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PREFACE

Objective
Our objective is to quantify relationships between

shoreline form and coastal dynamics and to predict areas of

vulnerability to shoreline erosion and storm surge pene-

tration. We are developing data sets on changes in coastal

geomorphology along the mid-Atlantic sedimentary coasts

using three scales''of imagery: Landsat enlarged to 1:250,000

and 1:80,000; high altitude aerial photography at 1:120,000;

and low altitude aerial photography from 1:5,000 to 1:20,000.

Scope of Work

This report reviews the methods we used to collect

historical' data on changes in coastal geomorphology ' rom

..,
aerialphotography, and the methods we used to quantify shore-

t

line form from Landsat imagery.	 We have established
,
 that

there is a significant relationship between shoreline form:
t (angular orientation) and coastal dynamics (ercision).

^k	 J^	 s

Conclusions

Regression analysis of the degree of association;between
F coastal orientation and coastal erosion of Assateague,11§1and

shows that there is a positive correlation of greater than .9
5at the 1_percent level of significance.

As the orientation of a straight-,line segment of the

Assateague coast approaches north-south, erosion rates and

vulnerability to storm damage increase.
It

Through simple mechanical measurement, Landsat imagery x
can be used to define those sections of Assateague Island that t

dill have the highest probability,.of storm damage.

Summary of Recommendations

Cape Hatteras data sets should be analyzed in order to g

compare the geomorphological organization of another major 	 {

•. -	 _.•i..mw5_. -	 _,__...	 l L..u.^..a_x__^.....swxw__. 	 ^	 .ca^	 .- ..	 .. 	 ,_ .^_	 __.m r..	 - S 	 ..	 ._...	 r	 .r.s
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barrier-island system with the results of our analysis of

the A,ssateague Island data. Further studies should be ex-

tended to the New Jersey and/or Cape Lookout coastlines to

determine the extent to which our initial results can be

generalized. Fieldwork should be undertaken during the

summer months to gather site-specific data for additional

comparative analysis. If the recent March storm does not

prove to have been powerful enougn to cause change along

the coast of our study sitep next year's storm season must

be monitored so that our hypothesis regarding st \ damage

prediction can be tested_. The current NASA projec^^ should

be extended for two years in order to fulfill the a-ove

objectives

i
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During the period covered by this report, 12/2/75 to

3/2/76, refinements were made in our method of measuring

coastal orientation with Landsat imagery. Various expres-

sions of shoreline form were compared with historical coastal

erosion data. Regression and correlation analyses were per-

formed on this data with correlation co-efficients ranging

from near zero to near 1.0 (abs. val.).

Slides and illustration boards that describe our work

have been prepared for presentation to prospective users of.;,

Landsat imagery. Audiences have included state and federal"

park administrators on Assateague Island, U.S. Geological
	 ,i

Survey and National Park Service officials in Washington,

D.C. students at the University of VirginiG and coastal
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ACCOMPLISHMENTS

During the period covered by this report (12/2/75 to

3/2/76), most of our efforts were spent in developing methods

for measuring various expressions of shoreline form from

Landsat imagery, and in analyzing relat

,reline

 between shore-

line form and coastal erosion with the aid `̂ f the computer.

Our test site along the mid -Atlantic roast includes ` Assateague

Island and Cape Ratteras (Figure 1). Shoreline form is ex-
3

pressed in terms of length and orientation of relatively 	
a l

straight-line segmerits within large arcs of the coast are

measured . from photography enlargements (1:250 , 000 to 1: •80,000)

of Landsat 70 mm negative transparencies of band 7. Expres-

sions for coastal dynamics are the mean and standard deviation

of rate of erosion over time as measured from historical low

altitude aerial photography.
j
9



Cape
• Lookout

High Altitude
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Figure l: Barrier Islands of the
Mid-Atlantic Coast.

3



,%) HYPOTHESIS

1pngshore variations in shoreline form occur as or-
ganized patterns with feature^ ' or curvatures ranging in
scale from beach cusps to very large shoreline meanders.

