General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
. , NASA CR-134981

(NASA-CB-134981) DEMCNSTBATICN OF THE
FEASIBIIITY OF AUTOMATED SILICCN SOIAF CELI
FABRICAT」ON (Spectrolab, Inc,) 35 p EC

TOPICAL REPORT

> DEMONSTRATION OF THE FEASIBILITY OF AUTOMATED SILICON SOLAR CELL FABRICATION
by
William E. Taylor
Spectrolab, Inc.
prepared fur
NATIONAL. AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Contract NAS3-18566

1. Report No. NASA CR-134981	2. Covernment Accoulon No.	3. Rociplentr Couslog No.
4. Tille and Subtille TOPICAL REPORT - DEMONSTRATION OF THE FEASIBTIIITY OF AUTOMATED SILICON SOLAR CELL FABRICATION		6. Aeport Date Octuber, $19 \% 75$ 6. Perlorming Oremization Codo
7. Author(s) William E. Taylor, and Fred M. Schwartz		a. Portorming Orponization Report No.
9. Purforming Orgonization Name and Address Spectrolab, Inc. 12500 Gladstone Avenue Sylmar, California 91342		11. Contrect or Grant No.
12. Sponsoring Agency Nome and Address National Aeronautics and Space Administration Wachington, D.C. 20546		14. Sponsoring Apeney corto
15. Supplementary Notes Project Manager. Tom Klucher		
16. Abstract A study effort was undertaken to determine the process steps and design requirementb of an automated silicon solar cell proauction facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of $21,973 \mathrm{kilograms}$ of silicon a year on a three shift 49 -week basis, producing $4,747,000$ hexegonal cells ($38 \mathrm{~mm} / \mathrm{side}$), a total of 3,373 kilowatts at an estimated manufacturing cost of $\$ 0.866$ per cell or $\$ 1.22$ per watt.		
17. Key Words (Suggested by Author(b)) Solar Celis, Automation, Low Cost		
19. Security Clasif. (of this repart) Unclassified	20. Security Classif, (of this page)	21. No. of Papes ${ }^{\text {2 }}$ 22, Pric: ${ }^{\circ}$

[^0]
Contract NAS3-18566

DEMONSTRATION OF THE FEASIBILITY OF AUTOMATED SILICON SOLAR CEL工 FABRICATION

Report - TR3

TOPICAL REPORT
TASK I AND TASK II

CONTRACTOR

Spectrolab, Inc. 12500 Gladstone Avenue Sylmar, California 91342

GENERATING ORGANIZATION

Government Solar Power Department

By:

October 1975

PREPARED FOF:

NASA-Lewis Research Center Cleveland, Ohio 44135

I. SUMMARY

This topical report summarizes the preliminary results of a study and design to demonstrate automated silicon solar cell production feasibility.

A study phase of the effort was undertaken to determine the process steps and design requirements of an automated silicon solar cell production facility. Identification was made of the key process steps and a laboratory model was conceptually designed to demonstrate the feasibility of automating silicon solar cell fabrication processes. A detail design of the laboratory model was made to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility.

The principal steps in the selected baseline process sequence are a sodium hydroxide etch; phosphine diffusion junction formation; front and rear contact screen printing; spin-on A / R coating; and score and break to final size.

A two step etch was employed using 30 percent sodium hydroxide to remove 15 to 25 micrometers of silicon with an additional 15 to 25 micrometers removed in hot 1 percent sodium hydroxide to produce crystalographically textured surface which exhibits lower reflectance (rendering A / R coating less critical) and improves metallization adherence. Evaluation of spin-on versus phosphine sources was unable to identify a satisfactory alternative to the phosphine process. Simultaneous diffusion of the N^{+}and P^{+}regions using spin-on diffusion sources was unsuccessful, although screen printing of the P^{+}source proved promising. Screen printing of the front and rear contacts was successful and spin-on A / R coatings were found to give excellent performance even though the ideal index of refraction is not available.

