becomes unstable with one root with

• i stableP°SitlVeforrealpart. A continuation of this reasoning show_ the system
/ |

° Bp < 0K < yp (3.25)

and unstable for

_p < 8K < IBp+I (3.26)

A
whenever p < p.

Suppose _ is an integer; so that it corresponds to an

intersection point on both of the dashed lines in figure 6. Thus,

at _, the system loses one root with positive real part and

,: simultaneously gains one root with positive real part. Thereafter,

the stability condition of the system remains the same as for the
i:

previous intersection point p < p.

,: For p > _, the dashed line for Bp is located above the dashed
A

line for The first intersection point for p > p must occur
_p'

1976016248-052
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!t " on the 7p line. After this intersection point, the system gains :

a second root with positive real part. This second root is actually

one of the roots which had an arbitrarily large negative real part

for 8K sufficiently small.

It is now shown that two consecutive intersection points on the

_ dashed llne for Sp cannot happen; and, therefore, the system can

never be stable again for p > p̂. A proof by contradiction is used.

Let two intersection points on the dashed line for _p be denoted

by Bpl and _Pl+l, as shown in figure 6. Assume that there are

no intersection points on the dashed llne for Vp between these

two points. This means that the dashed llne for Vp does not

cross either of the segments I or 2 in figure 6. Since the exterior

angle of a triangle exceeds either of the remote interior angles,

_2 > _I (3.27)

2_ 2_

But, _2 - _2 and _I = ua_ in figure 5, and x2 > _I in ..

equations (3.8) and (3.9). Hence, equation (3.27) is a
/
t

contradiction. The following theorem results:

Theorem 6: For _ > 0 and %K > O, the solution of

_ equation (3.3) is asymptotically stable if and only if AK lles

on an interval :_

rr i_
2_p -,.._ 2'rrp+ _ ,

. < tqK < fr-2-_--_l (3.2_)

, R_TRODUCIBILIT¥ OF THF_ _! .
ORIGINAL PAGE ISPOOR _

Y
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Figure 6.- Illustration of consecutive B
P , _

Intersection points.
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+ for values of p - 1, 2,..., where
+

_2 + I (3.29)
p < 4c

An immediate consequence of theorem 6 is that the solution of

equation (3.3) is asymptotlcally stable only on the interval

0 =<eK < _/2 __.'_30)

C+_2+ l
whenever

> ...I__ (3.31)

This result follows by selecting _ in equation (3.29) so that p < I.

The reglon_ of stability described by theorem 6 agree with

results obtained by Kashlwagi (reference 30), who used a different

method which involves evaluating partial derivatives and the assumption

of simple roots.

2. Stability for delay in displacement term

The asymptotic stability of the equatlou

d2

_xt(_)+ 2_ _Xl_)dt + xl_ - 0E) = 0 (3.32)

with _ > 0 and _K _ 0 is examined in this section.

The characteristic quasi-polynomial is

"_K s
L(s) - HK(S) - JK(S) • (3.33)

6

+i

|

oJ
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t
! where

+ HE(,,)= s(s+ 2C) (5.34) .

JK(e) = -1 (3.35)

Equations (1.21) and (1.20) may be used to obtain, respectively,

4 4C2 2m + w - i : 0 (3.36)
r

and

8K= - w

(p=0, +" )°J.,oee

The ouly positive real root of equation (3.36) is
(

. + 1 (3,38)

Using equation (1.24) with _ ffi0 results in

-i

WK(0' _)ffi im(Jw + 2_) (3.39) ;

!
Taking the square of the magnitude of equation (3.39) gives

IWK(0' to)l 2 1 (3.40)= 2(w2 + 4C2)

The following relationshold: ;_

to- ¢ < to< tu+ ¢ (3./_I) _i

WK(0, m - e)I> 1 (3.42 +

,IWK(0'to+ ¢)I< i (._.43)

?EPRODUCIB]LITYOF THE

i, t_l_I_,,INA_,PAGE ISPOOR
+ :

i
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where ¢ is an arbitrarily small positive number. Application of

theorem 5 produces

N(e K + e) = N(e K) + 1 (3.44) ,

Since _ > 0, the solution of equation (3.32) is asymptotically

stable for eK = 0 avJ remains stable as eK increases until the

first intersection point is encountered. Thereafter, the solution Is

?
unstable. The following theorem results:

Theorem 7: For _ > 0 and OK _ 0, the solution of equation (3.32)

is asymptotically stable if and only if

0 $ OK < _ tan -I (3.45)

where _ is given by equation (3.38).

This result was also obtained by Kashiwagi (reference 30) using

the method mentioned previously.

B. Second-Order Differential Equation With Two Delays .:_.

I. Stability boundaries

Stability boundaries are constructed in the Ol, 02 plane for

the equat ion

/,

d_ x if) + 2_ d Xl(_ . 01) + Xl ff . 02) = 0 (3.46)

where

> 0, 81 > 0, and 02 => 0.

}

I
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i The characteristic quasi-polynomial associated with

; equation (3.46) can be expressed in the form of equation (2.1);

name ly:!

-9 i s -6 2 s
L(s) ffiP(s) + Q(s) e + R(s) z (3.47)

where

: 2
:- ; P(s) = s (3.48)

i

Q(s) ffi2_ s (3.49)

R(s)= 1 (3.50)

! Since _ > 0, the solution of equation (3.46) is asymptotically

_ stable for zero delays (initial stability).