Crescentic coastal landforms are dynamic and respond readily

to varying sea state, tides, and sea level. The smaller ones

appear, disappear.,'and migrate along the shoreline, and the

larger features establish the spatial context for along-the-

shore distribution of erosion and storm overwash processes,

The landforms include: (1) small cusps, or cusplets, only

a meter across, (2) beach cusps which are up to tens of me-

	

i'	 tens in length, (3) giant beach cusps, or shoreline sand. 	 J _j

waves from 100 to 3,000 meters in len th ,	 g ^ {4) secondary capes
25 to 50 kilometers apart, and (5) capes 100 to 200 kilometers

apart, Groupings 3 and 4 are in the mesoscale range. 	 -

If the large scale crescentic coastal landforms are as-

sociated in time and space with inshore processes of similar 	 }

scale, then it is reasonable to assume that there should be a
^z

measurable relationship between the spatial distribution of

shoreline forms and manifestations of shoreline dynamics

i (Figure 2) Our investigation is designed to test if there

r is' a significant correlation betweencoastal erosion-and
orientation of relatively straight ,,shoreline segments within
larger sinuous features.	 r

Ourinvestigation"is based on the interpretation of

imagery of Assateague ,Island from Ocean City Inlet to Chinco-

teague Inlet and North Carolina. Outer Banks from Nags Head
to Ocracoke Inlet -' at three different scales low-altitutde
metric photographyat scales ranging from 1:5,000 to 1: 40,000;

high-altitude metric photography at 1:120,000; and Lands II

	

r	 imagery enlarged to 1:80,'000 - and l i'250, 000.

4



7HYPOTHESIS :
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Figure 2: Shoreline Form and Shoreline
Dynamics,
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MEASURING HISTORICAL CHANGE

Since our concern is with monitoring change in coastal

landforms and establishing shoreline dynamics through time,

we developed a method which enables relatively rapid and ac-

curate comparison of photographs taken of the same area at

different times.	 The method, which was described in the quar-

terly report for the period 4/3/75 to 6/2/75 is reviewed here.

With varying scales of historical aerial photography and

the need to measure relatively straight - segments of otherwise

i
curved shoreline, base maps at the scale of 1:5,000 were pro-

duced that divide the coastline into segments of 3.6 km.	 The

base maps were drawn from enlarged sections of the most recent
F 7.5-minute series USGS topographic maps. 	 The frame of each

map is oriented with the long side parallel to the coastline 	 a

^. and positioned over the barrier island so that the shoreline

and vegetation line fit within the frame. 	 The long side of

the frame, dying entirely over the ocean, is the base line`

from which all measurements are made, (Figure 3).

For each base map, we enlarged aerial photographs until`

the best possible fit of natural and cultural features between

f photo and base map was obtained. 	 The shoreline and storm-

overwash penetration line or vegetation line was then drawn'

on an overlay map.	 This process was repeated for each his-

torical photograph of the same area.

The shoreline was;-defined as the high-water mark. 	 The

storm-overwash penetration line was defined by a smoothed

line that separates the beach and dune sand or lightly vege-

tated sand flats from the relatively contiguous stands of

E dense vegetation.	 Alternatively, the grass line closest to

the beach may be defined as the vegetation line.
I

An orthogonal grid system with transects spaced at 100-

meter_intervals along the coast was used to record to the

nearest 5 meters the points at which the shoreline and the
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METHOD OF DATA COLLECTION

1. Draw basemap
from topo map.

LOW ALTITUDE PHOTOGRAPH

2.
Draw shoreline	 and	

SCALE — 1:20.000

vegetation	 line
from:	 photograph

3. Measure distance
of shoreline and
vegetation	 line
from	 baseline,	 r
with grid overlay	 !	

J

USGS TOPOGRAPHIC MAP
SCALE — 1:24,000

I	 Q o --

f	 Figure 3: Method of Data Collection
Using Historical Photo-
graphy, Base Maps, and a
Grid-Address System.
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vegetation line intersected each across-the-shore traniect.i

The information was then transferred to computer cards,f

A computer program has been written which lists the'=

following information Vifor every base- map (statistics in-
clude mcan, `variance, tandard deviation, number of tran- 	 I

sects over which mean is calculated,_ maximum value, and

minimum value).