The conceptual design and cost projections for an automated solar cell production facility using the selected process sequence yields an estimated manufacturing cost of $\$ 0.866$ per cell or $\$ 1.22$ per watt based on a facility processing 21,973 kilograms of silicon into 4, 747,000 hexagonal cells with 33 mm sides equivalent to a total of 3,373 kilowatts per year on a 3 shift, 49 -week basis.

II. INTRODUCTION

A. BACKGROUND

This topical report describes the results of the preliminary phases of the scope of work of NASA/Lewis Contract NAS3-18566, a cost-plus fixed fee (R and D Type) contract.

B. OBJECTIVE

The objective of this contract scope of work is demonstration of automated silicon solar cell production feasibility.

C. METHODOIOGY

The technical aspects of the work are separated into the following tasks:

Task IA - Study effort to determine process steps and design requirements of an automated silicon solar cell production facility.

Task IB - Identification of key process steps and conceptual design of a laboratory model to demonstrate feasibility of automating silicon solar cell fabrication processes.

Task II - Detailed design of laboratory model to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility.

Task III - Construction, assembly, and operation of laboratory model; analysis of operation; ascertainment of process cost reduction areas attainable by automation and recommendation of needed technological developments.

C. STATUS

Tasks I and II have been completed. This Topical Report summarizes the activities carried out in these first two tasks.

A. INTRODUCTION

The Automation Feasibility Demonstration program was initiated with the Spectrolab low cost solar power facility and processes as a point of departure. This facility had been established using processes selected as being compatible with eventual mechanization.

One of the major innovations in this facility was the use of screen printed thick film techniques to replace the relatively costly vacuum deposition process for forming metal contacts. The facility also obtained cost advantages by the use of larger silicon slices (5lmm diameter discs) wafered directly from the grown crystal. For the purposes of this program it was proposed that the standard cell process be modified as follows:
a) Use high resistivity material (7-13 ohm-cm or higher).
b) Reduce diffusion temperature to provide a shallow junction, as in our high-efficiency "Helios" space cells.
c) Add a back-surface field by means of a simultaneous P^{+}diffusion.
d) Re-optimize our contact pattern for a higher diffused layer sheet resistance.
e) Add a slicing operation to shape the cell into a square, rectangular, or hexagonal form to maximize packing factor.

In addition it was proposed to evaluate and identify alternative processes for junction formetion and AR coating which would be amenable to mechanization.

For reference purposes the Baseline Process sequence shown in Figure 1 was proposed based on the above considerations. To facilitate discussion of

Figure 1

Baseline Process Operations

Starting material: Etched silicon blanks, 78 mm diameter, 0.15 mm thickness, resistivity and conductivity type optional.

1) Spin on P-type diffusant and bake.
2) Spin on N-type diffusant on other surface and bake.
3) Diffuse in bult furnace.
4) Remove diffusion oxides in HF , rinse and dry.
5) Screen print back contact and bake.
6) Screen print front contact and bake.
7) Fire contacts.
8) Spin on AR coating and bake.
9) Cut to final size and shape.
10) Test and sort.
the process evaluation and selection, a more generalized statement of process organization is shown in Figure 2.

B. SURFACE PREPARATION

Etching in sodium hydroxide solutions had been used for some time in the production of low cost solar cells, and appeared to offer several advantages as compared to acid etching. Firstly, hydroxide etching is a milder process, much less expensive and more readily controlled than acid etching. Secondly, hydroxide etching produces a rougher surface which exhibits lower reflectance (rendering $A R$ costing less critical) and improving the adherance of metallization.

To explore this process, saw-cut wafers were etcheci in soditum hydroxide/ water solutions containing $3 \%, 10 \%$ and $30 \% \mathrm{NaOH}$ by weight. Results were:
a) The variation of etch rate with temperature corresponds to the activation energy value of 0.56 eV given in the literature.
b) The etch rate at any temperature varies approximately as the square root of the hydroxyl ion concentration.
c) The addition of detergent to the etch reduces the etch rate, to a greater extent at lower NaOH concentrations.
d) Ultrasonic agitation increases etch rate only slightly.
e) Substantially more uniform etching is obtained in $30 \% \mathrm{NaOH}$ than at lower concentrations, when samples with equal amounts of material removed are compared.
f) The lower the NaOH concentration, the smaller, deeper, and better defined are the crystallographic pits, and this effect is independent of etch temperature.
g) The depth of mechanical damage in the sawing process, as determined by microscopic examination of samples etched to various depths and

Figure 2
Process Organization
also by noting the change in etch rate with depth, is about 15 micrometers.