Setting s = iw in equations (3.48) to (3.50) gives

2
P(i_)= -w (3.51)

Q(tw)--2C_i (3.52)

R(t_) = I (3.53)

The first palr of equations for the delays 81 and %2 (eqs. (2.15)

and (2.16)) becomes

01 = _ - cos | 4C 3 2.K (3.54)

¢ |
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-1 - 4C2w2 +
02 = os ' + 2.K2 (3.55)

2w2

The second pair of equations for OI and 02 (eqs. (2.17) and

(2.18) becomes

_ 01 = _ + cos " + 2_xV1
4C®3

= 1 4{_2m2 +
02 _ cos -I " + 2_V 2 (3.57)

I 2co2

An upper bound m .- The upper bound of m is obtained by using
4 ffi

equation (2.19) which becomes

2
w - 2Cw - 1 = 0 (3.58)

The largest real non-negative value of w which satisfies

equation (3.58) is denoted by _m" In this case,

wm = C +_/'C2 + 1 (3.59)

Border values of w.- The border values of w are obtained by

using the relations in equations (2.20), (2.21), and (2.22), which become

2
�2Cw- 1 - 0 (3.60)

2
t,,- 2Cw + I = 0 (3.61)

2
m - 2Cm - 1 - 0 (3.62)
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Notice that equation (3.62) is the marne ae equation (3.58), so that

is a border value. Other border values are obtained from the
m

L

solutions of equations (3.60) and (3.61) which are, respectively,

w = -C -t (3.63)

w= C+_2- l (3.64) 4

Only the positive radical in equation (3.63) is of interest since

w > 0. Equation (3.64) is only of interest when _ _ 1. |= t

: Specific Calculations.- Tb.e border values and upper bound of ®

I are shown in table I for damping parameter values C of 0.2, 0.5, and

• i

TABLEI.- BORDERVALUESAND UPPERBOUNDOF

Damping parameter, C Border values o£ w Upper bound, _m
I

0.2 0.82 1.22
1.22

.5 .62 1.62
1.62

1.0 .41 2.41

1.00

2.41

¢
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tO

$

= 01

82 -_ K1 1

, T

-- - -- _. K2L'-I

8

,,, KI-0

_ ..=.---.," _ K?.O
,,_ I i _,.---_'T I l I I_

.90 .M .88 .92 ._ LO0 1.04 I._ 1.12 1.16 1.20
t_

(a) { : o.s.

Figure 7.- Pairs of values of the delays OI and 02 which

result Jan intersection point for values of K1 and K2.
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(a) _:: O.S.

Figure 8.- Pairs of values of delays 01 and 02 which result

in an intersection point for various values of VI and V2.

• _ _ ..... I . R _.R _ I I I . ! i
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Figure 8.- Continued.
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! " Figures 7 and 8 show the pairs of the delays eI and e2 which

result in a root-locus curve coming into contact with, or crossing,

the imaginary axis in the complex root plaue at _ (intersection point);

for various values of (K1, K2) and (Vl, V2), respectively. Results are

presented for _ = 0.2, 0.5, and 1.

_ The consecutive Kj curves in figure 7 and the consecutive Vj

curves in figure 8 both differ by 2_/w, as shown by equations (3.54)

to (3.57). Thus, the V2 --0 curve falls off the scale in figure 8.

The terminal points of the curves in figures 7 and 8 correspond

to a zero delay or to a border value in table I. All border values,

however, do not necessarily specify a terminal point on the curves.

The value tu= I is a border value that occurs along the curves in

figures 7(c) and 8(c) and is identified by a singularity in the

slope of the curves at this value.

Figures 7 and 8 can be used to obtain the points tv which occur

as the delays are varied in some continuous manner from zero to their

final constant w_lues. These points clearly depend on the manner in

which the delays are varied.

A partit_'ning of the delay space results when e2 is plotted

directly against _I with _ as a coordinating parameter, as shown

in figure 9. The solid curves correspond to vaLious values of (K1,K 2)

and are generated by using the pair of equations (3.54) and (3.55). I

The dashed curves correspond to various valuas of (Vl, V2) and are t

generated by using the pair of equations (3.56) and (3,57). The 1

totality of curves for (KI, K2) and (VI, V2) partition the delay

.!"

.I
t '1 ,

1
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space into regions. The arrows on the curves denote the direction

I-!of increasing w.

Since the system is initially stable, it will remain stable until the Y

the curve (KI,g_) ffi(0,0) In figure 9 is touched. To examine the stability _'i,

beyond this pelnt, the extended 7-decomposltion method is used. _i"

" The number of roots with positive real parts in each region

containing a point of the 01-axis Is determined by using

equations (3.11), (3.13), (3.20), and (3.21). _ne number of roots _.

with positive real parts in any region containing a point on the i "

, 02-axis is determined by using equation (3.44), which holds at all

intersection points, l'
, Each point on the partitioning curves in figure 9 corresponds

to an intersection point. Proceeding off the (KI, K2) = (0, 0) ii

curve along the Ol-axis in figure 9 results in the gain of a root

with positive real part. The system, therefore, becomes unstable.

Entering the lower triangular region of the (KI, K2) = (i, O) curve i_

from the left results in the loss of a root with -ositi_e real part, 'i i

so that the system becomes stable again inside the triangular region.