1. Location of vegetation line (VL), shoreline (SL)
G

and overwash-penetration distance (OP VL- SL)

for each of the 36 transects along the coast. 	
1

2. Line-printer graphs of VL, SL, and OP.

3. Changes and rates of change it VL, SL, and OP

between selected dates (erosion and accretion

statistics).

4. Line-printer graphs of rates of change in^,VL,

SL, and OP.

E S. Line-printer graphs of the mean + one standard

deviation of rate of change in VL, SL, and OP
k

(Figure 4).;;

In addition, the following information is provided

for sections of the coast of any desired length:

1. Statistics on OP for each year and statistics on
4

changes and rates of change in VL, SL and OP
between any two years.	 a

2. Frequency distributions of OP for each year and

of-rates of change of VL, SL, an'A OP between any

two years.	 _	 f

3
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To answer questions concerning the orientation_ and length

of the shoreline segments within the larger crescentic forms,

images of the coastline in the mesoscale range of *1:8:0 00^	 g	 g	 ^ 0

to 1:250,000 were needed. Landsat imagery is ideal for this

_	 purpose. Since our concern is with long tretches,;Zf coast
_	

g	 _

line and large crescentic landforms, the relativey low

resolution of the Landsat imagery was acceptable. The

orthogonal accuracy of Landsat imagery and large area of
P	 coverage within a single frame rendered it more valuable than a

high altitude aerial photography.

By experimenting-with various enlargements of the 70-mm

Landsat negative tra,isparencies, we `::?ere able to control the
amount of "noise" one perceives in angular orientation along

the coast. The method we are now using is simple, a,*d it

does not call for sophisticated equipment or digit+l-processing

of raw Landsat data. The steps are:

1. A photographic print is made from,a 70-mm negative

of Band 7 of a cloud-free Landsat image of the

coastal area under study at a scale from 1:250,000

to 1:80,000.

2. A. straight edge is placed along each straight-line

segment of the ''coast as perceived by the mapper,

and a line is drawn on an overlay. The point of

intersection of adjacent lines is calleii a "node

and marks the location of change in angularity of

A

the coastline (Figure 2)

3 Lengths of " these 'line segments \,,,are measured and 	J
their angular orientations with respect to the

north/south line-are recorded in degrees north of

(-souti ,^^^br north of east.*
4.- Each nod.---k6 located t6, the nearest 100-meter'

10
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rr
transect previously defined in the discussion on

historical data collection. The nodes theh define

the location of each straight-line segment Along

the coast.-

A certain amount of subjectivity and user judgment is in-

corporated into this method; therefore, steps 2 through 4

representing one sample, were repeated a number of times to

account for sampling error.

These data were then put I nto digital format compatible

with the computer program written for the historical analysis,

and -mean values for segment length and orientation were cal-

culated in the following manner. The length and orientation

of each straight-line segment; i was assigned,,to-each transect

within that segment and the "Mean values q_``,'-166`gth and orien-

tation for each transect,- measured over all samples, were

calculated. Each transect, representing a 100-meter segment

of coast, had a slightly different-mean orientation from

adjacent transects. There were therefore as many straight-

as there were transects--more than five hundred

for Assateag' ue 'Island. When we compared orientation and

erosion on a transect-by-transect basis, correlation coefficients

seldom exceeded .6. However, our hypothesis states that it,

is the mesoscale rather than small scale features that reflect

the long-term effects of coastal dynamics. Thus if the number

of straight line segments is reduced, the correlations,between

orientation and erosion should increase.

Our computer program is designed to perform this segment

reduction or smoothing process automatically, based on a

threshold of chang6 in angular orientation. For example, if

we assign a threshold value of 1*, theprogram will divide

the island into segments whose change in angular orientation

from orie segment to the next is at le4st 1 0 . The program begins

at onee . nd of the island with ,the fi4t . transect, and adds



changes in orientation until the algebraic sum exceeds 10.

That particular transect marks the end f the new first

segment, the length of which is easily calculated and the 	 j

orientation of which is the mean of the orientations of the

transects within the seg,7ent. The process is repeated to

determine the length and orientation i;f the second segment,

and on until the end of the island, isi^ reached.
The threshold is then inc^_reased by 1 0 , and the entirei	 .

process is repeated to define a new set of segments. This

is repeated, each time with an incrNased threshold, until

the island is divided into three segments, the minimum

number allowed in order to run a regression analysis with

?\ _

	

	 N-2 degrees of freedom. The smaller the initial threshold,

the greater the number of initial segments and the greater

the number of repetitions before three segments are reached.