Based on these results, a two-step etching process was decided on. The firs: step is etching in hot 30% NoH to a depth of 15 to 25 micrometers. In the second step an additional 15 to 25 micrometers is removed in hot 1% sodium hydroxide to produce a crystallographically textured surfece.
C. JUNCTION FORMATION

Junction formation by diffusion from spin-on type dopant sources was evaluated as an alternative to tube furnace diffusion from a phosphine source. In particular an intensive effort was made to codiffuse boron for the P^{+}back field with phosphorous or arsenic for forming the junction. These studies were unable to identify a satisfactory alternative to the phosphine process, which was selected as the process to be used for the demonstration.

Inherent to the diffusion process is the formation of a low resistivity N type envelope surrounding the wafer. Poor device performance is obtained if this envelope is permitted to contact the P^{+}back field region or the back metallization contact. In order to eliminate this problem a back etch facility was devised and constructed. This processing step following diffusion removes the N^{+}layer on the back of the wafer where the P^{+}back field and/or metal contact will be subsequently formed. The dicing operation which will ba used in the final stages of processing may enable the elimination of back etch process step, a possibility which will be investigated during Task III.

D. BACK FIEID FORMATION

The "baseline process" proposed similtaneous diffusion of the N^{+}and p^{+}regions, using spin-on diffusion sources. Attempts to reduce this concept to a practical process were not successful.

Somewhat more promising results were obtained by forming the P^{+}region from a silk screened aluminum paste fired to form an alloyed contact. However, there remain a number of potential probleins. The presence of the aluminum metallization interferes with the N^{\dagger} diffusion, requiring that the back fleld process follow the N type diffusion. It has been found that a firing temperature of $850^{\circ} \mathrm{C}$ is required to form ars effective back field. This firing temperature has the effect of increasing the depth of the junction. It also leads to the formation of aluminum balls which are frequently firmly attached to the metallization pad and create problems in subsequent processing and mounting on module and array substrates. The formation of these balls is prevented by prefiring the aluminum paste at $650^{\circ} \mathrm{C}$. There is some evidence that this profiring may degrade the effectiveness of the back field formed by the subsequent high temperature firing, The aluminum firing also results in thermal stresses which cause warpage of the wafers which may be troublesome.

These questions will be closely evaluated during the early stages of the demonstration phase in order to ascertain the magnitude of their impact and to undertake corrective measures if nec soary.

E. METALLIZATION

The silk screen metal paste process has been found satisfactory. Improved results have been obtained by protecting the front face to prerent microfractures. Not only is the curve shape improved, but adhesion
is increased to the point trat failure occurs by fracture of the afly ton wafer rather than separation of the metallization.

The use of a silk screened silver pad fired on the aluminum back has been found to make a suitable solderable contact. it has not been possible to cofire the silver solder pad and the aluminum.

F. AR COATING

In contrast with disappointing resuits obtained with spir-on diffusion sources, spin-on AR coatings were found to give excellent performance even though an ideal index of refraction is not, available. The use of textured surfaces and coverslides make the performance less sensitive to perfection of the AR coating. The interaction with interconnect soldering remains a potential probiem.

G. DICING

No problems were encountered in dicing using a technique wherein the cell is saw scribed part way through from the back side and then broken. A suitable rotating table system to mount on existing equipment is being designed and constructed.

H. PROCESS SUMMARY

The process sequence derived from the study phase (Task IA) is compared with the baseline sequence in Figure 3 .

The cells produced by the modified process are expected to have characteristics at $28^{\circ} \mathrm{C}$ and Air Mass 0 comparable to the best cells produced during the study phase. The curve for such a cell in the form of a 51 mm round cell is shown in Figure 4 and has a peak power density of 144 watts per square meter.