Uvon leaving the triangular region on the right alon_ the 01-axis ,

however, a root with positive real part is gained, and the system i,

becomes01_axis.unstabie.There are no other stable regions along the li

Proceeding off the (K1, K2) = (0, 0) curve along the e2-axis

results in the gain of a root with positive real part. A second root

with positive real part is gained after crossing the (KI, Z2) = (O, i)

_ t
f_
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curve. The system accumula_e_ an additional root with positive real

part following each succeedlmz crossiu_ along the 82-axis.

The reamtning region to be e.&mined ts the upper looped portion

of the curve (KI, K2) = (I, 3). There are no intersection point_

for 81 = 0 as 8__ increases from zero to 0.3, since the curve

(KI, K2) = (0, 0) is not crossed. Hence, the sy_tpm is stable for

(81, 82) ffi(0, 0.3). Now, with 82 = 0.3, let %1 increase from

zero to some point inside the looped region. An intersection point

occurs upon touching the looped region from the left. Theorem 5 is

used to determine the change in the number of roots with positive

real parts at this intersection point.

If 82 = 0.3 Is associated with an intersection point, then 0_

is either c e of two values on the K2 - 0 curve in figure 7. It is

not necessary to know these exact values. It is sufficient to note

that the maximum value 82 = 0.42 occurs on the K2 = 0 curve

(figure 7(a)) when w = 0.96. Thus, the two values of w occur on

opposite sides of _ = 0.96. The direction of the arrows on the

(KI, K2) = (i, 0) curve show that the vvlue of w at the intersection

point on the left of the looped reglrl, is the one which exceeds 0.96.

Hence, let _] = 0.96 and ¢r2 = oo in theorem 5 for this inter-

section point. The square of the magnitude of the testing function

is !

WK(0 , _) 4C2_2 (3.65)
_o - 2w2 cos to82 + 1
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where _2 = 0.3 and _ = 0.2. Note that

]WK(0, 0.96)1> 1 (3.66)

and
l

IWK(0' _)I < 1 (3.67)

Therefore, by theorem 5, the system gains a root with positive real

part upon entering the looped region from the left. So, inside the

looped bo,mdary, the system has two roots with positive real part,

and is unstable.

The value of _ at the exit point on the right of the looped

region satisfies 0 < w < 0.96. But

IWK(0, 0)1= 0 (3.68)

Hence, using equations (3.68). (3.66), and theorem 5 shows that

leaving the looped region on the right results in the loss of a root

with positive real part. However, the svs:em had two such roots

inside the looped boundary, and is, therefore, still unstable.

Thus, it has been sb_,m that there are only two stable regions in

figure 9. These are the initial stability region bounded by the curve

(KI, K2) = (0, O) and the lower triangular region of the

(Z1, K2) = (1, 0) curve.

Figure I0 shows the stability boundaries for thp retarded system

represented by equation (3.46) when _ = 0.2, 0.5, and 1. The

hatched lines indicate the stable side of the boundaries. These

analytically determined results are in agreement with tbose of

I

I
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reference 28which were obtained by repeatedly solving transcendental

equations and evaluating partial derivatives. Another advantage of

the extended w-decomposition method over the method, of reference 28

is that it is not necessary to know the exact intersection polnLs.

It is well known that the solutlon of equation (3.46) becomes

more highly damped as C increases if 01 = 92 = 0. If 91 # 0,

this may not be the case, as shown in figure I0. For exa=ple, let

e2 = 0 and e I = 0.8. Then, the solution of equation (3.46) is

stable for C = 0.2 and unstable for C = 1.

2. Relative stability boundaries

The stability boundaries (_ = 0) in figure 10 for C = 0.2 are

shown again in figure II, along with _ = 0.05 relative stability

boundaries. Explicit analytical equations are not available for

directly generating the latter boundaries. These boundaries were

computed using equations (1.30) to (1.36) and theor< _. The delay

_I was held constant while 8K = 82 was allowed to :V which

generated points on the relative stability boundaries for values of

_. The procedure was repeated with other values of eI until enough

points were obtained to clearly define the boundaries.

The hatching convention in figure ii is as follows. Passln_

from the hatched (unhatched) side of a boundary llne corresponding to

a particular value of _ to the unhatched (hatched) side of the

boundary results in the gain (loss) of exactly one root with _ > _.

I'
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The hatching convention on the boundary lines in figure ii can

bc used to obtain information about the roots in each of the

different regions. These results are presented in table II.

TABLE II.- ROOTS IN RELATIVE STABILITY REGIONS

Number of roots with - Stability
Region condition

> 0 _ >- 0.05

1 0 0 Stable

2 0 I Stable '-

3 I 1 Unstable

4 0 i Stable :

5 0 2 Stable

6 1 2 Unstable

7 2 2 Unstable

The rc_aining roots net referred to in table II have _ _ - 0.C _

Every point on the curves in figure II represents an inters ectio,, :"

point s = & + i_ ¢ _3_J_ K. However, for & _ 0, intersection

points s = _ e _K may also occur according to equation (1.12). In

the present example, these intersection points only occur for very i

large delays and, therefore, do not influence the results shown in i

figure ii. !

!

.p

1976016248-075



-65-

CHAPTER IV

APPLICATIONS FOR NEUTRAL SYSTEMS

The techniques of Chapters I and II are applied now to two l

specific problems described by neutral systems.