1z
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REGRESSION ANALYSIS

For each repetition at a given threshold value, we ran
a

regression and correlation analyses between pairs of expres-

sions for shoreline form and shoreline dynamics which are	 j

summarized below ( see also Figure 5).
1

A angular orientation of segment in degrees North 	 j

of East.

B = length of segment in meters.

C = mean rate of erosion over entire segment in meters/

year.

D mean standard_ deviation of rate of erosion in

meters/year.

E = average of the mean plus one standard deviation

„ of rate of erosion in meters/year.

Independent	 Dependent, _ Variable

0 Variarle	 B	 C	 D	 E

A	 x	 x	 x	 x

B	 x	 x	 x

C	 x

The.;analysis i cludes the correlation coefficient (r), the

signii_cance of r (s), the standard error of estimate of r

(e), scal:terplots, and the regression line. We used the

scatterplots to analyze the data for locatingstray points,

and for discovering multiple populations and non-linear _I

relationships
r

13^
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Figure 5: Analysis of Coastal Orien-
tation vs. Coastal Erosion.
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SIGNIFICANT RESULTS

We applied the previously described methods to Assateague
Island from Ocean City Inlet to the southeast end of the

island over a distance of 55 kilometers. Seven sets of aerial

`photography - June-1938, May-1949, March-1955, October-1959,

April-1961, December-1962,, and June-1974 - were used to estab-

lish rates of erosion. Five samples of shoreline orientation"

were used to produce the set of mean transect-segments. The

southern one kilometer and northern 1.7 kilometers of the

island were not included due to obvious anomalistic effects of
the adjacent inlets. A Landsat enlargement to 1;80,000 was used.

The results of our correlation analysis are shown in

Table 1 for angular orientation of coastal segments in degrees

north of east vs. the mean standard deviation of rate of

erosion of the segments in meters per year. It is the most

important pairing related to our hypothesis, because the

standard deviation of rate of erosion best represents the

variable nature of coastal dynamics. The graph in Figure 6-A

shows the relationship between r and the number of coastal

segments.

If we examine the scatterplot of the regression analysis

for the threshold of 1.0 0 (36 segments), we see that three

points are obviously outside of the dominant field (Figure 7). 	 a

These points represent three short,segments in the northern

.7 'km of the island and reflect the influence of Ocean.,.City

Inlet. Scatterplots at the other thresholds exhibit similar
stray points, all of which represent segments within 1.3

km of the northern end of our study site and which are thus

influenced bythe inlet. Therefore, we reran the correlations

with these segments omitted. The results are summarized in

Table 2 and Figure 6-B.
All of the correlation coefficients increased, most by

more than 20 percent. The highest is (greater than 9) that
were significant at. the 1 percent level occurred when the change

..	 -	
15



TABLE 1. CORRELATION STATISTICS BEFORE REMOVAL
OF ANOMALISTIC SEGMENTS

CORRELATION STATISTICS _FOR SHORELINE FORM VS.
COASTAL DYNAMICS FOR ASSATEAGUE ISLAND

Angular Orientation (Degrees North of East)
x Standard Deviation of Rate of Erosion (Meters/Year)

j	 Orientation Number Mean Correlation Significance Standard Error
Change	 of Segment Coefficient of r of Estimate of r
Threshold	 Segments Length (r) (s) (e)

.50 59 .9km .69 .00001 3.5
**	 1.0 36 1.5 .64 .00001 3.9
**	 - 1.5 27 2.0 .65 .00014 3.7
**i	 2.0 19 2.9 .64 .00168 4.1
**	 2.5 15 3.7 .64 .00509 3.6
**	 3.0 15 3.7 .71 .00160 3.4	 r
**	 3.5 11 5.0 .69 .00999 3.5