IMPACT OF STUDY PHASE ON BASELINE PROCESG SEQUENCE

Baseline Process

1a.
2. Spin and bake P type diffusant
3. Belt furnace diffusion
4. Strip oxIdes
5.
6.
7. Screen print and bake back contact
8. Bratin print and bake front Contiant
9. Fire contacts
10. Spin and bake AR coating
11. Cut to final size and shape
12. Test and sort

Modified Process

NaOH Etch

Phosphine duffusion
Strip oxides and back etch
Print and bake AI back
Fire aluminum back
Screen print and bake front contact

Screen print and bake back contact

Fire contacts
Spin and bake AR coating
Cut to final size and shape
Test and sort

A. CONCEPTUAL DESIGN OF AUTOMATED SOLAR CELL PRODUCTION FACILITY

A block diagram showing the major functional components of the suggested facility is presented in Table 1, with individual process steps detailed in Table II. The process relationships are further developed in Table III which presents a suggested factory organization, details of yields and thruputs. Estimated Capital costs are presented in Table IV. Elements of the manufacturing costs are presented in Tables V, VI and VII and are combined in Table VIII. This analysis estimates a manufacturing cost of $\$ 0.866$ per cell or $\$ 1.22$ per watt based on a facility processing 2l,973 kilograms of silicon into $4,747,000$ hexagonal cells with 38 mm sides ($3,373 \mathrm{KW}$) per year on a 3 shift, 49 week basis.

T: e proposed process starts with 76 mm round wafers cut from P-type Czochralski crystals. The advent of some form of ribbon crystal would result in the substitution of ribbon strips of some arbitrary but finite length as starting material. After cleaning and etching to remove saw damage and develop a tetrahedral surface structure, the silicon substrate would be diffused in a batch type gaseous phosphorous diffusion facility. The diffusion step would accomodate ribbon strips up to three inches width and two feet length without modification. Some alteration in design of the cleaning and etching facility would be required to accommodate ribbon strips, and use of the tetrahedral surface structure wald be precluded if the surface of the strip were not [100] crystal planes.

After back etching, the wafers will be processed through a thick film facility to produce an aluminum back field, solderable front and rear
table I

PROCESS ORGANIZATION

- T THTA

STM 5 POOR

PROCESS FLOW DETAIL - AUTOMATED SOLAR CELL DEMONSTRATION $\begin{array}{ll}\begin{array}{l}\text { Automation } \\ \text { Method }\end{array} & \begin{array}{c}\frac{\text { Demonstration }}{\text { Method }}\end{array} \\ \text { Centrifuge } & \text { Centrifuge }\end{array}$ Process Step
Dry
AR Coat
Bake
Dice
Test
Interprocess
Transfer