A. _ongttudfnal Oscillations of a Launch Vehicle
6

The longitudinal oscillation of a vehicle in powered flight can

lead to an oscillating thrust. The time delay between the thrust

oscfllatlon and the structural oscillation can influence the stabiiity

of the system. In connection with this problem, Glaser (reference Ii)

examines the stability of a neutral equation which, except for

notational differences, is

2

_(t) + 2_w n _(t) + wn x(t) -_ 1] _(t- 8K) = 0 (4.11

The extended r-decomposition method is used now to examine the

asymptotic stability of equation (4.11; and advantage of this method

is noted.

The characteristic quasl-polynomial associated with equation (4.])

is

-_K s

L(s) = HK(S ) - JK(S) e (4.2)

where

2

HK(S) = (s + 2_ Wn) s + wn (4.3)

and

: JK (s) = - _ s2 (4.4J

4 , \ I
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Equation (4.1) is a special case of equation (1.37); hence, from

equation (1.41), the real parts of the large modulus roots (Is[--=)

of L(s) approach

_K = - e-K

The initial stability of equation (4.1) is determined by using

equation (4.5) and equation (1.6), which becomes

s2( s * w2 = 0 (4.6)L0(s) = 1 4- _]) - 2_ wn n

For @i( > G and _ __<I in equation (4.5), o'K => 0; therefor,:_, the

system is not asymptotically stable when

l_]l > 1 (4.7)

For I_! < I, the roots of equation (4.6) have negative real parts so

that the system is asymptotically stable for 0K sufficiently ._mall

(OK --0+).

The only intersection points that need be considered in this

example are s _ 03K. Hence, equations (1.20), (1.21), and (1.24)

and theorem 5 are used to examine the change in stability as _K

increases. These equations, for this application, are:

q

I &n-I - 2pw (4 8)OK = - _

\Wn (p = O, +-1.... )

2

4 02(m2n - w2) + (2,_ tt_n t0) 2 = w (4.9)

i

REPRODUCIBILITY OF THE
ORIG1NAL PAGE IS POOR

i
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JK (i_) _02
- = 2 2 (4.10)

WK(0, w) RK(iW) -w + 2_ Wn cot+ Wn

The square of the magnitude of the testing function WK(0, w) which

is needed in theorem 5 is

(_ - w2)2 + (2C mn w)2

which can also be written as

IWK(0, _0)I2 = _2

L\w/r(wn_2 112 + 12 (_)I2_ n (4.11)

2
Equation (4.9) can be solved for 0J to obtain

__( 22 22 42 "(2_2Wn2 " w2) + 2_ wn - _0n) + con(l _2)
w = (4.12)

or _

2n(2_2 2_4- 4_' + 022 " i)+ wn -
w = (4.t3)

l 02

There are no real values of w which satisfy equation (4.13)

when the radicand is negative. Hence, the system continues to be

asymptotically stable for all _K > 0 as long as
r

< 2_ _/I - _2 < 1 (4.14)

\
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t

The remaining values of _ of Interest satisfy

2_ 2 - 1 __ lTll < 1 (4.151

There is exactly one finite positive rea'_ value of _ which satisfies

equation (4.13) when the equality holds, that is, when

2C_ 2 1 = 1111< i (4.16)

Intersection points of root-locus curves then occur with the

imaginary axis at this value of w for any corresponding value of

8K in equation (4.8). But, since 0 < w < _,

theorem 5 that the testing function WK in figure I is tangent to

the unit circle; or, equivalently, that the root-locus curves are

tangent to the imagalnary axis at the intersection points. Thus,

for equation (4.16), the system is asymptotically stable, except at the

values of %K which result in an intersection point.

There are two distinct positive real values of cv which satisfy

equation (4.13) whenever

2_ 2 1 < I_I < i (4.17)

These values are denoted by wI and w2, where wI < (i_2. The values

of 8K corresponding to wI are denoted by ,i

8p = - _ an"I - 2p (4.18) _

L \_n" _1/
l

1976016248-079



-69-

The values of eK corresponding to w2 are denoted by

_p= " w_ \_n-w2/

Only positive values of 8p and 7p are of interest.

The delays Bp and _p are ordered in an increasing sequence.

Then, the change in the stability of the system as eK increases

across this sequence is determined by using theorem 5.

It is expedient to note that

0 < _I <d < w 2 < _ (4.20)

WE(O , 0) I = 0 (4.21)

IwK(°' >1 (4.22)

WK(0 , o_)l= _ < I (4.23)

Hence, by theorem 5,

N(Bp + e) = N(_p) - i (4.23)

]] and

N(yp + ¢) = N(yp) + i (4.24)

Therefore, the system loses a root with positive real part at the

intersection points corresponding to Bp and gains such a root at

intersection points corresponding to 'tp. Since the system is

initially asymptotically stable CN(O) = 03, it does not have a root

with positive real part to lose. This means that, as _K increases

J ,.

; [_i:I,__I_I]CTP,II,IR_fOF THE

i' _)_',i,',_,qAl, PAGE [8 POCR
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from 0+, the firet intersection point must occur for a value of
i/

Vp by equations (4.23) and (4.24). !

The stability of the system is completely determined In an

algebraic manner once particular values of _ and _n are

specified by using equations (4.18), (4.19), (4.23), and (4.24).