4.0 9 6.1 .63 .03453 3.9*	 4.5 9 6.1 .63 .03321 4.3
5.0 7 7.9 .58 .08536 4.4

*	 5.5 5 11.1 .92 .01291 1.3
*	 6.0 3 18.4 .99 .04161 0.6
*	 6.5 5 11.1 .92 .01247 1.4

7.0 3 18.4 .97 .08314 1.2
7.5 3 18.4 .97 .08134 1.2
8.0 3 18.4 .96 .09389 1.5

-

** Significant at the 1% level.

Significant at the 5% level.
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TABLE 2. CORRELATION STATISTICS AFTER REMOVAL-
OF ANOMALISTIC SEGMENTS

CORRELATION STATISTICS FOR SHORELINE FORM VS.
COASTAL DYNAMICS FOR ASSATEAGUE ISLAND

Angular Orientation (Degrees North of East)
x Standard Deviation of Rate of Erosion (Meters/Year)`-'^'

Orientation Number Mean	 Correlation Significance Standard Error
Change of Segment Coefficient of r	 of Estimate of r
Threshold Segments !,,ength (r) (s) (e)

.5! 55 I.Okm .80 .00001 2.0
1.0 33 1.7 .80 .00001 1.9

*# 1.5 25 2,2 . 84 .00001 1.7
2.0 17 3.3 .86 .00001 1.6
2.5 14 3.9 .84 .00009 1.8
3.0 15 3.7 .75 .00057 2.9
3.5 lA 5.5 .90 .00022 1.5 -

-** 4.0 8 6.9 .92 .00054 1.4
4.5 8 6.9 .93 .00036 1.4
5.0* 6 9.2 .93 .00364 1.5
5.5 5 11.1 .92 .01330 1.3
6.0 3 18.4 .99 .05143 0.7
6.5 5 „11.1 .92 .01290 1.4
7.0 3 18.4 .97 .08314 1.2
-7.5 3, 18.4 .97 .08134 1.2
8.0 18.4 .96 .09389 1.5

Significant at the 1% level.

Significant at the 5% level.
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r= Correlation Coefficient	 for	 Coastal	 Orientation
vs. Coastal	 Erosion

Q = r is Significant	 at I % Level

X = r is Significant	 at 5% Level

1.0

.9

.8

r
T

6

5

0

0	 10	 20	 30	 40	 50	 60
NO. OF COASTAL SEGMENTS

FIGURE 6—A : r vs. Number of Coastal Segments for Assateague Is.
Before Removal of Anomalistic Segments

1.0

.9 --	 -	 ---

.8

r
.7	 -	 -

.6

.5
0	 10	 20	 30	 40	 50	 60

NO. OF COASTAL SEGMENTS

FIGURE 6 — B : r vs. Number of Coaital Segments for Assateague Is.
After Removal of Anomalistic	 Segments
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in orientation thresholds produced between five and ten

coastal segments in the mesoscale range of 5 km to 10 km

per segment. Tt is interesting to note that in 4 previous

samples of drawing coastal segments on a Landsat image en-

larged to 1:250,000 we had defined an average of 9.5 segments.

These results support our hypothesis that shoreline

form is highly correlated with coastal dynamics, especially

in the mesoscale range. Specifically, the orientation of

relatively straight-line segments of the coast of Assateagt:e

Island when measured in the mesoscale range of 5 to 10

kilometers, is sign-ificantly correlated with erosion. As

the orientation of the coast approaches north-south, the

standard deviation or rate of erosion increases.

i

E

0.
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PROBLEMS

The absence of any major stones occurring within our

study area during the 1975/76 storm season has made it

difficult to test our capability of predicting locations of

major storm impact. The largest storm occurred during the

first week in March, and it may not have been of sufficient

intensity to have caused significant changes in the shoreline

and overwash zones. However, low altitude aerial photography

flown by NASA-Wallops on 19 February and 14 March has been

ordered to measure any changes that did occur. Results of

these measurements will be presented in a later quarterly

report.



In the mesoscale range of 1;80,000 to 1:250,000, there

is a highly significant (1 percent level) positive correlation

(> .9) between the orientation (with respect to an imaginary

north-south line) of straight-line segments of the coast as
measured from Landsat imagery, and the mean standard deviation

of rate of erosion of those segments on Assateague Island.