REPRODUCBBIITY OP THE
ORIGNAL PAGE IS POOR
tarle Iv

			UNIT ANNUAL CAPACTTY 24 HR., I DAY. 49 VK.			balanced live capactit						CapItal			
STEP	equipmas:	$\begin{aligned} & \text { NEED } \\ & \text { DESION } \end{aligned}$	Ispur	outrus	$\begin{gathered} \text { Shainkage } \\ \% \end{gathered}$	SHIFPs	days	UxTP	InPur	outpur	Excess	IWIT	rotal.		
Crystal ar.	16 Kg Czochralski	So	6050 Kg .	5565 Kg .	7.7	3	6	5	23,803 Kg.	21,973 K8.	1968 Kg .	\$ 130,000	\$ 650,000		
Wafering	ID Sav, Automatic	so	1155 Kg .	295,000 War.	5.45	3	6	23	21,973 K8.	5,612,000	203,000	24,000	552,000		
Cleaning	untrasonic	No	3,240,000	3,240,000	-	3	6	3	5,612,000	5,612,000	2,719,000	2,000	6,000		
Pollah/Etch	Automatic Basket Dip		8,100,000	8,000,000	1.23	3	6	1	5,612,000	5,543,000	1,314,000	12,000	12,000		
Dry	Centrifuge	Mo	16,000,000	16,200,000	-	3	6	1	5,543,000	5,543,000	8,342,000	2,000	2,000		
Difrusion	Tube Purnace	no	7,290,000	7,230,000	0.82	3	6	1	5,543,000	5,498,000	699,000	15,000	15.000		
Back Etch	Automstio Whter Cooled Fixture Centrifuge	Mos	$\begin{array}{r} 1,940,000 \\ 16,200,000 \end{array}$	1,920,006	1.03	3	6	4	5,498,000	5,442,000	1,142,000	12,000	18,0002,000		
Dry		No		16,230,000	-	3	6	1	5,441,000	5,441,000	8,44, 000	2,000			
Print Al	Automatic Printer$8^{\prime \prime}$ Belt Furnace	N.	12,000,000	11,900,000	0.83	3	5	1	5,441,000	5,396,000	3,104,000	12,000	12,000		
Bake		au	12,200,000	32,200,000	-	3	5	1	5,396,000	5,396,000	3,328,000	25,000	25.000		
Fire	Tube Purnace No		2,430,000	2,410,000	0.82	3	5	4	5,396,000	5,352,000	1,53,000	2,500	10,000		
Back Contact	Automatic Printer No		12,000,000	11,900,000	0.83	3	5	1	5,352,000	5,306,000	3,190,000	12,000	12,000		
Bake	$8^{\prime \prime}$ Belt Fursace So		12,200,000	12,200,000	-	3	5	1	5,308,000	5,308,000	3,400,000	25,000	25,000		
Front Contact	Automatic Printer So		12,000,000	11,990,000	0.83	3	5	1	5,308,000	5,264,000	$\begin{aligned} & 3,236,000 \\ & 3,450,000 \end{aligned}$	12,000	$\begin{aligned} & 12,000 \\ & 25,000 \end{aligned}$		
Bake/Fire	$8^{\prime \prime}$ Belt Furnace	No	$12,200,000$$1,940,000$	12,200,000	-	3	5	1	5,264,000	5,264,000		25,000			
HF Rinse	Automatic Water Cooled Fixture Centrifuge	Yes		1,920,000		3	5	4	5,264,000	5,210,000	$27,000$	$\begin{array}{r} 12,000 \\ 2,000 \end{array}$	$\begin{array}{r} 48,000 \\ 2,000 \end{array}$		
Dry		So	$\begin{array}{r} 16,200,000 \\ 4,750,000 \end{array}$	16,200,000		3	5	1	5,210,000	5,210,000					
AR Spin	Automatic Spinner			4,720,000	0.635	3	5	2	5,210,000	5,177,000	1,566,000	15,000	$\begin{aligned} & 30,000 \\ & 25,000 \\ & 24,000 \end{aligned}$		
Bake	$8^{\prime \prime}$ Belt Furuace	So	12,200,000	12,200,000	-	3	5	1	5,177,000	5,177,000	3,531,000	25,000			
Dice	High Speed Sew Automatic	ac	4,720,000	4,650,000	1.48	3	5	2	5,177,000	5,100,000	1,543,000	12,000			
Final Test	Tester - Sorter Yes Line Yield (Mech) Final Test (Elec) Combined Assembly Yield		5,100,000	4,717,000	7.0.	3	7	1	5,100,000	4,747,000	$\text { c\| } \mid 45.000$ Mincellaneous		$\begin{aligned} & 43,000 \\ & 58,000 \\ & \hline \end{aligned}$		
												1,640,000			
			Installacion								: $\frac{240,000}{1,880,000}$				

TABLE V

CAPITAL REQUIREMENT SUMMARY

EQUIPMENT:

Crystal Growing Area $\$ 650,000$
Wafering
552,000
Cleaning \& Etching 20,000
Diffusion 65,000
Thick Film and Dicing 250,000
Final Test 45,000
Miscellaneous 58,000
Installation $\frac{240,000}{1,880,000}$