To summarize: !

(i) The system is unstable for

(2) The system is asymptotically stable for '_

(3) The system is asymptotically stable for

2C_/'_2 - I : I_]< I,

except for values of 8K at intersection points,

(4) The system's stability condition (stable or unstable) is

determined algebraically uslv_ equations (4.18) and (4.19) along

with the results shown in equ'tions (4.23) and (4.24) for } !

.i

Using the Nyquist criteria, Glaser (reference II) obtained

conditions (I) and (2) for positive values of _. The stability

condition for other values of _ required the calculation of the

roots of a transcendental equation for particular values cf _ and

I
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ton;whereas, conditions (3) and (4) are completely algebraic. :

4.2 Airplane yaw damper control system

The yaw damper control system examined by Beckhardt (reference 121

requires that the airplane rudder deflection be proportlonal to the

! yawing acceleration which has occurred in the recent past. The equations

used by Beckhardt, except for some notational changes, are"

e2 }'(t). eI _(t)+ e0 ,(t)= cn_ _r(t) (4.23) _
r

6r(t) = g "_(t - OK ) (4.24)

e2 - QSb (4.25)
i

eI = - C (4.26)n
r

e0 = CnB (4.271 _

where OK is a constant time delay, and _ is a constant gain. q

Equation (4.24) can be substituted into equation (4.23) to obtain

e2 "_(t)+ et _(t)+ e0 ,(t)- c g "_'(t- oK)= 0 (4.28)
nsr

y

Equation (4.28) is the same as equation (4.11 wlth the

substitutions: _ _

e I :_ .,

2¢ wn ffi e"2 (4.29/

2 eo

ton ffi _-_ (4.30)

"19760"16248-082



iI

-72-

- C
n

8r
_ (4.31)

e2

Hence, the discussion in Section 4.1 also applies to equation (4.28).

!
Stability (G = 0) and relative stPbility _ _ 0) boundaries are generated 1

_n the plane of _ and CK bymeans of the extended 7-decompositionmethod in _

• !
conjunction with the parameter-plane method.

The characteristic quasi-polynomial for equation (4.28) can be "

written as

-8K s
L(s) = P(s) + g Q(s) e (4.32)

' where

2
P(s) = e2 s _. e I s + e0 (4.33)

2
:,=_ = -. C s (4.34)n

6r :
?

or _ as

-eK s
L(s) = HK(S) - JK(S) e (4.351

where

2
KK(S ) = e2 s + e I s + e0 (4.36)

and

2

JK(S) = _ Cn6 s (4.37)
r

Equaticns (4.33) and (4.34) ar_ used in equations (2.30) and (2.31)

to partition the g, e K- plane into different regions; whereas, ;

equations (4.36) and (4.37) are used in equations (1.34) and (1.35) in

applying the extended T-decompositionmethod. The equations were solved _,

J

m
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on a digital co_puter by incrementing w in s = _ t £w, with

specified.

The initial stabillt 3,of equation (4.28) along the _-axis

(@K _ 0+) is evaluated by using equations (2.43) and (1.6), which

. become :

1 e2

_K = - _=K In g C (4.38)

and

Lo(S) = e 2 s 2 + e 1 s * e 0 - C g s 2 = 0 (4.39)" n

Specific Calculations.- Constants used by Beckhardt are: e2 = 0.01024,

i, eI = O.OOlO' e0 = 0.250, and Cn_r = - 0.163. With these constants,

eq, _tio-s (:.38) and (4.39) become:!

0.01024
_ I__ in 0.I-_ _ (4.40)_K = _K

and

,,I,

L0(s) = (0.01024 4 0.163 [)s_ + 0.00704 s + 0.250 = 0 (4.41)

The solid curves in figure 12 are partitioning curves. For

constant _, the extended "r-decomposit_.on method was used to

determine which side of the curves should be hatched. Each point

on s partitioning curve corresponds to an In'._.rsectlo,,point.

The number of roots In each region of figure 12 with ._> _

is determined by using the hatching on the curves and equations (4.40) _

._nd (4._I). For example, let • = 0.0,4. Then, by equation (4.40) and _I

i
$
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_ the roots of equation (4.41), thesystemhas oneroot with _ = - 0.21

when 8K - 0+, and the remaining roots have arbitrarily large

negative real parts. Now, as 8K increases with _ = 0.04 fixed,

the boundary line for o = -0.5 is crossed, and the system loses a root

with _ > -0.5. (This is the root which originally had _ = -0.21.)

At the point (_, 8K) = (0.4, 0.2), the system has no roots with

> -0.7. The value of _K in equation (4.40) at this point is

_K = -2.257.

Every point on the partitioning curves in figure 12 corresponds

to an intersection point s ¢ 2_KU% K. The intersection points

s = _ ¢ %K need not be considered since real values of 8K in

equation (2.33) do not exist for the present application.

Beckhardt (referents 12) uses cross plotting to construct a region

in the galn-delay space. The region constructed corresponds to values of

gain and delay which satisfy a criterion for satisfactory damping of

short-perlod lateral oscillations. This region is essentially that

of the $ = -0.5 curve in figure 12. No discussion of stability

is given by Beckhardt.