As the orientation of any segment of the Assateague coast.

(excluding the northern two km and southern one km of the island)

approaches north-south, extremes in coastal erosion and storm

surge penetration caused by major storm events have increased
in the past, and will probably continue to do so in the future.

f

	

	 At the point of intersection of two adjacent segments

(turning point in the coast), if the point is seaward such;

P	 gmas ina false cape situation, the northern segment is more

f
vulnerable to storm damage than the southern one; if the point

is landward such as in an embayment situation, the southern
segment is more vulnerable to storm damage.

_The above, responses to coastal dynamics can be explained

by the fact that the major storm forces that strike the ^coast

of 4ssateague Island arrive from a northeasterly direction. a
By measuring coastal orientation, it is possible to

determine solely from a recent Landsat image of Assat'eague

Eland at scales from 1:80,000 to 1:250,000 those sections

of the coast which have historically proven to be most dynamic

and most vulnerable to storm damage: Therefore, it is possible

to predict those areas that will be most vulnerable to future
storms by the same procedure.

Through continuous monitoring of Assateague Island with

Landsat imagery, it should be possible to detect changes in

orientation and associated changes in expected relative vul-

nerability to storm damage along the island.

Similar relationships between shoreline form and coastal
dynamics should exist for all sedimentary coasts along ,the.
-Atlantic seaboard that''fall within dynamic regimes similar to
that of Assateague Island.

22
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RE-COMMENDATIONS

Most of our conclusions to date have been restricted

to Assateague Island. We cannot be certain that the same

process-response relationships hold for other barrier

islands. Accordingly, we wish to extend our studies to in
a

elude Cape Hatteras, Cap p-..Lookout, and the New Jersey coast.

Hatteras data has been collected and is now being analyzed.

However, the entire process of data acquisition, including

imagery search and base map preparation, must be initiated

for Cape Lookout and New Jersey.

A six-week field investigation is being planned to

collect on-site data such as beach slope and sand grain size

distribution at numerous locations on Asaateague and Hatteras.

Locations for sampling will coincide with transects previously
j	 established for historical data collection. Transects will

'

	

	 be randomly chosen in proportion to the length of shoreline

segments as defined from Landsat imagery in our regression

analyses.; This data.will then be correlated with existing

shoreline form and dynamics data.

fur analysis to date has beerk confined to the shoreline.

We have at hand equally extensive data on changes in the
k

vegetation .line and the zone of overwash and storm surge pene-

tration. We hope to analyze this data using techniques similar

to those which.we developed for studying the shoreline.

In order to provide the time and _funds to continue with

the above research, we have recommended that our NASA grant

be extended an additional two years. At the time of writing

this report, it appears that the funding will be approved.

_	
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i LANDSAT USER BENEFITS

r`

Landsat images provide the viewer with excellent single-

frame perspectives'^of regional land masses. Where mapp4ng of

regional boundaries is concerned, especially for land-sea

interfaces as seen in M°;S band 7, the accuracy of Landsat with

respect to radial displacement and spatial distortion is

superior-to that of aerial photography. As Landsat enlarge

ments approach 1:80,000, the poor resolution of site-specific

features is apparent, and "noise" becomes a problem in image i
interpretation. Therefore, simple mechanical measurements

from Landsat imagery should be confined to those features

large enough to be measured in terms of kilometers. Features

up to 10-15 kilometers in size can be viewed and measured

with more accuracy with high altitude aerial photography (le 	 ?

120,000)., Low altitude aerial photography (1e20,000) is

best used for features ranging in size from a few meters to

one or two.kilometers.