SPACE:
Crystal Growing $900 \mathrm{ft}^{2}$ @ \$40 36,000
Wafering \& Etching $2000 \mathrm{ft}^{2}$ e $\$ 40 \quad 80,000$
Cell Fabrication $5000 \mathrm{ft}^{2}$ e $\$ 40 \quad 200,000$
Office \& Laboratory $2000 \mathrm{ft}^{2}$ e $\$ 30 \quad 60,000$
Storeage $4000 \mathrm{ft}^{2}$ @ \$20 80,000

456,000
336,000

Total Fecility Cost
Working Capital
2,336,000
750,000

TOTAL CAPITAL INVESTMENT

TABLE VI

IABOR REQUIREMENTS

CRYSTAL GROWING
2 Opr $\times 24 \mathrm{Hr} . \times 6$ Days $\times 49 \mathrm{Wks}$.

WAFERING, GLEANING, EICHING
7 Opr x 24 Hr . $\times 6$ Days $\times 49 \mathrm{Wks}$. 49,392 Hrs.

CELL FABRICATION

3 Opr x $24 \mathrm{Hr} . \times 6$ Days $\times 49 \mathrm{Wks} .=21168$
16 Opr $\times 24 \mathrm{Hr} . \times 5$ Days $\times 49 \mathrm{Wks} .=94080$
1 Opr $\times 24 \mathrm{Hr} . \times 7$ Days $\times 49 \mathrm{Wks} .=\underline{8232}$
123,480 Hrs.

TOTAL FACTORY LABOR HOURS	186,984
@ $\$ 3.00 / \mathrm{Hr} .=$	$\$ 560,950$
$\frac{\$ 560,952}{4,747,000 \text { Cel1s }=}$	$\$ 0.118 / \mathrm{Cell}$

TABLE VII
MATERIALS AND SUPPLIES

CRYSTAL GROWING
Silicon 23,803 KB @ \$37.00
Power
\$ 880,710

Argon 41,250

Crucibles © $\$ 50$
26,500

Spare Parts
137,500
100,000
1,185,961

Ẅafering, CLEANING, ETCHING
Blades e $\$ 80.00$ Ea., $2000 \mathrm{Waf} / \mathrm{Bl}$
Chemicals
237,420
93,000
330, 420

CELL FABRICATINN

Pastes and Chemicals	388,000
Misc. Materials	100,000
488,000	
TOTAL MATERIAL COSTS	$\$ 2,004,380$
$\$ 2,004,380$	
$4,747,000$	

TABLE VIII

MANUFACIURING COST SUMMARY

Labor
Overhead © 150%
Material
Equipment Depr. (5 Yrs.)
Blag. Depr. (25 Yrs.)
Interest on Capital e 10\%

TOTAL FACTORY COST

Annuai Total.
\$ 560,950
841,425
2,004,380
376,000
18,240]
308,600
\$4,109,595

Per
Cel1
$\$ 0.118$
0.177
0.422
0.083
0.065
$\$ 0.866 / \mathrm{Cel1}$

PRLBODUCDMIIY OR THE TRURAML PAGE IS POOR
contacts and anti-reflective coating. Except for the latter process, these steps will use silk screen printers and firing furnaces which could be readily adapted to processing ribbon strips. The AR coating will be applied by spinning. It would be necessary to alter this step to a spray or flood coating process to accomodate ribbon strips.

As a final step, the wafers will be diced into square or hexagonal shape to provide an improved packing factor.

Various aspects of process requirements, performance estimates and cost factors are given in Tables III througi VIII.

B. CONCEPTUAL DESIGN OF LABORATORY MODEL

Spectrolab's concept for implementing operation of the demonstration model congists of sharing the facilities, equipment and personnel of the existing low cost solar cell production facility at Spectrolab. This approach will benefit from the use of actual production equipment without the extra time, effort and attendant capital costs that would be required to establish an entirely new facility.