A more thorough analysis of the control gearing and time delay

necessary for determining a specified damping of the motions of an

aircraft equipped with an autopilot having constant-time-lag

characteristics is presented in reference 31. However, the gain and

loss of roots as the boundary lines in the gain-delay space are crossed

is not discussed. The extended T-decomposition method can be easily

applied for this purpose.

f

.i
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CHAPTER V

CONCLUDING REMARKS

Dlfferentlal-difference equations are used to describe the

dynamic behavior of physical systems with tlme delays. One of the

major problems involved in dealing with differential-difference

equatlons is the stability analysis. The reason for ehis is that

the characteristic equation of the system is transcendental and,

th_refore, has an infinite number of roots.

A method of determining the stability of linear systems with

many constant tlme delays has been developed, The r-decomposltlon

method of stability analysis has been extended and used to examine

not only the stability but also the relative stability of retarded

systems with many delays and of a class of neutral equations with

one delay.

Analytical equationt have been derived for partitioning the delay

space of a retarded system with two _ime delays. The stability of

the system in each of the regions defined by the partitioning curves 4

in the parameter plane has been determined using the extended

r-decomposition method. In addition, relative stability boundaries iY

of the retarded system have been defined using the extended

•-decompos_tion method in asgoclatlon with parameter plane techniques. I

!

z

•

J
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Several appltcatlons of the extended T-decompositlon method

have been presented and compared with stability results obtained from

other analyses. In all cases the stability analyses obtalned using the

method outlined herein have been shown to coincide with and extend those
L

of previous investigations.

The extended _'-decomposition method applied to systems with time

_elaTs has been shown to require less computational effort and yield

more complete stability analyses than previous techniques.

i
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-__ APPENDIX A

EXAMPLES OF EXPANSIONS OF CHARACTERISTIC QUASI-POLYNOMIAL

_, Example I: Consider the following scalar differential equation with -

! two constant real time delays -_0 and __O:71 72

N-I
i N x(n) N-In_0a (tl+n_b x(nI(t - _1) +n_ c x(n)(t- _21 = 0 (BZ)i" n n n

where x(n)(t) denotes the nth derivative of x(t). The coefficients

an, bn, and Cn are real constants. Equation (BI) can be written in

the form of equation (I); however, this is unnecessary in obtaining the

characteristic quasl-polynomlal, which is

= J +I_nS0 b s e +kn-0 n
L(S) n--_0an n c s e (B2) !

Let

01 = 71

02 = v2

Then, equation (B2) can be exnressed as

-OK s
L(s) = RK(S ) - JK(S) e

(K = i, 2)

where

R_,_pRoDUCTBILITYOF THE
t)LtLGI,NALPAGE ISPOOR .:_'#=-

iJ

2
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N n N i -82 s

Hl(S)-n_oa s + _; c s e
_n=0 n

N-I n
Jl(S) =- E b s j?n=O n ,:.-

N n _NI _) -et s .:
H2(s) =n_Oa s + _ b s e

N-I f

J2(s) = - n_O cn sn

Example 2: Let the system be described by two coupled linear

equations wtLh one constant time delay 'r => 0 as follows:

I = + (B3)

L x2rt!J a21 a22 Lx2(t)J Lb21 b22J x2(t *)

The characteristic quasi-polynomial associated wi +',equation (B3) can be

written as
z

L(s)= P(s)+ Q(s) e-_s + R(s) e"2_s (B4)
4

where

2
P(s) = s " (all + a22)s + all a22 - _21 a12

Q(s) = - (bll _ b22)s + all b22 + a22 bll a21 b12 - a12 b21 ,.

R(s) = bl! b22 - b21 b12

_f

_#
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Now, let
L

81=

82 = 2T ' *.

I

Then, equatfon (B4) can be wrftten as

-8K s
L(s) = HK(S ) JK(S) e

(K= I, 21 ._
where

-82 s

HI(S ) :=P(s) _ R(s) e

J (s) = - Q(s)
i

-81 s

H2(s ) = P(s) + Q(s) e

J2(s) = - R(s)

Note that although there is only one time delay , in <:

equation (B3), there can be two de]ays 81 and _2 in the associated

quas i-po lynomla I.

A special case of eqvation (B3) occurs in examining dirplane

stability for the controls-flxed case of reference 6 which is modeled _

in reference 13. Here, = accounts for the fact that there is a time

delay between the occurrence of a given angle of attack of the wing

and the occurrence of the associated downwash at the t'il

(reference 331. It can be shown that the characteristic
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quasf-pol_momtal for the controls-free case has the form of

equation (B4), except that the polynomials P(s), Q(s), and R(s)

are of higher degrees.
I

_xamp]e 3: Let the differential-difference equation be

_x(t)=_(t)+ Bx(t-7l)+ c_(t- 72) (ss)
where

II [:ii[:°IA= - , B= , C= ,
I 0

and T1 _->0 and 72 _->0 are constant time delays.