We have shown in this paper how Landsat can be used to 	 j

define those segments of the coast of Assateague which have

a higher probability of being vulnerable to storm damage than

others. We hope to show that this same method can be applied

to other sedimentary coasts with equal success. 	 3

Potential users of this application of Landsat imagery

include any agency responsible for the management of or inter-

ested in studies in the coastal zone such as: the National

Park Service; U.S. Fish and Wildlife Service; U.S. Geological

'

	

	 Survey; various state geological surveys; state, county, and

community planning agencies the Department of the Navy;

private land developers of industrial, commercial, recreational,

and residential property; universities and other institutions

conducting coastal studies research, such as University of

Massachusetts, North Carolina State University, Louisiana

State University, Virginia Institute of Marine Science and

many others.
24	
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We have designed a graphic presentation consisting of

slides and large-scale diagrams that describe the methods

and results reviewed in this report. Presentations have

been made to administrative officials of Assateague National

Seashore, Assateague Maryland State Park, Cape Hatteras

National Seashore; scientists at Louisiana State University;
I	 officials of the National Park Service and U.S. Geological

Survey in Washington, D.C., and students in environmental

,sciences at the University of Virginia. Other presentations
N
are planned in the future, including one to a group of

-Delaware/Maryland coastal researchers in 'Ocean City, Maryland,
on 29 April.

The system we have developed to study the mid-Atlantic

coz-ts is based on three levels of remote sensing of which
Landsat is a necessary element._ We have defined a use for

which Landsat is ideally and uniquely suited; but its value

lies in the fact that is provides a new visual dimension

that should be used in conjunction with, and which cannot
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PROGRAM FOR NEXT REPORTING INTERVAL

Analysis of relationship8 between shoreline form and

coastal dynamics will be extended to data already 'gathered

for Cape Hatteras, North Carolina, from Nags Head to Ocracoke

)1 Inlet. We will be able to determine if conclusions derived

from the Assateague studies will also hold true for Hatteras.

When we receive the low altitude imagery bracketing the

recent March storm, we will measure shoreline change and_over-

wash penetration and test our ability to predict locations

of storm vulnerability based on historic data. On-site data



A paper describing our methods of shoreline data col-

lection using aerial photography and Landsat imagery, and

preliminary results of correlative analysis between shore-

line form and coastal dynamics, was presented at the Symposium

f	 on Research Techniques in Coastal Environments on 18 March

1976,, at Louisiana State University in Baton Rouge,^Louisiana .

The paper will be included in a forthcoming volume in the 	 !	 ti
Geosciences and Man series published by the School of Geosciences 4,	1

LSU.
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FUNDS EXPENDED

The total budget allotted 3 April 1975, was $41,000.

As of 31 March 1976, expenditures were $29,330, or 72 per-
cent. A balance of $11,670 remains for the duration of

this phase of the project, which ends 2 June 1976. This

balance i- totally encumbered with a deficit of $700.

DATA USE

Total funds allotted for Landsat imagery were $1,700.

Expenditures as of 31 January 1976 were $850, or 50 percent,

leaving a balance of $850.

Most of the imagery is in 70 mm negative transparency

format.. We use in-house processing facilities to enlarge

selected frames of MSS Band 7 to 9" x 9" prints. Measure-

ments are made on selected frames which we enlarge to scales

of 1:250,000 and 1:80,000.

AIRCRAFT DATA

Total funds allotted for high altitude U-2 imagery ordered

through Sioux Falls amounted to $1,044. A set of 72 color

infrared prints covering our study site at a cost of $252 was

shipped to us on 1 October 1975. The balance of 31 March

1976 was $792.

Mosaics have been made of the photographs and serve as

a valuable visual aid in our analysis. On 30 March 1976,

we placed an order through Sioux Falls for imagery from Flight

#76-023 0 Accession #k02299. This order has not yet been re-

ceived.'

28


	GeneralDisclaimer.pdf
	0005A02.pdf
	0005A03.pdf
	0005A04.pdf
	0005A05.pdf
	0005A06.pdf
	0005A07.pdf
	0005A08.pdf
	0005A09.pdf
	0005A10.pdf
	0005A11.pdf
	0005A12.pdf
	0005A13.pdf
	0005A14.pdf
	0005B01.pdf
	0005B02.pdf
	0005B02_.pdf
	0005B03.pdf
	0005B04.pdf
	0005B05.pdf
	0005B06.pdf
	0005B07.pdf
	0005B08.pdf
	0005B09.pdf
	0005B10.pdf
	0005B11.pdf
	0005B12.pdf
	0005B13.pdf
	0005B14.pdf
	0005C01.pdf
	0005C02.pdf
	0005C03.pdf
	0005C04.pdf
	0005C05.pdf
	0005C06.pdf
	0005C07.pdf