A block ditigram of the process steps and components considered essential to the laboratory demonstration model are shown in Figure 5 with production capability of the presently available facilitiles. A more detailed tabilation of the specific process steps, comparing the proposed method for the demonstration facility with that of the conceptual automated production facility has been shown in Table II. A discussion of the demonstration model and its departures from the ultimate automated facility is given in the following paragraphs.
FIGURE 5
BLOCK DIAGRAM - DEMONSTRATION MODEL

The demonstration model will utilize the existing facilities of the Spectrolab Low Cost Solar Power Department, supplemented by facilities in other parto of the Spectrolab organization. This facility is presently tooled up to produce round ce $1.1 \mathrm{~s} 5.25 \pm 0.16 \mathrm{~cm}$, In diameter, as compared to a cell diameter of about 7.5 cm . for the ultimate automated facility. Jigs, fixtures and equipment for handing the larger size wafers is readily available from equipment suppliers, and the smaller size wafer proposed for the demonstration model is not deemed to be significant With respect to the feasibility demonstration. 5.25 cm . wafers w111 be obtained from the existing Spectrolab crystal growint and mechanical shaping facilities.

The subsequent step, of cleaning, etching and diffusion will use the same Jigs, holders, fixtures and processes as the ultimate facilit w with the exception that an automatic transfer mechanism would be used in the cleaning and etching steps in the ultimate facility. The feasibility of such transfer mechanisms has been established by their use in zarious electroplating and chemical treatment applications. Commercially available equipment would perhaps require some minor modification.

The presently available bacic etch facility is hand loaded and adequate for establishing the technology feasibility. There is no known commercially avallable nutomated equipment which would be suitable.

The several steps of printing, baking and firing the thick film elements for the back field, and the front and back contacts will utilize nonautomated equipment for silk screen printing and baking. In both cases the ultimate facility equipment (automatic printers and belt fixaaces) has been well ectablished in the thick film industry Spectrolab purehased
and will soon have installed a belt furnace for the combined baking/firing of the front and back contacts and this equipment can be used to vrifify the technical feasibility of the other bake steps. The aluminum back field alloy firlng will be effected in standard tube furnace equipment.

The $H F$ rinse of tho thick film contacts requires the same equipment as the back etch. In the demonstration model the two processes will be carried out on the same equipment.

The AR coating and baking steps will use non-automated equipment in the demonstration model to establish technical feasibility readily transferable to commercially available automatic equipment.

In the demonstration model, dicing will be done on a modified K . 0 . Lee grinder in the Spectrolab Aerospace Department. The design of this modification is underway, and is expected to lead to prototype equipment which could be readily adapted to the ultimate facility.

The final test facility is a hand loaded solar simulator equipnent. The ultimate facility will require the design of an automated test equipment having a high thruput rate. Existing manual equipment will be used for the laboratory model.

The demonstration facility will use hand loading of jigs and fixtures in lieu of mechanized loading and transfer mechanisms which are readily available for the ultimate facility.

The design requirements, production performance and estimated cost of those items of equipment for which commercial equipment is not available for the ultimate facility are given in Table IX.
TABIE IX

ULITMAITE PRODUCTION FACIIITY
 EQUIPMENT DESIGN REQUIREMENTS

Description	Steps for which required	Criteria	$\begin{gathered} \text { Estimated } \\ \text { Cost } \\ \hline \end{gathered}$
Eich facility	Back etch HF rinse	1. May consist of multiple stations 2. Shall be designed to accomodate the use of hydrofluric and hydrofluric-nitric acid solutions to the etching of two or three inch diameter silicon wafer structures on one side only. 3. Shall maintain the wafer temperature constant within $\pm 0.5^{\circ} \mathrm{C}$ during the prescribed etching cycle. 4. Sinall have adjustable etch cycle times covering the range of 15 sec . to 1 minute followed by a deionized water rinse. 5. Shall have mechanized feed and discharge using standard semiconductòr wafer cartridges. per hour. 6. Skall be capable of a minimum thruput rate of 240 wafers	\$12,000
Dice saw	Dicing	1. Shall be capable of cutting hexagonal or square cells from two or three inch diameter wafers. 2. Shall have mechanized feed and discharge using standard wafer cartridges. 3. Shall have a maximum cycle time.	\$12,000
Automatic Tester/Sorter	Final test	1. Shall test hexagonal, square or round cells for current at a preset voltage in the range of 0.4 to 0.5 volts under standard conditions of solar simulation illumination. 2. Shall sort tested cells into reject and 3 acceptable groups determined by adjustable current output settings. 3. Shall have mechanized feed from standard wafer cartridges. 4. Shall have a miaimum thruput rate of 590 cells per hour.	\$45,000

The proposed demonstration model will be compatible with the use of round blanks 5.25 cm . in diameter from which hexagonal, square, or rectangular cells may be cut. The model will be capable of producing N on P cells 0.015 cm . thick (minimum) with or wothout a P^{+}back field.