The characteristic quasi-polynomial associated with equation (65)

can be expressed as

-'1-1 s -7 2 s
L(s)= (s+ l)z- - (t - e )(I - e ) (B6)

or

-71 s -72 s -(71 + 72)s
L(s) = (s + 1)2 I + e + e + e (B7)

Setting eI = 71, 02 = 72, and e3 = 71 + 72 in equation (B7)

results in three delays; whereas, setting eI = TI and _2 = 72

in equation (B6) only results in two delays. The latter is the

better choice, because the number of computations necessary to

determine the stability of a system with delays increases with the ?

total number of ej delays. Equation (B6) can be expressed as #

-ez s :_}
LCs)= _zCs)-j_(s)• T

(z l, 2) i

!i
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where

li1(s) = s2 + 2s + e-_2 s

-v 2 s
Jl(S) = e - l

H2(s ) = s2 + 2s + e-vl s

-TI s
J2(s) = e - 1
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APPENDIX B

= PROOF OF THEOREMS

e
Theorem I: The finite roots of the quasi-polynomlal L(s) are

continuous functions of the delays Oj, where J ffi 1, 2, ..., M.

Proof: The quasi-polynomial L(s) is written as L(s; 0j) to

Indicate the dependence of L(s) on Oj. The quasi-polynomial

-! L(s; 0j) is an entire function, so that its roots in the finite :

s-plane are isolated. Let s* be any one of the roots of L(s; _j).

• Let p be a positive number s .ch that the only root of L(s; Oj)

contained inside the circle Is - s*l= p is s* and there are no roots

of L(s; 0j) and L(s; Oj + g 0j) on this circle. A Taylor series c
-Oj sexpansion of the exponential term e can be used to show that for

every ¢ > O, there exists a 8(¢) > 0 such that

]L(s; Oj) - L(S; Oj * A Oj)[ < ¢

xJ
=;

i [L(s;_j) L(s; Oj+a el)[ <¢ < IL(s;ej) I

I

: (reference 32), L(s; Oj) and L(s; 8j + 5 0j) have the same number of

roots inside the circle s - s* = 0 "- ¢. Thus, if s 1 is a root of

L(S; ej + 50j) inside the circle, then ISl- S*l< , whenever

! I__I<_(,_.,_._.,o,._._oo,o__(,__)_o,.ooo_ooou._,.__. ii •
REPRODUC[BII,ITYOF THE

_ ' Olii6i\,A[, PAGE IS POOe _ ;
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. Theorem 2: Let Lo(S ) be the Nth-order polynomial obtained by .!

setting all the delays in the quasi-polynomial L(s) equal to zero.Then, for sufficiently small values of the delays 8j,. L(s; 0j) has

N roots which are arbitrarily close to the N roots of L0(s). ,

i In addition, any other roots of L(s; 8j) have arbitrarily large

l ioduli for ej sufficiently small.

! Proof: In the proof, L(s) = Lfs; Oj) and Lo(S ) = L(s, 0). Choose a

: : positive constant X such that the N roots of L(s, O) lie Inside

i the circle Isl= _ and L(s; ej) _ 0 on this circle. Taylor series
-Sj s

expansions of the e terms show that for every ¢ > 0 there

: exists a 8(¢) > 0 such that

• ej)l<¢

_ for Isl_ _ and lejl< 6(¢), for every J. Let ¢ <mln ]L(s, O) I

on Isl- Then
J

for Is l = A and all 8j sufficiently small. By Rouche's theorem

(reference 32), L(s, 0) and L(s, %j) have the same number of roots |

inside the circle Is[= k.

:i Let s* be any one of the roots of L(s, 0) inside isi= k, and

let p be a positive number such that the only toot of L(s, 0)

contained inside or on the contour s - s* = 0 is s . Now, as

before, it can be shown that there exLsts a 8(¢) > 0 such that

'_ whenever 19jl < 8(¢), for every J,

• • -_-_*.:-_.-= _-_ :"" "'::_-i: _-::--:==-'---:'-I'.-_-_-Y__-."-_" 2___i_2..-i-,_q';._ii'-2-_T27"_--':': "" =:_ _:--_:_ _:_.......--"-::=.:=_ ::_-==.-".:"_ m
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: for s - s* = p. Thus, by Rouchets theorem, L(s, ej) and L(s, 0) "

_ have the same number of roots inside the contour s - s* = p.
%

Following the same procedure for each root of L(s, O) shows

that L(s, ej) has N roots which are as close as desired to the N

, roots of L(s, 0) for ej sufficiently small.

I All other roots of L(s, 8j) lie outside the contour [s[= )_, and

X can be made as large as desired by making Oj sufficiently small. _"I

Theorem 3: The arbitrarily large modulus roots of the quasi-

polynomial L(s) of a retarded system have negative real parts.

Proof: It is more expedient to use equation (1.2) than equation (1.3)

" in this proof. Thus, if s = _ + iw is a root of L(s), then :

T -7£
" det I - A - L=ZIA£ e = 0 (AI)

; Divide equation (A1) by s _ 0 to get

I A_ =,r£ s )

det A T e = 0 (A2)s

Now, as Is[- _, there are three possibilities for the behavior of _.
y

These are:

i Case I: _ - _* (a finite number)

Case 2: _ -.=

Case 3: _-* -=

BEPRODUCIBILITYOF
OBJ.GRqALPAGE 18PO0k
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- For case l, useful relationships are Jt

! ,timItI 0 (A3) _

and

lim e-_J, sl -T_ _ lira I1 - _*
- *_'_-7--I tim
' '_'_* ! = ,_--'(7"e " I'l'col; = e r_, o -- o :;

Thus, det (I) -. 0 in equation (A2). However, this is a contradiction,

since det (I) = I.