V. DETAIIED LABORAIORY DESIGN

A. EXPERIMENTAL PLANN

The automation demonstration program will be executed in accordance With the starts schedule shown in Exhibit A. Material will be grouped into lots of 100 wafers with lot identity maintained through the cell fabrication process. In order to provide reasonable equipment loads, groups of 5 lots per day will be planned. The proposed schedule begins with short runs (1 and 2 days) and builds up to a sustained run lasting two weeks during the final month. The short runs during the early phases will provide opportunity to debug and refine processing techniques, record keeping and data collection and evaluation. The longer runs during the late stages of the schedule will provide opportunity for collection of information and data under typical production conditions.

Data for each lot will be collected on the proposed data log (Exhibit B). This record will provide information for the analysis of production rates, through-put, yields, operating costs, energy consumption, parameter distributions and process control. Data for process control will include thickness after etch, sheet resistivity after diffusion, and current at .450 volts after metallization under standard illumination, all on samples of 5 cells for each lot. Statistical evaluation of these data and the within lot parameter distributions will provide estimates of confidence limits for the control of these parameters in production processes, sensitivity to changes in process procedures, and the impact of these factors on the electrical output distribution of the final products. Additional process control measurements may be incorporated as indicated by experience during the demonstration runs.

Process control and lot Histribution data will be utilized to evaluate the feasibility of eliminating additional process steps such as back etching after diffusion and the cleaning step after completion of thick film firing. This will be accomplished by elimination of individual process steps after sufficient runs have been accomplished to establish control limits, parameter means and distribution standard deviations. The results of the experimental runs will be compared with these standards for evaluation as to the statistical significance of possible changes induced by the process elimination.

The proposed demonstration is based on the processirg of 51 mm diameter wafers which will be diced into hexagons with 25 mm sides. Two lots will be diced into rectangles $20 \times 40 \mathrm{~mm}$. It is expected that one of these lots will be produced during the middle period of the demonstration phase after process control has been demonstrated, with the second lot being produced during the late stages of the program.
B. DESIGN DRAWINGS

The detail design drawings include a master process flow chart, drawing number DO22471. This document serves as a top drawing to identify the processes in proper sequence and the specific and ancillary equipment associated with each process. Specific drawings are also identified in the Engineering Order $10-10045$.

AUTOMATION DEMONSTRATION

PROPOSED STARTS SCHEDULE

Week Ending
 \# of Days \# of Starts
 Cum. Starts

October 24, 1975	1	500	500
November 7, 1975	1	500	1,000
November 21, 1975	2	1,000	2,000
December 5, 1975	2	1,000	3,000
December 19, 1975	3	1,500	4,500
January 9, 1976	3	1,500	6,000
January 30, 1976	4	2,000	8,000
February 20, 1976	5	2,500	10,500
March 12, 1976	5	2,500	13,000
March 19, 1976	5	2,500	15,500

TBODUCBILITY OF TEE
MGIAL PAGE IS POOR

DATA LOG - AUTOMATION DEMONSTRATION

VI. CONCLUSIONS

The study and conceptual design phase of this program have established the technical feasibility of automating the solar cell process to produce low cost silicon solar cells with improved performance.

Estimates predict an automated throughput of 21.973 kilograms of silicon per year, on a three shift, 49-week basis producing 4, 747,000 hexagonal cells ($38 \mathrm{~mm} / \mathrm{side}$), equivalent to a total of 3,373 kilowatts, at a projected manufacturing cost of $\$ 0.866$ per cell or $\$ 1.22$ per watt.

[^0]: - For sale by the N:tional Technical Information Service, Springfield, Virginia 22151