For case 2, equation (A3) holds and, since m_ > 0,
/

Is)_ - • =0-0= 0

As for case 1, these relationships imply the contradictory result that

• det (I) -_0.
f

; The only remaining possibility is case 3, so that _-, -co as !
I iIsl-._. :

A consequence of Rouche's theorem is Hurwitz's theorem, i +*,

•*: Krall (reference 22) considers a quasi-polynomlal with one time delay i _i

and a system gain and states that from Hurwltz's theorem the points on

the root locus curve are continuous functions of the gain. Rouche's

theorem is used directly in theorem I to show that the finite roots of

L(s) are continuous functions of the delays. The method of proof in

_ theorem 2 was suggested by El'sgolt's (reference 16), and theorem 3 is a i

generalization of a theorem by Shaughnessy and Kashawagi (reference 28).

w

] 976016248-] 03
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Zheor_5:Lets--_ _J_K _Ith_>0 bean
intersectionpoint wlth corresponding delay OK; or, equivalently,

_. let w and OK be simultaneous solutions of equations (1.14) and

(1.15). Let _I < w and _2 > w be real numbers for which

NK(_, @i ) and WK(_, a2) are defined; and such that there are no

i, other intersection points with imaginary parts which lie on the

Intervals[_1' w]and [w, _2]. Now, for s an arbltrarily small

positive number

(1) N(eK + ¢, _) = N(eK, _) + I

. if Wz(_,_i) > I and Wz.(_,a2)< I; _-

2-

(2) N(eK + ¢, _) --N(SK, _) - I :

(3) N(eK + ¢, _) = N(0K, ¢) _'

_ IwK(_' WK(_'_ _ if both _i) and if2) are greater than I, or both

:j _ less than I.

w

i. t _

! i

] 976016248-] 04
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• Proof: Let s = _ + lw* ¢ K with w > 0 be a partlcular
*

i' intersection point with corresponding delay OK; or equivalently, let

i _ = _ and 8K = 8K be simultaneous solutions of equations (1.14) and

: (1.15). Let _1 < w* and _2 > _* be real numbers for which

WK(_ , _I ) and WK(_ , _2 ) are defined; and such that there are no other

intersection points with imaginary parts which lie on the intervals

- C_I, -*3and [w*, _2 3.

! i

If WK(_, Otl)l> 1 and WK(_ , _2)I< I, then the tasting function
lw8K

WK(_, _) = WK(_ + i_) enters the unit circle e as W Increases

across w . From equations (1.24), (1.25), and (1.28), it can be seen

that WK(_, w) = W2(i_) and 8K = v. This implies that W2(lw)

enters the unit clrcle eiw7 = eIWoK as w Increases across w*. But,

by theorem 4, this means N(7) increases by 1 as 7 Increases across

7 • However, since s = z -L_, this means N(8 K, _) increases by i as

e _.'_an arbitrarily small positive number. If 8K is considered to

be 8K from equation (1.15) and _* is considered to be w from

e._uation (1.14) Cot equation (1.17)3 , then the asterisk can be

• W*removed from 8K and . Therefore, item I of the theorem has been

established. Items 2 and 3 follow in a similar manner.

i REPRODUCIBILITYOF THE
t',!+'l+:l_,,\LPAGE ISPOOR
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+
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' APPENDIX C I :

UPPERBOUNDw

i In general, the values of w which correspond to an intersection

point must be found by an iteration process. In this re_pect, it is

- i useful to restrict the possible values of w to a finite tnte,val
: CO Wm_ where w is an upper bound on w. The ptlrpose of this' ' m

appendix Is to derive a polynomial equation, from which wm can be ':

computed.

A. RetardedSystems

_ Let s = _ + iw, where _ =< 0 is a specified constant Then,

equation (1.3), (1.4), and (1.5) can be used to show that

• I'_l_-<_i_ _ ; _ h ; <_.+_) I'ljn J=l
J_Z

• , (cl)

where ej $ _j (J = 1, 2,..., M). The largest value of is I which can

i satisfy equation (C1) is the largest non-negative real root Is[ of :
the polynomial equation

+J ]'lJ'°
. (c2)

,I
.I

i
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• Denote thls largest root by Slm. Then, since

2 2 < (_)2 +Wm 2, it follow'_ thats = (_)2+ w _ s =

B. Neutral System

The neutral system under consideration is governed by

J

tl equation (1.37). The characteristic quasl-polynomlal is given by

equation (1.38), which can be used to write

-%1I --< I (c4)j--o ) ;

" where s = _ + ito. For specified values of _ and OK'the largest

° value of Isl which can satisfy the _nequality in equation (C4) is _
i

the largest non-negative real root (if it exists) of the polynomial :- equat ion

1.1 oo i

Call this largest real root ISlm' then ,.,f

Equation (C5) can be used al'Jo tc obtain an upper bound on _ for •i!" a range of parameters. As an example, let 0 < %K< _K' _nd c _ bN < d,

that the maximum value of Isl which sati,fies equation (C5) is certainly

=v
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_i_. no1.rge_t_nthe_.imu_valueo_I"l _iohsati.fiesthepo1_o._1 i

d s N N-t 5 g _1j
- - _ a + bj e = 0 (C71j=o J !

>,

Hence, for the range of parameters mentioned, an upper bound on_.

f _._ can be obtained by setting ISlm in equation (C6) equal to the

_ largest root Isl > 0 of equation (C7).

i

• !

r
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